
PUTTING SECURE COMPUTATION TO WORK

by

JASON M. PERRY

A dissertation submitted to the

Graduate School–New Brunswick

Rutgers, the State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Professor Rebecca N. Wright

And approved by

New Brunswick, New Jersey

October, 2015

ABSTRACT OF THE DISSERTATION

Putting Secure Computation to Work

By JASON M. PERRY

Dissertation Director:

Professor Rebecca N. Wright

The demand for solutions that enable secure computation in distributed systems is

only increasing. However, the current state of secure computation “in the wild” is

highly unsatisfactory: provably secure solutions receive little attention, while untested

security technologies with questionable security claims are being broadly marketed

and deployed.

The classical approach to secure computation is secure multi-party computation

(MPC) protocols, which allow a set of parties to jointly compute any given func-

tion while provably preserving the privacy of inputs and correctness of the output.

Due to their generality, MPC protocols subsume a wide range of secure computation

scenarios. However, MPC’s adoption rate in the real world is extremely low. One

reason is that MPC protocols have complex and differing security definitions; another

is that MPC protocols typically do not map cleanly onto existing network application

architectures.

Another promising research direction is secure protocols tailored for specific types

of computations, such as text search and database access control. Such protocols

attempt to strike a balance between efficiency and security, often by allowing a quan-

tified amount of leakage. However, the practical security level of many of these

protocols is not well understood.

Our research aims to make secure computation more deployable and trustworthy by

bridging the gap between theoretical and applied secure computation. This disser-

tation presents 1) a systematization of MPC protocols that helps clarify their secu-

rity and efficiency properties, 2) new, efficient protocols for access control in private

databases, and 3) new security analyses, including statistical attacks, for currently

ii

used searchable encryption technologies.

iii

Acknowledgments

Thanks to Professor Rebecca Wright for her patient support and wise guidance for

the past four years. It has been a pleasure working with you.

Thanks to Prof. David Cash for being a great “second advisor” and for encourage-

ment and friendship. Thanks to committee members Dov Gordon and Prof. Vinod

Ganapathy for helpful feedback.

Thanks to my collaborators, Giovanni di Crescenzo, Debayan Gupta, Joan Feigen-

baum, Ritu Chadha, Jason Chiang, Allen McIntosh, Debbie Cook, and Thimios Pana-

gos. Working together with you was easy and joyful. Special thanks go to Konstantine

Arkoudas for true intellectual fellowship and the best internship I ever had.

Thanks to Prof. Chung-Chieh (Ken) Shan for invaluable mentoring and for showing

me that I was already a researcher. Thanks to Prof. Matthew Stone for sound

advice on moving forward after I was “orphaned”, and to Prof. William Steiger and

Carol DiFrancesco for helping steer me through the complications of the PhD process.

Thanks to Prof. William Pottenger for support. Thanks to Prof. Jurek Jaromczyk,

who encouraged me to aim high.

Shout-outs to my good friends at Rutgers, Drs. and soon-to-be-Drs. Rajat Roy,

Mark Dilsizian, Sasho Nikolov, Chathra Hendahewa, Fatma Durak, Abdul Basit,

Darakhshan Mir, and Edinah Gnang. Your encouragement was always a lifeline,

whether you knew it or not.

Special thanks to Prof. Henry Kim for the inspiration that set everything in motion

and made this day possible. Thanks to John and Grace Park, Moses and Mary Kim,

and Samuel and Aromy Kim for their sacrificial support.

Thanks to my constant friends John Park, David Gates, Jun Hee Lee, Peter Kim,

Joel Park, Luke Hong, Joseph Lee, Challenge Kim, and Shawn Ahmad-Chaustre.

iv

Most special thanks to Mom, Dad, Patrick, and Mamaw for the environment of

unconditional love that made everything possible.

Biggest thanks go to my wife Anastasia for believing in me and sticking with me

through the years of uncertainty and slow progress, and for lunchboxes beyond num-

ber. I love you. Thanks to our kids Peter, Hope, and Andrew for bearing with my

late nights and frequent absences.

Lastly, but firstly, I would like to acknowledge my Lord and Savior, Jesus Christ.

Mark 13:31.

Acknowledgment of Previous Publications

The work presented in Chapters 3 and 4 of this dissertation has appeared in partial

form in [PGFW14b] and [DCFG+14], respectively. The work in Chapter 5 is joint with

David Cash, Paul Grubbs, and Thomas Ristenpart, and is currently in submission.

v

Contents

Abstract of the Dissertation ii

Acknowledgments iv

1 Introduction 1

1.1 State of the Field . 1

1.1.1 Specific or general protocols? 2

1.1.2 Current State of Secure Computation Deployments 3

1.2 Approach and Outline of Results . 4

1.3 Preliminary Definitions and Notations 5

2 Survey of Related Work 7

2.1 Underlying Cryptographic Constructions 7

2.1.1 Pseudorandom Functions and Permutations 7

2.1.2 Secret Sharing . 8

2.1.3 Byzantine Agreement . 8

2.1.4 Oblivious Transfer . 9

2.1.5 Homomorphic Encryption . 10

2.2 General Multi-Party Computation Protocols 10

2.2.1 Major Achievements in MPC 10

2.2.2 Modern protocols . 11

vi

2.3 MPC Implementations and Deployment Experiments 12

2.4 Secure Data Access Protocols . 13

2.4.1 Private Information Retrieval 13

2.4.2 Private Databases . 13

2.4.3 Oblivious RAM . 13

2.4.4 Searchable Encryption . 14

3 A Systematization of General Multiparty Computation Protocols 15

3.1 Introduction . 15

3.1.1 Definitions . 17

3.1.2 Definition of a general MPC protocol 17

3.2 Linear axis representation of protocol features 19

3.3 MPC theorems as axis dependencies 27

3.4 An Extensible Protocol Database . 29

3.5 Interacting With the Protocol Database 31

3.5.1 Visualizing the space of MPC protocols 32

3.5.2 A prototype decision-making support tool 33

3.5.3 Sample use cases for SysSC-UI 34

3.6 Ongoing Work . 35

3.7 Conclusion . 36

4 Three-Party Protocols for Policy Enforcement in Private Databases 37

4.1 Overview of the Three-party Model and Protocol Requirements . . . 38

4.1.1 Secure and private databases 38

4.1.2 The three-party model . 39

4.1.3 Database Policy Compliance protocol requirements 39

4.1.4 Formulation of DPC as a Multi-Party Computation 41

4.1.5 Policy Enforcement Protocols 42

vii

4.2 Definitions for Privacy-preserving DR and DPC Protocols 44

4.2.1 Preliminaries . 44

4.2.2 Requirements of DR Protocols 45

4.2.3 Properties of DPC protocols 47

4.3 Protocols for Black/Whitelist Policies for Keyword Queries 49

4.3.1 Basic Keyword Protocol π1 . 50

4.3.2 Proof Sketch for Protocol π1 51

4.3.3 Protocol π2: soundness against malicious clients 54

4.3.4 Protocol π3: privacy across multiple queries 56

4.3.5 Remarks on Query Rewriting 57

4.4 Extensions to Range Query Types and Boolean and Range Policies . 58

4.4.1 Boolean Policies . 58

4.4.2 Range Queries and Policies . 60

4.5 Performance Measurements . 61

4.6 Conclusion . 65

5 The Practical Security of Searchable Encryption 68

5.1 Introduction . 69

5.2 Survey of Implemented SE Constructions 73

5.2.1 Shadowcrypt . 74

5.2.2 Mimesis Aegis . 75

5.2.3 Commercial products . 76

5.3 Characterization of SE Schemes and Leakage 76

5.3.1 A Classification of SE Scheme Types 77

5.3.1.1 In-place SE schemes 78

5.3.1.2 Encrypted-index SE 81

5.3.2 Attack Models . 84

viii

5.4 Experimental Methodology . 86

5.5 Query Recovery Attacks . 87

5.5.1 Prior Work: The IKK Attack 87

5.5.2 Query Recovery with a Counting Attack 89

5.5.3 Query Recovery from Partially Known Documents 92

5.6 Document Identification Attacks . 94

5.7 Plaintext Recovery Attacks . 95

5.7.1 Passive Attacks . 95

5.7.1.1 Order of Hashes Known (L3) 96

5.7.1.2 Order of Hashes Unknown (L2) 98

5.7.2 Active Attacks . 98

5.7.2.1 Hash order known (L3), chosen document 99

5.7.2.2 Hash order unknown (L2), chosen documents 99

5.8 Conclusion . 101

6 Insights to Drive the Deployment of Secure Computation 103

ix

1

Chapter 1

Introduction

Who needs secure computation?

The answer is: everybody needs secure computation! A secure computation protocol

is called for whenever mutually distrustful (or less-than-completely-trustful) parties

need to collaborate to compute some function of their joint data, without relying on

a trusted party.

Just a few of the potential application scenarios for secure computation are: auctions

and online deal-making, personalized medicine that preserves the privacy of patient

data, governmental inter-agency data sharing, and encrypted-but-searchable cloud

storage.

The goal of the work presented in this dissertation is to enable the effective de-

ployment of secure computation in such real-world situations. The results presented

address multiple factors, not limited to security and efficiency, but also deployment

and decision-making factors.

1.1 State of the Field

As we are concerned with the adoption and deployment of secure computation in the

real world, the first step is to examine the current state of the field in terms of both

protocol research and deployments of secure protocols.

2

1.1.1 Specific or general protocols?

Many, if not most, of the problems in the domain of secure and private computing can

be treated as an instance of Secure Multi-Party Computation (MPC). Any general

MPC protocol can be seen as emulating a trusted third party. All of the applications

of secure computation mentioned above are trivially solved if there is a third party

that all of the other parties completely trust, with whom they each have a secure

communication channel. Then all that needs be done is for each party to send their

private input data to the trusted party, who computes the result and distributes the

outputs to the parties, revealing nothing further. Insofar as any general MPC protocol

emulates such a third party, it can be used as a solution for these problems.

The first general results showing that general MPC was possible were developed in

the mid-80s. Since then, a steady stream of results has explored numerous aspects of

the problem space, produced refined definitions and proofs, and achieved remarkable

efficiency gains. Even since a paper titled “Secure Two-Party Computation is Prac-

tical” was published in 2009 [PSSW09], remarkable leaps in the efficiency of MPC

have been made. However, we have also seen that “practical” in this sense does not

immediately translate to “gainfully deployed”.

In parallel, research has been carried out to propose secure protocols for specific types

of functionality in specific configurations of machines and networks. This includes

work in the areas of private databases and private information retrieval (PIR), obliv-

ious RAM (ORAM), and searchable encryption. These technologies will be further

surveyed in Chapter 2.

Thus, a central question for anyone needing to solve a secure computation problem

is whether to apply a general MPC protocol or seek a solution tailored to the specific

problem. Each approach has its own pluses and minuses.

Historically, the most obvious reason to choose a specific protocol over a general one

is that the specific protocol may be more efficient. However, as mentioned, that gap is

being narrowed by recent work in highly efficient general MPC protocols. Efficiency

is no longer the only issue in play.

An advantage of the general MPC approach is in these protocols, security is inherent

to the protocol rather than the functionality. This implies that as long as the general

MPC protocol is correctly implemented and its proof of security takes environmental

3

conditions into account, any computation undertaken using that protocol is secure. In

contrast, developing a new application-specific secure computation protocol requires

a new demonstration of its security. A disadvantage of the application-specific ap-

proach that is not inherent to the approach itself, but has a large practical impact, is

that there may be a greater temptation to develop and deploy an application-specific

protocol without giving sufficient time for a security proof and thorough security anal-

ysis. This is a reality that will come to light especially through the results presented

in Chapter 5.

On the other hand, a significant potential advantage of specific protocols is that they

may be easier to deploy. An application-specific protocol may be easier to fit to an

existing network configuration; it may even be legacy-compliant, which means that

it can be deployed by within a pre-existing service by its users without any changes

required by the service provider. There are provably-secure protocols for specific

computations that are easier to fit into existing client-server configurations, yet still

have very broad applicability, such as search and retrieval. In general MPC, the

system must seemingly be built from the ground up with the capability of executing

MPC protocols in mind. This includes expressing the functionality in the model of

computation required by the MPC protocol, which is typically a circuit.

1.1.2 Current State of Secure Computation Deployments

In reference to the positives and negatives of application-specific versus general secure

computation solutions discussed above, the current state of deployment in some ways

represents the worst of both worlds.

There are still very few deployments of provably secure general MPC protocols,

and most of them have been one-time experiments. These include the well-known

(within the field) Danish beet auction [BCD+09] and the Taulbee survey experiment

[FPRSJ04]. This lack of adoption is by no means due to lack of interest or effort on

the part of MPC researchers. Efforts to deploy MPC more broadly continue to the

present day, notably work involving the Sharemind system [Bog13, BKLPV13] and

the recent commercialization of the SPDZ protocol and its descendants [DKL+13].

Some of the reasons for low adoption of general MPC were discussed in the previous

section. An additional barrier, perhaps the hardest to overcome, is that MPC pro-

4

tocols are themselves highly complex theoretical objects. It is difficult to precisely

understand the security achievements of any given protocol and how it may apply in

the real world. This is the primary driver for the work presented in Chapter 3.

In the domain of application-specific protocols, the problem seems like the “dual” of

the problem with general MPC: there is broad marketing and deployment of products

that do not provide the security they claim to. This is the case not merely because

of security holes caused by software bugs; there are security products that implement

fundamentally unsound protocols with no security proof at all.

A second cause of insufficient security in application-specific deployments is poorly

understood leakage profiles of protocols that do have some proof of security. Some

application-specific protocols have proven security that includes a quantified amount

of leakage. However, though the leakage is quantified, the real-world ramifications of

this leakage may not be well understood. One of the major contributions of the work

in Chapter 5 is to demonstrate how exploitable such leakage is in real settings.

1.2 Approach and Outline of Results

To help remedy this regrettable situation, the work in this dissertation pushes on

the problem from both sides: making protocols with full theoretical security more

deployable, and making application-specific protocols more secure in spite of their

leakage. We feel that when research progress goes in parallel on both the theoretical

and applied fronts, they both benefit from the feedback and cross-pollination, and

better bridges are built between cryptography and real-world security.

We begin with a survey of relevant research results in Chapter 2. In Chapter 3,

we present a systematization of the space of general MPC protocols. In Chapter 4,

we present highly efficient protocols for one particular application: enforcing access

control in private databases. In Chapter 5, with the help of statistical attacks, we sys-

tematically investigate the security of protocols for secure search of outsourced client

data. This includes solutions under the heading of Symmetric Searchable Encryption,

as well as more ad-hoc protocols currently being deployed. With the perspectives

given by these contributions, we conclude in Chapter 6 with observations and recom-

mendations regarding the continued advancement of secure computation.

5

1.3 Preliminary Definitions and Notations

We close the introductory chapter by presenting terminology and notation that ap-

plies to all varieties of secure computation protocols and will be used throughout

the dissertation. Further definitions relevant to specific results are presented in the

appropriate chapters.

A function over the set of natural numbers is negligible if for all sufficiently large

natural numbers σ ∈ N , it is smaller than 1/p(σ), for any polynomial p.

A secure computation protocol is carried out by a set of parties, which are computa-

tional agents. The number of parties is usually denoted n. The parties are connected

by a set of communication channels ; usually a lossless channel is assumed to exist

between every pair of parties. Whether the channel needs to be private—that is,

immune to eavesdropping—depends on the protocol. The security of most protocols

depends on the assumption that the parties are computationally bounded; the num-

ber of computational steps that any party can perform and the number of bits it can

communicate is bounded by some polynomial in the input size.

The input of party j to the secure computation is denoted xj. The goal of a se-

cure computation is to compute a functionality f of those inputs, with outputs being

returned to the parties themselves. We write a functionality, which may be proba-

bilistic, as f(x1, . . . , xn)→ (y1, . . . , yn). A secure computation protocol will typically

be denoted by π. We abuse notation somewhat by using π for both protocols for

computing a specific functionality f , and for protocols that allow any functionality

of a given form to be computed.

The security of a protocol π is defined with respect to an adversary (A) who suc-

cessfully corrupts some subset of the parties, fully controlling those parties and with

access to all their protocol transcripts. Parties that are not corrupted are referred to

as honest.

The set of subsets of corrupted parties that a protocol can tolerate while remaining

secure is referred to as its adversary structure. Since the majority of protocols pre-

sented in the literature tolerate any subset of corrupted parties up to a given fraction

of n, we generally refer to the corruption threshold, understanding that the definitions

can also apply to general adversary structures.

6

We consider two fundamental security requirements for a secure computation, privacy

and correctness.

• Privacy: A protocol π is private if for every honest party i, no subset of

corrupted parties smaller than the threshold can gain additional information on

xi as a result of participating in π, apart from what can be inferred from the

output.

• Correctness: A protocol π is correct if no subset of corrupted parties smaller

than the threshold can cause any honest party to receive an incorrect output of

the functionality.

Note that the above definitions say nothing about what an adversary can accomplish

by its choice of inputs for the corrupted parties; there is nothing we can do about that.

A protocol is said to have computational security if either its privacy or correctness

depends on computational assumptions and limitations; otherwise, its security is

called unconditional.

The security of protocols is also defined with respect to the allowed actions of the ad-

versary. The two most common adversary types are honest-but-curious and malicious.

An honest-but-curious adversary is one that follows π, providing correct outputs at

each step, but may try to gain additional information from the corrupted parties’

transcripts. A malicious adversary is one that may take arbitrary actions (within its

computational limits) to break the protocol’s security.

Further definitions will be introduced as they are needed. Of course, the ideal is that

a protocol provably meets these security requirements. This is not always achieved,

and sometimes relaxations of the full security definitions are purposefully introduced

for purposes of efficiency.

7

Chapter 2

Survey of Related Work

As the literature that applies to secure computation is so extensive, this survey is of

necessity highly selective. The largest body of related work described here consists of

results in the area of general multiparty computation, which we abbreviate as MPC.

We begin with an overview of preliminary cryptographic results on which many gen-

eral MPC and application-specific secure computation protocols are built. Then we

highlight some of the most significant papers of the general MPC literature. Next

we survey papers that focus on implementation issues for MPC protocols and ex-

periments in real-world deployment. Lastly, we give a selection of work describing

application-specific secure computation protocols that relate most directly to the work

in this dissertation.

2.1 Underlying Cryptographic Constructions

In this section we cover a subset of the seminal results in cryptography that comprise

the backbone of many secure computation protocols, as well as higher-level construc-

tions that have points of intersection with MPC results.

2.1.1 Pseudorandom Functions and Permutations

Two of the most fundamental types of cryptographic functions used for data hiding

and authentication are Pseudorandom Functions (PRFs) and Pseudorandom Permu-

8

tations (PRPs). These are used as “black boxes” in many higher-level cryptographic

protocols. Keyed PRPs and PRFs are currently implemented by efficient block ci-

phers and hash functions, though there is currently no proof that they satisfy the

definitions of PRPs and PRFs.

For a detailed presentation of these concepts, refer to Katz & Lindell [KL14].

2.1.2 Secret Sharing

The technique of secret sharing using polynomial interpolation that underlies many

MPC protocols was introduced by Shamir [Sha79]. In Shamir’s scheme, a polynomial

of degree t is used to share an element of the polynomial’s underlying field among

n parties, such that no subset of less than t + 1 parties can gain any information

about the secret. Thus Shamir secret sharing achieves perfect (information-theoretic)

privacy.

Many additional secret sharing schemes have been proposed and applied to MPC. An

important advance for MPC was the introduction of “Verifiable Secret Sharing” by

Chor et al. [CGMA85]. VSS protocols allow secret-shared values to be reconstructed

even if some players are malicious, that is, that may arbitrarily deviate from the

sharing protocol. This is key for constructing MPC protocols with security against

maliciously corrupted parties, Cramer et al. [CDM00] showed how general MPC can

be constructed from any linear secret-sharing scheme, a category into which many

known secret-sharing schemes fall. Later, Cramer et al. [CDI05] showed how to

convert shares between different secret-sharing schemes, providing efficiency gains for

MPC.

2.1.3 Byzantine Agreement

Protocols for Byzantine Agreement enable a group of communicating parties, some

of which may be dishonest, to agree on a value, such that all honest parties are

guaranteed to hold the true value. An overview of the problem with algorithms

is given in [LSP82]. Unfortunately, perfectly secure Byzantine agreement cannot be

achieved in the case that n/3 or more of the parties are corrupted. Optimal algorithms

achieving this bound were given in [FM88].

9

In the context of MPC protocols, Byzantine agreement can be used as a substitute

for a broadcast channel, which allows a party to broadcast a single value to all other

parties, with the parties being assured that the same value has been received by all

of them.

2.1.4 Oblivious Transfer

Oblivious Transfer (OT) is a specific type of multi-party computation in which a

sender holding multiple inputs communicates one or a subset of those inputs to a

receiver, in such a way that the receiver cannot learn which inputs were received.

The original definition is due to Rabin [Rab81]. The generality of the OT operation

was demonstrated by Killian [Kil88], who showed that general MPC can be uncondi-

tionally constructed on the assumption of Oblivious Transfer.

OT protocols with full security against malicious adversaries seem to be expensive to

achieve. The first protocol for adaptively secure Oblivious Transfer was presented by

Beaver [Bea98]. The age of modern efficient OT protocols, requiring only a constant

number of group exponentiations per OT, started with Naor and Pinkas [NP01].

The major breakthrough in making OT usable in practical protocols was OT Exten-

sion, also presented first by Beaver [Bea96]. This allows a large number of oblivious

transfers to be efficiently computed from just a small number of “seed” OTs, using

only the assumption of one-way functions.

A framework for oblivious transfer allowing multiple levels of security in semi-honest

and malicious models, in both UC and non-UC versions, appears in [PVW08]. The

current most efficient single OT protocol is given by Chou and Orlandi in [CO15].

An interesting variation on OT is the protocol presented by Rivest [Riv99], which

makes use of a semi-trusted third party to accomplish a highly efficient Oblivious

Transfer. The third party does not see any of the sender’s input data nor find out

which data the receiver obtained. This result is relevant to the work in Chapter 4 on

distributing trust in private database systems.

10

2.1.5 Homomorphic Encryption

Homomorphic encryption schemes allow certain types of computations to be car-

ried out on encrypted data by parties that cannot efficiently decrypt it. The recent

discovery by Gentry [Gen09] of the existence (given suitable assumptions) of fully

homomorphic encryption holds promise for many secure computing applications. Us-

ing FHE directly to achieve MPC is still far more expensive than other means, but

insights related to homomorphic encryption have driven the development of more

efficent MPC protocols, e.g. SPDZ [DPSZ12].

2.2 General Multi-Party Computation Protocols

In this section we highlight some of the key achievements in general MPC proto-

cols. The presentation is chronological and focuses first on the introduction of new

conceptions of security, before jumping to describe some of the currently most effi-

cient protocols. The systematization given in Chapter 3 provides a framework for

thoroughly understanding and comparing these and many more results in general

MPC.

2.2.1 Major Achievements in MPC

The first protocols for secure multi-party computation were presented by Yao [Yao82,

Yao86]. Though the papers do not present any general MPC protocols, Yao is credited

with the idea of combining multi-party protocols for addition and multiplication to

form garbled circuits by which any function can be computed securely.

The seminal result showing the possibility of computationally-secure multiparty com-

putation among three or more parties is by Goldreich et al. [GMW87]. This work

utilizes the verifiable secret sharing protocol of [CGMA85] and describes a “proto-

col compiler” for transforming protocols secure against semi-honest adversaries into

protocols secure against malicious adversaries.

Unconditionally-secure MPC was introduced in [BGW88, CCD88]. These results

show that as long as fewer than n/3 parties are corrupted (even maliciously) and a

secure channel exists between every pair of parties, MPC with perfect security can be

11

achieved. Definitions of statistically secure MPC, which is less than perfect security

yet does not require computational assumptions, were given in Rabin and Ben-Or

[RB89].

A significant step in provable security for MPC was definitions and proofs of Univer-

sally Composable (UC) security, given by Canetti [Can00, Can01]. A UC-secure MPC

protocol can be considered secure regardless of the environment in which it executes,

and whether or not it is composed concurrently or sequentially with other MPC pro-

tocol executions. The first constructions of universally composable MPC protocols,

requiring a Common Reference String or CRS, were presented in [CLOS02].

