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ABSTRACT OF THE DISSERTATION
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Dissertation Director:

Professor Anirvan M. Sengupta

Sparse reconstruction algorithms aim to retrieve high-dimensional sparse signals from

a limited amount of measurements under suitable conditions. As the number of variables

go to infinity, these algorithms exhibit sharp phase transition boundaries where the sparse

retrieval breaks down. Several sparse reconstruction algorithms are formulated as opti-

mization problems. Few of the prominent ones among these have been analyzed in the

literature by statistical mechanical methods. The function to be optimized plays the role

of energy. The treatment involves finite temperature replica mean-field theory followed by

the zero temperature limit. Although this approach has been successful in reproducing the

algorithmic phase transition boundaries, the replica trick and the non-trivial zero temper-

ature limit obscure the underlying reasons for the failure of the algorithms. In this thesis,

we employ the “cavity method” to give an alternative derivation of the phase transition

boundaries, working directly in the zero-temperature limit. This approach provides insight
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into the origin of the different terms in the mean field self-consistency equations. The cav-

ity method naturally generates a local susceptibility which leads to an identity that clearly

indicates the existence of two phases. The identity also gives us a novel route to the known

parametric expressions for the phase boundary of the Basis Pursuit algorithm and to the

new ones for the Elastic Net. These transitions being continuous (second order), we explore

the scaling laws and critical exponents that are uniquely determined by the nature of the

distribution of the density of the nonzero components of the sparse signal. Not only is the

phase boundary of the Elastic Net different from that of the Basis Pursuit, we show that

the critical behavior of the two algorithms are from different universality classes.
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1

0.1 Notation

Throughout this thesis, for matrices, we use boldface capital letters like H, and we use HT,

tr(H), to denote the transpose and trace, respectively.

For vectors, we use boldface small letters like x with xa representing the ath element

of x. We use
[
. . .
]av

vars
to denote quenched averages, with the relevant quenched variables

indicated in the subscript. In particular, this average depends on two random variables

x0 and H that are drawn from distribution P0(x0) and P(H). For a Gaussian random

variable x with mean µ and variance υ, we write the pdf as N (x;µ, υ) and, for the spe-

cial case of N (x; 0, 1), we abbreviate the pdf as φ(x) = 1√
2π

e−x
2/2 and write the cdf as

Φ(x) =
∫∞
x dz φ(z). Dirac’s delta function is written as δ(x) and δmn is the Kronecker delta

symbol. The following table summarizes the most commonly used symbols:

Notation

Symbol Ambient Space Description

N N = {0, 1, 2, . . .} Signal dimension

x RN Signal

M N Measurement dimension

y RM Measurement

K N Number of non-zero coefficients (Sparsity) of a signal

H RM×N Measurement (sensing) matrix

|Ω| N Cardinality of a set Ω

|| · ||0 N `0 pseudo-norm: |{xa 6= 0}|

|| · ||p R `p-norm: (
∑N

a |xa|p)1/p

MSE R Mean Squared Error
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Chapter 1

Introduction

1.1 Main Idea

Recent technological revolutions have enabled sampling, analyzing, storage, and transmis-

sion of high-dimensional signals in both variety and quantity. However, most of the time,

the underlying structure of associated signal, a vector of values, has much lower information

content in a particular basis. For instance, a high resolution natural image might only have

a few dominant components in an appropriately chosen basis.

In these cases, the first step to acquire a signal is using sensing devices to make a number

of measurements related to the signal by using a procedure suitable for the application. A

naive approach would be to measure individual components of the signal vector, making

the number of measurements equal to the superficial dimension of the signal. However, due

to limitations of time, cost of storage and other constraints, one is often restricted in the

amount of data that can be collected. In particular, in presence underlying structure (e.g.

sparsity) in the signal, the resulting measurements are highly redundant. This observation

raises an important question: since large portion of the sampled data has little impact on

the signal quality, why not to recover the desired signal by acquiring the ‘optimal’ amount

of data in an efficient sampling process?

Compressed sensing began with the seminal work of Candés and Donoho [1, 2] as a

mathematical theory and set of techniques that aim to improve reconstruction quality from

a given data set by using the underlying structure of the unknown object. The main idea is

to efficiently sample the signal up to obtaining the necessary information content by taking
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suitably designed linear measurements and reconstruct it by running some sophisticated

and efficient recovery algorithms.

The usual setting of the sparse retrieval problem is a linear equation, y = Hx, where y

is an M -dimensional measurement vector, H is an M × N measurement matrix, and x is

an N -dimensional unknown sparse parameter vector. The goal is to reconstruct the signal

x by taking a vector y of dimension M � N . The recovery of the signal requires solving a

non-trivial inverse problem. We know from linear algebra that in general it is not possible

to reconstruct an arbitrary N -dimensional signal from smaller set of linear measurements.

Thus, we need to use our knowledge of the signal structure. In particle, we consider the

signal x to be K-sparse, meaning the vector has at most K non-zero components.

It is well-known that many signals such as real-world signals are sparse in particular bases

[3]. Of course, one would think that since sparse signals lie in a much lower dimensional

space, they may be reconstructed from a few linear measurements. Even though, this is

true, the difficulty is to determine in which lower dimensional subspace such a signal lies.

That is, we may know that the signal has few non-zero components, but we do not know

which components those are. Theoretically, if a signal has K non-zero components, then,

typically, recovery is possible with just K + 1 measurements. However, recovery using only

this property would require searching through exponentially large set of
(
N
K

)
possible lower

dimensional subspaces, which, in practice, is not computationally feasible.

Here is the key point that distinguishes the compressed sensing problem from a general

inverse problem: In the compressed sensing problem one has the flexibility of taking more

measurements than required ‘in principle’, so as to solve the inverse problem efficiently. In

practice, one can extract the full information content of the signal at the cost of moderately

higher number of measurements. Recent works in compressed sensing and related areas

precisely address questions concerning minimum amount of measurements required for the

recovery of sparse signals in a fast, accurate and robust (low sensitivity to additive noise

and to incomplete knowledge of the measurement matrix) manner.
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1.1.1 Phase Transition

When the measurements are noiseless, our goal is to reconstruct the original signal as per-

fectly as possible by driving the error probability to zero as size of the signal N grows. One

of the most important and popular reconstruction algorithms for compressed sensing is the

Basis Pursuit algorithm [4], namely the constrained `1-norm minimization algorithm. In

particular, for measurement matrices that have independent and identically distributed (iid)

Gaussian entries, it is shown that Basis Pursuit requires as low as M > O(K log(N/K))

measurements for perfect reconstruction [5]. Rigorous results, based on the so called Re-

stricted Isometry Property [6] of the measurement matrix, provide parameter regions where

the algorithm is guaranteed to work. However, these results do not give the exact threshold

where the procedure breaks down. However, it turns out that for many different measure-

ment matrices and input signals, there exists such threshold that the performance failure of

such recovery algorithms with polynomial time complexity occurs at a sharp boundary [7–

9] distinguishing where the correct unique solution is found, and where the algorithms fail

(see Fig. 1.1). Such a phenomenon is known as a phase transition in statistical physics.

This is an algorithmic phase transition with a zero-one law, where the probability of correct

reconstruction (suitably defined) jumps from zero to one at the transition boundary. Ana-

lytical formulae, based on the message-passing method and the replica formalism borrowed

from statistical physics, exists for the phase transition boundary in the literature, but the

corresponding derivations are not transparent. Particularly, it does not address the critical

behavior and scaling laws near the boundary of the phase transition.

The work presented in this thesis is motivated by exploring these transition boundaries

using mean field “cavity” approach borrowed from statistical physics. The cavity mean field

equations are named after a physical context in spin systems in solid state physics [10, 11].

The goal is to take into account the non-trivial dependencies by estimating the reaction of

all the other “spin” variables when a single spin is removed from the system, thereby leaving

a “cavity”. The method has since been applied to a wider class of problems including the
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Figure 1.1: The phase transition phenomenon in compressed sensing. This graphs show the
empirical probability that the `1-norm minimization method successfully recover the original
signal. The brightness of each point reflects the observed probability of success, ranging
from certain failure (red) to certain success (blue). Here, p is the number of measurement
and n is the size of the signal. (The graph is reproduced from [7])

satisfiability problem [12, 13] and Hopfield neural networks [14]. The cavity method leads

to the same results as obtained by replica trick [11] and is closely related to the message-

passing algorithm in graphical models [15]. However, we find that for the problem at hand,

the cavity method leads to a considerable simplification by utilizing the fact that the system

of variables are fully connected and the so-called local susceptibility matrix plays a key role

in the system [16]. Finally, this approach is not only different from the replica method but

also from the method based on iterations in a message-passing algorithm [17]. Our method

gives a clearer picture of the success and the failure of Basis Pursuit as well as provides

insight into a more general class of sparse signal recovery algorithms.

1.2 Applications

Besides its deep roots in fundamental theories, compressed sensing has a broad range of

applications, from communication technology to business informatics to systems biology. It

has already advanced the state of the arts in MRI (magnetic resonance imaging) imaging,

genotype-disease relation in GWAS (genome-wide associations studies), and face recogni-

tion. Several examples of its applications are listed below.
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Figure 1.2: A head radiograph is illustrated in the top with its 2-D Fourier spectrum in the
bottom. (The graph is reproduced from [21])

1.2.1 Biomedical Imaging

A fundamental assumption in digital image processing is that natural images are piecewise

smooth in the pixel basis. That is, there are very few edges in the image, and therefore,

the differences between the values of adjacent pixels are usually zero or almost zero. The

Fourier transform can be used to map images from the pixel domain to the Fourier domain

in which they have sparse (or approximately sparse) representations. For example, Fig.

1.2(top) shows the representation of a natural image in the pixel domain, and Fig. 1.2(bot-

tom) shows the representation of the same image in the Fourier domain. As you can see

from the figure, there are very few significant (light) coefficients in the Fourier representa-

tion of this image, whereas most Fourier coefficients are almost zero (black). As a result

compressed sensing can be used to significantly decrease the number measurements without

reducing the accuracy of the MRI image [18–20].

This has an important application, in particular, in dynamic imaging (MRI) that full
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signal acquisition is often impossible and only a small number of the so-called K-space

measurements can be acquired in a short time [22]. Slow imaging speed in MRI poses

challenges for dynamic imaging, in which during the dynamic sequence, the patient may

move. Thus, to reduce scan time, the acquisition process is accelerated by under-sampling

the K-space (i.e., 2-D Fourier coefficients) [23, 24].

1.2.2 Systems Biology

Following recent advances in technology, the investigation of massive biomedical data with

growing scale, diversity, and complexity has taken a center stage in modern data analysis. A

more modern example of compressed sensing application idea in biology is the the genome-

wide association studies (GWAS). GWAS is one of the most powerful methods for the

studies of common diseases and complex traits which have revealed numerous associations

between diseases and genetic variants in the last decade [25–28].

Nevertheless, there are still great challenges to intelligently and automatically extract

useful information from data and synthesize this knowledge routinely in the clinic. In par-

ticular because of the regulatory mechanism in the human genome is complex, it is believed

that complex traits are typically caused by multiple genetic variants. Moreover, instead

of individual variant at a specific locus, combinations of several variants at different loci

can have a significant affect on a phenotype. For instance, an evidence of such higher level

multi-variant interactions in complex diseases is seen, such as type-2 diabetes [29]. Identi-

fying such multi-locus or “epistatic” interactions arises as an important problem that has

taken a center stage in modern data analysis. Even though the number of genetic variants

and their multi-locus interactions often greatly exceeds the sample size, the underlying rep-

resentations are often sparse [30]. For example, for a certain disease, even though humans

have tens of thousands of genes, only a few genes are relevant to the disease; a gene net-

work is sparse in a proper basis since a regulatory pathway involves only a small number of

genes. Using methods and ideas from compressed sensing, one can develop a cost-effective
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genotyping protocol to detect these variants for severe genetic disorders [31].

1.2.3 Group Testing

Group testing, where groups of individuals are tested for the presence or absence of a disease

(or some other binary characteristic), is a common procedure that is used to reduce the costs

of screening a large number of individuals [32]. The group testing applications range from

the blood testing problem which was used in World War II to test soldiers for syphilis [33],

to the problem of testing the impacts of new drugs on human genes [34]. In group testing the

purpose is to avoid individual testing of all candidates by repeatedly pooling up a subgroup

of multiple individuals and testing this subgroup instead [35]. It is often assumed that there

are only a few people sharing some specified property, and the goal is to design an M ×N

test matrix describing the M subgroup tests, so that it is possible to efficiently recover the

sparse special members of the group from the tests. Therefore, compressed sensing can also

be used for efficient and low-cost sensing in the applications of group testing.

1.2.4 Face Recognition

In past decades, face recognition has been studied extensively, in which given a picture, the

goal is to predict where his/her face is located at and who he/she is. A key assumption in

face classification is that all faces of most human-beings lie in a low dimensional subspace,

and much fewer degrees of freedom (compared to the total number of pixels), govern the

structure of all possible faces. As a result, given a sufficiently rich training set of faces for

a particular person, any new (test) face can be represented by a linear combination of her

training faces, and therefore by a sparse linear combination of all training faces of all people

in the training repository.

Therefore, sparse approximation can be used to identify the person whose training faces

form the largest contribution in approximating the test face [36]. Using compressed sensing
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and sparse approximation has provided significant improvements over the existing state-

of-the-art methods that use support vector machines [37], or principal component analysis

[38] A similar approach has also been used in speaker identification and speech recognition

applications [39]

1.3 Contribution of this Thesis

In previous sections, we explained the main essence of the compressed sensing problem

and all the benefits that it provides compared with the traditional sampling and data

acquisition. We also indicated the existence of a phase transition related to the performance

of compressed sensing. This thesis describes our efforts to understand the essential nature of

such algorithmic phase transitions and the critical phenomena around them. Although we

envisage many practical applications of our results, in this work, our focus remains firmly

on theoretical aspects.

The main contributions of this thesis can be classified into the following three categories:

• Obtaining analytical expressions and set of mean-field equations for a generalized

least squared optimization problem by employing two-step cavity method at zero

temperature and understanding the underlying nature of local susceptibility in such

systems

• Using the important role of local susceptibility to rigorously analyze the phase tran-

sition boundaries of the Basis Pursuit and the critical behavior and scaling laws near

the phase transition boundary

• Obtaining new and different phase boundary for new class of sparse reconstruction

algorithm called Elastic Net and showing that the critical behavior of this phase

boundary and the one for Basis Pursuit are in different universality classes

• Generalizing the asymptotic relation for the phase boundary, in the extremely sparse

limit, to the case the correlated measurement matrix
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In the following chapters, we outline our reasons to go beyond the conventional replica

approach. In particular, we emphasize the inherent role of local susceptibility as an im-

portant measure for the robustness of the signal recovery and indicator of the existence of

different phases in sparse reconstruction algorithms. In the end, we provide a simple picture

of the compressed sensing phase transition that could be made explicit in the sparse limit.

1.4 Outline of the Thesis

In this section, we briefly overview the structure of the thesis by explaining each chapter

separately.

