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Piers Coleman

Condensed matter physics is an area of research which lies at a sweet spot between two

complementary perspectives: the atomistic point of view which takes into account all the

details of the system of interest; and the framework of universality and emergent phenomena,

which allows us to make drastic simplifications to the microscopic description of materials

while still being able to explain much of the experimentally observed phenomena. This

thesis addresses problems from both perspectives, focusing on heavy fermion systems.

Heavy fermion systems are prototype materials for the study of strongly correlations and

quantum criticality. Theoretical understanding of these systems is important for the design

of new materials and for the fundamental understanding of quantum critical phenomena.

This thesis is strongly motivated by recent experiments in an intrinsically quantum critical

material, β-YbAlB4 . This system shows anomalous critical exponents in transport and ther-

modynamics. In Chapter 2 we construct a phenomenological theory for the heavy fermion

metal β-YbAlB4 based on the Anderson model, taking into account the peculiarities of this

specific material. We analyze the consequences of a non-trivial, momentum-dependent,

hybridization matrix between f-electrons and conduction electrons, which gives rise to a

nodal metal with unusual dispersion and singular thermodynamic properties, in accordance
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with experiments. In Chapter 3 we analyze the Electron Spin Resonance experiments in

this same material and propose a theory including spin-orbit coupling, crystal electric fields

and hyperfine coupling which can account for many of the features of the experimentally

observed signal.

Within a broader perspective on heavy fermion systems, the absence of a single unified

theoretical description which can account for the plethora of phenomena observed in this

class of materials also motivates us to consider new theoretical approaches. In Chapter 4

we generalize the construction of supersymmetric spin representations in the large-N limit,

now with symplectic symmetry, and explore its properties. We apply the supersymmetric

symplectic-N spin representation to two toy models in Chapter 5, and find promising results

for a future unified picture of heavy fermion systems.
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Chapter 1

Introduction

In this introductory chapter we motivate the study of condensed matter as a funda-

mental area of investigation for the search and understanding of new phases of matter.

We introduce the main concepts that help us to progress in this field, focusing on

strongly correlated systems and narrowing the discussion to heavy fermion systems,

the main topic of this thesis. We highlight the main features and recent experiments

on heavy fermions and discuss the current theoretical understanding and challenges in

this subject area.

1.1 The Concept of Emergence

A crucial concept for the understanding of phenomena in solids today is the idea of emer-

gence, which tells us that a reductionist point of view is not always enough: knowledge on

the microscopic laws of nature does not directly provide us with the ability to understand

the properties of the universe at large [1]. When many particles are placed together, the

interactions and correlations between them can give rise to unexpected phenomena, called

emergent phenomena. Examples of emergent phenomena can be seen in nature with the

formation of crystals, sand dunes and even with the emergence of life itself.

In his insightful 1972 paper [1], P. W. Anderson points out that a constructionist hy-

pothesis, built solely on the knowledge acquired from a reductionist approach, does not

always hold. He writes: “The constructionist hypothesis breaks down when confronted

with the twin difficulties of scale and complexity ... at each level of complexity new prop-

erties appear, and the understanding of the new behaviors requires research which I think

is as fundamental in its nature as any other.”
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Figure 1.1: Reductionist versus Emergent world: in the Reductionist World the details of
the atoms and lattice structures are the important information. In the Emergent World
general concepts as the idea of quasiparticles and collective modes as phonons are the stating
point for discussion.

1.1.1 Emergence in Condensed Matter Physics

In condensed matter physics, two philosophies are intertwined: the reductionist atomistic

approach and the complimentary concept of emergent phenomena. We will see along this

thesis how different constituents in materials can lead to different physical phenomena.

Moreover, the way these constituents are assembled may play an important role in the

determination of the ground state of the system. Despite this reductionist point of view,

which suggests us that every single material should be considered independently, the emer-

gent phenomena in condensed matter are usually very robust to perturbations and repeat

themselves in materials with different constituents and geometry. Condensed matter physics

is an area of research which explores both the reductionist and the emergent phenomena

perspectives, see Fig. 1.1. Usually we cannot completely wash out all of the details of the

problem we are interested in, but once we determine what is important for their description,

the theories are able to account for the physics of entire families of materials.

At the scale of Angstroms, the basic bulging blocks of matter are atoms, entities that we

understand reasonably well, but the knowledge of the properties of isolated atoms does not

always give us the ability to infer the behavior of the systems they form when assembled

together. As an illustration of this point, extending on the discussion in [2], here I mention a

few examples of different phenomena that can emerge when atoms form a crystal. As a first
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example, when atoms of gold assemble to form a face-centered cubic structure, they give

rise to a ductile metal with resistivity of the order of 10−8Ohm · cm, which we understand

as a good example of a Fermi liquid. On the other hand, when carbon atoms assemble to

form a diamond cubic structure, they give rise to an insulator with remarkable hardness

and resistivity which can go up to 10+18Ohm ·cm. This difference of 26 orders of magnitude

in transport properties is striking. Interestingly enough, carbon has many other allotropes,

the most common being graphite, with very distinct properties. This is an example of how

the constituent elements but also their assembly are decisive in determining the properties

of materials. As a third example I mention niobium, a material that becomes a super-

conductor below the critical temperature of 9K. The understanding of how a material can

transport current without dissipation required another level of understanding beyond the

single particle description, with the idea of formation and condensation of Cooper pairs [3].

Let me go beyond the elemental materials, and look at systems of increasing complexity,

involving binary, tertiary, and higher order compounds (see Fig. 1.2). For example, we can

go from the elemental material Fe, a ferromagnet at room temperature (Curie temperature

of 1043K [4]); to binary compounds such as MgB2, a conventional type-II SC with a critical

temperature (Tc) of 39K [5], amongst the highest in the family of conventional supercon-

ductors. As an example of a tertiary element, consider CeRhIn5, a heavy fermion system

which displays coexistence of magnetism and superconductivity [6, 7]. As a material with 4

different elements in its composition we have Bi2NiMnO6, which is has both ferromagnetic

and ferroelectric properties at low temperatures [8]. Going further in this scale, we can find

HgBa2Ca2Cu3O8, a high temperature superconductor in the family of the cuprates with

the highest well established Tc of 133K [9]. Complexity, as it develops, reveals diverse and

potentially useful emergent phenomena, taking us closer, for example, to the holy grail of

room temperature superconductivity.

In this spirit this thesis will give examples on how the complimentary points of view

of reductionism and emergence are both valid, providing different insights into our under-

standing of materials today.
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Figure 1.2: Examples of materials of increasing complexity (or number of different con-
stituent atoms). Note the different kinds of phenomena that emerge with increasing com-
plexity. See text for discussion and references. Figures generated by VESTA software [10].

1.2 Important Concepts in Condensed Matter Theory

In order to theoretically address condensed matter systems, if we start with a purely reduc-

tionist perspective we have a very tough problem: in principle we need to solve a many-

body Schrödinger equation including all nuclei and electrons of the atoms in the material.

The Hamiltonian should include kinetic terms and interactions, explicitly considering the

Coulomb interaction amongst all the charges in the system. This problem becomes very

hard analytically and computationally very expensive as the number of particles increase.

Within some approximations we can understand parts of this problem. Considering

the electrons in a solid to be non-interacting and subject to a perfect and infinite periodic

potential we can construct a band theory using a nearly free electron model in case of
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extended orbitals as s and p or a tight-binding approximation for more localized orbitals,

as d or f , based on the overlap of atomic wave-functions [11]. These approaches give good

results for simple metals, but once interactions and correlations become important more

powerful techniques need to be introduced.

In order to develop a more natural understanding of condensed matter phenomena, we

would like to develop analytical approaches to the problems we are interested in. Towards

this end, we need to establish a portfolio of key theoretical concepts that are helpful for

the understanding of many-body systems. In the following subsections we briefly introduce

some of these concepts.

1.2.1 The Landau Fermi Liquid Theory

The Landau Fermi liquid theory [12] gives us a framework to understand why the properties

of a strongly interacting set of electrons are very similar to the properties of a Fermi gas,

or a set of non-interacting electrons.

Given a Fermi surface, an abstract boundary in momentum space that separates the

occupied from the unoccupied electronic states, Landau argued that an extra fermion near

the Fermi surface has a very constrained space of states to scatter to, since it cannot scatter

to the already occupied states inside the Fermi surface due to the Pauli exclusion principle

[12]. Due to this constraint, he argued, that if one starts with the non-interacting problem

and then adiabatically turns on the interactions, the states above the Fermi energy will

evolve while maintaining a one-to-one correspondence with the original fermionic state,

now called a quasiparticle state (see the right side of Fig. 1.1). Turning on the interactions

effectively has the effect of renormalizing the original electronic parameters and consequently

we have the same qualitative behavior as in a non-interacting Fermi gas.

The main properties of a Fermi liquid are: a specific heat which is linear in temper-

ature, a temperature independent magnetic susceptibility and a resistivity that depends
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quadratically on temperature:

Cv =
π2k2

B

3
N∗(0)T, (1.1)

χ = µ2
B

N∗(0)

1 + F a0
, (1.2)

ρ ∼ ρ0 +AT 2, (1.3)

where kB is the Boltzmann constant, µB the Bohr magneton, ρ0 a residual resistivity and

A a coefficient which is proportional to square of the renormalized density of states at the

Fermi level, which can be written as:

N∗(0) =
mpF
π2~3

(1 + F s1 ), (1.4)

m is the bare electron mass and pF the momentum at the Fermi surface. F a0 and F s1 are

Landau parameters, determined from a multipolar expansion of the interactions in terms

of Legendre polynomials [13].

