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ABSTRACT OF THE DISSERTATION

Application of the discrete moment problem for numerical

integration and solution of a special type of moment

problems

by Mariya Naumova

Dissertation Director: András Prékopa

We present a brief survey of some of the basic results related to the classical contin-

uous moment problems (CMP) and the recently developed discrete moment problems

(DMP), clarifying their relationship. We also introduce a new numerical integration

method, based on DMP and termed Discrete Moment Method (DMM), that can be

used for univariate piecewise higher order convex functions. This means that the inter-

val where the function is defined can be subdivided into non-overlapping subintervals

such that in each interval all divided differences of given orders, do not change the sign.

The new method uses piecewise polynomial lower and upper bounds on the function,

created in connection with suitable dual feasible bases in the univariate discrete mo-

ment problem and the integral of the function is approximated by tight lower and upper

bounds on them. Numerical illustrations are presented for the cases of the normal, ex-

ponential, gamma and Weibull probability density functions. We show how a similar

approach can be applied for solving the problems of a special structure, namely the dis-

crete conditional moment problems and present the corresponding numerical results.

Finally, we present novel applications to valuations of financial instruments.
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Prékopa for his support, expertise and seemingly endless patience. I am deeply indebted

to him for introducing me to this interesting research topic and for all that he has taught

me throughout my time at Rutgers.

I would like to sincerely thank Dr. Andrzej Ruszczynski, Dr. Vladimir Gurvich,

Dr. Melike Baykal-Gursoy, Dr. Myong K. Jeong, and Dr. Mine Subasi for agreeing to

serve on my thesis committee, for their assistance and valuable comments.

I owe a special note of gratitude to Dr. Endre Boros for the interesting graduate

courses I took from him and various forms of support during my graduate study.

In addition, I have been very privileged to get to know, to learn from and to collab-

orate with other brilliant scholars from Rutgers Center for Operations Research, such

as Dr. Farid Alizadeh, Dr. Adi Ben-Israel, and Dr. Jonathan Eckstein.

Last but not least, I am and will always be thankful to my family and friends.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Discrete Moment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Problem formulation and related work . . . . . . . . . . . . . . . . . . . 4

2.2. Linear programming formulation of the univariate discrete moment prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1. The properties of the divided differences and higher order convex

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2. The condition of the dual feasibility of the discrete power moment

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. General Moment Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4. The numerical stability and the feasibility problem of the dual algorithm

based on the Lagrangian approximation . . . . . . . . . . . . . . . . . . 18

3. Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1. Conditions on the Base Points to Obtain Bounds on the Integral . . . . 24

3.2. Some strategies to find suitable base points to prove inequalities (3.1.3) 27

3.3. Strategies to improve on the accuracy of the integration . . . . . . . . . 30

3.4. The Discrete Moment Method (DMM) of Univariate Numerical Integration 32

3.5. Illustration for the Case of the Normal Probability Density Function . . 35

3.6. Further Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. Discrete Conditional Moment Problem . . . . . . . . . . . . . . . . . . 41

iv



4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3. The discrete conditional moment problems with given shapes of the dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4. The Dantzig-Wolfe decomposition method applied to the discrete condi-

tional moment problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5. Application of the Dantzig-Wolfe decomposition to the conditional mo-

ment problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5. Applications of the discrete moment problem. Bounding the prices of

financial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1. Overview of published work . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2. Finding moment bounds on the European call option . . . . . . . . . . . 57

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



1

Chapter 1

Introduction

The classical moment problem has received substantial attention since its inception

in the second half of the XIX century. The major research work has been concentrated

on two different types of problems dealing with

• bounding sums or integrals, based on the knowledge of a finite number of suitably

defined moments;

• determination of the existence and uniqueness of a distribution such that its

moments match with the elements of a finite or infinite sequence of real numbers.

The first problem was introduced by Bienaymé [7], Chebyshev [14] and Stieltjes

[80]. While the second problem was formulated by Stieltjes [81] in connection with

the continued fractions. Later on, the research done in regards with the second prob-

lem moved away from the continued fractions, and the research field was formed and

explored, using various mathematical tools.

The term ”Moment problem” itself appears for the first time in the work of Stieltjes

[81].

Theory and numerical results in connection with the first type of the moment prob-

lems became important in many branches of mathematics and other sciences. They

provide us with powerful methodologies to approximate sums and integrals, through

bounding, given that a finite number of moments of a mass or probability distribution

are numerically available.

Moment problems with discrete support for the mass distribution had been men-

tioned in the literature but they attracted great interest since the discovery of Prékopa

[62], [64], [63] and Samuels, Studden [77] that the sharp Bonferroni bounds of Dawson
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and Sankoff [20], Sobel and Uppuluri [79] and others are optimum values of discrete

binomial moment problems.

The structure of this dissertation is the following. In Chapter 2 we give a description

of the discrete moment problem (DMP) and present a general solution method for it

that is numerically stable. The proposed iterative algorithm solves a DMP formulated

as a linear programming problem in the special case when the objective function has a

property of being higher order convex. This means that the interval where the function

is defined can be subdivided into non-overlapping subintervals such that in each interval

all divided differences of given orders do not change the sign. The described method-

ology is based on Prékopa’s approach to the DMP, where special linear programming

formulations, theoretical results and new algorithms have been developed in the past

twenty five years.

Some of the results presented here carry over to Chebyshev systems but in order to

show the main ideas in a relatively simple way we restrict ourselves to the univariate

power, and in part to the binomial moment problems. These problems, on the other

hand, have remarkable connections to other fields of mathematics, such as interpolation

and combinatorics. Some initial results in connection with discrete Chebyshev systems,

using linear programming, are presented in [68].

In Chapter 3 we introduce a new numerical integration method, based on DMP,

which is termed Discrete Moment Method (DMM). The method is designed for uni-

variate functions that are piecewise higher order convex. The new method uses piece-

wise polynomial lower and upper bounds on the function, created in connection with

suitable dual feasible bases in the univariate discrete moment problem and the integral

of the function is approximated by tight lower and upper bounds on them. Numerical

illustrations are presented for the cases of the normal, exponential, gamma and Weibull

probability density functions.

In Chapter 4 we present a framework of solving discrete conditional moment prob-

lems using the methodology introduced in the previous chapters. The discrete condi-

tional moment problems have a special ”block” structure, and we present a modified

Dantzig-Wolfe decomposition method for solving them.
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In Chapter 5 we discuss how the discrete and continuous moment problems can be

used in valuations of financial instruments and present some illustrative examples.

The conclusions are summarized in Chapter 6.
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Chapter 2

Discrete Moment Problem

2.1 Problem formulation and related work

The famous ”moment problem” was introduced in 1894 - 1895 by Stieltjes [81], [82],

[53]. In his prominent work [81] he writes (see chapter 4):

Nous appellerons problème des moments le problème suivant :

Trouver une distribution de masse positive sur une droite (0,∞),

les moments d’ordre k (k = 0, 1, ...) étant donnés.

If µk denote these numbers, the problem consists in finding a positive measure σ on

[0,∞) such that

µk =

∫ ∞
0

xkdσ(x), k = 0, 1, ...

Stieltjes adopted the terminology ”moment” from Mechanics and solved the problem

using continued fractions. However, bounding problems related to moments had already

been considered in works of Bienaymé [7] and Chebyshev [14], [15]. The bounding

moment problem frequently appears in the literature as ”Chebyshev type inequalities”.

In 1884 Markov defended his doctoral thesis [57] where he demonstrated significant

results for the bounding moment problems with the use of continued fractions, too.

Later in 1919-1921, Hamburger [36], [37], [38] extended the Stieltjes moment problem

to the real axis, and established the moment problem as a theory of its own.

In the same time, Hausdorff [39], [40] defined the Hausdorff moment problem on a

finite interval in connection with convergence-preserving matrices; this new approach

for the moment problem was the first one not related to continued fractions.

The Hamburger moment problem was extended to the complex functions by Nevan-

linna [60]. He also provided solutions to the interpolation problem, now known as
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Nevanlinna-Pick problem, that are related to the solutions of the associated power

moment problem.

In 1923 Riesz [73] extended the moment problem in functional analysis, by observing

the connection between the moment problem and the space of bounded linear function-

als on C([a, b]). Around the same time, Carleman [11] showed the connection of the

moment problem with the theories of quasi-analytic functions and of quadratic forms

with infinitely many variables.

Several publications on the subject were done by Akhiezer and Krein [2], [3] who

generalized the work by Markov. They assumed a finite number of moments in the

problem. Riesz’s theory was extended to the case of several dimensions by Haviland

[41], [42] and Cramér [16].

Starting with the mid 1900’s, the duality theory for the moment problem was devel-

oped independently by Isii [44], [45], and [47], in connection with the linear semi-infinite

programming. Karlin [46], [47] explored from the geometric point of view a more gen-

eral topic: the Chebyshev systems. However, the use of the duality theory for solving

the bounding moment problem was proposed earlier in 1884 by Markov [57] and in 1911

by Riesz [72], [73].

Fundamental results in the duality theory for the moment problem were obtained

by Haar[35], and Charnes, Cooper and Kortanek [12], [13]. In the mid 1900’s, one of

the most comprehensive studies dedicated to the use of the duality theory for solving

the moment problem was written by Kemperman in 1968 [50].

At the end of 1980’s, Prékopa [62], [64], [63] and Samuels and Studden [77] inde-

pendently introduced and studied the univariate discrete moment problem, motivated

by the fact that the sharp Bonferroni bounds, as well as other probability bounds, can

be obtained as optimum values of discrete moment problems. Closed form formulas

based on these results have been obtained by Boros and Prékopa in 1989 [9]. Few

years later, Prékopa ([66], [67], [9]) introduced and studied the multivariate discrete

moment problem. Although they address the same problem, the methodologies for

solving the discrete moment problem used by Samuels and Studden [77], and Prékopa
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are completely different. Samuels and Studden use the classical approach for the gen-

eral moment problem, and determine the solutions in closed form whenever possible;

their method is applicable only to small size problems. Prékopa is the first who uses

the linear programming methodology in moment theory, and it turns out that in the

special case of the discrete moment problem, linear programming techniques provide us

with more general and simpler algorithmic solutions than the classical ones. Moreover,

the linear programming approach for the discrete moment problem allows for the effi-

cient solution of solving efficiently large size moment problems, for which the classical

methodology cannot give solutions, due to numerical difficulties.
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2.2 Linear programming formulation of the univariate discrete mo-

ment problem

The material of this Section is based on [68] (Prékopa, 2001). Moment problems play

an important role in many applied stochastic programming problems because we can

obtain approximations of probabilities and expectations through the solutions of these

problems. As it frequently happens, the probability distribution of a random variable

is unknown, but a few moments of it are known and can be used to derive lower and

upper bounds for the quantiles of the distribution and expectations of nonlinear (mostly

convex) functions of the random variable.