Chapter 1

In this chapter, we concentrate on defining the compressed sensing problem carefully,

and set the stage for its answers in later chapters.

Chapter 2

In this chapter, we first briefly review a finite noise/finite temperature formulation of

the problem, and a recapitulation of replica approach to its solution, presented previously

in the literature. We do this for a generalized regularization or penalty function. Then

we show that the proposed method is equivalent to a cavity method at finite temperature.

This allows us to intuitively understand the role of two steps in the cavity method that we

will employ in the next chapter.

Chapter 3

In this chapter, we introduce a susceptibility matrix associated with this problem and

explore its structure. Then, we derive the self-consistent mean-field equations for the mean

square error of estimation via a two-step cavity method at zero temperature. We will em-

phasize the role of local susceptibility in the system that will turn out to carry important

information about the underlying structure and performance-guarantees of any sparse re-

construction. This approach is not only different from the replica method but also from the

method based on iterations in a message-passing algorithm.
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Chapter 4

In this chapter, we exploit local susceptibility obtained in the previous chapter to treat

the simple case of Ridge Regression and then to find a simple way to arrive at the two

phases and the phase boundary known for the Basis Pursuit. We show that this transition

is actually continuous (second order) and find a variety of critical behaviors, including

scaling laws and critical exponents that are uniquely determined by the universality class of

the phase transition. In the extremely sparse limit, we also generalize the asymptotic limit

of these mean-field equations to the case of correlated measurement matrices. In the end,

we obtain new results for the Elastic-Net in the high-dimensional limit from a completely

different perspective.

Chapter 5

In this chapter, we end by pointing out potential arenas of application where our two-

step cavity approach at zero temperature is more natural than conventional replica theory.
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Chapter 2

An Overview of Compressed Sensing

In previous sections, we explained the main essence of the compressed sensing problem and

all the benefits that it provides compared with the traditional sampling.

Compressed sensing is a simple and efficient signal acquisition technique that collects a

few measurements about the signal of interest and later uses optimization techniques for re-

constructing the original signal from what appears to be an incomplete set of measurements

[1, 2].

The CS technique relies on two fundamental principals: 1) sparse representation of the

signal of interest in some basis and 2) incoherence between the measurement matrix and

the signal representation. We will define these terms in the next section.

2.1 Problem Formulation

The following subsections present the formal definitions of some terminologies that will be

used in this chapter.

2.1.1 Compressed Sensing

In this subsection we present a formal description of “compressed sensing”. Sensing of signal

s is defined as the process of collecting some measurements about s by correlating s with

some sensing matrix Φ, i.e.,

y = Φs (2.1)
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where the sensing matrix Φ ∈ RM×N , and s in RN . Based on this model, compressed

sensing is defined as the sensing process for which the number M of available measurements

is much smaller than the dimension N of the signal s. Therefore, compressed sensing is

formulated as an underdetermined linear systems of equations. The problem associated

with it is that we have either no solution, if y is not in the span of the columns of the

matrix Φ, or infinitely many solutions. To take care of former problem, we must assume

that the measurement matrix Φ is full-rank. And to obtain a single solution, it is necessary

to impose additional criteria on the candidate solution to identify which of these candidate

solutions is the desired one.

A powerful constraint that can be used in this regard is the “sparsity” of the solution

vector. A vector is called K-sparse if it has at most K non-zero entries. As stated before,

an underdetermined system of linear equations has infinite candidate solutions of the form

ŝ = s + z where s is any vector that satisfies relation y = Φs with z ∈ N (Φ) is a vector

in the the null space of Φ. As we will see later, if the candidate solution vector is known

to be K-sparse under certain conditions on the sensing matrix Φ, the solution vector can

be determined uniquely using an optimization technique. This is also applies to non-sparse

vectors that can be sparsely represented in a suitably selected basis Ψ ∈ RN×N , i.e.

s = Ψx (2.2)

where the coefficient vector x is sparse. Clearly, x and s are equivalent representations

of the signal, with x in the time or space domain and x in the Ψ domain. Combining

Eqs. (2.1), (2.2) and taking into consideration the case of noisy measurements, the sensing

process can be written as
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Definition 1 (Measurement Process)

y = ΦΨx + ζ = Hx + ζ (2.3)

H ∈ RM×N , x and ζ ∈ RN .

Assuming that the coefficient vector x is K-sparse, then x, and hence s = Ψx, can

only be estimated from y if the matrices H satisfies the properties described in the next

subsection.

2.1.2 Restricted Isometry Properties

The sparsity of the solution vector, or its representation in some basis, is a necessary but

not sufficient condition for finding a unique solution to an underdetermined system of linear

equations. One of the fundamental problems in CS is to investigate whether a given matrix

H is a “good” compressed sensing matrix in the sense that it can guarantee the vector x

can be exactly recovered from y under the condition M � N . To this end, in addition to

the sparsity principle, CS relies on another key property of the matrix H called Restricted

Isometry Property (RIP). RIP is a powerful measure that was introduced by Candès and

Tao [40] and has proved to be very useful in studying the general robustness of CS.

Definition 2 (Restricted Isometry Property (RIP)) We say that an M×N ma-

trix H obeys the RIP with parameters K and δ if

(1− δK)||x||22 ≤ ||Hx||22 ≤ (1 + δK)||x||22 (2.4)

holds true for any choice of K-sparse vectors x.
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The key idea in the above definition is the claim that any subset of K columns from

H behave like an orthogonal transform (the columns of H cannot be exactly orthogonal

since we have more columns than rows) that approximately preserves the Euclidean length

of K-sparse signals. Therefore, H obeys the RIP of order K if δK is not too close to 1.

When the RIP holds, it is known that certain convex optimization programs, in particu-

lar, `1-norm minimization accurately recover all signals x with at most K nonzero elements.

However, testing for the RIP is generally a hard combinatorial problem and the only de-

terministic measurement matrices which are known to satisfy the RIP do so only under

extremely strong conditions.

To this end, there are some known random measurement matrices that satisfy the RIP

(with high probability), i.e. matrices with column vectors taken from arbitrary subsets being

nearly orthogonal. One well-known case is when H is formed by sampling i.i.d. entries

from the normal distribution with mean zero and variance 1/M , or other sub-Gaussian

distribution [41].

Remark 1 (RIP Bound) Random measurement matrices, with high probability, obey

the restricted isometry property provided that

M ≥ CK log(N/K) (2.5)

where C is some constant depending on each instance [1].

To reconstruct the original signal from the M measurements in the vector x, an opti-

mization technique must be used, and this is the topic of the next section.
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Figure 2.1: A plot of Jp(x) for some values of 0 ≤ p ≤ 2.

2.1.3 Signal Reconstruction Algorithms

The goal of signal reconstruction algorithm is to obtain an estimate of the original signal

x0 given only observation vector y and measurement matrix H. Or, equivalently solving

the following linear underdetermined system of equations

y = Hx0 (2.6)

where, once more, H in RM×N , x0 ∈ RN is a k-sparse vector, and M < N . Like we

mentioned before, there are infinitely many solutions to Eq. (2.6) of the form x̂ = x0 + z ,

where x̂ is any vector that satisfies Eq. (2.6).

Since the original vector x0 is sparse, a familiar way to do this is via regularization [42]

where a objective function J(x) which is an appropriate measure of sparsity, i.e. evaluates

the desirability of the solution x, is to maximize (minimize) while simultaneously satisfying

the constraints defined by Eq. (2.6), respectively.
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Definition 3 (Regularized Penalty Optimization Problem) Defining the gen-

eral optimization problem (PJ), this can be expressed mathematically as

(PJ) : x̂ = arg minx J(x) subject to y = Hx (2.7)

where minimization of the objective function J(·) encourages sparsity in the solution.

We consider special interest for J(·) to be a convex function of the form (See in Fig. 2.1.3):

Jp(x) = ||x||pp =
∑

a

|xa|p (2.8)

In particular, we will have a special interest when p = 1 or the so called `1-norm due

to its tendency to promote sparsity of the solution. In the remaining of this chapter, we

briefly discuss issues relating to solving

2.1.4 `2-norm Minimization

The well known choice of J(x) is the `2-norm given by the squared Euclidean norm ||x||22.

This objective function has a closed form solution and can be calculated by introducing the

Lagrangian

 L(x) = λT(Hx− y) + ||x||22 (2.9)

with λ being the Lagrange multipliers for the constraint. Taking a derivative of  L(x) with

respect to x, we get

∂  L(x)

∂x
= HTλ+ 2x (2.10)

and thus, the solution is given as

x̂ = −1

2
HTλ (2.11)
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plugging this solution into y = Hx results in

Hx̂ = −1

2
HHTλ = y ⇒ λ = −2(HHT)−1y (2.12)

which eventually gives the well-known unique pseudo-inverse solution

x̂ = −1

2
HTλ = HT(HHT)−1y (2.13)

The fact that it gives a unique solution can also be seen from the Fig. (2.1.3) due the strictly

convexity of the objective function. This feature and its mathematical simplicity make the

use of `2 extensive in various fields of science and engineering. However, since `2-norm

penalty imposed by J(xa) on small nonzero coefficients of the solution vector is small, even

though it shrinks the estimates of the regression coefficients towards zero, tends to result in

all small but many non-zero (non-sparse) regression coefficient. This is illustrated in Fig.

2.1.5. Therefore, `2 minimization is not appropriate for finding a K-sparse solution.

2.1.5 `0-norm Minimization

Since the `2-norm does not lead to sparsity of the signal, one can consider the `0-norm that

counts the number of non-zero entries in x. The optimization problem of Eq. (2.7) in the

case of J(x) = J0(x) = ||x||0 becomes

Definition 4 (`0-norm Minimization)

(P0) x̂ = arg minx ||x||0 subject to y = Hx (2.14)

This optimization looks like the minimum `2-norm problem (P2), but referring to Fig.
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Figure 2.2: `2 penalty shrinks the estimates of the regression coefficients towards zero,
however, result in all small but many non-zero regression coefficient. The top panel: x-axis
is the original signal with the size N = 100 and y-axis is the K = 10 non-zero coordi-
nates. The bottom panel: reconstruction via `2-norm minimization method with M = 60
measurements. The x-axis is the estimated signal and y-axis is the estimated non-zero
coordinates.

2.1.3, we observe that J0(x) is flat over all values of x except at x = 0, which implies that

any gradient descent technique will fail to converge to the sparse solution. One can look

at this problem as a combinatorial search problem equivalent to selecting K vectors of the

measuring matrix H that best represents the measurement vector y, the solution vector to

(P0) can be obtained by searching over the
(
N
K

)
possible ways in which the basis sets can be

chosen to find the best solution. But, the complexity of exhaustive search is exponential in

N and it has been proven that (P0) is, in general, NP-Hard. In addition, it is shown that

(P0) yields a solution which is not robust to the noise.

These difficulties pose many challenges that have restricted its studies and applications.

On the other hand, these limitations have become a motivation for researchers to find other

means to solve this problem efficiently. One way would be to replace J0(x) by other functions
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that are robust to noise and can be solved efficiently (such as J2(x)), but nevertheless offer

sparse solutions (such as J0(x)). In the framework of compressed sensing, there have been

computationally efficient relaxation algorithms for this computationally NP-Hard problem.

2.1.6 `1-norm Minimization

One major approach, Basis Pursuit, relaxes the `0-norm minimization problem to an `1-

norm minimization problem with the choice of J(x) = ||x||1 [4]:

Definition 5 (Basis Pursuit)

(P1) x̂ = arg minx ||x||1 subject to y = Hx (2.15)

Since p = 1 is the smallest value of p for which J1(x) is convex, `1-minimization and

the equivalence between the solutions of (P1) and (P0) has been studied extensively in

the context of sparse solutions for many years [2, 43–45]. One key observation is that the

`1-norm has a tendency to prefer sparse solutions.

This naively can be seen by the fact that the penalty imposed by `1-norm on values of

0 ≤ |x| < 1 is greater than the least squares solution imposed by `2-norm (See Fig. 2.1.6).

It was with the LASSO algorithm [46] proposed as a method in statistics for sparse

model selection, the application areas for `1-norm minimization began to broaden. Basis

Pursuit [4] was proposed in computational harmonic analysis for extracting a sparse signal

representation from highly over-complete dictionaries. It then came as a breakthrough in

a remarkable result by Candés and Tao [1] and separately Donoho [2] that (P1) method

was shown to be able to recover sparse signals with a linear fraction of non-zero elements.

Certainly this requires some conditions on the measurement matrix H.



21

Figure 2.3: `1 penalty shrinks the estimates of the regression coefficients towards zero with

only few non-zero regression coefficient. The top panel: x-axis is the original signal with the

size N = 100 and y-axis is the K = 10 non-zero coordinates. The bottom panel: shows the

perfect reconstruction of the original signal via `1-norm minimization method with M = 60

measurements. The x-axis is the estimated signal and y-axis is the estimated non-zero

coordinates.

For example, the restricted isometry property (RIP) conditions were given in [1, 40]

to guarantee that `1-norm minimization accurately recovers sparse or compressible signals.

It is now known that many kinds of matrices satisfy these conditions with the number

of measurements M = CK log(N/K) in (2.5) for some constant C, which depends on the

desired probability of success. In any case, C tends to one as N →∞. Therefore, the cost of

replacing (P0) by (P1) is that more measurements are required, depending logarithmically

on N . Sharp reconstruction thresholds have been computed by Donoho and Tanner [47] so

that for any choice of sparsity K and signal size N, the required number of measurements
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M for (P1) to recover x0 with high probability can be determined precisely. Their results

replace log(N/K) with log(N/M), i.e. M ≥ CK log(N/M). However, M appears in both

sides of this inequality, and this can be adjusted to compute a threshold of the sparsity

K ≤MC log(N/M) for a given number of measurements M.

2.1.7 Conversion of (P1) to Linear Programming (LP )

As we can see from Eq. (2.15), the objective function is non-differentiable when xa = 0

for any xa However, by doubling the number of variables as it will be shown, the non-

differentiable objective function can be converted into a set of linear functions, and thus

being able to find its intersection with the feasible region of a polyhedron [46]. This approach

supposes that in (P1), the unknown x can be represented as the difference between two non-

negative variables corresponding to the positive and negative components of x:

x = x+ − x− (2.16)

where x+,x− ∈ RN are both non-negative vectors. If x is positive, then x+ = x and x− = 0,

if x is negative, then x− = x and x+ = 0, and if x = 0 then x+ = 0, x− = 0. It is easy to see

that by denoting w = [x+,x−], ||x||1 = x+ + x− = w and Hx = H[x+ − x−] = [H,−H]w.

We can use this representation to create an equivalent form of Eq. (2.15)

Definition 6 (Linearized Basis Pursuit Optimization) Linearized Basis Pursuit

has 2N variables with 2N constraints enforcing non-negativity and one constraint en-

forcing that the positive and negative components satisfy the original constraint.

arg minw wT subject to y = [H,−H]w and w ≥ 0 (2.17)

The equivalence between P1 and LP makes the optimization of Basis Pursuit much more
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Figure 2.4: A schematic illustration of how different regularization terms lead to sparse
and non-sparse solutions. The x-axis and y-axis represent the dimension of the signal (here
N=2). The feasible set is equivalent to all the x that is the solution of y = Hx a) `1
regularization corresponds to the diamond shaped ball centered around the origin. b) `2
regularization corresponds to the spherical ball centered around the origin.

efficient for solving large-scale problems by applying linear programming method such as

Simplex algorithm [48].