1.2.2 The Renormalization Concept

The renormalization group technique introduces a series of transformations to a given phys-

ical system so one can investigate its behavior at different length or energy scales [14]. It

turns out that the low energy behavior of a system is usually only weakly dependent on the

high energy physics and details of the Hamiltonian. This technique provides a systematic

way to determine what are the relevant interactions at low temperatures. It can be imple-

mented by a reduction of the cutoff energy scale in the problem, integrating out the states

at higher energies and defining new effective models at lower energies. In this process the

coupling constants of the given model are renormalized. Those coupling constants that tend

to vanish under this procedure are said to be irrelevant ; and those that become stronger

under the renormalization group transformations are said to be relevant.

There are in fact many high energy Hamiltonians that will flow towards the same low

energy Hamiltonian, or stable fixed point, meaning that they will have the same low energy

physics (for example H1, H2, H3 in Fig. 1.3). A fixed point is reached when the effective
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Stable  
Fixed Point Unstable  

Fixed Point 
(QCP)

Stable  
Fixed Point
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…H1, H2, H3,….Hc,…Hα, Hβ, Hγ,…

Figure 1.3: Schematic diagram for a renormalization group flow.

interactions transform into themselves under the renormalization group. On the other

hand, for certain Hamiltonians or sets of coupling constants the problem may evolve to a

different stable fixed point, describing a different phase of matter at low temperatures (as

in Hα, Hβ, Hγ in Fig. 1.3). In case one can continuously tune from one Hamiltonian in the

first group to Hamiltonians in the second group, there will be one Hamiltonian, Hc, which

flows between the two fixed points towards an unstable fixed point. As the name says, this

kind of fixed point is unstable towards the flow to either of the stable fixed points under

small perturbations (see Fig. 1.3), and it characterizes a quantum critical point.

The renormalization concept brings the idea of universality, the notion that many Hamil-

tonians have the same low energy physics and can be simplified if we are interested in study-

ing the low energy phenomena. If the idea of universality did not hold, we would be lost

looking into the details and complexity of each system and our simplified models would not

be expected to capture the phenomena seen experimentally. In fact, universal exponents

are usually experimentally observed in transport and thermodynamical properties.
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Interestingly enough, the Kondo problem was the first problem in which the full renor-

malization group technique was applied [14]. The apparently simple problem of a single

impurity embedded in a conduction sea is actually highly non-trivial due to the many-body

nature of the conduction sea.

1.2.3 Landau Theory, Symmetry Breaking, Phases of Matter and Beyond

One way to characterize distinct phases of matter is to consider their symmetries. This idea

can be made quantitative by the concept of an order parameter, a quantity which is zero in

the phase that preserves the symmetries of the Hamiltonian and non-zero otherwise. One

of the most iconic examples of an order parameter is the magnetization in a ferromagnet,

associated with the breaking of spin rotational symmetry.

Landau theory was formulated in order to study continuous phase transitions between

phases with different symmetries [15]. At high temperatures we usually find disordered

phases which are symmetric, and below a critical temperature we find ordered phases in

which some symmetry is broken. Landau theory is based on the construction of an energy

functional in terms of the order parameter respecting the symmetries of the Hamiltonian.

If the free energy functional has a minima when the order parameter is zero the system is

in a disordered state, while if the minima occurs for a finite value of the order parameter

we have an ordered state. Close to second order phase transitions, given the analyticity of

the functional, the free energy can be expanded in powers of the order parameter and many

of the properties of the phase transition can be inferred from it.

Experimentally it is possible to tune systems by pressure, magnetic field or doping, so

that the critical temperature is driven to zero. In case this process is continuous and the

transition second order, it gives rise to a quantum phase transition in which quantum fluctu-

ations drive the change of state. At this point the coherence length diverges and fluctuations

of the system in all length and time scales are important. The regions around quantum

phase transitions are known to be interesting regions due to the possibility of the mer-

gence of new phases of matter (see Fig. 1.4 for a cartoon of this concept). Experimentally

one finds unusual phase coexistence and unconventional superconductivity around quantum
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Figure 1.4: Symmetry breaking and the emergence of new phases of matter.

critical points and the ubiquitous non-Fermi liquid behavior above quantum critical points

in strongly correlated materials, usually characterized by a logarithmic temperature depen-

dence of the specific heat coefficient and unusual temperature dependence of the resistivity:

Cv ∼ log T, (1.5)

ρ ∼ Tα, with α < 2. (1.6)

It is important to point out that our current understanding on the classification of phases

of matter actually goes beyond the traditional Landau symmetry breaking construction,

now including a classification based on topology. Systems with topological order include

quantum Hall [16] and spin liquid states [17]. In order to characterize such states one needs

to look at new quantities such as ground state degeneracy or entanglement entropy [18].

1.3 Strongly Correlated Systems

Within condensed matter, strongly correlated systems are usually sets of electrons in which

the strength of the interactions are comparable or larger then their kinetic energy. Electrons

are charged particles and interact via the Coulomb interaction, which strength is inversely

proportional to the distance between the charges. If we take atoms in empty space, their

electrons are bound to the respective nuclei and in a state described by an atomic wave

function with a given principal quantum number n and angular momentum l. The smaller

the orbital (or the region in which the wave function has an appreciable weight), the more

energetically expensive to fill orbitals with two electrons (one spin up and one spin down)
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Figure 1.5: The Smith-Kmetko Diagram, adapted from [19]. This diagram organizes the
elements in the periodic table in increasing order of localization, as indicated by the black
arrows. Here we highlight with the red dotted line the elements usually present in heavy
fermion systems which have very localized 4f-electrons. In the purple full line squares we
point out the elements present in families of strongly correlated systems that are extensively
studies today: Fe in the the iron pnictides and Cu in the cuprate superconductors and Ce
in heavy fermions. See text for further discussion.

due to the Coulomb interaction, since these electrons need to “share” the same tight space.

Atoms with very localized orbitals are the drivers of new physics in strongly correlated

systems. The trends on the degree of localization for intermetallic atoms is systematized

in the Smith-Kmetko diagram [19], see Fig. 1.5, that essentially rearranges the rows of the

periodic table of elements in increasing order of localization. The vertical trend can be

understood as follows: for a given value of angular momentum l, as the quantum number

n increases, the radial part of the wave-function gets more spread. This can be seen in the

exponential dependence of the radial part of the hydrogenic wave function which follows

e−r/(na0), where a0 = ~2/me2 is the Bohr radius. Within a particular row in the diagram,

the increase in the nuclear charge leads to further reduction on the size of the orbitals. This

can be understood by the definition of an effective Bohr radius aEff = ~2/mZe2, which

takes into account the larger charge Ze in the nucleus, drastically reducing the region in

which the wave-function has an appreciable weight.
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The analysis of the Smith-Kmetko diagram can be extended to intermetallic compounds,

as discussed in [19]. In the bottom left corner of the diagram (highlighted by the blue arrow)

there are atoms with the most delocalized orbitals, which usually overlap when in a crystal,

leading to itinerant compounds. These usually form good metals and are well described

by the Fermi liquid theory, possibly with instabilities towards superconductivity at low

temperatures. In the opposite corner of this diagram (highlighted by the red arrow) we

have the most localized orbitals, which tend to not overlap when in a periodic array leading

to the formation of local moments and the development of magnetism.

The materials that lie in the intermediate region (highlighted green) of the Smith-

Kmetko diagram are particularly interesting; they are said to be “in the brink of local-

ization” [20], and are the elements that drive the interesting behavior in many strongly

correlated systems (for example, Ce, Fe and Cu, highlighted by purple squares). The elec-

trons in atoms in this region are in between localized (magnetic) and delocalized (itinerant)

behavior, and can usually be tuned from one regime to the other by small amounts of doping

or pressure.

There are several classes of strongly correlated materials, with very rich phase diagrams,

as shown artistically in Fig. 1.6. Here I will point out three families of materials in which the

presence of d- or f-orbitals brings in interesting phenomena: the cuprate superconductors

[21], which are currently the materials with the highest superconducting critical temper-

atures; the recently discovered Fe-based superconductors [22], with critical temperatures

that can go up to 100K; and the heavy fermion systems, the family we will be focusing

on in this thesis. The superconducting critical temperatures in heavy fermions are much

lower if compared to the other families. This fact makes these systems not very appealing

for technological applications, but at the same time the small energy scales make these

systems more easily tunable, so we can have access to more detailed sets of experiments

to build a more complete theoretical understanding. One interesting point to notice about

these families of materials is that they show a recurrent theme: these systems usually dis-

play antiferromagnetic order, which can be suppressed by tuning the material by pressure,
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Figure 1.6: Strongly Correlated Systems. This figure artistically shows the richness of the
phase diagrams of strongly correlated systems. It includes schematically phase diagrams of
cuprate, Fe-based and organic superconductors and heavy fermion systems.

doping or magnetic field, with superconductivity often emerging in the vicinity of the anti-

ferromagnetic quantum critical point and non Fermi liquid behavior is usually observed at

finite temperatures above it. This is a direct consequence of the presence of elements with

electrons in the brink of the localization.