An intriguing related problem, Secure Multiparty Computation of Approximations,

was treated by Feigenbaum et al. [FIM+01]. This can be seen as a generalization of

‘exact’ MPC. Proving that an approximating MPC is secure has unique difficulties,

because an approximation can reveal more data about the parties’ inputs than the

true answer.

2.2.2 Modern protocols

The current state-of-the-art protocols combine ideas from earlier information-theoretic

and assumption-based protocols. The most efficient protocols are given in what is

known as the preprocessing model, which means that the most expensive part of the

computation can be carried out by the parties in advance, before either the function

to be computed or its inputs is specified. This allows protocols that are secure against

a malicious adversary with very little additional online cost over security against an

honest-but-curious adversary.

The beginning of this era of MPC may be considered to begin with Damgard et

al. [DO10], followed and improved upon by Bendlin et al. [BDOZ11]. Significant

efficiency improvements in the offline phase were achieved in [DPSZ12]. This was

the first protocol in which each multiplication gate requires a number of operations

in the offline phase that is less than quadratic in the number of parties. Refined

versions of this protocol, known as “SPDZ”, are currently being implemented and

commercialized.

12

2.3 MPC Implementations and Deployment Ex-

periments

The work presented in this dissertation shares common goals with research meant

to foster the real-world adoption of secure multi-party computation. Thus, works

describing MPC implementations and in-the-field experiments are of particular sig-

nificance.

The first known implementation of secure two-party computation is Fairplay [MNPS04],

which also provided a compiler from a C-like language to Boolean circuits This

achievement generated much interest but was not widely adopted, being seen largely

as a proof-of-concept. It was followed in 2008 by FairplayMP [BDNP08], the first

known implementation of multi-party computation based on the constant-round pro-

tocol of [BMR90]. A somewhat successful field experiment was carried out by Feigen-

baum et al in 2004 [FPRSJ04].

A novel approach to implementing two-party computation was put forth in the

TASTY framework [HKS+10], which uses a programmable hybrid of garbled circuits

and homomorphic encryption, and allows users to program protocols directly, not

merely functionalities. The next step was VIFF [DGKN09], which was an attempt

to overcome one efficiency bottleneck by minimizing the number of synchronization

points required for MPC.

The current most flexible, actively developed, publicly available framework for secure

multiparty computation is Sharemind, described most thoroughly in Bogdanov’s PhD

thesis [Bog13]. It began as an implementation of three-party semi-honest secure com-

putation in Bogdanov et al. [BLW08] and grew from there. More recent experiments

are described in Kamm et al. [BKLPV13].

The SPDZ protocol of Damgard et al. [DPSZ12] has also been implemented, with

experiments and improvements to the original protocol described in [DKL+13]. Its

source code is not publicly available, however.

Information from this section was partially derived from a report by Segal [Seg13].

13

2.4 Secure Data Access Protocols

The work described here is for application-specific protocols, yet of a kind having

very broad use cases, as they provide functionality for secure data access.

2.4.1 Private Information Retrieval

Private information retrieval, or PIR, is a secure computation in which a client re-

trieves records from a database held by a server, without the server learning which

records were retrieved. In the case that the client may only access a single record

from the database, it is equivalent to Oblivious Transfer. The trivial algorithm is

for the client to download the entire database, but clearly this has a communication

complexity equal to the size of the database. The first demonstration that PIR could

be achieved with less communication, by using multiple servers, is by Chor et al.

[CKGS98]. The first protocol for single-database, computationally private informa-

tion retrieval was by Kushilevitz and Ostrovsky [KO97].

2.4.2 Private Databases

On the more applied side, numerous efforts have sought to add efficient security and

privacy features to the classical relational database model, without achieving the strict

guarantees of PIR. MIT’s CryptDB [PRZB11] integrates a number of security and

privacy techniques into an SQL database platform. The IARPA SPAR project pro-

duced significant new research in privacy-preserving databases, including the “Blind

Seer” system by Pappas et al [PKV+14] and the SPADE private database developed

by ACS [DCCMP14], with which the work in Chapter 4 is integrated.

2.4.3 Oblivious RAM

Oblivious RAM (ORAM) protocols combine private information retrieval with private

information storage, hiding both the reads and writes of a client from a server holding

a set of data. The pioneering work is by Goldreich and Ostrovsky [GO96].

Both PIR and ORAM are more efficient for their specific tasks than a general MPC

14

solution would be; in particular, the communication complexity of non-trivial PIR

and ORAM is sub-linear in the size of the database. MPC protocols typically assume

that the entire inputs of all parties must be shared.

However, ORAM may still be too slow for applications with large-scale datasets.

The best ORAM solutions have overhead that is logarithmic in the size N of the

database, while the only solution that would be considered truly scalable for large

datasets would have overhead that does not depend on N at all. This is a primary

motivator for the work presented in Chapter 5.

2.4.4 Searchable Encryption

We can say that “Searchable Encryption is to ORAM as Private Databases are to

PIR.” That is, research in searchable encryption seeks to solve the practical problem

of search on outsourced data in a more efficient manner than ORAM, by allowing for

a controlled amount of leakage.

The most well-known solutions of this type in the literature are referred to as Sym-

metric Searchable Encryption (SSE), as they make use of highly efficient symmetric

encryption techniques, e.g., block ciphers. The field was pioneered by Song et al.

[SWP00], who introduced the idea of “hiding until search”. In this scenario, a client

uploads her dataset in a form that is opaque to the server until such time that the

client issues a search query. The goal of the SSE scheme is to minimize the amount

of additional information revealed to the server by each search operation.

The modern era of index-based SSE constructions was ushered in by Curtmola et al.

[CGKO06]. A fully-length-hiding SSE scheme by means of intertwined linked lists

was presented by Cash et al. [CJJ+13]. The authors also present new constructions

for Boolean queries.

A structured classification of searchable encryption schemes that shows their strengths

and vulnerabilities is presented in Chapter 5.

15

Chapter 3

A Systematization of General

Multiparty Computation Protocols

A major barrier to the adoption of general MPC is the sheer number of results and

protocols that have been presented in the field, each with different parameters and

providing different types of security guarantees. The purpose of the research presented

in this chapter is to provide a way to get a handle on this body of results, with the

goal of making it more usable in real-world applications.

We propose a framework for organizing and classifying research results in the active

field of secure multiparty computation (MPC). Our systematization of secure com-

putation consists of (1) a set of definitions circumscribing the MPC protocols to be

considered; (2) a set of quantitative axes for classifying and comparing MPC proto-

cols; and (3) a knowledge base of propositions specifying the known relations between

axis values. We have classified a large number of MPC protocols on these axes and

developed an interactive tool for exploring the problem space of secure computation.

We also give examples of how this systematization can be put to use to foster new

research and the adoption of MPC for real-world problems.

3.1 Introduction

For more than 30 years, since the groundbreaking results of Yao [Yao82, Yao86]

and Goldreich et al. [GMW87], hundreds of research papers on Secure Multiparty

16

Computation (MPC) have appeared, many of them proposing original protocols for

carrying out general secure computation under varying sets of assumptions. In this

chapter, we systematically organize the main research results in this area, in order

to:

• Help potential users of MPC learn which existing protocols and implementations

best match the sensitive-data computations they would like to perform. This

may stimulate adoption of MPC in areas where it would be beneficial.

• Help new researchers get up to speed in a complex area by providing an overview

of the “lay of the land.”

• Help MPC researchers explore the problem space and discover remaining open-

ings for protocols with new combinations of requirements and security features—

or for new impossibility results that preclude the existence of such protocols.

Most research papers in MPC include comparisons of their results to related work,

often with tables related to the most significant protocol features, in order to provide

context for understanding the paper’s contributions. However, none has attempted to

organize the larger problem space in order to meet the goals listed above. There are a

handful of introductory surveys and textbook-like treatments of MPC [Gol04, CD05,

HL10, CDN13]; these have (justifiably) focused on a narrower region of the problem

space or specific security model, in order to present the material in a pedagogically

clean way. In contrast, we do not limit ourselves to one model or set of definitions

but instead provide a framework for examining their variations.

In Sections 3.1.1, 3.2, and 3.3, we present the three major components that we believe

are needed to systematize the main body of MPC results: (1) a set of definitions

delineating the boundaries of the problem space; (2) a set of quantitative features

for describing protocols; and (3) a knowledge base of propositions specifying the

known relationships and dependencies among features. In Section 3.4, we describe

the construction of a systematization database of more than 60 significant MPC

protocols. In Section 3.5 we present a user interface designed to aid the exploration

of the database of systematized MPC protocols and show how our systematization

can be put to work to facilitate new research. Finally, in section 3.6 we describe how

these efforts have thus far been transitioned to a community-maintained model.

17

3.1.1 Definitions

As a necessary prerequisite for this work, we have carried out an extensive literature

survey producing an annotated bibliography of MPC research. It contains over 180

papers from the MPC literature, as well as a sampling of important papers for related

problems, including secret sharing and oblivious transfer.

In addition to a written paragraph annotating each paper, the BibTeX source of our

Annotated Bibliography includes tags for each paper indicating which aspects of MPC

it treats, e.g., 2party for a paper with a specifically two-party protocol, or uncond for

a protocol with unconditional security. These tags make it possible to write scripts

to automatically generate a bibliography for any specific sub-problem or aspect of

MPC.

The bibliography continues to be updated on an ongoing basis. The most recent

version is available online [PGFW14a].

3.1.2 Definition of a general MPC protocol

In this section, we provide definitions to delimit the scope of the secure computation

protocols that we are concerned with. These definitions are purposely quite broad,

so that a large range of work can potentially be captured by them.

Variables that determine the fundamental nature of an MPC protocol include: (1)

whether the protocol is for a fixed number of parties (most commonly, two) or is for

any number n ≥ 2 of parties, (2) whether the protocol is for computing one specific

functionality (e.g., set intersection) or any of a class of functionalities, and (3) whether

the protocol treats exact computation only or secure computation of approximations,

which is a generalization of exact MPC [FIM+01]. Our initial literature survey en-

compassed all of these, although not exhaustively. For the current systematization,

we consider only protocols for exact computation, and thus we have four definitions,

one for each setting of the two variables.

Since the way that security is defined varies from protocol to protocol, and indeed a

primary purpose of our systematization is to examine such variations, our definitions

necessarily cannot give any fixed definition of security. What matters is that, in the

literature, protocols are proven to meet rigorous definitions of security and that our

18

systematization indicates which definitions are actually in use for a given protocol.

Therefore, for an MPC protocol to be considered as a candidate for systematization,

in addition to fitting into one the definitions listed below, it must be accompanied by

rigorous definitions of security, including privacy of inputs and correctness of outputs,

that the protocol has been proven to meet. The nature of these security definitions

is elaborated in the next subsection.

Definition 1. A protocol for Secure n-party Computation of a functionality f is

a specification of an interactive process by which a fixed number n of players, each

holding a private input xi, can compute a specific, possibly randomized, functionality

of those inputs f(x1, ..., xn) = (y1, ..., yn).

Definition 2. A protocol for Secure Multiparty Computation of a functionality f is

a specification of an interactive process by which any number n ≥ 2 of players, each

holding a private input xi, can compute a specific, possibly randomized, functionality

of those inputs f(x1, ..., xn) = (y1, ..., yn).

Definition 3. A protocol for Secure n-party Computation of a class C of function-

alities allows a fixed number n of players, each holding a private input xi, to com-

pute an agreed-upon, possibly randomized, functionality of those inputs f(x1, ..., xn) =

(y1, ..., yn), where f is any member of the class C of functionalities.

Definition 4. A protocol for Secure Multiparty Computation of a class C of func-

tionalities allows any number n ≥ 2 of players, each holding a private input xi, to

compute an agreed-upon, possibly randomized, functionality of those inputs

f(x1, ..., xn) = (y1, ..., yn), where f is any member of the class C of functionalities.

The class C is typically used to refer to the model of computation in which a proto-

col’s functionalities are represented, such as circuits or RAM programs. A majority

of the work in MPC has been concerned with universal (Turing-complete) computa-

tion, but there has been work exploring secure computation specifically for restricted

computation classes, such as AC0 or NC1 circuits or regular or context-free languages.

All of the protocols we surveyed for the systematization fall under one of these def-

initions, with the majority coming under the most general definition (Definition 4).

Yao-like two-party computation protocols fall under Definition 3.

19

3.2 Linear axis representation of protocol features

The main conceptual object in our systematization is a set of linear axes, where each

axis represents an ordering of values of a single feature of MPC protocols. Every axis

has at least two labeled values, at the endpoints. Some axes are continuous and others

discrete. MPC protocols can be scored on these axes, allowing them to be compared

quantitatively. This is the first attempt we are aware of to factor research results

in MPC into such a representation. The axes were selected based on our literature

survey, using two guiding principles:

1. The axes should be as orthogonal as possible, minimizing overlap (although

some logical dependencies between axes are unavoidable.)

2. The set of axes should be complete in the sense that they can express all dis-

tinctions of security and (asymptotic) efficiency between any two protocols.

For any discrete axis that is not inherently binary, the number of occupied interme-

diate values on the axis is subject to change. The diagrams below show intermediate

values that are known to have been achieved by MPC protocols. However, this should

not be seen as finally determining the number of points on the axis. Indeed, one of the

objectives of the axis representation is to highlight the possibility of future protocols

with new intermediate values. This has already happened for several axes over the

history of MPC research. For example, the appearance of protocols tailored for covert

adversaries, such as those of Aumann et al. and Goyal et al. [AL07, GMS08], showed

that there are intermediate values along the “Maliciousness” axis (Axis 7), whereas

previously only the passive/malicious distinction had been considered.

We orient all the axes in the same direction, such that moving from left to right

on a given axis indicates an improved protocol—e.g., one that is more efficient, has

a stronger security guarantee, or requires a weaker setup or computational-hardness

assumption. In drawing the non-numeric axes, the points have been placed with equal

spacing; the relative distances between points on these axes should not be considered

significant.

Our axes do not include the model of computation in which a protocol is expressed.

This is a categorical feature which is indicated by the definition (Section 3.1.1) under

which the protocol falls. The model of computation for each protocol is included

20

in its entry in our MPC protocol database, described in Section 3.4. We have not

generated axes for proof techniques, because a proof technique is not a function of

the protocol; a protocol’s security may be proven in a number of ways.

We now proceed to describe the axes and values in detail. The axes are informally

grouped into four categories, which serves to highlight the tradeoffs inherent in achiev-

ing secure multiparty computation. The axes in categories I and II, Environmental

features and Assumptions, can be thought of as what one “pays” to enable secure

MPC, and categories III (Security) and IV (Efficiency) can be seen as what one is

“buying.” A similar tradeoff structure can also be seen on a smaller scale among axes

within the efficiency category. When it is helpful, our description of an axis also cites

particular MPC solutions that instantiate points on the axis.

I. Environmental Features Axes

This is the category of features assumed to be provided by the execution en-

vironment. The right endpoint of these axes indicates that the feature is not

required in any form.

1. Trusted setup

Common

Reference String PKI

No trusted

setup

Protocols achieving the highest composable security levels require some

type of trusted data to be shared by all the parties prior to the protocol

execution. The middle point, PKI, is occupied by protocols such as that

of Barak et al. [BCNP04], who showed how to use public-key-like assump-

tions instead of a polynomial-length common reference string in any case

where computational security suffices.

2. Broadcast

Broadcast channel No broadcast

The broadcast-channel assumption means that each party has the ability

to send a message to all other parties simultaneously, and that all parties

receiving the broadcast have assurance that the same message was received

by all parties.

21

3. Private channels

Private channels No private channels

The private channel assumption is only significant for unconditionally se-

cure protocols, because cryptography using basic computational-hardness

assumptions can be used to emulate private and authenticated communi-

cation channels.

4. Synchronization

Synchronous

communication Limited Synchronization
Asynchronous

model

A basic assumption of the early MPC protocols is that they operate on a

synchronous network, in which all sent messages arrive on time and in or-

der. The asynchronous case was first considered in Ben-Or et al. [BCG93],

where messages may be arbitrarily delayed and arrive in any order. Note

that, in such a case, it is impossible to know whether a corrupted party

has failed to send a message or, rather, the message is simply delayed.

Later works, such as that of Damg̊ard et al. [DGKN09], have staked out

intermediate points on this axis by giving protocols that require a smaller

number of synchronization points (typically a single one).

II. Assumption Axes

5. Assumption level

Enhanced TDP/LWE/other
Trapdoor Permutations

One-way Functions

None

A total (linear) ordering for cryptographic assumptions is not known, and

the separation of assumptions cannot currently be unconditionally proven.

We therefore use broader categories of assumption type, because these are

usually sufficient to distinguish protocols. If a protocol makes no such

assumptions, it is said to have unconditional security (see Axis 10). Some

work specifies protocols in a hybrid model, with no concrete computational

22

assumptions, but in which some high-level cryptographic operation (such

as oblivious transfer) is assumed to exist as a black box. See Section 3.4

for a discussion of how such protocols are treated in this systematization.

6. Specific or general assumption

Specific Assumption General Assumption Class

Some more efficient protocols have been designed by making use of specific

number-theoretic assumptions. This axis indicates whether the protocol

requires such assumptions or whether it is stated so as to use any assump-

tion from a given class, e.g., trapdoor permutations.

III. Security Axes

7. Adversary maliciousness

Passive (HBC)

Fail-stop
Covert

Malicious

A passive, or honest-but-curious, adversary is one that follows the pro-

tocol but may use the data of corrupted parties to attempt to break the

protocol’s privacy. A fail-stop adversary follows the protocol except for

the possibility of aborting. A malicious adversary is one whose behavior

is arbitrary, and a covert adversary is like a malicious one, except that it

only deviates from the protocol if the probability of being caught is low.

Not present on the axis is the value “rational,” since the class of rational

adversaries is in fact a generalization that can encompass the entire axis,

except for fully malicious, because malicious behavior can be truly arbi-

trary. The position of a rational adversary on the axis is determined by

its utility function.

8. Adversary mobility

Static
Adaptive

Mobile

A static adversary must choose which parties to corrupt before the proto-

col begins. An adaptive adversary can choose which parties to corrupt, up

23

to the security threshold (see Axis 9), over the course of the computation,

after observing the state of previously corrupted parties. A mobile adver-

sary is able to move corruptions from one party to another in the course

of the computation.

9. Number of corrupted parties tolerated

none < n/4

< n/3

< n/2

< n

This is the maximum number of corrupted parties for which the (strongest)

security guarantees of the protocol hold. The values shown are chosen

merely to be representative of the most well known protocols; any value

along the axis is possible.

Some protocols tolerate additional corrupted parties at a lower level of

maliciousness; see axes 13 and 14.

10. Security type

Computational

Statistical
Perfect

Both statistical and perfect security are unconditional, that is, not based

on computational hardness assumptions. Note that true unconditional

security typically cannot be achieved through the internet, even if an

unconditionally-secure protocol is used, since all unconditionally secure

protocols require the assumption of either private or broadcast channels,

which on the internet must be emulated by cryptography.

11. Fairness guarantee

No agreement

No fairness
Partial Fairness

Complete Fairness

Guaranteed output

A protocol is fair if all honest parties receive the output if any party does.

Agreement means that either all honest parties receive the output or none

of them do. Protocols without agreement were introduced by Goldwasser

et al. [GL02]. Some authors use the term “with abort” to refer to the

no-fairness situation, in which dishonest parties can abort after receiving

the correct output.

24

12. Composability

Stand-alone
Parallel composable

Concurrent composable

Universally composable

The composability guarantees of a protocol indicate whether that protocol

remains secure when executed in an environment where other protocols

may be executed sequentially or in parallel. The strongest guarantee, uni-

versal composability (UC), implies that the security properties of a protocol

hold regardless of the environment in which it is executed.

13. Bound for additional passively corrupted parties tolerated

none
< n/3

< n/2

< 2n/3

< n

This axis applies to protocols achieving “mixed adversary” security. A pro-

tocol that tolerates a certain proportion of maliciously/covertly corrupted

parties may also tolerate an additional number of passively corrupted par-

ties, up to a certain threshold. The values on this axis represent that

upper threshold. This and the following axis relate to MPC protocols with

“graceful degradation”, which is surveyed in Hirt et al. [HLMR11].

14. Corrupted parties tolerated with weakened security

none
< n/3

< n/2

< 2n/3

n− 1

This axis applies to protocols with “hybrid security” results. A protocol

that tolerates a certain proportion of corrupted parties (Axis 9) may in

fact tolerate a larger number of corruptions, but with a weaker security

type, e.g., computational vs. unconditional security.

15. Leakage Security

Not leakage-secure

Input leakage-secure

State leakage-secure

Leakage security is an additional guarantee that an adversary cannot gain

an advantage even if it can force all honest players to “leak” some bits

25

of information about their state in the course of the computation. See

definitions in Bitansky et al. [BCH12].

16. Auditability

Not auditable Auditable

This axis indicates whether the protocol includes computations that allow

for examining the transcript of computation after it is finished, to prove

that the parties have correctly followed the protocol. This may be the

most recent axis to come into existence, starting with a result of Baum et

al. [BDO14]

IV. Efficiency Axes

Our efficiency axes are concerned primarily with the asymptotic efficiency of

the protocol in question.

17. Online computational overhead

Superlinear Computation Linear

Historically, the main efficiency concern in MPC has been with commu-

nication rather than computational complexity; thus the lack of elabo-

ration of this axis. More recently, Ishai et al. have notably shown how

to achieve MPC with constant computational overhead [IKOS08], and the

RAM-model results of Gordon et. al [GKK+12] have shown the possibility,

in the RAM model, of MPC with amortized computation that is sublinear

in the input size.

18. Online communication complexity (rounds)

polynomial rounds

logarithmic (O(d)) rounds

O(1) rounds

3 rounds
2 rounds

Here, d is the depth of the circuit representing the functionality. Mini-

mizing the number of rounds of computation, independently of the total

amount of bytes communicated, is crucial for efficiency in a high-latency

or asynchronous network environment. Fully general MPC (with three or

26

more parties) was shown to require at least three rounds in Gennaro et al.

[GIKR02], although for some functionalities a 2-round protocol is possible.

19. Online communication complexity (per-gate)

Ω(n3)

O(n2)

O(n)

This is the most significant measure of efficiency for MPC protocols. It

can represent either bits or field elements of communication. The original

BGW protocol has a communication complexity of O(n6) bits per mul-

tiplication gate in the worst case. Anything cubic or worse occupies the

lowest position on our axis, as finer distinctions at that level would have

little value for distinguishing current, more practical protocols.

20. Preprocessing Communication complexity

Ω(n2)

Linear
Sublinear

No preprocessing

Many recent protocols achieve improved online communication efficiency

by means of a preprocessing phase. In the case where the functionality is

represented as an arithmetic circuit, the preprocessing phase is typically a

simulation of a trusted dealer that distributes multiplication triples, which

allow local evaluation of multiplication gates in the online phase. Sublinear

preprocessing typically indicates that the preprocessing consists only of

exchange of public keys, which is also indicated as a setup assumption

(Axis 1).

21. Preprocessing Dependency

Input-dependent

Function-dependent

Independent or

no preprocessing

In some protocols, the preprocessing phase depends on the specific func-

tionality to be computed, while in others it only depends on the upper

bound of the size of the circuit. In all cases, the preprocessing is indepen-

dent of the parties’ inputs.

27

22. Preprocessing Reuse

Not Reusable Reusable

This indicates whether the information computed in the preprocessing

stage, of whatever type or amount, can be reused for multiple compu-

tations. Data of the nature of a public key typically can be reused, while

e.g., garbled circuits traditionally cannot be reused without breaking se-

curity. But see a recent result of Goldwasser et al. [GKP+13].

As mentioned above, we have endeavored to make this selection of axes as complete as

possible. The value of completeness in a systematization can be illustrated as follows:

Suppose there are two MPC protocols whose scores along the axes are identical for

every axis except one. If the set of axes is complete, then we can be confident that

the protocol with the higher value on that axis is strictly better.

3.3 MPC theorems as axis dependencies

Since many MPC protocols involve essential tradeoffs in order to achieve security

or efficiency, a systematization of secure computation also needs to model what is

known about how features of protocols interact. In this section, we present the

second major aspect of our systematization: a list of each of the theorems known

to imply constraints among the axes’ values, each accompanied by a statement of

the constraint. References are given to the paper in which the theorem implying the

constraint was proven.