Let ξ be a discrete random variable, whose possible values are known to be the real

numbers z0 < z1 < · · · < zn. Introduce the notation

pi = P (ξ = zi), i = 0, 1, ..., n. (2.2.1)

Suppose that probabilities {pi} are unknown but the power moments µk = E(ξk),

k = 1, ...,m, where m < n are known and let µ0 = 1.

Our aim is to find the upper and lower bounds for the expected value E[f(ξ)], which

is possible by minimizing or maximizing a linear functional, defined on {pi}, subject to

the constraints that arise from the moment equations. In other words, we consider the

following linear programming problems:

min (max)
n∑
i=0

f(zi)pi

subject to

n∑
i=0

zki pi = µk, k = 0, · · · ,m, (2.2.2)

pi ≥ 0, i = 0, · · · , n.

The problem is called the discrete power moment problem. The set {pi} forms a

probability distribution for the random variables ξ that has the support set {z0, · · · , zn}.

Let the matrix of the equality constraints, its columns, and the right hand side

vector be designated by A,a0,a1, ...,an and b, respectively. Thus, we can rewrite the
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power moment problem in the following form:

min (max)

n∑
i=0

fixi

subject to

n∑
i=0

aixi = b, (2.2.3)

xi ≥ 0, i = 0, · · · , n,

where

ai =



1

zi

z2
i

...

zmi


, i = 0, 1, ..., n; b =



1

µ1

µ2

...

µm


. (2.2.4)

In the power moment problem the matrix A = (a0,a1, ...,an) is an (m+ 1)× (n+ 1)

Vandermonde matrix. Hence every collection of m + 1 vectors of A forms a basis for

the linear programming problem.

Below we present the background to describe the basis structure of the linear pro-

gramming problem.
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2.2.1 The properties of the divided differences and higher order con-

vex functions

Let f be a function defined on the discrete set z0 < z1 < · · · < zn. The first order

divided differences of f are defined by

[zi, zi+1]f =
f(zi+1)− f(zi)

zi+1 − zi
, i = 0, 1, ..., n− 1.

The kth order divided differences are defined recursively by

[zi, ..., zi+k]f =
[zi+1, ..., zi+k]f − [zi, ..., zi+k−1]f

zi+k − zi
, k ≥ 2.

Definition 2.2.1. The function f is said to be kth order convex (strictly convex) if all

of its kth order divided differences are nonnegative (positive).

A sufficient condition for that is the following: f is defined in [z0, zn] and has

nonnegative (positive) kth order derivatives in [z0, zn].

The first order convexity means that the function is nondecreasing, and the second

order convexity means that the function is convex in the classical sense.

We can express the kth order divided differences by the following formula:

[zi, ..., zi+k]f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

zi zi+1 · · · zi+k

...
...

. . .
...

zk−1
i zk−1

i+1 · · · zk−1
i+k

f(zi) f(zi+1) · · · f(zi+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

zi zi+1 · · · zi+k

...
...

. . .
...

zk−1
i zk−1

i+1 · · · zk−1
i+k

zki zki+1 · · · zki+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, 0 ≤ i ≤ n− k. (2.2.5)
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The denominator in (2.2.5) is a Vandermonde determinant which is always positive,

hence the sign of [zi, ..., zi+k]f depends on the sign of the determinant standing in the

numerator.

A Theorem (Prékopa, 1995) [67] states that if the kst order divided differences of

the function f are positive on consecutive points, then all kst order divided differences

of the function f are positive.

Let LI(z) be the Lagrange polynomial of order m, corresponding to the points zi,

i ∈ I, i.e.,

LI(z) =
∑
i∈I

f(zi)LI,i(z), (2.2.6)

where

LI,i(z) =

∏
j∈I−{i}(z − zj)∏
j∈I−{i}(zi − zj)

. (2.2.7)

Define the vector

b(z) =



1

z

...

zm


for every real z. We assert that

fTBB
−1(I)b(z) = LI(z). (2.2.8)

In fact, b(zi) = ai for i ∈ I, hence

fTBB
−1(I)b(zi) = f(zi), i ∈ I. (2.2.9)

Thus, (2.2.8) holds for every real z. By a well-known formula in approximation theory,

we have

f(z)− LI(z) =
∏
j∈I

(z − zj)[ z, zi, i ∈ I ]f, (2.2.10)

valid for every z for which f is defined. From the above discussion a nice character-

ization follows, for the dual feasible bases, in terms of Lagrange polynomials: in the

minimization (maximization) problem (2.2.2) a basis B(I) is dual feasible if and only

if the function f(z) runs above (below) LI(z) for every zi, i 6∈ I.
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2.2.2 The condition of the dual feasibility of the discrete power mo-

ment problem

The basis B is said to be primal feasible if

B−1b ≥ 0

and dual feasible in the minimization (maximization) problem if

fi − fTBB−1ai ≥ (≤)0,

i = 0, 1, ..., n.

Let B be a basis of A, and I = {i0, . . . , im} the corresponding set of basic subscripts.

B is called dual feasible if

f tBB
−1aj ≤ fj , for every j ∈ {0, . . . , n} \ I, (2.2.11)

in case of the minimization problem, and

f tBB
−1aj ≥ fj , for every j ∈ {0, . . . , n} \ I, (2.2.12)

in case of the maximization problem. B is called dual non-degenerate if fTBB
−1aj 6= fj ,

for every j ∈ {0, . . . , n} \ I.

Theorem 2.2.1 (Prékopa 1990a). Suppose that all (m+ 1)st divided differences of the

function fz, z ∈ {z0, . . . , zn} are positive. Then in (2.2.3) all bases are dual nondegen-

erate and the dual feasible bases have the following structure:

m+ 1 even m+ 1 odd

min problem {j, j + 1, . . . , k, k + 1} {0, j, j + 1, . . . , k, k + 1}

max problem {0, j, j + 1, . . . , k, k + 1, n} {j, j + 1, . . . , k, k + 1, n}

Proof. In Prékopa (1990b), two simple proofs are presented for the theorem. We recall

one of them. Define the Lagrange polynomial

LI(z) =

m∑
i=0

∏
k∈I\i

(z − zk)∏
k∈I\i

(zi − zk)
.
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It is well-known in interpolation theory that

f(z)− LI(z) =
∏
i∈I

(z − zi)[z, zi, i ∈ I; f ] (2.2.13)

holds for every z ∈ {z0, . . . , zn}. Since [z, zi, i ∈ I; j] > 0 for every z /∈ {zi, i ∈ I}, the

assertion of the theorem follows from (2.2.13).

Thus, in case when the (m + 1)st divided differences of f are positive, the dual

feasible bases can be determined in closed form, with no computational effort. For this

special case, Prékopa’s dual algorithm for solving (2.2.3) can be applied as specified

below (see Prékopa (2000) for a detailed presentation).

Prekopa’s dual algorithm for the discrete moment problem

Step 1. Pick any dual feasible basis in agreement with the above result; let I =

{i0, . . . , im} be the set of basic indices.

Step 2. Determine the corresponding primal feasible solution xi = (B−1b)i, for i ∈ I,

and xi = 0 for i ∈ {0, . . . , n} \ I. If we take into account the formula:∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 1 . . . 1

a1 x1 . . . xm

. . . . . . . . . . . .

am xm1 . . . xmm

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1

x1 . . . xm

. . . . . . . . .

xm−1
1 . . . xm−1

m

∣∣∣∣∣∣∣∣∣∣∣∣∣
m∑
j=0

(−1)jajSm−j

where Sj =
∑

1≤i1≤···≤ij≤m
zi1 . . . zij , j = 0, . . . ,m, we obtain that

xik =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 1 . . . 1

µ1 zi0 . . . zim

. . . . . . . . . . . .

µm zmi0 . . . zmim

∣∣∣∣∣∣∣∣∣∣∣∣∣
ik∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

zik zi0 . . . zim

. . . . . . . . . . . .

zik zmi0 . . . zmim

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

(−1)m−k
m∑
j=0

(−1)jµjSm−j

ik−1∏
j=0

(zik − zj)
im∏

j=ik+1

(zj − zik)

,
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for every ik ∈ I.

• If xik ≥ 0, for every ik ∈ I, then B is a primal-dual feasible basis, and

therefore the current basic solution is optimal. Go to Step 4.

• If xik < 0, for some ik then the ikth vector of B is a candidate for outgoing.

Go to Step 3.

Step 3. Include that vector into the basis that restores the dual feasible basis structure

and go to Step 2.

Step 4. Stop. The optimal value fTBB
−1b is a lower (upper) bound for E[f(X)], de-

pending on the type of the optimization problem (min or max, respectively).

The dual algorithm can also be applied in the more general case when the objective

function f has nonnegative divided differences of order m+ 1, if some anti-cycling rule

(e.g., lexicographic) is applied whenever dual degeneracy occurs.

An important property of the discrete power moment problems is that the optimal

basis does not depend on the objective function as long as it has positive divided

differences of order m + 1. An immediate consequence of this fact is that the dual

algorithm can be applied for the feasibility of the discrete power moment problem by

taking an arbitrary objective function with positive divided differences of order m+ 1

(e.g., f(z) = exp(z)).

Due to the strong relationship between binomial and power moment problems, sim-

ilar results can be obtained for the case of the binomial moment problem (see Prékopa

(2000)).