1.4 Heavy Fermion Systems

Since their discovery [23], heavy fermion materials have provided a wealth of insights into

correlated electron physics. These materials contain a matrix of localized magnetic moments

formed from f -electrons immersed in a host metal; at low temperatures the spin-quenching

entanglement of the f -moments with the conduction electrons gives rise to a diversity of

ground-states, including anisotropic superconductors, Kondo insulators and Fermi liquids

with quasiparticles with effective masses 100s to 1000s times larger than the bare electron

mass [20, 24]. An important class of heavy fermion metals exhibit the phenomenon of

quantum criticality, whereby upon tuning via pressure, doping or magnetic field through
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a zero temperature second order quantum phase transition, they develop non-Fermi liquid

behavior and predisposition to superconductivity [25, 26, 27].

1.4.1 Local moments and the Kondo effect

In order to introduce the idea of heavy fermions it is natural to first understand the concept

of local moments. The simplest example of a local moment is an unpaired electron in

a localized atomic orbital. At temperatures smaller than the ionization energy, the only

degree of freedom that is left is the magnetic moment. The hallmark of the presence of

local moments is a Curie-like behavior of the magnetic susceptibility at high temperatures

with χ ∼ 1/T .

In solids, local moments usually come from impurities of 3d transition metal or 4f

rare-earth elements. These impurities contribute to a Curie-like behavior of the magnetic

susceptibility at high temperatures, but at low temperatures the magnetic susceptibility

saturates to a constant value, indicating the formation of a Pauli paramagnet, as schemat-

ically depicted in Fig. 1.7. The screening of the local moments by the conduction electrons

in the metal is the cause of the development of the paramagnetic state and this phenomenon

is called the Kondo effect. The crossover temperature between the local moment behavior,

in which the local spin is free, and the low temperature behavior, in which the local moment

is entangled with the conduction sea, is known as the Kondo temperature.

1.4.2 The Anderson model: local moment formation and renormalization

The Anderson model was proposed in 1961, motivated by the study of local moments in

metals, with the aim of understanding the necessary conditions for local moment formation

[28]. The proposed model can be written as:

H =
∑
kσ

εkc
†
kσckσ + εf

∑
σ

f †σfσ + Unf↑nf↓ + V
∑
kσ

(c†kσfσ + f †σckσ), (1.7)

where the first term represents the host metal, a conduction electron system with dispersion

εk; and the second term introduces the energy εf of a localized f-state in the impurity site.

The third term represents the onsite Coulomb interaction between localized electrons in the
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FL Local Moment

Figure 1.7: The behavior of local moments when immersed in a conduction sea. At high
temperatures they behave as free local moments, with a Curie magnetic susceptibility, and
at low temperatures they are screened by conduction electrons and the susceptibility goes
to a constant. The temperature at which this crossover happens is the Kondo temperature.

impurity site with strength U , where nfσ = f †σfσ is the number operator for a given spin

state. The last term represents the hybridization between the localized and the conduction

electrons, where V is proportional to the overlap of the wave functions of localized and

conduction electrons.

Within this model there are three options for the occupation of the localized f -level: it

can be empty, singly occupied (with spin up or down) or doubly occupied. In order for the

system to develop local moments, the singly occupied states must be the lowest in energy.

At high enough temperatures, the Anderson model admits valence fluctuations to empty or

doubly occupied states, with the following energies:

f1 → f2, ∆EII = U + εf > 0, (1.8)

f1 → f0, ∆EI = −εf > 0,

what requires εf < 0 for local moment formation. Under these conditions the reduction of

the temperature or cutoff energy scale leads to two crossovers. The Coulomb interaction

is usually one of the largest energy scales, what makes ∆EII > ∆EI , so the first crossover
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happens when the temperature crosses ∆EII and the fluctuations to double occupied states

are suppressed. Materials in this regime are called mixed valent systems. The Hilbert space

now is constrained to empty and singly occupied states and the effective Hamiltonian which

describes the system at T < ∆EII is known as the Infinite U Anderson Model:

H =
∑
kσ

εkc
†
kσckσ + εf

∑
σ

Xσσ + V
∑
kσ

(c†kσX0σ +Xσ0ckσ), (1.9)

where Xσ0, X0σ and Xσσ are Hubbard operators [29], which by construction eliminate

double occupancy of the f-level from the description. A generic Hubbard operator is defined

as Xpq = |p〉〈q|, and in the Hamiltonian above we have:

Xσσ′ = |σ〉〈σ′|, (1.10)

X0σ = |0〉〈σ|, (1.11)

Xσ0 = |σ〉〈0|. (1.12)

Reducing the temperature further, below ∆EI , fluctuations to empty states are also

supressed and the Hilbert space is restricted to the singly occupied states. Note, though,

that there can still be virtual fluctuations due to the hybridization with the conduction sea:

c↑ + f1
↓ 
 f2 
 c↓ + f1

↑ , (1.13)

c↑ + f1
↓ 
 c↑ + c↓ 
 c↓ + f1

↑ ,

which can flip the spins of the conduction and localized electrons. Within second order

perturbation theory these virtual fluctuations will selectively lower the energy of the sin-

glet configuration, what leads to an effective antiferrromagnetic interaction between the

conduction and localized electron spins. The effective Hamiltonian is now:

H =
∑
kσ

εkc
†
kσckσ + JKS · s(0), (1.14)

where S is the spin operator for the f -electron and s(0) is the conduction electron spin
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density at the impurity site; JK ∼ V 2/U is known as the Kondo coupling. This Hamiltonian

was originally called the s-d Model [30], but it started being called the Kondo model, after

its use by J. Kondo to solve the resistivity minima problem [31, 32].

1.4.3 Renormalization in the Kondo model

Under further reduction of the temperature one can analyze what is the behavior of the

couplings in the Kondo model. From a renormalization group analysis the beta function,

which dictates how the coupling constants of the theory flow under renormalization, has

the following form:

∂g

∂ log Λ
= β(g) = −2g2 +O(g)3, (1.15)

where g = N(0)JK , with N(0) the density of states of the conduction electrons at the Fermi

level, JK the Kondo coupling, and Λ the cutoff energy scale, which can be understood as

the temperature at which we are analyzing the system. Given that the beta function is

negative, the coupling constant N(0)JK increases as one reduces the cutoff energy Λ so

the problem renormalizes to strong coupling and as a consequence the local moment forms

a singlet bound state with a conduction electron spin, therefore getting quenched. The

Kondo temperature can be estimated from the renormalization group equation above, as

the energy scale at which the coupling g diverges:

TK ∼
1

N(0)
e−1/2N(0)JK . (1.16)

1.4.4 The Kondo lattice Model: the onset of coherence and the large-N ap-

proach

Metals with a small concentration of magnetic impurities display a logarithmic upturn in

the resistivity around the Kondo temperature, as understood by Jun Kondo [31], followed

by a saturation at lower temperatures with the formation of singlets and an effective Fermi

liquid [33]. With the increase in the concentration of impurities we see a downturn in the

resistivity at low temperatures, which indicates the development of coherent scattering,
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Figure 1.8: Temperature dependence of the resistivity for CexLa1−xCu6, adapted from [34].
When x is small we have the characteristic behavior of the resistivity in presence of dilute
local moments. When x = 1 there is a local moment in every site of a lattice and the
formation of a coherent state between the conduction electrons and local moments, with
the corresponding decrease in resistivity.

with a Fermi liquid-like quadratic temperaure dependence of the resistivity, as shown in

Fig. 1.8, adapted from experiments in CexLa1−xCu6 [34].

The development of coherence can be understood within the Kondo lattice model:

H =
∑
kσ

εkc
†
kσckσ + JK

∑
i

Si · si, (1.17)

in which there is a local moment in every site of a lattice, resonantly scattering conduction

electrons, what leads to a strongly renormalized electronic band, which is said to be heavy

because the effective mass of the quasiparticles are usually 100s to 1000s of times larger

than the bare electron mass.

The treatment of this model within a path integral formalism is non-trivial due to the

presence of the spin operators which are not canonical and consequently Wick’s theorem

does not apply [35]. In order to proceed with this kind of treatment, one can write the spin

operators in terms of the canonical creation and annihilation operators f †α, fα:

SF =
∑
αα′

f †α
σαα′

2
fα′ , (1.18)
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where σ are the Pauli matrices in case of an SU(2) spin-1/2 operator. This form of the spin

operator requires a constraint to restrict the four-dimensional fermionic Hilbert space down

to the original two-dimensional space of spin states. The constraint for a SU(2) spin-1/2 is

requires fixing nF = 1 (see Chapter 4 for a detailed discussion).

Given the absence of a natural small energy scale in the problem, one cannot apply

perturbative methods in the interactions, and in this case large-N approximations are very

suitable. Large-N approaches were first introduced in particle physics [36], and are now

extensively used in condensed matter physics. P. W. Anderson [37] proposed this kind of

approach in the context of condensed matter physics based on the large spin degeneracy

N = (2j + 1) of the spin-orbit coupled f-electrons, which provides a natural small param-

eter 1/(2j + 1). This approach was successfully applied to the Kondo [38] and Anderson

[39, 40] models and also to Heisenberg models [41]. The large-N approximations usually

generalize the symmetry group of the spin (or the number of flavors of the fermionic op-

erators introduced above) from SU(2) to SU(N) and allows the development of mean field

theories, which are exact in the N → ∞ limit, and the systematic inclusion of corrections

in 1/N . In the path integral formalism all possible filed configurations are summed over,

weighted by e−iS , where S is the action which is extensive in N in the large-N approach. If

one now identifies 1/N with ~, we can understand this approach as a kind of semiclassical

approximation [13].