Theorem 1 ([BGW88]). If statistical or perfect security is obtained, then either a

broadcast channel or private channels must be assumed. Axis constraint: If Axis

10’s value is to the right of “Computational,” then either Axis 3’s value is “Private

channel” or Axis 2’s value is “Broadcast channel”.

Theorem 2 ([RB89]). No protocol with security against malicious adversaries can

tolerate more than n/2 corrupted parties without losing the complete fairness property.

Axis constraint: If Axis 7’s value is “Malicious” and Axis 9’s value is to the right

of n/2, then Axis 11’s value must be to the left of “Complete fairness”.

28

Theorem 3 ([Cle86]). No protocol unconditionally secure against malicious adver-

saries can guarantee output delivery with n/3 or more corrupted parties. Axis con-

straint: If Axis 7’s value is “Malicious,” Axis 10’s value is to the right of “Compu-

tational,” and Axis 9’s value is to the right of “n/3,” then Axis 11’s value must be to

the left of “Guaranteed output”.

Theorem 4 ([BGW88]). No protocol can have perfect security against more than n/3

maliciously corrupted adversaries. Axis constraint: If Axis 7’s value is “Malicious”

and Axis 9’s value is to the right of n/3, then Axis 10’s value must be to the left of

“Perfect”.

Theorem 5 ([GIKR02]). Any general MPC protocol (with three or more parties)

with complete fairness against a malicious adversary must have at least three rounds.

Axis constraint: If Axis 7’s value is “Malicious” and Axis 11’s value is at or to the

right of “complete fairness”, then Axis 18’s value must be to the left of “2 rounds”.

Theorem 6 ([BGW88]). For unconditional security against t maliciously corrupted

players, n/3 ≤ t < n/2, a broadcast channel is required. Axis constraint: If Axis

10’s value is to the right of “Computational” and Axis 7’s value is “Malicious” and

Axis 9’s value is to the right of n/3, then Axis 2’s value must be “Broadcast channel”.

Theorem 7 ([GMW87]). For (even cryptographic) security against ≥ n/3 maliciously

corrupted players, either a trusted key setup or a broadcast channel is required. Axis

constraint: If axis 7’s value is “Malicious” and Axis 9’s value is to the right of n/3,

then either Axis 2’s value must be “Broadcast channel,” or else Axis 1’s value is to

the left of “No trusted setup.”

Theorem 8 ([BGW88]). There can be no unconditionally secure protocol against an

adversary controlling a majority of parties. Axis constraint: Axis 10’s value can

be to the right of “Computational” only if Axis 9’s value is at or to the left of n/2.

Theorem 9 ([CKL03]). There is no protocol with UC security against a dishonest

majority without setup assumptions. Axis constraint: If Axis 9’s value is to the

right of n/2 and Axis 12’s value is “Universally composable,” then axis 1’s value must

be to the left of “No trusted setup”.

Theorem 10 ([BCG93]). In an asynchronous environment, there is no protocol with

guaranteed output secure against a fail-stop adversary corrupting n/3 or more parties.

29

Axis constraint: If Axis 4’s value is “Asynchronous,” Axis 7’s value is at or to

the right of “Fail-stop,” and Axis 11’s value is at “Guaranteed output,” then Axis 9’s

value must be at or to the left of n/3.

Theorem 11 ([BCG93]). In an asynchronous environment, there is no protocol with

guaranteed output secure against a malicious adversary corrupting n/4 or more par-

ties. Axis constraint: If Axis 4’s value is “Asynchronous,” Axis 7’s value is “Ma-

licious,” and Axis 11’s value is at “Guaranteed output,” then Axis 9’s value must be

at or to the left of n/4.

One validation of our choice of axes is that these theorems are directly and compactly

expressible in terms of them, thus giving a unified representation of the central body of

knowledge of MPC. The axis constraints can easily be represented in a programming

or knowledge representation language, as Section 3.5 shows.

3.4 An Extensible Protocol Database

We scored more than 60 of the most significant protocols in secure multiparty compu-

tation on our axes, integrating information from our annotated bibliography, resulting

in an extensible MPC protocol database.

Many papers in the area include multiple protocols. We give each protocol a separate

entry in the database, which is labeled by adding a suffix to the usual “alpha”-style

reference. For instance, “[GMW87]-mal” refers to the protocol of [GMW87] that

is secure against a malicious adversary. The database also indicates whether an

implementation of the protocol is known to exist.

The work of constructing the database motivated many revisions of our set of axes

and highlighted difficulties in systematizing MPC results, some of which we discuss

here.

Efficiency. As mentioned in the axis descriptions, our efficiency axes are con-

cerned primarily with asymptotic efficiency measurements. When we populated our

database, we relied on evaluations in the literature, frequently from the paper actually

introducing the protocol.

The model of computation in which a protocol’s functionalities are expressed can have

30

a large impact on concrete efficiency. Historically, MPC functionalities have been

expressed as circuits. The original Yao model considers Boolean circuits, while most

of the current state-of-the-art MPC protocols are in the arithmetic-circuit model.

Implementing these requires performing field arithmetic, and, although the size of

the field elements is a constant in the security parameter, the time taken to perform

field operations can have a significant impact on efficiency. Although this difference

in concrete efficiency is not captured by the axes, our protocol database notes the

model of computation for each protocol.

Even in the asymptotic case, comparing the efficiency of MPC protocols is an ex-

tremely difficult problem because of multiple interacting aspects of efficiency present

in MPC. In selecting an actual implementation, a concrete analysis and/or empirical

efficiency measurements should also be consulted.

Substitutability. One factor that makes it nontrivial to enumerate a list of MPC

protocols is that many protocols described in the literature make use of subprotocols

for cryptographic operations in a black-box fashion, making it possible to substitute

different protocols implementing that operation. This can alter not only the perfor-

mance characteristics but also the computational and environmental assumptions and

security and composability guarantees of the resultant protocol. In some cases, a new

and improved subprotocol can trivially be used to improve an older MPC protocol,

but no published work explicitly presents the improvement; in other cases a protocol

explicitly allows for black-box substitution of subprotocols, in which case it is said

to be stated in a hybrid model. In the case of the OT-hybrid model, in which obliv-

ious transfer is a black box, recent work in OT extension has produced significant

performance gains.

An extreme case of this “substitutability” factor is the IPS compiler of Ishai et al.

[IPS08], which is not only in the OT-hybrid model but also allows any of a wide of

of honest-majority MPC protocols to be plugged in as an “outer protocol,” with the

resulting protocol inheriting some (but not all) of the security properties of the outer

protocol.

To address this complex issue, we have limited our systematization to represent only

concrete instantiations of hybrid protocols. The axes are such that a protocol in a

hybrid model must first be “instantiated” with concrete sub-protocols in order to

be scored. In our database, we have sought to enumerate as many such concrete

31

protocols as possible that are based on well-known hybrid-model protocols.

Two-party secure computation. Although much research has been done specifi-

cally addressing two-party secure computation, starting from Yao’s original garbled

circuits idea, it can be considered as a special case of multiparty computation, in

which, if security against a malicious adversary is sought, no honest majority can be

assumed (Axis 9 at n − 1). Thus, two-party protocols can at least theoretically be

compared with multiparty results in this category.

In reality, however, vast improvements in efficiency have been made for the two-party

case. We note that these optimizations often come at the expense of symmetry :

The security guarantee against cheating by one of the two parties may be weaker

than for the other. For instance, one of the two parties may be able to cheat with

an inverse-polynomial probability, while the other may only be able to cheat with

negligible probability. Asymmetry is not included in our axis definitions, and so two-

party protocols are scored by the weaker of the two sets of security guarantees. Of

course, the database indicates which protocols and implementations are strictly for

two parties.

3.5 Interacting With the Protocol Database

As mentioned in Section 3.1, the main theorems of secure multiparty computation

demonstrate essential tradeoffs involved in securely computing a functionality among

distrustful parties. To leverage the information that our systematization captures

about these tradeoffs and gain insight into the problem space, we first experimented

with visually plotting the protocol axis scores of the MPC database, as described

in Section 3.5.1. However, we found that the highly categorical nature of the data

makes it difficult to gain insight from a static visualization. In the subsequent sub-

section, we describe an an interactive tool we have developed for interacting with the

systematization and MPC protocol database, which provides a better way of coming

to grips with the multi-dimensional landscape of MPC protocols.

32

3.5.1 Visualizing the space of MPC protocols

To understand the space of MPC protocols, we desire an informative view of the

“lay of the land,” and a deeper understanding of the tradeoffs required for secure

computation. This can be done by visualization of the axis-scored protocols. In

this case, understanding the relations between MPC protocols becomes a task of

Visual Data Mining [Ins97], and choosing a protocol is a kind of multi-dimensional

optimization.

Finding suitable visualizations of the axes data is non-trivial the data is highly cat-

egorical. Many features are binary, and most axes have no more than four or five

points. One of the more appropriate visualization types is the spider, or radar, plot.

Spider plots have non-orthogonal axes, to allow more axes to be compared than vi-

sual dimensions are available. Still, the number of axes in our systematization is too

many for a readable spider plot; so we have chosen subsets that allow inspection of

the significant tradeoffs between MPC protocols. See figure 3.1.

Figure 3.1: Sample spider plot comparing five MPC protocols in the standard model.

The value of these is limited because the scale is arbitrary, and the choice of a subset

of axes must exclude some important considerations.

Other potentially useful visualizations include parallel coordinate plots, and back-to-

back bar graphs (with axes from the ‘pay’ group on the left and from the ‘buy’ group

on the right.)

33

3.5.2 A prototype decision-making support tool

We have developed a prototype GUI tool, SysSC-UI, which reads in a protocol

database of axis values and enables the user to adjust a set of sliders and check-

boxes corresponding to our axes of systematization. For the tool’s interface, the axes

are oriented vertically rather than horizontally as printed above, so a higher position

of a slider corresponds to a stronger result. A dynamically updated results window

displays the protocols from the database that match the specified axis values. See

the screenshot in Figure 3.2. The source code for the desktop version is available on-

line https://code.google.com/p/syssc-ui/, as well as a beta web-based version

http://work.debayangupta.com/ssc/.

Figure 3.2: Screenshot of the SysSC-UI tool for interacting with the protocol database.

For a given setting of the sliders and checkboxes, the results window shows all papers

whose axis values are at the same level or higher than the settings. Thus, the tool

presents all protocols that are at least as good as the specified settings. When the tool

is started, the sliders and checkboxes are all set to the least constraining position,

such that every protocol in the database is displayed in the results window. There is

also a button to reset the tool to this state. Another button sets the sliders to the

exact values of the protocol in the currently highlighted protocol, allowing the precise

achievements of a protocol to be examined. This has the side effect of changing the

output to the results window, so that only protocols that are at least as good as the

selected one are displayed.

Double-clicking on a reference in the results window will display a pop-up window

https://code.google.com/p/syssc-ui/
http://work.debayangupta.com/ssc/

34

giving the authors’ full names and the description of the paper containing the protocol

from the annotated bibliography. The GUI also indicates when the positioning of the

sliders is such that a secure computation protocol is known to be impossible, by means

of an encoding of the theorems in Section 3.3.

The axes and values displayed by SysSC-UI are a subset of those in the full system-

atization. This was done in order to simplify the interaction and avoid confusion from

the visual display of too much information at once. For example, for the composabil-

ity axis, there is only a single checkbox, to indicate whether the protocol is proven

universally composable or not.

We now present sample use cases highlighting the features of SysSC-UI.

3.5.3 Sample use cases for SysSC-UI

Finding the best protocol for a known problem. Consider a scenario in which a

technology consultant is hired by a company to find a way to compute some function

of a distributed set of sensitive data residing on servers owned by different divisions

of the company. We show how she can use the SysSC-UI tool to find an appropriate

MPC protocol for achieving this secure computation.

In the initial state of the UI tool, all four environmental assumption boxes are checked,

and all sliders are in the lowest position, so that every protocol in the database is dis-

played in the results window. To begin, our consultant unchecks “Private Channels”,

knowing that the computation will be carried out over an ordinary internet connec-

tion, which should always be assumed to be tapped. She wishes to protect against

adversaries that are covertly malicious, so she moves the leftmost Adversary Type

slider up to “Covert”. The consultant is suspicious of protocols that use a weaker

model to prove security, so she moves the first Security slider up to “Computational.”

Furthermore, she suspects that universal composability is necessary to guarantee se-

curity in a heterogenous environment, so she checks the “UC” box. The protocols

resulting from these selections can be seen in the results window in Figure 3.3.

The consultant wishes to determine the most efficient protocol that meets these re-

quirements, so next she moves the “Online Comm Complexity” slider up to the high-

est level for which the results box is not empty. We would like to achieve this online

complexity with the minimum preprocessing complexity, so she tries sliding the “Pre-

35

Figure 3.3: Results shown by the SysSC-UI tool after selections have been made.

processing comm” slider up. If it is moved up too far, the results window becomes

empty. So she readjusts both this and the Online slider to find an agreeable trade-

off between online and preprocessing complexity. The results of this exploration are

shown in Figure 3.3.

Exposing directions for cryptographic research. In using the tool, one in-

variably stumbles upon a setting of the sliders / boxes that is not in the “known

impossible” range, and yet has no papers with a matching protocol listed. Of course,

one reason for this could simply be the incompleteness of the protocol database.

Another possible reason is that the combination of features is not desirable from a

security or efficiency standpoint. However, a third possibility exists, which is that a

genuine opening for new research has been revealed. Two kinds of such “holes” may

reveal new research directions: (1) Gaps between achieved and proven impossible se-

curity levels, and (2) settings in which a weakening of security parameters may allow

greater efficiency. An example of the second type of advance is the case of positing

composable security definitions weaker than universal composability, as in [PS04].

3.6 Ongoing Work

As it is unlikely that we will permanently be able to stay abreast of the growing MPC

literature, we have developed a web-based survey that allows researchers to submit

descriptions of new protocols and their features on the axes so that they can be

36

integrated into the protocol database and SysSC-UI. The survey is available at http:

//goo.gl/T4ORzr. Community participation is vital to the continuing usefulness of

this effort.

The set of theorems should also be expanded beyond those listed in Section 3.3 as

knowledge of secure computation increases. This work has highlighted several remain-

ing unknowns in characterizing the possibility of secure computation; for example,

perhaps some of the malicious impossibility results hold for the covert case as well.

A longer-term goal is to characterize the efficiency of the protocols more precisely, in

terms of the number of elementary operations, to make the efficiency of all protocols

directly comparable.

Modeling the flexibility of protocol frameworks such as IPS [IPS08] and in general

protocols specified in some hybrid model that allow black-box substitution of subpro-

tocols, would require a systematization at a higher level of abstraction.

3.7 Conclusion

Systematizations of knowledge are especially needed in research fields where a large

body of results have been generated in a short time, and secure multiparty computa-

tion is undoubtedly such a field. Without an effort to systematically organize results,

there may be unnecessary duplication of research efforts, the barriers to entry for

new researchers may be needlessly high, and results may not see useful applications

as early as they could. Our systematization of secure computation is a tool that can

significantly ease the task of coming to grips with this sprawling body of results, and

potentially speed its adoption in fields where it would be useful.

http://goo.gl/T4ORzr
http://goo.gl/T4ORzr

37

Chapter 4

Three-Party Protocols for Policy

Enforcement in Private Databases

In this chapter we consider one particular class of multi-party computations: The

operation of a distributed database with specific security and privacy requirements.

In fact, the entire computation process of a secure database could be encapsulated

as general secure computation and implemented using one or more of the protocols

presented in the previous chapter. However, that would be too inefficient, especially

for large databases used in the real world.

One specific problem in secure databases is that of checking a client’s queries against

a server’s query compliance policy, denying results for non-compliant queries. The

challenge is to find protocols that accomplish this without breaking the security and

privacy requirements of the database. We call these protocols Database Policy Com-

plicance (DPC) protocols.

We introduce DPC protocols for a specific three-party model, consisting of a client

interested in making database queries, a server providing its database for client access,

and a third party (e.g., a cloud server) holding the (encrypted) outsourced data and

helping both other parties. The protocols are designed to compose with an underlying

private database retrieval protocol (with no query compliance policy) in the same

model.

We give formulations of the desired requirements, such as preservation of query

correctness, compliance completeness, compliance soundness, privacy and efficiency.

38

Then we present new protocols that satisfy a natural combination of correctness, pri-

vacy, and efficiency requirements. The efficiency of these protocols has been demon-

strated in a prototype implementation. Technical contributions of independent in-

terest include the use of equality-preserving encryption to produce highly-practical

symmetric-cryptography protocols (i.e., one order of magnitude faster than “Yao-like”

protocols), and the use of a query rewriting technique that maintains the privacy of

the compliance result.

Outline of Results

In Section 4.1 we give an overview of the scenario and describe the features of data

retrieval and database policy compliance protocols. In Section 4.2 we detail the

definitions and models in which our results will be stated, including a formal definition

for private database policy compliance protocols. In Section 4.3 we present our basic

solution for keyword search query types in the semi-honest model and a proof that

it meets our formal definition. In section 4.4, we briefly discuss extensions of the

protocols for types of range queries, and a subset of possible range and Boolean

policies.

In Section 4.5 we discuss the implementation of our basic solution, show measurements

of the its running time during the query phase, and a derived analysis of the running

time of our extension protocols. In Section 4.6, we draw conclusions that relate these

solutions to the broader concerns of the dissertation.

4.1 Overview of the Three-party Model and Pro-

tocol Requirements

4.1.1 Secure and private databases

Any distributed database consists of at least two categories of communicating parties.

Servers are parties holding a set of records, and clients are parties that issue queries

to servers and receive matching records in response. A secure and private database is

a distributed database that provides specific security guarantees to all parties. There

39

is no one fixed set of such guarantees. Typically, privacy guarantees provide assurance

that no other parties, including server parties, may gain information about clients’

queries or the records accessed through those queries. This is generally accomplished

by means of query and database encryptions having certain properties, as has been

studied in the area of Private Information Retrieval.

Database applications with such privacy requirements will often also have security

requirements for protecting sensitive records in the database against access by unau-

thorized clients. These requirements can be specified in the form of access control

policies. Thus we have the additional need to enforce policies based on the content

of specific queries, still without revealing the query to the server.

Our goal is to augment known encrypted database retrieval solutions with security

properties, in particular policy-based query authorization, while preserving the pri-

vacy and efficiency properties of the basic database retrieval solution.

4.1.2 The three-party model

To achieve practically efficient solutions, we consider a 3-party model, including

a client C (interested in private data retrieval), a server S (offering data for re-

trieval conditioned to a query compliance policy), and a third party TP (e.g., a

cloud server) helping both parties to achieve their goals. Since quite a few stud-

ies already address the problem of privacy-preserving data retrieval in a three-party

model [CDdV+05, HILM02, YZW06], we focus on the policy compliance building

block alone. Moreover, we design protocols that are modularly compatible with a

natural class of data retrieval protocols in the literature. We first assume database

retrieval (DR) protocols in the 3-party model with a relatively general structure, as

shown in Figure 4.1, and then investigate the modeling and design of database policy

compliance (DPC) protocols that combine with known DR protocols, as shown in

Figure 4.2.

4.1.3 Database Policy Compliance protocol requirements

We use the following carefully formulated, but informal, requirements for DPC pro-

tocols:

40

S

Answer message ans
(function of query q, database DB)

Query message q
(function of query values v1,…,vd)

C

S

TP

Setup subprotocol (database DB)

Figure 4.1: Structure of a Database Retrieval Protocol

S

C

S

TP

Query issuing subprotocol (query value v)

Compliance verification subprotocol (query value v, policy values w1,…,wc)

Query rewriting subprotocol (query value v)

Answer in
Database Retrieval Protocol

DR Setup subprotocol (database DB)

 DPC

DPC

DPC

DR

Figure 4.2: Composition of a database-retrieval protocol with a database-policy-
compliance protocol

1. Preservation of Query Correctness: A client that could retrieve all of the records

that satisfy its query using a DR protocol can still do so if the query is compliant.

2. Compliance Completeness: All queries that satisfy (resp., do not satisfy) the

policy are found to be compliant with probability 1 (resp., with negligible prob-

ability).

3. Compliance Soundness: For any efficient (and even malicious) adversary im-

personating the client, the server can correctly compute (except with negligible

probability) the policy compliance of whichever query message is received and

answered by the third party according to the DR protocol.

41

4. Privacy: Privacy of database values, policy values and query values are pre-

served, in that information leaked to any honest-but-curious party may not

exceed the following: the system parameters (which are intended to be known

by all parties), the compliance bit b intentionally revealed to S, the encrypted

query message intentionally revealed to the third party, representing the true

query in the case of a compliant query, or a random query matching no records

in the case of a non-compliant query. As will be described, this is to reduce

leakage of the policy-compliance result to TP or C).

5. Efficiency: The protocol should have low time, communication and round com-

plexity. One of the most significant design criteria we target to reduce com-

putational overhead of query compliance checking is to minimize or eliminate

costly public-key cryptographic operations and to achieve protocols faster than

a mere application of secure function evaluation techniques.

Note that in addition to privately checking the compliance of a given query, we also

wish to keep the policy hidden from the clients. Of course, it is impossible to prevent

the client from gaining any information at all about the policy while still fulfilling

queries, because the way a particular query is fulfilled necessarily reveals information

about the policy. Still, in order to hide some additional information about the policy,

we require that the result of a non-compliant query is indistinguishable from a query

that matches zero records in the database, so that the protocol does not reveal to

clients whether a query that returns no matches does so because it is non-compliant

or because there are actually no matching records. Of course, sometimes a client will

be able to distinguish these two cases due to auxiliary information.

4.1.4 Formulation of DPC as a Multi-Party Computation

The query-answering function of a distributed database can be viewed as a reactive

multi-party computation between a client C and server S. A reactive multi-party

computation takes place in multiple stages, in which each stage is a separate computa-

tion, but the inputs of one or more parties may depend on the outputs of the previous

stage. Further definitions for reactive MPC can be found in Goldreich [Gol04].

The functionality computed at stage i is written fi. Recall from Section 1.3 that xj is

42

the input of party j and yj is the output. The database is denoted D and the query

at stage i (which may depend on the output of previous stages) is written as qi. We

describe stage i of the database functionality as follows:

fi(xs = D, xC,i = qi)→ (yS,i = ∅, yC,i = D[qi])

Note that the server party S receives no output.

To formalize the policy compliance requirements, we expand the above functionality

so that S has an additional input, a policy p, and learns a compliance bit b, based on

which he may return an empty set instead of the matching records.

fi(xS = (D, p), xC,i = qi)→ (yS,i = b, yC,i = D[qi]||∅)

This represents an idealized version of the functionality, with no leakage.

4.1.5 Policy Enforcement Protocols

We design three protocols for enforcing compliance of keyword search queries. We

only consider whitelist (resp., blacklist) policy types, where the query is compliant

only if the query value is equal to one (resp., none) of the policy values, with ex-

tensions to combinations via Boolean formulae. For such query and policy types, we

provide highly efficient and scalable database policy compliance protocols which meet

all our requirements, as detailed in Figure 4.3. An important property not captured

in Figure 4.3 is that all our 3 DPC protocols only require O(1) cryptographic oper-

ations per query and policy value, and are thus one order of magnitude faster than

2-party arbitrary function evaluation protocols [Yao86], as these require at least Ω(`)

cryptographic operations per query and policy value, if ` denotes the length of these

values (even in recent optimized solutions). Just like achieved previously for DR pro-

tocols in the 3-party model, our DPC protocols not only minimize or eliminate costly

public-key cryptography operations, but they provide concrete time efficiency, which

we document through performance numbers collected during our implementation ef-

forts (in Section 4.5).

Our solutions rest on two main technical contributions: using equality-preserving

43

Requirement Protocol π1 Protocol π2 Protocol π3
Correctness preservation if DR protocol satisfies if DR protocol satisfies if DR protocol satisfies

Added Property 1 Added Property 2 Added Property 1
Compliance completeness unconditionally unconditionally unconditionally
Compliance soundness (not satisfied) unconditionally unconditionally

Privacy under PRP assumption under PRP assumption under PRP assumption
(leaks repeated queries to S) (leaks repeated queries to S)

Time and communication linear in policy size linear in policy size linear in policy size
Round complexity O(1) in policy size O(1) in policy size O(1) in policy size

Figure 4.3: Security properties satisfied by the DPC protocols. Entries in the first four
rows give the condition under which the property is satisfied. The PRP assumption is the
existence of pseudo-random permutations (instantiated in a practical implementation as
block ciphers.) Added Properties 1 and 2 of DR protocols are defined in Section 4.2.

symmetric encryption, secure under multiple encryptions[MH81], to reduce the num-

ber of cryptographic operations, and performing query rewriting whenever the query

is not compliant in order to make the results of non-compliant queries indistinguish-

able from queries matching no records.

