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ABSTRACT OF THE THESIS

Decoding Brain States Using Functional Brain Imaging

Techniques

by Maria Peifer

Thesis Director: Professor Laleh Najafizadeh

Non-invasive neuroimaging techniques provide safe methods for investigating the func-

tionality of the brain. Functional near infrared spectroscopy (fNIRS) is a non invasive

brain imaging method, which uses light in the near infrared range to measure the

changes in concentration of cerebral hemoglobin. Electroencephalography (EEG) is a

noninvasive brain imaging technique that measures regional cortical activity by mea-

suring the potential difference at various points on the surface of the scalp. In this work

the two brain imaging techniques are used to decode brain states, using a paradigm for

three conditions: rest, motor and motor imagery.

The first part of the study attempts the classification of motor and motor imagery

by using least square support vector machine (LS-SVM) with a radial basis function

kernel. The data was recorded using functional near infrared spectroscopy. All pre-

processing methods are selected to be possible for execution in a real-time setting.

The first goal was to determine the optimal window length and starting point for the

extraction of features. Once the optimal window length was established, two feature

selection methods were compared: Fisher discriminant ratio (FDR) and the combined

method, which uses FDR and K-means. Reducing the number of features improved the

classification time with negligible impact on the classification accuracy.
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The second part of the study uses a LS-SVM with a linear kernel to perform two

classifications on EEG data: rest and motor imagery, and rest and motor. The average

power of the frequency band between 10 Hz− 14 Hz was used to extract features from

each channel. The two feature selection methods previously mentioned were compared.

As expected the combined method produced better results.
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Chapter 1

Introduction

The motivation of this study was to develop methods for detecting brain states with

application in a brain computer interface (BCI). BCI can enable severely disabled per-

sons to interact and control their environment, and therefore, can significantly improve

their quality of life [76]. An efficient BCI must meet two requirements: it must have

great accuracy and it must have fast detection. Therefore, accuracy of detection as

well as real-time capabilities have been considered in this study. Two brain imaging

techniques were used: near infrared spectroscopy (NIRS) and electroencephalography

(EEG).

Near infrared spectroscopy is an emerging technology that uses light in the near

infrared range to indirectly measure brain activity. Changes in cerebral hemoglobin

concentration are calculated using the measurements of the intensity of the emitted

and detected light [73]. Compared to other brain imaging modalities such as electroen-

cephalography (EEG) or magnetic resonance imaging (MRI), it is less prone to artifacts

due to movement,and has a short preparation time [56].

EEG is a noninvasive neuroimaging technique that measures the potential at the

surface of the scalp. While some systems have a lengthy setup time, due to the gel

that needs to be added to each electrode, there are emerging technologies that use dry

electrodes with similar performance [63]. EEG has great spatial resolution, with high

sampling frequencies, which makes it ideal for BCI use.

In the first part of this study the detection of brain states using near infrared

spectroscopy (NIRS) was attempted. Classification of motor imagery and motor was

done using least square support vector machine with a radial basis function kernel.
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Different time windows were used to extract features to find the optimal window length.

Using the optimal window length, as determined by the accuracy of classification, from

the full feature set, two feature selection methods were compared: Fisher discriminant

ratio (FDR) and a combined method using FDR and K-means. The best classification

was achieved using a time window of 0.4s at the onset of the block with 36 features.

In the second part of the study Electroencephalography (EEG) is used for detecting

brain states during three conditions: rest, motor and motor imagery. Classification of

rest and motor, and rest and motor imagery was attempted using least square support

vector machine and the average powers of the frequency band between 10Hz and 14Hz

of each channel as the features. Two methods of feature selection were compared:

Fisher discriminant ratio (FDR) and a combined method using FDR and K-means.

The combined method achieves better performance.

The second chapter introduces the background and the principles of the brain imag-

ing techniques. The third chapter introduces basic concepts of machine learning as well

as feature selection methods. The fourth chapter summarizes the current literature in

decoding brain states using neuroimaging techniques for the application in BCI. The

fifth and sixth chapter discuss the work done using two neuroimaging techniques. The

final chapter summarizes the conclusions and discusses future work.
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Chapter 2

Neuroimaging Techniques

2.1 Introduction

This chapter describes the types of signals that can be recorded as measures of

brain functions, as well as functional imaging techniques.The first part of the chapter

introduces how neuronal activation can be recorded directly or indirectly through the

changes in hemodynamic concentrations. Tasks, intended to represent paradigms of

specific functions, can be configured using a block design, event-related design or a

mixed design.

The second part of the chapter introduces two imaging techniques, near infrared

spectroscopy and electroencephalography, and their advantages and disadvantages. Near

infrared spectroscopy, described in Section 2.4, uses light in the near infrared range to

measure brain activity. Electroencephalography measures the electrical potential dif-

ference at the surface of the scalp to some reference point.

2.2 Measures of Brain activity

2.2.1 Neuronal Activity

The human brain is part of the central nervous system and has many functions

including: control of body temperature, heart rate, breathing, processing sensory in-

formation, such as visual or olfactory information, movement, working memory and

emotions. It contains neurons which are electrically excitable cells used for processing

and transmission of information. With tens of billions of neurons connected by trillions

of transition points, the brain is a complex structures with a processing power which

far exceeds current supercomputers [3, 25].
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The electrical signal used by neurons to communicate is called an action potential.

This is a change in membrane potential caused by exchange of sodium and potassium

ions through the membrane of the neuron with an amplitude of 100 mV [31]. The brain

is able to decode information based on the path the action potential takes and not on

the shape since action potentials are an all or none event.

2.2.2 Hemodynamic Response

Neuronal activation causes changes in the concentration of hemoglobin, both oxy-

genated and deoxygenated[47]. In preparation of the increased oxygen consumption

during activation, there occurs an increase in the local cerebral blood flow (CBF) and

the concentration of oxygenated hemoglobin (HbO2) and a decrease in the concentration

of deoxygenated hemoglobin (Hb) [47]. The increased oxygen consumption causes the

concentration of oxygenated hemoglobin to drop and the concentration of deoxygenated

hemoglobin to increase (Figure 2.4) [47].

2.3 Brain Imaging Experiments

2.3.1 Selection Factors

Structural and Functional Brain Imaging

Brain imaging falls into two major categories: structural and functional. Structural

imaging is focused on the physical aspect of the brain and can detect abnormalities in

the structure of the brain. Functional imaging is focused on the functions of the human

brain and areas that are activated during specific tasks. In this type of imaging the

signal is recorded over a period of time.

Resolution: Spatial and Temporal

Spatial resolution is the property that describes how sensitive a measurement is to

differences in activation over a small distance. More measurements per unit of volume,

result in a better spatial resolution. Temporal resolution is a measure of how sensitive
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a recording is to changes in activation over a short period of time. A method with a

higher temporal resolution will have the capability to record more samples per second.

Ease of Use

Ease of use can determine the applications for brain imaging methods. There are

invasive techniques, such as electrocorticography [40], which necessitate a device to

be implanted in the head and non-invasive methods, which take measurements at the

surface of the scalp. Methods that do not disturb the subjects natural environment

are preferred because they are assumed to be less distracting from the task and thus

contribute to less noise.

The preparation time of each subject differs between imaging methods. Some meth-

ods, like certain electroencephalography systems require a cap with electrodes to be

placed on the head and each electrode to be filled with gel in order to reduce electrode-

scalp impedance [21].

The size of the equipment can greatly affect the range of applications and subjects

that it can be used for. Equipment which is heavy or large in size might not be suitable

to record brain activity from small children or elderly people.

2.3.2 Task Design

During a brain imaging experiment a subject is asked to perform a task which

represents a paradigm of a specific function such as working memory, motor function,

oddball detection or pattern recognition. There are three types of experimental design:

block design, event-related design, and mixed design, shown in Figure 2.1. In a block

design trials are presented consecutively within each block in order to increase the

activation power of the signal. This is repeated across multiple blocks, however blocks

of different type are often interspersed in order to reduce the subject’s anticipation of

following stimulus [80]. Event-related design has single trials followed by rest periods.

The inter-trial interval (ITI) can be the same for all trials, as in the case of periodic

single trial design, or it can differ from trial to trial, as in the case of jittered single trial

design. The length of the ITI is dependent on the type of imaging method used. The
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mixed design is a combination of block and event-related design and has blocks with

varying ITIs.

Figure 2.1: The three types of task design: (a) block design, (b) event-related design,
(c) mixed design. The triangles of different colors represent different types of trials.

2.4 Functional Near Infrared Spectroscopy

2.4.1 The Basics

Neural activation in the brain is followed by a hemodynamic response consisting of

a change in blood oxygenation and cerebral blood flow [8]. Therefore neural activation

can be indirectly monitored by recording the changes in blood oxygenation. Biological

tissue has a low optical absorbance for light in the near infrared range, however the

chromophore hemoglobin has a relatively high absorbance both in its oxygenated and

deoxygenated form. The absorption of oxygenated hemoglobin (Oxy Hb), deoxygenated

hemoglobin (Deoxy Hb), and water are shown in Figure 2.2. It can be seen that if light

were to be transmitted at a wavelength between 700 nm and 900 nm absorption will

mainly be due to the presence of Oxy Hb and Deoxy Hb.

Functional near infrared spectroscopy (fNIRS) is an emerging functional brain

imaging technology, which uses light in the near infrared range (700 nm to 1000 nm) to
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Figure 2.2: Absorption spectra for Oxygenated and Deoxygenated Hemoglobin in the
Near-Infrared range. In lower frequencies deoxy-hemoglobin has higher absorption co-
efficient, while in higher frequencies oxy-hemoglobin has a higher absorption coefficient.

detect changes in cerebral concentration of oxygenated and deoxygenated hemoglobin

related to brain activities [1, 6, 73].