Within a path integral formalism, one can perform a Hubbard-Stratonovich transforma-

tion [42] in order to decouple the interacting Kondo term, which now is a four-fermion term.

This transformation introduces a fluctuating variable V which hybridizes conduction and

f-electrons. In the large-N limit, the solution is dominated by the saddle point, which can

be determined self-consistently by the minimization of the free energy with respect to the

fluctuation fields introduced by the Hubbard-Stratonovich transformation. The constraint

can be implemented by the introduction of the Lagrange multiplier λ, adding the term

λ(nF − 1) to the Hamiltonian so that when the solution is minimized with respect to λ the

constraint condition is satisfied. This kind of calculation will be explicitly performed in the

following chapters of this thesis. In summary, one finds as solution two hybridized bands
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Figure 1.9: Schematic picture of the bare conduction band (blue) and f-electron level (red).
The chemical potential is make with the dotted line. Once the hybridization develops
there is the development of two hybrid bands (purple). The respective Fermi surfaces are
indicated on the right: small Fermi surface for the conduction electrons and a large Fermi
surface for the hybrid bands.

following:

E±k =
εk + λ

2
±

√(
εk − λ

2

)2

+ V 2, (1.19)

where λ is the Lagrange multiplier introduced to enforce the constraint to singly occupied

states, which has the role of the effective f-electron energy level. Note the development

of a large Fermi surface, with contributions from both conduction and f-electrons below a

coherence temperature, as depicted in Fig. 1.9.

1.4.5 Competition of energy scales

In the lattice limit, the Kondo temperature is not the only energy scale. Now there is

an effective spin-spin interaction between the local moments mediated by the conduction

electrons which introduces a new scale to the problem, the RKKY temperature, after Ru-

derman, Kittel, Kasuya and Yosida [43]. In Fig. 1.10 one can see that as the local moment

on the left interacts with the conduction electrons by an antiferromagnetic exchange, it

polarizes the conduction electrons surrounding it. Due to the sharp discontinuity of the

occupation number around the Fermi surface the polarization of the spin of the conduction

electrons actually follows an oscillating function with period 2kF that decays asymptotically
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as 1/(kF r)
3. This polarization will affect other local moments nearby by their antiferro-

magnetic exchange. The net effect can be thought as an effective interaction between the

local moments, which can be either ferro or antiferromagnetic, depending on the interplay

between 2kF and the distance between the local moments (the lattice constant in the case

of the lattice problem). As a second order process the energy scale associated with this

interaction is:

TRKKY ∼ J2
KN(0). (1.20)
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Figure 1.10: Schematic picture on the origin of the RKKY interaction.

Although the two energy scales introduced above, TK and TRKKY , are originated from

the Kondo coupling between conduction spins and local moments, they actually compete

towards different ground states. This competition is summarized in the Doniach phase

diagram [44], see Fig. 1.11, which gives a qualitative picture of the behavior of a Kondo

lattice model as a function of the Kondo coupling due to the different functional dependence

of the two energy scales on JK . For small JK , the RKKY scale dominates and the system

becomes antiferromagnetic, but as JK increases, above a critical value the Kondo scale is the

dominant one and the system forms a heavy Fermi liquid. The Doniach picture is essentially

a comparison of energy scales, and it does not tell us how the heavy Fermi liquid actually

develops from the local moment antiferromagnetic state. It is important to notice that

from the crude analysis of this picture the phase transition between the antiferromagnetic

and heavy Fermi liquid phases occurs for TK ∼ TRKKY , meaning N(0)JK ∼ O(1). This

estimate is in conflict with the condition of local moment formation (U > UC = π2N(0)V 2,

see [13]). This apparent inconsistency is solved once one considers the high degeneracy of

the electrons in f-orbitals due to the strong spin-orbit coupling, which renormalizes TK , but

not TRKKY , favoring the formation of the heavy fermion state [13].
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Figure 1.11: The Doniach phase diagram.

1.4.6 Quantum Criticality in Heavy Fermions

As suggested by Doniach [44], and later verified by experiments in several heavy fermion

materials, there is a quantum critical point in the generic phase diagram of heavy fermions

once the system is tuned at zero temperature by some external parameter such as pressure,

magnetic field or chemical doping, leading to a change in the coupling N(0)JK . As already

defined, a quantum critical point is a critical point at zero temperature and the region of the

phase diagram at finite temperature right above the quantum critical point is dominated

by quantum fluctuations.

Fig. 1.12 illustrates the behavior observed in the archetypal quantum critical material

YbRh2Si2 [45, 46]. A new energy scale, T ∗, not predicted by Doniach, is shown in Fig. 1.12.

To the left of the T ∗ line the Fermi surface is small and the local moments are not screened

by the conduction electrons; while to the right of the T ∗ line the conduction and f-electrons

are entangled in a singlet many-body state and the Fermi surface is large. The T ∗ line

can be thought of as a the line that marks the localization-delocalization crossover of the

f-electrons.

The large diagram in Fig. 1.12 shows the schematic phase diagram for pure YbRh2Si2 .
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Figure 1.12: Schematic phase diagram for heavy fermions, based on experiments on
YbRh2Si2, as a function of the running parameter x [45]. A) Pure YbRh2Si2 ; B) Co-doped,
or compressed; C) Ir-doped, or expanded. The energy scales indicated in the diagrams are
the following: TN is the Néel temperature which characterizes the transition from the anti-
ferromagnetic to a paramagnetic state; TFL is a crossover temperature below which Fermi
liquid behavior is verified, with a T 2 dependence of the resistivity; and T ∗ is the tempera-
ture across which the Hall coefficient has a crossover that sharpens up as the temperature
is lowered, indicating a discontinuity in the Fermi surface properties at zero temperature.

One interesting feature of this diagram is the fact that the energy scales mentioned above all

collapse to zero at the quantum critical point, and when this happens we have what has been

called a Kondo breakdown quantum critical point [47, 48]. By contrast, when YbRh2Si2 is

doped with Ir or Co, leading to expansion or compression of the material, respectively,

these lines no longer coincide. The top right figure illustrates the case of the Co-doped or

compression, in which case the T ∗ vanishes inside the antiferromagnetic phase. In this case

the magnetic state is believed to emerge as an instability of a large Fermi surface, and the

quantum critical point is characterized by a spin density wave quantum critical point [49].

On the other hand, when Rh is substituted by Ir, or the system expanded, as illustrated in

the bottom right of Fig. 1.12, the antiferromagnetic phase is suppressed towards a phase in

which the local moments are neither hybridizing with the conduction electrons nor forming

a magnetically ordered state. The intermediate phase in between the antiferromagnetic and

heavy Fermi liquid regions is believed to host a quantum spin liquid state, which is more
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likely to occur in frustrated systems, and seems to fit within a deconfined quantum criticality

scenario [50, 51]. An interesting property of the energy scales above (at least for YbRh2Si2 )

is that TN is very sensitive under volume changes, while T ∗ is only weakly dependent [45].

From the experimental study of YbRh2Si2 , it became apparent that the nature of the

quantum phase transitions in heavy fermions is not unique and cannot be fully accounted for

by the Landau paradigm, which purely analyzes how the order parameter behaves around

the transition. Now magnetism can emerge from the magnetic exchange between local

moments or as an instability of a heavy Fermi liquid [26]. The T ∗ line introduces a new

energy scale that separates both possibilities, and characterizes the modification in the

quasiparticle character and possibly of the quantum phase transition as well.

Recently, the Doniach diagram was generalized to what has been called the Global

phase diagram, see Fig. 1.13. The horizontal axis governs the ratio of the Kondo and

RKKY energy scales, while the new axis G gives a measure of the amount of quantum

fluctuations in the material [52, 53, 54]. Quantum fluctuations are known to be enhanced

in the presence of geometric frustration (as in the Kagome lattice, see the left of Fig. 1.14)

or frustrated interactions (as in the Shastry-Suterland lattice, see the right of Fig. 1.14); or

by the reduction of dimensionality, in which case the magnitude of a given spin is reduced by

quantum fluctuations by an amount of the order 1/2z, where z is the coordination number

of the given lattice [55]. Along this new direction, for small Kondo coupling, the system

will usually develop some kind of magnetic order. One can then increase the amount of

frustration so that the magnetic order is suppressed, leading to exotic phases as the spin

liquid of valence bond solid phases [54].

This new diagram provides a framework for understanding the interplay of zero-point

spin fluctuations and the Kondo effect. In Fig. 1.13, we see two lines discussed above: TN

which indicates the transition from an antiferromagnetic state to a paramagnetic state, and

T ∗ which indicates the transition from small (S) to large (L) Fermi surface. The arrows

indicate different ways one can go from the antiferromagnetic region to the paramagnetic

region. The middle arrow corresponds to the Kondo breakdown picture, with TN and

T ∗ coinciding; the rightmost arrow indicates a spin density wave kind of transition and
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Figure 1.13: Global phase diagram for heavy fermions, adapted from [53]. TN indicates the
transition from an antiferromagnetic state (AFM) to a paramagnetic state (PM) and T ∗

indicates the transition from small (S) to large (L) Fermi surface. The black arrows indicate
different ways to go from the antiferromagnetic phase to the paramagnetic phase, and can
be associated with different theoretical proposals, see Section 1.4.8 for discussion.

the uppermost arrow indicates a path with a lot of frustration in which the system goes

through an intermediate exotic state as a spin liquid before going to the heavy fermion

state with a large Fermi surface. The mentioned theoretical proposals are briefly discussed

in Section 1.4.8.