To the best of our knowledge, there is no previous work on privacy-preserving, effi-

cient, query policy compliance checking for database queries. That is, although there

has been previous work on 3-party protocols in which the data set being searched

is encrypted, the query is kept private, and queries are only allowed if they satisfy

certain conditions, we are unaware of previous, formal work in which the restriction

on allowable queries (i.e., the policy) is supposed to be kept private. The majority of

existing work in this area focuses on techniques that allow execution of queries on out-

sourced, encrypted data in which allowable queries are defined by conditions on the

database attributes [HILM02, YZW06, CDdV+05, EG07]. Most of these approaches

use indexing information stored with the encrypted data to return the correct data

in response to a query without decrypting the data itself. Ceselli et al. [CDdV+05]

also consider the trade-off between efficiency and vulnerability to linking attacks. A

number of schemes [GSW04, LYCL11, dVFJ+07] look at different kinds of access

control in such systems.

Hamlen et al [HKK12] have independently described principles of secure policy en-

forcement for cloud data. Some of techniques they describe, such as query rewriting,

are also expressed in our system, though this work does not focus on query compliance

policies specifically.

All these areas mainly focus on privacy of the retrieved information which is different

from the client authorization problem, on which we focus here.

44

4.2 Definitions for Privacy-preserving DR and DPC

Protocols

In this section, we formalize the definitions and models that we use in our investi-

gation of privacy-preserving policy-compliance protocols, and describe the security

and efficiency properties that our protocols must satisfy. We begin by defining the

relevant notions of data, query, policy, participant, network and protocol models, and

completeness, soundness, privacy, and efficiency.

4.2.1 Preliminaries

Data, Query and Policy Models. We model a database table (briefly, database)

as a matrix DB with n rows and m columns, where each row is associated with a

data record, each column is associated with a data attribute, and each database entry

DB(i, j) is the value of the j-th attribute of the i-th record. The database schema

consists of n, m, and the domains of each of the m attributes (i.e., the j-th domain

is the set of values that the j-th attribute of a record can take on), and is assumed

to be known by all parties that participate in the protocol. We assume that domains

are large in that a randomly chosen domain element is, with very high probability,

not in DB. (If DB does not satisfy these conditions, then simple padding of domain

strings can be used to make it so.)

A query q contains a database attribute and a corresponding query value from the

relevant attribute domain. Using SQL notation and terminology, and using v to

denote a query value, we initially consider keyword-match queries, i.e., queries of the

form

A server’s query compliance policy (briefly, policy) contains, for each attribute j,

1 ≤ j · · ·m, a set Wj = {wj,1, . . . , wj,cj} of policy values drawn from the j-th domain.

All of the clients that access DB through this server are subject to the same policy.

On input a query value v, an attribute name (or, equivalently, an attribute index

j), and a set of attribute values Wj, the policy returns 1 (resp., 0) to denote query

compliance (resp., non-compliance). We mainly consider the whitelist and blacklist

policies:

45

1. Whitelist: If query q refers to the j-th attribute, then p returns 1 iff v ∈ Wj;

2. Blacklist: If query q refers to the j-th attribute, then p returns 1 iff v 6∈ Wj.

Intuitively, a blacklist policy captures the notion of a set of forbidden query values,

while a whitelist policy restricts queries to a specified set of allowed values. We

assume that the lengths cj of whitelists and blacklists and the lengths of the policy

values wj,k are system parameters known to all parties.

Participant, Network and Protocol Model. We consider the following partici-

pant types, all assumed to run in (probabilistic) time polynomial in a common security

parameter, denoted in unary by 1σ. The client is the party, denoted by C, that is

interested in retrieving data from the database. The server is the party, denoted

by S, that stores the database and the policy and is interested in allowing clients

to retrieve data, whenever allowed by the policy. The third party, denoted as TP ,

helps the client to retrieve data and the server to enforce the query compliance policy.

Each client is assumed to be capable of communicating with both the server and the

third party. For simplicity, we assume a confidential and authenticated network (as

achieved in practice by a network-security protocol such as TLS) with no packet loss.

This model encompasses database-retrieval (DR) protocols and database policy-compliance

(DPC) protocols. This work builds upon DR protocols of a certain general form (ex-

emplified by protocols proposed in, e.g., [HILM02, YZW06]) that allow clients to re-

trieve data using a server and a third party when no query policy is in place; Figure 4.1

depicts the general structure that we require of a DR protocol. Our contribution in

this chapter is the design and analysis of DPC protocols that can be modularly com-

bined with DR protocols of this form in order to realize both the database-retrieval

and the policy-compliance goals; see Figure 4.2.

4.2.2 Requirements of DR Protocols

As explained above, we require DR protocols to enable C to retrieve records in a

model in which it can communicate with both S and TP and in which there is no

query policy. We further require a DR protocol to have three properties: a specific

protocol structure, a query-correctness property, and a unique-query property. The

DR protocol structure is depicted in Figure 4.1; its crucial features are as follows:

46

1. C, S and TP run a preliminary setup subprotocol

(this enables TP to later answer C’s query on the database owned by S)

2. Given a query q, C constructs a query message Q and sends it to TP

3. TP computes an answer message ans and sends it to C

4. Based on Q and ans, C can compute database records that satisfy q, if any.

The unique-query property requires that, for any database DB and any properly

formatted query message Q, there is at most one pair (attribute name, v) for which

C could have generated query message Q. When such a pair exists, we refer to v as

the “query value associated with Q.” Note that, although there is at most one pair

associated with each properly formatted Q, there are, in general, many Q’s that C

might generate from a given pair, because C is probabilistic.

The query-correctness property requires that, for any database DB, any input pair

(attribute name, v), and any Q with associated query value v, at the end of the DR

protocol, C can compute all records in DB that satisfy query attribute name = v.

In integrating secure policy compliance, we will impose one of the following additional

properties on DR protocols:

Added DR Property 1. At the end of step 1, TP stores F (kc,s;DB(i, j)), for each

database entry DB(i, j), where F is a pseudo-random permutation and kc,s denotes

a key shared between C and S

Added DR Property 2. At the end of step 1, TP stores the triple encryption

F (kc,s;F (kc,tp;F (kc,s;DB(i, j)))), for each database entry DB(i, j), where F is a

pseudo-random permutation and kc,s (resp., kc,tp) denotes a key shared between C

and S (resp., C and TP)

The protocols in [HILM02, YZW06], for example, follow the structure of DR proto-

cols, satisfy the unique-query and query-correctness properties, and either satisfy or

can be modified so as to satisfy Property 1 or Property 2.

47

4.2.3 Properties of DPC protocols

We now turn our attention to DPC protocols that can be composed with DR protocols

in the manner depicted in Figure 4.2. After the DR setup subprotocol, instead of a

single query message Q sent from C to TP , we now have three subprotocols (a query

subprotocol, a compliance-verification subprotocol, and a query rewriting subproto-

col) after which a query message is sent to TP , and then the answer step of the DR

protocol can be executed. Here, we only formalize the DPC protocol and its require-

ments (informally described and motivated in Section 4.1), with the understanding

that it is intended to be composed with a DR protocol.

The inputs to a DPC protocol are a security parameter 1σ (known to all parties), an

attribute name and query value v (private inputs to C), and a database DB (schema

known to all parties, but contents private to S). The outputs of a DPC protocol

are a query message Q′ (communicated privately to TP) and a bit b (communicated

privately to S) indicating whether the query complies with the policy (b = 1) or not

(b = 0).

Preliminary Requirement Notations: Let σ be a security parameter. Two distribution

ensembles {D0
σ : σ ∈ N} and {D1

σ : σ ∈ N} are computationally indistinguishable if

for any efficient algorithm A, the quantity |Prob[x ← D0
σ : A(x) = 1] − Prob[x ←

D1
σ : A(x) = 1]| is negligible in σ (i.e., no efficient algorithm can distinguish if a

random sample came from one distribution or the other). A participant’s view in a

protocol (or a set of protocols) is the distribution of the sequence of messages, inputs

and internal random coins seen by the participant while running the protocol (or the

set of protocols).

The security and efficiency properties added to the DR protocol by the DPC protocol

are as follows.

1. Preservation of Query Correctness: for any database DB, policy p, query value

v, and policy values w1, . . . , wc, if policy p evaluates to 1 on input v, w1, . . . , wc,

then except with negligible probability, the set of records received by C at the

end of an execution of the DR protocol on input DB and v1, . . . , vd, is equal to

the set of records received by C at the end of the composition of the DPC and

DR protocols on input DB, v1, . . . , vd, p and w1, . . . , wc.

48

2. Compliance Completeness: for any database DB, policy p, query value v, and

policy values w1, . . . , wc, if policy p evaluates to 1 (resp., 0) on input such

query value and policy values, then the probability that at the end of the DPC

protocol, S outputs b = 1, is 1 (resp., negligible in the security parameter σ).

3. Compliance Soundness: for any database DB, policy p, and policy values w1, . . . , wc,

for any efficient client C ′ participating in the DPC protocol, the conjunction

of the following three events only happens with negligible (in σ) probability at

the end of the DPC protocol execution: S outputs b = 1, TP outputs a query

message Q′ with associated query value v and policy p evaluates to 0 on input

v, w1, . . . , wc.

4. Privacy: To model a realistic scenario of multiple database policy compliance

protocol executions composed with multiple database retrieval protocol execu-

tions, we consider multiple runs of the DPC protocols and augment the ad-

versary and simulator with auxiliary inputs. We define privacy against a ma-

licious adversary by a natural adaptation of the real/ideal security framework

commonly used in the cryptography literature, namely: For any efficient (i.e.,

probabilistic polynomial time) auxiliary-input adversary Adv corrupting one of

the three parties (i.e., client C, server S or third party TP), there exists an

efficient auxiliary-input algorithm Sim (called the simulator), such that Adv’s

view and the output of the remaining two parties in the “real world” are compu-

tationally indistinguishable from Sim’s output and the output of the remaining

two parties in the “ideal world”, where these two worlds are defined as follows.

In the real world, multiple runs of the DPC protocol are executed, while Adv

acts as the corrupted party. In the ideal world, each run of the DPC protocol

is replaced with an ‘ideal execution’ that is designed so to only reveal some

‘minimal information’, such as system parameters and inputs/outputs based on

the policy compliance functionality. On the input of a query value v given by

C, a database DB, policy values w1, . . . , wc, and policy p input by S, an ideal

execution of a single DPC protocol returns:

(a) the output b of policy p on input query value v and policy values w1, . . . , wc

to S

(b) a random query message Q′ to TP , where Q′ has no matching records if

49

b = 0 or has associated query value v if b = 1.

In our first two protocols, we also admit some additional leakage to S, and thus

consider the appropriate variant of the above definition, where such leakage is

also admitted in the output of the ideal functionality.

5. Efficiency: A DPC protocol’s latency is measured as the time taken from the

time the parties enter their input to the time all parties receive their outputs

(as a function of σ and other system parameters). The DPC protocol’s com-

munication complexity (resp., round complexity) is defined as the length (resp.,

number) of the messages, as a function of σ and other system parameters, ex-

changed by C, S and TP . Even if our analysis mainly focuses on latency, our

design targets minimizing all these efficiency metrics.

Our design also targets a number of additional security properties, which can be ob-

tained using known techniques: confidentiality of the communication between all par-

ticipants, message sender authentication, message receiver authentication, and com-

munication integrity protection. These can be realized by using network security

protocols such as TLS.

4.3 Protocols for Black/Whitelist Policies for Key-

word Queries

In this section we present our three DPC protocols (whose properties are detailed in

Figure 4.3). Our first protocol π1 falls short of satisfying all requirements formulated

in Section 4.2 in two ways: (a) it does not satisfy compliance soundness (i.e., a

malicious client C could send inconsistent encryptions for compliance verification

and query rewriting; thus, the compliance verification test would pass on a query

value different than the one used for query rewriting); (b) the privacy against S is

only satisfied if the protocol is allowed to leak any repeated occurrences of the same

query value. Our second protocol π2 extends π1 so to eliminate (a), and protocol π3

addresses both (a) and (b).

In the following protocol descriptions, keys are named with two subscripts indicating

by which parties they are shared. For example, a private key shared by C and TP

50

would be named kc,tp. There may optionally be a third subscript com or que, to

indicate whether the key is used for policy compliance checking or query fulfillment.

Thus, kc,s,com means a key shared by C and S and used for compliance checking.

We assume a standard 2-party key agreement protocol, secure against a malicious

adversary, is executed in an initialization phase to produce these keys.

4.3.1 Basic Keyword Protocol π1

Our most basic protocol π1 allows efficient enforcement of policy compliance for key-

word search queries with whitelist or blacklist policies. (We continue our description

for whitelist policies only; blacklist policies can be supported with minor modifica-

tions.)

A pictorial description of the protocol can be found in Figure 4.4. In the first step, C

sends two double encryptions of its query value v, once using key kc,s,que as the inner

layer, and then using key kc,s,com. Both resulting encryptions are sent to S.

Then, S and TP interact to analogously compute ciphertexts for the policy values,

as follows: first, S encrypts each of the policy values w1, . . . , wc using key kc,s,com

and sends the resulting ciphertexts to TP ; then, TP further encrypts each of these

ciphertexts using key kc,tp, and returns the resulting ciphertexts, reordered using a

random permutation π, to S. At this point, S computes the whitelist policy output

by simply checking whether one or zero of the policy value ciphertexts is equal to the

ciphertext received by C.

After the policy compliance calculation, if the query is compliant, S simply forwards

the received encryption kc,s,que to TP , who can remove the outer layer of encryption

and fulfill the query. Otherwise, S performs query rewriting, sending TP a random

value indistinguishable from a double-encrypted query.

As described in the introduction, the two main technical ideas in this protocol are:

1. using “equality-preserving encryption” to allow S to calculate the policy output

without revealing the policy values to TP or C and without learning why the

policy was or was not satisfied (i.e., which policy value(s) wj,i may have textually

matched value(s) in the query);

2. using “query rewriting” to allow S to rewrite the query q obtained by C into a

51

query q′ which guarantees that the same database records match q and q′ if q

is compliant, or no records match q′ otherwise, without TP or C obtaining any

additional information on which is the case.

C TP S

Compliance Check (v, w1,…,wc)

 F (Kc,tp, F(Kc,s,que, v)) | r

F (Kc,tp, F (Kc,s,com, v)),
F (Kc,tp, F (Kc,s,que, v))

{ F (Kc,s,com, wi), i=1,..,c }

{ π(F (Kc,tp, F (Kc,s,com, wi))), i=1,…,c }

Figure 4.4: The basic keyword search policy compliance protocol π1

4.3.2 Proof Sketch for Protocol π1

Preservation of query correctness. We consider a DR protocol satisfying Property 1,

and assume that policy p returns 1 on input a query value v from C and policy values

w1, . . . , wc from S. The set rdr of records received by C at the end of an execution

of the DR protocol on input DB and v is the set of records from DB that contain v

at the queried attribute. Now, consider the set rdpc,dr of records received by C at the

end of a composition of the DPC and DR protocols on input DB, v1, . . . , vd, p and

w1, . . . , wc. We observe that rdpc,dr = rdr holds when the policy p is satisfied, since the

query message q′ sent from S to TP during the DPC protocol allows TP to compute

the query message q sent from C to S during the DR protocol, by decrypting q′ via

key kc,tp.

Compliance completeness. Assume policy p evaluates to 1 on input a query value v

52

from C and policy values w1, . . . , wc from S, and consider first the case where p is

the whitelist policy. In this case, we have that v = wj for some j ∈ {1, . . . , c}. By

inspection of the DPC protocol, we see that the ciphertext F (kc,tp, F (kc,s,com, v)) is

equal to the ciphertext F (kc,tp, F (kc,s,com, wj)), by properties of F , and therefore S

outputs b = 1. The case where p is the blacklist policy is similarly derived by using

the fact that in this case, we have that v 6= wj for all j ∈ {1, . . . , c}, and the ciphertext

F (kc,tp, F (kc,s,com, v)) will also be different from all ciphertexts F (kc,tp, F (kc,s,com, wj)),

by properties of F , for j = 1, . . . , c, and therefore S outputs b = 1. The case where

policy p evaluates to 0 is similarly derived, again by using the fact that F is a pseudo-

random permutation.

The proof of the privacy property is split into 3 parts, depending on who among C,

S or TP the adversary corrupts.

Privacy against C. We assume Adv corrupts C and we exhibit an efficient simulator

Sim in the ideal world. Note that C only sends one message to S, and this message

is based on C’s private input. Although C might change its input, Sim can extract

it by decrypting C’s query message using the shared keys obtained at the end of the

key agreement protocol. The rest of the protocol is simulated by running the honest

parties’ programs.

Privacy against S. We provide a proof for a single execution of a query; the extension

to the case of many queries is obtained by essentially repeating the simulator’s step

for each single query execution, with only the following difference: repetitions of the

same query values are revealed to S and can therefore be used by the simulator to

accordingly simulate the message from C to S. We assume Adv corrupts S and we

exhibit an efficient simulator Sim in the ideal world, so that Sim’s output and Adv’s

view while posing as S in the real world (where a real execution of π1 happens) are

computationally indistinguishable. In this case, the simulator Sim sends inputs DB

and v to the (ideal world) trusted party, and receive as output for TP a query message

q′, and as output for S a compliance result bit b. Then Sim simulates the 4 messages

received or sent by S as follows:

1. the message from C to S as (qmes′1, qmes′2), where qmes′1, qmes′2 are uniformly

chosen from the pseudo-random permutation domain {0, 1}`

2. the 1st message from S to TP by simply running S as a black box;

53

3. the message from TP to S as a sequence of c strings uniformly and indepen-

dently distributed in {0, 1}`, with the further step in the case b = 1 that one of

these strings, chosen at random, is set = qmes′1

4. the 2nd message from S to TP by simply running S as a black box.

The proof that Adv’s view in a real execution of π1 is computationally indistinguish-

able from Sim’s output follows by a standard hybrid argument [GM84], using the

following observations. First, we note that the two strings in the message from C

to S, are computed as outputs of the pseudo-random function F (kc,tp, ·) on distinct

inputs, and are therefore indistinguishable to Adv from random strings of the same

length, as in Sim’s output, by the assumption on F . Then, we note that c strings in

the message from S to TP , are simulated by Sim exactly as they are computed by

S in the real world. Now, we consider the c strings in the message from TP to S.

These are computed as outputs of F (kc,tp, ·) on input the strings in the message from

S to TP , which are all distinct among them and from previous inputs, with only one

possible exception: when b = 1, one of these inputs may be a value F (kc,tp, wj) equal

to the value F (kc,tp, v) used as input in the first string in the message from C to S.

In Sim’s output, they are simulated as random `-bit strings with the only exception

of setting one of them, chosen at a random position, as equal to the first string in the

message from C to S. We note that the position of this value is random also in the

real world, as TP randomly permutes its c strings before sending them. Finally, the

2nd message from S to TP is simulated by Sim exactly as it is computed by S in the

real world.

Privacy against TP. We assume Adv corrupts TP and we exhibit an efficient sim-

ulator Sim in the ideal world, so that Sim’s output and Adv’s view while posing

as S in the real world (where a real execution of π1 happens) are computationally

indistinguishable. In this case, the simulator Sim sends inputs DB and v to the (ideal

world) trusted party, and receives as output for TP a query message q′, and as output

for S a compliance result bit b. Then Sim simulates the 3 messages received or sent

by TP as follows:

1. the 1st message from S to TP as a sequence of c strings uniformly and inde-

pendently distributed in {0, 1}`

54

2. the message from TP to S by simply running TP as a black box;

3. the 2nd message from S to TP as q′.

The proof that Adv’s view in a real execution of π1 is computationally indistinguish-

able from Sim’s output follows by a standard hybrid argument [GM84], using the

following observations. First, we note that the c strings in the message from S to

TP , are computed as outputs of the pseudo-random function F (kc,s, ·) on distinct

inputs, and are therefore indistinguishable from random strings of the same length,

as in Sim’s output, by the assumption on F . Then, we note that c strings in the

message from TP to S, are simulated by Sim exactly as they are computed by TP

in the real world. Finally, the simulation of the 2nd message from S to TP is directly

derived from the trusted party’s output and is therefore distributed exactly as in the

real world.

4.3.3 Protocol π2: soundness against malicious clients

One problem with the protocol π1 described in Section 4.3.1 is that a malicious C

can simply send two different queries for compliance verification and query rewriting,

thus violating the soundness property. We now describe a protocol π2 that prevents

this attack with minimal modifications from π1.

As a preliminary observation, we see that after the first query message has been sent

by C, there is no further outgoing communication from C. Thus, the only opportunity

for C to provide malicious input is before the compliance verification subprotocol.

This naturally leads us to examine ways in which we could modify protocol π1 to

require only one input from C. Note that we cannot use the same encryption for

both compliance checking and query fulfillment, since that would allow TP to identify

encrypted query values that match policy items it has seen during the setup phase.

We can resolve this by storing a triple encryption of each database value, per Added

DR Property 2. Recall that in protocol π1, TP holds a singly-encrypted database; af-

ter the compliance check, TP receives a double-encrypted value F (kc,tp, F (kc,s,que, v)),

and removes the outer layer of encryption to get F (kc,s,que, v) with which to answer

the query. The second layer was needed to prevent S from decrypting the query value.

In protocol π2, we assume that triply-encrypted values F (kc,s, F (kc,tp, F (kc,s, v))) are

55

used within the DR protocol. We discard the subscripts que and com as they are no

longer relevant.

The structure of the protocol is similar to that of Section 4.3.1. At query time,

C encrypts the query value with both of its keys and sends the resulting doubly-

encrypted value F (kc,tp, F (kc,s, v)) to S. Then S encrypts each of the policy values wi

using key kc,s and sends them to TP , which then re-encrypts each of these using key

kc,tp, randomly permutes the order of keywords, and returns the re-encrypted values

to S.

As before, S checks the encrypted query for equality with the double-encrypted policy

values. If the query is non-compliant, S sends to TP a random query indistinguish-

able from a triple-encrypted real query; otherwise, S re-encrypts F (kc,tp, F (kc,s, v))

using kc,s, and sends the triple-encrypted value F (kc,s, F (kc,tp, F (kc,s, v))) to TP for

its answer generation in the DR protocol. Note that the outermost layer of encryp-

tion prevents TP from identifying whether the query matches policy items it had

previously encrypted from S—thus eliminating the need for separate com and que

encryptions.

The resulting DPC protocol π2 inherits the same properties as π1, plus compliance

soundness under a different assumption on the method used to encrypt the database

values in the DR protocol (namely, Added Property 2). (See Figure 4.3 for a detailed

property description.) A proof of the properties of π2 can be obtained by combining

the above observations with the proof of π1’s properties from Section 4.3.1.

The triply-encrypted database of Added DR Property 2 can be generated during the

setup phase as follows. First, S encrypts all items in the database with kc,s and sends

them to TP , which re-encrypts them using kc,tp and returns them to S. Then S adds

a third layer of encryption, again using kc,s, and sends the entire triply-encrypted

database to TP . This interaction between S and TP may be expensive, as it involves

every item in the database being both encrypted and sent over the network three

times; this may render this method somewhat undesirable to practitioners, especially

when dealing with large databases. We address this issue as well in π3.

56

4.3.4 Protocol π3: privacy across multiple queries

One remaining issue with both protocols π1, π2 is the presence of some leakage to S

across multiple query executions: S learns, by checking for repetitions in the first

message sent by C to S, whether the query value in the current execution is equal

to a previously executed query. Although not a major form of leakage, it remains of

interest to see if we can prevent it at some affordable efficiency cost.

We now describe a protocol π3 that keeps all properties in π1, the compliance sound-

ness property achieved in π2 and satisfies privacy against S without the mentioned

leakage. (It also avoids the database setup inefficiency mentioned at the end of the

description of π2.)

Protocol π3 uses an additional cryptographic tool: two-party Secure Function Eval-

uation (SFE) protocols [Yao86]. Recall that in such protocols, two parties P1 and

P2, with private inputs x and y, respectively, can jointly compute a functionality

f(x, y) = (f1, f2), such that P1 receives f1(x, y), and P2 receives f2(x, y), and it is

required that nothing is learned by either party other than the output.