2.1.8 Geometric Interpretation

In this section we present a geometric interpretation of the performance of the previously

discussed objective functions, e.g. `p-norm where 0 < p ≤ 2, in estimating sparse solutions.

This geometric interpretation helps visualize why `2-norm reconstruction fails to find the

sparse solution that can be identified by `1-norm.

For the sake of illustration, consider the simple 2-D example in Fig. 2.1.8. The coor-

dinate axes in this figure are x1, x2. In this figure, the exact and the estimated solution

vectors are represented by x and x̂, respectively. The linear set of equations forming the

constraint Hx̂ = Hx define a feasible set of solutions that are on an affine subspace ∈ R2.
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Geometrically speaking, solving (Pp) is done by “blowing up” the `p ball centered around

the origin, and stopping its inflation when it first touches the feasible set. As it is represented

by the circle in Fig. 2.1.8(a), the `2 minimizer is the point on the feasible set closest to the

origin. Due to the randomness of the entries of the sensing matrix H, the line representing

feasible set is oriented at random angle. Therefore, with high probability, the closest point

x̂ will be away from the coordinate axes and thus will be neither sparse nor close to the

correct answer x. In contrast, the `1 ball in Fig. 2.1.8(b) has points aligned with the

coordinate axes. Therefore, depending on the orientation of the line, there are two possible

cases. In the first case, when the `1 ball is blown up, it will contact the feasible line precisely

at where the sparse vector x is located as shown in Fig. 2.1.8(b). This is the tendency to

sparsity we are referring to as opposed to `2. However, in a highly unlikely, it is possible

that the angle of the affine subspace will be such that it contacts the line Hx = Hx0 at a

point far from the exact solution vector.

Put more generally, the `p ball is “curved outward” for all p > 1, and expected that an

intersection of an affine subspace and an `p ball to not take place on the axes. On the other

hand, `p for p = 1 has a “diamond” shape and for `q-norm, where 0 < q < 1, this diamond

is “curved inward”. Therefore, it is expected that an intersection of an affine subspace and

an the `p ball occurs on the axes and thus lead to a sparse solution.
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Chapter 3

Statistical Sparse Reconstruction Methods

In this chapter, we employ techniques from the statistical physics of disordered systems to

compute the typical behavior of CS as a function of the signal sparsity and measurement

density. We first briefly review a finite noise/finite temperature formulation of the problem

and a replica approach to its solution, presented previously in the literature [8, 9]. We do

this for a generalized regularization or penalty function V. Then, we take an alternative

approach and use two-step cavity method [16] to obtain the the self-consistent mean field

equations for the mean square error of estimation that we obtained via replica method.

This will give a better insight into the problem of cavity method at zero temperature we

will obtain in the next chapter.

3.1 Formulation of the Regularized Least-Squares

Here, we set up the general framework for investigating the regularized least-squares (LS)

based reconstruction algorithms. We assume that the data y = Hx0 + ζ are generated by

a probability distribution p(y|x0, H), given an (unknown) sparse signal x0 and a (known)

matrix H, and an (unknown) Gaussian noise vector ζ whose components are i.i.d. samples

from N (0, σ2
ζ ). The vector x0 is considered to be a random sample from a distribution

P0(x0) =
∏
a p0(xa0).

Although the probability distribution of H, in general, P(H) could be a non-Gaussian

distribution, at this point we consider it to be Gaussian with
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Definition 7 (Mean and Variance of P (H))

[
Hia

]av
= 0 (3.1)

[
HiaHjb]

av =
1

M
δijδab (3.2)

We study the performance of an estimator of x0, namely the location x̂ of the value of

the minimum of a cost function

E0(x) =
(y −Hx)2

2σ2
+ V (x). (3.3)

As we reformulate this exercise in estimation as a statistical mechanics problem, the cost

function will play the role of energy. We assume the penalty/potential term V (x) is such that

there is a unique minimum of E0. Note that x̂ = arg minx E0(x) depends on y,H, meaning

that it can be written as a function x̂ = g(x0,H, ζ), using the fact that y = Hx0 +ζ. Since

we set up an ensemble of problem instances by specifying the probability distribution of the

variables x0,H, ζ, we could study the performance of the estimator over this distribution.

For example, we could study the distribution of the estimation error x̂−x0 for this problem

instance ensemble.

In order to make a connection between the optimizations problem and statistical me-

chanics, one could choose a probability distribution of x parametrized by β, playing the

role of inverse temperature,

pβ(x|y,H) =
1

Z
exp
(
− βE0(x)

)

=
1

Z(β,y,H)
exp

{
− β

(
(y −Hx)2

2σ2
+ V (x)

)}
(3.4)
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with normalization factor Z = Z(β,y,H), namely the partition function, being given by

Z(β,y,H) =

∫
dNx

1

Z
exp
(
− βE0(x)

)

=

∫
dNxexp

{
− β

(
(y −Hx)2

2σ2
+ V (x)

)}
. (3.5)

If we send β to ∞, equivalent to sending the temperature to zero, the probability gets

concentrated at the minimum of the cost/energy function. Keep in mind that we define β

to be dimensionless.

We will consider averages of functions of the form f(x,x0) containing both the original

sparse signal and the variable related to the estimate. For example, we are interested in

the estimation error, which can be quantified by a suitable norm placed on the difference

between the original and the estimated signal. The average of the function f(x,x0) is given

by

〈f(x,x0)〉 =

∫
dNxf(x,x0) exp{−β (y−Hx)2

2σ2 − βV (x)}
∫
dNxexp{−β (y−Hx)2

2σ2 − βV (x)}
. (3.6)

This ‘thermal’ average, represented by < · · · >, depends on the random variables x0, H

and ζ. Note that in the limit β →∞, this average should become f(x̂,x0), for continuous

f . Averaging the result of this calculation over the random instances of x0, H and ζ is a

technical challenge related to quenched averages in disordered systems.

The function f(x,x0) = 1
N (x−x0)2 plays an important role in our analysis. Its average

corresponds to the mean squared estimation error.

Definition 8 (Mean Squared Error (MSE))

MSE ≡ 1

N

N∑

a=1

[
〈xa − xa0〉2

]av

x0,H,ζ
=

1

N

[
〈(x− x0)2〉

]av

x0,H,ζ
(3.7)

We will use
[
· · ·
]av

vars
to denote quenched averages, with the relevant quenched variables
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indicated in the subscript, when necessary. We use the notation u = x− x0 to indicate the

estimation error vector. The size of the vector u provides a measure of the inaccuracy of

the reconstruction.

In the context of penalized regression, the penalty function is often chosen to be a sum

of potentials involving single variables, namely, V (x) =
∑

a U(xa). We will focus on V (x)

of this nature. An important special case for example is in compressed sensing with sparsity

promoting regularizing potential U(x) = λ|x|.

For ζ = 0, we will be interested in the result of the constrained optimization problem of

minimizing V (x) subject to the constraint y = Hx. In the M,N →∞ limit, this problem

may exhibit a phase transition from a perfect reconstruction phase to an error-prone phase,

with the MSE, mentioned above, as the order parameter. This constrained optimization

could be studied in more than one equivalent ways. After taking β →∞ limit, we will take

the route σ → 0 to enforce the equality y = Hx.

3.2 Replica Approach

In this section, we review the replica approach to the problem [8, 9], presenting the mean

field equations in terms of a distribution of asymptotically independent single-variable prob-

lems with a set of self-consistency conditions. In order to calculate quantities like the MSE,

we need to compute quenched averages of the form
[
〈f(x,x0)〉

]av
, which is complicated by

the presence of the denominator in Eq. (3.6). Formally, the denominator is handled by

introducing n non-interacting replicas of the system and taking n→ 0, as shown below. In

the noiseless case, E0(x) depends on x as well as on x0, H. To emphasize those additional
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dependences, we write E0(x) as E0(xµ,x0,H) in the next few equations.

〈f(x,x0)〉x =

∫
dNxf(x,x0) exp

(
− βE0(x,x0,H)

)
∫
dNx exp

(
− βE0(x,x0,H)

)

= lim
n→0

(∫
dNx exp

(
− βE0(x,x0,H)

))n−1

∫
dNxf(x,x0) exp

(
− βE0(x,x0,H)

)

= lim
n→0

∫
f(x1,x0)

n∏

µ=1

{
dNxµ exp

(
− βE0(xµ,x0,H)

)}
. (3.8)

Averaging over the quenched variables x0 and H, we get

[
〈f(x,x0)〉x

]av

x0,H

= lim
n→0

[ ∫ n∏

µ=1

{dNxµ}f(x1,x0) exp
(
− β

∑

µ

E0(xµ,x0,H)
)]av

x0,H

(3.9)

Using y = Hx0 in the noiseless case, the energy function for the n-th replica would be

E0(xµ,x0,H) =
(y −Hxµ)2

2σ2
+ V (xµ)

=
(Hx0 −Hxµ)2

2σ2
+ V (xµ) =

Hu2
µ

2σ2
+ V (uµ + x0), (3.10)

rewritten in terms of the error variables uµ = xµ − x0, µ = 1, .., n. Thus, we are interested

in average quantities in the replicated ensemble whose partition functions is given by

[
Zn
]av

x0,H

=

[∫ n∏

µ=1

duµ exp
[
− β

{ n∑

µ=1

(Huµ)2

2σ2
+ V (uµ + x0)

}]]av

x0,H

. (3.11)
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In order to average over P(H), the only quantity that needs to be computed is

[
exp

(
−

n∑

µ=1

β

2σ2
(Huµ)2 )

]av

H

=
1

Z0

∫
dH exp

[
− M

2
Tr
(
H>H

)
− β

2σ2

n∑

µ=1

u>
µ H>Huµ

]

={ 1

det
(
In + β

ασ2 Q
)}(−M/2) = exp

[
− M

2
Tr log

(
In +

β

ασ2
Q
)]

(3.12)

where Z0 is the normalization term for the Gaussian distribution of H, and α = M/N is

the sampling ratio. The elements of the n× n matrix Q are defined by Qµν = 1
Nu>

µ uν .

Using the Fourier representation of the δ function

δ(u>µuν −NQµν) =
1

2π

∫
dRµνexp

(
− iRµν(u>

µ uν −NQµν)
)

(3.13)

and inserting this delta function with an integral over Qµν in Eq. (3.11), we get

[
Zn
]av

x0,H
=

∫ ∏

µ≤ν
dQµνdRµν exp[−S(Q,R)] (3.14)

S[Q,R] =
M

2
Tr log

(
In +

β

ασ2
Q
)
− iNTr(RQ)

− log

[ ∫ n∏

µ=1

duµ exp
[
− i
∑

µ,ν

Rµνu
>
µ uν +

∑

µ

V (uµ + x0)
]]av

x0

(3.15)

This integral over Q,R can be evaluated using the saddle point method [8, 9] when

M,N → ∞, holding α = M
N fixed. The saddle point Q = Q̄,R = −iR̄ satisfies the

conditions:

Q̄µν =
1

N
〈〈u>

µ uν〉〉 (3.16)

R̄ =
β

2σ2

[
In +

β

ασ2
Q
]−1

(3.17)

obtained by differentiating S(Q,R) with respect to the elements of Q,R. The expectation

〈〈u>
µ uν〉〉 depends on R̄ via
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〈〈u>
µ uν〉〉 = β

∂F (R̄)

∂R̄µν
(3.18)

with exp{−βF (R̄)}

=

[ ∫ n∏

µ=1

{dNuµ} exp
[
−
∑

µ,ν

R̄µνu
>
µ uν − β

∑

µ

V (uµ + x0)
]]av

x0

(3.19)

If U(x) is a convex function, we expect a unique state and a replica symmetric solution

for Q,R. This implies Q̄µν = (Q− q)δµν + q and R̄µν = (R− r)δµν + r. With that ansatz,

∫ n∏

µ=1

{dNuµ} exp
[
−
∑

µ,ν

R̄µνu
>
µ uν − β

∑

µ

V (uµ + x0)
]

=

∫ n∏

µ=1

{dNuµ} exp
[
− (R− r)

∑

µ

u2
µ

− r(
∑

µ

uµ)2 − β
∑

µ

V (uµ + x0)
]

=

∫
dNξ

(2πσ2
ξ )
N/2

exp(− ξ
2

2σ2
ξ

)

∫ n∏

µ=1

{dNuµ}

exp
[
− β

2σ2
eff

∑

µ

u2
µ +

β

σ2
eff

ξ>(
∑

µ

uµ)− β
∑

µ

V (uµ + x0)
]

(3.20)

identifying R− r ≡ β
2σ2

eff
and r ≡ −β2σ2

ξ

2σ4
eff

. We have used

∫
dNξ

(2πσ2
ξ )
N/2

exp(− ξ
2

2σ2
ξ

) exp[
β

σ2
eff

ξ>(
∑

µ

uµ)]

= exp[
β2σ2

ξ

2σ4
eff

(
∑

µ

uµ)2] (3.21)

to decouple the item replica coupling in the (
∑

µ uµ)2 term, at the cost of introducing

another quenched variable ξ. Note that we require R−r > 0 and r < 0 for this approach to

work. These inequalities follow from (3.17) and from Q− q > 0 and q > 0. The conditions

on Q and q would be obvious once we look at interpretation of these quantities described

below.
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For V (x) =
∑

a U(xa) we can simplify further. Remembering that we also need to do

the quenched average over x0,

[∫ n∏

µ=1

{dNuµ} exp
[
−
∑

µ,ν

R̄µνu
>
µ uν − β

∑

µ

V (uµ + x0)
]
]av

x0

=

[∫ n∏

µ=1

{dNuµ} exp

[
− β

{
1

2σ2
eff

∑

µ

(u2
µ − ξ>uµ)

+
∑

µ

V (uµ + x0)

}]]av

ξ,x0

=
∏

a

[∫ n∏

µ=1

{duµa} exp

[
− β

{
1

2σ2
eff

∑

µ

(u2
µa − ξauµa)

+
∑

µ

U(uµa + x0a)

}]]av

ξa,x0a

(3.22)

Thus, in the saddle point approximation, each of the N components of u become effectively

independent and the saddle point conditions reduce to a self-consistent problem for each

component a = 1, . . . , N . Since this self-consistent problem is similar for each index, we

suppress the subscript a in uµa and in x0a. For each a, we have the integral of the form

[∫ n∏

µ=1

duµ exp

[
− β

{
1

2σ2
eff

∑

µ

(u2
µ − ξuµ) +

∑

µ

U(uµ + x0)

}]]av

ξ,x0

The replica problem corresponds to a collection of effectively independent optimization.