During NIRS experiments, an array of detectors and low power NIR light sources

are placed on the head. The light entering at a source position and exiting the head

at a detector position samples a diffuse, banana-shaped volume along this path that

is dependent on the distance between source and detector. Due to the low optical

absorption of biological tissue at NIR wavelengths, NIR light can penetrate deep enough

to sample the outer 1.5 - 2 cm of the head through skin and skull and reach the outer

approximately 5 - 10 mm of the brain tissue, as shown in Figure 2.3.

2.4.2 Properties of NIRS

NIRS has good spatial resolution, and records a signal from localized activity [79].

It can detect activation on a cortical area with a depth of 1 cm to 3 cm from the

surface, depending on the distance between the optodes. However, NIRS does have

some spatial limitations. Unlike magnetic resonance imaging (MRI), it has a limited

effective imaging depth and can only detect activation at the cortical area [56].

The temporal resolution of NIRS is better than brain imaging methods like fMRI,
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Figure 2.3: Propagation path of NIR light through scalp, skull and brain.

positron emission tomography (PET), and magnetoencephalography (MEG). Its record-

ing rate can range from 2 Hz to 250 Hz [68]. The hemodynamic response follows the

neural activation and peaks about (5 − 6) s after the stimulus onset [10]. A typical

hemodynamic response is shown in Figure 2.4. In order to fully capture activation, a

time window of about 10 seconds is required [10].

NIRS, compared to Electroencephalography (EEG), is less prone to artifacts due

to movement, which makes it ideal for measuring brain activity during everyday life

activities and even freely moving animals [68]. Since changes in hemoglobin concen-

trations are measured, the recorded signal will have oscillations due to the heart beat.

This signal has a frequency of 1 Hz and an amplitude that is lower than the peak of

hemodynamic response. Motion of the sources and detectors on the hair can cause a

drift in the hemodynamic response [70]. In order to remove noise due to heart beat and

the baseline drift, bandpass filter can be applied with a bandwith of 0.01 Hz – 0.7 Hz.

It has a short preparation time and is relatively cheap [70]. NIRS devices can be made

small and portable and light which makes them suitable for brain imaging of infants

and elderly population [48, 7].
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Figure 2.4: A typical hemodynamic response signal recorded using NIRS. [HbO] : oxy-
hemoglobin concentration, [Hb] : deoxyhemoglobin concentration and [tHb] : total
hemoglobin concentration.

2.4.3 Modified Beer-Lambert Law

NIRS measures the light intensity at the detectors. The modified Beer-Lambert

law can be used for the conversion of the raw data to oxygenated and deoxygenated

hemoglobin. The law is based on the assumptions that the absorption is homogeneous

across the illuminated area and that the scattering loss is constant over time [34]. From

the raw data, attenuation can be calculated by using (2.1) [34].

A = ln
Isrc
Idet

= Lµa +G (2.1)

In (2.1) A is the attenuation, Isrc is the incident light intensity, Idet is the detected

light intensity, L is the total mean pathlength, µa is the absorption coefficient and G is

a geometry dependent factor due to scattering, which is considered to be constant over

time. To eliminate the unknown geometry dependent factor, it is common to evaluate

the changes in attenuation relative to an initial state, as illustrated in (2.2).

∆A = ln
Idet1
Idet2

= L∆µa (2.2)
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For each wavelength, the change in the absorption coefficient is a linear combina-

tion of the changes in the underlying concentrations of two chromophores: oxygenated

hemoglobin and deoxygenated hemoglobin. This is illustrated in equation (2.3). α rep-

resents the molar absorption coefficient, which is dependent on the wavelength of the

light (see Figure 2.2).

∆µa = αHbO2∆CHbO2 + αHb∆CHb (2.3)

Since α is wavelength dependent, by emitting light at two different wavelengths, and

solving the system of equations, ∆C for both chromophores can be estimated (2.4).

 ∆CHbO2

∆CHb

 =


−αλ2Hb

α
λ1
Hbα

λ2
HbO2

−αλ2Hbα
λ1
HbO2

α
λ1
Hb

α
λ1
Hbα

λ2
HbO2

−αλ2Hbα
λ1
HbO2

α
λ2
HbO2

α
λ1
Hbα

λ2
HbO2

−αλ2Hbα
λ1
HbO2

−αλ1HbO2

α
λ1
Hbα

λ2
HbO2

−αλ2Hbα
λ1
HbO2


 ∆Aλ1 · (Lλ1)−1

∆Aλ2 · (Lλ2)−1


(2.4)

The mean pathlength factor is dependent on the distance from the source to the

detector, as shown in equation (2.5). In this equation, DPF represents the differential

pathlength factor and d represents the distance between source and detector.

L = DPF × d (2.5)

Differential pathlength factor cannot be computed and is different across subjects,

therefore it was taken from literature [13].

2.5 Electroencephalography

2.5.1 The Basics

Electroencephalography (EEG) is one of the oldest non-invasive brain imaging meth-

ods [63] which records the signal from the postsynaptic activity of several neurons. In a

typical EEG experiment, electrodes are placed on the subjects head and the potential

difference of each electrode with respect to a common reference is measured. The most

common electrode arrangement is the 10-20 system, shown in Figure 2.5 [45]. This
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arrangement has 21 electrodes placed according to four reference points: the nasion,

the inion and the preaurical point, next to the ear, on each side of the head. The

nasion is the intersection of the frontal bone with the two nasal bones in the human

skull and is located at the dip between the forehead and the nose. The inion is the most

prominent part of the bone at the back of the skull. The intersection of the axis formed

by connecting the anion to the nasion and the axis that connects the two preaurical

points is the center of the head, where electrode Cz is placed. The distance between

nasion and inion is measured and divided into 10 %, 20%, 20%, 20% , 20%, 10% of that

distance [26]. The electrodes are placed at those points.

Figure 2.5: Illustration of the 10-20 system. Fp: frontal polar, F: frontal, C: central,
P: parietal, O: occipital
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2.5.2 Properties of EEG

EEG measures electrical potential at the surface of the scalp and, therefore, suffers

from inter-trial variability and spacial mixing: different electrical sources across dis-

tances of over 5 cm are superimposed onto the scalp [51]. The localization of the neu-

ronal generations of the EEG signal is an inverse problem. There have been proposed

several methods for solving the inverse problem, i.e. minimum norm (MN) [24, 54],

weighted minimum norm (WMN)[54] and low resolution brain electromagnetic tomog-

raphy (LORETA)[53, 54], however, because of the nature of the problem, the solution

is not unique, and therefore, there is no perfect solution [54]. Hence, EEG has poor

spacial resolution.

EEG has a great temporal resolution, with sampling rates between 250 Hz and 1

kHz. The postsynaptic potential has a duration of 10 ms to 100 ms, which makes

EEG the non-invasive imaging method of choice for analysis requiring good temporal

resolution.

EEG is prone to noise due to movement, however there have been done successful

recordings using EEG during movement [12]. Additional sources of artifacts can be

attributed to movement of eyeballs and eyelids, tension of the muscles in the head

and the neck, and electrical activity generated by the heart [30]. To minimize these

artifacts, one option is to optimize the recording by choosing the right task, environment

and electrode location [14]. Signal that is heavily affected by artifact can be removed

altogether from the study, however this may cause bias in the selection of observations.

Temporal filters can remove artifacts given that the noise is outside the frequency range

of interest. Spatial filters can be can also be used to increase the signal-to-noise ratio

[46]. Ocular artifacts can be measured and removed after the recording [14]. Artifacts

can be removed by using independent component analysis (ICA) [30]. ICA attempts to

identify the source signals that have been mixed to obtain the recorded signal. It works

under the assumptions that the original source signals are independent, were linearly

mixed, and that the number source signals is equal or less than the number of recorded

signals [30].
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Equipment is usually small and portable. Electrode caps are fairly comfortable,

however, some devices require each electrode on the cap to be filled with gel, in prepa-

ration of the experiment . Hence, some EEG devices have a lengthy setup time which

makes it less attractive for everyday use.

2.5.3 Analysis of EEG

EEG signal are generally analyzed in the time domain and in the frequency domain.

In time domain EEG signals are often analyzed by their event related potential (ERP).

In the frequency domain different oscillations are inspected.

Event related potential is a measure of the electrical response of the cortex to a

cognitive, sensory or motor event induced by a stimulus. It is a result of a large number

of action potentials which are linked to the event [67]. Event related potentials have

a small amplitude (1 − 30 µV), however, unlike other aspects of the EEG, they are

time-locked to the event and are assumed to be constant across samples [14]. Through

the process of averaging the signal to noise ratio of the ERP is improved.

ERPs can be evaluated via three metrics: amplitude, latency and scalp distribution

[67]. The amplitude measures the extent of neural activity in response to the event.

The latency quantifies the timing of the activation and is the time interval between the

stimulus onset and the time point at which the peak occurs. The scalp distribution is

the pattern of the voltage gradient of a component over the scalp at any instant of time

[67].

