
USING DATA ANALYTICS FOR RELIABILITY AND
AUTONOMIC MANAGEMENT OF LARGE-SCALE

SYSTEMS

BY ALEJANDRO PELÁEZ

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2015

ABSTRACT OF THE THESIS

Using Data Analytics for Reliability and Autonomic

Management of Large-Scale Systems

by Alejandro Peláez

Thesis Director: Manish Parashar

Large-scale clusters are growing at a rapid pace, and the resulting amount of monitor-

ing data produced in these systems is also increasing. The goal of this research is to

investigate tools that improve the reliability and help manage such systems using this

wealth of data. This is a challenging problem as the scale of these machines increases

the complexity, the amount of monitored data, and amount of interactions between

different nodes, making the system much harder to manage and also resulting in high

failure frequency. In this thesis we focus on online failure prediction and policy based

management as mechanisms that can help address these issues. First, in case of failure

prediction we focus on achieving an acceptable accuracy that is comparable other algo-

rithms, but with the objective of being able to scale to thousands of nodes (given that

typical centralized solutions suffer from high transmission and processing overheads at

very large scales). Our solution to this problem is based on a decentralized online clus-

tering algorithm (DOC) to detect anomalies in resource usage logs. We show that we

can in fact achieve a similar accuracy as other algorithms while scaling to thousands of

nodes with less than 2% overhead. Second, high level policies are an attractive option

for managing complex systems and ensuring that they run within certain restrictions,

ii

as policies can be specified in terms of business goals and do not require low level knowl-

edge of the machines. In order to enable this, we need a way of dynamically mapping

the state of the system to the high level policies. We consequently propose a machine

learning solution based on monitoring data, wherein we make predictions of the high-

level indicators of the state of a system in order to determine what actions have to be

taken to satisfy a given policy. We evaluate our approach using a sample system, and

demonstrate that neural networks do an excellent job at predicting the required state,

only incurring an error of at most 8.78%, 98% of the time.

iii

Acknowledgements

I want to acknowledge my family and my girlfriend, their constant support and encour-

agement made all this possible. I also want to thank everybody at RDI2, they made

the lab a more interesting place, specially Mehmet and Gia who became great friends.

Many thanks to Prof. Manish Parashar, his support and guidance were a great help

during my studies and research. I also want to thank Dr. Andres Quiroz for his support

and input in my research. Finally thanks to Prof. Ivan Rodero, Prof. Ivan Marsic and

for being part of my committee.

Part of the research presented in this thesis was presented and publish in the HiPC

conference, and can be found here [1]. The research presented in this work is sup-

ported in part by the US National Science Foundation (NSF) via grants numbers ACI

1339036, ACI 1310283, DMS 1228203 and IIP 0758566, by the Director, Office of Ad-

vanced Scientific Computing Research, Office of Science, of the U.S. Department of

Energy through the Scientific Discovery through Advanced Computing (SciDAC) In-

stitute of Scalable Data Management, Analysis and Visualization (SDAV) under award

number DE-SC0007455, the RSVP grant via subcontract number 4000126989 from UT

Battelle, and by an IBM Faculty Award. The research was conducted as part of the

NSF Cloud and Autonomic Computing (CAC) Center at Rutgers University and the

Rutgers Discovery Informatics Institute (RDI2). The research has used NSF grants

1203560 for the SUPReMM project which developed the rationalized logs, 0622780 for

Stampede and XSEDE resources as part of the grant TG-CCR130025.

iv

Dedication

My parents, my brother and my beautiful girlfriend Laura.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Online Failure prediction using decentralized clustering 1

1.1. Introduction . 1

1.1.1. Motivation . 1

1.1.2. Real world example . 2

1.1.3. Overview and approach . 2

1.2. Problem description and related work 3

1.3. Outlier detection approach . 7

1.3.1. Decentralized online clustering (DOC) 7

1.3.2. Caching for execution time reduction 9

1.3.3. Reducing false positives . 10

Multiple time bins . 11

Multiple clustering . 11

1.4. Experiments and results . 12

1.4.1. Accuracy . 12

1.4.2. Scalability and performance . 15

Scalability in terms of number of events 15

Scalability in terms of number of nodes 16

vi

Resource usage . 18

Overhead for existing applications 18

1.5. Conclusions . 21

2. Dynamic policy adaptation . 23

2.1. Introduction . 23

2.1.1. Problem definition . 23

Definitions . 24

2.1.2. Dynamic policy adaptation problem 25

2.1.3. Real world example . 26

2.2. Related Work . 30

2.3. Estimation via machine learning . 32

2.3.1. System Architecture . 32

2.3.2. Regression model . 33

2.3.3. Transforming data . 34

2.3.4. Selection Algorithm . 34

2.4. Experiments . 34

2.4.1. Setup . 34

2.4.2. Evaluation . 36

2.4.3. Results . 37

Window Size . 37

2.4.4. Fine Tuning . 38

2.4.5. Generalization . 39

2.5. Future work . 40

2.6. Conclusions . 42

References . 43

vii

List of Tables

1.1. Summary of the compute nodes that locked up in March 2012. The

Ranger supercomputer is configured with 3936 nodes 4

1.2. Base algorithms. Ground truth is 17 faulty nodes and 1128 soft lockups 14

1.3. DOC with several enhancements. SL = Soft lockups. MC = Multiple

clustering. TB = Multiple time bins . 14

1.4. LINPACK. Times are in seconds. everything is averaged over 5 runs. . . 20

1.5. NPB FFT class D. Times are in seconds. everything is averaged over 5

runs. 21

2.1. RMSE after fine tuning the parameters for the different algorithms. . . . 38

2.2. RMSE under unseen circumstances. 40

viii

List of Figures

1.1. Distribution of compute node soft lockup in March 2012 5

1.2. Software stack. The bottom layer is in charge for data distribution and

clustering. The middle layer is in charge of getting anomalies from the

cluster results. The top layer is responsible for predicting failures based

on the anomalies. 6

1.3. (a) Uniform distribution of data points in the information space. (b)

Point clustering and anomalies among regions; the circled points are

potential anomalies. Taken from [2] . 8

1.4. The highlighted node is responsible for the highlighted region, which is

mapped onto a multidimensional space using an SFC. Taken from [2] . . 10

1.5. 5 minute time bins require data in the blue lines, and 10 minute time

bins require data in the red line. So by just keeping the logs from the

last 10 minutes we can perform both algorithms and avoid any extra

data movement . 12

1.6. Time required to perform a whole run (insertion and clustering), for

different number of points. 16

1.7. Time required for a whole run on Stampede varying the number of nodes.

We only use one core per node . 17

1.8. Time required for a whole run on Titan varying the number of nodes.

We only use one core per node . 17

1.9. Overview of how many megabits where sent by each node during a whole

run. 19

1.10. Overview of how many megabits where received by each node during a

whole run. 19

ix

1.11. Total bandwidth used by the system varying the number of nodes. . . . 20

2.1. Average time spent by the masters to send work over the whole simulation. 28

2.2. Average time a job remained in the queue until it was delivered to a

worker over the course of the simulation. 28

2.3. Average memory used by the RabbitMQ nodes over the simulation. . . 29

2.4. High level overview of the policy adaptation and enforcement system. . 32

2.5. Policy selection algorithm using the machine learning regression model. 35

2.6. Result of performing cross validation for different window sizes and dif-

ferent algorithms. 37

2.7. Best Neural network architecture. d is the number of dimensions. 39

x

1

Chapter 1

Online Failure prediction using decentralized clustering

1.1 Introduction

1.1.1 Motivation

The first chapter in this thesis focus on reliability of large-scale clusters, specifically

on the aspect of failure prediction using monitoring data in a scalable manner. This is

important as large-scale clusters often fail due to either the failure of an individual com-

ponent or an error arising from a fault in the complex interactions among components,

and as these clusters get bigger and bigger, the frequency of failures is becoming a real

and very important concern [3] [4]. As a result, monitoring these complex systems and

interactions, and detecting and predicting failures and other conditions based on the

large amount of monitoring data have become critical for ensuring reliability. There

have been approaches in the form of diagnostics [5] [6] [7], which help in understanding

and fixing the errors after they happen, and in some cases may prevent some future

failures. While detection and diagnosis is essential once the error has occurred, the

reliability constraints and size of these systems make it impossible for system adminis-

trators to address all failures in a timely manner and thus avoid undesired downtime

to the system. For this reason, prediction is becoming increasingly important, as it

allows preventive measures to be taken by administrators, or even automatically, that

guarantee the reliability of the system. Moreover, the ideal solution would run in real-

time which forces it to scale linearly with the number of nodes in the system, and thus

decentralized solutions could provide an advantage.

