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Neurological disorders or cerebrovascular accidents can affect one’s ability to 

perform activities of daily living, requiring a team of specialists to assess the condition 

and plan proper treatment.  However, current methods used to evaluate aspects of motor 

impairment are subjective, which may lead to inconsistent and inaccurate assessments 

and ultimately affect the therapy protocol.  Herein, focus was directed toward the 

development of an objective, reliable metric based on quantification of motion presented 

in the phase domain. 

To begin, representations of single-joint extension-flexion were examined to 

assess graphing features that become more prominent with impaired motion.  From this 

work, it was shown that alternative methods of displaying movement data retain features 

that distinguish impaired movement, while providing a distinct visual record for quick 

comparison.  Further work focused on the development of a novel scheme—based on 

computational geometry—for quantifying the area enclosed by complex phase portraits, 

validation of its performance (accuracy, sensitivity, specificity > 96%), and application in 

a metric of motor performance, the Phase Area Ratio (PAR).  The final focus 
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demonstrated the use of PAR to track progression of SPMS subjects, receiving anti-

spasticity drug treatment.  PAR did not improve significantly in the upper extremities 

between the baseline test session and the one-month follow up test session, but it was 

revealed that scores were significantly dependent on the movement pace. 

It is concluded that phase portraits provide a viable means to capture and quantify 

the idiosyncrasies of human movement and are a useful tool for tracking progression of 

hemiparetic individuals through treatment.   
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CHAPTER 1: GENERAL INTRODUCTION 

 

Upper motor neuron syndrome and Spasticity 
 Brain lesions in upper motor neurons can disrupt signal transmission through one 

or more of the descending pathways, causing upper motor neuron (UMN) syndrome.    

Symptoms include spasticity, hypertonia, clonus, a positive Babinski sign, weakness, 

fatigue, and dexterity loss (Pandyan et al. 2005, Barnes and Johnson 2008). UMN 

syndrome is common in stroke, multiple sclerosis, cerebral palsy and traumatic brain 

injury patients.  Often, the lesion impairs motor coordination; for instance, a reaching 

trajectory that once followed a smooth, natural motion along a minimal energy path 

becomes jerky and unpredictable.   

A highly common positive symptom of UMN syndrome is spasticity.  Studies 

have reported that as many as 20 percent of post-stroke patients, 60 percent of multiple 

sclerosis (MS), 80 percent cerebral palsy, and 75 percent traumatic brain injury patients 

seek treatment for spasticity (Watkins et al. 2002, Physicians 2009, Koman et al. 2008).  

Spasticity can impact a number of ordinary activities of daily living (ADL), including 

eating, washing, and dressing, as well as affect one’s ability to work, mood, and 

motivation.  Studies have found that nearly 35 percent of MS patients describe their 

spasticity severity level among the following categories: ‘frequently affecting’, ‘severely 

limiting’ or ‘completely preventing’ their ability to complete daily activities (Rizzo et al. 

2004).   In Sweden, it has been estimated that the costs incurred within the first year post-

stroke for an individual with spasticity is four times greater than one without and as much 

as twenty times greater in the United States (Lundstrom et al. 2010).   
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Lance described spasticity as a motor disorder characterized by a velocity-

dependent increase in resistance during passive movement of a person’s limb and is seen 

in subjects with UMN lesions (Lance 1980).  In recent years, many have advocated for 

better understanding and assessment of spasticity in a clinical setting, as it is frequently 

used as an “umbrella term” for the positive UMN syndrome symptoms, although Lance’s 

commonly accepted, well-published definition is quite unique and specific (Wood et al. 

2005).  However, it has since been noted that findings from spasticity-related studies 

contradict Lance’s original definition, and other, less restrictive, definitions may be more 

appropriate from both a clinical and research-driven standpoint (Malhotra et al. 2009).  

Advocates pushing for both research advancements in spasticity and improvements in 

clinical diagnosis and treatment have surfaced with modified definitions, although a 

consensus has yet to be reached.  Groups have proposed spasticity be redefined as, 

“disordered sensory-motor control, resulting from an upper motor neuron lesion, 

presenting as intermittent or sustained involuntary activation of muscles” based on a 

careful examination of literature, in which they concluded that spastic muscle activity 

does not always present with stretch reflex hyperexcitability nor did the literature support 

the notion that increased muscle activity always corresponds to increased resistance 

(Burridge et al. 2005, Pandyan et al. 2005).  Additionally, Pandyan, et al. questioned 

whether velocity-dependence is a characteristic reserved only for spasticity but reasoned 

that velocity-dependence is a normal viscoelastic property of soft-tissue, therefore finding 

it inappropriate to make velocity a defining trait (Pandyan et al. 2005).  Malhotra’s 

review supports the argument for a modified definition, concluding that the 

aforementioned definition developed by the SPASM Consortium—an interdisciplinary 
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team of specialists in spasticity, advocating both clinical and research advancements from 

2002 to 2005—and published by Pandyan, Burridge, et al. best represents the current 

state, in which spasticity is understood.  The definition encompasses most positive 

features of UMN syndrome, and, although vague, it is promoted as being the most 

clinically relevant definition, while providing researchers the flexibility to approach 

spasticity from a broad sense and, in time, refine and focus the definition based on their 

findings.  However, it may be argued that Malhotra, et al.’s promotion is biased, as 

coauthors are serving member of the SPASM Consortium (Malhotra et al. 2009).   

Despite disagreement on spasticity’s proper definition, it is agreed that spasticity 

has a neurogenic component, causing overactive muscle contractions, and a 

biomechanical component, resulting in changes in muscle properties, including stiffness 

and length.  Due to its complexity, spasticity calls for a team of specialists—including 

neurologists, physical therapists, occupational therapists, and rehabilitation engineers—to 

decide the best course of treatment (Burridge et al. 2005, Hefter et al. 2012, Foran et al. 

2005, Physicians 2009).  

 

Treatment 
A variety of treatment options exist to suit the uniqueness of each patient’s case.  

Although it may be decided that some patients need little or no treatment, others require a 

combination of methods to address symptoms and deter secondary complications.  

Physical therapy is often needed to improve gross motor function, improve joint range of 

motion, and discourage muscle contracture, in addition to occupational therapy to focus 

on improving ADL.  Specialty equipment—for example, wheelchairs, gait trainers, 

orthotics, and casts—may also be needed to encourage mobility and improve 
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functionality (Bandi and Ward 2010).  Medications, such as baclofen, may also be 

administered, either orally or intrathecally, to inhibit excitation and ease muscle 

contraction.  In addition, some find botulinum toxin injections (BTI) beneficial in 

discouraging muscle hyperactivity—though the effects gradually abate—while others 

argue that BTI does not significantly improve function (Bensmail et al. 2010, Physicians 

2009, Hefter et al. 2012).   

    

Assessment 
Standard methods for assessing a patient’s level of spasticity are based on 

qualitative observations, and currently, there are no reliable, quantitative methods for 

assessing spasticity.  The Ashworth and Modified Ashworth scale (MAS) are based on 

the perceived resistance to stretch when an affected limb is passively moved.  Both tests 

assign a subjective rating—on a scale from 0 to 4—to the severity of spasticity; however, 

the modified-version incorporates an extra level in the scale to distinguish mild from 

moderate spasticity (Bandi and Ward 2010, Bohannon and Smith 1987).  In 2008, 

Alibiglou, et al. studied the neural and muscular components of joint stiffness; results 

from this study failed to correlate with assigned (modified) Ashworth scores, and others 

have urged physicians to discontinue use (Alibiglou et al. 2008, Fleuren et al. 2010).  

Likewise, the Tardieu Scale is based on a 5-point system and is used during passive limb 

movement; for this test, the examiner is concerned with the angle at which the spastic 

event, or “catch”, occurs over test variations (slow speed, fast speed, and with gravity) 

(Bandi and Ward 2010).  Due to the test’s subjective nature, it has been reported that the 

experience of the examiner limits the reliability of the Tardieu Scale (Ansari et al. 2008).  
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Although there is a call for methods that quantify one’s spastic severity, a reliable, well 

accepted system has yet to be implemented. 

In accordance to Lance’s definition, in a clinical setting, spasticity is typically 

assessed by a therapist while passively moving a subject’s limb, and there are a limited 

number of research studies that have investigated active motion test protocols.  However, 

Burridge, et al. have voiced the importance of considering both passive and active 

movements to fully grasp how neurogenic features differ from mechanic; their belief is 

that an active test protocol may yield a more valuable and realistic assessment of a 

patient’s condition (Burridge et al. 2005).  Further discussed by Van der Krogt, et al., 

active test protocols provide insight into the neurogenic aspects, yielding information 

about voluntary muscle properties, whereas passive protocols highlight biomechanical 

aspects, such as tissue and joint stiffness properties (van der Krogt et al. 2012).   

Previous studies based trajectory analysis on the minimization of a single cost 

function (i.e. avoiding obstacles, jerk), while other found it more appropriate to base their 

analysis on a combination of cost functions (Wininger, Kim, and Craelius 2009, Berret et 

al. 2011); however, there is no consensus on what is the most appropriate approach.  

Commonly, impairments change the trajectory’s behavior from one that is smooth to one 

that is complex and unpredictable, yet the degree of complexity may fall along a 

spectrum and deciding to classify a motion as smooth or unsmooth is simply not “black 

or white.”  Here, I will discuss a graphical method and present a measure, which together 

are capable of qualitatively and quantitatively characterizing smoothness, use these as a 

means of exploring motor complexities, and aim to understand its many shades. 



6 
 

 

Statement of Need 
The qualitative assessment of spasticity is a major limitation on progress in 

understanding and treating the syndrome (Rekand 2010, Ansari et al. 2008).  An 

evaluation of a patient’s condition that is based on subjectivity results in inconsistent 

assessments, as well as discrepancies across therapists, affects the therapy protocol and 

inaccurately tracks progression. 

In order to best assess a patient’s condition and uniquely tailor treatment plans, 

diagnostic tests used to assess spastic severity in subjects are in need of the following: 

1. A standardized protocol that assesses a patient’s degree of spasticity, 

incorporating both standardized quantitative assessments and qualitative, 

subjective assessment to properly track a patient's progression though treatment 

(intra-subject comparison), as well as the ability to draw inter-subject 

comparisons. 

2. A protocol that improves intra-physician and inter-physician accuracy of 

assigning a patient to the most appropriate severity level.     

3. The ability to gauge dose and duration of pharmaceutical interventions with 

guidance from both quantitative and qualitative test results. 

 

Hypotheses 
The present work aims to improve the quality of care of patients suffering from 

spasticity, through the development of reliable metrics that will assist a provider with 

diagnosis and designing a treatment plan.  It has been shown that human movement is 

accomplished by nonlinear processes whose behavior can be visualized and quantified in 

phase space.  Specifically, I will test the hypothesis that the efficiency of single-joint 
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movements can be quantified by dynamical analysis, including kinematical phase 

portraits.  The investigation progressed through three main hypotheses. 

Hypothesis 1: 
Phase portraits accentuate aberrant, unsmooth movements that are not discernible 

in the temporal domain by providing an easily recognizable geometric form with normal 

movement and deviations from this form with impaired movement.  Additionally, phase 

planes will provide a visual and quantifiable record for assessing performance across 

multiple test sessions and simplify intra-subject and inter-subject comparisons, exposing 

behavior obscured by temporal plots.   

 

Hypothesis 2: 
Phase Area Ratio (PAR) scores appropriately represent the complexity of a 

movement’s profile and provide insight otherwise lost by conventional methods.   

 

Hypothesis 3: 
Quantification of spasticity is possible through the use of temporal graphs, phase 

portraits, and additional metrics of smoothness.  These may not correlate well with 

established, qualitative and quantitative methods, but may correlate with certain 

treatments.  

 

Thesis Overview  
Here, objective measures of complex movement are presented and compared, in 

hopes that they may be used to quantify and report symptoms, such as spasticity.  In 

Chapter 2 of this thesis, kinematic data gathered from both stroke and control subjects are 
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used to investigate what can be learned about one’s level of impairment by viewing the 

data in phase space as compared to the temporal frame.  Through this first segment, it is 

shown that phase portraits are a useful tool to display kinematic motion and yield features 

that distinguish impaired movement.  This leads to the research focus presented in 

Chapter 3—quantification of a phase portrait trajectory.  A novel scheme, based on 

computational geometry, for quantifying the area within a phase portrait is presented and 

compared with previously developed methods (Atler et al. 2015).  Each of these area 

finding methods may be used to compute the Phase Area Ratio (PAR)—a metric, which 

will promote inter- and intra-rater reliability, allow therapists to easily track a patient’s 

progression across trials, and validate the efficacy of a treatment protocol.  Chapter 4 

demonstrates use of the PAR metric to track multi-month progression of subjects 

suffering from Secondary Progressive Multiple Sclerosis (SPMS) and receiving anti-

spasticity drug treatment.  Additionally, it is shown that, through use of this metric, it is 

possible to draw inter-and intra-subject comparisons and study such things as pace-

dependencies and limb differences.   
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CHAPTER 2:  HUMAN MOTION ANALYSIS USING SPATIO-
TEMPORAL REPRESENTATION 

 
 
 
Abstract 
 Objective: The objective of this study was to compare temporal and phase plane 

domains as metrics of human motion smoothness.  Method: Subjects with UL impairment 

due to stroke (N = 6, 5 M/1F) and control subjects (N = 3, 2M/1F) performed single-joint 

extension-flexions at the elbow using the Mechanical Arm and Support Tracker (MAST).  