Problem (2.2.3) can be used to find sharp lower and upper bounds for the probability

of the union of n events: A1, . . . , An, where known are moments {µk} of the random

variable ν, equal to the number of those events which occur. In this case the problem
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is

min(max)
n∑
i=1

xi

subject to
n∑
i=0

ikxi = µk k = 0, ...,m. (2.2.14)

xi ≥ 0 i = 0, ..., n,

Let Vmin (Vmax) designate the optimum value of the min (max) problem. Problem

(2.2.14) can equivalently be formulated by the use of the binomial moments {Sk}mk=0 =

{
(
ν
k

)
}mk=0:

min(max)

n∑
i=1

xi

subject to
n∑
i=0

(
i

k

)
xi = µk k = 0, ...,m. (2.2.15)

xi ≥ 0 i = 0, ..., n,

The optimum values are the same Vmin (Vmax), as in problem (2.2.14). Problem (2.2.14)

and (2.2.15) can be simplified by removing variable x0 and the only constraint that

contains x0. We obtain the problems:

min(max)
n∑
i=1

xi

subject to
n∑
i=1

ikxi = µk k = 0, ...,m. (2.2.16)

xi ≥ 0 i = 0, ..., n,

and

min(max)
n∑
i=1

xi

subject to
n∑
i=1

(
i

k

)
xi = µk k = 0, ...,m. (2.2.17)

xi ≥ 0 i = 0, ..., n,

LetWmin (Wmax) designate the common optimum value of the minimization (maximiza-

tion) problems (2.2.16) and (2.2.17). Prékopa (1990b) has shown that Vmin = Wmin
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and Vmax = min(Wmax, 1). It is also shown in Prékopa (1990b) that Theorem 2.2.1

holds true for problems (2.2.16), (2.2.17).

Note that the discrete functions representing the objective function coefficients in the

power moment problems (2.2.14) and (2.2.16) do not have all positive divided differences

of order m+1 and m, respectively. The one in problem (2.2.14) has nonnegative divided

differences if m is odd, and nonpositive divided differences if m is even. The one in

problem (2.2.16), on the other hand, forms a Chebyshev system with the functions

in the constraints, if m is even and its negative has the same property, if m is odd.

Problems (2.2.16) and (2.2.17) have the same dual feasible basis structures as presented

in Theorem 2.2.1, while (2.2.14) and (2.2.15) have somewhat different structures (see

Prékopa (1990b)).
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2.3 General Moment Problems

Let Ω = w with a σ-algebra S on it be a finite sequence of measurable functions

u0(w), ..., um(w), w ∈ Ω and a finite sequence of real numbers 1, µ1, ..., µm, wherem ≥ 1.

We consider the general moment problem that involves the following two problems:

• The feasibility problem. Find necessary and sufficient condition that µk is

a generalized moment sequence with respect to the functions uk(w), i.e., there

exists a measure P on S such that∫
Ω
uk(w)dP = µk, k = 0, ...,m. (2.3.1)

The system of equations (2.3.1) is called a feasible representation of the moment

sequence µk.

• The bounding problem. Let f(w), w ∈ Ω be a measurable function on S.

Solve the optimization problem

inf(sup)
∫

Ω f(w)dP

subject to ∫
Ω uk(w)dP = µk,

k = 0, ...,m.

(2.3.2)

Let Pinf (Psup) designate the optimum values of this problem.

The general moment problem is called determinate with respect to uk(w) if µk has

a unique feasible representation (2.3.1), and indeterminate otherwise.

The general moment problem in some sense can be restricted to purely atomic

probability measures, due to the following result of Richter ([71]), Rogosinksi ([76]) and

Tchakaloff ([87]).

Theorem 2.3.1. If the general moment problem is feasible, i.e, there exists a prob-

ability measure P such that (2.3.1) holds, then there exists a probability measure P ,

concentrated on at most m+ 1 points, such that
∫

Ω uk(w)dP = µk, k = 0, ...,m.
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In most practical applications Ω is a subset of Rn, n ≥ 1. If Ω is a compact real

interval, the system of functions uk(z), k = 0, ...,m, is called a Chebyshev system of

order m, if for all elements z0 < ... < zm in Ω, the determinant∣∣∣∣∣∣∣∣∣∣∣

u0(z0) · · · u0(zm)

· · · · · · · · ·

um(z0) · · · um(zm)

∣∣∣∣∣∣∣∣∣∣∣
. (2.3.3)

is positive.

A Chebyshev system is called weak if the determinants are nonnegative, for any

choice of z0, · · · , zm.

Among the major references for Chebyshev systems we mention Karlin and Studden

([47]) and Krein and Nudelman ([58]).

We recognize that the matrix of the set of the constraints is a strongly ill-conditioned,

and the computation of its inverse is a hard task even when the number of moments

is relatively small. This computational difficulty and the restriction on the form of

the function f(z) claims a different approach to find the general solution of the mo-

ment problem. The concept based on the Chebyshev system renders the possibility to

overcome these difficulties.
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2.4 The numerical stability and the feasibility problem of the dual

algorithm based on the Lagrangian approximation

The critical moment of the dual algorithm, which solves problem (2.2.3), is to rec-

ognize infeasibility of the problem that can occur in case of inaccurate moments. The

inaccuracy can arise from measuring errors or rounding off. Such errors can cause in-

feasibility of problem (2.2.3) even in case when it is theoretically feasible. There are

the following possibilities to prevent possible inaccuracy.

During the past two decades, numerous applications have arisen for high-precision

floating-point arithmetic. High-precision floating-point arithmetic tools are standard

features of Mathematica and Maple, and software packages such as

1. MPFR (available at http://www.mpfr.org/),

2. QD and ARPREC (available at http://crd-legacy.lbl.gov/ dhbailey/mpdist/).

More about high-precision floating-point arithmetic tools can be found in papers and

presentations of Bailey from Lawrence Berkeley National Laboratory (see, for example,

[5]) Some of these packages include high-level language interface modules that make

conversion of standard-precision programs a relatively simple task. Applications of

double-double (31 digits) or quad-double precision (62 digits) are particularly common,

but there are also some interesting applications for as high as 50, 000 digits.

The price of the using the higher precision tools is the increasing computation time

that can be many (10− 20) times more than the time required to perform a procedure

with the embedded arithmetic tools.
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Chapter 3

Numerical Integration

Numerical integration methods generally work in such a way that the integrand is

evaluated at a finite number of points, called integration points or base points, and a

weighted sum of these values approximates the integral. The base points and weights

depend on the specific method used and the required accuracy.

An important part of the analysis of any numerical integration method is the study

of the approximation error as a function of the number of integrand evaluations. A

method which yields a small error for a small number of evaluations is usually considered

efficient.

Numerical integration is widely used in statistical computation where it is applied

in a straightforward way. Numerical integration methods serve as a tool in conversion

of ordinary or partial differential equations into algebraic or variational equations. In

boundary methods, numerical integration techniques are also used in transformations

of partial differential equations into integral equations with subsequent discretization.

The use of numerical integration methods is not limited to mathematical appli-

cations, and the techniques of numerical integration have been a topic of an active

interdisciplinary research. For example, numerical integration methods are used in

evaluation of Bose-Einstein and Fermi-Dirac integrals that arise frequently in quantum

statistics ([27], [52]).

The scientific literature is replete with the techniques of numerical integration, see

for example Engels [22] and Davis and Rabinowitz [19] who list about a thousand

papers on the topic. Many integration rules (see, e.g., [18], [43], [83]) use interpolation

functions, typically polynomials, which are easy to integrate. The simplest rules of this

type are the midpoint (or rectangle), the trapezoidal and the Simpson’s rules, where
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for a small interval [c, d] the approximations∫ d

c
f(x)dx ≈ (d− c)f

(
c+ d

2

)
,

∫ d

c
f(x)dx ≈ (d− c)

(
f(c) + f(d)

2

)
,

∫ d

c
f(x)dx ≈ d− c

n

(
f(c) + f(d)

2
+

n−1∑
k=1

f

(
c+ k

d− c
n

))
,

respectively, are used. These methods rely on a ”divide and conquer” strategy, whereby

an integral on a relatively large set is broken down into integrals on smaller sets.

Interpolation with polynomials evaluated at equally-spaced points in [c, d] yields the

Newton-Cotes formulas, of which the rectangle and the trapezoidal rules are examples.

Simpson’s rule, which is based on a polynomial of order 2, is also a Newton-Cotes

formula. If we allow the intervals between interpolation points to vary in length, we

find other integration formulas, such as the Gaussian quadrature formulas. A Gaussian

quadrature rule is typically more accurate than a Newton-Cotes rule which requires the

same number of function evaluations, if the integrand is smooth. For a large number

of variants of Gaussian quadrature the reader is referred to [31].

Romberg’s method is based upon the approximation of the integral by the trape-

zoidal rule. Quadrature formulas of higher error order are produced by successive

division of the step size by 2 and by an appropriate linear combination of the result-

ing approximations for the integral. First, one partitions [c, d] into N0 subintervals of

length h0 = (c− d)/N0 and sets

Ni = 2iN0, hi = h0/2
i, i = 0, 1, ...,

then the integral is expressed as∫ d

c
f(x)dx = L

(k)
i (f(x)) +O(h

2(k+1)
i ),

where L
(k)
i (f(x)) is a quadrature formula with error order O(h

2(k+1)
i ). Romberg’s

method provides us with accurate results if the integrand has multiple continuous

derivatives, though fairly good results may be obtained if only a few derivatives ex-

ist. We also mention numerical methods by [88]) that are useful when it is impossible

or undesirable to use derivatives of the integrand.
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The idea of the adaptive Simpson quadrature routine is described by Lyness [56],

where the properties of the approximation error are also investigated. A recent discus-

sion of error estimates and reliability of different adaptive routines based on Newton-

Cote rules is given by Espelid [23]. The author tests available Matlab codes with respect

to reliability and efficiency.

The literature on Gauss-Christoffel quadrature and its applications and computa-

tional applications is extensive. The famous method of approximate integration by

the use of using a continued fraction expansion was discovered by Gauss in 1814, and

throughout the 19th century it attracted the attention of many leading mathematicians

of the time. For example, in 1826 Jacobi provided an alternative elegant derivation of

the formula, showing that the nodes are the zeros of the Legendre polynomials and that

they are real. Christoffel then significantly generalized the method and subsequently

extended it to arbitrary measures of integration. The convergence of Gaussian quadra-

ture methods was first studied by Stieltjes in 1884, while Markov endowed it with an

error term. More on the history of the field of numerical integration can be found in

Gautschi [26].

Thus, by the end of the 19th century, the integration method introduced by Gauss

and Christoffel integration became widely known. It is, however, unlikely that it had

actually been effectively used in practice, as the method requires the evaluation of

functions at irrational arguments, and hence requires some tedious interpolation. The

20th century, with the development of powerful digital tools for computing, brought

in a renewed interest in Gauss-Christoffel quadrature, and the formulae began to be

frequently applied, which in turn, led to important new theoretical developments.

The importance of the eigenvalues and eigenvectors of the Jacobi matrices for com-

puting Gauss’ quadrature rules was demonstrated by Golub and Welsch [32], and the

generalization to Radau and Lobatto quadrature was described by Golub and Kautsky

[30].