2

1.1.2 Real world example

At the Texas Advanced Computing Center at the University of Texas at Austin, failures

in the form of compute node soft lockups are some of the most frequent source of

problems for the systems administrators of the Ranger supercomputer. Faults recorded

in system event logs have been shown to provide good indicators of failures [8], often

minutes or even hours before the system failure actually occurs. While flagging these

faults at runtime is already a valuable tool in the prediction of failures, the list of faults

is static and can only be derived through an exhaustive offline analysis of multiple sets

of logs. The same study, however, found that resource anomalies in resource usage data

contained in these logs are present most of the time in faulty nodes. Thus, detecting

anomalies in node resource usage at runtime could also be used as a means to predict

future soft lockups, potentially with the same or greater lead time than that provided

by the fault events, and with the additional advantage of having a greater capacity to

adapt to changing system conditions.

1.1.3 Overview and approach

In order to predict failures and be able to react fast enough, system log data must be

monitored and analyzed continually online (i.e. in soft real-time). Although multiple

monitoring and anomaly detection approaches are available, centralized solutions can

become cost-prohibitive as system scales grow due to the sheer amount of data move-

ment as well as the computation (and energy) required to transport and process the

entirety of the data. Distributed solutions, on the other hand, have the potential of

scaling much better but present the challenge of attaining a global solution compara-

ble to that of centralized approaches by using only local interactions, and restricting

communication to a minimum in order to ensure high node scalability.

We present a solution to the problem of predicting compute node soft-lockups1 in

a scalable and real-time way, via online anomaly detection in system event logs using

a Decentralized Online Clustering (or DOC) algorithm [9] [10] [2], which has been

1A compute node soft lockup is a hang-up or a crash of a compute node.

3

developed for distributed system monitoring and resource provisioning, in addition to

addressing the issue of scalability being able to scale to thousands of nodes while

maintaining low bandwidth and memory usage with less than a 2% time overhead for

running applications and thus contributing to the feasibility of online failure prediction.

The application of DOC is also meant to provide support to the hypothesis that resource

usage anomalies are good predictors of failures in large supercomputer systems. We will

show that this approach, including enhancements that will also be described, can achieve

good prediction accuracy when compared to similar algorithms and to the state of the

art in machine learning or data mining based failure prediction. Thus, our approach

can be generalized as a tool for monitoring and prediction in these systems.

1.2 Problem description and related work

Compute Node Soft Lockups are some of the most frequent sources of problems for the

systems administrators of the Ranger supercomputer at the Texas Advanced Computing

Center (TACC) at the University of Texas at Austin. These soft-lockups have led to

premature termination of several running jobs which had to be manually restarted

by the systems administrators. A soft-lockup event is identified by a log event in

the rationalized logs that contains the following keywords: BUG: softlockup stuck for.

Predicting these events is crucial for ensuring system reliability, but is getting more

complicated as the size and complexity of large-scale systems continue to increase. Our

process focuses on recognizing the potential occurrence of compute node soft-lockups

because many faults, both hardware and software, eventually lead to the node where

the fault originates locking up and thus blocking execution of a job.

On these systems, we have at our disposal a special type of logs, called the rational-

ized logs [11]. They provide a standardized format which contains information about

resource usage, job id, node id, and time. It has been shown [8] that resource anomalies

contained in these logs are present most of the time in faulty nodes, and moreover a

strong correlation has been found between certain types of events and the occurrence of

future compute soft lockups. These two observations lead us to the hypothesis that by

considering anomalies in only a subset of features from the rationalized logs (which has

4

1-Mar 6-Mar 9-Mar 11-Mar

Count of nodes 16 1 2 1

% of nodes 0.4% 0.025% 0.05% 0.025%

Count of soft lockup events 177 951 801 1393

Table 1.1: Summary of the compute nodes that locked up in March 2012. The Ranger

supercomputer is configured with 3936 nodes

less dimensionality than the whole set of features), namely the resource usage features

that are contained in the events correlated with compute node soft-lockups, we can

predict future soft lockups accurately.

In order to test this we used the Ranger supercomputer at the Texas Advanced

Computing Center at the University of Texas at Austin and collected the rationalized

logs for the month of March 2012 and extracted the soft lockup events. A distribution

of soft lockup events is shown in Fig. 1.1, and the counts of nodes that locked-up is

given in Table 1.1. In Fig. 1.1, we observed that these soft lockups occurred more than

300 times during March 2012. We also observed, in Table 1.1, that these soft lockups

occurred on a very small count of nodes. In March 1st, we identified 0.4% of compute

nodes that locked-up and 171 soft lockup events that were generated. In March 6th,

we identified 0.025% of compute nodes that locked-up and 951 soft lockup events that

were generated. In March 9th, we identified 0.05% of compute nodes that locked-up

and 801 soft lockup events that were generated. In March 11th, we identified 0.025%

of compute nodes that locked-up and 1,393 soft lockup events that were generated.

We observed that compute node soft lockups occurred on 4 out of 31 days in March

2012, and that a very small percentage of compute nodes that locked-up and the large

quantity of soft lockup events that were generated by these nodes showed that compute

node soft lockups are clustered on a very small number of nodes, which suggest that

they are indeed related to some kind of anomalous behavior.

Assuming that this correlation is a good indicator for failures and since these re-

source usage features can be represented as points in an n-dimensional space, any

5

Figure 1.1: Distribution of compute node soft lockup in March 2012

anomaly detection or classification algorithm could help us predict errors. For this pur-

pose, we have at our disposal several techniques that allow us to tackle the problem.

For example there has been research on data mining and machine learning techniques

[12] [13] [14] where data points extracted from message logs are either categorized as

normal or anomalous. They have been found to provide very good results in terms of

false negatives, but they tend to suffer in the false positive rate due to the fact that

failures are very rare events, making it hard for classifiers to pinpoint them without

dragging some more events along the way. Another alternative are probabilistic and

statistical models, based on techniques such as Bayesian networks [15] or Semi-Markov

processes [16], which usually model the probability of failure of the system given cur-

rent characterization of the systems state. These approaches, while achieving very good

results, are very computationally expensive, and thus are limited in their practical use

on extreme large-scale systems.

Despite the advantage of the classification techniques that do not need a very big

history or training set to be able to work, their scalability when applied to very large

clusters is still a real concern. Any failure prediction system meant to be used in

a production environment must be lightweight, meaning that it should require the

minimum amount of resources as possible, as it is a supporting system that is going to

run periodically on every node. It should also be able to deal online with large amounts

6

Figure 1.2: Software stack. The bottom layer is in charge for data distribution and

clustering. The middle layer is in charge of getting anomalies from the cluster results.

The top layer is responsible for predicting failures based on the anomalies.

of data, as is not unusual for current large-scale supercomputers to exceed 5 thousand

nodes, each one producing detailed monitoring data every second that must be checked

for anomalous behavior. This is indeed a hard problem, and is where current solutions

fall short, since anomalous behavior should be detected as soon as it happens in order

to anticipate failure events, and, at these scales, even data collection starts to become

a bottleneck.

A totally distributed solution can avoid the data bottleneck problem and also lever-

age the power of all the nodes present in the system and scale with it, as long as it is able

to optimize data movement by doing part of the computation in the nodes that produce

the data. With this in mind, our proposed approach is in the vein of the data mining

and machine learning methods, using a distributed clustering algorithm called DOC.

We show that we can achieve similar or better results (with a combination of methods)

as other data mining techniques, specifically other related clustering algorithms, with

the added advantage of being lightweight, distributed, and optimizing data movement.

We also show that we can achieve low bandwidth usage, and less than 2% overhead

while still being able to run in under 3 minutes on real-time system-wide data, to be

able to predict failures online.

7

1.3 Outlier detection approach

Our solution has 3 main components as seen on Fig. 1.2 The bottom layer is called

DOC, and it will be described later in section 1.3.1, but it will the one responsible for

handling how the points get distributed to the nodes, and implements the clustering

algorithm.

Built on top of it, we have the anomaly detection layer, which directly uses the clus-

ters generated by DOC and extract the anomalies from them, it has the responsibility

of keeping track of the logs and extract the relevant features from them in order to be

able to invoke DOC with the correct data.

The top layer is in charge of making predictions based on the anomalies found in the

middle layer. At first, it may seem that it does not have any purpose, as the anomalies

will be quite easily converted to predictions (i.e just extract the node id). But as we

will see in section 1.3.3, we can apply several techniques to improve the accuracy of the

solution, which requires us to have this layer as it simplifies the actual implementation.

Having said this, we focus on the problem of anomaly detection, for this we can

find plenty of ways to detect outliers, but not all techniques are created equal: some

are more accurate than others, and some require more resources. We specifically need

a solution that can quickly detect anomalies in a distributed manner, which can scale

without problem to thousands of nodes, and that runs with a small overhead for existing

applications. For this purpose we have developed a Decentralized Online Clustering

algorithm or DOC [9] [10] [2].

1.3.1 Decentralized online clustering (DOC)

DOC is a clustering algorithm designed to run in a distributed setting (i.e. on a set of

networked nodes, which we call processing nodes) on data that is likewise distributed,

usually generated by or input via the processing nodes. In the log monitoring use

case, nodes generate data points, each one of which is an entry in the rationalized logs.