Processed data were plotted in the temporal frame and as phase portraits and assessed for 

features believed to indicate atypical behavior—excessive local extrema (E), kinematic 

mean variation (KMV), inner looping (L), centroid drift (CD), and stiffness.  Results: A 

total of 302 extension-flexion repetitions (166 post-stroke/136 control) were displayed as 

temporal plots and phase portraits.  Local extrema event rate were two times greater 

among post-stroke subjects than control subjects (p < 0.0001); repetitions with excessive 

local extrema were nearly always generated by post-stroke subjects (96-, 89-, and 95 

percent of p-t, v-t, and a-t plots).  Similarly, the inner loop event rate was more than three 

times greater for post-stroke subjects than control subjects (p < 0.0001), accounting for 

97- and 95 percent of the total VP and AV phase portraits with inner loops.  Inter-

repetition variation, measured by centroid movement and kinematic mean variation, 

between post-stroke and control was significant in both graphing schemes (p < 0.001 for 

all cases).  Stiffness values were found to be greater in control subjects than in imparied 

subject (p = 1), due to the nonlinear nature of the AP phase portraits.  Conclusions:  A 

quantification scheme that incorporates alternative ways to display movement data other 

than conventional temporal graphs may be useful in assessing atypical movement.  It is 
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recommended that future work focuses on development and implementation of said 

scheme.   

 

Introduction 
Nearly 800,000 Americans experience stroke each year (Go et al. 2014).  Post-

stroke residual effects are highly common, with more than 50 percent experiencing a 

motor disability and over 40 percent developing spasticity in an upper or lower extremity 

(Go et al. 2014, Urban et al. 2010, Winstein et al. 2003).  The direct and indirect cost 

associated with post-stroke treatment has been estimated at $36.5 million per year and 

may include a team of specialists and a combination of physical, occupational and speech 

therapy, medications, orthotic intervention, as well as many additional services (Go et al. 

2014).   

Previous studies have drawn attention to spasticity assessment and have noted that 

evaluating a patient’s severity level and thus tracking a treatment’s efficacy, in order to 

justify different treatment options and their associated costs, is often based on a 

provider’s subjective assessment (Pandyan et al. 1999, Pandyan et al. 2005).  However, 

potential risks may arise when a treatment plan, i.e. medication dosage, is based on 

subjectivity (Krach 2001, Smith et al. 1991).  There is a need for a standardized measure 

that quantifies extremity motor patterns, allowing providers to objectively assess the 

severity of impaired movement, monitor a patient’s progress, and validate a treatment’s 

efficacy (Pandyan et al. 1999, Pandyan et al. 2005).   

The trajectory path of single-joint extension-flexion is commonly shown using 

temporal plots, in which position, velocity, or acceleration is dependent on time.  

Previous studies have explored features to describe a motion trajectory, focusing on 
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kinematic features, including ‘movement time,’ ‘peak velocity,’ and ‘number of 

movement units’ or ‘submovements’ (Chang et al. 2008, Alt Murphy, Willen, and 

Sunnerhagen 2011, Rohrer et al. 2002, Rohrer et al. 2004).  ‘Submovements,’ which are 

essentially subsequent, discrete Gaussian curves that become blended into one as the 

fluidity of a motion improves, are promoted as a measure of ‘smoothness.’ Assessing 

stroke patients before and after one year of treatment, Rohrer, et. al. found that post-

treatment ‘submovements’ peaked at a higher velocity, stretched over a longer duration, 

and had greater overlap, so fewer ‘submovements’ were needed to complete a given task 

(Rohrer et al. 2002, Rohrer et al. 2004).   

Likewise, in this study, certain features were extracted from the temporal plots.  

The present study considers a feature related to ‘movement units’ and anticipates findings 

similar to prior publications: position, velocity and acceleration profiles generated by 

impaired subjects will fluctuate more than the profiles generated by a non-impaired 

subject.  

However, we are faced with the question: is it possible to pair a qualitative 

description of the level of impairment, in a manner that is easily communicated, 

providing a visual image, across various disciplines (engineers, neurologists, physical 

therapists, etc.) with a quantitative measure?  The dialogue becomes complicated, in that 

the ideal shapes of temporal graphs (sigmoidal for position-time; Gaussian for velocity- 

time; sinusoidal for acceleration-time) are less impressionable than a basic geometric 

shape.  Thus, variations in the ideal shape are more difficult to qualitatively describe.   

Alternatively, the data may be viewed in the phase plane, in which the aspect of 

time is removed and data is plotted with one kinematic feature against another (i.e. a state 



12 
 

 

variable against its first or second derivative with respect to time), to form a distinct 

shape.  It is hypothesized that velocity-position (VP) and acceleration-velocity (AV) 

phase portraits generated from the movement of healthy individuals will be smooth, 

elliptical and near symmetrical, whereas portraits from impaired movement will show 

asymmetrical irregularities, including inner loops and concavities. 

 Acceleration-position (AP) phase portraits provide insight into linear and 

nonlinear motor behavior.  With acceleration directly proportional to force, a subject that 

moves with ease through the extension/flexion cyclical motion will generate a AP portrait 

that is either linear or with a linear region (Guiard 1993).  It is hypothesized that slope of 

the linear region coincides with stiffness, as it is expected that a subject exhibiting 

impairment will yield an AP portrait of greater slope—and, therefore, indicates an 

increase in stiffness—than one exhibiting smooth motion.   

 In this study, we examined qualitative and quantitative features that describe the 

shape of temporal plots and phase portraits and compared how time-based and phase-

based plotting schemes identify typical motion from complex kinematic data.  The goal 

of this study was to better understand the features from each plotting method that provide 

different insights into motor behavior and may be used in future studies to develop a 

standardized scheme for quantifying movement complexity.  We hypothesized that 

spatio-temporal features are affected by complex motion and therefore, graphing tools 

may be useful for: 

1. Capturing a visual record of a subject’s performance that may be used to draw 

comparisons within and across subjects. 
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2. Identifying graphing features that may differentiate impaired from typical 

movement.   

The present study aims to show that plotting methods offer a tool to describe movement 

performance and graphical features will deviate from a predefined ideal in the presence 

of impaired motion. 

 

Methods 
Subject Pool 
 Six post-stroke subjects (5 male, 1 female) and three control subjects (2 male; 1 

female) participated in this study.  All participants were over the age of 18 years and with 

no known cognitive impairments that would inhibit compliance with the research 

protocol or the ability to provide informed consent.  Approval for subject testing was 

granted by Rutgers IRB.  

 

Instrumentation and Test Protocol 
 Subjects were seated and arms were comfortably secured in the Mechanical Arm 

and Support Tracker (MAST) (Wininger, Kim, and Craelius 2009).  The MAST allowed 

a subject to perform single-joint extensions and flexions about the elbow along the 

horizontal plane, free from gravitational influence.  Data were collected from the 

MAST’s potentiometric goniometer and accelerometer (ADXL330) via a LabVIEW (NI 

Instruments) graphical user interface (GUI), while the subjects participated in both 

frequency-specific, tracking tasks and self-paced tasks.   
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Figure 1: Mechanical Arm Support and Tracker (MAST) 
 

Signal Processing 
 Velocity data were computed by numerical differentiation of the position data 

gathered by the goniometer.  A locally weighted regression (LOESS) approach, with a 

five percent window size, was used to smooth the position, velocity, and acceleration 

data.  To adjust for amplitude differences, the data-series were normalized to a scale of 0 

to 1.   

 Repetitions (flexion-extension combinations) from each trial were identified and 

separated via an automated Matlab (The Mathworks, Inc.) program, using angular 

threshold filtering.  After visual inspection of a subject’s sequence of repetitions, 

threshold values were adjusted, as needed.  Repetitions were further divided into an 

extension and flexion, as determined by the repetition mid-point.   

 
Temporal & Phase Plot Feature Assessment 
 Processed data were translated and plotted in the temporal frame and as phase 

portraits.  The majority of the graphing techniques used in this study were performed 
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using the complete repetition (flexion-extension), with the exception of the AP phase 

portrait, in which each portrait represented a single extension or flexion.   

 The temporal plots and phase portraits were visually inspected and 

algorithmically assessed for features listed in Table 1.  These features were specifically 

chosen because they provided a visual cue that motion deviated from expected motion, 

applied to both domains, and can be associated with physical parameters.  

 

Table 1: Overview of Assessed Features 
Feature Domain Description 

Local 
Extrema 

Time  
(p-, v-, a-t) 

Identified as the point where a function’s first 
derivate changes from positive to negative, or vice 
versa.    
 
Expected Values: Ep = 1; Ev = 2; Ea = 4 or 5 

Inner Loops Phase plane  
(VP, AV) 

Identified as a minimum of eight data points 
forming a complete loop within the convex hull of a 
phase portrait. 
 
Expected Values: LVP = 0; LAV = 0 

Kinematic 
Mean 
Variation 

Time  
(p-, v-, a-t) 

Measured as the Euclidean distance between the 
mean value of two consecutive temporal graphs. 
 
Expected Values: KMVp ≈ 0; KMVv ≈ 0; KMVa ≈ 0 

Centroid 
Movement 

Phase plane  
(VP , AV) 

Measured as the Euclidean distance between the 
centroids of two consecutive phase portraits. 
 
Expected Values: CMVP ≈ 0; CMAV ≈ 0; 

Stiffness Phase plane  
(AP) 

Related (i.e. directly proportional) to the slope of 
AP phase portrait.  
 
Expected Value: k ∝ 휃̈ 휃 
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Feature Definitions 
Local extrema (Ei), where i = p, v or a, for position, velocity or acceleration, 

respectively.  A local extrema is identified as the point at which the function’s first 

derivative changes from positive to negative slope, or vice versa.  It is expected that 

typical motion of an extension-flexion trajectory (single repetition) yields 1, 2, or 4-5 

local extrema in position-time, velocity-time, or acceleration-time graphs, respectively.  

Identification of local extrema exceeding these amounts may indicate atypical or complex 

motion.   

 

Inner loops (Lj), where j = VP or AV, for velocity-position or acceleration-velocity 

phase portraits, respectively.  It is expected that typical motion of an extension-flexion 

trajectory yields velocity-position and acceleration-velocity phase portraits that are near 

elliptical and free of points within the convex hull.  A phase portrait with points existing 

within its convex hull, such as points forming inner loops, may indicate atypical or 

complex motion.  A sequence of points constituted an inner loop if it included at least 

eight data points.  This method considered only whether an inner loop existed within the 

phase portrait and did not consider the effects of large verses small loops.   

 

Kinematic Mean Variations (KMVi), where i = p, v or a, for position, velocity or 

acceleration, respectively, is defined as the Euclidean distance between the mean value of 

two consecutive temporal graphs.  Synonymous to centroid movement (CM), it is 

expected that consecutive repetitions of typical arm extension-flexion trajectory yield 

temporal graphs with minimal variation in kinematic mean, and significant variation 

between consecutive temporal graphs may indicate atypical movement.  
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Centroid Movement (CMj), where j = VP or AV, for velocity-position or acceleration-

velocity phase portraits, respectively, is defined as the Euclidean distance between the 

centroids of two consecutive phase portraits.  DiBerardino, et. al. demonstrated that the 

shift in consecutive phase portraits’ centroids may provide insight into inter-stride 

variability during gait and may be useful for quantifying the performance of a limb’s 

trajectory (DiBerardino et al. 2010).  Herein, it is expected that consecutive repetitions of 

typical arm extension-flexion trajectory yield phase portraits with minimal centroid 

movement, and significant centroid movement between consecutive phase portraits may 

indicate atypical movement.  

 

Stiffness (k), as measured from the acceleration-position phase portrait.  Typical motion 

is also expected to yield an acceleration-position phase portrait with a distinct linear 

region, whereas complex motion may produce a phase portrait void of a linear region.  

The slope of the linear region coincides with stiffness, so it is anticipated that the slope of 

linear region will increase with an individual’s impairment level.  Elbow joint stiffness 

may be represented by the following equation:   

 
Stiffness,        푘 ∝

̈
 (1) 

 where 휃̈ = angular acceleration and  = angular position of elbow.   

 

Feature Assessment and Statistical Analysis 
 Histograms of the number of local extrema (Ep, Ev, Ea) in position-time, velocity-

time, and acceleration-time graphs, and the number of inner loops (LVP, LAV) in velocity-

position and acceleration-velocity phase portraits were approximated by a Poisson 
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distribution.  The ratio of the post-stroke to control subject Poisson rates was tested using 

an exact conditional test (C-test), as developed by Przyborowski and Wilenski and was 

implemented in R (Team 2013, Przyborowski and Wilenski 1940).   

 Centroid drift (CD) value histograms were right-skewed and best fit by a 

lognormal distribution.  CD values were compared between the post-stroke and control 

subject groups using Wilcoxon Rank Sum test.  Wilcoxon Rank Sum test is a 

nonparametric test and, therefore, makes no assumptions, regarding the probability 

distribution of a data set (Wilcoxon 1945).  Also, the Wilcoxon Rank Sum test is adept to 

handle repeated measures, as is the case at hand with multiple repetitions from subjects 

over several test sessions.   

 Kinematic mean variation (KMV) value histograms were also right-skewed and 

best fit by a lognormal distribution.  Similar to CD, KMV values were compared between 

the post-stroke and control subject groups using Wilcoxon Rank Sum test.  Results 

generated from these approximations are further discussed in the following section. 

 

Results 
In this study, 302 repetitions (flexion-extension) were analyzed and displayed as 

temporal and phase portraits.  Through visual and algorithmic inspections, these plots 

were closely examined (166 repetitions from post-stroke subjects and 136 repetitions 

from control subjects) for the features previously discussed.   