A significant survey of different numerical integration methods was done by Dahlquist

[18], [17], Gautschi [25], [26], and Mysovskih [59]. Gautschi [28] also described the use

orthogonal polynomials for approximation purposes and Gauss-Christoffel quadrature
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computation.

Laurie [54] provides a survey on approximation methods and discusses some practical

error estimation techniques in numerical integration. He underlines the difficulty of the

formal theoretical error estimates for quadrature rules. Many Gaussian quadrature

formulas with various weight functions are tabulated in Stroud and Secrest [85].

Recently, some algorithms and computer codes for generating integration rules be-

came available in the public domain. Kautsky and Elhay [48] have developed algorithms

and a collection of Fortran subroutines called IQPACK [49] for computing weights of

interpolatory quadratures. In [61] R. Piessens et al. describe QUADPACK, a collec-

tion of Fortran 77 and 90 subroutines for numerical integration. The authors provide

descriptions of the algorithms, program listings, test programs and examples. They

also include useful advice on numerical integration and many references to the numer-

ical integration literature used in developing QUADPACK. The CQUAD integration

algorithm is described in the paper by Gonnet [33].

A package QPQ developed by Gautschi consisting of MATLAB programs for gener-

ating orthogonal polynomials as well as dealing with applications is available in public

domain at www.cs.purdue.edu/archives/2002/wxg/codes. The package includes rou-

tines for generating Gauss-type arbitrary weight functions.

A set of Maple programs for Gauss quadrature rules are given by von Matt [89].

Gaussian product rules for integration over the n-dimensional cube, sphere, surface

of a sphere, and tetrahedron are derived in Stroud and Secrest [85], and some simple

formulas of various accuracy are tabulated in [1]. The derivation of such formulas are

treated by Engels [22]. Nonproduct rules for multidimensional integration are found in

Stroud [84].

Genz has developed a database of algorithms for numerical computation of mul-

tiple integrals available at http://www.math.wsu.edu/faculty/genz/homepage. These

integrals arise in a wide variety application areas that include electromagnetics, chem-

istry, physics and statistics. He also presented a survey and new results in multivariate

approximation theory [29].

In the following sections we propose a new univariate numerical integration method.
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We create lower and upper bounding polynomials for the function on a finite grid but

ensure that the integrals of the bounding polynomials provide us with tight lower and

upper bounds for the integral of our function in an entire interval. We use Lagrange

polynomials for bounding that are natural outcomes of the use of the discrete power

moment problem. We illustrate our new method for the functions: ex
2/2, xme−x

2/2,(
x
λ

)m−1
e−( xλ)

m

, and λe−λx.
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3.1 Conditions on the Base Points to Obtain Bounds on the Integral

Let f be a convex function of orderm+1 in the interval [c, d] and Z = {z0, z1, ..., zn} ⊂

[a, b]. Suppose that the set {zi0 , zi1 , ..., zim} ⊂ Z defines a dual feasible basis in mini-

mization problem (2.2.2) and let l(z) designate the corresponding Lagrange polynomial

(for simplicity we suppress the subscript B). We have the relation

f(z)− l(z) = [zi0 , zi1 , ..., zim , z; f ]

m∏
k=0

(z − zik) ≥ 0 (3.1.1)

for any z ∈ Z. If it is dual feasible in the maximization problem (2.2.2) and the

corresponding Lagrange polynomial is u(z), then we have the relation:

f(z)− u(z) = [zi0 , zi1 , ..., zim , z; f ]
m∏
k=0

(z − zik) ≤ 0 (3.1.2)

for any z ∈ Z. In both cases equality holds for z ∈ {zi0 , zi1 , ..., zim}. Inequalities (3.1.1)

and (3.1.2) hold true also for z ∈ [a, b] with the exception of the interiors of consecutive

pairs, described in Prékopa’s Dual Theorem, among the base points {zi0 , zi1 , ..., zim},

where the inequalities are reversed. For this reason from (3.1.1) and (3.1.2) we cannot

immediately derive that ∫ d

c
l(z)dz ≤

∫ d

c
f(z)dz ≤

∫ d

c
u(z)dz (3.1.3)

However, the intervals between the consecutive pairs are small and in practice there

is a relatively small number of consecutive pairs, hence the integrals of the differences

f(z)− l(z), u(z)− f(z) over the union of consecutive pairs are small and allow for the

validity of the relations in (3.1.3). Figures 3.1 and 3.2 illustrate the situation.

In Figure (3.1) the graphs show that if the base points z ∈ {z0, zj , zj+1, zk, zk+1}

are chosen in such a way that zj , zj+1 as well as zk, zk+1 are close to each other, then

l(z) ≥ f(z) on the small intervals [zj , zj+1], [zk, zk+1], otherwise we have l(z) ≤ f(z).

The deficiency in the integral
∫ b
a l(z)dz caused by l(z) ≥ f(z) in (zj , zj+1)∪(zk, zk+1) can

easily be offset by choosing in a suitable way. The same idea applies to the maximization

problem (see Fig.3.2).

Stating it in a different way: under mild conditions on the function and the base
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Figure 3.1: Function f(z); Lagrange polynomial (dotted line); minimization problem;
m+ 1 odd; basic subscript set: {zj , zj+1, zk, zk+1, zn}

Figure 3.2: Function f(z); Lagrange polynomial (dotted line); maximization problem;
m+ 1 odd; basic subscript set: {z0, zj , zj+1, zk, zk+1}
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points the nonpositivity of the integrals of f(z) − l(z) over the intervals between con-

secutive pairs is offset by the nonnegativity of the integrals over the much larger set,

where f(z)− l(z) ≥ 0, and a similar assertion holds for u(z)− f(z).

This ensures that we in fact have the relations (3.1.3). But we can say more about

it. If that happens then the fact that in some intervals the integral of f(z) − l(z)

is negative makes the lower bound tighter and the negativity of u(z) − f(z) in some

intervals makes the upper bound tighter.
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3.2 Some strategies to find suitable base points to prove inequalities

(3.1.3)

The subintervals of the interval [c, d], where f(z)−l(z) < 0, u(z)−f(z) < 0, are small

and the effect of the negativity of the integrals of these differences can easily be offset

in several ways, under some conditions. We choose subintervals, where f(z)− l(z) < 0,

u(z)− f(z) < 0, at one of the ends of [c, d].

Lemma 3.2.1. Let [u, v] be an interval with positive length, then for any y ∈ [u, v] and

z ≤ z = u+v
2 −

√
2

2 (v − u) we have inequality

(y − u)(v − y) ≤ (z − u)(z − v). (3.2.1)

Proof. The largest value on the left-hand side is (v−u)2

4 . The right-hand side is in-

creasing if z ≥ v and decreasing if z ≤ u. For z = z̄ and z = z it is equal to (v−u)2

4 .

Theorem 3.2.1. Let f(z), a ≤ z ≤ b be a real valued function that has nonnegative

divided differences of orders m+ 1.

I. Suppose that m + 1 is even and the function has nonnegative divided differences

of order m + 2. Take m+1
2 equidistant subintervals from [a, b]: [u1, v1], [u2, v2], . . . ,

[u(m+1)/2, v(m+1)/2], a < u1 < v1 < · · · < u(m+1)/2 < v(m+1)/2 < b, such that

(m+1)/2∑
i=1

(vi − ui) ≤ b− z̄, (3.2.2)

where z̄ =
u(m+1)/2+v(m+1)/2

2 +
√

2
2 (v(m+1)/2 − u(m+1)/2).

Let L(z) be the Lagrange polynomial corresponding to the base points uj , vj, j =

1, ..., m+1
2 .

Under these conditions we have the inequality

−
(m+1)/2∑
j=1

∫ vj

uj

(f(z)− L(z))dz ≤
∫ b

b−z̄
(f(z)− L(z))dz. (3.2.3)

If m + 1 is odd then we take m/2 subintervals and create the Lagrange polynomial

by the use of all endpoints, supplemented by the left-hand endpoint of the interval [a, b].

Relation (3.2.3) remains true, if we replace m for m+ 1 in (3.2.1), (3.2.2), (3.2.3).
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II. Suppose that m+ 1 is even and the function has non-positive divided differences

of order m+ 2.

Take m+1
2 subintervals from [a, b], as in Case I, but assume

(m+1)/2∑
j=1

(vj − uj) ≤ z − a, (3.2.4)

where z = u1+v1
2 −

√
2

2 (v1 − u1).

Under these conditions we have the inequality:

−
(m+1)/2∑
j=1

∫ vj

uj

(f(z)− L(z))dz ≤
∫ z̄

a
(f(z)− L(z))dz. (3.2.5)

Proof. We prove the assertion in Case I, for m + 1 even. The proofs of the other

assertions are the same. Assume that the columns of A, corresponding to uj , vj ,

j = 1, ..., m+1
2 , form a dual feasible basis in the minimization problem (2.2.3). Then

the Lagrange polynomial with the same base points has the property that

f(z)− L(z) ≥ 0, if z ∈

m+1
2⋃
j=1

[uj , vj ]. (3.2.6)

Equality holds if and only if z is one of the points uj , vj , j = 1, ..., m+1
2 . We offset the

negative integral of L(z)−f(z) over the union of the intervals [uj , vj ], j = 1, ..., m+1
2 , by

the use of the integral of f(z)−L(z) over the interval [b−z̄, b]. This will be accomplished

if

−
[
ui, vi, i = 1, ...,

m+ 1

2
, y; f

] m+1
2∏
j=1

(y − uj)(y − vj)

≤
[
ui, vi, i = 1, ...,

m+ 1

2
, z; f

] m+1
2∏
j=1

(z − uj)(z − vj), (3.2.7)

for any y ∈
⋃m+1

2
j=1 [uj , vj ] and z ≥ z̄.