ERP components can be named after their polarity (Figure 2.6), positive or neg-

ative going, and their timing [77]. C1 is the first component following the stimulus

and has a (50 − 70) ms latency. This component is attributed to sensory processing

and can be either positive or negative. P1 is a positive component with a latency of

(90− 100) ms, which is associated with sensory and perceptual processing [77, 65]. N1

is a negative component with a latency of (170 − 200) ms, which has been attributed

to perceptual processing, expert recognition, and visual discrimination [77, 74]. The

negative component N2 has a latency of (225 − 250) ms and has been attributed to
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Figure 2.6: A model of an event related potential [77].

object recognition and categorization [77, 15, 66]. One of the most studied component

is the P3 component (P300), with a latency of about 300 ms, it has been attributed

to many processes: stimulus evaluation time, categorization, context (working mem-

ory) updating, cognitive load, maintenance in visual, working memory, and response

preparation [77, 62, 57, 71].

Analysis of EEG in the frequency domain, relates to studying brain rhythms. In

healthy adults, different brain rhythms are associated with different states, such as

wakefulness and sleep [67]. These brain rhythms are associated with five frequency

bands: alpha (α), beta (β), theta (θ), delta (δ), and gamma (γ) [67].

Delta waves have the lowest frequency band, (0.5 − 4) Hz and are primarily as-

sociated with sleep and are sometimes present when awake. Artifacts due to muscle

movement from the jaw and neck lie in the same frequency band, however, these usually

have larger amplitudes [67]. Theta waves lie in the frequency range of (4−8) Hz. These

are associated with a state that is between consciousness and sleep, creative inspiration

and deep meditation. The waves are present in childhood and infancy and are often

use in developmental studies.
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Figure 2.7: The four most prominent frequency bands from highest to lowest [67].

The alpha wave, with a range of (8− 13) Hz, is found in the posterior region of the

brain and prominently in the occipital region. This wave is present in human adults

during relaxation and relative mental inactivity [50]. Alpha waves can be produced by

subjects while they have their eyes closed which is believed to be a state of scanning

for images or awaiting the next image [67]. These are reduced when eyes are opened or

by some mental concentration.

Beta waves lie in the range (13 − 30) Hz and is found mostly in the frontal and

central regions of the brain. These waves are associated with active thinking, active

attention, focus on the outside world, or solving concrete problems [67]. Subjects can

experienced an increase in the frequency of beta rhythm during high stress or panic.

Frequencies that are above 30 Hz are part of the gamma range. These waves have a

small amplitude and are not often encountered. They are sometimes used for detection

of certain brain diseases. Increased frequencies of the EEG signal and increased cerebral

blood flow are located in the frontocentral area of the brain [67].

The rhythms described are not easily detectable from raw EEG data. Signal pro-

cessing tools must be used to extract the waveforms from the recorded EEG signal.
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2.6 Conclusion

This chapter introduced the basics of functional brain imaging as well as the two

functional imaging techniques used in the study presented in this thesis. Near infrared

spectroscopy indirectly measures neuronal activity by emitting light and measuring the

intensity of the light at the detector. The changes in concentrations of oxygenated and

deoxygenated hemoglobin are obtained by using the modified Beer-Lambert law. NIRS

is advantageous for applications requiring good spatial resolution. Electroencephalog-

raphy measures neuronal activity by recording the potential difference at several points

on the surface of the brain. This technique has a very good temporal resolution.
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Chapter 3

Machine Learning

3.1 Introduction

The first part of this chapter discusses the basics of machine learning. Machine

learning constructs algorithms that are used to learn patterns from data and make

predictions on future data, such as assignment to a particular class. Classification

is divided into several categories: supervised and unsupervised, linear or nonlinear,

generative or discriminant, static or dynamic and stable or unstable. Data that is

non-linearly separable can be mapped into a linear feature space using kernel methods.

The second part of this chapter introduces various feature selection methods. Sub-

space projection uses principal component analysis (PCA) to map the data into a lower

dimensional feature space. Alternatively the wrapper approach performs the classifica-

tion and uses the result to eliminate features. The filtering method assigns each feature

an index based on the usefulness of that feature. An example of a filtering method,

Fisher discriminant ratio, is discussed in more detail.

The final part of this chapter discusses some classification methods such as regres-

sion, linear discriminant analysis, ridge regression, support vector machine and least-

square support vector machine. The approach to solving the classification problem

differs between the type of problem that has a greater number of samples than of fea-

tures and the type of problem that has a greater number of features than of samples.

For each type of problem the optimal solutions of the linear methods described are

equivalent.
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3.2 The Basics

3.2.1 The Basic Structure of Classification

Classification uses machine learning methods to group data into specific classes [37].

It has two phases: the learning phase and the test phase. In the learning phase the

algorithm uses given data to find the discriminant function which will successfully group

the test data in their appropriate classes. The data set used for the learning phase is

called the training data. In the testing phase, a new data set, different from the one

used for training, is used to test the performance of the discriminant function. Data

should be chosen randomly for the training and testing set. The process is repeated

several times for cross validation.

3.2.2 Types of Learning Methods

There are two types of learning, supervised and unsupervised [37]. In supervised

learning the labels of the data in the training set are known, and used to find the

discriminant function. In unsupervised learning, the labels of the data in the training

set are unknown. Finding the labels of the data in the training set is part of the training

phase.

Supervised learning methods can be categorized as linear and nonlinear [37].

Linear learning methods have been preferred in many studies as they take less pro-

cessing time and are more effective for high dimensional feature vector space. Linear

learning methods are also an essential part in some feature reduction methods. Nonlin-

ear learning methods offer more flexibility in finding the decision boundary, however,

they do run the risk of over-fitting. Over-fitting can occur when there are vectors that

are not representative of the class in the training data set.

Figure 3.1 is an example of a possibly overfitted training data. The points outside of

the decision boundary could be outliers due to noise in the data or could just be faulty

measurements. However, it is possible that they are truly representative of the class

that they belong to. Figure 3.2 shows an example in which the two classes are only
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Figure 3.1: Example of possibly over-fitted nonlinear classification.

separable using a nonlinear kernel. In this example the two classes have a clear structure

and symmetry. Because the structure is known the problem can be easily made linear

by adding a new feature as seen in (3.1) (see Figure 3.3). However, most cases are not

as simple as the example presented, and a method which make the problem linear is

not evident.

X3 = X1× |X1|+X2× |X2| (3.1)

In order to determine which type of learning is best suited for the type of data used

in the study, a testing data set is used to test the accuracy of the classification. The

testing or validation set is data set aside from the training set, which has known labels

for all vectors. This data set is not used for training the classification algorithms, but

is used to pick the best algorithm.

Classification methods can be categorized as generative or discriminative. Genera-

tive methods classify a vector by calculating the likelihood of it belonging to each class.

The class with the highest probability of containing the vector is chosen [42]. Discrim-

inative methods, on the other hand, learn an algorithm for discriminating between the

classes [29].

Static classifiers do not include order, temporal or spatial, of the features in the

vector during the classification. Dynamic classifiers, like hidden Markov model, take
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Figure 3.2: A two spiral classification example which can be done with LS-SVM using
an RBF kernel.

Figure 3.3: The two spiral classification example made linear by adding another feature.
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the order of the features into account and can catch temporal or spatial dynamics [42].

Classification algorithms can also be divided into stable and unstable algorithms.

The performance of stable classifiers is not affected by small changes in the training

data. Due to their low complexity, these methods are less likely to overfit data. Un-

stable methods are affected by small variations in the training data, due to their high

complexity [42].

3.2.3 Kernel methods

Kernel methods map the training data into a new feature space which is then used

for classification [69]. This allows classification of data in high dimensional feature

spaces with few computations [27]. Classification in the new feature space is linear and

thus a nonlinear problem can be made linear with the use of a kernel [27].

The training vectors can be put in an M ×N matrix X, where M is the number of

features and N is the number of training vectors. Linear classification attempts to find

the decision vector w and the threshold b such that:

XTw + b · e = y, (3.2)

where y is the vector that contains the labels of each training vector. All Kernel methods

satisfy the learning subspace property (LSP), which states that the optimal solution w

is in the subspace of the training vectors space.

w =

N∑
n=1

anxn = Xa (3.3)

Using LSP (3.2) becomes:

XTw = XTXa = Ka (3.4)

In (3.4) K is the linear kernel function. A linear classification model can be written

in Kernel form. The decision function will change as follows:



22

f(x) = wTx+ b = xTw + b =

N∑
n=1

xTxnan + b =

N∑
n=1

K(x, xn)an + b (3.5)

The kernel function can also be nonlinear. Most commonly used functions are

the polynomial kernel function (3.6) and the Gaussian kernel function (Radial Basis

function) (3.7) [37]. In (3.6) p is the order of the polynomial, and σ is a kernel parameter

[72].

K(x, y) =
(

1 +
x · y
σ2

)p
(3.6)

K(x, y) = exp

{
−||x− y||

2

2σ2

}
(3.7)

When a nonlinear kernel is used, the data is mapped to an intrinsic vector space

Φ, such that K = ΦTΦ . The vectors in the intrinsic space have a greater length than

those in the original space, and thus more features are obtained [37, 72]. When the

feature space is already large a linear kernel is preferred [72].

3.3 Feature Reduction

3.3.1 Subspace Projection and Feature Selection

Feature reduction is an important part in improving the accuracy of a classifier by

minimizing the number of features and removing features that are noisy or redundant.

Furthermore, reducing the number of features, reduces the size of w and leads to fewer

computations.

The two main techniques for dimensionality reduction of features are subspace pro-

jection and feature selection. Reducing the dimension of the features can reduce the

computational cost and the risk of over-fitting in cases in which the training set has

a vector dimension (M) that is much larger than the number of samples (N) [37].