Using the data presented here, a full repetition (i.e. a concatenated extension-

flexion sequence) was needed to form a complete ellipse.  Figure 2 (a-c) provides 

examples of typical time-based curves for unimpaired single-joint flexions at the elbow,  



19 
 

 

  

  

Figure 2: Ideal shapes generated by a single elbow flexion:  (a) sigmoidal for p-t; (b) Gaussian for v-t; (c) 
sinusoidal for a-t.  (d) elliptical VP phase portrait  
 

and the fourth plot, Figure 2 (d), demonstrates the ideal phase portrait—shown here as 

VP, although an AV portrait yields similar results.     

 Figure 3 depicts a comparison of temporal and phase plots generated by a control 

(Figure 3 left column) and stroke subject (Figure 3 right column) and highlights two of 

the features examined in this study—local extrema and inner loops.  For clarity, we 

selected a single repetition each from a control and stroke subject.  The temporal plots 

(Figure 3 a-b) and phase portraits (Figure 3 c-d) show noticeable differences, as 

highlighted in red.  In a single extension-flexion repetition, the control subject yields a 

position-time plot that follows the shape of Gaussian curve (R2 = 0.94), and thus, yields 

the expected number of local extrema (Ep = 1; Ev = 2).  On the contrary, the stroke 

subject’s position-time plot does not follow the expected Gaussian shape (best-fit 
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Gaussian, R2 = 0.13) and yields excessive local extrema (Ep = 3; Ev = 4).  Additionally, 

an inner loop is present in the stroke subject’s phase portrait (LVP = 1) and not in the 

control’s (LVP= 0). 

Control Stroke 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
 (e)  

(f) 
Figure 3: Comparison of temporal plots with marked local extrema and phase portraits with marked inner loops 
generated by control subjects (left column) and stroke subjects (right column).  All figures were generated using 
a complete extension-flexion repetition. (a)-(b) Position-time graphs (control: Ep = 1; stroke: Ep = 3); (c)-(d) 
velocity-time graphs (control: Ev = 2; stroke: Ev = 4 ); (e)-(f) Velocity-position phase portraits (control: LVP = 0; 
stroke: LVP = 1) 
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Local Extrema Count  

 Comparison of local extrema count between control and post-stroke subjects 

revealed a significant difference in performance, with the local extrema event rate of 

post-stroke subjects being more than two times greater than that of the control group (p < 

0.0001).  Considering all repetitions, a total of 24 position-, 54 velocity-, and 41 

acceleration verses time plots were identified as having an excessive number of local 

extrema (greater than 1, 2, and 5 extrema, respectively).  Of those identified with 

excessive extrema, nearly all repetitions (96-, 89-, and 95 percent of p-t, v-t, and a-t plots) 

were generated by post-stroke subjects. Within the post-stroke group, 14-, 29-, and 23 

percent of the repetitions yielded temporal plots (p-t, v-t, a-t, respectively) with excessive 

extrema, whereas far fewer cases with excessive fluctuations were identified in the 

control group (0.74-, 4.4-, and 1.5 percent of control subject generated p-t, v-t, and a-t 

plots).  Results are summarized in Table 2. 

 

Inner Loop Count  

 Similarly, summarized in Table 2, a comparison of inner loop count between the 

two groups also showed a significant performance difference, with the inner loop event 

rate of post-stroke subjects being more than three times greater than that of the control 

group (p < 0.0001).   Of the 302 repetitions generated by post-stroke and control subjects, 

at least one inner loop occurred in 11 percent of VP phase portraits and 17 percent of AV 

phase portrait.  Post-stroke subjects’ single joint trajectories (166 repetitions) accounted 

for 97 percent of the total VP phase portrait inner loops and 95 percent of the total AV 

inner loops.  Within the post-stroke group, 19 percent of the repetitions yielded VP phase  
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Table 2: Percentage of Control, Post-stroke 
Repetitions Exceeding Typical Movement Expectations 

 Local Extrema (Ei) Inner loops (Lj) 
 Ep (>1) Ev (>2) Ea (>5) LVP (>1) LAV (>1) 

Control (%) 0.74 4.4 1.5 0.74 3.6 

Post-Stroke (%) 14 29 23 19 27 

 

(a) (b) 

Figure 4: Distributions of (a) local extrema count in velocity-time graphs and (b) inner loop count in AV 
portraits 
 

portraits with a minimum of one inner loop, and 27 percent yielded AV phase portraits 

with a minimum of one inner loop.  Far fewer portraits with inner loops were identified in 

the control group (0.74 and 3.6 percent of control subject generated VP and AV phase 

portraits).  Additionally, with post-stroke subjects, it was common for phase portraits to 

exhibit greater than one inner loop per repetition’s phase portrait (31 and 47 percent for 

VP and AV phase portraits, respectively).   

Overview of Counting Features 

 As shown in Table 2 and Figure 4, the count of local extrema and inner loops 

yielded similar results due to the fact that they are related: fluctuations in temporal 

profiles may lead to an inner loop when the variables are paired and plotted in phase- 
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Figure 5: Fluctuations in temporal profiles coincide with inner loop in AV portrait 
 

space (Figure 5).  Discussed later in more detail, temporal profiles were of a less 

impressionable, ideal form and the subtle variations led to many erroneous computer-

generated results and required assessment by visual inspection. Phase portraits, on the 

other hand, had a distinct geometric, ideal form, which made kinematic deviations more 

pronounced and easy to visually and algorithmically inspect.   

 

Centroid Movement (CM) and Kinematic Mean Variation  

 Figure 6 demonstrates the assessment of Centroid Movement (CM) and 

Kinematic Mean Variation (KMV) values.  The temporal and phase plots generated by a 

control (Figure 6 left column) and stroke subject (Figure 6 right column) show two 

consecutive repetitions; the first repetition (plotted as a gray, broken line) is 

distinguishable from the second repetition (plotted as a black, solid line) in order to show 

the variation between repetitions. 

 A comparison of the distribution of the CM values found a significant difference 

between the stroke and control subjects for both VP and AV phase portraits (CMVP: W = 

12753, p < 0.0001; CMAV: W = 12863, p < 0.0001).  Likewise, the distributions of KMV 

values were significantly different between groups for all types of temporal plots (KMVp: 
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Control Stroke 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6: Visual comparison of KMV (a)-(b) and CM (c)-(d) differences between control subjects (left column) 
and stroke subjects (right column).  Each plot (a)-(d) shows two consecutive repetitions generated by the subject; 
the first repetition (gray, broken line) is distinguishable from the second repetition (black, solid line) 
 

W = 11577, p < 0.0001; KMVv: W = 12495, p < 0.0001; KMVa: W = 11448, p = 0.0002).  

A complete summary of results is found in Table 3.  

 Examples of AP phase portraits generated from control and stroke subjects are 

shown in Figure 7.  A linear regression line was fit between the minimum and maximum 

values, and as mentioned previously, the magnitude of the slope of this line coincides 

with stiffness.  The hypothesis that stiffness, k, increases with an individual’s impairment 

did not hold (t = 4.53, p = 1), and rather, stiffness values were significantly greater in the 

control group.  A distinct linear region was seen in nearly all phase portraits generated by 

the control group, yet this was often not the case with the stroke subjects.  This can be 
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attributed to the fact that as motion becomes more complex, the AP phase portrait 

becomes nonlinear.  Attempting to fit a nonlinear curve with linear regression results in 

an unreasonable fit of the data, due to data points deviating far below or far above the 

best fit line (large negative and positive residuals).  Therefore, a more appropriate 

distinction between a typical and atypical AP phase portrait is to compare the coefficient 

of determination, R2, between groups; this measure provides insight into how well a 

regression line represents the true data.  The hypothesis was reformulated:  

It is anticipated that the coefficient of determination, R2—measuring how 

well a regression line represents the expected linear region of an AP 

phase portrait—is indirectly proportional to an individual’s impairment 

level. 

A comparison of the R2 values for the stroke and control cohorts indicated that a linear 

regression line was less representative of an AP phase portrait generated by an impaired 

subject than by a control subject (t = 6.93, p < 0.0001).  

 

 
(a) 

 
(b) 

Figure 7: AP phase portraits generated by (a) control and (b) stroke subjects.  A linear regression line was fit 
between the minimum and maximum values, as shown in red. 
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Table 3: Summary of Feature Assessment 

Measure Subscript Control Stroke 

Extrema, Ei* P 1.0 (1.0) 1.4 (1.2) 
V 2.1 (1.4) 3.4 (1.8) 
A 2.1 (1.4) 4.8 (2.2) 

Loops, Lj* VP 0.015 (0.12) 0.28 (0.53) 
AV 0.05 (0.23) 0.60 (0.78) 

Stiffness, k* - 1.0 (0.16) 0.98 (0.21) 
Kinematic Mean 
Variation , KMVi** 

P 0.020 [0.0000064, 0.21] 0.035 [0.00096, 0.37] 
V 0.021 [0.00054, 0.14] 0.044 [0.000039, 0.39] 
A 0.033 [0.000051, 0.20] 0.053 [0.00029, 0.40] 

Centroid Drift, 
CDj** 

VP 0.034 [0.0042, 0.22] 0.074 [0.0051, 0.42] 
AP 0.043 [0.00070, 0.21] 0.081 [0.0052, 0.44] 

*Reporting Mean (SD) values for Poisson- and normal-distributed data 
**Reporting Median [min max] values for lognormal-distributed data 
 
 
Discussion 
 This study tested the hypothesis that movement impairment can be qualitatively 

and quantitatively assessed using several plotting schemes.  Both the conventional 

approach to view movement kinematics with respect to time and the alternative approach 

of viewing the time-evolution of two state variables depicted both qualitative and 

quantitative discrepancies between post-stroke and control subjects.  Our analysis 

focused on answering whether the alternative, phase space method is more capable of 

distinguishing complex, atypical motion than the conventional temporal method, and we 

sought to understand the benefits of viewing data in the phase domain. 

 We analyzed 302 extension-flexion repetitions (166 post-stroke; 136 control) and 

focused on five main features: local extrema, inner loops, kinematic mean variation, 

centroid movement, and stiffness.  We emphasized the first two features, as opposed to 

features, such as peak velocity, time to peak, duration, etc., due to the nature of the 
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testing protocol.  Also, local extrema and inner loops were both considered to be “visual 

features” that can be relatively easy to identify and qualitatively compared without 

computer assistance.   

 Through this study, it was realized that, in general, temporal profiles were of a 

less impressionable, ideal form and, at times, fluctuations in a temporal profile were 

subtle, making qualitative comparisons difficult for an untrained eye.  Phase portraits, on 

the other hand, had a distinct geometric, ideal form, which made kinematic deviations 

more pronounced.  To all those viewing a phase portrait, including researchers, clinicians 

and patients, deviations from an ideal motor performance, is readily seen.  It is 

anticipated that these graphs may aid in inter- and intra-subject comparisons and provide 

a useful tool to track patient progression (or regression) and validate therapy protocols. 

 Quantitative, computer-aided assessments were also performed to further compare 

the graphing techniques.  Under the testing protocol, in which motion is constrained to a 

single joint, we found that the cases, where an excessive number of local extrema 

appeared in the temporal graph, were nearly always generated by post-stroke subjects 

(96, 89, and 95 percent of p-t, v-t, and a-t plots, respectively).  The mean number of local 

extrema in the acceleration-time graphs (average Ea) was less than expected, as some 

subjects—both control and post-stroke—produced a trajectory with fewer extrema than 

anticipated for an ideal motion (expected Ea = 4 to 5 extrema in a single extension-

flexion, as shown in Table 3.  This may be accredited to the subject’s motion, but it is 

more likely a result of algorithmic or human error during the analysis process and is a red 

flag that limitations exist with temporal graph analysis; most a-t profiles generated highly 
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erroneous computer-generated results and required assessment by visual inspection, 

which is prone to error.  

 Likewise, instances of inner loops within a phase portrait were relatively common 

with post-stroke patients (nearly 20 percent of VP portraits and 30 percent of AP 

portraits) and were rare occurrences among the control group (1 percent and 4 percent, 

respectively).  This study focused on whether or not a single loop existed within the inner 

space and did not give consideration to the significance of multiple loops and their 

relationship to a complexity scale, although it is known that 30 percent and 45 percent of 

post-stroke, inner-loop-identified VP and AV phase portraits had multiple inner loops.  

The present findings support the hypothesis that inner loops are an indication of impaired 

motion.  It should also be noted that many portraits did not form a complete, self-

intersecting inner loop, but instead, the data formed a concavity within the portrait’s 

convex hull; although an irregular feature, the inner concavity was not included in this 

particular study.  Further studies should focus on the meaning of multiple loops and inner 

concavities in terms of complexity, energy conservation/dissipation, etc. and how this 

information may be incorporated into a quantification scheme.    

 Another interesting finding from this study was that not every post-stroke subject 

produced visual aberrations in each, or even any, repetitions, and one is left to question 

whether or not the remaining repetitions would be deemed “atypical” if the feature set 

was expanded.   Although shown to occur at higher rate in stroke subjects than in control 

subjects, local extrema and inner loops may not be principal features for diagnostic 

purposes.   
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 In both the temporal and phase domains, the synonymous features of kinematic 

mean variation and centroid movement were significantly different between subject 

groups for both VP and AV phase portraits, and one method was not proven to be 

favorable over another.  Both features have the ability to quantify, what is known as, 

motor variability, which is based on the premise that, given multiple attempts to complete 

a given motor task, each repetition will be performed with slight differences in the 

kinematic profile (Bernstein 1967, Latash, Scholz, and Schoner 2002). Therefore, inter-

repetition variation is expected for all motion types (healthy or impaired).  However, 

some symptoms of neurological disorders, such as spasticity, may be triggered 

inconsistently, and so high inter-repetition variation may support a diagnosis and 

improved inter-repetition variation may justify an effective treatment protocol.   