1.4.7 Unusual behavior in heavy fermions

In this subsection we highlight some recent experimental developments that we believe

deserve attention due to their unusual features.

We start highlighting some of the most studied heavy fermion materials:

• YbRh2Si2: This system was already introduced above, and it is perhaps one of the

best characterized heavy fermion materials due to the interest on its quantum critical
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Figure 1.14: Frustrated Structures. Left: Kagome Lattice. Right: Shastry-Sutherland
Lattice.

behavior. This material can also be doped, allowing experimentalists to explore great

part of its phase diagram, as discussed in Section 1.4.6 above. This is the second Yb-

based heavy fermion superconductor with the remarkably low critical temperature of

Tc ∼ 2mK [56]. At the magnetic field tuned quantum critical point this system is

known for displaying a linear temperature dependence of the resistivity, a logarithmi-

cally divergent specific heat coefficient and magnetic susceptibility χ ∼ T 3/4 at low

temperatures [45];

• CeCu6−xAux: The heavy fermion CeCu6, when doped with Au with x ∼ 0.1 displays

logarithmic temperature dependence of the specific heat coefficient and linear temper-

ature dependence of the resistivity, two indications of non Fermi liquid behavior [57].

This critical behavior fits in a 2D Spin density wave scenario (see discussion below),

but recent neutron scatting and bulk magnetometry measurements have shown that

the character of the quantum phase transition cannot be accounted for in this scenario,

since it displays E/T scaling and the magnetic fluctuations are local in character [58].

• CeRhIn5: This Ce-based heavy fermion is an antiferromagnet under ambient con-

ditions, but when tuned by external pressure the magnetic phase is suppressed and

superconductivity emerges around the antiferromagnetic quantum critical point [7].

There is evidence for microscopic coexistence of homogeneous magnetism and super-

conductivity in this system from nuclear quadrupolar resonance experiments [59];
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Now we introduce some materials known to be intrinsic quantum critical:

• β-YbAlB4 : This material is believed to be an intrinsically quantum critical in-

termediate valent heavy fermion [60, 61]. Without tuning by external parameters

β-YbAlB4 exhibits non-Fermi liquid behavior, with a T 3/2 temperature dependence

of the resistivity and a T−1/2 divergence of the magnetic susceptibility and specific

heat coefficient. A magnetic field induces an immediate cross-over into a Fermi liquid

with a T 2 resistivity and a susceptibility which diverges as B−1/2. Scaling of the

free energy in T/B has been observed over 4 decades in T/B, pin-pointing the criti-

cal magnetic field within ±0.1 mT of zero and demonstrating that the field-induced

Fermi temperature is the Zeeman energy [61]. While the quantum critical properties

are strongly dependent on the presence of magnetic field, the quantum critical point

seems to be very robust against pressure [62]. Another interesting fact to point out

is that this system has a polymorph, α-YbAlB4 , which has local structure similar to

β-YbAlB4 , but does not display quantum critical behavior [61]. Interestingly enough

β-YbAlB4 is the first Yb-based heavy fermion superconductor, albeit with a very low

transition temperature Tc ∼ 80mK [60]. This compound motivated great part of this

work and we will introduce more details of its properties along this thesis;

• Au51Al34Yb15 Quasicrystal: This quasicrystal also displays intrinsic quantum crit-

ical behavior. Experiments verified a diverging susceptibility χ ∼ T−1/2 and specific

heat coefficient γ ∼ log T at low temperatures. As for β-YbAlB4 , the critical regime

is very robust against hydrostatic pressure but it is immediately suppressed in the

presence of magnetic field. The similarities with β-YbAlB4 go further: this material

is also intermediate valent and has a polymorth, in this case a crystalline approxi-

mant, Au51Al35Yb14, which is not quantum critical [63]. From experiments on the

nuclear spin relaxation rate 1/T1T (which measures magnetic fluctuations averaged

over momentum) and static magnetic susceptibility χ (which measures fluctuations at

zero wave vector), it was noticed that 1/T1T ∝ χ, what suggests that the fluctuations

related to quantum criticality in this system are local in nature [63];
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• CeRhSn: More recently, intrinsic quantum criticality was also observed in CeRhSn,

inferred from the divergence of the Grüneisen ratio1 [64]. In this material the Ce

atoms are located in a Kagome structure (see the left of Fig. 1.14), suggesting that

frustration might play an important role in the determination of the ground state of

this system. The non Fermi liquid behavior above the critical point is characterized

by a resistivity with temperature dependence T 3/4, magnetic susceptibility χ ∼ T−1/2

and a logarithmically divergent specific heat coefficient below 0.1K [64, 65]. In this

material the Kondo temperature is of the order of 200K, indicating it is in a valence

fluctuation regime. For pressure applied along the c-axis no deviation from the critical

behavior is observed, whereas when pressure is applied in plane, distorting the Kagome

structure and relieving frustration, the quantum critical behavior is suppressed [64];

• Pr2Ir2O7: This material is a pyrochlore iridate and another example of a frustrated

Kondo lattice material, in which the Pr ions are located in the edges of corner-sharing

tetrahedra [66]. Experiments suggest that the system has a chiral spin-liquid ground

state, formed due to the interplay between the Kondo effect and frustrated magnetic

interactions. Scaling of the magnetic Gruneisen ratio as ΓHH ∼ f(T/H4/3) is verified

indicating the presence of a zero field quantum critical point 2;

Recently new usual behavior was also verified in:

• CePdAl: This geometrically frustrated compound has Ce atoms placed in a Kagome

structure (see the left of Fig. 1.14). It displays what has been called a partially ordered

state. Neutron scattering experiments observe a state in which one third of the Ce

moments do not participate in the long-range order and the other two thirds form a

2D magnetic structure [67].

• YbPtBi: The phase diagram of this system displays three phases at low temperatures:

for fields up to about 4kOe an antiferromagnetic phase is observed; as the magnetic

field increases, magnetic order is suppressed and a non-Fermi liquid state with ρ ∼

1The Grüneisen ratio is defined as Γ = β/C, where β is the volume thermal expansion and C the specific
heat.

2The magnetic Grüneisen ratio is defined as ΓM = −(dM/dT )/C, where M is the magnetization and C
the specific heat.
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T 3/2 is present up to fields of about 8kOe, above which a heavy Fermi liquid is observed

[68]. The phase diagram in this case is similar to the phase diagram C) in Fig. 1.12.

• YbNi4P2: This material is a heavy fermion metal which orders ferromagnetically

below 0.17K. Its crystal and electronic structures are quasi-1D, suggesting strong

quantum fluctuations [69]. At low temperatures this systems displays linear tempera-

ture dependence of the resistivity and unusual power law behavior of the specific heat

C/T ∼ T−0.42, indicating the presence of non Fermi liquid behavior [69].

1.4.8 Previous Theories

Now we proceed to make a short summary of the available theories and their ability to

account for what is observed experimentally in heavy fermion systems. The main open

questions focus on the origin and nature of the quantum critical regime and the non Fermi

liquid it gives rise to.

• Spin Density Wave Scenario: This theory is based on the Hertz-Millis-Moriya

formalism [49] and characterizes quantum critical points between a metallic magnetic

phase and a metallic paramagnetic phase. Here magnetism emerges as an instability

of the Fermi surface, what is favored by nesting. Within heavy fermions this theory

assumes that the f-electrons are delocalized in both sides of the transition.

The Hertz-Millis-Moriya formalism extends the study of critical phenomena to quan-

tum systems. In classical continuous phase transitions, the system becomes ordered

below a given critical temperature at which the correlation length ξr diverges. In

continuous quantum phase transitions the system is at zero temperature and a second

parameter x is tuned to drive the system through a transition at the critical value

xc. At this point the correlation length ξr and correlation time ξτ diverge, and the

dynamical critical exponent z dictates how the time dimension scales with respect to

the spacial dimensions ξτ = ξzr . For the case of antiferromagnetism z = 2 and in d = 3

we are above the upper critical dimension and mean field results should hold. The

predictions for a 3D antiferromagnet include C/T ∼ T (d−z/z) =
√
T , no anomalous

exponent for the magnetic susceptibility, resisitivity following ρ ∼ T 3/2. Within this
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formalism the quasiparticles are well defined in the Fermi surface with the exception

of the hot lines along the Fermi surface, where they are critically scattered by the

magnetic fluctuations, so the transport is expected to be dominated by a Fermi liquid

behavior. Some materials seem to fall into variations of this description, with the

assumption of reduced dimensionality usually associated with frustration. In case of

d = 2 we have C/T ∼ log T and ρ ∼ T [70], as observed in CeCu6−xAux [71].

Note that this scenario cannot generally account for the anomalous transport prop-

erties as linear resistivity in 3D. Also, despite the fact that some materials seem to

follow a spin density wave behavior, it is known that the antiferromagnetism is not

always itinerant in heavy fermion systems, so this description would not hold for all

observed quantum critical points. In terms of the diagram in Fig. 1.12, this scenario

accounts only for the B) type of quantum phase transition.