Subspace projection uses PCA to identify the optimal subspace. It reconstructs the
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training data using the principal components with the highest eigenvalues. Feature

selection uses either the filtering approach, in which a score is assigned to each feature,

or the wrapper approach, which uses a linear classifier and selects features based on

their roles in the classification result [23, 35]. The wrapper approach uses the values of

the decision vector for each feature as scores. Features with lower scores are considered

less effective. Filtering methods include the signed SNR score [22], Fisher discriminant

ratio (FDR) [55], Symmetric divergence [44] and two sample t-test.

3.3.2 Fisher Discriminant Ratio

Fisher discriminant ratio compares distance of centroids for each class along each

feature with the sum of the variances of each class (3.8) [55].

FDR(j) =
(µ+j − µ

−
j )2

(σ+j )2 + (σ−j )2
(3.8)

In (3.8) µ+j and σ+j are the mean and standard deviation respectively of feature j

across all training samples belonging to class +. FDR scores each feature based on how

well it separates the two classes. Removing features based on this scoring maximizes

inter-class separability. This method works very well for removing features that are not

characteristic to the classes.

3.3.3 K-means

K-means is an unsupervised machine learning method which groups data into a

selected number of classes. The objective is to minimize the variation within a class,

by minimizing the euclidean distance from the centroid of the class to its members. In

the initial phase the centroids of the classes are chosen randomly [37]. For every vector

xt the distance to the centroid of each cluster is computed and compared. The vector

is assumed to belong to the class k with the smallest distance:

k = arg min
j:j=1,...,K

||xt − µj ||22, (3.9)
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where µj is the centroid of class j. After a new vector is added to a class the centroid

of that class needs to be updated:

µk =
1

Nk

∑
xtinCk

xt, (3.10)

where Nk is the number of samples in cluster Ck. The process of matching a vector

to a class and updating the centroid of that class is repeated until the equilibrium is

found and (3.11) is minimized [28]:

min
K∑
k=1

∑
xtinCk

||xt − µk||22 (3.11)

K-means can be applied along the features to group features which have a similar

behavior. Features, which belong to the same group are similar and therefore, it is

redundant to use both for classification. A features from a class provides little new

information from another feature from the same class. Using K-means as a feature

selection tool minimizes inter-class similarity between features and thus eliminates re-

dundancy.

FDR and K-means can be combined to reduce features, such that both inter-class

separability is maximized and intra-class similarity is minimized. As it will be discussed

in chapters 5 and 6, FDR is applied first to all features and the features with the lowest

scores are dropped. K-means is used to group the remaining features into k classes,

for which k is the desired final number of features. The feature with the highest FDR

score from each class is selected for classification.

3.4 Classification Methods

3.4.1 Methods for the overdetermined case

There are several techniques used to solve the classification problem. In the overde-

temined case, N ≥ M , there are more equations than unknowns which means that

the solution either exists and is unique or does not exist but an approximation can be

found.
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Linear regression attempts to find the decision vector w and the threshold b that

minimize the least square error [4].

ELSE(w, b) = ||ε||2 = ||(XTw + b · e− y)||2 (3.12)

Fisher’s discriminant analysis (FDA) also known as linear discriminant analysis

(LDA) attempts to maximize the signal to noise ratio. The signal is considered the

distance between the centroids of the two classes and the noise represents the variance

between the cluster. The optimal solutions for linear regression and FDA are equivalent

[37].

3.4.2 Methods for the underdetermined case

In the underdetermined, case M ≥ N , in which there are more unknowns than

equations, an additional condition is needed to ensure the uniqueness of the solution.

The objective of linear ridge regression is to minimize both the error and the decision

vector [37].

min
w,b

E(w, b) = min
w,b

{
‖ε‖2 + ρ ‖w‖2

}
(3.13)

Similarly, FDA has been modified for the underdetermined case. The new model

is called perturbation discriminant analysis and its optimal solution is equivalent to

that of linear ridge regression [37]. Support vector machine(SVM) has the objective of

minimizing the decision vector as shown in equations (3.14) and (3.15).

min ‖w‖2 (3.14)

subject to yi(w
Txi + b) ≤ 1 (3.15)

SVM is a supervised binary classification method, that attempts to find the hyper-

plane that best separates the data into the two classes [16]. SVM only uses the samples

that are closest to the separating hyperplane to train the algorithm. These are called

support vectors [16].
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3.4.3 Least Square Support Vector Machine

Least square support vector machine (LS-SVM) is an extension of the support vec-

tor machine model. Its optimal solution is equivalent to that of kernel ridge regression

(KRR). When a linear kernel is used with LS-SVM, then the optimal solution is equiva-

lent with the linear ridge regression [37]. In LS-SVM all vectors are considered support

vectors and used in classification. The model is as follows:

min
w,e

1

2
||w||2 +

1

2
c

N∑
k=1

e2k (3.16)

subject to yk(w
Tx+ b) = 1− ek k = 1, .., N (3.17)

The constraints can be derived from the original requirements by adding the possibil-

ity of an error e. In order to solve the problem the Lagrangian is taken and maximized.

To find the maximum of the Lagrangian the partial derivatives are taken and set to

zero [72].

L(w, b, e, α) =
1

2
wTw + c

1

2

N∑
k=1

e2k −
N∑
k=1

αk{yk[wTxk + b]− 1 + ek} (3.18)

dL
dw

= 0⇒ w =

N∑
k=1

αkykxk, (3.19)

dL
db

= 0⇒
N∑
k=1

αkyk = 0 (3.20)

dL
de

= 0⇒ αk = cek, k = 1, ..., N (3.21)

dL
dα

= 0⇒ yk[w
Txk + b]− 1 + ek = 0, k = 1, ..., N. (3.22)

This creates a set of 2N+2 equations with the same number of unknowns, which

has a unique solution. Least squares-support vector machine (LS-SVM) has many

advantages over traditional techniques [38]: it requires few training points with large

dimensions, also called the small n large p problem; it is fast at classification once the

parameters are set after training; it achieves good classification on new data.
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3.5 Performance Measure

The most widely used measure to assess the performance of a classification method

is accuracy as described in (3.23).

accuracy =
number of vectors which are classified correctly

total number of classified vectors
(3.23)

Accuracy gives a good measure of how many vectors are classified correctly, however,

it fails to account for bias towards classifying one class over the other. Accuracy of the

classification of each individual class can offer more information of the performance.

Specificity and sensitivity also used to further asses the performance of the classification

of each class.

Sensitivity =
# of true positives

# of true positives + # of false negatives
(3.24)

Specificity =
# of true negatives

# of true negatives + # of false positives
(3.25)

True positives are the vectors that have been correctly classified as belonging to the

positive class. False negatives are the vectors that have been falsely classified to the

negative class but in fact belong to the positive class. True negatives are vectors which

are correctly classified as belonging to the negative class. False positives are vectors

which belong to the negative class and have been classified incorrectly.

accuracy =
N+sensitivity +N−specificity

N
(3.26)

Accuracy can be obtained from specificity and sensitivity as seen in (3.26). N+ is

the total number of vectors that belong to the positive class, N− is the total number of

vectors that belong to the negative class, and N is the total number of vectors classified.

N is the sum of N+ and N−.

Ideally specificity will be equal to sensitivity which will make them equal to the

accuracy. In this case there isn’t any bias towards one class or another. An accuracy is
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considered significant, if it is above 75% and has both sensitivity and specificity above

50%.

3.6 Conclusion

This chapter first introduced some basic principles of machine learning and the types

of classification methods. Linear classification methods are simpler and are less likely to

overfit data. However, nonlinear methods are able to learn more complicated patterns

in data.

Feature selection is an important part of classification because it discards redundant

or noisy data and reduces the computational complexity. There are several approaches

such as subspace projection, filtering and wrapper method for feature reduction. Fisher

discriminant ratio was described in more detail in this chapter because it is a feature

selection method used in this study. K-means is a nonsupervised classification method,

not traditionally used in feature selection, however, it was included in the feature se-

lection methods because it was used for this purpose in this study.

Several linear classification methods are presented in this chapter. A distinction

is made between the type of problems that have a greater number of features than of

samples and those that have a greater number of samples than features. Most brain

imaging studies are of the former type and the appropriate methods must be used.

Least square- support vector machine algorithm was chosen in this study because it

offers fast classification and has a good performance on data that has few samples and

many features.



29

Chapter 4

Previous Work

4.1 Introduction

This chapter will discuss previous research in decoding brain states. It is mainly

focused on the work that is intended to be applied to brain computer interface. In

the Near Infrared spectroscopy field this is a new topic. Research has been focused

on finding a feature space that improves accuracy and reduces latency. EEG has long

been recognized for its potential suitability for a brain computer interface due to its high

temporal resolution. In addition to the traditional left and right motor classification,

recent research has been extended to multi-class classification [58] as well.

4.2 Common Paradigms

There are two strategies for designing a brain computer interface: the direct ap-

proach [9, 10, 49, 70] and the indirect approach [2, 32]. The direct approach to designing

a BCI uses motor tasks or other sensory actions, which are then classified to represent

the same movement or actions. Most commonly researched classification problems are

finger tapping and rest [10], right and left finger tapping [70], right and left motor

imagery [49, 70], right and left wrist movement [49], and target selection using motor

imagery [9]. The indirect approach uses mental tasks, such as mental arithmetic [2, 32]

and mental counting [32]. The mental tasks can be combined with motor tasks in order

to add more movement directions, that the BCI can decode, as is done in [32]. The

combination is advantageous because mental tasks will cause a hemodynamic response

in the prefrontal cortex, while motor tasks will cause a response in the motor cortex

[32]. Having activations in different areas of the brain increases separability of the two
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classes. A stronger hemodynamic response of a task can also improve its separabil-

ity from another class. Therefore, there are classification problems that are naturally

easier. It has been shown that actual movement has a higher hemodynamic response

than motor imagery and therefore will have higher classification results when differen-

tiating between left and right movement [70]. The classification problem of right and

left movement has been shown to have good separability due to the fact that the left

and right movement cause a hemodynamic response in the right and left hemisphere,

respectively [70].