To show (3.2.7), first, we remark that the non-negativity of the divided differences

of order m+ 2 of the function f implies the inequality:

−
[
ui, vi, i = 1, ...,

m+ 1

2
, y; f

]
≤
[
ui, vi, i = 1, ...,

m+ 1

2
, z; f

]
. (3.2.8)
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Hence we only have to prove that for any y and z, satisfying the above condition,

we have

−

m+1
2∏
j=1

(y − uj)(y − vj) ≤

m+1
2∏
j=1

(z − uj)(z − vj). (3.2.9)
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3.3 Strategies to improve on the accuracy of the integration

If X is a uniformly distributed random variable in [a, b], then

E(f(X)) =
1

b− a

∫ b

a
f(z)dz. (3.3.1)

On the other hand, the uniform distribution in a finite interval is determined by its

moment sequence µ1, µ2, ..., which is a special case of the Hausdorff one-dimensional

moment problem (see, [40] and [78]). Thus, if µ1, µ2, ... are the moments of the uniform

distribution in [a, b], then the optimum values of the linear programming problems

min (max)

∫ b

a
f(z)dP

subject to zkdP = µk (3.3.2)

k = 1, ...,m+ 1,

provide us with lower and upper bounds for the integral (3.3.1). The two bounds

converge to the integral (3.3.1) if m→∞.

Problem (??) can be solved approximately by the use of a sufficiently fine discretiza-

tion of the interval. We can go from the discrete optimum to the continuous optimum

by the use of Prékopa’s dual algorithm. In [69], for example, the authors use the same

approach providing a method for solving the continuous power moment problem when

some higher order divided differences of the objective function are nonnegative. Their

method combines Prékopa’s dual approach for solving the discrete moment problem

with a cutting-plane type procedure for solving linear semi-infinite programming prob-

lems.

We may not want to accurately compute the integral (??), instead, we may want to

increase the number of constraints. In our numerical integration technique this means

that if we work with a fine grid (a fine discretization of the interval [a, b]), and pick

a subset of the grid point that determine a dual feasible basis of the discrete moment

problem, then we may increase the number of elements of this subset in agreement with

the dual feasible basis structure theorem.

For example, if m+ 1 is even, and we have m+1
2 consecutive pairs of the grid points,

in a minimization problem, then we may include into the set of selected grid points a
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further one, to have m+ 2 points altogether. This will provide us with a dual feasible

basis for the discrete moment problem with m + 2 constraints if and only if the new

grid point is the left hand endpoint of the set of grid points.

As regards error bounds for our integration technique, since the integral is approxi-

mated by integrals of Lagrange polynomials, we can use the error bounds available for

Lagrange interpolation.

Our integration technique works for piece-wise higher order convex function, so we

may restrict ourselves to one such piece of the function. Let [a, b] be the interval where

the piece is defined. We also assume that the function f is has continuous derivatives of

order m+1 in that interval. It is not a serious restriction of generality, from the practical

point of view. In fact, we can further subdivide the interval [a, b], to ensure that the

above differentiability condition holds true, at least in typical practical situation.

Let z0, z1, ..., zn be the set of base points for the lower bounding Lagrange polynomial

L(z) and h = max
i

(zi+1− zi). Then the error bound for the lower bounding polynomial

L(z) is given by

max
z

(f(z)− L(z)) ≤ fm+1(ξ)hm+1

4(m+ 1)
, (3.3.3)

where ξ is defined in such a way that the divided difference f of order m + 1 at the

base points of the Lagrange polynomial is equal to fm+1(ξ).

Similar inequality holds for the upper bounding polynomial. The base points chosen

for U(z) are different, hence instead of ξ and h we have other values η and k.

The error bound is

max
z

(U(z)− f(z)) ≤ fm+1(η)km+1

4(m+ 1)
. (3.3.4)

Based on (3.3.3) and (3.3.4) we can set up error bounds for the approximate integrals

of f(z) on [a, b] we have inequalities:∣∣∣∫ b

a
(f(z)− L(z)) dz

∣∣∣ ≤ ∫ b

a

∣∣∣(f(z)− L(z))
∣∣∣dz ≤ fm+1(ξ)hm+1

4(m+ 1)
(b− a− α) , (3.3.5)

∣∣∣∫ b

a
(U(z)− f(z)) dz

∣∣∣ ≤ ∫ b

a

∣∣∣(U(z)− f(z))
∣∣∣dz ≤ fm+1(η)km+1

4(m+ 1)
(b− a− β) . (3.3.6)



32

3.4 The Discrete Moment Method (DMM) of Univariate Numerical

Integration

In this section we briefly describe the new numerical integration method, which is

one of the main contributions of this work.

If a function f(z), a ≤ z ≤ b, is convex of order m + 1, then for any discrete set

of points Z of at least m + 2 points the discretized function f(z) has all nonnegative

divided differences of order m + 1. As we have seen, we can construct two m-degree

polynomials l(z) and u(z) such that

l(z) ≤ f(z) ≤ u(z), z ∈ Z. (3.4.1)

The bounding polynomials can be obtained by the use of dual feasible bases, corre-

sponding to problem (2.2.3). Then we approximate∫ b

a
f(z)dz (3.4.2)

by the integrals ∫ b

a
l(z)dz,

∫ b

a
u(z)dz. (3.4.3)

Our intention is not only to approximate the integral (3.4.2) by the integrals (3.4.3)

but to ensure that the integrals (3.4.3) serve as lower and upper bounds, respectively

for the integral (3.4.2), i.e.,∫ b

a
l(z)dz ≤

∫ b

a
f(z)dz ≤

∫ b

a
u(z)dz. (3.4.4)

As we have mentioned in the previous section, inequality (3.4.4) is not a direct

consequence of (3.4.1) but its validity can be ensured by suitable choices of the points

in the base sets, in other words, the dual feasible bases in problem (2.2.3) that define

the polynomials l(z), u(z).

The function f(z) may not be higher order convex (or concave) in the entire interval

[a, b]. However, it may be true that the interval [a, b] can be subdivided into a finite

number of non-overlapping intervals such that on each of them the function is higher

(not necessarily always of the same) order convex (concave). If this is the case, then



33

we apply the numerical integration procedure for each subdividing interval and create

bounds and approximations of the integral of f(z) on [a, b] by the use of the integrals

on the subdividing intervals.
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Algorithm

Initialization:

Use Lsum as the notation that the lower bound summation of integral of Lagrange

polynomials in subintervals;

Use Usum as the notation that the upper bound summation of integral of Lagrange

polynomials in subintervals.

Procedure:

Step 1. Determine the subdividing intervals where the rth divided difference of the

function is positive or negative.

Step 2. For each subdividing interval [c, d]

a) If the rth divided difference of the function is positive, repeat - subdivide it into

n subintervals of equal length (n ≥ r);

- label those endpoints by z0, z1, ..., zn, evaluate the function at these labeled points;

- find any dual feasible basis according to Theorem 1 to get its corresponding upper

and lower bounding Lagrange polynomials;

- integrate the upper and lower bounding Lagrange polynomials in the subinterval;

- Lsum = Lsum + Integral of the lower bounding Lagrange polynomial in [c, d];

- Usum = Usum + Integral of the upper bounding Lagrange polynomial in [c, d].

b) If the rth divided difference of the function is negative, multiply the function by

−1, continue as in part a.

Note that the error in this new numerical integration method can easily be con-

trolled because we provide simultaneous lower and upper bounds for the integral. If

the bounds are not close enough then we may increase the number of base points to

increase accuracy. The inclusion of new base points increases the lower bound and

decreases the upper bound.
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3.5 Illustration for the Case of the Normal Probability Density Func-

tion

We pay special attention to the univariate normal probability density function be-

cause of the connection to orthogonal polynomials.

The Hermite polynomials, a classical sequence of orthogonal polynomials, arise e.g.

in probability theory, combinatorics and physics, and can be defined as

Hr(x) = (−1)re
x2

2
dr

dxr

(
e

−x2
2

)
, (3.5.1)

or as

H̃r(x) = (−1)rex
2 dr

dxr

(
e−x

2
)
, (3.5.2)

hese two definitions are not exactly equivalent; either is a rescaling of the other, more

precisely,

H̃r(x) = 2
r
2Hr

(√
2x
)
. (3.5.3)

We use the first definition which is often preferred in probabilistic applications.

In fact, φ(x) = 1√
2π
e−

x2

2 is the probability density function of the standard normal

distribution. The first ten Hermite polynomials are:

H0(x) = 1;

H1(x) = x;

H2(x) = x2 − 1;

H3(x) = x3 − 3x;

H4(x) = x4 − 6x2 + 3;

H5(x) = x5 − 10x3 + 15x;

H6(x) = x6 − 15x4 + 45x2 − 15;

H7(x) = x7 − 21x5 + 105x3 − 105x;

H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105;

H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x.

The roots of the Hermite polynomials for r = 2 to r = 10 have been tabulated to

eight decimals and are presented in the table below. Because of symmetry it is enough
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Table 3.1: The roots of Hr(x) for r = 2 to r = 10

r Roots

2 1.00000000

3 0.00000000
1.73205081

4 0.74196378
2.33441422

5 0.00000000
1.35562618
2.85697001

6 0.61670659
1.88917588
3.32425743

7 0.00000000
1.15440539
2.36675941
3.75043971

8 0.53907981
1.63651904
2.80248586
4.14454719

9 0.00000000
1.02325566
2.07684798
3.20542900
4.51274586

10 0.48493571
1.46600182
2.48432584
3.58182348
4.85946283

to present the nonnegative values.

Once the roots of Hr(x) are found, it is possible to determine the intervals where

dr

dxr

(
e

−x2
2

)
is positive or negative. Therefore, for each interval, if dr

dxr

(
e

−x2
2

)
is pos-

itive, the lower (upper) bound of e
−x2
2 is the value at x of the Lagrange polynomial,

associated with the minimization (maximization) problem (2.2.3), where f(x) = e
−x2
2 .

If dr

dxr

(
e

−x2
2

)
is negative, the lower (upper) bound of e

−x2
2 is the value at x of the

Lagrange polynomial, associated with the minimization (maximization) problem.

Hence, we propose the following algorithm to approximate the normal integral in
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interval [a, b].

Algorithm

Step 1. Calculate the rth roots of the Hermite polynomial in the interval [a, b].

Step 2. Determine the subdividing intervals where the rth derivative of f(x) = e
−x2
2

is positive or negative.

Step 3. For each subdividing interval [c, d],

a) If the rth derivative of f(x) = e
−x2
2 is positive, repeat

- subdivide it into n subintervals of equal length (n ≥ d);

- label those endpoints by z0, z1, ..., zn, evaluate the function at these labeled points

and construct the following problem:

min (max)
n∑
i=0

f(zi)pi

subject to

n∑
i=0

zki pi = µk, k = 0, · · · ,m, (3.5.4)

pi ≥ 0, i = 0, · · · , n,

that is problem (2.2.2).

- Find any dual feasible basis according to Theorem 1 to get its corresponding upper

and lower bounding Lagrange polynomials.