Instead of collecting data from the nodes at a centralized location, DOC redistributes

data among the nodes without centralized control, so that each node receives data that

8

Figure 1.3: (a) Uniform distribution of data points in the information space. (b) Point

clustering and anomalies among regions; the circled points are potential anomalies.

Taken from [2]

is close together in the n-dimensional data space (referred to as the information space).

Thus, if a cluster is present in the data, most of the clusters points will be distributed

to one or a reduced set of nodes that will be able to detect it.

DOC applies a density-based clustering approach. In other words, cluster detection

is based on evaluating the relative density of points within the information space. If the

total number of points in the information space is known or can be reasonably estimated,

then a baseline density for a uniform distribution of points can be determined and used

to calculate an expected number of points in a given sub-region of the space. Clusters

are recognized within a region if the region has a relatively larger point count than

this expected value. Conversely, if the point count is smaller than expected, then these

points may potentially be outliers or isolated points. These concepts are illustrated in

Figure 1.3.

In DOC, the information space is subdivided dynamically into regions, and each

region is assigned to a particular processing node. Processing nodes can then analyze

the points within their region independently to detect clustered points and outliers,

performing a very lightweight computation (basically comparing point counts to the

9

expected count), and only communicating with nodes responsible for adjoining regions

to deal with boundary conditions (for clusters that span multiple regions) and for

aggregating cluster data if necessary.

The subdivision of the information space into regions and the decentralized distribu-

tion of points to the different nodes are supported by a content-based Distributed Hash

Table (DHT) that uses a Peano-Hilbert space-filling curve [17] as a locality preserving

hash function. As shown in Figure 1.4, the space-filling curve determines a dynamic

mapping of regions of the information space to processing nodes that are organized

into a one-dimensional address space in a ring topology. The DHT implementation is

responsible for getting the data points within each region to the distributed processing

nodes in a scalable fashion.

It should be noted that the process which has been described using the rationalized

logs [11] from the now retired Ranger supercomputer can be applied to any Linux based

system which uses standard syslog event logging. The only data in the rationalized logs

that is used in the DOC based process is the job ids. The job ids can also be obtained

from the logs generated by most job schedulers including Slurm [18], Torque [19], etc.

The Lariat [20] system processes logs from these schedulers to correlate job ids with

system resources such as the nodes upon which a job is running. Therefore, our process

is readily adapted to most Linux based cluster systems.

1.3.2 Caching for execution time reduction

DOC was designed for a more general type of distributed system, and as such it is very

flexible regarding topology changes. Because we are running in tightly coupled clusters,

which provide a more stable environment, a caching layer can be added to DOC to

speed up point distribution and cluster data aggregation. The caching strategy works

as follows. Every time a lookup operation of a point in the DHT gets resolved to the

node responsible for its containing region, we also return the address space range that

node is responsible for. That range, along with the node identifier, we will then be

inserted in the local cache. In that way if another point is going to be inserted and it

belongs to that same range, no lookup is performed (each lookup in the DHT carries

10

Figure 1.4: The highlighted node is responsible for the highlighted region, which is

mapped onto a multidimensional space using an SFC. Taken from [2]

involves node communication overhead), and the request is sent directly to the node

found in the cache. In order to avoid high memory overheads, we bound the number of

such range-node pairs that are stored and use a LRU replacement policy. The reason for

this policy is that points are not evenly distributed, so a reduced number of nodes have

more probability of containing more points. Cache coherence is guaranteed because

each node that receives a point over the network first checks to see if it is indeed

contained in its own information space region. If not, it will perform a normal DOC

insertion (ignoring the cache) and then will send a cache invalidation request to the

original sender. Notice that in the case that a cache entry of the original sender was

outdated, the average number of hops needed to insert the data will increase by at most

1. We consider this to be a very good trade-off, since cache entries will be valid most

of the time (because the cluster is stable). In this way we can achieve O(1) insertion

rate most of the time.

1.3.3 Reducing false positives

As with other machine learning and data mining failure prediction strategies, our clus-

tering approach with DOC suffered from a large false positive rate. In order to mitigate

11

this problem and thus improve the precision of our approach, we developed two com-

plementary strategies, which can be used easily alongside DOC.

Multiple time bins

This strategy follows an observation by Chua et al. [8] , which says that outliers

identified as such in a time bin2 T1 which are also identified by a separate run of the

algorithm in a larger time bin T2 that contains T1 (meaning that the start and end

times o T1 are within the start and end times from T2) are more likely to be correlated

to soft lockups. In other words, outliers corresponding to the intersection of the results

of the algorithm run on the events over T1 and T2 are better predictors of soft lockups.

We empirically found that using a pair of time bins of size 5 and 10 minutes can

increase the precision of the system. To apply the strategy, the usual outlier detection

is run after two consecutive time bins of 5 minutes, saving but not reporting the results.

Then, the algorithm is run with all of the points of the last two time bins (i.e. a 10

minute time bin), and only outliers found in the final result that were present in at

least one of the two 5 minute time bins are reported (notice that we have two 5 minutes

time bins, and one 10 minute time bin, as shown in Figure 1.5).

Multiple clustering

The dimensionality of the data, which forces us to only pick subsets of features to use

for clustering, causes us to potentially leave important information behind even if the

features used were picked based on past correlation results. Thus we need a way to

be able to retain such information without increasing the dimensionality of the data.

Following a similar approach as before and reporting results that are reinforced by more

than one run of the algorithm, we found that by using a slightly different set of features

and clustering according to those, as well as using the original set, the outliers present

in both of runs are more likely to be correlated to the soft lockups. So, we can just run

parallel clustering using the different sets of features, and then report only the outliers

2A time bin is an interval of time where data points are collected

12

Figure 1.5: 5 minute time bins require data in the blue lines, and 10 minute time bins

require data in the red line. So by just keeping the logs from the last 10 minutes we

can perform both algorithms and avoid any extra data movement

found in both runs. The amount of false positives and false negatives achieved using

this strategy will vary depending on the features that differ between the two sets. We

found that a variation of only 20% of the features gives the best results. The drawback

of this approach is that each data point needs to be sent to two different nodes, and

thus the distribution overhead is higher, which is why we only use two different sets of

features.

1.4 Experiments and results

1.4.1 Accuracy

There are two main dimensions to test in order to show the usefulness of the system.

The first one is the accuracy of the prediction; and in this respect we want to show that

our solution can achieve similar results as other related approaches such as DBSCAN

[17] or PCA [21]. For this purpose we used the Ranger supercomputer at the Texas

Advanced Computing Center at the University of Texas at Austin and collected the

rationalized logs for the first week of March 2012, extracting the soft lockup events.

13

We have identified a total of 1128 soft lockups distributed over 17 nodes, which will be

the ground truth to test our system against. We partitioned the rationalized logs in

time bins of 5 minutes each; that is, we considered only those log entries that happened

inside that specific 5 minute interval and nothing else. The reason for this specific time

comes from an observation made by Chua et al. [8] which says that reducing the time

bin size can yield better results up to a point. We performed several tests and arrived

empirically at the value of 5 minutes, which gives good results and also is long enough to

guarantee our system will run in time. This is meant to mimic the behavior of the real

world, online scenario, where logs will be collected for a short time window and then

analyzed. Our algorithm was then run for each time bin, and each outlier detected

constituted a prediction of a soft lockup event (note that, in previous work [8], soft

lockups were found to be highly correlated to previous anomalous resource utilization

within a 100 to 318 minute interval).

To check the accuracy of each prediction, the corresponding outlier was matched

against the ground truth by checking for soft lockups that happened at most 318 minutes

into the future (i.e. 318 minutes after the timestamp of the outlier) on the node at which

the outlier was detected. An outlier is considered a true positive if such a matching

lockup is found and a false positive otherwise. All unmatched soft lockup events are

counted as false negatives. Note that soft lockups found beyond of the 318 minute

range are not counted as true positives, even though that would improve the measured

prediction accuracy, since our previous study does not support a correlation outside

of this time window (i.e. the match would probably be more a coincidence than an

actual prediction).In order to avoid any bias in our tests, we limit ourselves to the time

windows mentioned before.

All tests were run on Stampede at the Texas Advanced Supercomputer Center,

using 32 processing nodes. We only used 32 nodes for this test because it deals with

accuracy, which does not depend on the number of nodes. Accuracy was measured

using the usual precision and recall metrics, which are defined as:

Precision =
tp

tp+ fp
, Recall =

tp

tp+ fn

14

Algorithm Job outliers Node outliers Job precision Job recall Node precision Node recall

PCA 2130 377 0.53 1.00 0.05 1.00

DBSCAN 1552 65 0.64 0.88 0.26 1.00

DOC 1559 102 0.56 0.80 0.15 0.88

Table 1.2: Base algorithms. Ground truth is 17 faulty nodes and 1128 soft lockups

Algorithm Job outliers Node outliers Job precision Job recall Node precision Node recall

PCA 2130 377 0.53 1.00 0.05 1.00

DBSCAN 1552 65 0.64 0.88 0.26 1.00

DOC 1559 102 0.56 0.80 0.15 0.88

DOC + MC 1431 37 0.68 0.86 0.41 0.88

DOC + MC + TB 1385 31 0.73 0.89 0.52 0.94

Table 1.3: DOC with several enhancements. SL = Soft lockups. MC = Multiple

clustering. TB = Multiple time bins

Where tp, fp and fn means true positives, false positives and false negatives re-

spectively. The results are presented in table 1.2.