Many brain imaging classification studies have focused on a variety of tasks such

as motor [41], motor imagery [39, 58, 75, 60], or on classification of various mental

tasks [17]. In addition to the traditional binary left and right motor or motor imagery

classification, the decoding of brain states for other types of imagery movement such

as tongue [58], both feet[58, 33] and both hands [33] has been attempted. Multi-class

motor task classification has in general a poorer performance than a binary classification

[33]. Multi-class classification accuracy can be improved by using a larger time segment

of data for classification [17].

4.3 Machine Learning using NIRS Data

In recent years near infrared spectroscopy has been used in research for brain com-

puter interface. It is a promising brain imaging method because it is non-invasive and

offers good spatial resolution, portability, and affordability [9, 70]. NIRS also has its

limitations. It has a poor temporal resolution due to the latency of the hemodynamic

[70] which makes its use for real-time applications challenging. The signal to noise ratio

can be affected by the hair on the head, as well as movement of the optodes [70].

Feature extraction and feature selection play an important role in the classifica-

tion. Commonly used features are changes in oxygenated hemoglobin and deoxygenated

hemoglobin at every time point in a window [10, 70], and average over a time window

[49, 2]. Features can be extracted by using linear regression to fit a line through all the

data points (representing oxygenated hemoglobin) in a time window [49]. The length
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and the start time of the window can affect the classification accuracy and should be

carefully selected [49]. Additional features can be first (4.1) and second order gradient

(4.2) [10]. In (4.1) and (4.2) x(t) is the signal at time point t.

∇x(t) = x(t)− x(t− 1) (4.1)

∇2x(t) = x(t+ 1) + x(t− 1)− 2x(t) (4.2)

Feature selection is often done using parameters that quantify the usefulness of

an individual feature [2, 10]. Most commonly used parameters are contrast-to-noise-

ratio(CNR) [10], which is the square root of FDR, and mutual information index [2].

Thus it can be determined whether the signal should be obtained from oxygenated

hemoglobin only [49] or both oxygenated hemoglobin and deoxygenated hemoglobin

[2], a single channel or from multiple channels [10].

The classification method can affect the performance. A linear, discriminative

method is most commonly used because it is simple and does not overfit training data

[9, 10, 49, 70]. Generative methods, such as hidden Markov model [70] and naive Bayes

Parzen window [2] have also been used for classification.

Table 4.1 shows some recent results. A direct comparison of accuracies is informative

only within the same study, because many parameters including task, data collection,

and feature space are different across studies. Using the average of data points over

a time window, generally reduces noise but also throws out some information. This

feature space has been shown to produce results that are less accurate than the feature

space using all data points in the time window [49]. A feature space, which includes both

oxygenated and deoxygenated hemoglobin, shows a slight improvement in accuracy, but

this varies across individuals [10]. Including both is especially beneficial when the time

window has a short length [10]. The first and second order gradient feature spaces

do not improve classification accuracy [10]. In general adding linear combinations of

features to a feature space does not change the accuracy, when using a linear classifier.
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Table 4.1: Comparison of Previous Classification Methods using NIRS.
Source Method Feature Space Task Average

Accuracy %

[10] linear SVM 2 s time segment
of Oxy-Hb

finger tap 83.5

[10] linear SVM 2 s time segment
of Oxy-Hb and
deoxy-Hb

finger tap 83.58

[10] linear SVM 2 s time segment
multi channel

finger tap 85.5

[70] linear SVM 10 s segment of 20
channels

left vs. right fin-
ger tap

87.5

[70] linear SVM 10 s segment of 20
channels

left vs. right mo-
tor imagery

73.1

[49] LDA 5 s averaged seg-
ment

right and left
wrist motor
imagery

77.56

[49] LDA 5 s linear regres-
sion fitted line

right and left
wrist motor
imagery

87.28

[49] LDA 10 s averaged seg-
ment

right and left
wrist motor
imagery

73.35

[49] LDA 10 s linear regres-
sion fitted line

right and left
wrist motor
imagery

83.0

[2] NBPW average of the
12 s trial over 2
channels

easy vs hard men-
tal arithmetic

62.0

[2] NBPW average of the
12 s trial over 2
channels

easy vs medium
mental arithmetic

64.2

[2] NBPW average of the
12 s trial over 4
channels

easy vs hard men-
tal arithmetic

69.4

[2] NBPW average of the
12 s trial over 4
channels

easy vs medium
mental arithmetic

72.2

[2] NBPW average of the
12 s trial over 5
channels

easy vs hard men-
tal arithmetic

69.8

[2] NBPW average of the
12 s trial over 5
channels

easy vs medium
mental arithmetic

72.9
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4.4 Machine Learning using EEG Data

The performance of the classification is greatly affected by the features used. Elec-

tron configuration and the duration of the trials determine the available information.

The choice of electrode configuration is made more difficult by EEG’s poor spatial res-

olution. The location of the neuronal activity cannot be uniquely determined by the

EEG recording [61]. One approach is to use a small number of electrodes locally, on the

surface of the scalp near the location of the expected neuronal activity [17, 58, 63, 75].

Another frequently used configuration has electrodes evenly spread over the surface

of the scalp [33, 41, 63]. However, including 64 channels, evenly placed on the entire

scalp, in a configuration can add redundancy. Furthermore, studies have shown that it

is sufficient to include between 16 and 20 channels in order to maximize performance

with the electrodes partly concentrated over the area of expected neural activity and

partly spread over the rest of the surface of the scalp [39].

From the recorded data the feature space can be obtained from the time domain

[17, 33], frequency domain [41, 58, 63] or time-frequency domain [75]. Motor im-

agery causes movement related potential (MRP) as well as event-related desyncroniza-

tion/synchronization (ERD/ERS) signals [41]. MRP is an event-related potential that

can be observed up to 500 ms before movement onset [41]. Decreases and increases of

power in certain frequency bands can be observed during the performance of the tasks.

This can be caused by an increase or decrease in synchrony of the underlying neuronal

populations [59]. The decreases in power are called event-related desynchronization

(ERD), and the increase in power is called event-related synchronization (ERS) [59].

The most common method to select features from an EEG signal is the common

spatial patterns (CSP) technique [5, 36, 41, 43]. This method creates spatial filters

which will maximize the variance of one condition and minimize the variance of the

other condition [5]. CSP technique divides the training data set into two sets X1

and X2, where Xi is the recorded signal for condition i. The variance is calculated

Σi = XT
i Xi. The spacial filters w are calculated by finding the extremes in (4.3) [42].
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J(w) =
wTΣ1w

wTΣ2w
(4.3)

CSP filters work well in differentiating mental states that evoke ERD/ERS effects,

because the variance of band-passed filtered signals is equal to the power of the respec-

tive frequency band [36]. However, CSP is sensitive to noise and prone to overfitting

[43]. An alternative method of feature selection to CSP is discriminate spatial patterns

(DSP) [41]. This method has the advantage that it can work for more than two con-

ditions. DSP creates spatial filters that will maximize the projected class means and

minimize the classes variance [41].

A large variety of classification methods have been used on EEG signal to detect

brain states. Linear methods, such as SVM and LDA, are often used in binary clas-

sification problems [41, 63]. However, these binary classification methods can be used

pairwise to detect more than two states [17, 33]. Deep learning methods, like neural

networks, have been used in [17], but have not been found to be an improvement over

simpler methods, when using the same task and features (see Table 4.2).

A summary of some recent research projects is shown in Table 4.2. It can be in-

ferred that on average a setup including 10 – 20 electrodes is needed to obtain a good

separability between brain states. Configuration using less electrodes are also possible,

however, the duration of the recorded signal may need to be increased. Features ex-

tracted from both the time and frequency domain can lead to a better classification

accuracy [41]. From [33], it can be noted that the separability of motor imagery of

one limb and two limbs (two hands, two feet) is greater than the separability of single-

single limb motor imagery or double-double limb motor imagery. This could be because

the classification method used the power of the frequency band, which increases with

intensity of activity.
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Table 4.2: Comparison of Previous Classification Methods us-

ing EEG. ERD: event-related desynchronization; CSP: com-

mon spatial pattern; DSP: discriminative spatial pattern;

MRP: movement related potential. Setup 1: C1-C4, Cz,

CP1-CP4, CPz; Setup 2:C1-C4, Cz, FC1-FC4, FCz; Setup

3: F1-F4, FC1-FC4, C1-C4; Setup 4: all electrodes in setup

1 to 3 and electrode at Fz. Setup 5: C3, C4, P4, O1, O2.