• Local Quantum Criticality or Kondo Breakdown Scenario: The classical the-

ory of phase transitions involves the divergence of the correlation length in space at

the quantum critical point. As briefly discussed above, Hertz introduces the time

dimension for the study of quantum phase transitions; now correlations diverge also

in time at the phase transition. An intriguing proposal involves the coexistence of

local degrees of freedom, which have correlations that diverge only in time and not in

space, with the traditional long wavelength critical degrees of freedom. This proposal

was called local quantum criticality [47, 48].

This idea was explored within an extended dynamical mean field theory (EDMFT)

approach for the Kondo lattice model and introduces a new energy scale ELocal, as

an effective Fermi energy scale. When this energy scale vanishes the Kondo screening

becomes critical. This approach is able to find two kinds of quantum phase transitions:

first, when magnetic order is suppressed and ELocal is finite, a spin density wave type of

critical point is expected. Another possibility involves the suppression of both TN and

ELocal energy scales at the same time, in which the Kondo screening turns critical at

the magnetic quantum critical point, which is the so called Kondo breakdown scenario.

Here we note that this approach naturally accounts for E/T scaling but seems to be
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valid only in 2D. Also, the approximation within the EDMFT involves the assumption

that the self-energies are local, or momentum independent. At the same time that

this seems to be a weak point of the theory, this approach naturally finds the local

quantum critical behavior that seems to account for the critical phenomenology in

several heavy fermion systems as in YbRh2Si2 and depicted in Fig. 1.12 A). The fact

that the self-energy is local in this approach might give us a hint to understand the

unusual quantum critical behavior in these systems.

• Deconfined Quantum Criticality: The concept of deconfined quantum critical

points was proposed as a new paradigm for quantum criticality, which goes beyond

the Landau framework in terms of order parameters. In this scenario the critical the-

ory contains emergent gauge fields which mediate interactions between fractionalized

quasiparticles [50, 51]. This scenario was explored on phase transitions between mag-

netically ordered states and exotic phases as valence bond solids and spin liquids, and

is more likely to be realized in systems with magnetic frustration. In principle this

scenario would account for phase diagrams as the one depicted in Fig. 1.12 C), but

specific predictions on the anomalies in the thermodynamics and transport properties

are not clear from the available theoretical work.

• Two-fluid picture: This is a phenomenological picture for heavy fermion systems,

first proposed based on the analysis of the specific heat and magnetic susceptibility

of CeCoIn5 [72]. The two fluids consist of: 1) a lattice of non interacting Kondo

centers and 2) a coherent state formed by the local moments and conduction electrons.

This picture is consistent within both thermodynamic and transport experiments.

The relative weight of the coherent fluid can be extracted from the data and can be

interpreted as an order parameter, which is zero above the coherence temperature and

increases as the temperature is lowered.

Later on the Knight shift anomaly in nuclear magnetic resonance was also analyzed

on the light of the two-fluid picture, and many other heavy fermion materials were

explored within this framework [73]. Even more intriguing is the fact that the low tem-

perature value of the fraction of the coherent fluid, f0, what is called the hybridization
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effectiveness, can be used as a parameter to predict the low temperature ground state

of heavy electron systems and predicts the existence of a localization-delocalization

line for the f-electrons as the T ∗ line discussed above [74].

Even though the two-fluid picture is a phenomenological construction, the fact that

so many heavy fermions can be consistently classified in this framework suggests that

it is a robust idea and one should expect that a complete microscopic theory should

reproduce this phenomenology.

1.5 Perspectives

Given the current status of the field, it is clear that we need to search for new theoretical

approaches. Ideally we are looking for an unified framework to identify new critical behavior

since so far different kinds of quantum phase transitions have been studied in a case by

case basis. Different theories of the quantum critical phenomena start from orthogonal

perspectives; while the spin density wave scenario is a momentum space description and

treated in weak coupling, the local criticality picture looks at the phenomena in real space

and understands it as the breakdown of bound states [75]. In Cap. 5 we revisit the use

of supersymmetric spin operators with a generalization to the symplectic-N approach and

find promising results towards an united picture of heavy fermions and the presence of new

critical modes.

Intrinsic quantum critical systems were recently discovered and are particularly inter-

esting since they suggest that there are stable critical phases in real materials. Intrinsic

quantum criticality has been attributed to many different causes: valence fluctuations,

quasi-crystallinity, frustration, among others. In stead of looking for the origin the of in-

trinsic quantum critical behavior individually for each material, the answer might be in the

understanding of what these systems have in common. Intrinsic quantum criticality is a

phenomena that was not known until recently, and now we have a few examples of this

unusual behavior in mixed valent systems, that does not seem to be due to fine-tuning of

an ordinary critical point, but a critical point that is robust against external parameters as
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pressure, but generally unstable under magnetic field. In Cap. 2 we discuss a phenomeno-

logical theory to account for much of the divergent behavior of β-YbAlB4 , which might be

applicable to other systems as well.
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Chapter 2

β-YbAlB4 : A Critical Nodal Metal

In this chapter we introduce the concept of nodal metals as systems in which the hy-

bridization between the conduction electrons and f-states vanish along some directions

in momentum space. These systems can present anomalous dispersion and density of

states which reflect in unusual thermodynamic properties. Non-trivial topological char-

acter can also be veirfyed. We use the concept of nodal metals to propose a model for

the intrinsic quantum criticality of β-YbAlB4 , in which a vortex in momentum space

gives rise to a new type of Fermi surface singularity. We discuss the implications of this

line-node in momentum space for our current understanding of quantum criticality and

its interplay with topology. This work is published in Phys. Rev. Lett. 109, 176404

(2012).

2.1 Nodal Metals

In the low energy limit, effective theories depend on the structure of the quasiparticle

spectrum, which is essentially determined by the symmetries and topological properties

of the system. There can be different kinds of spectra and corresponding Fermi surfaces

that can or cannot be stable with respect to small perturbations. The stability of a Fermi

surface, which separates occupied from empty states in momentum space, can be verified in

a similar fashion as the stability of defects in ordered media by the use of topology [76, 77].

In Kondo systems, the strong spin-orbit coupling of the f-electrons leads to a non-trivial

hybridization matrix with the light conduction electrons. In case the f-electron ground state

selected by the crystal electric field is a nodal state (state with zero probability distribution
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Figure 2.1: Schematic dispersions of: a) the bare conduction electron band in blue and the
f-level in red; b) after the onset of an isotropic or non-nodal hybridization; c) after the onset
of a nodal hybridization. Here we consider a half-filled band, so the chemical potential lying
at zero energy.

along specific directions in space), the hybridization will also carry a node along the respec-

tive directions in momentum space and will consequently affect the effective quasiparticle

spectrum. The presence of nodes in the spectrum can lead to new universal behavior at low

energies, and one can talk about universality classes determined by topological invariants

defined from properties of the line or point nodes [76].

Within the realm of Kondo systems, a nodal metal resembles a Kondo Insulator, but

one in which the hybridization gap between the conduction and f-electrons vanishes along

a line in momentum space. Fig. 2.1 summarizes schematically this idea: in the case of

half-filled bands, if the hybridization does not have nodes a full gap opens and the system

is a Kondo Insulator; if the hybridization is nodal there is a direct gap but no indirect gap,

so the system is effectively gapless, and is called a Kondo semimetal or a nodal metal.

There are several known examples of such nodal materials: CeNiSn, CeRhSb and other

isostructural compounds [78, 79]. In these systems the hybridization appears to vanish

linearly along a line in momentum space, leading to strong anisotropic semimetallic behavior

and a V-shaped density of states. In this case the 4f electrons in the Ce atoms have a

J = 5/2 total angular momentum lower multiplet which is split by the crystal electric field

that selects the pure |5/2,±3/2〉 state as the ground state. This state has a node along

the quantization axis, and this is the ultimate cause of the nodal metal behavior. In the

following subsection we discuss the role of the spin-orbit coupling and crystal electric fields

in the emergence of such nodal states.
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2.1.1 Spin-Orbit coupling and Crystal Electric Fields

From the electron rest frame, the motion of the charged nuclei around the electron creates

an effective magnetic field which couples to the electronic spin. This effect is stronger the

larger the nuclear charge, and is called spin-orbit coupling:

HSO =
~2

2m2c2

Ze2

r3
S · L, (2.1)

where m and e are the mass and charge of the electron, c the speed of light, ~ the Planck’s

constant divided by 2π, Z the atomic number and S and L the spin and angular momentum

of the electron, respectively. In case of strong spin-orbit coupling S and L are not good

quantum numbers and one should think in terms of the total angular momentum J = L+S.

From the addition of angular momentum we know that L + S gives rise to states with

total angular momentum ranging from |L−S| up to L+S, and as S = 1/2 we actually have

two multiplets of total angular momentum states. The lowest multiplet is determined by

the third Hund’s rule: if the orbital is less than half-filled the lowest multiplet has the lowest

value of J = L − S, whereas when the orbital is more than half-filled the lowest multiplet

has the highest value of total angular momentum J = L+S. Once we are interested in the

low energy phenomena, in the case of rare-earth atoms, it is possible to consider only the

lower total angular momentum multiplet since the spin-orbit interaction is strong (of the

order of the bandwidth).

Given the lowest multiplet we now need to analyze the environment in which the rare

earth atom is present. The charge distribution of the surrounding atoms breaks the full O(3)

rotational symmetry of the atom in free space down to the point group symmetry of the given

lattice. Group theory can tell us how the states will split based on the decomposition of the

irreducible representations of O(3) in terms of those of the given point group symmetry of

the lattice. This can be done by the analysis of the character table of the lattice symmetry

group.