As intended, all three algorithms achieve similar accuracy results, with PCA being

most inclusive and thus minimizing false negatives and DBSCAN being least accurate

overall. DOC trades off some accuracy in the false negative rate, as seen on the recall

rate, to achieve better accuracy than the others in the false positive rate, shown by the

highest precision rate. However, these results show what we mentioned before, which

is that these algorithms have bad precision in general, but very good recall rates. Next

we tested our different accuracy enhancement modifications from Section 1.3.3 using

the same number of nodes and the same dataset. The results are presented in table 1.3.

We can see that the precision increased considerably when using the two algorithms

together, with only a small decrease in the recall rate. This comes from the multiple

15

clustering approach, as the consolidation can discard a lot of false positives which

commonly appear in only one of the outlier results, but on the other hand there will be

a few true positives that are lost in the same way, yielding the observed results.

Other state of the art techniques achieve higher precision rates [12] [13], between

0.7 and 0.8. But considerably slower recall rates, ranging from 0.2 to 0.7. Overall our

approach achieve comparable results showing that these outliers can indeed be used for

fault prediction.

1.4.2 Scalability and performance

The second dimension is scalability and performance, and in this regard we have several

parameters to test in order to show the behavior of the system at high scales and how

it impacts existing running applications.

Scalability in terms of number of events

Sometimes the rationalized logs may be updated more or less frequently for various

reasons. Because of this we have to test how the system behaves given different numbers

of events. We therefore fixed the number of processing nodes at 100, increased the

total number of points input for clustering, and measured execution time. As before,

Stampede was used for all the runs. We split the time measurement in two parts: a)

the insertion part, which measures the time taken to redistribute all the data to DOC

processing nodes, and b) the clustering part, which measures the time taken to find all

outliers, and report them back to the node responsible for gathering the results. We

can see the results in figure 1.6

We note that the clustering time is not a significant part of the total time, only

about 9.5%. This was expected because inter-node communication at clustering time is

bounded and does not depend too much on the amount of data. The insertion time, on

the other hand, is the most significant component, increasing a bit more in percentage,

but still maintaining a sub-linear growth. This is expected, since insertion times in

DOC have a theoretical bound of O(log n). Overall the results are good as for our test

data from Ranger we never exceed 15k points on a single time bin.

16

Figure 1.6: Time required to perform a whole run (insertion and clustering), for different

number of points.

Scalability in terms of number of nodes

One of the most important metrics to test in order to ensure high scalability is how

the system execution time scales with the number of nodes being monitored, which

can grow to the order of thousands of nodes in large supercomputer clusters. For this

purpose we fixed the number of points to be clustered at 30 thousand (much more than

was generated at Ranger during a single time bin), and then we performed different

runs increasing the number of monitored nodes (which, in our system setup, are the

same as the processing nodes). For this test, we used the Stampede supercomputer

at Texas Advanced Computing Center, which enabled us to do tests on smaller scale,

results are presented in 1.7. For larger tests we used the Titan supercomputer, located

at Oak Ridge National Laboratory; Titan enabled us to test our system using up to 6

thousand nodes. Results are presented in figure 1.8.

We can see that clustering times don’t increase much as the number of nodes rises

and this is expected, as inter node communication at the clustering phase is bounded,

and does not depend on the number of nodes (only neighbors have to be considered).

17

Figure 1.7: Time required for a whole run on Stampede varying the number of nodes.

We only use one core per node

Figure 1.8: Time required for a whole run on Titan varying the number of nodes. We

only use one core per node

Insertion times on the other hand is what constrain the overall scalability of the system,

as they do depend on the number of nodes. We can observe that for scales less than

18

Figure 1.9: Overview of how many megabits where sent by each node during a whole

run.

1000 they are almost insignificant in comparison, but once we get to scales of thousands,

we see a loss in performance. Still the system is able to perform well and takes just

a bit more than 3 minutes for 5k nodes, which is an acceptable number, as the time

contain is 5 minutes (which is the time bin size).

Resource usage

In order to show that our system can be used effectively as a monitoring tool, it must use

as few resources as possible (i.e. incur low overhead resource utilization). We performed

tests to measure the amount of RAM and bandwidth used, given 30 thousand points

and 200 nodes. We noticed that RAM usage never exceeded 10Mb; on the bandwidth

side, figures 1.9 and 1.10 show both the total sent bandwidth and received bandwidth

at each node during one whole run of the algorithm. These metrics were taken directly

from the Linux logs, in order to be able to consider every possible message sent. The

reason they were measured separately is to ensure that there is a low bandwidth usage

under both scenarios, and not just in the average. Figure 1.11 shows that the total

bandwidth used by the system is relatively low considering a usual run last between 2

and three minutes.

19

Figure 1.10: Overview of how many megabits where received by each node during a

whole run.

Figure 1.11: Total bandwidth used by the system varying the number of nodes.

Overhead for existing applications

To be able to test how much performance overhead DOC imposes over existing running

applications, we used two common benchmarks, namely LINPACK and NPB (NAS

Parallel Benchmarks). We timed how long they took to run for different number of

nodes, and then we measured how long they took when DOC was running alongside

20

Nodes Alone With DOC Overhead

100 309.24s 314.3s 1.6%

300 259.36s 263.72s 1.7%

500 253.58s 257.63s 1.6%

700 249.81s 254.27s 1.8%

1000 240.46s 244.41s 1.6%

Table 1.4: LINPACK. Times are in seconds. everything is averaged over 5 runs.

Nodes Alone With DOC Overhead

64 48.1s 49.12s 2.1%

128 32.79s 33.15s 1.1%

256 26.32s 27.11s 3.0%

512 20.23s 20.58s 1.7%

1024 15.69s 16.02s 2.1%

Table 1.5: NPB FFT class D. Times are in seconds. everything is averaged over 5 runs.

them. For LINPACK, the objective was to test mainly the CPU overhead, so we used

a problem size of 150k in order to ensure it takes a bit more than DOC so it had time

to be influenced by the CPU intensive phase. The results are presented in table 1.4.

We can see that the overhead stayed under 2% and that it was pretty stable, meaning

that there are not unexpected peaks in CPU usage and that applications should expect

a very stable performance. We then used NPB in order to test the overhead incurred

by the bandwidth usage of DOC. For this purpose, we used the FFT test (Fast Fourier

Transform), which is highly demanding in terms of overall bandwidth as it uses a many

to many communication pattern. For this experiment we chose the class D problem size

of the FFT problem that comes bundled with the benchmark, which will make it last

more than the main bandwidth intensive phase of DOC. Table 1.5 contains the results.

21

We can observe that the overhead is on average less than 2%, and the maximum

overhead is just 3%. There is one peak, and it may happen when there is a burst on

bandwidth usage by DOC, but these don’t happen very often, and when they do, they

are not big nor last long.

1.5 Conclusions

As supercomputers get bigger, failure prediction starts to become a fundamental tool

in order to ensure proper reliability. In this chapter, we proposed DOC as a solution

to enable decentralized online monitoring and prediction by means of resource anomaly

detection using system logs. We showed that this approach yielded good results, having

similar accuracy as other related methods in terms of precision and recall, and even

surpassing them in some cases, proving that anomalies found by just using a subset of

features of the rationalized logs can indeed yield a good failure predictor. Since the

success of any failure prediction system depends on it being lightweight and able to scale

up to thousands of nodes, in this regard we performed several experiments and showed

that DOC has very little impact on CPU, memory, and bandwidth usage (with around

2% performance overhead, using less than 10MB of RAM, and consuming on average

5MB of bandwidth per node in total). On the scalability side, we demonstrated that

DOC is capable of handling at least 60k events using up to 5k nodes, a scale at which

typical centralized techniques fail due to the huge communication and performance

overheads.

There are still some improvements that need to be addressed, in that we can fur-

ther exploit the more static nature of these systems (when compared to other more

loosely coupled distributed systems) to improve communication speed between nodes

and reduce clustering times.

Our long term goal is to use these predictions to trigger automatic action and

proactive measures to prevent the imminent failures. This requires further validation

of the real predictive power of resource usage anomalies for node failures, and possibly

the combined use of additional features in the system logs, leading to improvements in

22

prediction accuracy. We are also looking at several other machine learning and data

mining techniques to help us improve the accuracy of the results by applying some

precomputation to the data before analyzing it. This work was only a first step in that

direction, but nonetheless can already be considered a valuable tool for monitoring and

prediction in large supercomputer systems.