Source Method Feature Space Task Average

Accuracy %

[58] supervised

K-means using

Mahalanobis

distance (class

covariance)

changes in band

power of mu fre-

quencies in C3,

Cz, and C4

motor imagery of

tongue, left hand,

right hand, and

feet

56.32

[75] weighted mean

of correlations

ERD on each

time-frequency

grid point (10

channels setup 1.)

left and right mo-

tor imagery

78

[75] weighted mean

of correlations

ERD on each

time-frequency

grid point (10

channels setup 2)

left and right mo-

tor imagery

80

[75] weighted mean

of correlations

ERD on each

time-frequency

grid point (12

channels setup 3)

left and right mo-

tor imagery

79



36

[75] weighted mean

of correlations

ERD on each

time-frequency

grid point (20

channels setup 4)

left and right mo-

tor imagery

80

[63] LDA ERD of the µ and

β rhythms (6 elec-

trodes)

left vs. right mo-

tor imagery

86.8

[63] LDA ERD of the µ

and β rhythms

(64 electrodes)

left vs. right mo-

tor imagery

91.7

[41] linear SVM DSP of MRP (64

electrodes)

left and right fin-

ger tap

79.93

[41] linear SVM CSP of ERD (64

electrodes)

left and right fin-

ger tap

79.5

[41] linear SVM DSP of MRP and

CSP of ERD (64

electrodes)

left and right fin-

ger tap

86.26

[17] SVM,

RBF kernel

AR õn 0.5 s seg-

ments, setup 5

rest, math, l̃etter,

rotate ĩmagery,

count

52.3

[17] Neural Net-

works

AR õn 0.5 s seg-

ments, setup 5

rest, math, l̃etter,

rotate ĩmagery,

count

52.8

[17] LDA AR õn 0.5 s seg-

ments, setup 5

rest, math, l̃etter,

rotate ĩmagery,

count

44.8

[17] SVM,

RBF kernel

AR õn 20 s seg-

ments, setup 5

rest, math, l̃etter,

rotate ĩmagery,

count

72
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[17] Neural Net-

works

AR õn 20 s seg-

ments, setup 5

rest, math, l̃etter,

rotate ĩmagery,

count

69.4

[17] LDA AR õn 20 s seg-

ments, setup 5

rest, math, l̃etter,

rotate ĩmagery,

count

66

[33] LDA log-variance of

spatially filtered

signal, 64 channel

left\right hand

imagery

61.24

[33] LDA log-variance of

spatially filtered

signal, 64 channel

left\both hands

imagery

77.19

[33] LDA log-variance of

spatially filtered

signal, 64 channel

right\both hands

imagery

77.60

[33] LDA log-variance of

spatially filtered

signal, 64 channel

left hand\both

feet imagery

80.93

[33] LDA log-variance of

spatially filtered

signal, 64 channel

right hand\both

feet imagery

81.96

[33] LDA log-variance of

spatially filtered

signal, 64 channel

both hands\both

feet imagery

67.01

[33] LDA log-variance of

spatially filtered

signal, 64 channel

right\left

hand\both hands

imagery

57.38
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[33] LDA log-variance of

spatially filtered

signal, 64 channel

right\left

hand\both feet

imagery

61.05

[33] LDA log-variance of

spatially filtered

signal, 64 channel

right\left

hand\both

hands\both

feet imagery

51.18

[33] LDA log-variance of

spatially filtered

signal, 64 channel

right\left

hand\both hands

imagery\rest

58.30

[33] LDA log-variance of

spatially filtered

signal, 64 channel

right\left

hand\both feet

imagery\rest

58.11

4.5 Conclusion

The problem of decoding brain states for the use of BCI has been researched in many

studies. Performance can be improved by making the problem easier by exploiting the

strengths of the recording system. NIRS has good spatial resolution, which makes it

suitable in decoding brain states that are characterized by activations in different brain

areas, such as right vs left hand movement. EEG has great temporal resolution and

can detect high frequencies that are indicative of more strenuous tasks. Hence, EEG

works well in detecting brain states that are characterized by different intensities.

Linear classifiers are the most common methods used in detecting brain states and

have been shown to work well in most classification problems. Brain imaging produces

many features with relatively few samples, therefore feature selection is a crucial part

of classification.
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Chapter 5

Decoding Brain States using Near Infrared Spectroscopy

5.1 Introduction

Near Infrared spectroscopy is a noninvasive brain imaging method that can be

used to decode brain states. NIRS is an emerging technology for safe optical imaging,

used to detect changes in concentration of oxygenated hemoglobin and deoxygenated

hemoglobin [78, 73]. It has certain benefits when compared to other imaging methods

such as EEG or MRI, because it is less prone to artifacts due to movement, it has a

short preparation time, can be portable and relatively cheap [70]. The technology has

a few limitations, including low temporal resolution compared to EEG and a drift due

to motion of the optodes.

In this study, the decoding of brain states during motor and motor imagery actions

was attempted. Data was recorded using NIRS and preprocessed to remove noise, before

it was used in the classification. All processing algorithms used, can be implemented in a

real-time setting as would be preferred for a brain computer interface. Time windows of

different sizes were chosen as features for classification and performance was compared.

To improve processing time even further feature reduction algorithms were applied.

Two algorithms, Fisher discriminant ration and combined Fisher discriminant ration

and K-means, were used and compared.

5.2 Instrumentation

ETG - 4000 Hitachi system ( Figure 5.1) is an optical tomography system approved

by the Food and Drug Administration(FDA) for medical uses. Probe configurations of

different sizes can be combined to measure the hemodynamic activity on any area of
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the scalp. The laser diodes emit light at two wavelength, 695 nm and 830 nm, with a

data sampling rate of 10 Hz.

Figure 5.1: Hitachi ETG - 4000

Two 4x4 probe grids were placed on the left and right hemisphere above the motor

cortex as presented in Figure 5.2. The 4x4 probe holder alternates between source and

detector on each row and column in order to maximize the number of channels. The

distance between each source and detector is 3 cm. In order to ensure that the sources

and detectors do not move during the experiment, the holder is attached to a cap. The

optodes are spring-loaded, which ensures their contact with the scalp, even if the cap

is loosely fitted. Due to the nature of the optodes, there is no additional preparation

needed other than placing the cap on the head to start the recording.

5.3 Paradigm

Two tasks, which emulate motor activity and imagery motor activity, were created

using a block design. The motor activity task consisted of blocks of finger tapping

experiments (represented by a mouse click using the index finger), following a stimulus.

For the imagery motor task the subject was instructed to only think about the action
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Figure 5.2: Probe configuration on head. (left) 4x4 probe holder. (right) placement on
head showing channels.

of clicking.

Figure 5.3: Visualization of paradigm. Sequence consisted of 6 trials of each condition:
finger tapping and imagery finger tapping. The light blue block is the finger tapping
condition, the rose block is the imagery tapping condition, and the white block is the
rest period.

The experiment included twelve blocks alternating between actual finger tapping

and imagery finger tapping, as presented in Figure 5.3. Each block consisted of 30

trials triggered by a stimulus presented on a screen. Between blocks there was a 20

second rest period. The task was designed using E-Prime. Instructions were presented

at the beginning of each block, indicating which type of task, actual or imagery, was
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following. Within the block, each stimulus was presented on the screen for 0.3 s followed

by an inter-stimulus interval of 0.2s. Having 30 trials in a block resulted in a block

duration of 15 seconds.

The task consisted of six blocks for each of the actual and imagery experiments,

therefore, including all six subjects, a total of 72 blocks of data were collected, half of

which correspond to actual finger taping experiment.

5.4 Data Collection

Six right-handed subjects with no known history of mental disorders or injuries

were recruited for this study. All subjects signed a consent form approved by the

Rutgers Institutional Review Board. Using an ETG-4000 Hitachi system, NIRS data

was recorded while the subjects performed either actual finger taping or imagery finger

tapping experiments.

The sampling rate was 10 Hz. Data was collected from 24 channels on the left hemi-

sphere of the motor cortex, because it is known that more activation will be observed

in this hemisphere during right hand finger tapping [70].

5.5 Preprocessing

The preparation of the NIRS data for classification was done in three steps: noise

removal, conversion to oxygenated hemoglobin and deoxygenated hemoglobin, and seg-

mentation. The types of artifacts that were targeted during the noise removal step are

the baseline drift and heart beat oscillations.

Baseline Correction

NIRS data often has a drift caused by mechanical factors such as probe deflection

[52]. To correct the baseline drift, a real-time filtering method was applied to the signal,

as seen in (5.1), which aims to remove low frequencies from the signal.

y[n] = x[n]− 1

T

n−T+1∑
k=n

x[k] (5.1)
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In (5.1), a moving average is subtracted from each point. y is the baseline corrected

signal, x is the raw signal, and T is the number of time points chosen for the moving

average. It is important to choose an T in order to not remove changes in the signal

caused hemodynamic concentration change. T needs to be larger or equal to the ex-

pected number of time points for activation. In this study T was chosen to be 150,

which corresponds to 15 seconds and is equal to the duration of the block.

Removal of Noise caused by Heart Beat

Noise caused by heart beat is a very predictable type of artifact. It is generally

an oscillation with a frequency of about 1 Hz. A moving average filter was applied to

reduce the noise effects from heart beat. In (5.2), y is the filtered signal and M is the

window size. The averaging window duration is 1s, which corresponds to a window size

of 10 points.

y[n] =
1

M

n−M+1∑
k=n

x[k] (5.2)

While the preprocessing was applied offline, after the signal was recorded, it does

not depend on future input and could be implemented in a real-time setting. In future

experiments the methods could be used during the recording.

5.6 Data Analysis

The preprocessed data was divided into time segments of equal length used for

classification of the two brain states. A baseline, with a duration of 3 s immediately

preceding the segment, was set and removed. Baseline removal was done by averaging

over the 3 s baseline and subtracting that value from each point in the segment. Time

intervals of 0.2 s, 0.4 s, 0.5 s, 1 s, and 2 s were used for segmentation.