 Stiffness was greater in control subjects than impaired individuals (p = 1), which 

was not anticipated.  It was confirmed, however, that stroke subjects generated AP 

portraits that often lacked a linear mid-region, a common attribute seen with the control 

group, and therefore, a linear regression line was less representative of an AP portrait 

generated by an impaired subject than by a control subject (p < 0.0001).  It is concluded 

that a nonlinear AP portrait may not provide an accurate representation of a patient’s 

physical joint attributes, although this may be possible when a linear region is present.   

 

Conclusions 
 When evaluating movement complexity, spatio-temporal graphing methods reveal 

various features that may be used to qualitatively and quantitatively describe motion.  

These features are beneficial, since they draw distinctions between healthy and impaired 

motion.  From this work, it was shown that phase portraits are a useful tool to display 
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movement data, retain features that distinguish impaired movement, while providing a 

distinct visual record for quick comparison. 

 Limitations exist within the present work; the study was concerned with 

identifying features and verifying that, based on the feature, a population of stroke 

subjects performed single-joint movement significantly different from a controlled 

population.  The study was unconcerned with answering how the feature varied across 

levels of impairment and whether the particular feature may be used to classify a motion 

as a specific type.  This leads to a question that may be explored in future work: have we 

identified principal features that may be used for diagnostic purposes (healthy vs. 

impaired) or distinguish degrees of impairment?   

 Additionally, the examination of phase portraits was limited and only “scratched 

the surface” of their potential as a diagnostic tool.  The method used here to identify an 

inner loop was only concerned with whether a single loop existed and did not consider 

the effects of size or placement of the loop within the outer boundary.  Future work 

should consider additional factors, such as size, shape, count and location of inner loops, 

and investigate what features reveal about the complexity of the movement. 
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CHAPTER 3: METHOD FOR QUANTIFYING COMPLEX PHASE PLANE 
PORTRAITS 

 

 

Abstract 
 Objective:  The purpose of this study was to develop an automated method of 

approximating the area enclosed by complex phase portraits, validate the method’s 

accuracy, and demonstrate its application with regard to computing a metric of motor 

performance, Phase Area Ratio (PAR).  Method:  Kinematic records of single joint 

motions were portrayed as phase plane portraits and assessed through an automated 

program.  Three separate metrics were extracted from each phase portrait based on three 

locations within and around the phase portrait: (1) the inner loop, (2) the boundary, and 

(3) the convex hull.  The areas enclosed by these designated groupings were computed by 

an approach based on computational geometry.  Validity of the metrics was tested via 

performance measures.  Additional assessments were done to compare the computation 

of PAR by the proposed area approximation method to that of an image-based method.    

A final assessment was done to understand how a state-space-based performance measure 

compared to other metrics of smoothness.  Results:  Designation of data points falling 

within a phase portrait via the automated program was completed with high-accuracy 

(accuracy, sensitivity, specificity > 96%).  Overall, the geometric area approximation and 

the alternative, image-based, area approximation algorithms correlated well (ρ = 0.958); 

however, there was not a strong correlation between these aforementioned methods and 

an alternative motor performance measure (ρ = 0.235).  Conclusions:  It is concluded 

that, the area approximation method for PAR developed herein, is highly accurate and 
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can have wide applicability to quantifying dynamic systems.  Future work is 

recommended to better understand PAR’s correlation to other measures of biomechanical 

performance, as well as any physical dynamic system. 

 

Introduction  
There is an existing need for reliable metrics of motor performance—one that is 

capable of capturing movement idiosyncrasies and demonstrates sensitivity.  Previous 

groups have employed kinematic movement analysis as a means of identifying various 

features that differentiate ideal from impaired, and their efforts have led to a variety of 

performance metrics (Chang et al. 2008); however, the sensitivity of some features (i.e. 

number of movement units) is dependent on an arbitrary threshold for determining 

fluctuations in a velocity profile (Alt Murphy, Willen, and Sunnerhagen 2011).  Measures 

offer improved sensitivity; one focuses on a feature referred to as ‘residual excursion 

deviation’  and represents the cumulative sum of  deviation from the midsection of an 

angular position profile—a region that is expected to have constant velocity (Wininger, 

Kim, and Craelius 2009).   Jerk, found by computing the third derivative of angular 

position, has been used by many but has also been criticized for yielding counterintuitive 

results (i.e., instances of non-monotonic metric response with increasingly complex 

motion) (Song, Tong, and Hu 2008, Rohrer et al. 2002, Cozens and Bhakta 2003, 

Goldvasser, McGibbon, and Krebs 2001).  Previous work validated the effectiveness of 

phase portrait representation.  Profiles of increasing anomaly, displayed and assessed in 

the phase plane, produced a phase metric that was less sensitive to size-based factors and 

avoided the bias that resulted from jerk-related metrics (Wininger, Kim, and Craelius 

2012).   
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 Phase portraits are a common means of graphically representing dynamic data.  

For biomechanical analysis, the phase domain is useful because it reveals the 

instantaneous relationship between force and velocity, without regard to timing.  When 

the complexity of nonlinear differential equations interferes with interpretation, phase 

portraits provide a clear and simple tool for visualizing the system’s dynamics and 

observe its qualitative behavior (Strogatz 1994). 

 Phase portraits have been used in a number of biomedical studies, including those 

involving gait analysis, heart rate patterns, eye movement and control, and joint 

kinematics, for the benefit of revealing behavior cyclicity (Beuter and Garfinkel 1985, 

DiBerardino et al. 2010, Eucker et al. 2001, Govindan et al. 2011, Polk et al. 2008, Riley 

et al. 1995, Serra et al. 2008, Wininger, Kim, and Craelius 2012).  Hurmuzlu, et al.’s 

1994 paper in the Journal of Biomechanics, discussing joint kinematics during human 

locomotion, recognized that temporal plots lacked the capacity to divulge details 

regarding the dynamic nature of joint kinematics and, therefore, turned to graphical 

techniques commonly used in nonlinear dynamics—phase portraits (Hurmuzlu, 

Basdogan, and Carollo 1994). 

 Beuter, et.al.’s work, focusing on the lower limb dynamics of children with 

cerebral palsy, noted that intersecting loops formed within a phase portrait may indicate a 

feature of motion complexity, since unimpaired control subjects generated smooth phase 

portraits, free of inner loops. The researchers theorized that the existence of intersecting 

loops was due to an additional variable, so rather than behaving as a second-order 

dynamical system, atypical motion involved an additional degree of freedom.  Supported 

by the Fundamental Theorems of ordinary differential equations pertaining to existence-
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uniqueness, Beuter, et. al. rationalized that a self-intersecting phase portrait was actually 

a two-degree projection of a higher-order system (Beuter and Garfinkel 1985). 

 Research groups have recognized the value of analyzing qualitative aspects of 

phase portraits and have sought ways to quantify complexity.  DiBerardino, et al. used 

Elliptical Fourier Analysis (EFA), a method which accounted for irregularities in the 

elliptical shape, and measured complexity by the number of harmonics required to define 

a phase portrait’s shape (DiBerardino et al. 2010).  In 2011, Govindan, et al. used phase 

plane analysis to study fetal heart rate patterns (fHRP) by plotting the fetal heart rate 

(fHR) against its first derivative with respect to time and approximated the area enclosed 

within the trajectory, as a means of quantifying the nonlinear properties of fHR 

(Govindan et al. 2011).  Additionally, phase portraits work well when describing single 

joint motion and provide insight into energy consumptions across the trajectory (Clark 

and Phillips 1993, Polk et al. 2008). 

 Phase plane analysis has the potential to be a powerful tool for diagnosis of motor 

disorders, as portraits accentuate aberrant, unsmooth movements, while graphically 

representing these idiosyncrasies as functions of position and velocity.  In motor 

disorders like spasticity, where a high-velocity, passive movement triggers a position-

specific “catch”—marking the start of an increased resistance to movement, phase 

portraits may capture the spastic event and provide a quantifiable record for diagnosis 

and treatment; this is a need that has yet to be met (Fleuren et al. 2010, Malhotra et al. 

2009).  The present study aims to develop a novel scheme for quantifying the area 

enclosed by complex phase portraits, validate its accuracy, and use the area-finding 

algorithm to compute a promising metric of motor performance.   
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Preceding Metrics & Algorithms 
Phase Area Ratio (PAR) and Flood Fill Area Approximation 

 Our lab has focused on developing a measure of the deviation from an ideal phase 

portrait, which uses a process that quantifies areas within the portrait—hence termed the 

Phase Area Ratio (PAR).  Three parameters are extracted from the phase portrait to 

compute PAR:  

1. Footprint area (AF) – the area enclosed by the phase portrait perimeter. 

2. Hull Area (AH) – the area designated by the smallest convex set, containing all 

data points.  

3. Loop Area (AL) – the area enclosed by inner loops, created as the trajectory wraps 

upon itself. 

PAR is defined as: 

 
푃퐴푅 = 1 −

퐴
퐴 + 퐴

 (2) 

 

 In the case of a simple extension-flexion of a single joint, the ideal trajectory will 

yield a phase portrait that is smooth and elliptical. The ratio of actual trajectory to ideal 

trajectory signifies the efficiency associated with a reaching task.  A PAR score of zero 

represents a highly efficient trajectory, free of inner loops or concavities; A PAR score 

will approach one as a trajectory becomes increasingly complex (Atler et al. 2015).  

 Recent work has focused on calculating the area within a phase portrait via a 

flood-fill imaging technique.  The Flood-fill area approximation approach works by first 

converting generated phase portraits to binary images and, then, uses an iterative 

approach to approximate the areas within designated boundaries; each loop boundary 

constitutes a new layer, and the pixels within this boundary are used to approximate the  
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Figure 8: Layering technique incorporated in the Flood-fill approximation method 

 

area (Figure 8).  In the case where internal loops exist, as seen in complex movement 

patterns, each internal loop counts as a new layer, and the area (AL) will be 

approximated, thus contributing to the overall PAR score (Atler et al. 2015).   

 

Regional Excursion Deviation (RED) 

 Ideal motion produces a notably smooth trajectory, characterized by an 

accelerative onset, a period of constant velocity, followed by a deceleration to a desired 

endpoint.  Non-smoothness is typified by transient accelerations-decelerations during the 

mid-region.  Regional excursion deviation (RED) is a cumulative measure of the sudden 

accelerative bursts—or deviations from ideal velocity—that occur during single-joint 

motions, such as reaching, and is representative of non-smoothness.  The scalar value of 

RED is defined as: 

 
푅퐸퐷 =

1
푁

푆(휃)푑휃
∆

 (3) 
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where S is the spatial acceleration vector, which represents the accumulation of the 

errors, or deviation, from a trajectory path comprised of piecewise, linear segments 

(Wininger, Kim, and Craelius 2009).  RED will be used as a comparative measure of 

smoothness, against PAR.  

 

Methods 
 The current study supports the use of the PAR score, while introducing an 

alternative computational method to approximate the area bounded by a phase portrait, 

hereafter referred to as the Polyarea approximation method.    

Polyarea Approximation Method 
 The Polyarea approximation method is based on the concept that periodic motion 

will produce a closed form when plotted in a phase space and uses computational 

geometry to quantify areas within the closed form.  Ideally, the data points, representing 

the motion trajectory in space, yield a smooth, elliptical phase portrait.  Connecting n-

neighboring data points with n-line segments yields an n-sided polygon; thus, the greater 

the number of data points, the better the polygon approximates the true shape of the 

trajectory.  The area within the n-sided polygon is easily computed using numerical 

analysis software built-in functionality.  However, for complex trajectories, yielding two-

dimensional phase portraits with self-intersecting loops or inner concavities, an n-sided 

polygon misrepresents the phase portrait and fails to properly assess the areas required by 

the PAR metric.   To compute a PAR score, it is necessary to differentiate a boundary 

from an inner loop data point, as well as to determine which boundary points form the 

plot’s convex hull and/or the plot’s footprint.  The next two sections, Inner Loop 

Identification and Footprint and Convex Hull Data Point Identification, describe the 
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development of an inner loop identification scheme and the designation of data points 

(inner loop, convex hull, and/or footprint) in the phase plot.  

 

Inner Loop Identification Scheme 
 The method for detecting loops within phase portraits begins by searching for 

points of intersection in the curves.   For this, an open source algorithm was appropriately 

adapted (Canós 2006).  If intersection points are returned, the proposed points are used to 

test various criteria and eliminated, as needed.  Due to scale differences, data are 

normalized and any points within a small radius (0.03 units) from the proposed 

intersection point are saved for inspection (Figure 9).  A jump in indices within the radius 

suggests a possible loop formation; however, a jump in indices is only considered 

significant if it falls within lower and upper limits—the upper limit is needed to avoid 

having the outer boundary considered as a loop.  Therefore, data points surrounding an 

intersection point result in the formation of an inner loop if the proposed loop is 

comprised of a minimum of 5 data points, while not exceeding a length of 60 percent of 

the entire data set.   

 

Figure 9: Demonstration of the inner loop identification scheme.  Data points falling within a given radius from 
the intersection point are shown in red.  A gap in the index values indicates the formation of an inner loop, as 
shown in blue. 
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Figure 10: Inner loop identification within a series of complex acceleration-velocity phase portraits using the 
proposed algorithm 
 

Loop Identification Performance Measure 

 Validation of the loop identification algorithm verifies that the algorithm 

accurately identifies all inner loops.  This is done by visual inspection of processed phase 

portraits (Figure 10).  The inspection is based on an “all-or-nothing” approach, 

classifying each phase portrait in its entirety rather than giving consideration to each 

inner loop.  The phase portraits are categorized as follows: 

1. True Positive (TP): The algorithm correctly identified all loops existing 

within a phase portrait. 