23

Chapter 2

Dynamic policy adaptation

2.1 Introduction

The second chapter of this thesis focus on high level management. Dynamic policy

adaptation provides an efficient and scalable way for controlling large and complex

infrastructure (think of supercomputers or large commodity clusters). It is also more

convenient, because these dynamic policies could be defined over a higher set of variables

where the business goals are easier to identify, and this is clearer for system adminis-

trators to define the correct actions. Dynamic policies help in this case because even

if the system could not directly perform an action to change higher level variables, it

can indirectly affect them by modifying lower level ones, and the dynamic nature of the

policy is able to capture the complex relationships between these two set of variables.

Also, it helps with the problem of observability, which happens because by the time we

could measure the higher level variables, it may already be too late. It will be ideal to

apply the policy right before this, and thus we require that dynamic policies predict

the behavior of the system in the near future, and adapt accordingly.

2.1.1 Problem definition

Intuitively, a policy specifies some desired state or property of a system (or, conversely,

an undesired state or property). Examples of policies are: The system must respond

in x milliseconds, The system must guarantee 99% availability, or the system must not

have more than 25% idle capacity over a one hour period, etc. Actions, meanwhile, are

pieces of code that change the state of the system, and they can be used to make sure

that its state satisfies a set of policies as closely as possible. Given a way to infer the

right actions for a system to continually meet that goal, it is simple to see how policies

24

can provide a concise and high-level means for administrators to manage their systems

and make sure they run within the desired parameters.

Definitions

The following definitions, which will be used through the rest of the chapter, attempt

to expand on the previous ideas and make them more formal in order for us to clearly

define our problem and approach for policy-based management.

An attribute is any parameter of the system that can be measured. In practice, each

attribute only takes values in a bounded subset of the real numbers.

The attribute space (which we also refer to as A) is a vector space where each

attribute corresponds to one dimension. Note that in practice, because each attribute

is bounded, we are only interested in a bounded subset of the attribute space.

We need to distinguish between two sets of attributes:

• Monitoring attributes: These are the attributes that can be measured con-

stantly, and more importantly, that are directly controllable. These attributes

generate the Monitoring subspace that we denote by M .

• Business attributes: These are attributes that clearly relate to the business

goals, and whose values are what really matters to system administrators. These

attributes generate the Business subspace that we denote by B.

Notice that we don’t not necessarily have that M and B contain all of the attributes

that are meaningful in the description of a system’s state, because there may be others

that are not known or that are hard to measure. For example, we typically have a

situations where we have some auxiliary applications running on the same machine,

they of course influence the performance of the whole system, so we should measure

them in order to get a complete system description, but this is not usually the case.

A system state is a vector in the attribute space. In other words, it is a particular

value assignment of each attribute. If a system is in state S, then S|B denotes the

projection onto the business subspace, and S|M the projection onto the monitoring

subspace.

25

A policy is a tuple (l, r), where l is a function (called the label function) from B

to a set of labels L, and r is another function (called the ranking function) from L to

R+. The purpose of l is to partition the business space into regions. For example if

L = {good,underused,overused}, the we will partition B into a region considered to be

good, another considered to be underused and another considered to be overused. The

r function is intended to provide a quantitative value of the desirability of a state. This

is because, given the projection of state S onto the business subspace B (i.e S|B), we

have that r ◦ l(S|B), represents a numeric value that can be used for comparing against

other states. Intuitively, we want desirable states to rank higher.

An action is a piece of code that modifies the state of the system. If the system is

in state S we denote by Sa the new state of the system after applying the action a. We

say that an action a satisfies a policy p = (l, r) at state S if we have that

r ◦ l(Sa|B) > r ◦ l(S|B),

This means that after applying a we obtain a state that ranks strictly higher for the pol-

icy. This definition captures the notion of making the actions keep business attributes

in more desirable regions of the business subspace, as specified by the policies.

2.1.2 Dynamic policy adaptation problem

The problem under consideration then reduces to being able to compute Sa|B for a

given state S and action a. This is nontrivial in general, as we usually only know

(or can estimate) how a affects S|M (the monitoring attributes), but we do not know

how it affects S|B (the business attributes), and can only measure it after the fact.

Furthermore, a system may be dynamic within a particular attribute space A, which

we have when, for a given action a and state S, Sa|B varies over time, which happens

when

Sa|B(t1) 6= Sa|B(t2), t1 6= t2.

This can happen in practice because all meaningful attributes are not included in the

attribute space. The problem of dynamic policy adaptation is in fact determining when

an action a satisfies a policy p in a dynamic system.

26

As a starting point to approach this problem, we make two assumptions. The first

is that Sa|M is static or can be learned apriori; in other words, that we know how

actions affect the monitoring attributes. The second is that the change over time in

the relationship between the monitoring attributes and the business attributes exhibits

a knowable pattern, which can also be learned. For example, it is reasonable to think

that, even if the system response time changes over time for a particular measurement

of memory, CPU usage, and bandwidth, it still depends on these attributes in a definite

way. More formally, this means that there is a family of possibly non-linear functions

Gt : M → B, such that if the system is in state S at time t, and we apply an action a,

the system transition to state Sa(t) =
(
Sa|M , Gt(Sa|M)

)
, and thus Sa|B(t) = Gt(Sa|M).

So, the problem of obtaining Sa|B is equivalent to the problem of finding or estimating

the family of functions Gt.

In practice we cannot find Gt exactly because we usually don’t consider (or can

measure) all the attributes which determine the family of functions. Also, Gt may be

too complex to be able to find or compute effectively. For these two reasons we focus on

estimating Gt rather than computing it exactly, and thus we rely on machine learning

techniques which are explained in section 2.3.

2.1.3 Real world example

We want to see that the problem of dynamic policy adaptation is a non-trivial one, and

that we do have systems in practice which exhibit this variability over time. Remember

from before that the main issue was to be able to determine when an action satisfies

a policy, and the only thing we did not know how to compute was the resulting state

Sa|B. For this, we made the assumption that we could find it by determining a hidden

relationship Gt, which varies over time, between the monitoring and business attributes.

Here we will show a system for which this Gt is indeed dynamic, meaning that for the

same monitoring state S|M , we have two different business states S|B1, S|B2, and thus Gt

changes over time. This is of course because we are not considering the whole possible

monitoring space, but only a subspace of it, which is the case in practice.

For this purpose we used RabbitMQ as our system to be analyzed. We chose this

27

one as it is a basis for a lot of applications, and is one of the most widely used queuing

systems. In this scenario, we used RabbitMQ to implement a master/worker workflow

that solves simple linear algebra problems.

Our business attributes would be the cost (calculated based on the number and

types of machines running), and the message send/delivery time of the system.

The monitoring attributes include send rate, deliver rate, memory usage, messages

acknowledged, messages pending, messages delivered, etc. For this we focused mainly

on the memory usage and message delivered attributes.

We could have the following possible set of labels L = {normal, overused, underused}

(in a more real scenario, we would have different type of overused and underused labels,

in order to deal with unexpected peaks in the system behavior). We aim to keep the

system running under the normal label. The overused state is meant to capture sce-

narios where the system is not being able to handle all the traffic and response times

are getting affected. The underused state is meant to capture those situations where

the system is overprovisioned, and we could probably take down resource without com-

promising the response times. The normal state is everything else. With this in mind

we could define a ranking function that gives the highest ranking to the normal state,

and actions will trigger when transitioning outside of this state. So for example if we

go from normal to overused, we could have an action that increases the number of

machines in the RabbitMQ cluster.

Our RabbitMQ cluster was formed by 4 amazon EC2 instances. Our simulation

consisted of 4 master instances generating tasks, and 8 worker instances consuming

them. The cost remained constant as we did not added any new node to the cluster.

We run the same exact simulation 4 times without making any configuration changes

to the cluster, all variations will be due to external influences such as network delays,

virtualization overhead, etc. Our hypothesis is that these outside and unmeasurable

influences are the main causes of the dynamism in the system.

Figure 2.1 and Figure 2.2 show the behavior of our business attributes, the cost is

not shown as it was constant during the simulation (i.e we used the exact same machine

configuration).

28

Figure 2.1: Average time spent by the masters to send work over the whole simulation.

Figure 2.2: Average time a job remained in the queue until it was delivered to a worker

over the course of the simulation.

Figure 2.3 shows a plot of the average memory usage of the 4 nodes in the cluster,

we see that for the most part there seems to be a linear dependency between receive

times (Figure 2.2) and memory (i.e if one increase the other one does also), even the

spikes seem to align, but it all breaks at the end, where we see the opposite trend.

Figures 2.1, 2.2 and 2.3 show the problem of trying to compute the dependency Gt

directly. Focus on Run 3 at times 230s and 370s, clearly we have the same memory

(Figure 2.3) at those two places (with the value around 250mb), but going back to

29

Figure 2.3: Average memory used by the RabbitMQ nodes over the simulation.