- Integrate the upper and lower bounding Lagrange polynomials in the subinterval.

- Lsum = Lsum + Integral of the lower bounding Lagrange polynomial in [c, d].

- Usum = Usum + Integral of the upper bounding Lagrange polynomial in [c, d].

b) If the rth derivative of f(x) = e
−x2
2 is negative, multiply the function by -1,

continue as in part a.

Step 4. Multiply the Lsum and Usum by 1√
2π

to get the lower and upper bound for

the integral of univariate normal in interval [a, b].
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3.6 Further Numerical Results

We evaluated the probability integrals of the following functions: ex
2/2, xme−x

2/2,(
x
λ

)m−1
e−( xλ)

m

, and λe−λx with different parameters in (a, b).

For a fixed r we consider the zeros of the Hermite polynomials that are in the

interval (a, b). Each interval between two zeroes (or between one zero and one endpoint

of (a, b)), we divide into k subintervals, and each subinterval - into N smaller intervals

of equal length. For each small interval we choose M points to generate two Lagrange

polynomials. Integration of these polynomials and summation over all the subintervals

yields the final bounds.

The results for different functions and parameters are presented in the tables below.
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Table 3.2: f(x) = e−
x2

2 , a = 0, b = 2

M k N Lsum Usum Average Exact value
(8 digits of accuracy)

3 6 40 1.19513897 1.19754021 1.19633959 1.19628801
3 7 40 1.19552001 1.19711352 1.19631676 1.19628801
3 8 40 1.19583924 1.19682013 1.19632969 1.19628801
3 10 40 1.19604298 1.19655469 1.19629884 1.19628801
3 15 40 1.19621297 1.19638119 1.19629708 1.19628801
4 5 40 1.19627345 1.19631213 1.19629279 1.19628801
5 5 40 1.19628863 1.19628999 1.19628969 1.19628801

Table 3.3: f(x) = e−
x2

2 , a = 0, b = 3

M k N Lsum Usum Average Exact value
(8 digits of accuracy)

3 6 40 1.24872355 1.25018107 1.24945231 1.24993045
3 7 40 1.24917761 1.25028238 1.24972910 1.24993045
3 8 40 1.24942248 1.25016039 1.24979144 1.24993045
3 10 40 1.24967086 1.25005136 1.24986111 1.24993045
3 15 40 1.24985429 1.24997429 1.24991429 1.24993045
4 5 40 1.24991898 1.24995206 1.24993552 1.24993045
5 5 40 1.24993042 1.24993235 1.24993139 1.24993045
5 10 40 1.24993046 1.24993079 1.24993063 1.24993045

Table 3.4: f(x) = xme−
x2

2 ,m = 3, a = 0, b = 2

M k N Lsum Usum Average Exact value
(5 digits of accuracy)

3 6 20 1.18644 1.18930 1.18787 1.18799
3 7 20 1.18692 1.18889 1.18791 1.18799
3 8 20 1.18723 1.18858 1.18791 1.18799
3 10 20 1.18755 1.18832 1.18792 1.18799
3 15 20 1.18779 1.18813 1.18796 1.18799
4 5 20 1.18795 1.18806 1.18801 1.18799
5 5 20 1.18798 1.18801 1.18800 1.18799
5 10 20 1.18799 1.18798 1.18799 1.18799
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Table 3.5: f(x) = xme−
x2

2 ,m = 3, a = 0, b = 4

M k N Lsum Usum Average Exact value
(5 digits of accuracy)

3 6 20 1.99258 1.99539 1.99399 1.99396
3 7 20 1.99302 1.99489 1.99396 1.99396
3 8 20 1.99334 1.99453 1.99394 1.99396
3 10 20 1.99361 1.99425 1.99393 1.99396
3 15 20 1.99380 1.99407 1.99394 1.99396
4 5 20 1.99387 1.99402 1.99395 1.99396
5 5 20 1.99393 1.99398 1.99396 1.99396
5 10 20 1.99395 1.99397 1.99396 1.99396

Table 3.6: f(x) = (xλ)m−1e−( x
λ

)m ,m = 3, a = 0, b = 4

M k N Lsum Usum Average Exact value
(5 digits of accuracy)

3 6 20 0.84150 0.84410 0.84280 0.84283
3 7 20 0.84194 0.84368 0.84281 0.84283
3 8 20 0.84225 0.84336 0.84281 0.84283
3 10 20 0.84253 0.84311 0.84282 0.84283
3 15 20 0.84271 0.84293 0.84282 0.84283
4 5 20 0.84276 0.84287 0.84282 0.84283
5 5 20 0.84280 0.84284 0.84282 0.84283
5 10 20 0.84282 0.84283 0.84283 0.84283

Table 3.7: f(x) = (xλ)m−1e−( x
λ

)m ,m = 3, a = 0, b = 4

M k N Lsum Usum Average Exact value
(5 digits of accuracy)

3 6 20 0.86439 0.86479 0.86459 0.86466
3 7 20 0.86444 0.86471 0.86458 0.86466
3 8 20 0.86465 0.86466 0.86466 0.86466
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Chapter 4

Discrete Conditional Moment Problem

4.1 Motivation

DMP and BMP can be solved efficiently using Prékopa’s dual method up to 30

moments for the three types of functions:

1. Higher order convex;

2. Constants up to a point, then higher order convex;

3. Constant at only one point and 0 otherwise.

Numerical experiments show that for functions of type II (when the function is discon-

tinuous and the jump is big) and type III, although the bounds are sharp, the quality of

the lower and upper bounds are not enough for practical application. Moreover, there

is no stable algorithm for other types of objective function (aside from three special

types of functions above) due to the lack of the dual feasible basis structure. Therefore,

we are facing the following problems:

1. Can we find the optimal lower and upper bounds for a larger variety of objective

functions?

2. Can we develop a fast and stable algorithm to handle problems with even higher

moments?

3. How to incorporate more information into the moment problems?

To address the above questions, we propose a new approach for the problem of

bounding the expectation of a function of a discrete random variable for the case of

piecewise higher order convex functions. The bounds are based on the knowledge of
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some of the power moments as well as conditional moments. The discrete conditional

moment bounding problems (DCMP) are formulated as LPs with special structures and

can be solved using Dantzig-Wolfe decomposition by the use of the Discrete Moment

Problem (DMP). This brings more information into the moment problems in two ways:

(1) we include conditional moments; (2) we include information about the shape of the

distribution.

We contribute to the theory of discrete moment problems in many ways. First,

the new formulation helps to incorporate more moments, more information about the

distribution into the discrete moment problems. Second, we can solve a much large

scale problem due to the use of decomposition principle. Third, the method is more

stable since we deal with one subproblem at a time and if we use a small number of

conditional moments, the subproblems can be solved in closed forms. Last but not

least, we can find optimal bounds for a much larger class of functions. For example,

if the objective function is higher order convex of order 3, then we can use up to 2

conditional moments constraints for the subproblem.

In the following section we present the formulation and the decomposition principle

for bounding expectation of a random variable by the use of the dual feasible basis

structure theorems.

4.2 Problem formulation

The discrete conditional moment problem can be formulated as a linear program-

ming problem in the following way:

min(max) gT0 p0 +gT1 p1 + . . . +gTn pn

subject to

M0p0 + . . . Mlpl = b0

A0p0 = b1
...

. . . =
...

Alpl = bl

p0 ≥ 0, . . . , pl ≥ 0,

(4.2.1)
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where Mi is an (1 +m0) × ni matrix, Ai is an mi × ni matrix, (M0, ...,Mn) is Vander-

monde, Ai’s are Vandermonde matrix of size (mi+1) × ni with the same numbers in its

columns as in mi but different powers, pTi = (pi1 , ..., pini ), i = 1, . . . , l, the components

of gi form a higher order convex function, i = 1, . . . , l,mi < m0. b1, ..., bl are vectors of

conditional moments.

Here M0, ...,Ml and A0, ..., Al can be chosen in a flexible manner. For practical

application, it may be better to have A0, ..., Al as matrices corresponding to conditional

moments of lower order (e.g., from 1 to k) since they can be easily computed (not

very expensive computation). Higher moments can be included in M0, ...,Ml. In this

case, Mi has typical columns: [1 zkj . . . z
k+m0
i ]T and fTi Mi means an k + m0−degree

polynomial. It is higher order convex or concave depending on the sign of the last

component of fi.

There is no problem, however, if we choose a special matrix Mi = [1 . . . 1] (hence,

b0 = 1), i.e., we do not use any full moments in the formulation.

min(max) gT0 p0 +gT1 p1 + . . . +gTn pn

subject to

p0 + . . . pl = 1

A0p0 = b1
...

. . . =
...

Alpl = bl

p0 ≥ 0, . . . , pl ≥ 0

(4.2.2)

Let B be a feasible basis in the master problem and consider two types of sub-

problems. The first type is a discrete moment problem given some moments of the

distribution.

max
∑n

i=0(fTi Mi − gTi )pi

subject to

Aipi = bi

pi ≥ 0,

where fi are the dual variables associated with equations 1 to 1 + m0 in the master
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problem. Under the formulation (4.2.2), problem (4.2.3) takes a simpler forms

max
∑n

i=0(fi − gTi )pi

subject to

Aipi = bi

pi ≥ 0,

where fi is just a constant. Hence, the subproblems can be handled by DMP, not the

master problem, however. In this case, the original problem can be min or max.

Dual feasible basis structures for (4.2.3) has extensively been studied in Prékopa

(1988, 1989, 1990a, 1990b, 2008, 2009). They can be solved fast and efficiently by the

use of Prékopa’s dual method.

The feasible solution of a subproblem can be found by applying Prékopa’s dual

method for the subproblem on a higher order convex function and we take the optimal

solution as one of the column for the decomposition.

4.3 The discrete conditional moment problems with given shapes of

the distribution

If we know that the distribution is unimodal or multimodal, and we either know

the exact location of the mode or the mode is given in an interval, then we can also

incorporate these information. In this case, the objective function has to be high-order

convex (or piece-wise higher order convex at the cutpoints).

The second type of the subproblem can include one more constraint on the increasing

(decreasing) property of pi. In this case, the right hand side bi are conditional moments

around the modes.

max
∑n

i=0(fTi Mi − gTi )pi

subject to

Aipi = bi

pi < pi+1 < · · · < pl

When Ai is a matrix of binomial moments, then it can be transformed into a matrix of

power moment. Thus, problem (4.2.3) can be solved using Prékopa’s dual method for
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the discrete power moment problem.