Instead of using a triple encryption as in π2, protocol π3 uses a different shared key

k′c,s for query rewriting. After the policy check, which remains unchanged, S and TP

perform a two-party SFE protocol, the result of which will be a newly-encrypted form

of the query which will be released to TP .

First, C sends F (kc,tp, F (kc,s, v)) to S, at which point the policy compliance check,

which remains unchanged from Section 4.3.1, takes place. After the compliance check,

S and TP engage in a two-party SFE protocol, where S inputs F (kc,tp, F (kc,s, v)), kc,s, k
′
c,s

a random query r, and the (one-bit) result of the compliance check. TP inputs kc,tp.

Together, the two parties securely compute the following output, which is received

only by TP : if the query was non-compliant, random value r is output; if the query

was compliant, the doubly-encrypted value F (kc,tp, F (kc,s, v)) is decrypted twice to

produce v, which is then encrypted using key k′c,s, and the result, F (k′c,s, v) is released

to TP . TP then proceeds to compute the answer based on the DR protocol. The

resulting DPC protocol π3 is illustrated in Figure 4.5.

57

C TP S

b = Compliance Checking (v, w)

q = E (Kc,tp, E(Kc,s,com, v))

E(Kc,s,com, wi)

π(E (Kc,tp, E(Kc,s,com, wi)))

SFE: If b=1 then
q’ = E(Kc,s,que, v), else

q’ = E(Kc,s,que, r)

q, b, Kc,s,com,
Kc,s,que, r

Kc,tp

q’

Figure 4.5: Protocol π3: Keyword search policy compliance with (multi-query) secu-
rity against S

4.3.5 Remarks on Query Rewriting

Each of the protocols above describes, in addition to the compliance checking step,

how the server S selects the query to forward to TP for execution. In all three

protocols, the Client’s query message consists of two parts. The first contains the

query to be used for compliance checking, while the second contains the query to

be executed by TP . For compliant queries, S simply extracts the second part of the

original query message from C and forwards it to the Third Party. For non-compliant

queries, it extracts the second part of the original Client query message and replaces

ciphertext attribute values with random values before forwarding it to the Third

Party.

The encrypted database stored at TP is constructed so that every query, including

random queries that match zero records, returns a data structure equal to the size

of at least one record. This further obscures the distinction between compliant and

non-compliant queries in the view of TP .

58

4.4 Extensions to Range Query Types and Boolean

and Range Policies

4.4.1 Boolean Policies

The whitelist and blacklist policies of protocols π1–π3 can be viewed as Boolean

formulas over equality statements. Allowed and disallowed keyword policies can be

written as, respectively:

t∨
i=1

(v = wi) (4.1)

t∧
i=1

¬(v = wi) (4.2)

That is, a whitelist policy is a disjunction of equality statements: at least one of

the whitelisted terms must be equal to the query. A disallowed keyword policy is a

conjunction of inequalities: it must hold that all the blacklisted terms are not equal

to the query term. Each ciphertext encrypting a required (disallowed) keyword is

interpreted as an equality (inequality) statement leaf.

This leads us to examine whether more sophisticated Boolean policy structures, cou-

pled with compound queries consisting of more than one keyword, can also be handled

in this equality-checking framework.

It turns out that a direct use of protocol π1 to check policies with more structure

than a flat list will reveal unacceptable additional information about the query to S.

Consider the following example CNF policy:

(NOT fName = ’John’ OR NOT lName=’Smith’)

AND (NOT fName = ’Casey’ OR NOT lName=’Jones’)

Note that this policy applies only to compound queries in which at least two keyword

searches are specified. The goal of this policy type is to forbid two specific combi-

nations of first and last names. Keeping the same encoding as above, where each

equality statement in the policy is a single ciphertext, we see that the third party

59

can no longer randomly permute all ciphertexts, as equality statements must remain

associated with the clause in which they appear to determine the formula’s truth

value.

We can resolve this by sending the ciphertexts to TP for re-encryption in separate

batches for each clause, and the third party will permute both the ciphertexts within

a clause and the order of clauses. In this case, the third party learns slightly more

about the structure of the policy; namely, how many clauses it has and the arity of

each clause. Depending on the scenario, this may be an acceptable leakage.

More serious, however, is that in the case of compound queries, S may learn additional

information about the query by a partial match. For example, if C’s query is SELECT

* FROM T WHERE fName=’John’ and lname=’Jones’, the server will learn that both

of the query items match policy items, even though the query remains compliant. In

general, if each keyword search in a query is encoded as a separate ciphertext, a policy

may match more than one query ciphertext, revealing additional information about

the query beyond what is implied by the policy and the 0/1 compliance result. We

see that the unique match property is crucial to the security of techniques such as the

ones used in this chapter, based on equality-preserving encryption.

We can solve this problem for conjunctive queries and some policy types by means

of tupling. Consider prohibitive CNF policies such as the example above, where each

clause has a fixed arity a. By “prohibitive” we mean CNF’s over negated equali-

ties only. Clauses such as (NOT fName = ’John’ OR NOT lName=’Smith’) can be

rewritten as NOT (fName = ’John’ AND lName = ’Smith’). Now the a conjoined

keywords/attribute names within a single policy clause can be encrypted together, so

that there is a single ciphertext block for each clause.

The client sends ciphertexts for every tuple of keyword searches in the query, for every

arity from 1 to a predetermined maximum arity, with each tuple encrypted as a single

block, with the keywords in a tuple specified in a canonical (sorted) order. Since the

client always sends all possible tuples of each arity up to some fixed constant, she

learns nothing about the form of the policy. We assume it is permissible for the server

to learn only the number of keyword searches contained in the query.

Now the equality checking required to determine policy compliance can be done on

entire encrypted clauses. We are free from leakage to S due to multiple matches, as

60

long as each clause in the policy applies to the same set of attributes, and each query

searches on no more than one keyword per attribute. By tupling, we have effectively

reduced the problem to the single-keyword disallowed keyword case, restoring the

0/1 match property essential for query privacy. Dually, the tupling technique also

allows secure checking of permissive DNF policies, that is, ORs of ANDs of equality

statements.

4.4.2 Range Queries and Policies

Being restricted to policy checking by equality testing of ciphertexts does not, in fact,

limit us to keyword policies over keyword queries. In this section we give brief remarks

illustrating how the method may be generalized to range queries and policies.

A range query is a query of the form SELECT * FROM T WHERE <attribute> <op>

<value>, where <op> is one of >, <, <=, or >=, or the two-sided version SELECT *

FROM T WHERE <attribute> BETWEEN <value1> AND <value2>.

A range policy may take the form of a query range size restriction or query range

limits. A range size restriction policy, for example RANGESIZE age < 35, applies only

to range queries, while a range limit policy, such as age IN [18,35], applies to both

keyword and range queries.

A basic technique for approximate enforcement of range-related policies is binning. In

this approach, the domain of each attribute in the database is divided into a constant

number K of equal-size bins, where the domain size and K are both known to C

and S. To encode a range limit policy, which prohibits queries in a subset of bins, S

takes all subsets of the K bins that include one or more of the prohibited bins, and

encodes these subsets as integers in [0, 2K − 1]. For a range size restriction policy, all

subsets of bins spanning a larger-than-legal range are encoded. These are the policy

items (wi) to be doubly-encrypted and permuted for the compliance check, as in the

paper’s main protocol.

At query time, C sends S the double encryption (with kc,tp and kc,s) of the integer

representation of the subset of bins covered by the query (if the query is a single key-

word, it will be in a single bin; a range query may involve multiple bins.) If the query

overlaps any disallowed bin or bins, or spans a larger range of bins than is allowed,

this encoded subset will match exactly one of the policy ciphertexts; otherwise it will

61

match none.

The limitation of this method is that the expressible policies are restricted by the small

number of fixed-size bins, since this encoding requires us to represent and transmit

all subsets of the bins. If the desired range policy limits are not on bin boundaries,

false positives can result: while no query forbidden by the policy will be allowed,

queries that fall in an allowed range but within the bounds of a disallowed bin will

be rejected.

A more advanced variant, which overcomes the false-positive problem of binning, is

to use a compact gap representation of ranges. This is to be treated more fully in an

upcoming work.

4.5 Performance Measurements

In this section we report various performance results related to implementations of

our basic DPC protocols. We focus on results for π1 as the performance of π2, π3

is similar. (Specifically, π2 is only slower than π1 by a small constant multiplicative

factor and π3 is only slower than π2 by a small constant additive factor.)

Setup. The Server and Third Party processes were running on a Dell PowerEdge

R710 server with two Intel Xeon X5650 2.66Ghz processors and 48GB of memory.

The R710 server was running 64-bit Ubuntu 12.04.1 and was connected to a Dell

PowerVault MD1200 disk array containing 12 2TB 7.2K RPM SAS drives arranged

in a RAID6 configuration. The Client was running on a Dell PowerEdge R810 server

with two Intel Xeon E7-4870 2.40GHz processors and 64 GB of memory. The R810

server was running 64-bit Red Hat Enterprise Linux Server release 6.3 and was con-

nected to the the Dell PowerEdge R710 server via switched Gigabit Ethernet. The

database schema used for the experiments here reported is shown below in the form

of SQL DDL.

62

CREATE TABLE main (id BIGINT NOT NULL, fname VARCHAR(11), lname VARCHAR(15),

ssn CHAR(9), dob DATE, address VARCHAR(100), city VARCHAR(35),

state VARCHAR(52), zip CHAR(5), sex VARCHAR(6), race VARCHAR(18),

marital status VARCHAR(14), school enrolled VARCHAR(32),

citizenship VARCHAR(28), income INTEGER, military service VARCHAR(20),

language VARCHAR(32), hours worked per week INTEGER,

weeks worked last year INTEGER, notes1 TEXT, notes2 TEXT,

notes3 VARCHAR(250), notes4 VARCHAR(50), fingerprint BLOB);

The database was populated by generating random values about fictitious people

using demographic information from the US Census Bureau. We used the following

query templates and compliance policies.

Query Template

Q1 SELECT * FROM main WHERE lname=value

Q2 SELECT * FROM main WHERE state=value AND lname=value AND zip=value

Policy Compliant queries must include:

F All queries are rejected as non compliant

T All queries are accepted as compliant

B1 A conjunction of at least 3 keyword queries on state, lname, and zip

B2 A conjunction of at least 3 keyword queries on state, lname, and any one of the

remaining columns, excluding fingerprint

W1 A keyword query on lname with query value in a 1-entry whitelist

W2 A keyword query on lname with query value in a 100-entry whitelist

W3 A keyword query on lname with query value in a 1000-entry whitelist

W4 A keyword query on lname with query value in a 10000-entry whitelist

W5 A keyword query on lname with query value in a 20000-entry whitelist

Compliance policy B2 was expressed as a disjunction of 23 sub-policies of B1 type,

each of them requiring keyword query conjunctions on state, lname, and an additional

(and different) database column.

Results. Each query template was executed several times using different values. We

note that policies F , T , B1 and B2 only refer to the query structure and do not

63

depend on query values, contrarily to queries W1, . . . ,W5, which depend on values

in the query and in (variable-length) whitelist.

Figure 4.6 shows computation results when checking compliance for policies F , T ,

B1, and B2 against instances of the two query classes Q1, Q2. Note that checking

compliance for Q1, Q2 only required checking the query structure and did not require

running π1, as the policies do not depend on actual query values. Thus, there is

no impact from cryptographic operations on the measured running time. Two main

observations can be derived from this figure: (1) running time is essentially linear

with policy size (e.g., the ratio of the time taken for policy B2 to the time taken for

policy B1 is about the same ratio of the size of B2 to the size of B1); (2) running

time is almost the same for the two policy types Q1 and Q2, with variance of less

than 3%.

Figure 4.7 shows computation results when running protocol π1 on policiesW1, . . . ,W5,

against instances of the two query classes Q1, Q2. These policies do depend on query

values and thus trigger an execution of protocol π1, with its cryptographic operations.

The main observation derived from this figure is that the time required by π1 grows

linearly with the size of the whitelist, which can be explained as follows. First, note

that policies W1, . . . ,W5 only differ in the size of the whitelist. Then, note that

as the size of the whitelist grows, so does the time it takes to doubly encrypt its

values, send/receive them between S and TP , and checking by using sequential scan

whether an attribute value referenced in C’s query belongs to the doubly encrypted

and permuted whitelist values. (Here, a speedup due to the use of binary search does

not seem to impact the running time substantially, due to the double encryption and

network communication required.)

When comparing the two figures, we observe that the impact of running vs not run-

ning π1 when checking compliance is essentially minimal for policies with short-size

whitelists (i.e., a factor of about 10, calculated by comparing the running time for

F, T,B1 with the running time of policies W1,W2,W3).

the results shown in Figure 4.6, whitelist policies are more expensive. In addition,

the time required by π1 grows linearly with the size of the whitelist.

For all policies, the time (reported in microseconds) required for checking whether

the queries were compliant or not was almost the same for the two policies and query

64

classes (maximum variance of less than 3%). As expected, compliance policy checking

takes longer when the policy size increases. For example, compliance policy checking

for Q2 takes jumps from 410.3 microseconds for B1 to 5,958.7 microseconds for B2.

However, compliance policy checking does not seem to be very sensitive to query

sizes. This is due to the way compliance checking is carried out. In particular, for a

Boolean compliance policy consisting of one or more disjunctions (ORs) of conjunctive

(ANDs) terms, each conjunctive clause appearing in the disjunctive normal form

(DNF) representation of the query is checked against policy disjunctions until either a

“match” is found or all disjunctions are checked. A match corresponds to a compliant

query conjunctive clause. All query conjunctive clauses must be compliant in order

for the query to be compliant.

Since both Q1 and Q2 contain just one conjunctive term, compliance checking for

B1 involves checking just one conjunctive policy term, while compliance checking for

B2 involves checking up to 23 conjunctive policy terms. For Q1, all 23 conjunctive

policy terms must be checked. For Q2, the number of checks depends on the position

of the matched conjunctive policy term in the list of all conjunctive policy terms. In

the results shown in Figure 4.6, it was the tenth entry. Because of this difference,

compliance checking for Q1 takes 3% more than compliance checking for Q2 (6,125.4

vs 5,958.7 microseconds).

Figure 4.6: Query compliance checking overhead for policies F , T , B1, and B2.

For example, running π1 for Q2 required 646.4, 1,877.5, 10,639,1, 103,190.8, and

200,694.3 µs for W1, W2, W3, W4, and W5, respectively. This is due to two factors.

First, whitelist values are first encrypted by S and then sent to TP (over TLS) for an

additional encryption and permutation to prevent S to learn which entry matched a

65

Figure 4.7: Query compliance checking overhead for policies W1, W2, W3, W4, and
W5.

query term. As the size of the whitelist grows, so does the time it takes to doubly en-

crypt its values and send/receive them between S and TP . Second, S checks whether

an attribute value referenced in C’s query belongs to the doubly encrypted and per-

muted whitelist values by using sequential scan. As the size of the whitelist grows,

so does the number of comparisons required, with non-compliant queries requiring

as many comparisons as the size of the list. Obviously, for very large whitelist sizes,

binary search would improve substantially the time required for checking whether an

attribute value referenced in a query is in the list or not. However, such improvements

may not have a large impact on the overall query compliance time due to the double

encryption and network communication required. The query rewriting process re-

quires almost the same time for both compliant and non-compliant queries, the latter

being slightly most expensive (less than 50 µs for Q2 queries).

4.6 Conclusion

A primary insight from the results in this chapter is how adding non-fully-trusted par-

ties to a distributed computation can enable efficient privacy-preserving protocols—in

this case, it enables us to avoid expensive computational assumptions such as the as-

sumptions that enable public-key cryptography. Essentially, we are distributing trust.

Previous work in two-party computations that are assisted by a semi-trusted third

party, sometimes referred to as the commodity-based, server-assisted, or server-aided

model, seems to have originated in [Bea97], which proposed oblivious transfer pro-

66

tocols in this model. Another three-party protocol for oblivious transfer that achieves

unconditional security is also presented in an unpublished manuscript of Rivest [Riv99].

Even with a third party, our protocol has a form of leakage when multiple queries

over time are considered. This leakage seems to be intimately related to input/output

size issues. General MPC protocols achieve security without leakage by assuming a

known, fixed size of inputs and outputs (possibly by padding to a maximum size),

and by processing the entire inputs of all parties in every execution of the protocol.

For a large database system that answers multiple queries, this is not practical, as

1) the server’s input length is the size of the entire database, and 2) the size of a

query answer may vary significantly, up to a significant fraction of the database size.

The PIR lower bounds of Haitner et al. [HHS08] show that in the two-party setting,

some leakage is unavoidable without incurring overhead that is linear in the size of

the whole database. In a large database, overhead proportional to any non-constant

function of the database size may be too large to be practical.

Though the protocols presented in this chapter successfully eliminate all dependency

on database size by adding a semi-trusted third party, some leakage remains, as

described above. The only type of leakage not prevented by any of the protocols π1,

π2, or π3 is the third party’s observation of output lengths. Having leakage based on

variability in output size seems inescapable, and For these specific protocols, we feel

that the level of leakage is not serious. Since the third party never sees unencrypted

queries or records, it is not clear that anything damaging can be learned by analysis

of result lengths. Regarding policy enforcement, since the private fulfillment protocol

only hides the distinction between zero-record and one-record results, queries that

return an answer of single-record length are more likely to have been non-compliant.

This, in turn, allows the third party to gain information on the strictness of the

policy relative to the client’s query pattern. In the case of multiple clients with a

single policy, the third party may gain information about the relative frequency with

which clients issue non-compliant queries. In the limit, an observant third party may

be able to learn which entries in its encrypted database are in fact bogus records

returned as the answer to non-compliant queries. Note that this attack actually

becomes more difficult as the size of the database increases relative to the number of

queries observed.

This is not to say that all types of leakage that seem innocuous are in fact so. In the

67

next chapter, we examine a case where a leakage profile that was formerly considered

to be harmless can be used to mount devastating attacks.

68

Chapter 5

The Practical Security of

Searchable Encryption

This chapter deals with protocols for another family of secure computation function-

alities for machines in one specific configuration—namely, when there is a single client

and a single server to whom the client uploads personal data in the form of docu-

ments. The functionality is that the client can search the documents stored at the

server, with the server learning as little as possible about the client’s data and search

terms. This variety of secure computation has similarities to the database protocols

of the previous chapter in that it facilitates searching of remotely held private data,

but it differs in that it involves only two parties, and only the server is considered a

potential adversary, since the data belongs to the client.

In the literature, schemes for accomplishing this efficiently are called Searchable En-

cryption (SE) schemes. They achieve high efficiency with provable security by means

of a quantifiable leakage profile—specifically, leakage of access patterns. However,

the degree to which SE leakage can be exploited by an adversary has not been well

understood. Moreover, in our investigations, we have discovered that deployed se-

curity products often have greater leakage than SE. It may be said that searchable

encryption technologies have the opposite problem of MPC; while MPC suffers from

a low adoption rate in spite of its high provable security level, searchable encryption

schemes are being hastily adopted and deployed without a thorough understanding

of what security properties they do or do not provide in a given setting.

69

Our approach to ameliorating this condition has some kinship to the approach for

systematizing general MPC presented in Chapter 3. In this chapter we present a

characterization of the leakage profiles of in-the-wild searchable encryption products

and SE schemes in the literature, and present attack models based on an adversarial

server’s prior knowledge. Then we empirically investigate the security of searchable

encryption by providing query recovery and plaintext recovery attacks that exploit

these leakage profiles. We call these attacks leakage-abuse attacks and demonstrate

their effectiveness for varying leakage profiles and levels of server knowledge, for re-

alistic scenarios. Among our contributions are particularly effective active attacks,

which have not been previously explored.

5.1 Introduction

Encryption protects data stored at an untrusted service provider, but introduces

complications. For instance, the service provider is unable to process the encrypted

data as freely and efficiently as it can plaintext data, making access cumbersome

for the data owner. To address the difficulty of retrieving encrypted text efficiently,

increasingly practitioners turn to searchable encryption (SE) schemes, first introduced

by Song, Wagner, and Perrig [SWP00]. An SE scheme encrypts a set of documents

in a way that allows the data owner to delegate the ability to search the documents

without decrypting them. For example, using SE, a user may encrypt her email,

store it at the remote provider, and later have the provider search the email on a

per-keyword basis. If the SE scheme is dynamic, then she will also be able to add

encrypted documents efficiently.

Many SE constructions can be implemented using only a blockcipher, and some are

even legacy-compatible, requiring no modification at the provider. A commonly de-

ployed example of the latter, and one suggested in a number of recent research pa-

pers [HAJ+14, LCS+14], is to append to a conventional encryption of the document

a sequence of outputs of a secret-keyed pseudorandom function (PRF) on individual

keywords. Search is performed by submitting the PRF output of the desired search

term, and documents can easily be added or removed. The advantage of such schemes

is that they are compatible with existing storage and search indexing systems. Several

deployments have been observed in the wild, particularly in settings where encryption

70

Objective Prior Knowledge Pas/Act Min Leakage Known Constructions Where

Query Recovery Fully Known Docs Passive L1 All ([IKK12], § 5.5.2)
Query Recovery Partially Known Docs Passive L1 All (§ 5.5.3)

Plaintext Recovery Known Doc Subset Passive L3 – (§ 5.7.1)
Plaintext Recovery Distributional Chosen Doc L3 – (§ 5.7.2)
Plaintext Recovery Distributional Chosen Doc L2 Shadowcrypt, Mimesis (§ 5.7.2)

Figure 5.1: Summary of successful attacks on searchable encryption schemes. In all
cases the adversary sees the transcript of communications to the server, in addition
to the indicated knowledge. The leakage levels are defined in Section 5.3.

must be transparent to the user of an application. For example, if data in a cloud

service must be encrypted but searchability must also be preserved, an SE scheme is

used.

The security provided by SE against an untrusted service provider is, however, inher-

ently weaker than what is achieved by encryption without searching. All efficient SE

constructions expose some information, called leakage, about the plaintext to the ser-

vice provider. Typically, SE schemes allow the provider to learn about the underlying

data by observing statistics like the number and frequency of encrypted documents

accessed during searches. Song et al. recommended periodic re-encryption to address

what they call statistical attacks, but did not investigate this further. Islam, Kuzu,

and Kantarcioglu initiated the study of the empirical security of SE, showing that a

user’s queries can be guessed with high accuracy when the term distribution of the

dataset is known to an honest-but-curious service provider [IKK12]. Their attacks,

and the more general statistical attacks alluded to by Song et al, are possible even

when a scheme has been proven secure under a standard assumption. In other words,

the attacks are permitted by the security definition, and can be seen as the cost payed

for efficient retrieval.

The risk posed by leakage has not been closely scrutinized beyond the results of Islam

et al. The current literature leaves a practitioner with few concrete recommendations

for configuring and deploying SE, and as we show, small variations in details lead to

devastating attacks. The risk is not merely abstract; several deployments of SE can

be easily broken depending on how they are used.

Our contributions. We study the leakage of SE in order to understand its practical

security. We expand the work initiated by Islam et al., which considers only a single

attack type against standard SE, by considering a range of threats against various

71

approaches to building SE. We enumerate new threat models that describe attacks

against suggested SE use cases, like encrypted email, and explore the efficacy of

several attacks against different constructions of SE. In each case, we design attacks

that exploit the leakage rather than any particular constructions. We term these

leakage abuse attacks (LAAs), and explore several LAAs against leakage profiles for

constructions found in the literature and in use. In some use-cases we show how the

details of an implementation may leave SE fatally vulnerable to attacks not previously

explored in detail.

New threats. We classify multiple threats against SE. Islam et al. studied query

recovery, where the untrusted server can recover the plaintext terms being searched

for. To this we add goals for an adversary which are likely more immediate concerns:

An attacker may recover the plaintext documents themselves rather than only the

queries as they are issued. Perhaps surprisingly, the plaintext recovery has not been

treated directly in the SE literature, despite being intuitively more dangerous than

simple query recovery.

New attacks. We consider attacks against SE schemes admitting different levels of

leakage, performing experiments using public email data sets as stand-ins for confi-

dential emails. For a summary of the attack results in this chapter, see the table in

Figure 5.1. We first revisit the query recovery attack setting of Islam et al. We show

that with common leakage profiles a much simpler and faster attack, that does not

require optimization software, is possible.