Definition 9 (Effective Individual Optimization (Replica Approach)) Single

variable u is drawn from the distribution:

Peff(u |x0, ξ) =
1

Z(x0, ξ)
e−βEeff(u;x0,ξ), (3.23)

with an effective mean-field Hamiltonian

Eeff(u;x0, ξ) =
1

2σ2
eff

(
u2 − 2ξu

)
+ U(u+ x0) (3.24)



33

which depends on two quenched variables x0 and ξ. The variable x0 has the probability

distribution p0(x0), whereas ξ is distributed according to a Gaussian distribution with

mean zero and variance σ2
ξ . The two parameters σ2

eff and σ2
ξ are given by the following

set of self-consistency conditions.

q = [〈u〉2]av
x0,ξ, ∆Q ≡ Q− q = [〈(u− 〈u〉)2〉]av

x0,ξ (3.25)

σ2
eff = σ2 +

β∆Q

α
, σ2

ξ =
q

α
(3.26)

where the thermal averages 〈· · ·〉 over u are performed in the Peff ensemble and the

so-called quenched average [· · · ]av
x0,ξ

is over variables ξ and x0.

3.3 Finite Temperature Cavity Method

In this section, we solve the finite temperature problem formulated in the above via the

cavity method. With the cost function written in terms of u as

E(u) =
1

2σ2
(Hu)2 + V (u + x0) (3.27)

we define the Boltzmann distribution P (u|H,x0):

P (u|H,x0) =
1

Z(β|H,x0)
e−βE (3.28)

with the normalization factor/partition function given by

Z(β|H,x0) =

∫
du e−βE (3.29)

We now apply the first step of the two-step cavity method. First, we rewrite E as an



34

interaction between variable ua and the rest of the variables

E(u) =
1

2σ2
h2
au

2
a +

1

σ2
uaha ·

∑

b6=a
hbub + U(ua + x0a) + E\a(u\a) (3.30)

By defining

ηa ≡ −
ha ·

∑
b6=a hbub

h2
a

(3.31)

and using h2
a = 1 +O( 1√

M
) we have

E =
1

2σ2
(u2
a − 2uaηa) + U(ua + x0a) + E\a(u\a) (3.32)

with subscript \a indicates that we leave out the node “a”, therefore, u\a, E\a. Equa-

tion (3.32) indicates that the variable ua interacts with all the others only through ηa.

Therefore, we rewrite the marginal distribution P (ua) as an integral over the joint distri-

bution of ηa and ua, P (ua, ηa).

P (ua) =
1

Z

∫
du\a e−βE =

∫
dηa P (ua, ηa) (3.33)

where

P (ua, ηa) =
1

Z

∫
du\a δ(ηa + ha ·

∑

b 6=a
hbub) e−βE (3.34)

for all a = 1, . . . , N . Now we introduce a cavity “field” distribution of ηa at the removed

node a as

P\a(ηa) =
1

Z\a

∫
du δ(ηa + ha ·

∑

b 6=a
hbub)e

−βE\a . (3.35)

By comparing (3.34) and (3.35), we get

P (ua) =

∫
dηa exp

[
−β
{

(u2
a−2uaηa)

2σ2 +U(ua+x0a)
}]
P\a(ηa)∫

duadηaexp
[
−β
{

(u2
a−2uaηa)

2σ2 +U(ua+x0a)
}]
P\a(ηa)

(3.36)

The assumption of continuity of the global ground state, even in the presence of the
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cavity after removing node a, is equivalent to the replica symmetric (RS) hypothesis. This

is a valid assumption when the penalty function V is convex. Therefore, in the limit of

N →∞, even if the nodes of (N − 1,M) system are weakly correlated, ηa is still a sum of

many variables and P (ηa)\a can well be approximated by a Gaussian distribution.

P\a(ηa) ∝ e
−

(ηa−〈ηa〉\a)2

2〈δη2
a〉\a (3.37)

Then (3.36) becomes

P (ua) =
exp{− β

2σ2

(
1− β

σ2 〈δη2
a〉\a

)
u2
a+βua

σ2 〈ηa〉\a−βU(ua+x0a)}∫
dua exp{− β

2σ2

(
1− β

σ2 〈δη2
a〉\a

)
u2
a+βua

σ2 〈ηa〉\a−βU(ua+x0a)}
(3.38)

Therefore, only the thermal averages 〈ηa〉\a and the thermal fluctuation strength 〈δη2
a〉\a =

〈(ηa − 〈ηa〉\a)2〉\a of the field ηa for the distribution P\a(ηa) are left to be computed. In

that process the effects of (weak) correlation between the ua’s have to be accounted for. To

do so, we define

vi =
∑

b6=a
Hibub (3.39)

and utilize our definition,

ηa = −
∑

i

Hiavi (3.40)

then we arrive at

〈ηa〉\a = −
∑

i

Hia〈vi〉 (3.41)

and

〈δη2
a〉\a =

∑

ij

HiaHja〈δviδvj〉

≈
∑

ij

1

M
δij〈δviδvj〉 =

1

M

∑

i

〈δv2
i 〉 (3.42)

Having done that we need to compute 〈vi〉 and 〈δv2
i 〉. To do so, this time in addition to site
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a we exclude site i. Hence from (3.32) we get

E\a(u\a) =
1

2σ2
v2
i + E\ai(u\a) (3.43)

After carrying out the same computation as in (3.33), (3.34), and (3.36) for the marginal

distribution Q\a(vi), we arrive at

Q\a(vi) =
exp

{
− β

2σ2 v
2
i −

(vi−〈vi〉\i)
2

2〈δv2
i 〉\i

}

∫
dvi exp

{
− β

2σ2 v
2
i −

(vi−〈vi〉\i)
2

2〈δv2
i 〉\i

} (3.44)

Therefore

Q\a(vi) =

exp

{
− β

2σ2

(
1 + σ2

β〈δv2
i 〉\i

)(
vi − 〈vi〉\i

1+
β〈δv2

i
〉\i

σ2

)2}

∫
dvi exp

{
− β

2σ2

(
1 + σ2

β〈δv2
i 〉\i

)(
vi − 〈vi〉\i

1+
β〈δv2

i
〉\i

σ2

)2} (3.45)

and then 〈δv2
i 〉 is

〈δv2
i 〉 =

1
β
σ2 (1 + σ2

β〈δv2
i 〉\i

)
=

〈δv2
i 〉\i

1 +
β〈δv2

i 〉\i
σ2

(3.46)

and 〈vi〉 is at

〈vi〉 =
〈vi〉\i

1 +
β〈δv2

i 〉\i
σ2

. (3.47)

Notice how both these moments for the (N − 1,M) system is scaled down by the same

factor, when compared to the moments for the (N − 1,M − 1) system. Using arguments

similar to the fluctuation-dissipation [49] theorem, we could show that the change in 〈vi〉

due a change in 〈vi〉\i, susceptibility of sorts, is closely related to 〈δv2
i 〉−2
\i times 〈δv2

i 〉, with

the first term of the product playing the role of temperature.
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Carrying on, we get

〈δv2
i 〉\i =

∑

b,c6=a
HibHic〈δubδuc〉\ai

=
∑

b,c6=a

1

M
δbc〈δubδuc〉\ai +O(

N

M3/2
,
N1/2

M
)

≈=
1

M

∑

b6=a
〈δu2

b〉\ai (3.48)

since the (N − 1,M − 1) system, indicated by the subscript ‘\ai’, is independent of Hib

and Hic, HibHic = 1
M δbc + O( 1

M ) fluctuations, and 〈δubδuc〉\ai ∼ O( 1√
M
, 1√

N
) when b 6= c,

indicating that nodes are only weakly correlated.

To make connection with the notation in Sec. 3.2, let us introduce ∆Q

∆Q ≡ 1

N

∑

a

〈δu2
a〉 ≈

1

N − 1

∑

b6=a
〈δu2

b〉\ai, (3.49)

the second approximate equality becoming exact in the thermodynamic limit. Then, we

have

〈δv2
i 〉\i = ∆Q/α. (3.50)

Therefore from (3.42), (3.46), and (3.60)

β

σ2
〈δη2

a〉\a =
1

(1 + σ2

β∆Q/α)
(3.51)

and from (3.41), (3.47), and (3.60)

〈ηa〉\a =

∑
iHia

∑
b 6=aHib〈ub〉\ai(

1 + β∆Q
ασ2

) . (3.52)

Moreover, we define

ξa ≡
∑

i

Hia

∑

b 6=a
Hib〈ub〉\ai (3.53)
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which has variance σ2
ξ = q/α with q

q =
1

N

∑

a

〈ua〉2 ≈
1

N − 1

∑

b

〈ub〉2\ai (3.54)

being the mean squared error. Therefore, by plugging (3.52) and (3.53) into Eq. (3.38), the

marginal distribution for single variable ua becomes

P (ua) =
exp{− β

2σ2
eff

(u2
a − 2uaξa)− βU(x0a + ua)}

∫
dua exp{− β

2σ2
eff

(u2
a − 2uaξa)− βU(x0a + ua)}

(3.55)

with σ2
eff = σ2(1 + β∆Q

ασ2 ), and the effective cost function for the individual node is

E(ua) =
1

2σ2
eff

(u2
a − 2uaξa) + U(x0a + ua) (3.56)

Therefore, with E replaced by a set of effectively decoupled nodes, and the sum over index

a replaced by a quenched average over ξa, x0a. As a result, the self-consistency conditions

for the MSE

q =
1

N

N∑

a=1

〈ua〉2 (3.57)

and for

∆Q =
1

N

N∑

a=1

〈δu2
a〉 (3.58)

reduce to

q =
[
〈u〉2eff

]av

ξ,x0
(3.59)

and

∆Q =
[
〈δu2〉eff

]av

ξ,x0
(3.60)

where the thermal average 〈. . .〉eff is performed with respect to the effective individual node

distribution (3.23) and
[
. . .
]av

ξ,x0
is the quenched average over variables ξ, x0, with ξ drawn
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from N (0, q/α) and signal x0 drawn independently from a distribution P (x0). These self-

consistency equations are exactly the same those from the RS ansatz in Sec. 3.2.
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Chapter 4

Cavity Method at Zero Temperature

In the previous chapter, we saw that in order to study the LS based reconstruction, we need

to take the limits β →∞, and then σ → 0. A nontrivial aspect of the zero temperature limit

(β → ∞) is the quantity β∆Q in Eq. (3.26) that behaves differently in different phases of

reconstruction. Using Eq. (3.25), this quantity is just β times the thermal fluctuation in u.

The fluctuation-dissipation relation [49] implies that this quantity may be interpreted as a

local susceptibility. In the following chapter based on the zero temperature cavity method,

we formally introduce a susceptibility and use its properties to give a more transparent

derivation of the same equations.

4.1 Susceptibility and Conjugate Variables

The optimization problem associated with the regularized least-squared based reconstruc-

tion problem involves minimizing the energy function E0(x) = (y−Hx)2

2σ2 + V (x). For the

noise free case, using y = Hx0, the energy to be optimized may be rewritten as

E(u) =
1

2σ2
uTHTHu + V (u + x0). (4.1)

where u = x − x0. Note that, unlike the function E0(x), which is parametrized by known

quantities (the data y and the measurement matrix H) and can therefore be empirically

optimized with respect to its argument, the closely related function E(u) = E0(u + x0)

depends on the knowledge of the original signal x0. The purpose of dealing with this

function is not to provide an algorithm to estimate this signal given measured data, but
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to study the statistical behavior of this function and its minima over the distribution of

problem instances, namely, input signals and the measurement matrices. For example, we

can calculate the distribution of each component of the estimation error vector u, given the

distributions of x0 and H. We will be working with E(u), although the susceptibility for a

particular problem instance, to be defined below, could be defined completely in terms of

E0(x).

In case this cost function reproduces the correct answer, the function E(u) minimizes at

u = 0. Looking at the structure of E(u) near zero tells us about potential “flat” directions

in error space, along which the cost function fails to constrain errors. This failure could

be quantified in terms of a susceptibility to error, the dependence of which on the problem

parameters allows us to characterize the phase transition boundaries.

As usual, let us consider a general regularization function V (x) for which there is a

unique minimum to the cost function. Let the minimum of E(u) be at u = û. We introduce

an augmented cost function

E(u; f) =
1

2σ2
uTHTHu + V (u + x0)− f · u. (4.2)

with the variables f , which are conjugate to u. Optimizing E(u; f) will produce an f

dependent answer u = û(f). For small f we expect

û(f) = û + χf + · · · (4.3)

defining the susceptibility matrix χ.

If E is differentiable, the optimum ũ(f) is the solution of

f = ∇uE(u) (4.4)

Where f = 0, u is at its optimal value û. If perturbation f is small and E is differentiable
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to higher orders, we can expect δu to be small and, therefore, Taylor expand E(u + δu)

around u = û

E(û + δu) = E(û) +
1

2

∑

ab

δuaδub
∂2E

∂ua∂ub

∣∣∣∣
u=û

+ · · · . (4.5)

From (4.4) and (4.5), we can identify the inverse susceptibility (χ−1)ab = ∂2E
∂ua∂ub

∣∣
u=û

and

can show that

min
u
E(u; f) = E(û)− ûTf − 1

2
fTχf + · · · . (4.6)

This expansion will appear several times in our derivations.

We will now discuss the structure of the susceptibility matrix χ. It is simplest to study

the properties of χ, when the potential U(x) has continuous second derivatives.

If we could Taylor expand around the solution u = û, we will have

E(û + δu; f) = E(û; 0) +
1

2
δuT[

HTH

σ2
+ W(x)]δu− f · (û + δu) + · · · . (4.7)

where Wab(x) = U ′′(ûa +x0a)δab. Optimizing over δu, we see that the susceptibility matrix

would be given by

Definition 10 (Susceptibilty Matrix)

χ(x,H) = [
HTH

σ2
+ W(x)]−1. (4.8)

When H is a large random matrix, we can make asymptotic estimates of the mean and

the variance of different components of the susceptibility matrix χ. One way to approach

this problem is to formally expand the RHS of Eq. (4.8) in powers of HTH
σ2 (see Fig. 4.1)
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Figure 4.1: The diagrammatic expansion of susceptibility.

and compute moments by averaging over Hia diagrammatically. Namely, we expand

χ =W−1 − 1

σ2
W−1HTHW−1

+
1

σ4
W−1HTHW−1HTHW−1 − · · · (4.9)

and we associate a double-line digram with each of the terms in (4.9) and then compute

moments of the form [χa1b1χa2b2 · · ·χakbkHi1c1 · · ·Hilcl ]
av
H using Wick’s theorem, since H

distribution is Gaussian with mean and covariance specified by Eq. (3.1) and Eq. (3.2),

respectively.