2. True Negative (TN): The algorithm correctly identified no loops existing 

within a phase portrait. 

3. False Positive (FP): The algorithm identified a minimum of one loop within 

the phase portrait that did not actually exist. 

4. False Negative (FN): The algorithm failed to identify a minimum of one loop 

existing within a phase portrait. 

The accuracy rate, sensitivity and specificity of the loop identification algorithm is 

expressed as:  
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퐴푐푐푢푟푎푐푦	푅푎푡푒 = 	

푇푃 + 푇푁
푇푃 + 푇푁 + 퐹푃 + 퐹푁

 (4) 

 
푆푒푛푠푖푡푖푣푖푡푦 = 	

푇푃
푇푃 + 퐹푁

 (5) 

 
푆푝푒푐푖푓푖푐푖푡푦 = 	

푇푁
푇푁 + 퐹푃

 (6) 

 

Footprint and Convex Hull Data Point Identification  
 A key element in the Polyarea method is to determine which data points form the 

phase portrait’s convex hull and which points form the footprint.   The convex hull is 

defined as the smallest subset of points that encapsulates the remaining points within the 

set (Graham 1972).  The subset of points forming the convex hull is found using 

numerical analysis software built-in functionality, in which the complete data set (X,Y) 

serves as the input arguments and the function returns indices for the subset of convex 

hull data points (Figure 11).   

 

Figure 11: Convex hull of a complex acceleration-velocity phase portrait, shown in red 
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 The method used to find the data points forming the phase portrait’s footprint is 

based on alpha shape theory, developed and discussed in great depth in literature 

(Edelsbrunner, Kirkpatrick, and Seidel 1983, Edelsbrunner and Mücke 1994, Liang et al. 

1998), but for the purposes of the present study, the most simplistic two-dimensional use 

was demonstrated.  Edelsbrunner, et. al. related the alpha-shape to a “generalized convex 

hull”, and for the cases where alpha approaches infinity, the alpha-shape represents the 

convex hull of a set of points.  As alpha decreases to zero, the alpha-shape begins to wrap 

around bends until, eventually, it is small enough to follow along the true shape of the 

two (or, if desired, three) dimensional object, including existing inner concavities 

(Edelsbrunner, Kirkpatrick, and Seidel 1983).  The proposed method uses an open source 

algorithm—modified for the purposes of this study—to compute the alpha shape 

(Lundgren 2010). The data points of the alpha shape (Figure 12) were then used to 

compute the area of the footprint, which—once again—was simply considered as an n-

sided polygon.   

 

 

Figure 12: Footprint of a complex acceleration-velocity phase portrait, shown in red 
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Figure 13: Representation of the PAR equation through two sets of phase portraits.  (Top) Portraits are elliptical 
and resemble typical motion; (Bottom) Portraits show complexities, such as inner loops, suggesting atypical 
motion. 
 

 

Results 
 A total of 1439 phase portraits of varying complexity were processed using the 

Polyarea method.  Post-processing, the phase portraits were visually inspected to assess 

the accuracy of the inner loop identification algorithm, as summarized in Table 4.  It 

should be noted that the visual inspection process was extremely conservative in its 

judgement and portraits were examined under high scrutiny.  Regions where small loop 

formations were questionable were appropriately enlarged before judgements were 

finalized.   

 

Table 4: Cases of Phase Portrait Inner Loop Identification 
 True 

Positive 
True 

Negative 
False 

Positive 
False 

Negative 
Total 

Identified Cases 430 968 24 17 1439 
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 Results from the inspection revealed that approximately 67 percent of phase 

portraits did not have a loop formation within the convex hull, although inner concavities 

may or may not have been present, and these “true negative” cases were accurately 

identified by the algorithm.  Likewise, for about 30 percent of the phase portraits 

designated as “true positive” cases, all loops within the convex hull were properly 

identified.  Approximately 1.7 percent of the cases fell under the category of “false 

positive” and were identified as having at least one loop that did not actually exist.  Only 

1.2 percent of the cases were considered “false negative”, meaning that the algorithm 

failed to recognize at least one loop existing within the convex hull.  Overall, the inner 

loop identification scheme performed with an accuracy rate of 97.2 percent, sensitivity of 

96.2percent, and specificity of 97.6 percent (Equation 4 - 6). 

 

Comparison of Polyarea and Flood-Fill Computation Methods 
 The areas of 1439 phase portraits were computed using both the Polyarea and 

Flood-fill methods.  The phase portraits spanned a wide range of forms: from simple, 

elliptical forms to highly complex cases, comprised of inner concavities and intertwined 

looping patterns.  Regression analysis was performed to study the relationship between 

the two methods.  The scatter plot (Spearman rank correlation coef., ρ = 0.958; coef. of 

determination, R2 = 0.508) depicted in Figure 14 (left) shows that—although there was a 

positive correlation between methods and a large portion of the area approximations 

followed a 1:1 ratio—the Polyarea method had more of a tendency to approximate higher 

PAR scores.   A paired t-test revealed that the discrepancies in scores was significant (t = 

2.25, p = 0.0245); however, it should also be noted that the 95 percent confidence interval 

was from 0.00055 to 0.0080, so the mean difference in pairs was significant but small.   
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Figure 14: (Left) A comparison of Polyarea 
and Flood-fill methods for more than 1400 
phase portraits revealed a positive 
correlation in scores (ρ = 0.958), although the 
differences in means were significant (p = 
0.0245).  (Above) Percent difference in paired 
scores 

 

Additionally, 75 percent of the paired scores had a percent difference of less than 5 

percent (Figure 14(above)). 

 

Cases of Discrepancy: Polyarea vs Flood-fill Approximations 

 Discrepancies between Polyarea and Flood-fill approximation methods were 

investigated further and focus was directed toward the phase portraits that deviated far 

from the identity line (PARPolyarea = PARFlood-fill).  There were three main causes for 

discrepancies; the first two scenarios resulted in unreasonably high PAR by Polyarea 

scores, while with the third scenario, results reversed and PAR by Flood-fill 

approximation scores were erroneously high (Table 5). 

 In cases where PAR by Polyarea scores were excessively high, close examination 

of the phase portraits found that these portraits shared a similar feature—a sufficiently 

large gap between the first and last data point, as illustrated in Figure 15 (a).  

Interestingly, this gap only affected PAR by Polyarea scores when the first and last data 

points had unequal velocity values; cases where the first and last data point had equal  
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Table 5: Scenarios for Large Polyarea-Flood-fill 
                 Approximation Discrepancies 

 

Figure 15: Phase portraits for (a) Case 1 
and (b) Case 3, in which large 
discrepancies exist between Polyarea and 
Flood-fill approximation methods 
  

velocity values (i.e. one point was directly above or below the other) did not yield 

noticeable scoring differences between the two approximation methods.  This feature 

affected the calculation of the footprint area, resulting in inaccurately low 

approximations; however, it is unknown why portraits were unaffected in cases where the 

first/last point had equal velocity. 

 A second scenario for excessively high PAR by Polyarea approximation scores 

also occurred during calculation of the footprint area.  Further assessment showed that 

fine-tuning the alpha value in the alpha-shape algorithm improved the outcome and 

resulted in a PAR by Polyarea value that nearly matched the PAR by Flood-fill 

approximation value.  Since the issue was resolved through alpha-value adjustments, it is 

believed that the second scenario resulted when the data points forming the outline of the 

footprint were sparse.  In essence, the second scenario may be thought of as an alpha-

shape with too small of radius, circulating around the shapes perimeter, slipping past the 

Scenario Description Result 

1 Large gap between 
first and last data 
point.   
 
Data points have 
unequal velocity 
 

High  PAR by 
Polyarea  scores 

2 Sparse data points 
affected alpha-shape 
footprint area 
approximation 
 
 

High PAR by 
Polyarea scores 

3 Cusped or pinched 
portrait 
 
 

High PAR by Flood-
fill scores 
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gap between two data points, and becoming trapped within the phase portrait; thus, the 

footprint area is approximated to near-zero. 

  The third scenario reversed the outcome with unreasonably high PAR by Flood-

fill scores.  Figure 15 (b) shows the common shape for this scenario: a phase portrait free 

of inner loops but with a pinched—or tipped hourglass-type—perimeter.  It is unknown 

why the flood-fill, image-based algorithm is sensitive to this specific shape.  However, 

one should note that although a large discrepancy between scores was prevalent for this 

specific footprint shape, there were a few instances where the Flood-fill and Polyarea 

approximation methods were compatible.    

Assessment through Modelling  

 To better understand small discrepancies between the area approximation 

methods, phase portraits were modeled as simple circles, where one large circle enclosed 

one to many circles of smaller radii.  Each circle shared the same center point, so the 

Polyarea method’s loop identification was not utilized during this basic comparison, 

though its accuracy was previously confirmed.  Testing under the Flood-fill method, 

validated both the method’s ability to identify loops and approximate loop area.      

 Ten test cases, with inner looping patterns, were modeled and provided insight 

into looping scenarios, ranging from low to high complexity.  For this model, the term 

complexity described the internal looping pattern, where low complexity was the case of 

one to few internal loops, having large to mid-size radii, and high complexity was the 

case of several internal loops, ranging in sizes from large to small.   
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Figure 16: Comparison of predicted area (Flood Fill vs Polyarea) and actual area 
  

  

 Results from this basic circular-patterned model indicated that the Polyarea 

method provided an accurate area approximation.  It is important to note that the 

accuracy of the Polyarea method is dependent on the number of data points (i.e. fewer 

data points leads to a less accurate approximation), so in data collection, particular care 

must be given to the sampling rate.   

 The accuracy of the Flood-fill method is related to image resolution and proper 

identification of a loop.  There are a few drawbacks that exist when using the Flood-fill 

method.  As shown in Figure 16, one drawback is that the method has a tendency to 

slightly overestimate area.  Also, the Flood-fill method requires greater computation time, 

as it locates loops and estimates area “layer-by-layer”.  Third, while testing high 

complexity levels in the circle model, the Flood-fill method had difficulty locating circles 

that were small (radii < 0.01) and with approximately equal radii.   
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Comparison of PAR and RED Computation Methods 
 The kinematic data from the extension-flexions, which had been used to generate 

the 1439 phase portraits analyzed by PAR, were divided into at the transition from 

extension to flexion; RED scores were computed for each, and then averaged.  The 

averaged RED scored was then paired with its PAR counterpart and analysis followed.  

Regression analysis was performed to study the relationship between the PAR and RED 

methods.  The scatter plot (Spearman rank correlation coef., ρ = 0.235) depicted in Figure 

17 shows that the correlation between PAR and RED scores was negligible.  The spread 

of scores shows that the majority of PAR scores held between 0 and 0.3 units, while RED 

scores spanned between 0.2 to 0.8 units.   

 

 
Figure 17: Comparison of PAR scores by Polyarea approximation method with RED scores. 

 

Discussion 
 Demonstrated by the present study, Phase Area Ratio (PAR) is a viable metric to 

quantify dynamical system but depends on a robust area approximation scheme, well-

equipped for complex phase portrait.  Herein, the development of the Polyarea 

approximation method was highlighted—an automated method that distinguishes whether 
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a data point belongs to an inner loop, the outer boundary points, or possibly both, and 

then approximates the areas within these designated groups.  The loop identification 

scheme was shown to have high performance ratings (Accuracy, Sensitivity, Specificity > 

96 %). 

 Additionally, the two computational methods—Polyarea and Flood-fill—

approximated the area bound by a phase portrait with similar results (ρ = 0.958).  PAR 

scores computed based on Polyarea approximation have a tendency to be slightly higher 

than those based on Flood-fill approximation, which is reasonable since flood-filling 

over-estimates areas in basic models.  Cases of rare, extreme discrepancies in scores exist 

at the fault of both methods, indicating nuances in phase profiles affect each method to 

varying degrees.     

 When PAR scores were compared to RED, a negligible correlation was found 

between performance measures.  RED scores spanned over a region of 0.6 units; PAR 

scores were mostly within a 0.3 unit region, with a portion of the drifting points attributed 

to aforementioned erroneous measurements.  Based on the assessed trajectories, it is 

apparent that RED is more sensitive to nuances in trajectories, especially since the scores 

presented in Figure 17 were computed as averages—thus, diminishing the maximum and 

elevating the minimum.  Although highly respected, it should be noted that RED, nor any 

metric—for that matter, is not a “gold standard” score.  It is suggested that future work 

focuses on a model-based confirmation of these results.  

 There is currently no well-accepted, standard measure of movement efficiency, 

and an ongoing effort to understand how the central nervous system (CNS) processes key 

information in one’s environment and chooses to direct the musculoskeletal system to act 
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to accomplish goal-oriented tasks.  Previous groups hypothesized that the CNS acts to 

minimize energy expenditures, although it was found not to be the case in models and in 

subjects with no known neurological or musculoskeletal disorders (Alexander 1997, 

Kistemaker, Wong, and Gribble 2010).  Hemiparetic subjects, however, have shown a 

significant increase in energy expenditures over control counterparts to complete 

activities of daily living, such as dressing and walking (Singh et al., 2011, Detrembleur et 

al. 2003).  Therefore, although energy costs may not be a primary concern of the CNS, a 

decrease in energy expenditures to complete a given task may serve as an indication of 

improved function and an effective treatment protocol.   

 The area enclosed by an acceleration-velocity phase portraits equates to specific 

power (power per unit mass).  Typical motion generates phase portraits that are smooth, 

elliptical and near symmetrical.  In complex cases—portraits with asymmetrical 

irregularities, including inner looping and concavities—that deviate from the expected 

shape, it is hypothesized that power dissipated during these movements is directly 

proportional to PAR scores.  It is, therefore, recommended that phase portraits may be 

used in future work to study efficiency of impaired movement. 