Using the example of the Ce-based nodal metals, in these systems the Ce ions are usually

in a Ce3+ configuration with a single electron in the 4f level, with angular momentum L = 3.
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Following Hund’s rules the lowest multiplet has total angular momentum J = 5/2 since the

shell is less than half-filled. In free space and in presence of time reversal symmetry, the

states from a Kramers doublet:

|±〉 = a| ± 1/2〉+ b| ∓ 3/2〉+ c| ± 5/2〉, (2.2)

with a2 + b2 + c2 = 1 and the ket states denote | ± mJ〉 for J = 5/2. For the specific

case of CeNiSn and its isostructural compounds, the Ce ions are in a trigonal symmetry

environment, very close to the center of hexagons with alternate Ni and Sn atoms. Under

this local symmetry one can only form specific combinations of angular momentum states

that is in accordance with time-reversal and the rotational symmetry around the 3-fold axis:

|Ψ1〉 = | ± 3/2〉, (2.3)

|Ψ2〉 = a′| ± 1/2〉+ b′| ± 5/2〉,

with a′2 + b′2 = 1. Here we note that |Ψ2〉 has a contribution of the | ± 1/2〉 state, so |Ψ2〉

does not have a line node. Interestingly enough, for CeNiSn the ground state seems to be

the pure | ± 3/2〉 state, which gives a natural explanation for the strong anisotropy of this

system seen in a variety of experiments and the existence of a linear DOS around the Fermi

level [78]. The effect of the presence of the nodes in the density of states will be discussed

in the following subsections.

Table 2.1 summarizes the possible combinations of states under different lattice symme-

tries in the presence of time reversal symmetry for the case of J = 5/2. It was constructed

based on the properties of the respective double groups (see [55] for an introductory discus-

sion), which are an extension of the point groups of interest. This extension is needed in

order to guarantee that the character of each conjugacy class is single valued in case we are

dealing with half-integer angular momentum. Knowing the character table of the double

group related to the lattice symmetry we can deduce what are the irreducible representa-

tions.
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Table 2.1: Examples of splittings of the total angular momentum states in presence of time
reversal and several crystal symmetries for J=5/2.

Symmetry States Line Node

Cubic (O′)
c| ± 3/2〉+ d| ∓ 5/2〉 3

| ± 1/2〉;d| ± 3/2〉 − c| ∓ 5/2〉 7; 3

Hexagonal (C ′6)
| ± 1/2〉 7

| ± 3/2〉 3

a| ± 5/2〉 3

Trigonal (C ′3)
| ± 3/2〉 3

a| ± 1/2〉+ b| ± 5/2〉 7

−b| ± 1/2〉+ a| ± 5/2〉 7

Tetragonal (C ′4)
| ± 1/2〉 7

a| ± 3/2〉+ b| ∓ 5/2〉 3

−b| ± 3/2〉+ a| ∓ 5/2〉 3

Monoclinic (C ′2) a| ± 1/2〉+ b| ∓ 3/2〉+ c| ± 5/2〉 7

Triclinic (C ′1)
| ± 1/2〉 7

| ± 3/2〉 3

| ± 5/2〉 3

Note that group theory can define how the multiplet of states splits and the resulting

degeneracy, but it does not tell us which state is the ground state or how large the split-

ting actually is. To know this information a more thorough analysis of the nature of the

neighboring atoms and their positions in the material of interest is needed.

In rare-earth systems the spin-orbit coupling is much larger than the crystal field split-

ting, and Hund’s rules hold. That is not always the case, for example, in d-electron systems

the crystal fields are usually stronger than the spin-orbit coupling and the analysis is based

only on the orbital angular momentum since in this case it is a good quantum number.

For rare-earth systems we have the advantage that the effective theories can be constructed

considering only the lower total angular momentum multiplet and sometimes even con-

sidering only the lower crystal field state, in case the crystal field splitting is larger than

the temperature of the phenomena we are interested in modeling. In case the crystal field

splittings are small, crossovers are expected to take place at the temperatures related to

the respective crystal field splittings. This point will be important in the analysis of the

Electron Spin Resonance of β-YbAlB4 in the next chapter.

In summary, the spin-orbit coupling and the symmetry of the lattice are crucial for the
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determination of the possible combinations of mJ states and the presence or absence of line

nodes in momentum space.

2.1.2 A note on Topological Kondo Insulators

Differently from the nodal metals discussed above, in case we have any finite contribution

of a | ± 1/2〉 state we do not have a nodal line but only a nodal point in the hybridization,

what usually leads to a spectrum with a direct gap, and to what has been called a Kondo

Insulator [80].

The fact that we have a full gap can sound as if there is no interesting physics, and that

we have a simple insulator. Actually, the strong spin-orbit coupling in the f-electrons leads

to a Topological Kondo Insulator, as was first analyzed in [81]. Despite the fact that the full

gap opens, the hybridization brings in a non-trivial twist to the electronic states, which is

robust against perturbations. Interestingly enough, the topological insulators are systems

that are insulating in the bulk but have a conducting surface. Surface states are present

due to the change in topology as one go from the non-trivial insulator to the vacuum, and

are protected by time-reversal symmetry [82].

2.2 The Nodal Hybridization

Here we start with the Anderson impurity model:

H =
∑
k

εkσc
†
kσckσ +

∑
α

λf †αfα +
∑
k,σ,α

(Vkσαc
†
kσfα + V ∗kσαf

†
αckσ), (2.4)

where c†kσ creates one conduction electron with momentum k, spin σ and energy dispersion

εkσ, f †α creates localized electron at the impurity site with angular momentum component α

at the energy level λ, and Vkσα is the momentum and spin dependent hybridization matrix

which mixes f- and conduction electrons.

As discussed in the previous section, there are other energy scales that play an impor-

tant role in defining the ground state of the f-electrons in rare-earth compounds. In the
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presence of strong spin orbit coupling the f-electron states are given in terms of total angu-

lar momentum states and we can neglect the higher J multiplet. In the presence of crystal

electric fields the lower J multiplet will split in a series of states that should follow the

local symmetry around the f-electron sites. In the presence of time reversal symmetry the

states in the lower multiplet form Kramers doublets. An f-electron state is then written in

terms of a combination of different |J,mJ〉 states following time reversal and the symme-

tries of the system of interest, with the weight of each state being determined by the energy

minimization of the crystal field Hamiltonian.

Given the lower f-electron state, the hybridization matrix can be written as the overlap

of the c- and f-electron states within the lattice potential. Considering the c-electrons as

plane waves:

|kσ〉 =
eik·r√
V
χσ =

4π√
V

∑
l

iljl(kr)
l∑

m=−l
Y m∗
l (θk, φk)Y m

l (θr, φr)χσ, (2.5)

where V is the volume of the system, jl(x) are spherical Bessel functions of order l,

Y m
l (θx, φx) spherical harmonics and χσ the spin state. The atomic f-electron state at

site i with angular momentum component α can be written as:

|ifα〉 = Rnl(|r−Ri|)
∑
mσ

CJαlmsσY
m
l (θr−Ri , φr−Ri)χσ, (2.6)

where Rnl(x) is the radial solution of the atomic Schrödinger equation with principal quan-

tum number n and orbital quantum number l, and CJαlmsσ = 〈Jα|lm, sσ〉 are Clebsh-Gordan

coefficients. The overlap of these states under the lattice potential V (r) gives the hybridiza-

tion matrix:

Vkσα = 〈kσ|V (r)|ifα〉 (2.7)

=
4π√
V

∑
l

∫
r2dr(−i)l′jl′(kr)V (r)Rnl(|r−Ri|)×

×
∑
mm′σ

∫
dΩY m′∗

l′ (θr, φr)Y
m
l (θr−Ri , φr−Ri)C

Jα
lmsσY

m′
l′ (θk, φk)χ∗σχσ′

= V0

∑
m

CJαl′msσ′Y
m
l′ (θk, φk),
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where we used the orthogonality condition for the spherical harmonics and spin states. The

quantity V0 comes from the radial part of the integral and is equal to a constant. Note that

in Vkσα the σ index is determined by the spin state of the conduction electron and the α

index by the projection of the total angular momentum of the f-electron. For f-electrons

l′ = 3 and J = {7/2, 5/2}, depending if the shell is more or less than half-filled, respectively.

The most general form for the hybridization matrix considers the possibility of the f-

electron ground states to be a superposition of |Jα〉 states labelled by M [83]:

|ifM〉 =
∑
α

bMα |ifα〉, (2.8)

in which case,

VkσM = V0

∑
α

bMα
∑
mσ

CJαlmsσY
m
l (k̂), (2.9)

where bMα is the weight of each pure α state in the mixed state labelled by M and determined

by the analysis of the crystal electric field.

From the form of the hybridization above it is possible to verify that for l > 0 the

spherical harmonics carry nodes in particular directions in momentum space. The presence

of line nodes in the hybridization matrices are known for a long time [83, 84], but attention

to their importance was given only recently [78, 85].

2.2.1 Hybridization in the lattice model

If we are interested in modeling heavy fermions we should start with the Anderson lattice

model, which is a generalization of the impurity model discussed above with one f-electron

in every site i of the lattice. Now the conduction plane waves hybridize with the Bloch

states of f-electrons, determined by the Fourier transform:

fkα =
1√
N

∑
i

eik·Rifiα, (2.10)
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where N is the number of sites, so we can write:

H =
∑
k

εkσc
†
kσckσ +

∑
iα

λf †iαfiα (2.11)

+
1√
N

∑
i,k,σ,α

(Vkσαe
ik·Ric†kσfiα + V ∗kσαe

−ik·Rif †iαckσ).