Figures 2.1 and 2.2, we observe that at time 230s we have an average receive time

of 100ms and an average send time of also 100ms, but at time 370s we measured an

average receive time of 220ms and an average send time of 160ms. Drastically different.

Let us consider another monitoring attribute, maybe with the hopes of being able to

figure the relationships ourselves. Let us look at the average deliver rate, we see that at

times 230s and 370s, we measured similar deliver rates, and thus even considering the

pairs (memory,deliver rate) we still have a dynamic Gt. Also, notice that for example

in some simulations (Run 2 and 4), we have that the average receive time had a rising

tendency all the time, but clearly the memory and deliver rate went down at the end.

This suggest that Gt has to be nonlinear in order to capture these type of dependencies,

and thus is not easy find by a human.

These empirical observations, the dynamic behavior of Gt and its apparent complex-

ity, shows that even for simple master worker workflows that implement basic algorithms

exhibit dynamic behavior, and thus they present the problem of dynamic policy adap-

tation. Notice, however, that the runs in each plot do follow each other in a similar

pattern, they rise and fall together, and tend to form peaks at similar points in time.

This suggests the validity of the assumption that the dynamic behavior can be learned.

Finally it is important to note that there may be business attributes which are easy

30

to predict, and for which we know how actions affect them, an example of this is the

cost. But more often than not, we have the complex relationships shown above.

2.2 Related Work

The idea of separating the policies that govern the behavior of a system, from the

actual functionality of the system or the mechanisms that enforces them, was proposed

by Sloman et al. [22]. This of course requires the ability to be able to adapt policies to a

system at runtime, and without a dynamic approach the behaviors that can be managed

are too restricted. Some of the research on policy based management have been geared

on how to specify them using description languages, some focus on simple definitions

[23], and others on automatically detecting conflicts between different policies [24].

Although very helpful in allowing people to easily express policies, they still suffer

from not being able to capture the dynamic system behavior and thus have restricted

applicability.

In a research agenda for policy management, [25] Dam et al. identified the im-

portance of being able to recompute low level policies due to changes in the system

state. And in fact, this has been dealt with before by Moffett and Sloman using pol-

icy hierarchies [26]. However, their approach failed to provide automatic and dynamic

mechanisms for building the low level policies from top levels.

A different approach to this problem, which employs utility functions, has been

presented in [27] and [28]. The main idea is to define the desired goals using some cost

functions, and the optimal state is then found by solving an optimization problem whose

output specifies the actions that need to be taken. This approach is radically different

from ours as it does not apply incremental actions in order to achieve the desired

state; rather, it determines the optimal scenario and applies all relevant actions. The

problem with these approaches is that they may lead to non-smooth changes of the

state of the system over time, because two different solutions to the utility functions

may actually differ drastically. Depending on the cost of applying some policies, this

may be undesired. A reactive approach, like ours, in which actions are taken due to

31

observed changes in the system, does not have this problem. This is because only one

change is made at a time, resulting in a smooth evolution of the state of the system.

Another different perspective is given by Aly and Lutfiyya, who use a control the-

oretic approach [29]. They proposed to use feedback in the system in order to tweak

the threshold values, but again, this requires low level policy specifications, and the

thresholds are necessarily linear, which may not cover all cases.

Using machine learning for dynamic policy adaptation is not new. An early approach

was proposed by Kephart and Walsh using intelligent agents [30], wherein they identify

3 type of policies: Action policies which are basically static, goal policies where a

desired state is specified and intelligent agents decide the actions to lead the system to

that state, and utility function policies where the agents try to maximize the specified

function. Their first approach wont work on a dynamic system, and their third approach

is similar to the utility function approaches described before. Their goal policies are

closer to what we are trying to achieve, but in our case the goals are implicitly coded in

the high level policy specification, giving us a little bit more flexibility regarding what

states our system can be in, which may be desired and cheaper.

Finally, a similar approach to the one presented in this thesis is given by Quiroz et

al. in [31]. In fact we use a similar formulation of representing the system attributes

as a vector space, and arguing there is a relationship between some dimensions called

monitoring attributes to the other dimensions called business attributes. In their ap-

proach, they try to find this relationship using only the recent monitoring data of the

system, and thus must rely on unsupervised algorithms, in their case clustering, to be

able to capture the dynamic behavior of the system. That is, they cannot have a fixed

pre-trained model. We improve upon this by using supervised models that actually

look at the short-term evolution of the system, and capture the dynamic behavior from

there. The advantage of our approach is that we would be able to use faster and more

powerful algorithms such as support vector machines and neural networks.

32

Figure 2.4: High level overview of the policy adaptation and enforcement system.

2.3 Estimation via machine learning

2.3.1 System Architecture

First, we will work with the assumption that the systems to be monitored have a log

centralizer mechanism, and that we can deploy our code in that central system. We

also require that the mechanisms that enforce policies are completely decoupled from

the ones that decide which policies to apply, in order to be able to run both of them

on different machines.

Figure 2.4 shows the architecture we are looking into for the case in which the

monitoring logs are being centralized in one server (which is the case for most large-

scale clusters). In it, a log server aggregates the logs from the whole system, and the

system transforms 30 seconds worth of logs into a vector that is fed into our model

in order to predict the current state of the system, as well as the possible states our

system will transition to for each of the actions. Given that information, the selection

algorithm chooses the best action to take in order to satisfy the policies, which is then

sent to the enforcement mechanism (possibly outside our system) in order to modify

the system.

In the next sections we explain the regression (or ML) model, how to generate

33

vectors to feed this model,, and how the selection algorithm works.

2.3.2 Regression model

As we mentioned in section 2.1.2, our problem can be solved if we are able to estimate

the family of functions Gt which allow us to obtain Sa|B for a state s and an action a.

Clearly we cannot base our algorithm only on a specific point int time, that is we cannot

use only Sa|M , the state of the monitoring attributes after applying the action, or even

S itself, the state of the system before performing the action. The reason for this is

that if we find an algorithm that makes a prediction based on these two states at that

specific point in time, then it will make the same prediction every time it encounters the

same configuration, and thus we would not be effectively estimating the whole family

Gt, but only one of its members.

In order to solve this issue, we will use a well-known idea called sliding windows

[32] [33]. Let’s assume we are at state S(t) and we want to predict Gt

(
Sa|M (t)

)
, which

gives the value of the business attributes. Instead of just using S(t) and Sa|M (t), we

consider the vector

Vt =
(
S(t− k), S(t− k + 1), . . . , S(t), Sa|M (t)

)
,

Where S(t) stands for the state of the system at time t and k is a constant called the

window size. Now we estimate another function f , which is independent of time, with

the property that Gt

(
Sa|M (t)

)
= f(Vt). The intuitive idea that justifies this equivalence

is that the time window provides enough context to differentiate the cases in which S(t)

is equal at different times, even if we don’t know the additional attributes to obtain

that differentiation. If that were not the case, then all of the functions in Gt would

be equivalent, and thus our assumption that there is not a single function G would be

incorrect.

In order to do this, we will try several methods which have been shown to give

good results for different types of sequential and time series data [34], [35] and [33].

The models we will try are Support Vector regression, Ridge regression, Decision trees

regression, nearest neighbor regression and neural networks.

34

2.3.3 Transforming data

Assume we have monitored the system for enough time that we have been able to record

multiple measurements of both the monitoring attributes and the business attributes.

These measurements give us a sequence of states S(0), S(1), . . . , S(N). In total we can

build N − k vectors Vt, as described above by the sliding windows technique (we can

start at any of the first N − k positions). Also, for each of these vectors Vi, we know

exactly the value of f(Vi), which is just the projection of the business attributes of the

last state (i.e S(i+k)|B). If we monitor the system some more, we can obtain a different

sequence of states, and produce more vectors with their respective values of f . In this

way, we can extract training data, with their respective target values, in order to feed

the learning algorithms.

2.3.4 Selection Algorithm

The algorithm for choosing which action to apply works like this. Given the current

state of the monitoring attributes S|M , we estimate the current state of the business

attributes S|B using the regression model. By our assumption, we know how actions

affect monitoring attributes, and thus for each action a we can compute the resulting

monitoring state Sa|M , having this we can estimate Sa|B again using the regression

model. Now, consider the set of policies as tuples (lp, rp), we can compute the set of all

actions A that satisfy at least one policy (lp, rp), then we pick some a ∈ A, and that

will be the action we need to apply. The pseudocode for this is presented in Figure 2.5.

Notice that at the end we just return a random action from all the possible ones.

This often gives good results, but there could be scenarios where you have to policies

that conflict each other. We did not address this issue in this research.