The features chosen for classification were the change in concentration of both oxy-

genated and deoxygenated hemoglobin at each time point in the segment from each

channel. The number of features is dependent on the length of the segment but can be

calculated using (5.3) as:
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Nf = nh · nchannels · fs · Tseg = 480 · Tseg (5.3)

In the feature number calculation, Nf represents the number of features, nh is the

number of types of hemoglobin used, nchannels is the number of channels, fs is the

sampling frequency, and Tseg is the duration of the segment. For durations of 0.2 s, 0.4

s, 0.5 s, 1 s, and 2 s the number of features is 96, 192, 240, 480, and 960 respectively.

The classification was implemented both using only the segments immediately fol-

lowing the stimulus and using the segments throughout the block. In the study, which

uses only the segments at the beginning of the block, the number of features is much

larger than the number of training vectors. Therefore, the number of features were

reduced, using the fisher discriminant ratio (FDR), to improve classification accuracy

and duration.

Out of the total number of segments half are used for training the classification

algorithm and the rest are used for validation. The training vectors were chosen ran-

domly ten times for cross validation. The classification algorithms were implemented

using the LS-SVMlab Toolbox [11].

5.7 Results

5.7.1 Preprocessing

The preproccessing was very effective at eliminating drift and reducing the effect of

heart beat. Figure 5.4 shows an example of drift removal applied on a channel. The

algorithm eliminates the drift but preserves the nature of the signal.

Oscillations in the signal due to the heart beat are removed well and the signal

becomes much smoother after the moving average filter is applied. Figure 5.5 shows a

50 second time span in which it can clearly be seen that the signal to noise ration is

greatly improved.
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Figure 5.4: Result from baseline correction.

Figure 5.5: Result from reducing noise caused by heart beat.
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5.7.2 Classification

It was observed that there are differences in concentrations changes of oxygenated an

deoxygenated hemoglobin between real and imagery finger tapping. Time intervals of

0.2, 0.4, 0.5, 1 and 2 seconds were considered for classification both of the first tap after

the rest, and of consecutive finger tapping. Results are shown in Table 5.1 and Table 5.3

for classification after the rest, and consecutive tapping, respectively. The classification

results show that real finger tapping versus imagery tapping can be classified with an

accuracy of 76.39 % when finger tapping is classified after a rest period. Accuracy was

slightly improved and classification time was significantly improved by reducing the

feature number to 36 features (see table 5.2). Reducing features even more continues

to reduce the classification time with impact on the accuracy. Reducing the number

of features, using the combined FDR and K-means method, did not improve detection.

When the combined method is used to reduce the number of features to 20, classification

accuracy drops to 50% (see Table 5.4).

Table 5.3 shows the classification results when segments are taken from the entire

block. An accuracy of 63.65 % was achieved when consecutive finger tapping classifi-

cation, with a segment duration of 0.5 s, is attempted. Table 5.5 compares the results

in this study with the results of similar studies. While different studies use different

tasks, features and classification methods, the classification accuracies in this study are

similar to the classification accuracies of other studies.

Table 5.1: Classification Results of Tapping Following Rest Period
Interval (s) Accuracy % Sensitivity % Specificity % Decision Time

(s)

0.2 75 63.89 86.11 0.0672

0.4 76.39 69.44 83.33 0.1513

0.5 72.23 66.67 77.78 0.1816

1 66.66 58.33 75 0.3431

2 63.89 58.33 69.44 0.5349
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Table 5.2: Classification Accuracy and Duration, Using a 0.4s Time Segment, Based
on Feature Number.

Number of Features Accuracy % Detection Time (s)

192 76.39 0.1513

100 74.17 0.0773

60 75 0.0497

50 74.86 0.0396

36 77.78 0.0316

20 75 0.0180

18 75.28 0.0177

Table 5.3: Classification Results of Consecutive Tapping
Time Interval (s) Accuracy % Sensitivity % Specificity %

0.2 68.2 46.07 90.33

0.4 54.41 56.61 52.2

0.5 63.65 54.89 72.41

1 60.83 55.27 66.38

2 55.11 57.34 52.88

Table 5.4: Comparison of accuracies using two different feature reduction methods
Number of Features Accuracy using

FDR only %
Accuracy using
combined %

36 77.78 77.03

20 75 50
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Table 5.5: Comparison of Results with Previous Classification Methods using NIRS.
Source Method Feature Space Task Average

Accuracy %

this study SVM with
RBF kernel

0.4 simmediately
following rest
(FDR to reduce
features to 36)

motor and motor
imagery

77.78

this study SVM with
RBF kernel

0.4 simmediately
following rest

motor and motor
imagery

76.39

[70] linear SVM 10 s segment of 20
channels

left vs. right fin-
ger tap

87.5

[70] linear SVM 10 s segment of 20
channels

left vs. right mo-
tor imagery

73.1

[49] LDA 5 s averaged seg-
ment

right and left
wrist motor
imagery

77.56

[49] LDA 5 s linear regres-
sion fitted line

right and left
wrist motor
imagery

87.28

[49] LDA 10 s averaged seg-
ment

right and left
wrist motor
imagery

73.35

[49] LDA 10 s linear regres-
sion fitted line

right and left
wrist motor
imagery

83.0
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5.8 Conclusion

The results show that the optimal segment for classification of initial finger tapping

is 0.4 seconds. This time interval corresponds to only one finger tap. Similarly, the

optimal segment duration for classification of consecutive finger tapping does not exceed

the time frame of one finger tap. This indicates that one motor action is sufficient to be

create changes in hemodynamic response that can be detected. However, consecutive

motor actions are more difficult to detect.

Reducing the number of features using FDR improved the classification time and

did not have a significant effect on the accuracy. The effective detection time, which

is the recording time plus the classification time, was reduced from 0.5513 s to 0.4326

s when 36 features are considered. For this set of features, the detection accuracy was

improved which makes FDR a great feature reduction method. The combined feature

reduction method led to lower classification accuracies. This method assumes that

there are strong similarities between features which lead to a redundancy, which did

not appear to be the case for this data set.
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Chapter 6

Decoding Brain States using Electroencephalography

6.1 Introduction

Decoding brain states is an important part of the design of a brain computer inter-

face (BCI). Electroencephalography (EEG) is a non-invasive brain imaging method with

a great temporal resolution, which makes it promising for real-time applications. Tradi-

tionally, EEG active electrodes have a lengthy setup time which makes the technology

less attractive for everyday use. However, new improvements in electrode technology

can greatly reduce the setup time and make EEG suitable for many applications.

In this study, brain states were decoded using least squares - support vector ma-

chine. Data was collected using EEG during rest, motor and imagery motor and the

three conditions were pairwise classified. Two methods for feature reduction, Fisher

discriminant ration (FDR) and a combined method using FDR and K-means, were

compared. The latter method had a better performance due to similarities in signals

between EEG channels.

6.2 Instrumentation

The BrainAmp standard amplifier is used for EEG recordings. It is small and

portable and has a sampling rate of 5 kHz. The 16 bit TTL trigger input enables

the use of a large number of markers used to label important events during the EEG

recording. Each amplifier has the capacity to record from 32 channels, furthermore,

up to 8 amplifiers can be stacked together in order to record from up to 256 channels.

Both active and passive electrodes can be used with this amplifier [20].

For this study the ActiCap from brain products was used. The ActiCAP uses
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Figure 6.1: BrainAmp standard amplifier [20].

active electrodes, which have an integrated noise subtraction circuit [19]. Gel is used

to minimize the impedance between electrode and scalp, which is displayed on the

electrode using an LED (shown in Figure 6.2). The impedance range for each color is

set before the cap is placed on the head. A total of 66 electrodes were plugged into the

cap, according to Figure 6.3, 64 were used as channels and the remainder were used for

the ground and reference point. The electrodes were evenly distributed over the scalps

surface, including the locations present in the 10-20 system.

Figure 6.2: ActiCAP on subject showing impedances.Red: high impedance, yellow:
medium impedence, green: low impedance
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Figure 6.3: ActiCAP of electrodes on scalp [18].

6.3 Paradigm

Four conditions were implemented in this study: rest, motor only, imagery only,

and mixed motor and imagery. For the rest condition subjects were seated in front of a

gray screen, and instructed to relax and try not to move or talk. The rest condition was

designed as a 6 to 8 minutes block. During the motor only condition the subject was

instructed to click the left mouse button when a stimulus was presented on the screen.

For the imagery only paradigm subjects were asked to think about tapping their finger

when the stimulus was presented. Two types of stimuli were displayed during the mixed

motor and imagery task. Depending on the type of stimulus, the subject had to either

perform the motor action or think about tapping his or her index finger. The stimuli

are randomly selected in order to reduce expectation from the subject.

The non-rest paradigms were divided into short inter-trial interval (ITI) and long

ITI. The short inter-trial task displays the stimulus for 0.3 s and has an inter-trial



53

Figure 6.4: Paradigm: (a) short ITI experiment, (b) long ITI experiment.

interval of 0.5 to 1.2s. The long ITI task has a stimulus duration of 1s and an inter-trial

interval of 13 to 15 s. Subjects either participated in the rest and long ITI conditions or

short ITI conditions. Short ITI conditions each had 50 trials. The long ITI conditions

varied in number of trials between 15 and 20.

6.4 Data Collection

Data was collected from 8 healthy volunteers using a BrainProducts BrainAmp

standard 64 channel amplifier. Six subjects participated in the long ITI experiment

and two participated in the short ITI experiment. All subjects signed a consent form

approved by the Rutgers Institutional Review Board.