 

Conclusions 
 Representation of the data in phase profiles provides a highly valuable and 

progressive tool for viewing and quantifying impaired motion.  Herein, the Polyarea 

approximation method was presented, validated and its use demonstrated in a metric of 

motor performance, PAR.  The Polyarea method incorporates a high-accuracy scheme for 

differentiating points within a phase plane and, except for unusual cases, also computes 

the areas bounded by data points with high accuracy, while requiring negligible 
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computational time.  It is recommended that the Polyarea area approximation method be 

pursued in future studies to quantify motor performance via the PAR metric.  

PAR shows promise as a clinically relevant measure of motor performance, as it 

provides a comparison of the true area to the optimal area designated by a kinematic 

trajectory represented in phase space.  It was shown that PAR may not be as sensitive of 

as measure as RED.  However, the benefits of the PAR metric are three-fold: 1. it is 

scale-independent, 2. it is based only one assumption: optimally efficient motion 

transcribes a symmetrical phase portrait that is free of inner loops and concavities, and 3. 

it is bounded by  0 and 1, respectively classified as Perfectly Efficient Motion and 

Completely Impaired.  Thus, PAR is an applicable assessment of discrete movement and 

may be used to assess a wide range of impairments.  Future work is recommended in two 

areas: 1. To pursue a model-based approach to establish PAR’s sensitivity to profiles of 

increasing anomalies, and 2. To establish correlations between PAR and clinical scales.  
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CHAPTER 4: QUANTITATIVE ASSESSMENT OF SPASTICITY BY PHASE 
PLANE ANALYSIS 

 

 

Abstract 
 Objective:  The objective of this study was to demonstrate the use of the Phase 

Area Ratio (PAR) metric to track progression of SPMS subjects, receiving anti-spasticity 

drug treatment.  Additionally, this study aimed to show that PAR is a useful tool to 

improve inter- and intra-rater reliability, draw comparisons within and across subjects, 

and provide a means to study factors affecting movement, including pace-dependencies 

and limb differences.  Method: MS patients (N = 12; 47.8 ± 9.9 years, 8M/4F), with no 

recent history of treatment with anti-spasticity agents, and matched controls (N = 8; 49.5 

± 13.2 years, 5M/3F) were tested at baseline and after a one-month period, during which 

the MS patients were administered a dosage of oral baclofen. Clinical assessments 

included the Modified Ashworth Scale (MAS) and Tardieu Scale (TS).   Kinematic 

performance was measured as subjects performed single-joint extension-flexions at the 

elbow using the Mechanical Arm and Support Tracker (MAST).  Testing was completed 

on both arms and at three defined paces, against a resistive torque.  Processed kinematic 

data were displayed in a phase plane portrait and quantified using PAR.  Results:  

Traditional clinical measures indicated that, overall, participants did not show a 

significant improvement during the treatment period (MAS: p = 0.050; TS V1: p = 0.36; 

TS V2: p = 0.025; TS V3: p = 0.21).  Although there were some individual 

improvements, the testing session was not a significant factor in PAR scores (Slow: p = 

0.48 Moderate: p = 0.80; Fast: p = 0.90).  Across subjects, PAR scores were significantly 
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dependent on the movement pace (p < 0.0001).  It was also revealed that there were not 

significant differences between limbs (p = 0.33).  Conclusions:  It is concluded that the 

PAR metric provided an objective means of tracking patient progression, while 

promoting inter- and intra- rater reliability.  Additionally, the metric allowed for 

comparisons to be drawn within and across subjects, as well as revealed influential 

factors affecting movement.  

 

Introduction 
Spasticity and Assessment 
 A major symptom of multiple sclerosis (MS) is spasticity, reportedly affecting up 

to 90 percent of patients (Burridge et al. 2005, Physicians 2009, de Sa et al. 2011).  The 

most widely accepted and commonly used measures of spasticity are the Ashworth and 

Modified Ashworth scale (MAS), which are a subjective assessment of the resistance to 

stretch when an affected limb is passively moved (Bohannon and Smith 1987).  Despite 

its routine use, the MAS lacks quantitative support, has poor inter-rater reliability and the 

inability to distinguish neurogenic components of spasticity from mechanical (Bandi and 

Ward 2010, Haas and Crow 1995), leading various groups to promote alternative 

assessments (Alibiglou et al. 2008, Fleuren et al. 2010).  A similar metric, the Tardieu 

Scale (TS), is also evaluated during passive limb movement—over slow, fast, and with 

gravity test variations—and notes whether a spastic event, or “catch”, is or is not 

triggered at a precise angle (Bandi and Ward 2010).  Criticism of Tardieu’s subjective 

nature and poor reliability also applies to MAS (Ansari et al. 2008).   
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Treatment 
 Spasticity management comes in a variety of forms, including physical, 

occupational, and robotic therapy (Bandi and Ward 2010, Beard, Hunn, and Wight 2003, 

Physicians 2009, Hefter et al. 2012, Rohrer et al. 2002, Solari et al. 1999).  

Pharmacological treatments have shown to improve, temporarily and by varying degrees, 

a patient’s ability to manage typical activities of daily living (ADL) and regain some 

independence (de Sa et al. 2011).  Anti-spastic agents, such as baclofen, have been 

effective in reducing spasms and ameliorating pain associated with spasticity (Sawa and 

Paty 1979, Scheinberg et al. 2006).  High-dosages of oral baclofen are often required to 

achieve clinical effectiveness but relief is accompanied by a high incidence of side-

effects, including dizziness, drowsiness and seizures (Scheinberg et al. 2006).  Thus, a 

non-subjective, inter-rater reliable metric is needed to quickly assess the effectiveness of 

interventions, allowing a treatment team to closely monitor patient progression and adjust 

accordingly. 

 The present study aims to quantify motor performance of a sample of MS 

subjects, undergoing treatment with the anti-spasticity agent baclofen, and control 

subjects via the objective, Phase Area Ratio (PAR) metric.  It is hypothesized that 1) the 

objective PAR metric will provide a means of tracking a subject’s progression through 

treatment (intra-subject), as well as the ability to draw general comparisons across the 

subject pool (inter-subject), and 2) the PAR metric may not correlate well with 

established clinical measures but may correlate with treatment. 
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Methods 
Subject Pool 

Twelve subjects suffering from Secondary Progressive Multiple Sclerosis (SPMS) 

and receiving treatment at the VA Medical Center in Washington, D.C. and eight 

matched control subjects participated in this study; demographic information is presented 

in Table 6.  Participants in this study met the following criteria: 1) minimum of 20/40 

visual acuity in at least one eye, 2) older than 18 years, and 3) no known cognitive 

impairments, preventing compliance with the research protocol or the ability to provide 

informed consent. Approval for subject testing was granted by Rutgers IRB, and all 

participants gave informed consent.   Additionally, the subjects within the MS cohort 

fulfilled the following requirements: 1) classified as SPMS a minimum of 12 months 

prior to the study, 2) diagnosed with spasticity in an arm and a leg, and 3) had no prior 

history of other neurological disorders (e.g. stroke, epilepsy) or severe psychiatric 

disturbance (e.g. schizophrenia, psychosis). 

 Limb spasticity among the MS subjects ranged from mild to moderate in degree; 

treatment for these limbs with standard anti-spasticity medications had either been under-

dosed or never prescribed.  Upon entering the study, participants receiving 

pharmacological treatment ceased medication and allowed system clearance for 30 days 

before the study commenced.   

Table 6: Participant Demographics 
Descriptor MS Patients  

(N=12) 
Control  
(N=8) 

Age:  mean ± std 
        (min, max) 

47.8 ± 9.8  
(30, 63) 

49.5 ± 13.2  
(28, 60) 

Sex:   M/F 8/4 5/3 
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Study Design 
 Assessment of a limb spasticity occurred at two distinct sessions, separated by a 

one month gap, within the study.  Clinical assessments (MAS and TS) were administered 

by both a neurologist and a physical therapist, and an average of these two served as the 

final clinical measure.  After the baseline testing session (Session 1), participants were 

prescribed baclofen (30-90mg, Q8h, as recommended by published guidelines (Beard, 

Hunn, and Wight 2003) and titrated until the optimal dose (i.e. therapeutic benefit 

without side effects) was reached for each individual.  Biomechanical assessments were 

also administered prior to treatment and one-month post-treatment.    

 

Instrumentation and Test Protocol 
 Participates were securely positioned—with arm supported along a horizontal 

plane, free from gravitational influences, and elbow aligned with a goniometer—in the 

Mechanical Arm and Support Tracker (MAST) (Wininger, Kim, and Craelius 2009).    

Data were gathered from a potentiometric goniometer and accelerometer (ADXL330) by 

a LabVIEW (NI Instruments) graphical user interface (GUI), and goniometric data (i.e. 

angular position) was routed to a real-time biofeedback display.  A resistive torque of 9 

N-m was applied constantly throughout the extension-flexion repetition (Pousson, 

Lepers, and Van Hoecke 2001).   

 The HARI microcontroller unit (HMU, Nian-Crae, Inc.) collected data from the 

MAST sensors.  The HMU, containing a Silicon Laboratories C8051F340 processor, 

utilized four of twelve channels for data collection at a sampling rate of 200 Hz.  A 

computer interface allowed the therapist to calibrate the MAST and select the recording 
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mode, displayed a movement pacer bar for subjects to track during each trial, and 

recorded incoming data.     

During testing, a therapist instructed subject to perform single-joint extension-

flexions of the elbow according to protocol.  Testing was completed using both the right 

and left arms at three defined paces, guided by a pacing bar displayed on an external 

monitor; the three paces (slow, moderate, and fast) corresponded to approximate angular 

velocities of 133 degrees/s, 200 degrees/s, and 400 degrees/s, respectively.  The duration 

of each trial was approximately 60 to 90 seconds; the average number of repetitions for 

each trial was 6.2 ± 1.3 for slow, 6.7 ± 1.4 moderate and 7.3 ± 2.0 fast paces.     

 

Signal Processing 
Kinematic data gathered from twenty subjects was used to generate acceleration-

velocity phase portraits.  Prior to generating the portraits, data collected from the 

goniometer and accelerometer was filtered using a 2-way, 1st-order butterworth filter with 

5 Hz cutoff.  Velocity data was computed by numerical differentiation of the position 

data gathered by the goniometer.  Repetitions—designated as a complete flexion-

extension cycle— were separated via an automated Matlab (The Mathworks, Inc.) 

program, using angular threshold filtering.  Threshold values were adjusted, accordingly, 

after visually inspecting each subject’s sequence of repetitions.  To adjust for amplitude 

differences, the data-series were normalized to a scale of 0 to 1.   
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Figure 18: Overview of data collection to phase portrait process: data was collected through a goniometer and 
accelerometer, velocity was computed by method of central differences, and in the final step, A-V phase 
portraits were constructed in preparation for PAR metric assessment. 
 
Performance Measure 
 PAR scores were computed using acceleration-velocity phase portraits, with the 

area assessed by the Polyarea Approximation (PA) methods.  PAR is defined as: 

푃퐴푅 = 1 −
퐴

퐴 + 퐴
 (7) 

where AF is the footprint area, AH is the hull area, and AL is the total inner loop area.  PAR 

scores were computed for each repetition of each unique trial (session-, pace-, side-

specific).     

 

Statistical Analysis: Development of a linear regression model 
A mixed effect linear regression model was developed and the significance of 

each factor on the response variable, PAR scores, was analyzed using R (Team 2013).  

The models considered combinations of fixed and random factors, in which three factors 

(Session, Pace and Side)—with pre-determined, set levels that were fully tested across 
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subjects—were designated as fixed effects, and one factor (Subject) was treated as a 

random effect due to the fact that the subject pool was a sample of greater population.  

Session, initially modeled as a nested term within Subject, was designated as fixed effect 

to satisfy Bates’s six-level-minimum guidelines (Bates et al. 2014, Bates D 2015).  

Therefore, the models were developed using only subjects that participated in a minimum 

of two test sessions (1240 repetitions in total).  Through the random effect term, the 

proposed regression model accounts for a lack of independence due to multiple responses 

from each subject, as well as similar responses from multiple subjects.   

The model was adapted, tested, and compared, as suggested in previous studies, 

using the R nlme package to perform hypothesis testing on a constrained (null) model and 

a full (alternative) model (Mehtätalo 2013, Pinheiro and Bates 2000, Pinheiro J 2015).  

The F-test, based on restricted maximum likelihood (REML), was used to compare 

models with modified fixed terms, and the Likelihood-Ratio-Test, based on maximum 

likelihood (ML),  was used to compare random intercepts and slopes between models 

(Pinheiro and Bates 2000).  

Additionally, models were assessed according to the assumptions of linear 

regression: linearity and lack of collinearity, homoscedasticity, normality of residuals, 

absence of significant outliers, and independence.    As previously stated, incorporation 

of the random effect terms was thoughtfully done to account for lack of independence 

among responses.  Assessment of preliminary models through a histogram of residuals 

and quantile-quantile (q-q) plots showed the data followed a normal distribution, 

although there was slight, unidirectional tailing.  Data that strayed from the trend line 

were not considered outlying points, due to the expected variation in performance from  
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Figure 19: Residual plots pre- and post- inclusion of a weighted variance function. 
 

impaired subjects.  The plot of the residuals verses fitted values was checked for 

heteroscedasticity, and the Bartlett’s test for the homogeneity of variances revealed 

unequal variances for Subject, Session and Pace (p < 0.0001 for Subject, Session and 

Speed; p = 0.014 for Side) (Bartlett 1937).  It is warned that heteroscedasticity may 

interfere with interpretation (Zuur 2009).  Data transformation is considered ill-advised 

by some, so for succeeding models, a weighted variance function that accounted for 

residual variance differences across subjects and movement speed was incorporated into 

the modeling scheme (Mehtätalo 2013).     