Dual feasible basis structures for (4.3.1) has recently been studied in Prékopa (2008,

2009). They can be solved efficiently by the use of the special structure of the dual

feasible basis.

4.4 The Dantzig-Wolfe decomposition method applied to the discrete

conditional moment problem

Consider the following linear programming problem with the ”block” constraints:

min
∑t

k=1 c
T
k xk

subject to ∑t
k=1Mkxk = b0

Akxk = bk, k = 1, ..., t

xk ≥ 0, k = 1, ..., t

(4.4.1)

We represent the solutions satisfying constraints

Akxk = bkxk ≥ 0, (4.4.2)

i.e., this convex polyhedron, in the following form

xk =

rk∑
i=1

λkipki +

sk∑
i=1

µkiqki, k = 1, ..., t, (4.4.3)

where

λki ≥ 0, i = 1, ..., rk,

rk∑
i=1

λki = 1,

µki ≥ 0, i = 1, ..., sk, k = 1, ..., t.

If we replace vectors xk in problem (4.4.1), and introduce the notations

Mkpki = gki,

Mkqki = hki,

cTk pki = uki,

cTk qki = vki,

(4.4.4)
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the problem takes the form

min
∑t

k=1 (
∑rk

i=1 λkiui +
∑sk

i=1 µkivki)

subject to ∑t
k=1 (

∑rk
i=1 gkiλki +

∑sk
i=1 hkiµki) = b0∑rk

i=1 λki = 1

λki ≥ 0, i = 1, ..., rk,

µki ≥ 0, i = 1, ..., sk, k = 1, ..., t.

(4.4.5)

Problem (4.4.5) that we obtain by modifying the original problem is often called

the master problem.

Assume that Ak is of size mk × nk and Mk is of size m0 × nk. Then in problem

(4.4.1), there are m0 + m1 + ... + mn equality constraints and n1 + ... + nt variables,

while in problem (4.4.5) there is a large number of variables, but only m0 + t equality

constraints.

A set of constraints of the original problem (4.4.1) is identified as ”connecting” or

”coupling” constraints, wherein many of the variables contained in the constraints have

non-zero coefficients. The remaining constraints are to be grouped into independent

submatrices such that if a variable has a non-zero coefficient within one submatrix, it

will not have a non-zero coefficient in another submatrix.

The structure of the matrices of these two problems is shown below.

Table 4.1: The structure of (4.4.1)
M1 M2 Mt

A1

A2

. . .

At

Assume that the bases concerning problem (4.4.5) are quadratic and that we know

one feasible basis that is denoted B. Typically to the notation in the revised sim-

plex method, we denote the vector consisting of the coefficients, corresponding to the
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Table 4.2: The structure of (4.4.5)
m0 g11 ... g1r1 h11 ... h1s1 ... gt1 ... g1r1 h11 ... h1s1

1 1 ... 1 0 ... 0
...

. . .

t 1 ... 1 0 ... 0

columns of B in the objective function, cB. Let us partition vector cTBB
−1 as follows:

cTBB
−1 =

(
fT1 , f

T
2

)
, (4.4.6)

where f1 has m components and f2 has t components.

Then, we analyze the quantities

z
(g)
ki − uki = fT1 gki + f2k − uki,

i = 1, ..., rk,

z
(h)
ki − uki = fT1 hki − vki,

i = 1, ..., sk, k = 1, ..., t,

(4.4.7)

where f2k is the kth component of f2. If all the quantities in (4.4.7) are nonpositive,

then B is the optimal basis. These quantities, however, are not known explicitly, except

for those which belong to the basis. Therefore, we can overcome the difficulty by using

the auxiliary subproblems:

max
(
fT1 Mk − cTk

)
xk

subject to

Akxk = bk,

xk ≥ 0.

(4.4.8)

In fact, if we are using the (lexicographic) simplex method for the solution of prob-

lem (4.4.8), the method provides us with an extreme point of the convex polyhedron

determined by the constraints, if there exists a finite optimum. Assuming this to be

the case and that the optimal solution is pki, for the optimum value we obtain

(
fT1 Mk − cTk

)
pki = fT1 gki − uki = zgki − uki − f2k. (4.4.9)

Since f2k is unknown, from here we can obtain zgki − uki.
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If, for every value k, the convex polyhedron defined by (4.4.2) is bounded, then

there are no hki vectors and no numbers in the second row of (4.4.7). On the other

hand, in this case all subproblems (4.4.8) have finite optima.

We solve all subproblems (4.4.8) and check if the execution of the algorithm has

terminated so that all differences in the first row of (4.4.7) are nonpositive. If this is

not the case, we have to continue the process. In the latter case, the vector

gki
ek

 may

enter the basis, where gki = Mkpki and pki is the optimal solution of subproblem (4.4.8),

provided that f2k plus the optimum value of this subproblem (equal to z
(g)
ki − uki) is

positive. The determination of the vector leaving the basis and the updating of the

revised simplex method tableau goes in the usual way.

Dropping the condition regarding the boundedness of the convex polyhedra (4.4.2),

an iteration remains the same whenever all subproblems have finite optima. If, however,

one of the subproblems (4.4.8) does not have a finite optimum, then we can find an

extremal ray of the corresponding convex polyhedron (4.4.2) in the following way. Take

the dual tableau, without the first row, corresponding to the last basis, when solving

problem (4.4.8) and take that column in it which produced the information that there

is no finite optimum. (We solve problem (4.4.8) by the simplex method and use the

dual tableau only at the end.) The negative of that column is an extremal ray of the

convex polyhedron (4.4.8). This must be among the vectors standing in the second sum

in the representation (4.4.3). Let qki designate this vector. Since the scalar product of

gki and the coefficient vector of the objective function is positive (by construction of

qki), (
fT1 Mk − eTk

)
qki = fT1 hki − vki > 0, (4.4.10)

which means that qki may enter the basis. The lexicographic revised method can be

used to guarantee finiteness. The initial basis can be found by the first phase of the two

phase method. When we solve Master problem (4.4.5), the vectors (4.4.3) constitute

the optimal solution of problem (4.4.1), where the λki, µki, pki, qki are taken from the

final tableau, corresponding to the master problem (4.4.5).
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4.5 Application of the Dantzig-Wolfe decomposition to the condi-

tional moment problem

We know that if (M1M2...Mt) in (4.4.1) is a Vandermonde matrix, the individually

M1,M2, ...,Mt are Vandermonde matrices, and so are A1, A2, ..., At.

To solve

max
(
fT1 Mk − cTk

)
xk

subject to

Akxk = bk, k = 1, ..., t

xk ≥ 0, k = 1, ..., t,

(4.5.1)

we look at the sign of the last component of f1. If it is positive, the fT1 Mk is a higher

order convex function (the order is the largest power in Mk) and if the sign is negative,

the fT1 Mk is a higher order concave function.

We can optimize both objective functions, but if we want to solve only the mini-

mization problem, then we multiply the objective function by −1, and minimize the

modified objective function.

Assume that the original objective function determined by (cT1 , c
T
2 , ..., c

T
t ) is piece-

wise linear, i.e., each component cTi is linear, i = 1, ..., t. The linear term cT in the

objective function doesn’t change higher order convexity or concavity, also the order

remains the same.

Consider the special case, where

M1,M2, ...,Mt

are matrices of dimensions

1×m1, 1×m2, ..., 1×mt.

Here there is just one coupling constraint, which is the sum of the x-components is

equal to 1.

In this case f1 has a single component and the objective function in (??) is

(f1 − ck1)xk1 + ...+ (f1 − cknk)xknk ,
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thus the function of the objective coefficients is

f1 − ck1, ..., f1 − cknk ,

which is linear.

Consider, in general, the problem:

min(max) lTx

subject to

Ax = b

x ≥ 0,

(4.5.2)

where A is in the form

A =



vh0 vh1 . . . vhM

vh+1
0 vh+1

1 . . . vh+1
M

. . . . . . . . . . . .

vh+k
0 vh+k

1 . . . vh+k
M


.

where M ≥ k and l is linear on the set v0, v1, ..., vM . Preferably, v0, v1, ..., vM are

consecutive integers, but not necessarily starting with 0, but starting with an arbitrary

integer.

Note that problem (4.5.2) just a general formulation of a subproblem (??).

Problem (4.5.2) is totally positive in the sense described in [65], provided that l is

non-decreasing and

l(v) = avi + b, a ≥ 0.

If a < 0, we take the negative of the objective function. Obviously, we can remove

b and can take a = 1 to obtain the optimal basis.

The dual feasible basis structures are introduced in [65]:

k even k odd

min problem {i, i+ 1, . . . , k, k + 1} {i, i+ 1, . . . , k, k + 1,M}

max problem {0, i, i+ 1, . . . , k, k + 1,M} {0, i, i+ 1, . . . , k, k + 1}

Accordingly, we can carry out the optimization in (4.5.2) and in our problem (4.5.1).
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Having the incoming vector, the outgoing vector can easily be determined from

problem (4.4.5).
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4.6 Numerical results

First, we benchmark our result against a version of discrete normal distribution for

bounds on P (X >= 1) and E(f(X)), where f is a discontinuous function with constant

value up to a point and then higher order convex.

• The moments are generated by standard normal distribution.

• The objective function is

f(x) =

 e0.1x + e0.5x if x ≥ −2

0 otherwise

First, we are going to include conditional moments of the normal distribution. Nat-

urally, we will use the conditional moments at −2 since it is the discontinuity in the

objective function. Then, we have E(X|X < −2) = −0.053991 and E(X2|X < −2) =

0.130732.

Note that another advantage of using small number of conditional moments (< 6

moments) is the possibility of not using the high precision toolbox.

2 conditional moments: LB: 2.1042 UB: 2.3157 (without unimodal)

2 conditional moments: LB: 2.1216 UB: 2.2329 (with unimodal)

Now, we incorporate the information on the third conditional moment E(X3|X <

−2) = −0.323946.

3 conditional moments: LB: 2.1341 UB: 2.1677 (without unimodal)

3 conditional moments: LB: 2.1360 UB: 2.1482 (with unimodal)
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Chapter 5

Applications of the discrete moment problem. Bounding

the prices of financial derivatives

5.1 Overview of published work

Probability bounds based on discrete moment problems have been applied to a large

number of practical problems. Among these which use an LP formulation and higher

order moments we mention

• Finding the reliability bounds for transportation systems (bounding the proba-

bility of the existence of the feasible flow). See, for example, [8].