A total of 295 segments were recorded from all subjects for the imagery motor task,

including the data recorded from the imagery paradigm and the mixed paradigm. For

the motor task, 299 segments were recorded and for the rest condition 90 segments,

with a duration of 0.4s, were obtained from the beginning of the rest period.
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6.5 Data Analysis

After the EEG data was collected a common average reference (CAR) filter was

applied. This has been shown to act as a high-pass spatial filter [46] accentuating

components that are present in a large number of the electrodes. For further noise

reduction ICA was applied.

There were a total of 295 vectors for the imagery condition, 299 vectors for the finger

tapping condition and 90 vectors for the rest condition. Half of these vectors were used

for training and the other half for testing. The vectors were chosen randomly; this was

repeated 50 times for cross validation. The features were taken as the average value

across the frequency band of 10Hz − 14Hz for each channel.

Classification between finger tap and rest condition was done using LS-SVM with

a linear kernel, polynomial kernel and radial basis function (RBF) kernel. The number

of features were reduced, using Fisher discriminant ratio (FDR), to create data sets of

56, 48, 32 and 16 features. Classification using a linear kernel was performed on each

data set. The reduction of features using FDR was repeated to perform classification

between motor imagery and rest condition.

A new method for feature reduction was designed by combining FDR with K-means.

FDR was calculated for each feature in order to determine separability and sixteen

features with the lowest score were removed. The remaining 48 features were divided

into 32 clusters. Out of each cluster the feature with the highest FDR score was selected

for classification. The same was repeated to select 16 features. This feature reduction

method was applied to the classification of motor and rest condition as well as imagery

and rest condition.

6.6 Results

6.6.1 Detecting Brain States of Motor and Rest Condition

The average classification accuracy using all 64 features was 100% for all kernels.

Figure 6.5 shows a map of the training data using the two most separable features



55

as measured by FDR. It can be seen that the two features have a great separability.

Classification using a linear kernel was repeated with a reduced number of features. The

features with the highest FDR were selected. Figure 6.6 show how accuracy changes

dependent on the number of features used for classification. As features are reduced

accuracy decreases nonlinearly. A map of electrode location and their corresponding

feature separability is shown in Figure 6.7. Channels with the highest separability

could indicate activated brain areas during the motor task. Features corresponding to

adjacent channels might not provide additional information about the brain state.

Figure 6.5: 2D Representation of the 2 Most Separable Features.

The combined feature reduction method was used in order to maximize separability

and minimize redundancy between features. Table 6.1 compares the classification using

the two feature reduction methods. The combined method allows for a lower number

of features with little loss in accuracy.

Table 6.1: Comparison of accuracies using two different feature reduction methods
Number of Features Accuracy using

FDR only %
Accuracy using
combined %

32 99.03 99.70

16 97.90 99.05
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Figure 6.6: Accuracy of Linear Classification as a Function of Features for Motor and
Rest.

Figure 6.7: Map of Electrode Location and Feature Separability. The green features
have the highest FDR, followed by yellow and red. The white features have the lowest
FDR. There are 16 features of each color.
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6.6.2 Detecting Brain States of Imagery and Rest Condition

In the classification of imagery finger tapping and rest condition a linear kernel was

used and features were initially reduced just using FDR. It can be seen in Figure 6.8

that using FDR alone can produce good results. However, accuracy can be improved

over the FDR method when the combined FDR and K-means method is used (see Table

6.2).

Figure 6.8: Accuracy of Linear Classification as a Function of Features for Motor Im-
agery and Rest.

Table 6.2: Comparison of accuracies using two different feature reduction methods
Number of Features Accuracy using

FDR only %
Accuracy using
combined %

32 99.16 99.6

16 95.39 97.65

The results from this study were compared to literature (Table 6.3). This study

achieves better classification accuracies than similar studies.
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Table 6.3: Comparison of Results with Previous Classification Methods using EEG.
Source Method Feature Space Task Average

Accuracy %

this
study

linear SVM average power of band-
width (10 Hz - 14
Hz)(combined method
to reduce features to 32)

motor and rest 99.70

this
study

linear SVM average power of band-
width (10 Hz - 14
Hz)(combined method
to reduce features to 16)

motor and rest 99.05

this
study

linear SVM average power of band-
width (10 Hz - 14
Hz)(combined method
to reduce features to 32)

motor imagery
and rest

99.6

this
study

linear SVM average power of band-
width (10 Hz - 14
Hz)(combined method
to reduce features to 16)

motor imagery
and rest

97.65

[75] weighted mean
of correlations

ERD on each time-
frequency grid point (12
channels)

left and right
motor imagery

79

[75] weighted mean
of correlations

ERD on each time-
frequency grid point (20
channels )

left and right
motor imagery

80

[63] LDA ERD of the µ and β
rhythms (6 electrodes)

left vs. right
motor imagery

86.8

[63] LDA ERD of the µ and β
rhythms (64 electrodes)

left vs. right
motor imagery

91.7

[41] linear SVM DSP of MRP (64 elec-
trodes)

left and right
finger tap

79.93

[41] linear SVM CSP of ERD (64 elec-
trodes)

left and right
finger tap

79.5

[41] linear SVM DSP of MRP and CSP
of ERD (64 electrodes)

left and right
finger tap

86.26
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6.7 Conclusion

Motor and imagery motor tasks can be differentiated very well from rest using

EEG recordings. Feature reduction helps decrease classification complexity and can

significantly improve classification speed. Applied to brain imaging, it can help identify

specific areas of the brain activated during an action. However, the features and the

task need to be carefully selected in order to properly reflect the intended action. In

the motor task for this study the subject performed multiple actions: identification of

type of stimulus and decision of action, which can be seen as high separability in the

prefrontal cortex, and of course the tapping which should be seen in the motor cortex.

The fact that a task cannot isolate a single action combined with the poor spacial

resolution of EEG signal, make it harder to detect activation through feature selection.

Therefore, feature selection cannot be done simply by using previous knowledge

about the area of activation. Combining FDR and K-means for feature reduction pro-

duces better classification accuracies than the FDR feature reduction method alone.

FDR only detects separability between classes of a feature but does not compare fea-

tures. K-means groups similar features together without regard to their separability.

By combining the two algorithms both inter-class and intra-class similarities are re-

duced. This method for feature reduction works well on EEG data because adjacent

channels can have similar signals.
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Chapter 7

Conclusion

Detecting brain states is a complex problem that has many influencing factors in-

cluding imaging technique, experimental task, feature extraction and selection and

classification method. To optimize performance, these factors should not be chosen

individually but rather the strength of each should be considered such that the choices

for each factor complement each other.

NIRS has good spatial resolution and should be used for classification of tasks that

have different neuronal activation areas in order to maximize performance. EEG has

good temporal resolution and can detect rhythms of high frequency. By examining

the frequency band of the brain rhythms the difficulty or intensity of the task can be

detected. Each channel picks up a combination of the neuronal activity in the brain,

therefore, channels that are close to each other have similar signals, which creates

redundancy in features.

The task used in this study simulated three conditions: rest, motor and motor

imagery. The motor and motor imagery conditions share some neuronal activation areas

[64]. However, studies suggest that the motor conditions also has neuronal activations

which are not shared with the motor imagery condition [64]. This is supported by this

study since classification between motor and motor imagery using NIRS achieved an

accuracy of 77.78%. The similarity in brain states of the two conditions can be seen

in the EEG study. The performance of the classification of motor and rest and that of

motor imagery and rest are similar with the former being slightly higher most likely due

to increased brain activity. As discussed in Chapter 2 activities that are more difficult

or intense will cause brain rhythms with higher frequency. The motor task is considered

slightly more difficult than the motor imagery task because it requires both intent and
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motor performance.

In this study the choice of features was based on the literature. For the NIRS study

the features chosen were the changes in concentration of oxygenated hemoglobin and

deoxygenated hemoglobin over a period of time. Several window sizes were examined.

The best performance was achieved with a time segment that included only one finger

tap. For the EEG study the features were extracted from the frequency domain. This

study did not compare different features but focused on feature selection.

Brain imaging data often has many features but only few samples, which makes

feature selection essential for classification. Two methods were compared for feature

selection FDR and the combined method which uses FDR and K-means. FDR focuses

on features that are highly separable but does not detect features that are very similar.

To remove the redundancy added by features that are similar K-means was added to

the feature selection algorithm. In the NIRS study, using FDR for feature selection

produced a better classification accuracy than the combined method. This implies that

there are not many similar features in the data. Separability of each individual feature

is the better criteria for feature selection. In the EEG study it was observed that

the combined method resulted in better classification accuracies than the FDR only

method. This is due to the fact that channels that are placed in proximity of each

other usually have a similar signal. Removing redundancy due to similarity, therefore,

is very important when using EEG data.

7.1 Future Work

In this study, the detection of brain states, using two brain imaging techniques in-

dividually, was performed. The two techniques can be combined into one classification

problem. The advantages of each technique can be used to improve performance. Ad-

ditionally, the classification problem can be extended to more classes. Mental tasks

could be included in addition to motor tasks. These two tasks could highly separable

which is more important in a multi-class detection.

The combined feature selection algorithm accounts for both usefulness of features
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and redundancy due to similarity. However, there can be improvements made to the

algorithm to maximize performance. The original method had a fixed number of clusters

that were formed after a number of features were already discarded. The number of

features discarded was decided by the user, however, a better way would be to automate

that decision using a threshold based on the highest score. Additionally, the algorithm

can be improved by not having a fixed number of clusters in order to avoid features

grouped together without being similar. This can be achieved by setting a maximum

distance from the centroid of the clusters that is allowed in order to belong to that

cluster. Finally, adding the FDR score as a feature in the clustering algorithm could

ensure that features that are clustered together have similar FDR scores.
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