We also explore, for the first time, active attacks where an attacker can induce a user

to insert chosen documents, or somehow identify known documents in the corpus. We

show that these attacks can easily extract significant information about plaintexts.

As one example, using the Enron email dataset for simulations, we show that a server

that happens to know a single email sent to 500 Enron employees and that is indexed

learns on average 35% of the keywords of all other encrypted emails. These attacks

are plausible when SE is used to encrypt email and automatically add email to the

encrypted document set – In this case, all the attacker needs to do is send the victim

an email, or identify an email that it knows (like an institutional announcement).

In summary, we are the first to investigate the implications in practice of common

SE leakage models. Our experimental analyses show that efficient and easy-to-mount

72

attacks can reveal a significant amount of information about email plaintexts, with

severe consequences for the security of deployed systems as well as research proto-

types [HAJ+14, LCS+14].

We begin in Section 5.2 by discussing the features of multiple currently deployed

searchable encryption technologies. In section 5.3 we abstract from these, presenting

our classification of searchable encryption schemes. In terms of their operation, the

key distinction in SE is between “in-place” schemes, in which encrypted documents

are stored on the server directly, and index-based schemes, in which clients upload

an encrypted (or unencrypted) index structure to the server. Then we define a set

of leakage profiles by which the leakage of all schemes we discuss can be classified.

Finally, we define attack models which describe the types of information that an

adversarial server can gain through abusing SE leakage. These characterizations

effectively highlight the distinctions and commonalities of SE schemes in a way that

provides systematic understanding of their vulnerabilities.

The presentation of statistics from our attack experiments begins in section 5.4. In

Section 5.5 we show query-recovery attacks that can be mounted by a server who only

passively observes an SE scheme’s uploaded data structures. In the case where the

document set itself is public (or otherwise largely known to the server), we present

a generalization of the attack of Islam et al. [IKK12] for index-based schemes that

quickly recover nearly all of the queried terms.

In Section 5.7 we present even more damaging attacks against what we define as

in-place schemes, requiring minimal additional knowledge by the server. We cover

passive attacks and active document insertion attacks, characterizing the tradeoff be-

tween length of maliciously planted documents and the adversary’s ability to recover

plaintext keywords.

We conclude with remarks on the vulnerabilities exposed by this work and the con-

tinuing need for empirical investigation of secure protocols that have a leakage com-

ponent.

73

5.2 Survey of Implemented SE Constructions

In this section we informally describe SE constructions observed “in the wild”. We

give two categories of constructions. Legacy-compliant SE schemes are those that

work within an existing application with no modification at the provider end. They

work by leveraging the provider’s existing information retrieval system without re-

quiring the provider be aware of encryption. The other category is non-legacy-

compliant schemes, which require special software (though sometimes very simple)

at the provider.

Legacy-compliant solutions. An example architecture for a legacy-compliant so-

lution is given in Figure 5.2, and reflects the design of industry products that provide

searchable encryption to services like Google GMail, Salesforce, and Dropbox. Here,

a proxy (which can be a browser plugin or a network proxy) intercepts plaintext doc-

uments, and processes and encrypts them before sending to the provider. Later, the

proxy intercepts a query and translates it to (possibly several) encrypted queries that

it forwards to the provider, who processes them normally and produces a response.

The proxy uses the responses to provide the plaintext results of the query to the user.

Proxy 
(e.g. plugin)

Server 
(e.g. gmail)

User 
(e.g. browser)

plaintext doc d encrypted doc E(d)

Proxy 
(e.g. plugin)

Server 
(e.g. gmail)

User 
(e.g. browser)

query q
query q1

response r1

…

Set-up:

Searching:

response r

Figure 5.2: Architecture for a legacy-compliant SE scheme.

In this setting, the provider’s software is not modified to support encryption. Our

architecture above also does not modify the user-facing part of the application, but

we will consider modifications at the user side to be legacy-compliant. It is likely

cheaper and easier for an individual client to use special encryption software.

Legacy-compliance introduces several challenges. Document storage and searching

must be implemented using an existing API that is unaware of encryption. The

API provided will typically expose interfaces for document insertion and text search

queries, but the index construction and details of the actual computation are hidden

from the client software. One might hope to leverage the full power of an IR sys-

tem, which may perform various types of semantic analysis on the documents. But

74

naive approaches reveal significant plaintext data to the server or incur prohibitive

performance penalties.

Consider also that in legacy-compliant schemes, the software issuing the query (usu-

ally the proxy) must have the same key used by the client for indexing. This is more

of an issue in the browser plugin setting, where all parties loading data into the ap-

plication must share a common key. A full discussion of key management in these

settings is beyond the scope of this dissertation.

Non-legacy-compliant. A variety of approaches are available when the provider’s

software can be modified. These range from highly-secure but less-efficient construc-

tions using FHE to systems that are almost as efficient as their unencrypted counter-

parts. Our focus will tend towards the latter. Non-legacy compliance opens a wide

design space and we will examine various approaches.

In this setting, implementation complexity may be important. An SE system that

can utilize parts of existing infrastructure for large-scale document storage, indexing,

and searching may be cheaper to deploy and give better performance.

All of the implementations we discuss below are highly efficient, making use of only

symmetric-key cryptography (if even that), and the only communication overhead

incurred is due to padding each encrypted word to the maximum word length.

5.2.1 Shadowcrypt

Shadowcrypt [HAJ+14] is a highly usable, legacy-compliant SE project developed at

Berkeley and UMD that aims to protect a user’s input into a web form by encrypting

the contents of a text field in a way that is transparent to the user. It does this using

ShadowDOM, a new standard for building DOM trees (or sub-trees) on top of the

existing webpage. To use Shadowcrypt, a user simply clicks a lock next to the field

and enters his or her input as usual. Then, the Shadowcrypt plugin encrypts the

input before the actual webpage has access to it.

One feature of note in Shadowcrypt is its ability to preserve keyword search on the

input to a form. Shadowcrypt accomplishes this by hashing the keywords in the form

and appending the hashes to the end of the ciphertext, effectively creating a “bag/set

of words” searchable encryption scheme.

75

We analyze general attacks against Shadowcrypt-like schemes in Section 5.7, but for

the sake of concreteness we mention here that a malicious server may obtain a chosen-

document oracle by a simple UI redressing attack. First, the server must detect that

the user has Shadowcrypt enabled, perhaps by scanning the user’s existing documents

for random-looking data matching a Shadowcrypt ciphertext. Then, the server sends

the user an email or document containing words it would like to see indexed. It also

builds the UI in such a way that the “encrypt field” button is hidden behind a field the

user must click. In the case of a malicious email server admin, this might be a “send

email” button. Then, when the user responds to the email, he or she unwittingly

clicks on the hidden button as well, which causes the field’s contents to be encrypted.

Finally, the server receives the email and adds it to its list of known keyword hashes,

which it can use to recover documents or queries.

The authors of Shadowcrypt acknowledge this type of attack is possible, but their

concern is more with the prevention of traditional clickjacking attacks. They did not

consider the possibility of this kind of attack against their keyword search scheme.

5.2.2 Mimesis Aegis

Mimesis Aegis [LCS+14] is a project and prototype developed at Georgia Tech which

has a similar use case to Shadowcrypt. It aims to preserve user privacy and data

confidentiality on mobile platforms by interposing a transparent encryption layer on

top of the GUI of mobile applications. The basic idea is similar to Shadowcrypt

- encrypt user transparently before it is touched by application code. The same

transparent layer then decrypts the data in the application before it is presented

to the user. They accomplish this with an adaptation of the operating system’s

accessibility layer, which allows them to “proxy” incoming user actions. Because

they are focused on preserving the user experience as much as possible, they also

included a mechanism for enabling search over the encrypted data which they call

“easily-deployable efficiently-searchable symmetric encryption”, or “EDESE”. They

discuss several different ways of accomplishing this functionality, but all of them are

basically creating a “bag of words” by appending the result of evaluating a PRF on

each word in the document to the document’s ciphertext. One trick they use reduces

the size overhead of the tags by encoding the MACs in a Bloom filter, which trades

76

strict search accuracy for space.

We were not able to obtain a copy of the software for testing, but we postulate that

a Shadowcrypt-style UI redressing attack could be used against Mimesis to allow an

adversary to index documents of its choosing.

5.2.3 Commercial products

Despite the general lack of understanding of the consequences of different types of

leakage in searchable encryption, there is a growing market for software designed to

preserve search on encrypted data in cloud services. Such software is largely targeted

at enterprise customers of SaaS applications who are concerned about security or

bound by regulation to encrypt their data at rest. This software usually is deployed

as a transparent encryption proxy, fitting the “legacy-compliant” model shown above.

A full comparison of schemes used by these products is beyond the scope of this thesis.

5.3 Characterization of SE Schemes and Leakage

In this section we give precise definitions of SE schemes, together with their leakage

profiles, abstracted from implementation and deployment details. It will be pointed

out which schemes the existing SE products described in the previous section are

instances of. Then we describe attack models based on the adversarial server’s capa-

bility.

First we present some standard notation used in the literature to describe SE schemes,

to be used throughout the remainder of the chapter.

SE basics. We let D = (D1, ..., Dn) denote a collection of n > 0 plaintext documents,

where each document is a variable-length string from a known character set. We de-

note the length of a document in characters by |Di|. A keyword extraction procedure

KeyExtract takes as input a character string Di and outputs a vector Wi, the key-

words, where each component is a character string. A typical keyword extraction will

first parse Di into words, drop common words such as articles and propositions, and

stem the remaining individual words. We assume the keyword extraction procedure is

deterministic and, looking ahead, known to the adversary. We denote by ci the count

77

of keywords in, or equivalently the dimension of, Wi. We let W = (W1, . . . ,Wn) be

the set of all the documents’ keyword vectors.

An SE scheme consists of encryption, search, and (possibly) update algorithms. The

encryption algorithm takes as input a secret key K, documents D and emits a ci-

phertext. Search takes as input a secret key K, a keyword w, and outputs a query

message. If a scheme includes the update algorithm, it is known as a dynamic SE

scheme. The update algorithm takes as input K and a document D, and outputs an

update message. Most published SE schemes are in a non-interactive model in which

query and update messages are sent to the server, the latter executing some algo-

rithm and returning a result. The client can then process the result, e.g., decrypting

recovered documents due to a search query.

5.3.1 A Classification of SE Scheme Types

All of the schemes described here leak information to the server in the form of oc-

currence patterns of encrypted keywords in documents. This leakage is due either to

deterministic encryption of keywords or co-occurrences in an index structure. Secu-

rity definitions for SE describe the allowed leakage using a leakage model that bounds

the information an adversary should learn. One proves that an adversary’s view dur-

ing an attack can be simulated given the leakage profile. See the citations given in

the next section for representative analyses. These analyses rule out attacks by an

adversary that obtain information not captured by the leakage model. However, ex-

cept for the results of Islam et al., none perform any analysis of how attackers may

abuse the leakage.

We developed a scale for characterizing leakage, defining a set of four leakage profiles.

Below we identify four classes of leakage profiles relevant to our attacks. The leakage

profiles often include other pieces of information (see, e.g., Figure 1 of [CJJ+13]) such

as, say, the number of documents, or the number of unique keywords, when the same

query is repeated, and so on. While possibly relevant in practice, these variations

seem inconsequential to our attacks and we ignore them in our treatment. We note,

however, that certain statistics like the plaintext lengths, when queries repeat, and

even a query’s time of day or client IP address may enable simple attacks other than

the ones we explore.

78

The definitions of leakage profiles follow along with the description of schemes that

instantiate them. The descriptions progress in order from greatest leakage (L4) to

least (L1). We also stress that the same leakage profile may arise for two very different

schemes (we note an example below for L2). For the sake of brevity we will typically

only informally describe the portions of SE schemes that are not relevant to our

results. We do note that all the schemes we will consider are perfectly correct.

5.3.1.1 In-place SE schemes

The first two schemes are called in-place because they involve direct uploading of

encrypted document data, and the server searches by iterating over keywords on a

per-document basis. These are the simplest to implement, but also may have greater

leakage than index-based schemes.

Full-text substitution cipher. This is the simplest type of searchable encyption.

The client parses each input document and performs keyword extraction to produce

keywords Wi that are in order with repeats. Then, it applies a deterministic cipher E

to each word. The resulting collection of ciphertexts are uploaded. The client searches

by sending the enciphered version of a keyword to the server. The server scans the

encrypted documents to match the term ciphertext or, alternatively, it could use an

inverted index pre-computed over the individual encrypted keywords in the ciphertext.

This scheme enables the server to carry out keyword, boolean, and phrase searches

efficiently, and to generate any type of index. However, stemming, wildcard, and

approximate-match searching are not possible. This is because the value indexed

by the server is a pseudorandom token which has no relation to the plaintext. So,

for example, a wildcard search like “s*” would fail because the tokens for keywords

starting with “s” do not themselves start with “s”.

This simple in-place scheme has the largest leakage of any that we study. We define

its leakage profile as:

L4: Full plaintext under deterministic word-substitution cipher. The server learns

the pattern of locations in the text where each word occurs and its total number

of occurrences in the document collection.

We do not present explicit attacks against only this leakage type, though the attacks

79

against all lower leakage profiles also apply.

The solution for searchable encryption described in [SWP00] improves the security

of the basic scheme above by additionally using a separate stream cipher for each

keyword. The cipher iterates sequentially over each occurrence of the keyword in

the document set. Thus, in the uploaded data each occurrence of a keyword has a

different ciphertext, and the server cannot observe the pattern of repeated keywords.

To search, the client sends a ciphertext corresponding to the first location of the search

term, and the server iterates the cipher to find all word matches in the document set.

The word occurrence pattern is revealed progressively as queries are issued. We could

call this progressive L4 leakage.

Appended-keywords SE. Another class of SE schemes encrypts each document

Di using conventional randomized symmetric encryption, and then append to the

resulting ciphertext Ci an encoding of the values FK(Wi[1]), . . ., FK(Wi[ci]). Here FK

is a pseudorandom function (PRF) such as HMAC. All of the ciphertexts resulting

from performing this are uploaded as-is to the server. Search on a keyword w is easy:

compute FK(w) and request the server to perform a search on it.

As discussed at length in [HAJ+14, LCS+14], the benefit of appended-keyword SE

schemes is that it is legacy-compatible: the server can perform indexing on the up-

loaded ciphertexts, addition and removal of keywords is straightforward, etc. One can

also easily support legacy-compatible frequency counts or ranked keyword searches

using information retrieval methods.

We note that in some implementations the client will sort FK(Wi[1]), . . . , FK(Wi[ci])

before uploading. This is better for security, and both ShadowCrypt and Memesis

Aegis do so. If one does not sort on the PRF values, then information about the

order of keywords found in the document is leaked by the order of PRF values. For

example, two documents that have different orderings of their keywords will have

different orderings of appended PRF values. We also consider unsorted appended-

keywords SE because we believe it is not understood that this is less secure. For

example, Lau et al. state that just outputting the PRF values in whatever order

is secure [LCS+14, Appendix A] and apparently only used sorting for performance

reasons by way of insertion of the PRF values into a Bloom filter.

If the keyword hashes are not sorted and repeats are included, (to allow searches

80

informed by frequency information), then appended-keywords SE and substitution-

cipher SE have identical leakage (when using the same keyword extraction algorithm).

Because of the requirements of legacy compatibility, these appended-SE schemes pro-

vide no additional hiding of occurrence patterns prior to search. Co-incidence rela-

tionships, counts of number of unique keywords, ciphertext length, and ordering (if

sorts on the PRF values are not performed) are revealed immediately upon upload of

the ciphertexts.

Thus, for this class of in-place schemes we define two leakage profiles, one for in-order

and one for random-order encrypted keyword upload:

L3: Fully-revealed occurrence pattern with keyword order. Intuitively, this leakage

profile fully reveals the pattern of keyword occurrences in documents, in the

order of their first appearance, but not the occurrence counts within a document.

Formally, using the notation from above, the profile outputs the sequence of sets

{{(i, j) : Wi[j] = w1}, . . . , {(i, j) : Wi[j] = wN}}.

That is, the first set includes all pairs (i, j) where w1 appears first as the jth term

in the processed version of document i. This leakage profile occurs in in-place

schemes when hashes of the keywords are appended to uploaded documents in

their original order of occurrence in the document. It is equivalent to releasing

key-ed hashes of every document vector Wi, in order.

L2: Fully-revealed occurrence pattern. This profile is similar to leakage profile L3

in that the occurrence patterns of keywords are revealed for every term, yet

not in document order. Formally, if the documents collectively contain terms⋃
iWi = {w1, . . . , wN}, then the profile leaks the full collection of sets

{i : w1 ∈ Wi}, . . . , {i : wN ∈ Wi}.

This leakage is equivalent to the following: For each set Wi, compute keyed

hashes of the terms, sort the hashes lexicographically, and then output the

sorted set.

This profile arises in both in-place SE and the encrypted-index SE described in the

81

next subsection. An in-place scheme will leak this information when hashes of each

keyword are appended (in random order) to securely encrypted documents before

uploading.

L2 is the leakage profile of the SE projects Shadowcrypt [HAJ+14] and Mimesis

Aegis [LCS+14], both of which use an appended-keywords scheme.

Document 1

8OG4qbr Wavtgpc TP1l2tf optdn0n
t2EK8Sp 5LLEuwc SflnwMp FzlwsWH
bZO1Hpf hB1iYbT

Document 2

Ba2donz aSby7AV Pk9MnzP KJvrBga
ojtE0fS t2EK8Sp isxWNuS

Document 1

8OG4qbr Wavtgpc TP1l2tf optdn0n
t2EK8Sp 5LLEuwc Wavtgpc FzlwsWH
bZO1Hpf hB1iYbT

Document 2

Ba2donz aSby7AV Pk9MnzP KJvrBga
ojtE0fS Wavtgpc isxWNuS

0 D02 D08 D10 D11 D19 D77 D84

1 D05 D08 D12 D35

2 D11 D24 D55 D61 D63 D69 D71 D77 D91

3 D18 D35 D40 D59 D84 D85

0 D02 D08 D10 D11 D19 D77 D84

1 D05 D08 D12 D35

2 D11 D24 D55 D61 D63 D69 D71 D77 D91

3 D18 D35 D40 D59 D84 D85

Cz1 J57 Eyj FG0 SQJ Kot vXT e23 u47

PId F17 RN7 hB0 BJI GGI wZV l8H aHc

tvo 0G0 1YC mlz 3dT jO7 imb g3L j6n

Cz1 D05 Eyj FG0 SQJ Kot vXT e23 u47

PId F17 RN7 D08 BJI GGI D12 l8H aHc

tvo 0G0 1YC mlz 3dT D35 imb g3L j6n

“dog” → Wavtgpc “dog” → 1 “dog” → <key>

Figure 5.3: Server’s view SE data structures for the same plaintexts before and after
searching for the keyword ‘dog’. From left to right, the schemes are examples of
leakage profiles L4, L2, L1.

To provide an intuitive sense of the leakage profiles, Figure 5.3 shows simplified dia-

grams of the data structures that the server sees, before and after the word “dog” is

queried, for three schemes with leakage profiles L4, L2, and L1, respectively. The text

to the right of the arrow represents the form in which the query is sent to the server.

In the center (L2) scheme, the entries of the table (starting with D) are document

identifiers.

5.3.1.2 Encrypted-index SE

Most academic work has been on (what we call) encrypted-index SE [SWP00, CGKO06,

KPR12, KP13, NPG14, OKKM13, SPS14, CJJ+14, CJJ+13, KO13, Kur14]. In these

schemes, clients construct an encrypted index before upload.

To describe these schemes, we need to introduce additional notation. For these

schemes, the client generates an inverted index I. This is a m × n matrix A where

entry Ai,j = 1 iff document Dj contains word wi. All other entries are zero. The

m ×m co-occurrence count matrix C contains in location Ci,j the number of docu-

ments in which wi and wj both occur. This can be normalized to produce an empirical

co-occurrence probability matrix Ĉ.

82

Searching the index I requires the client to generate a per-query trapdoor, which is

sent to the server. The trapdoor can be thought of as allowing the server to decrypt

only those document identifiers corresponding to the search term. In some cases, a

special search protocol is performed with the trapdoor by the server on the encrypted

index. For instance, the protocol of [CJJ+13] employed an interactive protocol to

carry out Boolean searching.

Since in index-based schemes, the ordered document texts are not sent to the server,

encrypted or otherwise, but only the index I (possibly in an encrypted format),

encrypted-index SE reveals neither the order of words in a document, nor the number

of times a word occurs in a document.

Unencrypted Inverted Index. In this scheme, the inverted index I (table of

document IDs) is sent unencrypted to the server. We assume the server cannot use

the document ID’s to access the document plaintexts. The client randomly permutes

the rows of the table before uploading, perhaps according to a PRP, so the server

does not know the correspondence between rows and keywords. To fulfill a search

request, the server simply returns the appropriate row to the client.

Note that Boolean queries can be fulfilled at no additional security loss, since the

server already sees the whole table.

Since this scheme is essentially giving the server the document-term matrix, the server

can, prior to any queries being issued, directly observe the length of all result sets and

also construct the co-occurrence matrix C for all keywords. In fact, this scheme has

leakage profile L2, equivalent to the appended-hash scheme described above. Specif-

ically, when the term-document index is uploaded without encryption, an adversary

can derive the same information as provided by appended keyword hashes.

Encrypted Inverted Index, no result length hiding. This scheme differs from

the above in that each row of the index, in the form of a list of document identifiers

(i.e. nonzero matrix entries), is encrypted as a whole (say with a block cipher in some

randomized chaining mode). In this way, no repeated document IDs can be read from

the index before queries are issued. However, the length of each row is not hidden;

before any queries are issued, the server can observe the result count for every row.

The client searches by sending a key allowing the server to decrypt the index row

83

corresponding to the keyword. As queries are fulfilled, the server gains information

about the overlap of documents in result sets.

In this scheme the server can fulfill Boolean queries by obtaining the decryption key

for every keyword in the query. However, this results in the server learning additional

document ID’s beyond those satisfying the query.

We do not define a separate leakage profile for this scheme, but consider it under

profile L1, described next.

Fully Length-hiding SE. This strongest class of searchable encryption schemes

hide the length of the result sets before they are queried, so that before queries are

issued the server learns nothing except the total size of the index.

It was suggested by Song et al. [SWP00] that the length of result lists could be par-

tially hidden by padding the shorter lists to a fixed size. A solution to completely hide

result lengths without using padding was first presented in Curtmola et al. [CGKO06],

by the use of an interwoven linked list data structure. Recent work has shown that

it is possible to fulfill Boolean queries in this setting while revealing less information

than the entire row for all words in the query [CJJ+13].

We define the leakage of this fully-length-hiding SE, the smallest leakage profile we

consider, as L1:

L1: Query-revealed occurrence pattern. Intuitively, this profile reveals the same

information as L2, but only for terms that have been queried. This is the class

of leakage targeted by [CGKO06] and its derivatives. In this profile, initially

only basic size information (e.g. the total length of the documents) is leaked.

When a term is queried, the profile includes the access pattern of the term,

which means identifiers of documents containing w.

Formally, when D is processed into W and encrypted, and a sequence of queries

q1, q2, . . . , qQ is issued, then the leakage profile includes the sequence of sets

{i : q1 ∈ Wi}, {i : q2 ∈ Wi},{i : qQ ∈ Wi}.

Depending on the setting, the leakage function may permute the indices i ran-

domly to hide the initial correspondence between the plaintexts and ciphertexts.

This means for each queried term, the profile leaks the number of documents

84

containing the term, and for multiple queries, the profile reveals which docu-

ments they have (or do not have) in common.

For a simplified illustration of what the server sees before and after a query in schemes

with leakage profiles L4, L2, and L1, see Figure 5.3.

5.3.2 Attack Models

We classify attack models along two axes. First, we consider the mode of the attack,

meaning whether the server is passively or actively mounting attacks, and second, we

specify the knowledge of the server regarding the documents and queries.

Attack modes. In SE the server receives the ciphertexts and query requests from a

client, and an adversarial server may use its position to extract private information.

We classify the following three attack modes (where the last two may be utilized

simultaneously in one attack). In each case, the adversary is a server following the

SE protocols, but it may take actions to induce the client to run with certain inputs.

• An honest-but-curious server follows the protocol and takes no actions beyond

those of an honest server, and attempts to learn about the plaintext documents

of the terms that were queried.