2.4 Experiments

2.4.1 Setup

We will use the same RabbitMQ setup and simulation described in section 2.1.3. Our

business attributes remain the same, that is, average message receive time, average

35

function selectAction(State S, List of actions A, list of policies P , model m)

candidates = []

for a ∈ A do

for (lp, rp) ∈ P do

oldRank = rp ◦ lp
(
m.estimate(S|M)

)
newMonitoringState = a.futureState(S)

newRank = rp ◦ lp (m.estimate(newMonitoringState))

if newRank > oldRank then

candidates.insert(a)

end if

end for

end for

chosenAction = candidates.pickRandom()

return chosenAction

end function

Figure 2.5: Policy selection algorithm using the machine learning regression model.

message send time and cost. Our monitoring attributes consist of the whole output of

the monitoring plugin for RabbitMQ, which includes parameters like memory, pending

messages, delivered messages, arrival rate, deliver rate, etc. We have 32 attributes in

total.

In order to capture enough of the trends that allow us to predict the dynamic

behavior of the system, we need to run the simulation changing some parameters.

These include the number of nodes in the RabbitMQ cluster, which we changed to 2,

3 and 4. The number of workers, which we varied from 4, 8, 12 and 16. The number

of masters, which were varied from 2, 4, 6 and 8. Also, in order to be able to capture

unexpected behavior, we performed some runs where we started with some workers,

and suddenly killed several during the simulation. The same for masters and nodes in

the cluster.

We collected data every second, and a typical simulation lasted for about 6 minutes,

36

giving around 360 states, and after aggregating all the runs together, we ended up with

about 35000 points.

From here we created the actual training data using the sliding window method.

Notice that the total number of points available to train depends on the window size

k. One final thing we need to address, these models have parameters that we need to

choose, and the windows size also needs to be given a near optimal value. In order to

do this we are going to use a standard 10-fold cross validation technique.

2.4.2 Evaluation

In order for us to compare different algorithms, parameter configurations, and to be

able to have a notion of how well they are performing, we will use the square root of

the mean square error, defined for a particular output variable as

RMSE =

√∑n
i=1 ‖ŷi − yi‖

n

Where ŷi is our estimate of the output variable, or in other words it is f(Vi), and yi

is the true value. For testing purposes we will use the RMSE by looking only at the

message receive time and message send time. This is because they have the same units

(which are seconds), and thus it will make the interpretation of the RMSE easier, as

we can give units to it (i.e seconds).

Also, a particularly good property of the RMSE is that by Chebyshev we know that

for any random variable X with finite mean and nonzero variance, and any positive

number k, we have that

P(|X − µ| > kσ) ≤ 1

k2

And because our RMSE is equal to the standard deviation in the case of unbiased

estimators, we approximately get that for an RMSE of x seconds, we would have an

error of kx seconds with probability at least 1 − 1/k2. For example for an RMSE of

1, would produce an error of 4 seconds with probability 0.9375. We can use this not

only to compare algorithms against each other, but also to determine if a given result

is good or bad.

37

Figure 2.6: Result of performing cross validation for different window sizes and different

algorithms.

2.4.3 Results

Window Size

Figure 2.6 shows the result of performing cross validation for different window sizes

for each of the algorithms. We can see in most cases, they performed better around

K = 30, and that neural networks outperformed the rest. Also by looking at the nearest

neighbors, random forests and ridge regression, we can see that the choice of K can

make one algorithm better than the other.

This tells us that we need to look around 30 seconds into the past in order to fully

capture the current trend of the system. We would expect that considering values

further into the past should make the algorithms behave even better, but the problem

is that the dimensionality of the problem increases linearly with the time window K,

and thus in these scenarios, the models are much more complex, so they need much

more data in order to perform well.

Even without fine tuning parameters we already see very good results for our simple

38

Algorithm RMSE

SVR 1.18

NNR 1.00

RFR 0.97

Ridge 0.97

Neural 0.21

Table 2.1: RMSE after fine tuning the parameters for the different algorithms.

neural network, getting a RMSE as low as 0.273s, which considering that the average

receive time was 11.96 seconds, it means that we produce an average error (using

Chebyshev with k = 5) of at most 11.41%, 96% of the time, which looks promising.

2.4.4 Fine Tuning

Table 2.1 contains the results for the different algorithms after performing parameter

selection using cross validation. The best results were obtain again by the nueral

network, and it got an RMSE of 0.21 seconds which gives an error of at most 8.78% at

least 96% of the time

The following are the optimal parameters that we found using cross validation.

• Support Vector regression (SVR): A Gaussian kernel with a radius of influ-

ence (gamma parameter) of 0.01 and a degree of 3.

• Nearest neighbor regression (NNR): The optimal was achieved by looking

at the 25 nearest neighbors.

• Random forest regression (RFR): We found the best results when using 100

trees and requiring at least 5 training samples per leaf.

• Ridge Regression (Ridge): A regularization (or alpha) parameter of 2 gave

the best results.

39

Figure 2.7: Best Neural network architecture. d is the number of dimensions.

• Neural Network (Neural): The neural networks shown in Figure 2.7 is the

one that gave the best results for us.

2.4.5 Generalization

Because it is unfeasible to train the models with data that contains every single possible

system configuration, we awant to know how our model performs with unseen behavior.

For this purpose we gathered data from our system using a completely different set of

parameters. Table 2.2 shows the results of our algorithms on this dataset, compared to

the old results.

Although the RMSE is higher when presented with unseen configurations, it is still

a very good result, producing an error of at most 12.79% at least 96% of the time.

40

Dataset RMSE

Old 0.210

Unseen 0.306

Table 2.2: RMSE under unseen circumstances.

2.5 Future work

As Sloman suggested in his seminal paper on policy driven management [22], adap-

tation and enforcement mechanisms of policies are two different areas that should be

logically separated in order to simplify the design and implementation of the manage-

ment software. In this thesis we focused on the former, that is policy adaptation. We

proposed a machine learning regression model that is able to estimate the near future

state of the system, and thus the action to be applied can be chosen by considering the

predicted state as the real one.

However in order to fully build a dynamic policy management software, we require

the enforcement mechanisms to be present, and our current work lies in this area. There

are several technical challenges that need to be addressed in order to achieve this. First,

we need to fully implement and deploy our proposed architecture for the system, also

because actions make take some time before they have an impact on the state of the

system, we need to determine how often to apply them in order to avoid flooding the

system with configuration changes, which may actually harm the performance. Finally

we need to extend our algorithm for choosing the correct action to apply based on our

regression model, the main issue arises when we have conflicting policies, in which case

we need to build some resolution algorithm to deal with this.

Regarding how often to apply actions, we have two possible solutions. First we may

require the system administrators to specify timeouts along with the actions, this will

work by making sure no other action is applied during the timeout period, and thus

giving the system enough time to react to the change. We are also looking at a more

dynamic approach that leverages our abstract policy definition, in which we require a

41

label function l. Remember that the idea of this labeling is to partition the system state

into a set L of regions, such as L = {good,underused,overused}, and now, an action will

only be applied whenever we observe a transition between regions. This will effectively

avoid the flooding problem as once an action is applied we won’t act anymore until

we observe another change in regions, which will happen after the action has made an

impact on the system. Both approaches have their benefits and drawbacks, and we are

currently looking at which one gives the best results, or even have a combination of

both.

With respect to the conflict resolution algorithm, recall the algorithm shown at 2.5.

In the last step, we may have several candidates to choose our finally action from, but

what if some of them are conflicting or incompatible. To solve this, we need to develop

a conflict resolution algorithm, and we have several choices on how to proceed here.

First we can do it randomly, and in this case we have to prove that we can achieve a

near optimal solution with high probability. We are also looking at some approaches

made by others such as Lupu and Sloman [36], where they propose to add a precedence

relationship between actions. In [37] Davy et al. shows an analytic tool that is able

to detect the conflicts at the moment of specifying the policies, and we are looking

into adapting that technique to our specification method. Finally in [38] Rusello et

al. present an automatic conflict resolution approach based on a on the ponder policy

specification language [23], we want to see if we can modify their ideas so they work

with our approach.

Finally, there are some optimization that could help with the speed and accuracy

that we want to look into. First, we may be able to somehow discard most of the actions

based on a heuristic, as most of them are clearly not applicable to some states; this will

significantly reduce the number of predictions we need to do, and thus improving the

performance. Also, the system may have permanent changes over time, and thus the

machine learning algorithm must be retrained in order to fully capture this scenario.

We are looking both at online version of the algorithms we used, or retrain mechanisms

in order to solve this issue.

42

2.6 Conclusions

Dynamic policies offer an easy way of managing large scale systems. We have pre-

sented an approach for dynamic policy adaptation that, unlike static solutions, allows

administrators to define their policies in terms of high level goals and lets the system

determine which actions to apply (and when to apply them) in order to guarantee that

those goals are met.

We achieve this by making the assumption that there is some state that can be

measured constantly, called the monitoring space, and that there is a learnable rela-

tionship that varies in time between this space and the high level goals, also called the

business space. With this we model the problem as a regression problem and solve it

using machine learning techniques by learning to determine the unknown state using

the known short term evolution of the system.