• Bounding reliability of communication networks (the probability that two cus-

tomers can be connected with all the way working path, or that all customers

should be connected, that is, two-terminal reliability or all terminal reliability).

See, for example, [70].

• Bounding the values of financial derivatives. See, for example, [68], [6].

• Bounding the probability in the probabilistic constrained model in stochastic

programming. See, for example, [67].

• Applications in natural sciences. See, for example, [90], [21], [4].

• Applications in numerical analysis, probability and statistics. See , for example,[10],

[29], [86].

In this section we present some applications in economics and finance.

One of the first papers in the area was published Ritchken (1985) [74, 75], where

the future security prices are supposed to form a finite element discrete set: s1, . . . , sn
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with known probabilities p1, . . . , pn, respectively. The lower and upper bounds for the

European call option are provided by the optimum values of the minimization and

maximization problems:

min (max)
n∑
i=1

[si −X]+pi

subject to
n∑
i=1

pi = 1, (5.1.1)

n∑
i=1

sipi = µ,

p ≥ 0,

where X is the strike price. In case of the put option we have [X− si]+ in the objective

function.

Ritchken [74, 75] shows that the lower bound is attained at a distribution, where

for a consecutive pair of probabilities pi, pi+1 we have that pi + pi+1 = 1, pi ≥ 0,

pi+1 ≥ 0, which implies pi = 0 for j /∈ {i, i+ 1} and the upper bound is attained at the

distribution, where p1 + pn = 1, p1 ≥ 0, pn ≥ 0. The phenomenon that a consecutive

pair of p1, ..., pn forms an optimal basic solution was also observed in connection with

hydraulic systems, see Fujiwara [24], Khang and Fujiwara [51]. It is also a special case

of basic solutions in discrete moment problems as we can see it in Chapter 2.

Lo (1987) [55] looked at the case, where the asset price process S(t), t ≥ 0 is arbi-

trary, where the random variables have finite variances. He formulated the optimization

problem:

max
F∈F

EF ([S(T )−X]+|S(t)), (5.1.2)

where X is the striking price and F is the collection of conditional probability distribu-

tions of S(T ), given S(t) such that

E(S(T )|S(t)) = µ(t, T ), (5.1.3)

V ar(S(T )|S(t)) = E(S2(T )|S(t))− µ2(t, T ) = σ2(t, T ).

The solution to problem (5.1.2) exists and the optimum value provides us with an

upper bound on the conditional expectation, where we have the conditional moment



55

information (5.1.3):

E[(S(T )−X)|S(t)] ≤
µ(t, T )(µ(t, T )−X) + µ(t, T )σ2(t, T ), if X ≤ µ2(t,T )+σ2(t,T )

2µ(t,T )

1
2(µ(t, T )−X +

√
(X − µ(t, T ))2 + σ2(t, T )), if X > µ2(t,T )+σ2(t,T )

2µ(t,T )

(5.1.4)

To obtain this discounted conditional expectation we multiply by e−r(T−t) on both

sides in (5.1.4). In case of time homogeneity we have µ(t, T ) = µ(T − t), σ2(t, T ) =

σ2(T − t), where µ, σ2 > 0 are constants.

The discounted bound in (5.1.4) is applied in Lo (1987) [55] to obtain upper bounds

for the European call in case of two special stochastic processes: (a) the multiplicative

Brownian motion process and (b) Merton’s mixed jump-diffusion process, under risk

neutrality condition.

Grundy (1991) [34] gave upper bound on the expected payoff E([S(T )−X]+), where

the expectation of the nth moment of S(T ) is known. If it is E(Sn(T )) = Snt ψ, then

we have the relations

E([S(T )−X]+) ≤


ψ

1
nS(t)−X, if X ≤ S(t)n−1

n ψ
1
n

ψ S(t)
n (S(t)

X
n−1
n )n−1, if X > S(t)n−1

n ψ
1
n

(5.1.5)

Grundy [34] also proved that if the asset price follows the dynamics:

dS(t) = α(t)S(t)dt+ σ(S(t), t)dB(t),

where B(t), t ≥ 0 is the standard Brownian motion and α(t), σ(y, t) are deterministic

functions, α(t) ≥ r(t), t ≥ 0, then the expected return on the call payoff in a decreasing

function of the time. Here r(t) is the time dependent intensity of the rate of return.
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Zheng (1994) formulated the moment problem, with the first two moments known,

where the expected call payoff is to be maximized. The problem is

max

∫ ∞
0

[z −X]+dF (z)

subject to

∫ ∞
0

dF (z) = 1, (5.1.6)∫ ∞
0

zdF (z) = µ,∫ ∞
0

z2dF (z) = µ+ σ2,

F is a c.d.f.,

where F is the distribution function of the asset price at expiration. It is unknown

but known are its first two moments µ and µ2 + σ2, where σ2 is the variance. The

bounds are taken from the collection of formulas known in connection with the moment

problem (see, e.g., Karlin, Studden, [47], Krein, Nudelman, [58], Prékopa, [67]).
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5.2 Finding moment bounds on the European call option

In this section we present the moment bounds on the European call option based

on DMP.

Let us introduce the following notation:

t = current time;

T = maturity of the option;

S(t) = price of the underlying asset now;

S(T ) = random future price of the underlying asset;

K = striking price;

r = rate of interest, assuming continuous compounding;

c = price of the option.

Under risk neutral valuation, then the option price is the following:

c = e−r(T−t)E([S(T )−K]+|S(t) = s). (5.2.1)

The Black-Scholes formula gives the value of c for the case where S(τ), τ ≥ 0 has

the form

S(τ) = S(0)eσZ(τ)+µτ , (5.2.2)

where Z(τ), τ is the standard Brownian motion process, that is,

• Z(0) = 0;

• the process has independent increments;

• Z(τ) has distribution N(0, τ) and σ > 0, µ are constants.

The process (5.2.2) is a multiplicative Brownian motion.

We drop the assumption that S(τ) is a multiplicative Brownian motion process, let

t = 0, and for simplicity, assume that S(T ) has the form

S(T ) = eαZ+β,
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where Z is a random variable with support 0,∆, 2∆, ..., n∆ with ∆ > 0. We also assume

that there exists h such that

eαh∆+β −K = 0. (5.2.3)

Thus, the payoff is 0, if Z ≤ h∆, and it is eαk∆ −K, if Z = k ≥ h.

We consider two different ways for bounding options by the use of the moment

problem. The first method is the following. Based on the knowledge of the first m

conditional moments of Z given that eαZ+β > K, we can obtain the lower and upper

bounds on the option price c. Let designate those conditional moments as v1, ..., vm,

and v0 = 1, by definition.

Since

c = e−rTE [|S(T )−K|+]

= e−rTE
[
eαZ+β −K|eαZ+β > K

]
P (eαZ+β > K), (5.2.4)

we use DMP to find the lower and upper bounds for the factors in (5.2.4), for c.

The bounds for E
[
eαZ+β −K|eαZ+β > K

]
are, therefore, the optimal values for the

following linear programs:

min (max)

n∑
i=h

(
eαi∆+β −K

)
xi

subject to (5.2.5)

n∑
i=h

(i∆)k xi = vk, k = 0, 1, ...,m (5.2.6)

xi ≥ 0, i = h, ..., n.

Note that the objective function has positive divided differences of all orders on the

support set h, ..., n.

Therefore, there is no limit on the number of moments one can use solving for the

bounds.

The lower and upper bounds on the option price c are given in the Table below for

the case of α = 1, β = 0, ∆ = 0.15, K = 4.48, T = 20, r = 0.5.
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Table 5.1: Lower and upper bounds on an European option

The underlying stock price follows a uniform distribution on 0,∆, 2∆, ..., n∆, where

n = 80.
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Chapter 6

Conclusions

We have presented some new applications and numerical procedures for the uni-

variate power moment problem in a finite interval. Significant improvements in both

of the lower and upper bounds in the continuous moment problems can be obtained if

the shape constraints are introduced, in addition to the moment matching constraints

in the LP of the DMP. Another way to improve on the bounds, making them more

suitable for approximation of the expectation of a function of a random variable, is the

use of DMP in the continuous moment problem.

We present a detailed description of this methodology under the condition that the

function is piecewise higher order convex. Here the bounding polynomials are allowed

to run above (below) the function in the minimization (maximization) problem on small

intervals (deviation in the wrong direction) but this property serves to get closer the

lower and upper bounds in a controlled manner.

The elegant and efficient algorithms for numerical integration, worked out for the

discrete case, allow for the solution of both problem types, where the number of known

moments can be very large. Linear programming theory is applied and special LP algo-

rithms are developed to efficiently solve the problems. Illustrative numerical examples

are presented, where it is shown that our methods can solve problems with a significant

number of the given moments.

We also consider an application of the DMP for the solutions of the discrete con-

ditional moment problems (the problems with the block structure). We demonstrate

with an example how our method can effectively be applied in practice.

Finally, we introduce an application of the DMP to option pricing valuation. A small

example demonstrates the case of European option price valuation given 20 moments
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with the error bound 10−2.
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related Gauss-Christoffel rules. BIT, 37(2):256–295, 1997.
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Sciences, Paris, 149:974–977, 1909.

[73] F. Riesz. Sur le problème des moments. Arkiv for matematik, Astronomi och Fysik
(in French), 17:1–52, 1923.

[74] P.H. Ritchken. On option pricing bounds. The Journal of Finance, 40(4):1219–
1233, 1985.

[75] P.H. Ritchken and S. Kuo. Option bounds with finite revision opportunities. The
Journal of Finance, 43(2):301–308, 1988.

[76] W.W. Rogosinsky. Non-negative linear functionals, moment problems, and ex-
tremum problems in polynomial spaces. Studies in mathematical analysis and
related topics, 316(324):121–125, 1962.

[77] S.M. Samuels and W.J. Studden. Bonferroni-type probability bounds as an applica-
tion of the theory of Tchebycheff System. Probability, Statistics and Mathematics,
Papers in Honor of Samuel Karlin. Academic Press, 1989.

[78] J.A. Shohat and D.J. Tamarkin. The problem of moments. Mathematical surveys.
American Mathematical Society, Providence, RI, 1946.

[79] M. Sobel and V. R. R. Uppuluri. On bonferroni-type inequalities of the same degree
for the probability of unions and intersections. Ann. Math. Statist., 43(5):1549–
1558, 1972.

[80] T.J. Stieltjes. Recherches sur quelques séries semi-convergentes. phd thesis.
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