Following works on singular values of random matrices [50, 51], we use the fact that,

in the large M,N limit, only the planar diagrams survive. [χ(x,H)]av
H could be written

as [W(x) − Σ(x)IN ]−1, where Σ(x) is a self-energy term. The planar contributions to the

self-energy are shown in Fig. 4.1 and can be re-summed as

Σ(x) = − 1

σ2

1

1 + 1
Mσ2

∑
a χ

aa(x)
(4.10)
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Hence, the mean susceptibility (holding xa’s fixed but averaging over H) is given by

χav(x) ≡ [χ(x,H)]av
H =

[
W(x) +

M

Mσ2 + Tr[χav(x)]
IN

]−1

. (4.11)

Moreover, one can show that the variance of each element of the χ matrix is of the order

of 1/M and vanishes in the N,M → ∞ limit (for α = M/N held fixed). Covariance of

χ, [χab(x,H)χcd(x,H)]av
H could be computed using the diagrams in Fig. 4.1 and they are

suppressed in the large M,N limit, since their contributions are O( 1
M ,

1
N ).

Note that only the diagonal terms χaa have non-trivial means, whereas the off-diagonal

terms average to zero. For diagonal terms, namely local susceptibilities, we get the following

equations:

[χaa(x)]av
H =

[
Waa(xa) +

1

σ2 + χ(x)
α

]−1

(4.12)

χ(x) ≡ 1

N

∑

a

[χaa(x)]av
H . (4.13)

Thus, given the distribution of Waa, which themselves depends on the distribution of xa

(where xa = ua + x0a), we can determine the distribution of [χaa]av
H , self-consistently, from

these equations.

One should note, although [χab]av
H = 0 for a 6= b, for a particular choice of H, χab is

a H-dependent number of the order 1/
√
M . Even if these off-diagonal terms are small

compared to the self-averaging diagonal terms, they have an important effect on the self-

consistency equations via the so-called Onsager reaction term [52]. In particular, we will

need the correlation of χab with the corresponding matrix elements of HTH. Using the

identity [W + HTH
σ2 ]χ = IN , we can prove a useful corollary of the result in Eq. (4.11).
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Figure 4.2: Planar diagrams contributing to the self-energy.

1

σ2
[HTHχ(x,H)]av

H = IN −W(x)χav(x)

= IN −W(x)[W(x) +
M

Mσ2 + Tr[χav(x)]
IN ]−1

=
M

Mσ2 + Tr[χav(x)]
[W +

M

Mσ2 + Tr[χav(x)]
IN ]−1

=
Mχav(x)

Mσ2 + Tr[χav(x)]

=
αχav(x)

ασ2 + χ(x)
(4.14)

In particular, Eq. (4.14) implies

[Tr(HTHχ(x,H))]av
H =

Mσ2χ(x)

ασ2 + χ(x)
(4.15)

which will be a useful identity in the next section.

Before we leave the section, we should mention that many observations made here are
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Figure 4.3: The leading planar diagrams in covariance computation are of the order
O( 1

M ,
1
N ), as can be seen from counting a factor of M or N for appropriate index loop,

and counting a factor of 1
M for each double-line contraction coming from averaging over the

matrix elements.

independent of the assumption that U(x) has a continuous second derivative. For example,

in the case of compressed sensing with U(x) = λ|x|, we could define a second-differentiable

function Uε(x) such that limε→0 Uε(x) = U(x), for example, Uε(x) =
√
x2 + ε2 or Uε(x) =

1
ε log(2 cosh(εx)). If xa = x0a + ua goes to zero as ε vanishes, then the corresponding

Waa = U ′′ε (xa) diverges. However, the corresponding local susceptibility, χaa, just becomes

zero in this limit. Therefore, as ε→ 0, the idea of using effective single variable optimization

problems and determining the self-consistent distribution of xa and χaa remains meaningful.

We just need to separate out the set of variables xa for which Waa diverges and treat this

set carefully. As a consequence of χ remaining well-defined in the ε → 0 limit, many

relations derived in this section, such as Eqs. (4.6), (4.14) and (4.15), remain valid even if

the potential U(x) becomes singular at some values of x.
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4.2 Zero-temperature Cavity Method: Removing a Variable Node

As a motivation for introduction of the cavity method [10], notice that Eq. (4.12) could

be written as [χaa]av
H = 1/(Waa + 1

σ2
eff

). This expression for local susceptibility would make

sense if we could break this problem into effectively independent optimization problems

for individual variables in the following manner: For the variable ua, the function to be

optimized is Eeff(ua;x0a, ξa) = 1
2σ2

eff

(
u2
a − 2ξaua

)
+U(ua + x0a), as mentioned in Eq. (3.24),

along with identifying σ2
eff as σ2 + χ

α . We will prove these assertions in this section. Cavity

method essentially codifies how each individual variable ua interacts with the rest of the

system, and how, in the asymptotic limit of large M,N , this interaction becomes simple.

To perform any concrete calculation, we will also need the distribution of Waa, which, in

turn means that we need the joint distribution of x0a, ua. Given a particular x0a, the opti-

mum ua depends on the influence of other variables through the quantity ξa which appears

as a parameter in the expression of Eeff . For a system with large M,N , the distribution

of ξa can be approximated by a Gaussian distribution. Cavity method provides a way of

characterizing this distribution.

For the ensuing discussion, it is useful to visualize the problem in terms of a bipartite

graph (see Fig. 4.2), where the variables xa are represented by circular nodes and the

‘constraints’ arising from each yi (namely, the terms 1
2σ2 (yi−

∑
aHiaxa)

2 = 1
2σ2 (

∑
aHiaua)

2

in the cost function) are represented by squares. Had we stuck to a finite temperature

description, this graph would be the factor graph [53]. If we insist on satisfying the condition

y = Hx, this graph could be thought of as a Tanner graph [54], with the circles being the

variable nodes and the squares being the ‘check’ nodes. The system with N variables

(circles) and M data constraints (squares) would be represented as the (N,M) system.

The task is to relate properties of the (N,M) system to (N − 1,M) system and obtain

self consistency conditions based on quantities that converge in the thermodynamic limit,

N,M →∞.
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1 2 a N

1 i M

Figure 4.4: Bipartite graph with variable nodes (circles) and constraint nodes (squares).

We pick a particular node a and partition the cost function into a contribution purely

from the node, a term representing the interaction of the node variable with the rest of the

system, and, lastly, the cost function of the (N − 1,M) system:

E(u) =
1

2σ2
uTHTHu + V (u + x0) (4.16)

E(u) =
1

2σ2
u2
a + U(ua + x0a) +

1

σ2
uaha ·

∑

b\a

hbub

+
1

2σ2

(∑

b\a

hbub
)2

+
∑

b\a

U(ub + x0b) (4.17)

Here, the a-th column of the H matrix is being represented by the vector ha, and, the

subscript \a indicates that we leave out the node a. Moreover, we approximated h2
a by its

average value

[h2
a]

av
H =

∑

i

[H2
ia]

av
H =

M∑

i=1

1

M
= 1, (4.18)

since h2
a is a sum of M terms and is self-averaging. The typical fluctuation of h2

a from its

average value 1 asymptotically vanishes as O(1/
√
M).

The system without node ‘a’, i.e., the system with a ‘cavity’ (see Fig. 4.2), will have

its own optimum values ub = ûb, for all b 6= a. The variable ua interacts with the rest

of the system through the quantity ha ·
∑

b\a hbub. The program of cavity method is to

characterize the distribution of this quantity in terms of some parameters relating to the
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(N − 1,M) system, and then use the fact that node ‘a’ is statistically the same as every

other node to relate these parameters to the distribution of ua. We summarize the above

in the following figure.

• Look at the optimization as a systems of  
N variable nodes (green circles) and  
M constraint nodes (brown squares).  

• The goal is to integrate out the rest of the system but variable 
node “a” and find an individual optimization in terms of only     
    .      

• Expansion of cost function in terms of variable      leads to      
 

• Cavity method is to characterize the distribution of    

Cavity Mean-field Approach

ua

1 2 a N

1 i M

min
u

{ 1
2�2 u2

a + U(ua + x0a) + 1
�2 uaha · Pb\a hbub + E(N�1,M)}

ua

ha · Pb\a hbub

One may be tempted to carry on this program, replacing
∑

b\a hbub by
∑

b\a hbûb, treat-

ing it as a Gaussian quenched variable (because is a sum of many random vector hb) and

estimating its variance over many realizations of H as
∑

b\a[(ha ·hb)2]av[û2
b ]

av = [û2
\a]

av/M .

We use the notation u\a for the vector for leaving out the a component and û\a for its

optimal value in the (N − 1,M) system. Had this approach been correct, the asymptotic

equality between [u2
a]

av
x0,H

and [û2
\a]

av
x0,H

/N would have led to a simple self-consistency con-

dition: namely the variance of the Gaussian quenched variable is [u2
a]

av
x0,H

/α.

Unfortunately, such a ‘straightforward’ approach is wrong on two counts. First, the

components of u\a, are influenced by ua and vice versa. Therefore, u\a cannot be replaced

by û\a. Second, the components of the optimum vector û\a are correlated with the vectors
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Figure 4.5: The (N − 1,M) cavity system. Node a has been removed from the system by
removing the links to it.

hb, making the variance estimate wrong.

Correcting the first error requires introducing the Onsager reaction terms [52]. One can

start by rewriting Eq. (4.17) as follows

E(u) =
1

2σ2
u2
a + U(ua + x0a) + E\a(u\a)− uT

\af\a. (4.19)

The cost function of the (N − 1,M) system is E\a(u\a). We identify (f\a)b = − 1
σ2 hb · haua

to be the local force exerting on each node ub, due to presence of node ua. Since we are

looking for the ground state, we minimize the expression in Eq. (4.19)

min
u
E(u) = min

ua,u\a
{ 1

2σ2
u2
a + U(ua + x0a)

+ E\a(u\a)− uT
\af\a}. (4.20)

Given that hb · ha is of the order 1/
√
M , f\a is small, and we can invoke the definition

of susceptibility χ\a for the (N − 1,M) system and use expansion of the minimized cost

function (4.6).

min
u
E(u) = min

ua
{ 1

2σ2
u2
a + U(ua + x0a)

+ E\a(û\a)− ûT
\af\a −

1

2
fT
\aχ\af\a} (4.21)
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and plugging in (f\a)b = − 1
σ2 hb · haua, we get

min
u
E(u) = min

ua
{ 1

2σ2
eff

u2
a + U(ua + x0a)

+
1

σ2
uaha ·

∑

b6=a
hbûb + E\a(û\a)} (4.22)

where

1

σ2
eff

=
1

σ2


1− 1

σ2

∑

b,c 6=a
(ha · hb)(ha · hc)χbc\a


 (4.23)

The quantity
∑

b,c6=a(hb)i(hc)jχ
bc
\a, is independent of ha. As a result,

∑
b,c 6=a(ha · hb)(ha ·

hc)χ
bc
\a can be replaced by

∑
b,c6=a(hb)·(hc)χbc\a/M , thanks to the self-averaging of (ha)i(ha)j .

Using Eq. (4.15) for the (N − 1,M) system,

∑

b,c 6=a
hb · hcχbc\a =

Mσ2χ\a

ασ2 + χ\a
≈ Mσ2χ

ασ2 + χ
(4.24)

with the last step having to do with χ becoming independent of N,M asymptotically. Using

this last relation Eq. (4.24), in Eq. (4.23) we get

σ2
eff = σ2 +

χ

α
(4.25)

The first step of cavity is summarized as the following.
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• Characterize the distribution of  
in a “cavity system” of N − 1 variable  
nodes obtained by removing node       
from the system, thereby leaving  
“cavity”.  

• This optimization becomes equivalent to the minimization of a 
system with the cavity and Onsager term.  
 

• Onsager term                   is appeared as a reaction term toward 
the variable     due to the adjustment of the other nodes after 
optimizing over them and holding     .

Cavity Step 1
X

b 6=a

hbub

1 2 a N

1 i M

ua

min
ua

{ 1
2�2 u2

a + U(ua + x0a) � 1
2�2 ( �

↵�2+� )u2
a + 1

�2 uaha · Pb 6=a hbûb + E(N�1,M)}

1
2�2 ( �

↵�2+� )u2
a

ua

ua

Looking at Eq. (4.22), the node variable ua is coupled to the rest of the system, via the

vector l =
∑

b6=a hbûb, which is independent of ha and depends solely on the (N − 1,M)

system. Since ua is coupled to ha · l, we need to know the moments of this dot product.

Because l is independent of ha, for mean, we have

[ha · l]av
x0,H = [ha]

av
H · [l]av

x0,H = 0 (4.26)

and for variance.

[(ha · l)2]av
x0,H =

∑

ij

[HiaHja]
av
H [vivj ]

av
x0,H

=
1

M

∑

i

[v2
i ]

av
x0,H. (4.27)

The order k cumulants go as M1−k/2 and, for k > 2, they tend to zero as M goes to
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Figure 4.6: The (N − 1,M − 1) cavity system. Node a and constraint i have been removed
from the system by removing the links to them.

infinity. Therefore, we will stop with the variance and treat ha · l as a zero-mean Gaussian

variable. We still need the variance, for which we need a condition to determine [v2
i ]

av
x0,H

.

This requires a second step of the cavity method.

4.3 Zero Temperature Cavity Method: Removing a Constraint Node

The subtlety in determining [v2
i ]

av
x0,H

involves accounting for correlation between matrix

elements Hib and the optimal values ûb of the (N − 1,M) system. To do this, we need to

set up an (N − 1,M − 1) system with the constraint ‘i’ removed. (see Fig. 4.3).

Such a two-stage cavity method has been used in the context of Hopfield neural networks

before [14].

To find vi =
∑
b6=a

Hibûb, we break up the minimization over u\a into two steps:

min
u\a
E\a(u\a) = min

vi

{
min
u\a

s.t.
∑
b 6=a

Hibub=vi

{E\ai(u\a)}+
1

2σ2
v2
i

}
(4.28)

the first minimization being a constrained one for the (N − 1,M − 1) system, subject

to
∑

b 6=aHibub = vi, and the second one being over vi. The cost function for the system

without nodes a, i is represented by E(u\a)\i. The term 1
2σ2 v

2
i represents the constraint

coming from the i-th observation. Had we done an unconstrained optimization of E\ai(u\a),

the optimum û\a would be independent of Hib. Trying to keep vi small perturbs this solution
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by a small amount and induces correlation with Hib. Our strategy would be to compute

the effect of perturbation in terms of the system susceptibility. This part is summarized in

the following.

• Now that     is coupled to                ,  
one needs to characterize the distribution  
of components of this vector: 

•     is related to constraint   .  

• To figure out the distribution of    , we should extend the 
optimization of the system with one further cavity step by 
removing the constraint   .  

• This leads to the optimization over

Cavity Step 2

vi i

vi

1 2 a N

1 i M

P
b 6=a hbûbua

i

vi =
P
b 6=a

Hibûb

min
vi

⇢
min

s.t.
P

b 6=a

Hibub=vi

E(N�1,M�1) + 1
2�2 v2

i

�

In order to do constrained minimization, we use the Lagrange multiplier method

min
u\a
E\a(u\a) =max

γi
min
u\a,vi

{E\ai(u\a)

+
1

2σ2
v2
i − γi(vi −

∑

b 6=a
Hibub)}. (4.29)

Minimizing Eq. (4.29) with respect to vi we get vi = σ2γi, and making that substitution

for vi into the cost function we get

min
u\a
E\a(u\a) =max

γi
min
u\a
{E\a(u\a)−

1

2
σ2γ2

i − uT
\ag} (4.30)

=max
γi
{−1

2
σ2γ2

i + E∗\i(g)} (4.31)
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with gb = −γiHib and with E∗\i(g) is defined as

E∗\i(g) = min
u\a
{E\ai(u\a)− uT

\ag} (4.32)

where the presence of g alters the optimal u\a from the unconstrained optimum u′\a. Since

each component of g is small (O(1/
√
M)), we can expand around u′\a using χ\ai, the

susceptibility of the (N−1,M−1) system, as in Eq. (4.6). Therefore, E∗\i(g) can be written

as

E∗\i(g) = E\i(u′\a)− u′T\ag −
1

2
gTχ\aig + · · · (4.33)

Now, Eq. (4.31) becomes

min
u\a
E\a(u\a) = min

γi
{−1

2
σ2γ2

i + E\ai(u′\a)− u′T\ag −
1

2
gTχ\aig} (4.34)

The quadratic term gTχ\aig = γ2
i

∑
ij HibHicχ

bc
\ai can be simplified because of self-

averaging. We have
∑

ij

[HibHic]
av
Hχ

bc
\ai =

1

M

∑

b

χbb\ai ≈
χ

α
, (4.35)

once more using the fact that the average local susceptibility χ is nearly the same for the

(N,M) system and the (N − 1,M − 1) system.