We showed that this relationship can indeed be learned by different algorithms,

and also observed that tracking the evolution of the systems for the last 30 seconds

is optimal. We concluded that neural networks achieve the best performance with

an RMSE of 0.21s, which represents an error of at most 8.78% at least 96% of the

time. We also show that the model was robust enough to deal with completely unseen

behavior and was able to generalize well, getting a RMSE of 0.306s with new data,

which represents an error of 12.79% at least 96% of the time.

Finally, this work is more focused on the theoretical part of how to dynamically

adapt policies, and it was out of scope to implement and evaluate the actual mechanisms

that enforce the actions. Nevertheless we outline one possible software architecture that

could use this regression model in order to enforce the policies and make sure a system

stays within the parameters specified in the high level policies. We are currently working

on building such software, and looking at possible mechanisms to automatically retrain

the regression model in order to better deal with unexpected harsh changes in the

behavior of the system and looking on how to solve the situations where conflicts arise

between policies.

43

References

[1] A. Pelaez, A. Quiroz, J. Browne, E. Chuah, and M. Parashar, “Online failure
prediction for hpc resources using decentralized clustering,” in High Performance
Computing (HiPC), 2014 21st International Conference on, Dec 2014, pp. 1–9.

[2] A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma, “Clustering anal-
ysis for the management of self-monitoring device networks,” in Autonomic Com-
puting, 2008. ICAC ’08. International Conference on, June 2008, pp. 55–64.

[3] D. A. Reed, C.-d. Lu, and C. L. Mendes, “Reliability challenges in large systems,”
Future Gener. Comput. Syst., vol. 22, no. 3, pp. 293–302, Feb. 2006.

[4] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance
computing systems,” Dependable and Secure Computing, IEEE Transactions on,
vol. 7, no. 4, pp. 337–350, Oct 2010.

[5] U. Lerner, R. Parr, D. Koller, and G. Biswas, “Bayesian fault detection and diag-
nosis in dynamic systems,” in In Proc. AAAI, 2000, pp. 531–537.

[6] J. Gertler, Fault Detection and Diagnosis in Engineering Systems, 1998.

[7] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: Statistical model-based
bug localization,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 286–295, Sep.
2005.

[8] E. Chuah, A. Jhumka, S. Narasimhamurthy, J. Hammond, J. C. Browne, and
B. Barth, “Linking resource usage anomalies with system failures from cluster log
data,” in Proceedings of the 2013 IEEE 32Nd International Symposium on Reliable
Distributed Systems, ser. SRDS ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 111–120.

[9] A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma, “Design
and evaluation of decentralized online clustering,” ACM Trans. Auton.
Adapt. Syst., vol. 7, no. 3, pp. 34:1–34:31, Oct. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2348832.2348837

[10] A. Quiroz, M. Parashar, and I. Rodero, “Autonomic management of distributed
systems using online clustering,” in Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, April 2010,
pp. 1–4.

[11] J. L. Hammond, T. Minyard, and J. Browne, “End-to-end framework for fault man-
agement for open source clusters: Ranger,” in Proceedings of the 2010 TeraGrid
Conference, ser. TG ’10. New York, NY, USA: ACM, 2010, pp. 9:1–9:6.

44

[12] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu, “Logmaster: Mining event
correlations in logs of large-scale cluster systems,” in Reliable Distributed Systems
(SRDS), 2012 IEEE 31st Symposium on, Oct 2012, pp. 71–80.

[13] Z. Lan, J. Gu, Z. Zheng, R. Thakur, and S. Coghlan, “A study of dynamic meta-
learning for failure prediction in large-scale systems,” Journal of Parallel and Dis-
tributed Computing, vol. 70, no. 6, pp. 630 – 643, 2010.

[14] Y. Zhang and A. Sivasubramaniam, “Failure prediction in ibm bluegene/l event
logs,” in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on, April 2008, pp. 1–5.

[15] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta,
and A. Sivasubramaniam, “Critical event prediction for proactive management
in large-scale computer clusters,” in Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD
’03. New York, NY, USA: ACM, 2003, pp. 426–435. [Online]. Available:
http://doi.acm.org/10.1145/956750.956799

[16] F. Salfner, M. Schieschke, and M. Malek, “Predicting failures of computer sys-
tems: a case study for a telecommunication system,” in Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International, April 2006, pp. 8
pp.–.

[17] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm for dis-
covering clusters in large spatial databases with noise.” AAAI Press, 1996, pp.
226–231.

[18] Slurm: A highly scalable resource manager. Lawrence Livermore National
Laboratory. [Online]. Available: https://computing.llnl.gov/linux/slurm/

[19] Torque resource manager. Adaptive Computing. [Online]. Available:
http://www.adaptivecomputing.com/products/open-source/torque/

[20] R. McLay. Lariat. [Online]. Available: https://github.com/TACC/Lariat

[21] C. Callegari, L. Gazzarrini, S. Giordano, M. Pagano, and T. Pepe, “A novel pca-
based network anomaly detection,” in Communications (ICC), 2011 IEEE Inter-
national Conference on, June 2011, pp. 1–5.

[22] M. Sloman, “Policy driven management for distributed systems,” Journal of Net-
work and Systems Management, vol. 2, pp. 333–360, 1994.

[23] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy specification
language,” in LECTURE NOTES IN COMPUTER SCIENCE. Springer-Verlag,
2001, pp. 18–38.

[24] A. Bandara, E. Lupu, and A. Russo, “Using event calculus to formalise policy
specification and analysis,” in Policies for Distributed Systems and Networks, 2003.
Proceedings. POLICY 2003. IEEE 4th International Workshop on, June 2003, pp.
26–39.

45

[25] M. Dam, G. Karlsson, B. S. Firozabadi, and R. Stadler, “A research agenda for
distributed policy-based management,” in nd SEAS DTC Technical Conference -
Edinburgh 2007 C1.

[26] J. Moffett and M. Sloman, “Policy hierarchies for distributed systems manage-
ment,” Selected Areas in Communications, IEEE Journal on, vol. 11, no. 9, pp.
1404–1414, Dec 1993.

[27] D. Chess, A. Segal, I. Whalley, and S. White, “Unity: experiences with a proto-
type autonomic computing system,” in Autonomic Computing, 2004. Proceedings.
International Conference on, May 2004, pp. 140–147.

[28] J. Kephart and R. Das, “Achieving self-management via utility functions,” Internet
Computing, IEEE, vol. 11, no. 1, pp. 40–48, Jan 2007.

[29] W. Aly and H. Lutfiyya, “Dynamic adaptation of policies in data center man-
agement,” in Policies for Distributed Systems and Networks, 2007. POLICY ’07.
Eighth IEEE International Workshop on, June 2007, pp. 266–272.

[30] J. Kephart and W. Walsh, “An artificial intelligence perspective on autonomic com-
puting policies,” in Policies for Distributed Systems and Networks, 2004. POLICY
2004. Proceedings. Fifth IEEE International Workshop on, June 2004, pp. 3–12.

[31] A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma, “Autonomic
policy adaptation using decentralized online clustering,” in Proceedings of
the 7th International Conference on Autonomic Computing, ser. ICAC
’10. New York, NY, USA: ACM, 2010, pp. 151–160. [Online]. Available:
http://doi.acm.org/10.1145/1809049.1809074

[32] S. Yoshida, K. Hatano, E. Takimoto, and M. Takeda, “Adaptive online prediction
using weighted windows,” IEICE Transactions, vol. 94-D, no. 10, pp. 1917–1923,
2011.

[33] T. Dietterich, “Machine learning for sequential data: A review,” in Structural,
Syntactic, and Statistical Pattern Recognition, ser. Lecture Notes in Computer
Science, T. Caelli, A. Amin, R. Duin, D. de Ridder, and M. Kamel, Eds. Springer
Berlin Heidelberg, 2002, vol. 2396, pp. 15–30.

[34] N. K. Ahmed, A. F. Atiya, N. E. Gayar, and H. El-shishiny, “An empirical com-
parison of machine learning models for time series forecasting.”

[35] G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne, “Machine learning strategies for
time series forecasting,” in Business Intelligence, ser. Lecture Notes in Business
Information Processing, M.-A. Aufaure and E. Zimnyi, Eds. Springer Berlin
Heidelberg, 2013, vol. 138, pp. 62–77.

[36] E. Lupu and M. Sloman, “Conflicts in policy-based distributed systems manage-
ment,” Software Engineering, IEEE Transactions on, vol. 25, no. 6, pp. 852–869,
Nov 1999.

[37] S. Davy, B. Jennings, and J. Strassner, “Efficient policy conflict analysis for au-
tonomic network management,” in Engineering of Autonomic and Autonomous
Systems, 2008. EASE 2008. Fifth IEEE Workshop on, March 2008, pp. 16–24.

46

[38] G. Russello, C. Dong, and N. Dulay, “Authorisation and conflict resolution for
hierarchical domains,” in Policies for Distributed Systems and Networks, 2007.
POLICY ’07. Eighth IEEE International Workshop on, June 2007, pp. 201–210.