 

Results  
 Unforeseen at the time of testing, hardware issues disrupted the accelerometer 

sensors signal, resulting in data with a too high of a signal to noise (SNR) to be recovered 

for five subjects.  Analysis was completed using data from the remaining fifteen 

participants. 

Clinical Measures 
 Clinical assessments were performed by the treatment team using the MAS and 

TS prior to treatment and after completing one-month of baclofen treatment.  The MAS 
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scores, presented in Table 7, were based on individual scores assigned to the wrist flexor, 

wrist extensor, biceps, and triceps for both the left and right arm.  Similarly, TS scores 

were calculated using scores from the wrist and elbow for both arms.  Due to the non-

normality in scores, the median values from Session 1 and Session 2 were compared 

using the Wilcoxon Rank Sum test.  The Wilcoxon Rank Sum test also handles repeated 

measures, as is the case with each subject having a score for their left and right arm.  

Originally blinded to subject labels, a comparison of the entire subject pool (MS and 

control) distributions of Session 1 and Session 2 clinical measures showed that overall 

there was not a significant difference between sessions (MAS: V = 824.5, p = ; TS V1: V 

= 69, p = ; TS V2: V = 190, p = 0.029; TS V3: V = 240, p = 0.080).   

Table 7: Clinical Measures 
Measure Session 1 Session 2 p-value 

MAS 0.65 ± 0.87 0.47 ± 0.66 0.061 
TS*    

V1 0.32 ± 0.60 0.27 ± 0.58 0.59 
V2 0.60 ± 0.87 0.35 ± 0.63 0.029 
V3 0.87 ± 1.03 0.65 ± 0.78 0.080 

NOTE – Measures reported as mean ± std 
*V1 – slow movement; V2 – under effects of gravity; V3 – fast movement 

 

Phase Portraits and Kinematic Data Measures 
 Visual inspection of phase portraits provided insight into the complexity of the 

dynamical system.  Figure 20 is an example of the acceleration-velocity phase plane 

portraits generated by a subject. The phase portraits show a noticeable reduction in 

complexity, i.e. inner looping and concavities, as the movement pace increases from slow 

to fast. 
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Figure 20: AV phase plane portraits generated while moving at slow, moderate, and fast paces.  The portraits 
become increasing smooth and more elliptical as the movement pace quickens.  As depicted in the lattice plots 
(Figure 22), this was a similar trend across subjects, session and side tested. 
 

 Boxplots were initially used to assess the effects of each factor on PAR values.  

Figure 21 (Top) compares subject performance at moderate pace during Session 1 

(Baseline) testing.  A scan of boxplots of PAR scores by subject shows the variability 

among subjects.  The median PAR score fluctuated greatly across subjects from about 

0.0120 to 0.222 during Session 1 and 0.107 to 0.246 during Session 2, with some subjects 

showing a larger spread in scores than others.  Interestingly, it was expected that the 

subjects generating a greater median score would also have a higher variance among 

scores, but this hypothesis is unsupported by this initial assessment.  When assessing the 

moderately paced repetitions, visually, there is not a consistent improvement (reduced 

median score or deceased variance) across subjects.  The variance improved from Session 

1 to Session 2 for subjects S56, S74 and S86 while the median score remained nearly the 

same; alternatively, the median score noticeably dropped for subject S89, while the 

variance changed little.  For the few subjects, such as S10 and S89, that improved in both 

median score and variance, it is questionable whether the improvements were significant.  

The median line also indicates slightly skewed data among several subjects.  The change  
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Figure 21: Inter-subject comparison of PAR scores assessed during baseline Session 1 (Top) and Session 
2(Bottom).  All repetitions were performed at a moderate pace.    
 

in average PAR scores was an increase of 12 percent ± 92 percent (SE) from Session 1 to 

Session 2.  Likewise, the change in average PAR scores generated at slow and fast 

movement paces was an increase of 18 percent ± 67 percent and decrease of 6.5 percent ± 

120 percent, respectively, from Session 1 to Session 2.   

 Lattice plots were created via R’s lattice package to display the range of PAR 

scores generated by each subject based on the testing factors (Session, Pace, and Side),  
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Figure 22: Lattice plots showing the effect of testing pace (fast, moderate, or slow) on PAR scores, broken down 
by subject, session (1 or 2), and side (left or right).  Each point represents an extension-flexion repetition. 
 

allowing for comparisons both between and within subjects, shown in Figure 22 (Sarkar 

2008).    The lattice plot indicated that most subjects performed similarly on both arms, 

and the majority of subjects did not have a visible difference across sessions.  Nearly all 

subjects showed that PAR scores increased with decreased movement pace, leading one 

to believe that this trend is not condition-specific (healthy vs impaired).  However, a few 

subjects (S63, S74, and S86) produced more homogeneous scores across the various 

paces during the first testing session and established the indirect relationship between 
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PAR scores and movement pace during the second testing session, provoking the 

question whether this could be a feature of typical or atypical behavior rather than just 

circumstance.  Subject S86 showed a possible drop in average score and improved 

variance from Session 1 to Session 2 on the left side, whereas it appears that the average 

score increased slightly for subject S83 across sessions.  Insight gained by the lattice 

plots, such as how the variability across subjects influenced the heteroscedasticity of the 

data, provided a foundation for preliminary regression models, and the development of 

these models is further discussed in the next section. 

 
Overview of Mixed-Effect Models 
 Mixed-effect linear regression models were developed to further study the 

influence of certain factors on PAR scores.  While blind to the subject labels (MS or 

control), initial models were based on all subjects.  As stated previously, the model 

incorporated the random effect Subject and considered three factors—Session, Pace, and 

Side—as fixed effects, testing each individually and for interactions.   

 Testing revealed that the movement pace was a significant factor in the model 

(F(1,1221) = 245.7, p < 0.0001), and when tested in combination with the other factors, 

Pace remained significant (all scenarios, p < 0.0001).  When considered alone, the testing 

session (baseline vs. follow up) was  not a significant term in the model (F(1,1222) = 

2.66, p = 0.103), and as the other factors were incorporated into the model, with Session 

as the first fixed effect listed, the influence of testing session remained non-significant 

under all circumstances (Session + Pace: F(1,1220) = 3.39, p = 0.0659; Session + Side: 

F(1,1221) = 2.94, p = 0.0867; Session + Side + Pace: F(1,1219) = 3.79, p = 0.0517).  

Unexpectedly, when Session was tested in combination with Pace and Side, with Pace as  
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Table 8: Summary of Fixed Effect Significance (All Subjects) 
Fixed Effect Num DF Den DF F-value* p-value 

Date 1 1222 2.66 0.103 
Pace 2 1221 245.7 < 0.0001 
Side 1 1222 0.965 0.326 
Pace*Session 2 1218 4.35 0.0131 
Pace*Side 2 1218 2.64 0.0715 
Session*Side 1 1220 0.661 0.417 
*F-test based on REML  

 

the leading factor, the testing session became arguably significant (F(1,1219) = 4.18, p = 

0.0411), and this bordered as significant.  It was believed that this was due to an 

interaction effect between Session and Pace but may also be a result of an approximation 

error introduced by the REML method. Throughout testing, the side (left or right) used 

during testing was not significant (Side: F(1,1222) = 0.965, p = 0.326; Side + Pace: 

F(2,1220) = 1.23, p = 0.269; Side  + Session: (1,1221) = 1.22, p = 0.270; Side + Speed + 

Session: F(1,1219) = 1.66, p = 0.198).  Additionally, there was a significant interaction 

between Pace and Session (Pace-Session: F(2,1218) = 4.35, p = 0.0131); however, 

interactions between the remaining terms were not significant (Pace-Side: F(2,1218) = 

2.64, p = 0.0715; Session-Side: F(1,1220) = 0.661, p = 0.417).  Table 8 summarizes the 

fixed effect findings.    

 Additionally, the model was modified to consider the individuality of each 

subject.  Subject-specific slopes for the three fixed effects—Session, Pace, and Side, 

tested independently and with modified model terms, each had a significant effect 

(Session: LR= 129.6, p < 0.0001; Pace: LR = 27.9, p < 0.0001; Side: LR = 11.3, p = 

0.0035).    
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Table 9: Summary of Subject-specific Random-slope Models (All Subjects) 
Random Slope LR p-value 
Session 129.6 < 0.0001 
Pace 27.9 < 0.0001 
Side 11.3 0.0035 
*LR based on ML 

Assessment of Parameter Estimates 
 The intercept of the models provided the mean PAR score for the baseline 

scenario.  Depending on the factors tested, the baseline described subjects tested using 

their left arm, at a fast pace, and during Session 1.    

 As reported in Table 8, the pace of motion was the only fixed effect that had a 

significant effect on PAR scores.  The intercept, or average PAR at a fast test pace, for 

this model was 0.111 ± 0.0108 (SE) (p < 0.0001).  PAR scores increased by 40 percent 

(0.0448 PAR units, p < 0.0001) as subjects switched from a fast to moderate pace, and 

scores increased by more than 85 percent  (0.0960 PAR units, p <0.0001) when subjects 

switched to a slow pace.   

 With the addition of the Pace-Session interaction term, the interaction between 

Pace and Sesson had a significant effect on PAR scores at the moderate pace level (t-

value = 2.76, p = 0.0059) and at the slow pace level (t-value = 2.51, p = 0.0123).  This 

finding indicates that the difference in PAR scores between a fast and moderate pace was 

greater when subjects were tested during Session 2 than when tested during Session 1.  

Under these circumstances, PAR scores increased an additional 0.022 PAR units (p = 

0.0059)—for a total of 0.055 PAR units or 47 percent—when tested at a moderate pace 

during Session 2.  Likewise, when tested at a slow pace during Session 2, PAR scores 

increased an additional 0.020 PAR units (p = 0.0123), for a total of 0.11 PAR units or 90 

percent. 
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 The results reported previously describe the influences of terms across subjects 

without discussing the by-subject variability.  In addition to the random intercept, the 

final two models incorporated subject-specific slopes: the first for the fixed effect Session 

and the second for the fixed effect Speed.  Results from the Session-based random-slope 

model estimated a by-subject intercept with standard deviation of 0.0560 PAR units and a 

standard deviation of 0.0443 PAR units was estimated, corresponding to the variability in 

slope across subjects.  Likewise, the Speed-based random-slope model estimated a by-

subject intercept with standard deviation of 0.0267 

PAR units and a by-subject slope with standard 

deviation of 0.0270 PAR units and 0.0336 PAR units 

for fast-to-moderate and fast-to-slow, respectively.  

Table 10 provides an example of the output produced 

by the Session-based random-slope model, listing 

intercept and session-specific coefficients as they vary 

by subject.  The inclusion of a random effect term is 

discussed more thoroughly in the Discussion section.    

 Overall, it has been shown that average PAR 

score across subjects did not significantly change 

across testing session.  However, the inclusion of the 

by-subject random slope term indicated that the PAR 

scores of some subjects may have varied more from the 

first to the second testing session than other subjects.  

Following a 95 percent confidence interval, the 

Table 10: Session-specific random- 
           slope model coefficients 
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subjects’ intercepts in the Session-based random-slope model were expected to vary 

between 0.0029 to 0.22 PAR units (±1.96sd from the population average PAR) and 

slopes were expected to range from -0.092 to 0.082 PAR units/session.  These rough 

estimates are confirmed by generated output presented in Table 10, showing how the 

coefficient (or slope) varied by subject.  About half of the subjects reduced their PAR 

scores across session, while the remaining half generated increased scores.  Subject S63 

had the greatest increase across sessions (rose 0.100 PAR units across sessions).  This 

result confirms what was seen across the boxplots presented in Figure 21.  It should be 

noted that Figure 21 reveals that subject S63 produced both the lowest median score and 

smallest variation between scores, leaving one to question whether this was truly 

indicative of the subjects performs or, in fact, an erroneous measurement, and whether 

Session 2 results were a truer representation of the subject’s performance.  

 

Treatment Effects 
 The significance of the baclofen treatment was considered after the unblinding of 

subject labels.  A new fixed effect, Label, was incorporated into the previously discussed 

mixed effect model and was used to distinguish MS subjects from control; however, 

testing revealed that an MS diagnosis did not have a significant effect on PAR scores 

(Label: F(1,13) = 0.0147, p = 0.905).  Table 11 provides a by-subject breakdown of 

scores at the baseline scenario (i.e. movements performed at a fast pace, using the left 

arm) and little or no correlation between scores and the subject’s condition is evident.  

Subjects were ranked in descending order based on their Session 1 PAR scores. 