Putting everything together

min
u\a
E\a(u\a) = max

γi
{−σ

2

2
(1 +

χ

ασ2
)γ2
i + γi

∑

b 6=a
Hibu

′
b}, (4.36)

maximizing with respect to γi and then using vi = σ2γi gives us

vi =
1

1 + χ
ασ2

∑

b 6=a
Hibu

′
b. (4.37)

The denominator (1+ χ
ασ2 ) ‘scales down’ the unconstrained answer

∑
b 6=a

Hibu
′
b. It is the same
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factor that relates σ2 to σ2
eff . The summary of the rest of the second cavity step is given

below.

• One can show that this optimization is equivalent to  
 
 
 
where      
 
is optimized at                     (yellow curve)  
and           at zero (blue curve).     

• Therefore,  

• Since in this system of (N-1,M-1),     , even though can have non-
trivial correlation with each other, are independent of       , we can 
compute their moments.

Cavity Step 2 Cont.

min
vi

⇢
↵
2� (vi � v0i)

2 + 1
2�2 v2

i

�

min
s.t.

P
b 6=a

Hibub=vi

E(N�1,M�1)

1
2�2 v2

i

vi = 1
1+ �

↵�2

v0i

v0i =
P
b 6=a

Hibu
0
b

u0
b

Hib

Given that this result is true for any i’s, (4.22) becomes

min
u
E(u) = min

ua
{ 1

2σ2
eff

u2
a −

ξ

σ2(1 + χ
ασ2 )

ua + U(ua + x0a)} (4.38)

with

ξ ≡ −
∑

i

Hia

∑

b6=a
Hibu

′
b (4.39)
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being a random Gaussian variable with mean zero and variance

σ2
ξ ≡ [ξ2]av

x0,H =
∑

i,j

[HiaHja]
av
H

∑

b,c 6=a
[HibHjc]

av
H [u′bu

′
c]

av
x0,H

=
∑

i,j

δij
M

∑

b,c6=a

δijδbc
M

[u′bu
′
c]

av
x0,H

=
1

M

∑

b 6=a
[u′2b ]av

x0,H =
q

α
(4.40)

thanks to Hja and Hib being independent for a 6= b, as well as u′b’s being independent of

those matrix elements. The quantity q ≡ 1
N−1

∑
b,c 6=a

[u′2]av
x0,H

is the MSE for the (N−1,M−1)

system. Insisting that q is also the MSE of the (N,M) system is one of the self-consistency

conditions.

In summary, the zero temperature problem boils down to a collection of independent

single variable optimization

min
ua
{ 1

2σ2
eff

(u2
a − 2ξaua) + U(ua + x0a)} (4.41)

which has the same effective cost function as Eq. (3.24) in Sec. 3.2. The variables ξa are

chosen independently from N (0, σ2
ξ ). With x0a, ξa chosen randomly, we can calculate a

distribution of ua and χaa. The self-consistency require u2
a average q to satisfy σ2

ξ = q/α

and χaa average χ to be related to σ2
eff by σ2

eff = σ2 + χ/α.

For the future convenience, we put these together in the following proposition:



58

Proposition 1 (Effective Individual Optimization)

ûa = min
ua
{ 1

2σ2
eff

(
u2
a − 2ξaua

)
+ U(ua + x0a)} (4.42)

ξa ∈ N (ξ; 0, σ2
ξ ) with σ2

ξ ≡ σ2
ζ +

q

α
(4.43)

q ≡
∑

a

[û2
a]

av
x0,ξ (4.44)

σ2
eff ≡ σ2 +

χ

α
(4.45)

χ ≡ 1

N

∑

a

χaa (4.46)

The quantity q is the sum of the squared of error residuals, i.e. MSE. In addition, local

susceptibility is obtained via ûa(f) − ûa(0) = χaafa with fa → 0 and ûa(f) is carried

out by minimizing min
ua
{ 1

2σ2
eff

(
u2
a − 2ξaua

)
+U(ua + x0a)− faua}. In the end, summing

over χaa’s for all the instances of measurement matrix and then taking average over all

nodes yields to the average local susceptibility, χ, and thus σ2
eff .

In this new formulation, we do not need to invoke temperature. One can consider χ

to be equivalent to the β∆Q in the replica approach. As we will see in the next chapter,

we could use χ to distinguish phases around the zero-temperature transition described by

Donoho and Tanner [7].
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Chapter 5

Phase Transition in Sparse Reconstruction

In the previous chapter, we adapted the zero-temperature cavity method in two steps to

derive self-consistency conditions on MSE when the regularization term V (x) is such that

a unique solution exists. This led to a considerable simplification by utilizing the fact that

the system of variables are fully connected and the so-called local susceptibility matrix χ

plays a key role in the system. In particular, in the asymptotic limit of large M and N ,

we showed that the optimization of Eq. (4.1) breaks down into a collection of effectively

independent optimization as the followings. As we will see in this chapter, we solve this

effective individual optimization ( see Proposition 1) for the penalty function of the form

λ|x|q with q = 1, 2 and the combination of `1 and `2 norms, i.e. V(x) = λ1||x||1 + λ2
2 ||x||22,

known as Elastic Net [55]. We point out the importance of χ over β∆Q, obtained by [8, 9]

with the replica approach, to distinguish phases around the zero-temperature transition.

To facilitate such adoption, we summarize the symbols used in the next section in the

Table 5.

5.1 Ridge Regression

We start by considering the simplest from of regularization with U(x) = λ
2x

2, a penalty

function that does not impose sparsity on the solutions. This is just a noise-free ridge

regression with Tikhonov regularization [56]

x̂(ϑ = λσ2) = arg min
x
{ 1

2σ2
(H(x− x0))2 +

λ

2
x2}. (5.1)
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Symbols

Symbol Description

ua Measure of residual error xa − x0a

q Mean squared error (MSE)

α Measure for the number of constraints, M
N

ρ Measure for the sparsity, K
N

λ1 `1-norm regression coefficient
λ2 `2-norm regression coefficient
σ2 Error variance on the constraint y = Hx
ϑ λσ2

σ2
eff Effective σ2 given in the asymptotic limit of large M,N
θ λσ2

eff

σ2
ξ

q
α

σ2
ζ Variance of external noise

τ θ
σξ

Table 5.1: This table presents input parameters used to explain effective individual opti-
mization

We could explicitly minimize x and proceed with our analysis using random matrix theory;

however, we will apply first the self-consistency formalism we have developed (Proposi-

tion 1).

min
u
{ 1

2σ2
eff

(u2 − 2ξu) +
λ

2
(u+ x0)2} (5.2)

Recalling that u = x− x0 and identifying θ = λσ2
eff , minimization of Eq. (5.2) gives

x =
x0 + ξ

1 + θ
(5.3)

This result can be used to determine σ2
ξ in Eq. (4.43)

σ2
ξ =

q

α
=

1

α

[
u2
]av

x0,ξ
=
σ2
ξ + θ2ρ

[
x2

0

]av

x0

α(1 + θ)2
. (5.4)

where [. . .]av
x0

means average over π(x0). On the other hand, to determine θ(= λσ2
eff), we

look at the local susceptibility in Proposition 1. One can see that with the ridge regression
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penalty function, local susceptibility is the same everywhere:

χ =
[
λ+

1

σ2 + χ
α

]−1
=⇒ θ =

(
1

λχ
− 1

)−1

. (5.5)

In particular in the ϑ → 0 limit, i.e. the minimal `2 norm subject to linear constraints

Hx = Hx0, with λχ = 1 − α gives θ = α−1 − 1. With the knowledge of θ, the Eqs. (5.3),

and (5.4) lead us to

x =α(x0 + ξ) (5.6)

σ2
ξ =

(1− α)ρ

α

[
x2

0

]av

x0
. (5.7)

Remark 2 The estimated x can be seen as a Gaussian variable, with αx0 as its mean

and (1−α)αρ[x2
0]av
x0

as its variance. When x0 = 0, we expect the fluctuation of x around

zero to be of the order ((1−α)αρ[x2
0]av
x0

)1/2. We could have a simple threshold θ so that

if |x| < θ we set x0 to zero. We could compute the false positive and false negative rates

of such a procedure. When ρ << α/(1 − α), it is possible to choose a threshold θ such

that ((1−α)αρ[x2
0]av
x0

)1/2 << θ << α([x2
0]av
x0

)1/2. With such a threshold, both error rates

would be small.

For the sake of completeness, we derive the above Eqs. (5.6) and (5.7) from a formal

singular value decomposition point of view. Elementary derivation leads us to an explicit

expression:

x̂ =
HTH

σ2

[HTH

σ2
+ λIN

]−1
x0 =

M∑

i=1

s2
i

s2
i + λσ2

Vi(VT
i x0). (5.8)

where we use the singular vector basis of the matrix H, with si being the non-zero singular

values, and Vi the corresponding right singular vectors. When we take the limit of vanishing
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σ2, we just have a projection of the N dimensional vector x0 to an M -dimensional projection

spanned by Vi’s. In other words

xa =
N∑

b=1

M∑

i=1

ViaVibx0a =
N∑

a=1

Pabx0a (5.9)

P being the projection matrix. For random H, Vi’s are just a random choice of M orthonor-

mal vectors. Thus, the properties of the estimate depends on the statistics of the projection

matrix to a random M -dimensional subspace.

[Pab]
av
H =

M∑

i=1

[ViaVib]av
H =

M∑

i=1

δab
N

= αδab =⇒ [x̂a]
av
H = αx0a (5.10)

For variance, we need to think of second order moments of the matrix elements of P,

particularly, [PabPac]
av
H . We could parametrize [PabPac]

av
H = Aδbc + Bδabδbc. Since P is a

projection operator, P2 = P and it is a symmetric matrix. Hence,

∑

a

[PabPac]
av
H =

∑

a

[PbaPac]
av
H = [Pbc]

av
H = αδbc. (5.11)

In the limit of M,N → 0 with α fixed, the distribution of Paa gets highly concentrated

around the mean α. As a result,

[PaaPaa]
av
H ≈ (

∑

a

[Paa]
av
H )2 = α2. (5.12)

Using the two constraints, represented by Eqs. (5.11) and (5.12), we can determine A and

B, in the large M,N limit, leading to,

[PabPac]
av
H ≈

α(1− α)

N
δbc + α2δabδbc. (5.13)
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The variance is now given by,

[x̂2
0a]

av
H − ([x̂0a]

av
H )2

=
∑

a

[
α(1− α)

N
δbc + α2δabδbc]x0bx0c − (αx0a)

2

= (1− α)αρ
[
x2

0

]av

x0
(5.14)

which is the same conclusion from a formal singular value decomposition point of view.

5.2 Basis Pursuit: `1-norm Minimization

In this section, we reconsider the much-analyzed case where the penalty function is the `1

norm of x [2, 7]. The reconstructed sparse solution is given by

x̂(ϑ) = min
x
{ 1

2σ2
(H(x− x0))2 + λ||x||1}. (5.15)

Like in the case of ridge regression, we aim to solve the above optimization problem self-

consistently. To determine θ, once again we look at the local susceptibility in proposition 1.

In this case U ′′(x) is zero everywhere except at x = 0, where it is formally infinite. Conse-

quently,

χaa = 0, if xa = 0

χaa = σ2
eff , otherwise. (5.16)

We define ρ̂ to be the estimated sparsity, i.e. the fraction of xa’s that are non-zero. Therefore

χ = ρ̂σ2
eff (λχ = ρ̂θ) and

σ2
eff = σ2 +

χ

α
= σ2 +

ρ̂σ2
eff

α
(5.17)

implying

θ(1− ρ̂

α
) = ϑ (5.18)
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Remark 3 The equation θ(1− ρ̂
α) = ϑ is central to understanding the ϑ→ 0 limit and

the associated phase transition. When ϑ goes to zero, we either have θ = 0 (ρ̂ 6= α) or

ρ̂ = α (θ 6= 0). These two conditions correspond to the two phases of the system, the

first being the perfect reconstruction phase and the second, the non-zero error regime.

In terms of average local susceptibility, the first phase has χ = ρ̂θ = 0, while the second

one has χ 6= 0.

Now we can set up the notation for the single variable optimization problem to find the

value for σ2
ξ (∝ MSE) in these two regimes. More precisely, by searching for the solutions

to

min
u
{ 1

2σ2
eff

(u2 − 2ξu) + λ|u+ x0|} (5.19)

we arrive at the following soft-thresholding function for the estimated value of x̂ that we

will denote by ηsoft(t; θ), with the variable t = x0 + ξ (illustrated in Fig. a).

Definition 11 (Soft Thresholding Function)

ηsoft(t; θ) =





t− θ if θ ≤ t,

0 if −θ ≤ t ≤ θ,

t+ θ if u < −θ.

(5.20)

According to remark 3, the perfect reconstruction regime which ends to the phase bound-

ary from above is the case where, as ϑ becomes small, θ becomes small as well. From

Eq. (5.20), there are three sources of error that can contribute to σ2
ξ in this regime:
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λσ2
eff−λσ2

eff

ηsoftηsoft

δ(x0)

π(x0)

Figure 5.1: The soft thresholding function ( in red) defined in (5.20). The non-zero entries
of the sparse vector x0 drawn from random distribution is represented by π ( in grey) and
the zero components are represented by delta function (in blue).

a) (x0 6= 0→ x̂ = 0)

Here x0 was initially non-zero, but the estimated x̂, due to the shift by ξ, has fallen into

the [−θ, θ] interval and then been truncated to zero. One can see that since θ is small,

the probability of this event can be ignored for the time being1.

b) (x0 6= 0→ x̂ 6= x0)

For non-zero x0 that does not get set to zero, the contribution to MSE is

ρ[(x̂− x0)2]av
x0,ξ = ρ[

(
ξ − θsgn(x̂)

)2
]av
x0,ξ = ρ(σ2

ξ + θ2) (5.21)

c) (x0 = 0→ x̂ 6= 0)

Another source of error is the event when the x0 is zero but x̂ has fallen outside the

interval [−θ, θ] and has been estimated to be non-zero. In this case, the contribution to

1Under this circumstance, if ξ remains of order one, then the error is dominated by ξ, i.e. q(MSE) = σ2
ξ .