• An active adversary can could carry out a chosen-document attack where it

tricks the client into include a chosen document in the document set. Our model

scenario for this attack is an automated-update email or document storage

system, where new documents are processed and added without explicit human

involvement. In this setting the adversary will be able to craft a document,

induce the client into including it, and then learn from the subsequent leakage

(along with knowledge of the chosen document, of course).

An adversarial server may mount a chosen-query attack by inducing the client into

issuing certain queries, thereby revealing whatever is leaked by that query. Our

attacks will not use attack mode as it seems less realistic, but it is conceivable that a

deployment scenario would enable this ability in some form.

Adversary knowledge. One of our theses is that an SE server’s prior knowledge

of the documents and queries may enable the extraction of more information. We

85

specify the following possible types of prior knowledge. Depending on the setting,

multiple types of knowledge may be available to the adversary.

• Distributional query knowledge models a typical case where an adversary has

some idea about the queries being issued. For instance, if encrypted chat logs

are being searched, an adversary can refer to typical user behavior regarding

those searches to inform its attack.

• Known queries occur when the server knows some of the terms input by the

client for a search. In practice an adversarial server may use contextual infor-

mation about the client’s behavior to accurately guess some queries. Formally,

in this setting we will draw some queries q′1, . . . , q
′
k from a distribution that

all become known to the adversary, and then other queries q1, . . . , qQ from a

distribution that the adversary will not know.

• Distributional document knowledge models the contextual information an adver-

sary will have about the documents (e.g. whether they are emails, or corporate

sales documents, or something else). Formally we will model this by considering

a distribution on documents. In our attacks, we will divide large data sets into

two parts, giving one part to the adversary.

• Known documents model scenarios where an attacker will know certain plaintext

documents or perhaps have significant information about them. For example,

an attack might know that a widely-distributed email is somewhere in a user’s

repository. In our attacks we model this situation by drawing documents as

above, and then either hand-selecting likely known documents or choosing some

at random.

• Fully-known document set is the setting explored by IKK [IKK12], where all of

the documents are known to the adversary, and only some or all of the queries

are unknown.

Attack objectives. We next identify possible objectives for an adversary controlling

the server in an SE scheme.

• Query recovery (QR) is the goal of determining the plaintext of queries that

have been issued by the client. This was the objective of the first known attack

86

on SE by Islam et al. [IKK12]. QR is non-trivial in any setting where some of

the queries are known, including cases where the documents are fully or partially

known.

• Plaintext recovery (PR). In PR attacks, the adversary’s goal is to reconstruct

as much as possible of the client’s indexed documents, primarily by learning a

mapping of keywords to their encrypted versions (informally, hashes.) A PR

attack may reveal plaintexts as a “bag-of-words” or in document order; for the

attacks we present, this depends on the scheme and is independent of the attack

method itself.

Of course, these are not the only attack objectives: we briefly point out two others,

document presence and document identification. In a document presence attack, the

adversary simply wishes to determine whether a known plaintext document is present

in the client’s index. In a document identification attack, the server seeks to find the

correspondence of known documents to the document IDs revealed by the SE scheme.

Also note that attack objectives are interrelated. In particular, a successful plaintext

recovery attack will make document identification trivial.

In the subsequent sections we describe our attack results for meaningful combinations

of attack objective, leakage profile, and server knowledge. See Figure 5.1 on page 70

for a summary.

5.4 Experimental Methodology

We investigated the vulnerability of the described leakage profiles by means of sim-

ulated query recovery and plaintext recovery attacks, using two separate publicly

available email datasets. The first is emails from 150 employees of the Enron cor-

poration from 2000-2002, available online [Enr]. In order to focus on intra-company

email, following the approach of [IKK12], we took emails from each employee’s sent

mail folder, resulting in 30,109 total documents. The on-disk size of the data set is

50 megabytes. The second dataset we used is a subset of the Apache mailing list

archives. Specifically, we used the “java-user” mailing list from the lucene project

for the years 2005-2011. This consists of 50,582 emails, with an on-disk size of 338

megabytes.

87

For each dataset, one email message is considered as one document. A fixed-size

vocabulary was established by taking the top keywords from each dataset after re-

moval of 200 stopwords. In experiments where the vocabulary size was not varied,

we used a keyword set of size 5000. This gives an average of 93 words per document

in the Enron corpus, and 291 in the Apache dataset. Keywords are stemmed using

the standard Porter stemming algorithm. Stemming is a crucial feature of usable

search functionality, as it provides more flexible matching, e.g., a search for “cat” will

also match the word “cats”. Stemming has a two-sided effect on the attacks that we

evaluated. Firstly, it allows the adversary to reconstruct only the stems of keywords,

so number and tense information of the original plaintext cannot be recovered. On

the other hand, stemming reduces the total vocabulary size and increases repetitions

of terms, making the attack easier.

5.5 Query Recovery Attacks

These attacks apply to any of the leakage profiles defined above (L1 or greater), being

originally designed for the indexing-based full SE schemes described in Section 5.3.1.2.

Again, the adversary’s goal in query recovery attacks is to recover the correct plaintext

keywords corresponding to queries that the client has issued to the SE server.

These attacks depend on multiple queries being issued, correlating the access pattern

leakage. These attacks work under the lowest leakage profile, L1 (the leakage of full

SE), but require the server to have more extensive knowledge of the document set

that is indexed.

5.5.1 Prior Work: The IKK Attack

Islam et al. [IKK12] give the first successful experimental attack on searchable en-

cryption that we are aware of. Theirs is a query recovery attack on SE (leakage

profile L1), using full document knowledge and partial query knowledge. They give

experimental results using the Enron email dataset, achieving recovery rates of up to

80% of issued queries.

The attack presumes a fixed set of m potential search terms, and the server’s knowl-

edge of D is distributional, in the form of the m×m matrix Ĉ of word co-occurrence

88

probabilities. Note that this can be computed exactly if the server knows the true

document-term matrix A for the indexed documents.

The server mounts the attack by observing the document overlap pattern revealed

by the client’s issued queries. Let q be the number of unique query tokens observed.

These are used to construct a q× q term co-occurrence matrix Ct and its normalized

version Ĉt, which is a permutation of an unknown submatrix of Ĉ (approximate if

the server’s knowledge is not exact.) Then, simulated annealing is used to find the

best match of Ĉt to Ĉ. The output is a mapping of rows of Ct to rows of Ĉ, which

are the guesses for the query terms. In leakage profile L2 or greater, the attack can

be carried out using the entire keyword set prior to observing any queries.

The authors give experimental results for the Enron email dataset. The keywords are

taken to be the m most common stemmed words in the document set after stopword

removal, and the queries are chosen uniformly at random from among these. The

recovery rate reported varies from near perfect with 500 keywords to approximately

0.65% with 2500 keywords. Holding the number of unique queries t constant at 150.

We re-implemented the attack to confirm these results and make further comparisons.

One strength of the attack, henceforth called the IKK attack, is that the success

rate is largely independent of the number of queries issued. The median number in

the results of [IKK12] is 150. Thus, in the remainder of this work we use either 150

queries or 10% of the keywords as a default, whichever is larger.

A significant weakness of the attack is that the adversary’s advantage does depend

strongly on the number m of keywords under consideration. The authors of [IKK12]

do not report on experiments with keyword sets larger than 2500. In our experiments,

the annealing attack performs poorly on queries for vocabulary sizes over 5000. This

is shown in Figure 5.4. Thus the attack of [IKK12], while valuable for illustrating the

vulnerabilities of SE, is fairly non-scalable.

As will be shown in Section 5.5.3, while the IKK attack explicitly requires only distri-

butional server knowledge, in practice it requires the adversarial server to have highly

accurate co-occurrence knowledge of the true document set. This led us to consider a

more direct attack that can be carried out when the server does have explicit access

to the true document set.

89

5.5.2 Query Recovery with a Counting Attack

When the adversarial server, in addition to knowing the co-occurrence pattern of

keywords, also knows the number of documents in the indexed set that match each

keyword—the result lengths—a much more efficient and accurate query recovery at-

tack is applicable. This length-based query recovery attack is applicable to all schemes

with leakage profile L1. The attack is efficient and requires no numerical optimization

techniques.

Attack Description. Similarly to the IKK attack, the adversarial server uses key-

word co-occurrence matrix C, and a fixed number m of keywords is considered. In

addition, we assume that the server also knows or can compute the number of match-

ing results count(w) for each keyword w in the true document set. Note that all this

information can be easily computed if the server has access to the explicit document

set.

The first observation is that if any keyword with a unique result count is queried using

trapdoor q, then a server with knowledge of the true document set can immediately

recover the query, by finding the word w such that count(w) = count(q).

In the Enron email dataset with the same setup as [IKK12], if we consider the most

common 500 non-stopwords as keywords, 63% of them have a unique result count.

If 2000 keywords are considered, then 24% are unique. Note that due to the Zipfian

character of word distribution in natural-language text, the unique result counts will

come from the more frequently occurring keywords. If queries are assumed to be

drawn uniformly from this set of keywords, then these percentages can be thought of

as a baseline rate for query recovery when the server knows result counts. Also note

that the larger the document collection, the larger the number of keywords that have

a unique result count (although the total number of keywords present grows as well.)

Beginning with this baseline knowledge, our attack algorithm proceeds to recover

queries that do not have a unique result count by comparing term co-occurrence

counts. See Algorithm 1.

In contrast to the IKK attack, in the count attack the adversary definitely knows

which queries have been correctly reconstructed, and has partial information about

others in the form of the candidate set.

90

Input: Unencrypted keyword index Index, observed query tokens t and results
Initialize known query map K with queries (q, k) having unique result lengths;
Compute co-occurrence counts Cq for observed queries and CI for Index;
while size of K is increasing do

for each unknown query q ∈ t−K do
Set candidate keywords S ⊆ K = {s : count(s) = count(q)};
for s ∈ S do

for known queries (q′, k) ∈ K do
if Cq[q, q

′] 6= CI [s, k] then
remove s from S;

end

end

end
if one word s remains in S then

add (q, s) to K;
end

end

end

Algorithm 1: The count attack algorithm.

Count Attack Analysis. Figure 5.4 shows the query reconstruction results from

our implementation of the count attack in the same setup as [IKK12], but with the

server having no initial knowledge of any queries. The graph shows accuracy results

for varying number of keywords from 2500 to 15000, in each case assuming that 10%

of the keywords under consideration have been queried. The attack achieved perfect

reconstruction for keyword counts less than 2500. Since the count attack takes only

a few seconds to run, compared with hours for the simulated annealing, we could run

it with much larger numbers of keywords than IKK [IKK12].

Our experiments indicate that once even a small number of queries is initially dis-

ambiguated, the co-occurrence counting phase can successfully recover nearly all the

queries.

Padding Countermeasures. We considered whether the effectiveness of the count

attack could be decreased by a client who pads the index with additional entries for

bogus document ID’s. These bogus ID’s can be filtered from search results by the

client.

We consider a scheme in which the number of entries in each index row is padded

up to the nearest multiple of an integer n. This can be thought of as constructing

91

500 2500 4500 7500

0

0.5

1

Number of keywords considered
R

ec
on

st
ru

ct
io

n
ra

te

Count Attack
IKK Attack

Figure 5.4: Comparison of IKK and Count attacks for query reconstruction by vo-
cabulary size. Enron dataset, 150 keywords queried.

query “buckets” within which keywords will have the same result length. Changing

the padding size n allows us to adjust the space-security tradeoff. To avoid statistical

analysis to determine which document IDs are used as padding, a bogus document

set can be constructed by sampling from the same term distribution as the true

documents. Then the desired padding entries can be chosen from among these.

Qualitatively, this affects the count attack in two ways: Firstly, it reduces the number

of unique result lengths, increasing the number of candidate matches for a given query.

Secondly, it prevents the co-occurrence counting stage of the count attack from being

carried out exactly: The number of co-occurrences of two keywords in the padded

index may exceed the co-occurrence count of the corresponding keywords computed

from the true document set. The attacker must allow for this and cannot eliminate

as many candidates.

The count attack as described above completely fails once the padding size n is

increased to the point that no keyword has a unique result count; in this case it

cannot obtain even a single initial known query with which to bootstrap the co-

occurrence counting. However, we can modify the algorithm to allow the attack to be

carried out with reduced information. There are two main insights in the generalized

count attack. Firstly, since the server is aware that the padding can cause additional

“false co-occurrences”, it can adjust its comparison so that, instead of requiring an

exact match of co-occurrence counts, it accepts co-occurrence counts within a window

as large as the maximum number of false co-occurrences. Secondly, we remove the

92

algorithm’s dependence on initially finding a query with a unique result count. This

is done by finding the result length among the queries that has the smallest number of

occurrences, provisionally setting the query to the first one, and running the remainder

of the algorithm. If the guess is wrong, the co-occurrence counting phase detects an

inconsistency and bails out, and the next candidate will be tried.

These modifications to the count attack algorithm maintain its correctness. Figure

5.5 shows the effect of padding on the generalized count attack.

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Padding overhead – # index entries

R
ec

on
st

ru
ct

io
n

ra
te

Enron emails
Apache “java-user”

Figure 5.5: Generalized count attack results for padded index, 5000 keywords consid-
ered, 10% of keywords queried.

Up to a padding level that increases the index size by about 15% for the Enron data,

and 30% for the Apache data, the attack’s success rate is unaffected. We believe the

attack is more robust on the Apache email because the dataset is more dense—each

document has more words, so there is more co-occurrence information. The recovery

rate drops off rapidly after this, as the data becomes sufficiently noisy to prevent any

disambiguation. Note that unlike with the IKK attack, these results are with the

server knowing zero queries initially.

5.5.3 Query Recovery from Partially Known Documents

In this section we analyze the above attacks on L1 leakage (with slight modifications)

in the case when the server has only partial knowledge of the document set, to better

understand the server knowledge level required to carry out these attacks.

Analysis of the IKK attack with partial knowledge. Because the IKK attack

only directly makes use of word co-occurrence probabilities, technically it does not

93

require the server to have explicit knowledge of the documents themselves. However,

the effectiveness of the attack depends strongly on the accuracy of the co-occurrence

matrix. The authors discuss this and give results of an experiment in which random

Gaussian noise is added to the co-occurrence matrix. In their experiment, the recovery

rate drops from 85% to 65% at the first increment of added noise.

To understand better how real-world limitations on a server’s knowledge affects the

accuracy of the attack, we devised a new experiment. Instead of adding noise to the

co-occurrence matrix, we assume the server knows only a certain fraction of the true

documents, and compute the co-occurrence probabilities from that. We duplicated

the experiments of [IKK12] with the server’s co-occurrence matrix constructed from

various percentages of the true document set. See results in Figure 5.6, which relate

the recovery rate to the percentage of the dataset known to the server. In brief, these

results indicate that unless the server has access to 99% of the true document data,

the query recovery rate is quite poor.

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

% of dataset known to server

Q
ue

ry
re

co
ve

ry
ra

te IKK Attack
Count Attack

Figure 5.6: Query recovery rates when server has partial knowledge of true document
set. Enron dataset, 500 keywords, 150 queried uniformly. Server knows 5% of queries
at start.

Note that this is the case what the server knows is a subset of the true documents.

We also conducted experiments showing that if the server is trained on a random

subset of documents, while the client queries a disjoint subset from the same corpus,

(the unknown documents case), the IKK attack fails completely.

Generalized count attack for partial knowledge. We also modified the general-

ized count attack described in the previous section to allow query reconstruction when

the server does not know the full document set. As with the case of padding, this

94

requires the algorithm to allow keyword candidates within a window of co-occurrence

counts, rather than requiring exact equality. These results are also plotted in Figure

5.6. Note that the count attack performs better, requiring the server to know only

80% of the dataset for significant query recovery.

These data support the conclusion that attack on L1 leakage require a significant

amount of server knowledge of the document set, but are nonetheless possible with

less-than-perfect knowledge.

5.6 Document Identification Attacks

The same type of result length and term co-occurrence information can be used to

carry out a document identification attack as well. Recall that document identification

is the task of determining the correspondence between document IDs observed by the

server and a set of documents known to the server.

In terms of the term-document matrix A, Document Identification can be seen as the

“dual” task of Query Recovery—the goal is to recover the correct column permutation.

However, the count attack as described above cannot be applied directly on the

transposes of the matrices (in the case of full SE). In that case, the result counts

desired would be the number of terms in a given document. However, it is still terms

that are being queried, and rows, not columns, of A are revealed to the server. As

long as only a subset of terms is queried, the server does not learn the exact count of

terms in any document.

Given this, the most straightforward document identification attack in this setting

may be to carry out the query recovery count attack, and then use that information

to recover the correspondence of document IDs to known documents.

Attack algorithm. Assume the count attack above has been successfully carried

out, and that the server now holds a query matrix B for which it knows the cor-

respondence of rows to queries. Then B is a known subset of the rows of A, with

the columns randomly permuted (from the server’s point of view.) The algorithm

is simple. Each column of B (document) is examined one-by-one and compared to

the server’s documents to see if the term occurrences match. This produces a set

of candidate documents for each column; if the size of the candidate set is one, the

95

document has been uniquely identified. As with the query recovery count attack,

multiple passes can be used to eliminate additional candidates.

Document Identification Using Payload Lengths.

Searchable encryption schemes also become vulnerable to attack in the case where

the server has access to the sizes of the document payloads. This happens whenever

the server used for searching is the same server that retrieves the documents, or

the adversary controls both. Payload length information can be used to re-identify

keywords and documents in the same manner as the above attacks that use result

count information.

5.7 Plaintext Recovery Attacks

In plaintext recovery attacks, the server’s goal is to learn the mapping of keywords

to the ciphertexts stored by the SE scheme, for as many keywords as possible. This

in turn allows reconstruction of stored documents, either as a “bag of words” in

appended-keywords schemes, or ordered plaintext if the document is deterministically

encrypted using the word hashes.

These attacks exploit leakage profiles L2 and L3. For example, they apply to search-

able encryption schemes that store encrypted words on a per-document basis using a

PRF or hash function, as in the “in-place” schemes as described in Section 5.3.1.1. We

show realistic and highly damaging known-document (passive) and chosen-document

(active) attacks in this scenario. The server is required only to know a small number

of stored documents, as described in each experiment.

5.7.1 Passive Attacks

This section presents and gives analyses of attacks for query recovery and keyword-

based plaintext recovery by a passive server that correctly executes the SE scheme

algorithms. Attacks are classified by the SE scheme type (substitution or indexing-

based), and how much prior knowledge of the plaintext document set D the server

possesses.

96

5.7.1.1 Order of Hashes Known (L3)

To start with a simple case, we consider a scheme in which the order of appended

hashed keywords is not changed from the order in which the keywords appear in the

document. This is leakage profile L3. In this case, all the indexed keywords in any

known document are immediately revealed to the server. We present the results of

statistical experiments quantifying the advantage gained by an attacking server in

this scenario.

Random Documents. To determine the fraction of plaintext keywords learned by

an adversarial server that knows a small number of the stored documents, we com-

puted the fraction of documents at a given recovery rate, for varying number of known

document and 20 known random documents, averaged over 10 random trials in each

case. Results for the two datasets, for 2 and 20 known documents, are summarized

in cumulative style in Figure 5.7. The curves which fall further to the right are in-

dicative of a larger percentage of documents having high keyword recovery rates. As

mentioned, the datasets have over 30,000 and 50,000 documents, respectively, so even

when a very small fraction of the documents is known to the server, the server can

see a substantial percentage of the words of the stored documents.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Keyword recovery rate

C
um

ul
at

iv
e

fra
ct

io
n

of
do

cu
m

en
ts

Enron-2
Enron-20
Apache-2

Apache-20

Figure 5.7: Plaintext reconstruction rates for the Enron dataset from known docu-
ments for an in-place SE scheme with ordered keyword hashes.

These results show that even a small number of known documents allows the server

to recover a significant percentage of the documents, enough that a human inspecting

the output in the form of redacted documents may obtain a very strong sense of its

97

The attached contract is ready for signature. Please print

2 documents and have Atmos execute both and return same to my

attention. I will return an original for their records after ENA

has signed. Or if you prefer, please provide me with the name /

phone # / address of your customer and I will Fed X the Agreement.

attach contract signatur pleas print 2 document have execut both same

will origin ena sign prefer provid name agreement

Figure 5.8: (Top) An example plaintext email from the Enron corpus. (Bottom)
The stem words recovered by our attack when given 20 randomly selected known
emails.

content.

Note that the curve is steeper for the Apache dataset results. Our hypothesis is that

the Apache dataset has a “critical mass” of vocabulary that is common to most of

the documents, as the topic of discussion in a software mailing list is likely to be more

uniform than all the emails sent by a large company’s employees.

To get a sense for the ability of a human attacker to gain information from this type

of reconstruction, we took the stemmed keywords from a 20-document Enron trial,

made a random selection of several other Enron emails, and printed out the first

occurrence of each matching stem in document order, omitting stopwords. A sample

is shown in Figure 5.8. Note that potentially sensitive information has been revealed,

including the name of a company involved in a contract.

Known Public Documents. Though choosing documents at random is important

for statistically understanding the power of attacks, the true source of a known-

document attack would likely not be an email chosen uniformly at random. A more

probable source might be a message that has a wide distribution, such as a company-

wide announcement. The more recipients an email has, the more likely it is that its

plaintext will become available to an attacker.

To test this, we ran the same experiment with a single email from the Enron dataset

that was sent to 500 recipients. It was an announcement sent an entire division,

four paragraphs long, with 832 unique keywords, containing an announcement of an

upcoming survey of the organization by an outside consulting group. From this single

document, an average of 35% of the indexed keywords in every document could be

recovered.

98

5.7.1.2 Order of Hashes Unknown (L2)

In leakage profile L2, for example an in-place scheme when the keyword hashes are

stored in randomized order, a server who knows a number of document plaintexts

cannot immediately determine the PRF mapping of every keyword in the document,

though he knows the set of hashes that correspond to the keywords in the document.

We can quantify the ambiguity of words in the known documents. A keyword which

the server knows the hash of has ambiguity 1 (no ambiguity). If the number of indexed

keywords in a document known to the server is w1, then for each word there are w1

different possibilities for its hash. If this is the only document known to the server,

we say the average ambiguity of all the keywords in the known document set is w1.

When more than one document is known by the server, the ambiguity can be reduced,

again by use of the co-occurrence pattern of keywords in the known documents. We

omit a full analysis of this approach. A much more powerful attack for unknown

order of hashes is possible when the server is able to plant documents, as shown in

section 5.7.2.2.

5.7.2 Active Attacks

We now consider the power of an attacking server who, in addition to observing the

client’s uploaded data, can “plant” documents that will be processed by the client

and added to the uploaded dataset. Note that the protocol itself is not attacked; the

server still fulfills requests following the rules of the scheme. This attack model can

be seen as the analogue of the chosen-plaintext attack model (CPA) used in security

proofs for encryption schemes.

We can easily imagine real-world scenarios where attacks of this nature can be carried

out—it can be as simple as a malicious server sending a client an email, which is then

indexed by the client and uploaded to the server. As another example, we described

how a malicious server might make an invisible-to-the-user attack on ShadowCrypt

using UI redressing in Section 5.2.

The attacks described below apply to in-place schemes, as described in section 5.3.1.1.

We assume that by observing the payload length and/or the time at which documents

are uploaded, the server can determine which index or database entry corresponds to

99

the document he planted. For each attack we measure the level of plaintext recovery

as percentage of keywords reconstructed.

5.7.2.1 Hash order known (L3), chosen document

Recall that searchable encryption schemes with leakage profile L3 preserve the docu-

ment order of encrypted keywords stored at the server, either by deterministic word-

based encryption of the document itself or by storing keyword hashes in their order

of appearance. In this case then an adversarial server can carry out a simple but

devastating attack. He can plant a single document in the database with any desired

set of keywords, and then from its encryption can learn all of the hashes of those

keywords. We do not explore this simplistic, though obviously very damaging attack,

further.

5.7.2.2 Hash order unknown (L2), chosen documents

We now consider schemes in which the hashes of keywords are stored at the server

in random order. In this case, an adversary who plants a chosen document will only

learn the set of keyword hashes for the document, and not the one-to-one mapping

of keywords to hashes. Clearly, the server can learn a single word unambiguously by

planting a one-word document. An adversary would seek to maximize the “yield”

of keywords learned per inserted document, minimizing the number of errors, and

minimizing the number of inserted documents which in some settings could mean less

chance of detection.