 Table 12 provides a more detailed breakdown of clinical and kinematic 

performance measures across sessions.  Average PAR scores were computed for each 
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Table 11: By-subject Performance Metric Comparison 

 

 
 

Table 12: MS Subject Performance Measures Pre-, Post- Treatment 
 MS Control 

Measure Session 1 Session 2 p-value Session 1 Session 2 p-value 
PAR 

Slow 0.21 ± 
0.058 

0.23 ± 
0.040 

0.476 0.21 ±  
0.038 

0.21 ±  
0.035 

0.616 

Mod 0.18 ± 
0.045 

0.17 ± 
0.050 

0.803 0.15 ±  
0.044 

0.17 ±  
0.038 

0.309 

Fast 0.12 ± 
0.050 

0.12 ± 
0.041 

0.897 0.13 ±  
0.045 

0.10 ±  
0.026 

0.257 

MAS  
 1.0 ±  

0.96 
0.72 ±  
0.71 

0.0499 0.17 ±  
0.38 

0.083 ±  
0.28 

-- 

TS* 
V1 0.59 ±  

0.71  
0.44 ±  
0.72  

0.363 0 ± 0  0 ± 0 -- 

V2 1.0 ±  
0.98 

0.53 ±  
0.76  

0.0250 0.083 ±  
0.28 

0.083 ±  
0.28 

-- 

V3 1.3 ±  
1.1 

1.0 ±  
0.74 

0.207 0.17 ±  
0.38 

0.083 ±  
0.28 

-- 

NOTE – Measures reported as mean ± std 
*V1 – slow movement; V2 – under effects of gravity; V3 – fast movement 
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subject, pace and session and compared using a paired t-test to reconfirm PAR scores did 

not significantly differ between sessions at each of the three paces.  It was found that for 

all cases—slow, moderate, and fast—the mean difference between PAR scores during 

Session 1 to Session 2 was not significant (Slow: t = 0.753, p = 0.476 Moderate: t = 

0.259, p = 0.803; Fast: t = 0.134, p = 0.897).  Clinical performance measures were 

compared using the Wilcoxon Rank Sum Test, for reasons previously discussed.  

Improvement in TS scores assessed under gravity were significant, as well as arguably 

significant MAS scores (TS V2: V = 162, p = 0.0250; MAS: V = 577, p = 0.0499). 

 

Discussion  
Tools for Intra- and Inter-subject Comparison 
 As demonstrated in Figure 20 and Figure 22, dynamical phase portraits and PAR 

results provided a repetition-by-repetition visual record of each subject’s performance, an 

advantage that is intangible when assessment is purely subjective.  Lattice plots, in 

particular, provided the added benefit of comparing the simultaneous effects of multiple 

factors on PAR scores.   These tools were simplistic, yet invaluable, and, in conjunction 

with regression models, were necessary for drawing comparisons within and across 

subjects.  

 Mixed effect regression models allow researchers to consider inter-subject 

variability while drawing conclusions about the general population (Bates et al. 2014, 

Bates D 2015).  The incorporation of random effect term acknowledges the existence of 

baseline differences across the subject pool, and therefore, the intercepts for these terms 

are expected to vary (referred to in literature as random intercept), whereas the session (1 
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or 2), side (right or left) and pace (slow, moderate or face) tested remained constant for 

all subjects.    

 The random effect term within the final models incorporated both a random 

intercept and random slope (tested both Session-based and Speed-based random-slope 

models).  In doing so, it was expected that each subject varied uniquely from the baseline 

average and responded differently across testing sessions and movement pace.  Both 

random-slope models allowed for correlation between the random intercept and random 

slope of each subject, so for instance, it was anticipated that if a subject had a higher 

initial PAR score, then multiple testing sessions or changes in pace—from fast to 

moderate to slow—would have a greater effect on the subject’s PAR scores (Bates et al. 

2014, Bates D 2015).  This may have been an unwarranted assumption, and uncorrelated 

random effects may be more appropriate. 

 For this particular study, the side used during testing was not a significant factor 

on PAR scores (p = 0.326), although studies have shown MS subjects may present with 

upper limb hemiparesis, requiring treatment (Mark et al. 2008).  It is important to note 

that hemiparesis is highly prevalent in other neurological disorders, including cerebral 

palsy and stroke; it is hypothesized that Side would be a significant factor in studies 

involving these populations and useful for tracking patient progression through therapy 

(Stoykov and Corcos 2009, Rostami et al. 2012). 

 

Treatment Effects 
 The kinematic performance measure, PAR, did not improve significantly between 

the baseline test session and the one-month follow up test session, although a significant  
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improvement was observed in some clinician measures. This finding may be reasoned 

several ways.  

 For one, the clinician performance measures are subjective, and therefore, their 

reliability between raters, or even that of a single rater testing at two distinct sessions, is 

less certain.  It is possible that the anticipated improvement in smoothness, knowing that 

an anti-spastic medication had been administered, may have influenced how the rater 

perceived the subject’s motion.   

 Alternatively, the PAR metric, in its current form, may not be assigning 

appropriate weight to irregular features of a phase portrait, such as inner loops.  Thus, a 

reworking of the formula may help emphasize nuances in movement and differentiate 

levels in impairment.   

 Lastly, it is important to note that MS is known to have a greater effect on lower 

limb function than on upper limbs (Feinstein, Freeman, and Lo 2015).  Therefore, it is not 

alarming that this study did not find the treatment efficacy to be greater when the upper 

limb was only considered.  If the methods and analysis were repeated using data 

generated from lower extremities rather than upper, a greater discrepancy between MS 

and control baseline PAR scores is expected.   It is also anticipated that the PAR metric 

will have a greater difference before and after treatment and correlate with the treatment 

plan. 

 
Pace-dependencies 
 The mixed-effect linear regression model showed that PAR scores were most 

dependent on movement pace; pace-dependencies became even more prominent during 
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Session 2.  In most cases, the differences are substantial and can be seen through visual 

inspection of a subject’s phase portraits (Figure 20) and lattice plots (Figure 22).   

 Wel, et. al. studied the effects of movement speed—particularly movements 

generated at slow speed and hypothesized that people had a general preference to adjust 

the frequency of their movements until the frequency coincided with a natural resonance 

frequency.  The group found that the number of velocity peaks within a kinematic profile 

and dwell time were directly proportional to the movement period, while peak velocity 

was, unsurprisingly, indirectly proportional to the length of the movement period.  

Therefore, it was concluded that when subjects moved slower than naturally preferred, 

the speed of their trajectory is not only slowed, but the onset of the trajectory was also 

delayed and required more submovements to complete (van der Wel, Sternad, and 

Rosenbaum 2010).   

 Consideration toward the peak velocity or delay in movement was not given in 

the present study, since the protocol required visual tracking to promote intra- and inter-

subject consistency.  However, the presence of multiple, unexpected peaks in the 

kinematic profiles (i.e. velocity-time graph) indicated that participants (both MS and 

control) experienced the same movement phenomena—the tendency to divide a trajectory 

into multiple submovements when movements were generated slower than the preferred 

frequency.    

 The lattice plot (Figure 22) showed that some subjects had a more distinct 

increase in PAR scores as the movement pace slowed than others.  Some trials—for 

example S86/Session1/Right Arm—were void of this steady increase in scores, but the 

slope between fast to slow scores became more defined in Session 2.  This result 
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provokes the question of whether a distinct slope may actually be an indication of 

improved motor performance.      

 

Limitations of Study 
 Mixed effect modeling has become a more common practice across various fields 

of study due to its flexibility to consider simultaneous effects of factors, deal with 

repeated measures or missing data, and adjust for heteroscedasticity (Baayen 2008).  

Additionally, continual software development, including that which is open-source, has 

encouraged its use.  However, as often the case with development, advanced features are 

often gained at the loss of others.  The models development in the present study initially 

utilized R’s lme4 package functionality, specifically the lmer function and supporting test 

functions.  However, with the existing heteroscedasticity among data points, the 

capabilities of the lme4 package were traded for the less recent mixed modeling package, 

nlme, in order to incorporate weighted variance terms within the model.  Testing fixed 

and random effect combinations was limited while using the nmle package due to the 

failed convergence of many models.  Visual inspections of residual scatter plots showed 

improvement in homoscedasticity; however, it is important to note that minimal fanning 

of points remains, and so a slight bias is expected.  It is also important to note that this 

modeling scheme was designed to study how factors affected performance and was not 

intended to predict PAR scores based on the existing factors. 

 

Conclusions 
 Demonstrated by the present study, PAR is a viable metric to quantify human 

movement and is a useful tool for tracking progression of impaired function over 
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treatment sessions, as well as capturing and assessing the idiosyncrasies of movement.  

PAR did not improve significantly between the baseline test session and the one-month 

follow up test session, as the case for most clinician-based scores (MAS and TS).  Future 

studies, especially those involving MS patients, should assess other single-joint 

movements, such as those involving the lower extremities.  A reformulation of the PAR 

metric may place greater weight on phase portrait anomalies, such as inner loops, which 

may improve the differentiation of movement types.    
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CHAPTER 5: GENERAL CONCLUSIONS 
 

 

Limitations 
Several groups have drawn attention to a significant issue surrounding spasticity; 

spasticity is vaguely defined and often misinterpreted, resulting in test protocols and 

measurement tools that have been deemed inadequate (Malhotra et al. 2009, Pandyan et 

al. 2005, Burridge et al. 2005).  As a result of this unsettled discussion of an appropriate 

definition for spasticity, aspects of the protocol used herein come into question.  

Burridge, et al. highlighted protocol strategies and discussed how strategic 

discrepancies—such as compromising advancements in research for cost-effective, 

practical assessments and vice versa—arise depending on whether the studies are 

research or clinically driven (Burridge et al. 2005).  The strategy behind the protocol used 

within this thesis, for testing voluntary motion, was guided by the definition proposed by 

the SPASM Coalition; therefore, the protocol was not limited by Lance’s definition but 

rather is guided by a definition that is arguably vague.   

  Groups have advocated that UMN syndrome is best examined by multifaceted test 

protocols (Burridge et al. 2005, van der Krogt et al. 2012).  The present thesis may have 

been limited by the exclusively active protocol.  The voluntary motion test protocol 

excluded subjects with severe paresis and spasticity, as well as individuals with cognitive 

impairment.  For these individuals, spasticity assessment must be based solely on 

involuntary motion protocols. 
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Justification of Thesis   
Despite concerns that may arise, it must be emphasized that phase profiles—an 

underutilized graphing tool used to display the kinematic data—provides an opportunity 

to gain insight in spasticity that is otherwise hidden by conventional temporal plots.  The 

present thesis investigated the dynamic behavior of single-joint elbow extension and 

flexion, while analyzing and comparing metrics that may be used to quantify the 

complexity of these movements.   

This thesis focused on spasticity, with the goal of advancing clinical diagnostic 

treatment protocols.  Thus, spasticity was approached from a direction that, in this day, is 

common and appealing from a clinical perspective; the testing device and software is 

economically feasible to reproduce and clinically realistic (i.e. simple enough for a 

clinician to use and appropriate to house in a clinic setting), although it may actually 

measure a blend of UMN syndrome positive features at the expense of advancing 

research in spasticity, specifically.  

The outcome of this thesis is expected to benefit and appeal to clinical settings 

but, nonetheless, will set a foundation for future studies; suggestions are provided, 

regarding how to adapt the device and protocol, to advance research of spasticity and 

other symptoms of UMN syndrome.  Justification of the present thesis was three-fold:  

1. Graphing kinematic data in the phase domain provided a valuable and progressive 

tool for viewing and quantifying the performance of both hemiparetic patients and 

those suffering from spasticity.  

2. Testing under an active-motion protocol offered insight into impaired motion that 

may not have surfaced during conventional passive protocols.  
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3. The device and software used in this thesis are both cost-effective and easily 

reproducible for a clinical setting.  Adapting the device to be even more economically 

feasible, portable, etc., allowing patients to complete at-home treatment and 

assessment, is a realistic task and is recommended as future work. 

 

Recommendations for Future Work 
Incorporating active and passive-motion protocols may be beneficial and provide 

more information regarding biomechanical aspects of disorders (Pandyan et al. 2005, 

Burridge et al. 2005, van der Krogt et al. 2012).  In the SPMS study presented in Chapter 

4, passive test scores were assessed by clinicians using MAS and TS, but it is 

recommended that future work focuses on developing a passive-MAST test, in which a 

servomotor drives the subject’s arm and a force transducer measures the resistance to 

movement.  The protocol used within this thesis focused on the motion kinematics but 

disregarded dynamics.  Adapting the MAST to incorporate a servomotor and modifying 

the test protocol will provide insight into the forces and torques driving the motion and 

show how the dynamics vary from healthy to impaired subjects.  In addition, 

electromyographical (EMG) recordings of agonist/antagonist activation during the 

extension-flexion tasks will aid in distinguishing neurogenic and biomechanic 

contributions, while providing insight into such things as co-activation patterns (Wood et 

al. 2005).   

A limitation of the present thesis was that the generated kinematic phase profiles 

were somewhat ambiguous, and it was not definitive whether irregular phase portraits 

were a direct result of spasticity, another UMN syndrome positive feature, or a 

combination of features; opposing this concern, however, is the added benefit that phase 
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profiles may accentuate characteristics of UMN syndrome positive features and help to 

distinguish the disorder, or combination of disorders, responsible for a subject’s impaired 

movement; although beyond the scope of this study, it is recommended that future work 

focuses on differentiating various features of UMN symptoms.   

 Additional work is suggested in the development of upper-limb musculoskeletal 

models that will promote a greater understanding of how motor impairments, such as 

spasticity, affect muscle behavior and joint kinematics.  Valero-Cuevas, et al. discuss 

many aspects of computational models—including the practicality of and strategies 

associated with various modeling methods, a description of common learning and control 

schemes, and the benefits of graphical and computational packages—and express that 

decisions surrounding computations models lie within creating a balance between 

“physiological reality and modeling simplicity.”  The group also emphasizes the need for 

investigating musculoskeletal models, which simulate motion generated by an impaired, 

rather than healthy, motor command (Valero-Cuevas FJ et al. 2009).   

 Moving forward from this thesis, future development of musculoskeletal models 

will demonstrate how parameters (i.e. stiffness, length, and muscle excitation) affect 

motion.   Models will help verify the cause of complex features, commonly seen in 

impaired motion, AV and VP phase portraits, and how tuning parameters, such as 

stiffness, affects the linearity of an AP portrait and the slope of the linear region.   
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