However, this is not consistent with σ2
ξ = q/α, unless σ2

ξ = 0. Hence in this regime, we need to consider a
σ2
ξ that is comparable to θ. Therefore, as ϑ→ 0, we will have σ2

ξ → 0 and q → 0, making the reconstruction
perfect, i.e. the limit when ϑ, θ, σ2

ξ → 0 with θ
σξ

of order one.
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MSE is

(1− ρ)[x̂2]av
x0,ξ =2(1− ρ)

∫ ∞

θ
dξ

1√
2πσ2

ξ

e
− ξ2

2σ2
ξ
(
ξ − θ

)2

=2σ2
ξ (1− ρ)

{
(1 + τ2)Φ(τ)− τφ(τ)

}
(5.22)

with τ = θ
σξ

. Adding up these contributions from Eq. (5.21) and (5.22), we get the total

MSE, q (i.e. ασ2
ξ ). Therefore using Eq. (4.43), σ2

ξ = q/α, and the knowledge of θ = 0 lead

to the first parametric expression for the perfect reconstruction phase:

α = 2(1− ρ)
{

(1 + τ2)Φ(τ)− τφ(τ)
}

+ ρ(1 + τ2). (5.23)

To determine ρ̂, one can notice that if x0 = 0, we have to have |ξ| > θ to lead to a non-zero

x. On the other hand, since θ is small, a non-zero x0 remains non-zero with probability

approaching one. Counting all sources of the non-zero x̂’s, then we have 2

ρ̂ = 2(1− ρ)Φ(τ) + ρ. (5.24)

Recall that in the error-prone phase ρ̂ = α (Remark 3). This is due to the fact that q, σ2
ξ

and therefore θ need to be non-zero in this regime. If the transition happens continuously,

the condition for the phase boundary is α = ρ̂ = 2(1 − ρ)Φ(τ) + ρ. Hence the relation

between α and ρ at the phase boundary is obtained by solving and eliminating τ from

α = 2(1− ρ)
{

(1 + τ2)Φ(τ)− τφ(τ)
}

+ ρ(1 + τ2) (5.25)

α = 2(1− ρ)Φ(τ) + ρ (5.26)

Alternatively, Eq. (5.25) and (5.26) can be solved for α and ρ at the phase boundary and

2Note that ρ̂ > ρ, even in the perfect reconstruction phase. That is because a fraction of xa’s remain
non-zero as long as ϑ > 0, and vanish only in the ϑ→ 0 limit.
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0.6

0.8

1.0

α

Theoretical Phase Boundary

Figure 5.2: The red curve is the theoretical phase boundary obtained by solving Eq. (5.25)
and (5.26). As ρ → 0 this boundary is of the form αc(ρ) = 2ρ log(1

ρ) shown by the blue
curve. The recovery occurs above the curves.

expressed parametrically as a function of τ :

α =
2φ(τ)

τ + 2(φ(τ)− τΦ(τ))
(5.27)

ρ/α = 1− τΦ(τ)

φ(τ)
(5.28)

This leads to the phase diagram showing the transition from absolute success to absolute

failure depicted in Fig. 5.2

5.3 Understanding the Extremely Sparse Limit

In the extremely sparse limit, ρ << 1, one can obtain a more explicit asymptotic relation

between α and ρ. In this limit τ is large, and the dominant contributions are the sec-

ond term, ρ(1 + τ2), from Eq. (5.25) and the first term, 2(1 − ρ)Φ(τ), from Eq. (5.26).
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Consequently,

α ≈
√

2

π

e−
τ2

2

τ

ρ ≈
√

2

π

e−
τ2

2

τ3
. (5.29)

Therefore, in this extreme-sparsity limit, we have αc(ρ) ∼ 2ρ log
1

ρ
, a result that has been

known for some time and comes close to the bounds from the restricted isometry property [6].

We can look at the above example as an approximate but a simpler picture of the

transition as we go to the very sparse limit. We saw that for a single site, an effective

random noise, ξ, arises which really comes from the error in the estimation of all the other

variables. This error could be associated with the error in estimating genuine non-zero x0

or with x0 that are zero and has become non-zero.

The error from the non-zero variables comes from two sources: 1) those variables affected

by this effective noise 2) and those from the shrinkage. Its clear that in the very sparse

limit near the transition, the dominant contribution to the error comes from the shrinkage

of the non-zeros. Most of the non-zero x0 are large enough that they don’t get set to zero

by small additive noise.

We also noticed that the fraction of x0 = 0 that becomes non-zero contributes majorly

to ρ̂. However, although the number of them is large, they do not contribute in a big way

to the error. This is because sum of those are still small, especially, in the good phase as

θ goes to zero, the total sum goes to zero. But it turned out that the phase condition is

dominated by the number of zero variables that are estimated to be non-zero via ρ̂ = α.

In addition, in the next section we will see that even though the non-zero variables that

has truncated to zero had little role in determining the position of the phase boundary,

they are important in determining the critical behaviors and the universality classes near

the transition boundary.
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As a bonus, we use this point of view to figure out how correlations in the measure-

ment matrices affect the location of the transition boundary. This is important because in

real world application, the random measurement matrix must be replaced by a non-trivial

correlated matrix that corresponds to the characteristics of feasible sensing device.

In particular, we look at the generalization of the Gaussian P(H) with the matrix

elements correlated in a “factorized” manner, a special case of correlation that appears in

many practical problems [50, 51, 57–60]. More precisely, for the mean and variance of P(H)

we have

[
Hia

]av
= 0 (5.30)

[
HiaHjb]

av =
1

M
CijDab. (5.31)

We show in the appendix A that such zero-temperature optimization problem reduces to

the minimization of the following equation:

Proposition 2 (Effective Optimization for the Correlated Matrices)

min
u

{ 1

2σ2
eff

(u>Du− 2ξ>Du) + λ|u + x0| − f .u
}

(5.32)

with

1

σ2
eff

=
1

M
Tr

[
C
{

IMσ
2 +

Tr(Dχ̄)

M
C
}−1

]
(5.33)

Once more, χ̄ can computed from the relation δu = χf and the error is given by

q =
1

N
[u>Du]av

x0,ξ. (5.34)
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Here, the Gaussian quenched vector ξ has mean zero and the covariance matrix

Cov(ξ, ξ) =
qD−1Tr

[
C
{

IMσ
2 + Tr(Dχ̄)

M C
}−1]2

/M

α
(

Tr
[
C
{

IMσ2 + Tr(Dχ̄)
M C

}−1]
/M
)2 (5.35)

Considering the case of the full-rank matrices C,D and ϑ → 0 limit, we obtain the

following relation from the Eqs. (5.33) and (5.35):

σ2
eff =

1

M
Tr(Dχ̄) (5.36)

Cov(ξ, ξ) =
qD−1

α
(5.37)

Like we mentioned above, the major contribution to the error q is coming from the

shrinkage of the non-zero variables. This can be obtained by minimizing Eq. (5.32) without

invoking ξ. Thus we obtain

u = λσ2
effD−1sgn(x0) ⇒ q ≡ 1

N
u−1Du = ρ θ2 TrD−1

N
(5.38)

Moreover, by plugging Eq. (5.38) into the Eq. (5.37) we get

Cov(ξ, ξ) =
ρ(θ)2

α
D−1(

TrD−1

N
) (5.39)

We also noticed that the fraction of x0 = 0 that becomes non-zero contributes majorly to

ρ̂, and thus, to determine the position of the phase boundary. After minimizing Eq. (5.32),

we get Du = Dξ ± θ. This implies that if x0 = 0, we should have |(Dξ)a| > θ to lead to a

non-zero x. It is straightforward to show that the variance of |Dξ| equals σ2
ξDaa. Therefore,
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counting the zero variables that has become non-zero, we obtain

α =
2

N

∑

a

Φa(τ/
√

Daa) (5.40)

Moreover, in the extremely sparse limit, τ is large and Eq. (5.40) becomes:

α =

√
2

π

1

N

∑

a

e
− τ2

2Daa

τ/
√

Daa
(5.41)

Using Eqs. (5.41) and (5.38), in a particular case when all the Daa’s are the same, we can

arrive at the following asymptotic relation for the correlated measurement matrix

αc(ρ) ∼ 2ρ ln(
1

ρ
)
TrD

N

TrD−1

N
(5.42)

5.4 Critical Exponents

To get a better understanding of the nature of this phase transition and characterizing its

behavior as one decreases α from above αc(ρ) to below, we should search for solutions of

Eq. (5.43) and (5.44) in the error-prone regime where both θ and σ2
ξ remain O(1). In this

case, we have to deal carefully with the possibility that x̂ has been set to zero, because

x0 + ξ fell within ±θ. It is straightforward to show that the self-consistency equation for

σ2
ξ becomes

α = α
σ2
ζ

σ2
ξ

+ 2(1− ρ)
{

(1 + τ2)Φ(τ)− τφ(τ)
}

+ ρ

[
τ2

0

{
1− Φ(τ + τ0)− Φ(τ − τ0))

}

+ (1 + τ2)
{

Φ(τ + τ0) + Φ(τ − τ0)
}

− (τ − τ0)φ(τ + τ0)− (τ + τ0)φ(τ − τ0)

]av

x0

(5.43)
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where [. . .]av
x0

means average over π(x0) and τ0 = x0
σξ

. The quantity τ and functions Φ(τ) and

φ(τ) are defined as before. In addition, the parametric expression of Eq. (5.26) becomes

α =
ϑ

θ
+ 2(1− ρ)Φ(τ) + ρ

[
Φ(τ + τ0) + Φ(τ − τ0)

]av

x0

(5.44)

One should notice that in Eqs. (5.43), (5.44) we included extra terms α
σ2
ζ

σ2
ξ

coming from the

additive noise and ϑ
θ from not setting ϑ to zero, respectively.

In order to better understand the behavior close to the transition where θ and σ2
ξ are

small, we rewrite Eqs. (5.43) and (5.44) as 3

α = α
σ2
ζ

σ2
ξ

+A2(ρ, τ)− ρ
[
ψξ(τ0, τ)

]av

x0
(5.45)

α = α
ϑ

θ
+A0(ρ, τ)− ρ

[
ψθ(τ0, τ)

]av

x0
(5.46)

where ψξ(τ0, τ), ψθ(τ0, τ) are even functions of τ0 that falls off quickly as τ0 becomes much

larger than 1. we also introducedA2 and A0 as

A2(ρ, τ) = 2(1− ρ)
{

(1 + τ2)Φ(τ)− τφ(τ)
}

+ ρ(1 + τ2)

A0(ρ, τ) = 2(1− ρ)Φ(τ) + ρ (5.47)

Remark 4 The transition boundary is where these two curves intersect at the point τc

(see Fig. 5.4). Note that dA2
dτ = 2A2−A0

τ . Thus, at the transition point τc,
dA2
dτ = 0, i.e.

A2 behaves like ∼ δτ2 ( A0 behaves like ∼ −δτ). As we will see in section 5.5, this

relation won’t be valid for Elastic Net. Therefore, we expect to have different critical

behavior near the transition point for Elastic Net than Basis Pursuit.

3Note that, when |τ0| = |x0|
σξ
→∞, Φ(τ +τ0)+Φ(τ −τ0)→ 1 and (τ −τ0)φ(τ +τ0), (τ +τ0)φ(τ −τ0)→ 0.

The τ0 dependent expression inside [. . .]av
x0 in Eq. (5.43) goes from 2

{
(1 + τ2)Φ(τ)− τφ(τ)

}
to 1 + τ2 as τ0

goes from zero to infinity. We wrote this expression as 1 + τ2 − ψξ(τ0, τ).
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Figure 5.3: The transition point for `1-norm minimization is where the red and blue curves
meet at the critical τc where the derivative of A2 is zero.

Moreover, we can write

[ψξ(τ0, τ)]av
x0

=

∫
dx0π(x0)ψξ(

x0

σξ
, τ)

=σξ

∫
dτ0π(σξτ0)ψξ(τ0, τ) (5.48)

and get the same expression for ψθ(τ0, τ). Thus, the small σ2
ξ behavior of these averages

depends on how π(x) behaves at small x. When π(x) ∼ Cxγ with γ > −1:

[ψξ(τ0, τ)]av
x0
≈ σγ+1

ξ

∫
dτ0τ

γ
0 ψξ(τ0, τ) ∼ σγ+1

ξ (5.49)

Similarly [ψθ(τ0, τ)]av
x0
∼ σγ+1

ξ . Thus, the perturbations added to phase boundary Eqs. (5.25)

and (5.26) are of the order of σγ+1
ξ . Accordingly, in the case of a gap so that π(x) = 0 when

|x| < ∆ and π(x) = π(0) for some |x| > ∆ we have:

[ψξ(τ0, τ)]av
x0
≈ σξ

∫

∆
dτ0ψξ(τ0, τ) ∼ e

−∆2

σ2
ξ σξ (5.50)
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And [ψθ(τ0, τ)]av
x0
∼ e
−∆2

σ2
ξ σξ

5.4.1 Into the Error-prone Regime
(
ϑ→ 0 & σ2

ζ = 0
)

To find an estimate for the mean-squared error by entering into the error-prone regime, we

express the phase boundary as α = αc(ρ), τ = τc(ρ) by solving Eqs. (5.25), and (5.26). To

explore close to the phase boundary, we can write α = αc(ρ)− δα and τ = τc(ρ)− δτ . Since

the perturbations to Eqs. (5.25), (5.26) for the case of π(x) ∼ Cxγ are of the the order

σγ+1
ξ , from equation (??) we get

δα ∼ σγ+1
ξ = (

q

α
)
γ+1

2 (5.51)

Therefore, for nonzero terms drawn from a distribution with nonzero density at the origin,

Eq. (5.51) tells us that the mean square error rises as

q(MSE) ∼ (αc − α)
2

γ+1 (5.52)

Similarly, for π(x) with a gap, we get a sharp rise for the error:

q ∼ 1/ ln(αc − α) (5.53)

Remark 5 The additional insight is that although the phase boundary αc(ρ) does not

depend on the distribution of non-zeros, the rise of the error does and becomes sharper

when non-zero components are farther from zero. Moreover, the rise is continuous, i.e.

it is a second-order phase transition and its critical exponent depends on the behavior

of π(x0) near x0 = 0.
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5.4.2 Role of an Additive Noise
(
ϑ→ 0 & σ2

ζ 6= 0
)

To examine the behavior of Eqs. (5.25), and (5.26) close to the phase boundary within the

presence of noise, once again, we Taylor expand them around the transition point where

α = αc(ρ) and τ = τc(ρ). Therefore, for the case of π(x) ∼ Cxγ , Eqs. (5.45), (5.46) in

terms of perturbing variables δα and δτ become:

δα =αc
σ2
ζ

σ2
ξ

+ Cδτ2 −Dσγ+1
ξ + · · · . (5.54)

δα =− C ′δτ −D′σγ+1
ξ + · · · . (5.55)

Where C, D, C ′ and D′ are functions of ρ and τc and “· · · ” contains higher order corrections.