We present and analyze an attack based on frequency analysis of a related corpus,

which allows the server to trade off error probability versus size and number of inserted

documents, giving a highly effective attack strategy.

Attack description. From the known related corpus, the adversarial server gener-

ates a list of (possibly stemmed) keywords ranked by frequency. Fixing a document

size k, the adversary divides the ranked keyword list into k equal-sized slices. He then

generates a k-word document by choosing the top word from each slice. The goal is

to maximize the frequency distance between keywords in a given document.

The adversary also computes the frequency distribution of keyword hashes in the

100

data uploaded by the client. After observing the hashes of the words in the planted

document, the server ranks them by their frequency in the uploaded dataset, and

guesses that the hashes correspond to the keywords of the same rank based on his

own corpus. All k guesses are correct as long as there are no rank reversals in their

keyword frequencies between the two datasets. The adversary can repeat this process

for all known keywords or for as many documents as he is able to insert.

We again use a simulated attack to estimate the keyword recovery rate and error rate

of an adversary using this method.

Experimental setup. We used two setups, the first one to model an adversarial

server that has access to a closely related corpus, the second to model a server having

access only to unrelated text in the same language. For the first, we divided a

single data set in half, with the server “training” on 50% of the documents to learn

keyword frequencies, while the client processes the documents in the other half and

uploads encrypted keywords to the server. For the second, we used keyword sets and

frequencies from the Enron dataset to attack the Apache dataset, and vice versa.

In each experiment, we generated chosen documents to cover all the keywords known

to the server and measured the average recovery rate as well as error rate of client

keywords. The recovery rate takes into account errors as well as the fact that not all

of the client-indexed keywords occur in the server’s dataset, for which the server will

never make a guess. The error rate counts only wrong guesses.

The plots in Figure 5.9 show the tradeoff between number of words per chosen doc-

ument and error rate. The data are averaged over 10 runs per dataset and the two

datasets. As expected, the larger the number of slices/keywords per document k, the

greater the probability of error, as the words in a document will be closer in frequency,

increasing the likelihood of a rank reversal between the client and server datasets.

In both the single-dataset 50% split and unrelated dataset scenarios, the error rate

approaches the recovery rate as the number of terms per planted document increases.

At the point where the error rate becomes higher than the attacker can be considered

to gain very little information about keyword hash mappings. Also as expected, for

the unrelated-corpus scenario, the recovery rate starts much lower, and a smaller slice

size must be used to avoid too many errors. However, the error rate is not worse in

the cross-dataset experiment, showing that frequency rank in English text is fairly

101

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Keywords per chosen document

Fr
ac

tio
n

of
ke

yw
or

ds

Recovery rate
Error rate

Recovery, unrelated
Error, unrelated

Figure 5.9: Keyword recovery rate and error rate for planted documents, unknown
order of keyword hashes, 5000 keywords considered.

consistent, at least across these two email domains.

To recover w keywords, the adversary must plant at least w/k documents, more

to allow for the error rate. The choice of document size must be informed by the

attacker’s desired error rate and the probability of detection. At any rate, the attack

allows even an adversary who can plant a small number of documents to learn a

sensitive selection of keywords.

5.8 Conclusion

These experiments, along with the classification of searchable encryption schemes,

show that a malicious server with just a small ability to carry out active chosen-

document attacks can expose a damaging quantity of private information from a broad

class of searchable encryption schemes. If the server has only passive capabilities,

equally damaging attacks can be carried out if the server has enough distributional

knowledge of the document set.

Padding is an obvious defense technique for index-based schemes; however, we have

seen that the information hiding accomplished by a padding technique needs to be

sufficiently well understood to guarantee its effectiveness. We suspect that padding

will be less useful against schemes that use word substitution, as the server has

102

direct access to distributional knowledge of terms, and could potentially use passive

distributional analysis to distinguish padding terms from legitimate keyword hashes.

Investigating this could be a promising topic of future work.

103

Chapter 6

Insights to Drive the Deployment

of Secure Computation

The work presented in this dissertation sheds light on key concerns in the use of secure

computation, including usability of technologies based on provable security, efficiency

when large datasets are involved, and the exploitability of leakage.

From Chapter 3, we learn that for general secure computation protocols to be gain-

fully deployed, it is necessary to not only translate protocols in the literature into

implemented protocols, but also translate the body of knowledge in this literature to

a representation that can be used to inform decision-making about the application of

MPC protocols.

The work in Chapter 4 is an example of how scalability and usability concerns will

continue to drive the development of application-specific protocols that may have

leakage. It is simply not worth the trouble at the present time to model an entire

database system in MPC. Nonetheless, the idea of looking for improved solutions

by making use a semi-trusted third party was very much informed by general MPC

results. Distributing trust among additional parties is a broadly applicable meta-

technique for improving the security of computation without sacrificing efficiency,

while retaining or even strengthening security.

Lastly, Chapter 5 sounds the alarm for a new kind of diligence that is needed when

protocols with leakage begin to be sold and used in the world at large. Leakage,

formally characterized or otherwise, will continue to be a reality. So we need to keep

104

finding better ways to analyze what damage can be done with leakage.

Returning to the question asked in the introduction—“General or specific protocols?”—

the work here has shown that the issue involves much more than a one-dimensional

tradeoff between efficiency and security. It appears that, at least in the immediate

future, more efficient protocols for specific secure computation tasks will continue to

be adopted more widely than general MPC protocols. At the same time, as it has

from the beginning, insights from the results in general multi-party computation will

continue to be useful for driving the development of application-specific protocols.

General MPC does, in fact, appear to be finally finding its niche, not in consumer

applications but in the corporate and governmental realms, where the setup costs

are more reasonable in proportion to the economic or political significance of a single

computation.

105

Bibliography

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adver-
saries: Efficient protocols for realistic adversaries. In Theory of Cryp-
tography – TCC 2007, pages 137–156, 2007.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In Roger Dingledine
and Philippe Golle, editors, Financial Cryptography and Data Secu-
rity, volume 5628 of Lecture Notes in Computer Science, pages 325–343.
Springer Berlin Heidelberg, 2009.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous se-
cure computation. In Proceedings of the 25th Annual ACM Symposium
on Theory of Computing (STOC ’93), pages 52–61, 1993.

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interac-
tive protocols. In Theory of Cryptography – TCC 2012, pages 266–284,
2012.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Univer-
sally composable protocols with relaxed set-up assumptions. In Proceed-
ings of the 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2004), pages 186–195. IEEE, 2004.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a sys-
tem for secure multi-party computation. In ACM Conference on Com-
puter and Communications Security, pages 257–266, 2008.

[BDO14] Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable
secure multi-party computation. Cryptology ePrint Archive, Report
2014/075, 2014. http://eprint.iacr.org/.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias.
Semi-homomorphic encryption and multiparty computation. In Ad-
vances in Cryptology – EUROCRYPT 2011, pages 169–188, 2011.

http://eprint.iacr.org/

106

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of
private computations. In Proceedings of the 28th Annual ACM Sympo-
sium on Theory of Computing (STOC ’96), pages 479–488, 1996.

[Bea97] Donald Beaver. Commodity-based cryptography (extended abstract).
In Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 446–
455, 1997.

[Bea98] Donald Beaver. Adaptively secure oblivious transfer. In Advances in
Cryptology—ASIACRYPT ’98, pages 300–314, 1998.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In Proceedings of the Twentieth Annual ACM Sym-
posium on Theory of Computing (STOC ’88), pages 1–10, 1988.

[BKLPV13] Dan Bogdanov, Liina Kamm, Sven Laur, and Pille Pruulmann-
Vengerfeldt. Secure multi-party data analysis: end user validation and
practical experiments. Cryptology ePrint Archive, Report 2013/826,
2013. http://eprint.iacr.org/2013/826.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A frame-
work for fast privacy-preserving computations. In ESORICS, pages 192–
206, 2008.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complex-
ity of secure protocols (extended abstract). In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing (STOC ’90), pages
503–513, 1990.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations with
practical applications. PhD thesis, University of Tartu, 2013.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic
protocols. J. Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings of the 42nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2001), pages 136–
145, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncon-
ditionally secure protocols (extended abstract). In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing (STOC
’88), pages 11–19, 1988.

[CD05] Ronald Cramer and Ivan Damg̊ard. Multiparty computation, an intro-
duction. In Contemporary cryptology, pages 41–87. Springer, 2005.

http://eprint.iacr.org/2013/826

107

[CDdV+05] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani di Vimercati,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Modeling
and assessing inference exposure in encrypted databases. ACM Trans.
Inf. Syst. Secur., 8(1):119–152, 2005.

[CDI05] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion,
pseudorandom secret-sharing and applications to secure computation.
In Theory of Cryptography – TCC 2005, pages 342–362, 2005.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General secure
multi-party computation from any linear secret-sharing scheme. In Ad-
vances in Cryptology – EUROCRYPT 2000, pages 316–334, 2000.

[CDN13] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Multi-
party Computation and Secret Sharing: An Information Theoretic Ap-
proach. Self-published manuscript, 2013. https://users-cs.au.dk/

jbn/mpc-book.pdf.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable symmetric encryption: improved definitions and efficient
constructions. In Proceedings of the 13th ACM Conference on Com-
puter and Communications Security, CCS 2006, Alexandria, VA, USA,
Ioctober 30 - November 3, 2006, pages 79–88, 2006.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch.
Verifiable secret sharing and achieving simultaneity in the presence of
faults (extended abstract). In Proceedings of the 26th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 1985), pages
383–395, 1985.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I,
pages 353–373, 2013.

[CJJ+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic search-
able encryption in very-large databases: Data structures and implemen-
tation. In NDSS 2014, San Diego, California, USA, February 23–26,
2014. The Internet Society.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Pri-
vate information retrieval. J. ACM, 45(6):965–981, 1998.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limita-
tions of universally composable two-party computation without set-up

https://users-cs.au.dk/jbn/mpc-book.pdf
https://users-cs.au.dk/jbn/mpc-book.pdf

108

assumptions. In Advances in Cryptology – EUROCRYPT 2003, pages
68–86. Springer, 2003.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the pro-
cessors are faulty (extended abstract). In Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing (STOC ’86), pages
364–369, 1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
Proceedings of the 34th Annual ACM Symposium on Theory of Com-
puting (STOC ’02), pages 494–503, 2002.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious
transfer. Cryptology ePrint Archive, Report 2015/267, 2015. http:

//eprint.iacr.org/.

[DCCMP14] Giovanni Di Crescenzo, Debra Cook, Allen McIntosh, and Euthimios
Panagos. Practical private information retrieval from a time-varying,
multi-attribute, and multiple-occurrence database. In Data and Appli-
cations Security and Privacy XXVIII, pages 339–355. Springer, 2014.

[DCFG+14] Giovanni Di Crescenzo, Joan Feigenbaum, Debayan Gupta, Euthimios
Panagos, Jason Perry, and Rebecca N. Wright. Practical and privacy-
preserving policy compliance for outsourced data. In Rainer Bhme,
Michael Brenner, Tyler Moore, and Matthew Smith, editors, Finan-
cial Cryptography and Data Security, volume 8438 of Lecture Notes in
Computer Science, pages 181–194. Springer Berlin Heidelberg, 2014.

[DGKN09] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus
Nielsen. Asynchronous multiparty computation: Theory and imple-
mentation. In Public Key Cryptography, pages 160–179, 2009.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure mpc for dishonest
majority – or: Breaking the SPDZ limits. In 18th European Symposium
on Research in Computer Security (ESORICS 2013), pages 1–18, 2013.

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishon-
est majority: From passive to active security at low cost. In Advances
in Cryptology – CRYPTO 2010, pages 558–576, 2010.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
Advances in Cryptology – CRYPTO 2012, pages 643–662, 2012.

[dVFJ+07] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano
Paraboschi, and Pierangela Samarati. Over-encryption: Management

http://eprint.iacr.org/
http://eprint.iacr.org/

109

of access control evolution on outsourced data. In Proceedings of the
33rd International Conference on Very Large Data Bases, University of
Vienna, Austria, September 23-27, 2007, pages 123–134, 2007.

[EG07] Sergei Evdokimov and Oliver Günther. Encryption techniques for se-
cure database outsourcing. In Computer Security - ESORICS 2007,
12th European Symposium On Research In Computer Security, Dresden,
Germany, September 24-26, 2007, Proceedings, pages 327–342, 2007.

[Enr] Enron email dataset. https://www.cs.cmu.edu/~./enron/. Accessed:
2015-05-13.

[FIM+01] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin
Strauss, and Rebecca N. Wright. Secure multiparty computation of
approximations. In ICALP, pages 927–938, 2001.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agree-
ment. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing (STOC ’88), pages 148–161, 1988.

[FPRSJ04] Joan Feigenbaum, Benny Pinkas, Raphael Ryger, and Felipe Saint-Jean.
Secure computation of surveys. In EU Workshop on Secure Multiparty
Protocols. Citeseer, 2004.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing (STOC ’09), pages 169–178, 2009.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-
round secure multiparty computation. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 178–193. Springer Berlin Heidelberg, 2002.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell,
Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure two-party
computation in sublinear (amortized) time. In ACM Conference on
Computer and Communications Security (ACM CCS 2012), pages 513–
524, 2012.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and suc-
cinct functional encryption. In Proceedings of the 45th Annual ACM
Symposium on Theory of Computing (STOC ’13), pages 555–564, 2013.

[GL02] Shafi Goldwasser and Yehuda Lindell. Secure computation without
agreement. In Distributed Computing, 16th International Conference
(DISC 2002), pages 17–32, 2002.

https://www.cs.cmu.edu/~./enron/

110

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party
and multi party computation against covert adversaries. In Advances in
Cryptology – EUROCRYPT 2008, pages 289–306, 2008.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or a completeness theorem for protocols with honest ma-
jority. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing (STOC ’87), pages 218–229, 1987.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simula-
tion on oblivious rams. J. ACM, 43(3):431–473, 1996.

[Gol04] Oded Goldreich. The Foundations of Cryptography – Volume 2, Basic
Applications. Cambridge University Press, 2004.

[GSW04] Philippe Golle, Jessica Staddon, and Brent R. Waters. Secure conjunc-
tive keyword search over encrypted data. In Applied Cryptography and
Network Security, Second International Conference, ACNS 2004, Yellow
Mountain, China, June 8-11, 2004, Proceedings, pages 31–45, 2004.

[HAJ+14] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn
Song. Shadowcrypt: Encrypted web applications for everyone. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1028–1039. ACM, 2014.

[HHS08] Iftach Haitner, Jonathan J Hoch, and Gil Segev. A linear lower bound
on the communication complexity of single-server private information
retrieval. In Theory of Cryptography, pages 445–464. Springer, 2008.

[HILM02] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehro-
tra. Executing SQL over encrypted data in the database-service-provider
model. In Proceedings of the 2002 ACM SIGMOD International Con-
ference on Management of Data, Madison, Wisconsin, June 3-6, 2002,
pages 216–227, 2002.

[HKK12] Kevin W. Hamlen, Lalana Kagal, and Murat Kantarcioglu. Policy en-
forcement framework for cloud data management. IEEE Data Eng.
Bull., 35(4):39–45, 2012.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider,
and Immo Wehrenberg. Tasty: Tool for automating secure two-party
computations. IACR Cryptology ePrint Archive, 2010:365, 2010.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols
– Techniques and Constructions. Information Security and Cryptogra-
phy. Springer, 2010.

111

[HLMR11] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Grace-
ful degradation in multi-party computation (extended abstract). In
5th International Conference on Information Theoretic Security (ICITS
2011), pages 163–180, 2011.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Ac-
cess pattern disclosure on searchable encryption: Ramification, attack
and mitigation. In 19th Annual Network and Distributed System Se-
curity Symposium, NDSS 2012, San Diego, California, USA, February
5-8, 2012, 2012.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryp-
tography with constant computational overhead. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing (STOC ’08),
pages 433–442, New York, NY, USA, 2008. ACM.

[Ins97] Alfred Inselberg. Multidimensional detective. In Information Visualiza-
tion, 1997. Proceedings., IEEE Symposium on, pages 100–107. IEEE,
1997.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptog-
raphy on oblivious transfer—efficiently. In Advances in Cryptology –
CRYPTO 2008, pages 572–591, 2008.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC ’88), pages 20–31, 1988.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptogra-
phy. CRC Press, 2014.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single
database, computationally-private information retrieval. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, pages
364–364. IEEE Computer Society, 1997.

[KO13] Kaoru Kurosawa and Yasuhiro Ohtaki. How to update documents ver-
ifiably in searchable symmetric encryption. In Michel Abdalla, Cristina
Nita-Rotaru, and Ricardo Dahab, editors, CANS 13, volume 8257 of
LNCS, pages 309–328, Paraty, Brazil, November 20–22, 2013. Springer,
Berlin, Germany.

[KP13] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic
searchable symmetric encryption. In Ahmad-Reza Sadeghi, editor, FC
2013, volume 7859 of LNCS, pages 258–274, Okinawa, Japan, April 1–5,
2013. Springer, Berlin, Germany.

112

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
searchable symmetric encryption. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, ACM CCS 12, pages 965–976, Raleigh, NC,
USA, October 16–18, 2012. ACM Press.

[Kur14] Kaoru Kurosawa. Garbled searchable symmetric encryption. In Nico-
las Christin and Reihaneh Safavi-Naini, editors, FC 2014, volume 8437
of LNCS, pages 234–251, Christ Church, Barbados, March 3–7, 2014.
Springer, Berlin, Germany.

[LCS+14] Billy Lau, Simon Chung, Chengyu Song, Yeongjin Jang, Wenke Lee,
and Alexandra Boldyreva. Mimesis aegis: A mimicry privacy shield–
a systems approach to data privacy on public cloud. In Proceedings
of the 23rd USENIX conference on Security Symposium, pages 33–48.
USENIX Association, 2014.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzan-
tine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,
1982.

[LYCL11] Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Authorized private
keyword search over encrypted data in cloud computing. In 2011 Inter-
national Conference on Distributed Computing Systems, ICDCS 2011,
Minneapolis, Minnesota, USA, June 20-24, 2011, pages 383–392, 2011.

[MH81] Ralph C. Merkle and Martin E. Hellman. On the security of multiple
encryption. Commun. ACM, 24(7):465–467, 1981.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay –
secure two-party computation system. In USENIX Security Symposium,
pages 287–302, 2004.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
Proceedings of the Twelfth Annual Symposium on Discrete Algorithms
(SODA 2001), pages 448–457, 2001.

[NPG14] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dy-
namic searchable encryption via blind storage. In 2014 IEEE Sym-
posium on Security and Privacy, pages 639–654, Berkeley, California,
USA, May 18–21, 2014. IEEE Computer Society Press.

[OKKM13] Wakaha Ogata, Keita Koiwa, Akira Kanaoka, and Shin’ichiro Matsuo.
Toward practical searchable symmetric encryption. In Kazuo Sakiyama
and Masayuki Terada, editors, IWSEC 13, volume 8231 of LNCS, pages
151–167, Okinawa, Japan, 2013. Springer, Berlin, Germany.

[PGFW14a] Jason Perry, Debayan Gupta, Joan Feigenbaum, and Rebecca N.
Wright. The secure computation annotated bibliography, 2014. http:

//paul.rutgers.edu/~jasperry/ssc-annbib.pdf.

http://paul.rutgers.edu/~jasperry/ssc-annbib.pdf
http://paul.rutgers.edu/~jasperry/ssc-annbib.pdf

113

[PGFW14b] Jason Perry, Debayan Gupta, Joan Feigenbaum, and Rebecca N.
Wright. Systematizing secure computation for research and decision
support. In Michel Abdalla and Roberto De Prisco, editors, Security
and Cryptography for Networks, volume 8642 of Lecture Notes in Com-
puter Science, pages 380–397. Springer International Publishing, 2014.

[PKV+14] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal
Malkin, Seung Geol Choi, Wesley George, Angelos Keromytis, and Steve
Bellovin. Blind seer: A scalable private dbms. In Security and Privacy
(SP), 2014 IEEE Symposium on, pages 359–374. IEEE, 2014.

[PRZB11] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. Cryptdb: protecting confidentiality with encrypted query
processing. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 85–100. ACM, 2011.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving
universal composability without trusted setup. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing (STOC ’04),
pages 242–251, 2004.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.
Williams. Secure two-party computation is practical. In Advances in
Cryptology – ASIACRYPT 2009, pages 250–267, 2009.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes
in Computer Science, pages 554–571. Springer Berlin Heidelberg, 2008.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Tech-
nical Report TR-81, Harvard University, 1981.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In Proceedings of
the 21st Annual ACM Symposium on Theory of Computing (STOC ’89),
pages 73–85, 1989.

[Riv99] Ronald Rivest. Unconditionally secure commitment and oblivious trans-
fer schemes using private channels and a trusted initializer. Unpublished
manuscript, 1999.

[Seg13] Aaron Segal. Comparison of SMPC platforms. Unpublished manuscript,
2013.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

114

[SPS14] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical
dynamic searchable encryption with small leakage. In NDSS 2014, San
Diego, California, USA, February 23–26, 2014. The Internet Society.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical
techniques for searches on encrypted data. In 2000 IEEE Symposium
on Security and Privacy, Berkeley, California, USA, May 14-17, 2000,
pages 44–55, 2000.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In Proceedings of the 23rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 1982), pages 160–164, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In Proceedings of the 27th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 1986), pages 162–167, 1986.

[YZW06] Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. Privacy-
preserving queries on encrypted data. In Computer Security - ESORICS
2006, 11th European Symposium on Research in Computer Security,
Hamburg, Germany, September 18-20, 2006, Proceedings, pages 479–
495, 2006.

	Abstract of the Dissertation
	Acknowledgments
	Introduction
	State of the Field
	Specific or general protocols?
	Current State of Secure Computation Deployments

	Approach and Outline of Results
	Preliminary Definitions and Notations

	Survey of Related Work
	Underlying Cryptographic Constructions
	Pseudorandom Functions and Permutations
	Secret Sharing
	Byzantine Agreement
	Oblivious Transfer
	Homomorphic Encryption

	General Multi-Party Computation Protocols
	Major Achievements in MPC
	Modern protocols

	MPC Implementations and Deployment Experiments
	Secure Data Access Protocols
	Private Information Retrieval
	Private Databases
	Oblivious RAM
	Searchable Encryption

	A Systematization of General Multiparty Computation Protocols
	Introduction
	Definitions
	Definition of a general MPC protocol

	Linear axis representation of protocol features
	MPC theorems as axis dependencies
	An Extensible Protocol Database
	Interacting With the Protocol Database
	Visualizing the space of MPC protocols
	A prototype decision-making support tool
	Sample use cases for SysSC-UI

	Ongoing Work
	Conclusion

	Three-Party Protocols for Policy Enforcement in Private Databases
	Overview of the Three-party Model and Protocol Requirements
	Secure and private databases
	The three-party model
	Database Policy Compliance protocol requirements
	Formulation of DPC as a Multi-Party Computation
	Policy Enforcement Protocols

	Definitions for Privacy-preserving DR and DPC Protocols
	Preliminaries
	Requirements of DR Protocols
	Properties of DPC protocols

	Protocols for Black/Whitelist Policies for Keyword Queries
	Basic Keyword Protocol 1
	Proof Sketch for Protocol 1
	Protocol 2: soundness against malicious clients
	Protocol 3: privacy across multiple queries
	Remarks on Query Rewriting

	Extensions to Range Query Types and Boolean and Range Policies
	Boolean Policies
	Range Queries and Policies

	Performance Measurements
	Conclusion

	The Practical Security of Searchable Encryption
	Introduction
	Survey of Implemented SE Constructions
	Shadowcrypt
	Mimesis Aegis
	Commercial products

	Characterization of SE Schemes and Leakage
	A Classification of SE Scheme Types
	In-place SE schemes
	Encrypted-index SE

	Attack Models

	Experimental Methodology
	Query Recovery Attacks
	Prior Work: The IKK Attack
	Query Recovery with a Counting Attack
	Query Recovery from Partially Known Documents

	Document Identification Attacks
	Plaintext Recovery Attacks
	Passive Attacks
	Order of Hashes Known (L3)
	Order of Hashes Unknown (L2)

	Active Attacks
	Hash order known (L3), chosen document
	Hash order unknown (L2), chosen documents

	Conclusion

	Insights to Drive the Deployment of Secure Computation