From Eq. (5.55), we have δτ = −(D′/C ′)σγ+1
ξ which, by substitution to the first Eq. (5.54),

gives

0 = αc
σ2
ζ

σ2
ξ

+
C D′2

C ′2
σ2+2γ
ξ −Dσγ+1

ξ =⇒ σ2
ξ ∝ (σ2

ζ )
2/(3+γ)

which we arrived at it by taking into account that σ2
ξ → 0+. With a similar calculation for

the case of a gap in the distribution π(x), we obtain

σ2
ξ ∝ 1/ ln(σ2

ζ ) (5.56)

5.4.3 ϑ Trade-off in the Noisy system
(
ϑ 6= 0 & σ2

ζ 6= 0
)

In the previous subsection, we considered the role of additive Gaussian noise in the behavior

of the phase boundary near the transition from perfect reconstruction to the error regime.

However, one should take into consideration that in most situations noise arises from several

sources and there is no good estimation of either the level or distribution of the noise.

Therefore, there is often a trade-off between the least squares of the residual and the `1

norm of the solution. If the regularization is too much, the regularized solution does not fit

the given signal properly as the residual error is too large. If the regularization is too small,
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the fit will be good but error will be more. One can control this trade-off and the sparsity

of the solution by proper selection of the regularization parameter ϑ. Taylor expand of

Eqs. (5.25), and (5.26) close to the transition point leads to:

δα =Cδτ2 −Dσγ+1
ξ + · · · (5.57)

δα =αc
ϑ

θ
− C ′δτ −D′σγ+1

ξ + · · · (5.58)

From Eq. (5.57), we have δτ = (D/C)1/2σ
γ+1

2
ξ which by substitution into Eq. (5.58) and by

taking into account that θ ∼ σξ gives

0 = αc
ϑ

θ
− C ′D1/2

C1/2
σ
γ+1

2
ξ −Dσγ+1

ξ =⇒ σ2
ξ ∝ ϑ

4
γ+3 (5.59)

Another interesting question would be that at what value of ϑ, we will get the minimum

error in the presence of noise. By adding noise to the system, Eqs. (5.45) and (5.46) become

α = α
σ2
ζ

σ2
ξ

+A2(ρ, τ)− ρ
[
ψξ(τ0, τ)

]av

x0
(5.60)

α = αc
ϑ

θ
+A0(ρ, τ)− ρ

[
ψθ(τ0, τ)

]av

x0
. (5.61)

This leads to the following relations in terms of perturbing variables δα and δτ

δα =αc
σ2
ζ

σ2
ξ

+ Cδτ2 −Dσγ+1
ξ + · · · (5.62)

δα =αc
ϑ

θ
− C ′δτ −D′σγ+1

ξ + · · · (5.63)

To have a solution, we get σ2
ξ ∼ ϑ

2
γ+2 and σ2

ξ ∼ (σ2
ζ )

2/3. Therefore, by tuning ϑ to (σ2
ζ )

2
γ+3 ,

the minimum error occurs.
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Figure 5.4: The transition boundary is where the red and blue curves meet at the critical
τc. Unlike `1-norm minimization, the slope at this point is not zero and there exists an
additional linear term to the B2 at the critical τc for Elastic Net. In the text we will see
that this results in different critical behavior for Elastic Net .

5.5 Elastic Net

As a quick application of our zero temperature cavity method, we consider how the phase

transition would be affected if we generalize our penalty function V (x) by adding a quadratic

term |x|2 to the `1 norm. This penalty function is used in the Elastic Net method of variable

selection and regularization [55]. The optimization problem becomes

x̂EN = min
x
{ 1

2σ2
(y −Hx)2 + λ1|x|+

λ2

2
|x|2} (5.64)

In the noiseless reconstruction problem, y = Hx0. We take the limit σ2 → 0 and choose

the distribution of H and x0 to be the same as in the previous sections.
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Now U ′′(x) = λ2 everywhere except at x = 0, where it is formally infinite, leading to

χaa = 0, if xa = 0

χaa =
σ2

eff

1 + λ2σ2
eff

, otherwise. (5.65)

Once more we define ρ̂ to be fraction of xas that are non-zero. Then χ =
ρ̂σ2

eff

1+λ2σ2
eff

and

σ2
eff = σ2 +

χ

α
= σ2 +

ρ̂σ2
eff

α(1 + λ2σ2
eff)

(5.66)

implying

σ2
eff

{
1− ρ̂

α(1 + λ2σ2
eff)

}
= σ2 (5.67)

In the σ2 → 0 limit, the two phases are given by, σ2
eff = 0 or ρ̂ = α(1 + λ2σ

2
eff). Again,

the perfect reconstruction phase has χ =
ρ̂σ2

eff

1+λ2σ2
eff

= 0 and the error-prone regime has

χ =
ρ̂σ2

eff

1+λ2σ2
eff

= ασ2
eff 6= 0.

For the corresponding single variable optimization problem, we can still use the soft-

thresholding function described in Eq. (5.20). The estimated value of x̂ is once more given

by ηsoft(t; θ), but with t = x0+ξ
1+λ2σ2

eff
and θ =

λ1σ2
eff

1+λ2σ2
eff

.

As before, we start in the perfect reconstruction phase, where σ2, σ2
eff , σ

2
ξ → 0 with

τ =
λ1σ2

eff
σξ

of order one. In this phase we ignore the case of non-zero x0 leading to x̂ = 0.

The contribution to MSE for the non-zero x0 is slightly different

ρ[(x̂− x0)2]av
x0,ξ = ρ

[(
x0 + ξ − λ1σ

2
effsgn(x̂)

1 + λ2σ2
eff

− x0

)2
]av

x0,ξ

≈ ρ

(1 + λ2σ2
eff)2

{
σ2
ξ + (λ1σ

2
eff)2

(
1 +

λ2
2

λ2
1

[x2
0]av
x0

+
λ2

λ1
[|x0|]av

x0

)}
(5.68)

The key approximation is that [x0sgn(x̂)]av
x0,ξ
≈ [|x0|]av

x0
, since in this limit typically |ξ| <<

|x0| implying x̂ and x0 have the same sign. The other source of error is the event when

the x0 is zero but x̂ has fallen outside the interval [−θ, θ] and has been estimated to be



79

non-zero. In this case, the contribution to MSE is

(1− ρ)[x̂2]av
x0,ξ =2(1− ρ)

∫ ∞

λ1σ2
eff

dξ√
2πσ2

ξ

e
− ξ2

2σ2
ξ

(
ξ − λ1σ

2
eff

1 + λ2σ2
eff

)2

=
2σ2

ξ (1− ρ)

(1 + λ2σ2
eff)2

{
(1 + τ2)Φ(τ)− τφ(τ)

}
. (5.69)

Combining Eq. (5.68) and (5.69) in the self-consistency equation for σ2
ξ and remembering

that σ2
ξ , σ

2
eff → 0 with τ =

λ1σ2
eff

σξ
order one, we have

α =2(1− ρ)
{

(1 + τ2)Φ(τ)− τφ(τ)
}

+ ρ

{
1 + τ2

(
1 +

λ2
2

λ2
1

[x2
0]av
x0

+
λ2

λ1
[|x0|]av

x0

)}
. (5.70)

The equation for ρ̂ remains the same in this limit. The denominator 1 +λ2σ
2
eff does not

matter for the thresholding condition. As a result once more

ρ̂ = 2(1− ρ)Φ(τ) + ρ. (5.71)

On the other hand, the condition for the phase boundary is α = ρ̂(1 + λ2σ
2
eff). Thus, for

the Elastic Net method, the phase boundary is obtained by solving and eliminating τ from

the following equations:

Proposition 3 (Theoretical Phase Boundary for Elastic Net)

α ≡ B0 = 2(1− ρ)
{

(1 + τ2)Φ(τ)− τφ(τ)
}

+ ρ

{
1 + τ2

(
1 +

λ2
2

λ2
1

[x2
0]av
x0

+
λ2

λ1
[|x0|]av

x0

)}
(5.72)

α ≡ B2 = 2(1− ρ)Φ(τ) + ρ (5.73)
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`1-norm Minimization

System Scaling Law

λ→ 0, σ2
ζ = 0 MSE ∼ (αc − α)2

λ→ 0, σ2
ζ 6= 0 MSE ∼ (σ2

ζ )
2/3

λ 6= 0, σ2
ζ = 0 MSE ∼ λ4/3

λ 6= 0, σ2
ζ 6= 0 MSE ∼ λ

Elastic Net

λ→ 0, σ2
ζ = 0 MSE ∼ (αc − α)2

λ→ 0, σ2
ζ 6= 0 MSE ∼ (σ2

ζ )
2/3

λ 6= 0, σ2
ζ = 0 MSE ∼ λ

λ 6= 0, σ2
ζ 6= 0 MSE ∼ λ

Table 5.2: This table shows the comparison of critical exponents for Basis Pursuit and
Elastic Net near phase transition.

In the case of Gaussian π(x0) with variance σ2
x0

, the key dimensionless parameter is

λ2σx0
λ1

, which determines the relative strength of the quadratic penalty term. It’s important

to note that unlike the `1-norm minimization, the relation dA2
dτ = 2A2−A0

τ in remark 4 does

not hold for Elastic Net. Thus, Taylor expansion of Eq. (5.72) (equivalent to the A2 term

in Eq. (5.47)) near the transition point has linear contribution with positive slope as well

as quadratic one (See Fig. 5.5). The theoretical critical exponents can be derived in the

same way as described in section 5.4. We only mention the result in the table 5.2 in the

next section.

5.6 Numerical Experiment

In this section, we describes some experiments examining critical exponents that we obtained

in the previous section (section 5.4) and comparison with the numerical result. Before

moving further, we remind the readers by summarizing the critical exponents and scaling

laws near the phase transition in the table below (for the case of Gaussian distribution of

non-zero components of the signal, i.e. γ = 0). In order to relate with compressed-sensing

literature, we have set σ2 = 1, i.e. ϑ = λ.

In the first experiment, the goal is to compute MSE for `1-norm minimization and Elastic
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Figure 5.5: Comparison of MSE for different λ2. Each solid curve represents the theoretical
estimate for MSE as described in Sec. 5.2 and Sec. 5.5. Numerical data for different λ2 is
shown with the markers. We use CVXOPT quadratic cone programming to find MSE for 3
values of λ2/λ1: 0, 0.4, 0.8. Notice that, for the Elastic Net (λ2 6= 0, the transition happens
at higher α compared to `1-norm minimization.

Net. In this case, the matrix H is obtained by first filling it with independent samples of a

Gaussian distribution with variance 1/M . In this example, N = 200, K = 30, the original

signal x contains 30 randomly placed elements driven from a standard Gaussian distribution,

i.e. γ = 0. This experiment is done by using the CVXOPT quadratic cone programming

[61] for the case with λ1 = 1E− 6 and λ2 = 0, .4, .8 of λ1. As it is illustrated in Fig. 5.6,

the reconstruction error exhibits a higher mean squared error (MSE) with respect to the

theoretical result.

Next, we confirm the exponent in Eq. (5.59) by plotting the theoretical expression in

Eqs. (5.45), (5.46). This is shown in Fig. 5.6.

In the end, we consider the important case where the external noise is zero and we are

looking for a trade-off for λ where the reconstruction error minimizes. Once more, using

Eqs. (5.45), (5.46), this is shown in Fig. 5.6.
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Figure 5.6: Following the trends where the curves merge, we can find the critical exponent
near the phase transition. The top grey line has a slope of ∼ 1.1 and the bottom one has a
slope of ∼ 1.9.

Figure 5.7: Varying λ sweeps out entire optimal tradeoff curves. The theoretical minimum
error near phase transition occurs at ln(λ) = 2

3 ln(σ2
ζ ).
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Chapter 6

Conclusion

In this thesis, we presented a different approach to study the statistical properties of com-

pressed sensing problems. In the case of a full random measurement matrix, we directly

treat the optimization problem and show how to adapt the cavity method for doing mean

field theory in the context. The mean field theory leads to a self-consistency condition on

average mean squared error (MSE), since error in estimating one variable affects error in

others. Careful derivation of the self-consistency condition involves accounting for subtle

correlations in the system. To take care of these correlations, we needed a two-step cavity

approach: one step removing a variable and then, another, removing a data constraint.

In the process of this derivation, we realize the key role local susceptibility plays in the

system. It turns out that the perfect reconstruction phase corresponds to vanishing average

local susceptibility, indicating that the solution of the optimization problem has underlying

robustness to perturbations in this phase. We expect that the structure of susceptibility

has important information about the reliability of any sparse reconstruction.

The cavity approach looks at the behavior of the system for a particular choice of

quenched variables, H and x0. In contrast, the replica approach centers on immediately

averaging those quenched variables away. In the context of compressed sensing, one can

imagine many problems where the matrix H is non-random. Currently there is no obvious

way to extend the replica method for such sensing matrices. The cavity method could be a

more versatile tool in this regard.
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Appendix A

Correlated Measurement Matrices

Here, we present the generalization of our results for Gaussian P(H) with the mean and

variance of P (H) given by

[
Hia

]av
= 0 (A.1)

and

[
HiaHjb]

av =
1

M
CijDab. (A.2)

In this case, one could still follow the replica computation in Section 3.2 and show that

the finite temperature replica saddle point equations [62] generalize to The saddle point

Q = Q̄,R = −iR̄ satisfies the conditions:

Q̄µν =
1

N
〈〈u>

µ Duν〉〉 (A.3)

R̄ =
β

2σ2
TrM

[
C⊗ In(IM ⊗ In +

β

ασ2
C⊗Q)−1

]
(A.4)

obtained by differentiating S(Q,R) with respect to the elements of Q,R. The trace TrM

is a partial trace only applying to the M dimensional space. The expectation 〈〈u>
µ Duν〉〉

depends on R̄ via

〈〈u>
µ Duν〉〉 = β

∂F (R̄)

∂R̄µν
(A.5)

with exp(−βF (R̄))

=

[ ∫ n∏

µ=1

{dNuµ} exp
[
−
∑

µ,ν

R̄µνu
>
µ Duν − β

∑

µ

V (uµ + x0)
]]av

x0

(A.6)
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For U(x) convex, we have replica symmetric ansatz for Q,R: Q̄µν = (Q− q)δµν + q and

R̄µν = (R−r)δµν+r. The zero-temperature limit turns out to be a self-consistent problem of

coupled nodes in presence of quenched correlated noise. The optimization problem reduces

to finding

min
u

{ 1

2σ2
eff

(u>Du− 2ξ>Du) + V (u + x0)− f .u
}

(A.7)

with

1

σ2
eff

=
1

M
Tr

[
C
{

IMσ
2 +

βTr(D∆Q)

M
C
}−1

]
(A.8)

where the Gaussian quenched vector ξ has mean zero and the covariance matrix given by

qD−1Tr
[
C
{

IMσ
2 + βTr(D∆Q)

M C
}−1]2

/M

α
(

Tr
[
C
{

IMσ2 + βTr(D∆Q)
M C

}−1]
/M
)2 (A.9)

where

q =
1

N
[u>Du]av

x0,ξ. (A.10)

Identifying β∆Q as the average susceptibility χ̄, we can get the same result if we have done

the computation through two-step cavity method.
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