There is actually more than one way to look into this problem. One can start with

the conduction plane-wave estate and find the overlap with the atomic f-states in every

site in the lattice, or one can write the conduction electron states as Wannier states with

the symmetry of the local f-state by means of a form factor with an angular dependence

as in the hybridization matrix above. The discussion boils down to choosing where we

want to absorb the form factor coming from the spherical harmonics. In cases in which the

hybridization is not on-site, the second choice is usually more convenient, so one can also

write:

H =
∑
k

εkαc
†
kαckα +

∑
iα

λf †iαfiα +
∑
i,α

(V c†iαfiα + V ∗f †iαciα), (2.12)

where V now is a number which characterizes the magnitude of the hybridization and

ciα =
∑
kσ

Yασ(k)e−ik·Rickσ, (2.13)

is the Wannier state of the conduction electrons at site i with the symmetry of the f-state,

with the form factor

Yασ(k) =
∑
m

CJαlmsσY
m
l (k), (2.14)

where

Y m
l (k) =

1

Z

∑
NN

Y m
l (R)eik·R, (2.15)

is the minimal generalization of the Fourier transform which captures the symmetry of the

lattice, with the sum over the nearest neighbors (NN).
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2.2.2 Effects in the electronic spectrum and density of states

Going back to the original notation in which the non-trivial form factor is absorbed in the

hybridization matrix, we can write the matrix explicitly as:

Vkσα = V0

 v1 v2

(−1)∆+1v∗2 (−1)∆v∗1

 (2.16)

where

v1 = CJαl,(α−1/2),1/2,1/2Y
α−1/2

3 (k), (2.17)

v2 = C
J(−α)
l,(−α−1/2),1/2,1/2Y

−α−1/2
3 (k), (2.18)

∆ = l + s− J + α− 1/2 =

 α+ 1/2 for Ce

α− 1/2 for Yb
(2.19)

The electronic spectrum is computed by the diagonalization of the following Hamilto-

nian:

Ĥ =

 ε̂k V̂k

V̂ ∗k ε̂f

 , (2.20)

where

ε̂k =

εk↑ 0

0 εk↓

 , ε̂f =

εfα 0

0 εf−α

 , (2.21)

where α is the projection of the total angular momentum and εkσ = εk + σ̃gcµBB, εfα =

εf + α̃gfµBB, where σ̃, α̃ = sign(σ, α).

In the absence of magnetic fields we have two doubly degenerate states with dispersion:

E =
εk + εf

2
±

√(
εk − εf

2

)2

+ V 2
0 (|v1|2 + |v2|2). (2.22)

In general a gap will open when the hybridization develops. In the case of a nodal

hybridization, the hybridization matrix will vanish in some directions in momentum space

and there is no indirect gap.
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Systems with flat f-electron bands and nodal hybridization can be modeled by effective

models that consider only the low energy behavior. These systems have Fermi lines instead

of Fermi surfaces and generally have a non-linearizable dispersion around the Fermi surface

dictated by the form of the hybridization matrix. The hybridization matrix elements close

to the z-axis (the Fermi line) behave as:

v1 ∼ Y α−1/2
3 (k) ∼ Pα−1/2

3 (cos θk) ∼ (sin θk)α−1/2, (2.23)

v2 ∼ Y −α−1/2
3 (k) ∼ P−α−1/2

3 (cos θk) ∼ (sin θk)α+1/2. (2.24)

Note that all the hybridization matrices for mJ > 1/2 vanish along the z-axis (they are all

proportional to some power of sin θk) and that the diagonal terms dominate the behavior

as θ → 0. Now, taking εf = 0 and W � V , the dispersion emerging from the z-axis goes

as:

E =

 V 2
k /W ∼ v2

1/W ∼ k2α−1
p upper band

−W − V 2
k /W ∼ −W lower band

(2.25)

what leads to a possibly unusual dispersion along the direction perpendicular to the z-axis,

with momentum dependence going as k2α−1
p .

Under the condition above, the density of states will have a contribution proportional

to:

ρ ∼ E
d−2α
2α−1 , (2.26)

which can be anomalous or even singular for several combinations of dimensionality and α.

In particular, for d=3 and a | ± 5/2〉 state we find ρ ∼ E−1/2.

The form factor and consequently the dispersion are universally determined in the small

momentum limit by the dominant total angular momentum component of the f-electrons

(the component with smaller α). At larger momenta the dispersion depends on the micro-

scopic details of the lattice.
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2.2.3 Topological Features

Systems with topologically protected Fermi points or lines belong to the broad class of

topological matter. Distinctly from topological insulators and superconductors which belong

to the fully gapped topological matter, these are gapless topological matter. However,

they have features which were earlier ascribed only to topological insulators with protected

gapless states on the surface or inside vortex cores [76].

In case of point defects, one can write a Chern number, as proposed in [81] for a Kondo

insulator, to classify different non-trivial topological states. From the hybridization matrix

above we can define the vector n by the normalization of the vector m in Vk = σ ·m and

write the Chern number as the following surface integral over the Brillouin zone:

C =
1

8π

∫
S2

dS · εijkni(∇knj ×∇knk). (2.27)

Evaluating the Chern number for different f-states, one finds C = 1 only for Ce in

the |5/2,±1/2〉 state; all the other nodal cases give zero Chern number, including the Yb

|7/2,±1/2〉 state. Apparently one needs to define the vector m from V̂k = (σσ3) ·m for the

Yb case in order to find C = 1 for the Yb | ± 1/2〉 state.

A vanishing hybridization amplitude along some directions in momentum space, within

the assumption that the f-level is pinned to the chemical potential, brings in an emergent

Fermi line in three dimensions. This special kind of Fermi surface is protected the inte-

ger number of electrons per unit cell and by the crystal electric field of the environment

surrounding the rare-earth atoms.

Here we note that the Chern number above is not able to capture the non-trivial topology

of the line nodes due to the different nature of the topological defect, or Fermi surface, in the

case of a nodal hybridization. Now one needs to define an invariant in a different homotopy

class [76]. For a point node in the case of | ± 1/2〉, wrapping a surface around the defect

seems the natural thing to do in order to quantify and classify the defect. In case of a line

node one needs to compute a line integral around the defect, as shown in Fig. 2.2.
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Figure 2.2: Defects in momentum space. Left: Surface covering a point defect. Right: A
contour wrapping around a line defect.

We can now define a winding number from the hybridization matrix:

W =
1

2πi

∮
C
dl
Tr[V †kσασ3∂φVkσα]

Tr[V †kσαVkσα]
, (2.28)

which gives, for the case of the nodal metal described above,

W = α− 1/2, (2.29)

computed asymptotically close to the nodal axis.

2.3 Theory for the critical behavior of β-YbAlB4

In the light of the discussion above, we start building the theory for β-YbAlB4 by looking

at the main ingredient that gives rise to the non-trivial behavior in this material: the

Yb atoms which carry f-electrons. We shall assume that the Yb ions are in a nominal

Yb3+, 4f13 configuration, with total angular momentum J = 7/2, according to Hund’s

rules. Photoemission spectroscopy indicates a microscopic valence of 2.75 due to moment-

conserving valence fluctuations Y b3+ ↔ Y b2+ + e− [86].
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2.3.1 β-YbAlB4 structure

β-YbAlB4 has a peculiar crystal structure in which the Yb atoms form a squeezed honey-

comb lattice, sandwiched between layers of B atoms, with the Yb atoms sitting between

pairs of 7-member B rings, giving rise to a local environment with local seven-fold symmetry

[60], as shown in Fig. 2.3.

Figure 2.3: Left: Top view; Right: Side view of the β-YbAlB4 crystal structure. The large
purple spheres are Yb atoms, the small connected green spheres are B and the small gray
disconnected spheres are Al. Note the seven-fold symmetric environment around the Yb
atoms: there are 7-fold B rings above and below them. Figure generated by the VESTA
software [10].

The J = 7/2 crystal field operators with 7-fold and time-reversal symmetries conserve

Jz, splitting the J = 7/2 Yb multiplet into four Kramers doublets, each with definite |mJ |.

The Curie constant and the Ising anisotropy of the magnetic susceptibility of β-YbAlB4 are

consistent with a pure Yb ground-state doublet |J = 7/2,mJ = ±5/2〉 [87]. This can be

understood heuristically since this is the configuration that exhibits maximal overlapp with

the electrons in the seven-fold boron rings and consequently lowers the total energy. This

Ising ground-state is also consistent with the large anisotropic g-factor observed in electron

spin resonance measurements on β-YbAlB4 [88], as will be discussed in the next chapter.
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2.3.2 Model and mean field treatment

We model the low energy physics of β-YbAlB4 as a layered Anderson lattice [87],

H =
∑
n,k,σ

εknc
†
knσcknσ +

∑
j

Hm(j), (2.30)

where the first term describes tight-binding boron conduction electron bands; c†knσ creates

a conduction electron with momentum k, spin component σ in the band n; and

Hm(j) = V0(c†jαX0α(j) + h.c.) + EfXαα(j), (2.31)

describes the hybridization of the conduction electrons with the f-electrons at the Yb ion

at site j and Ef is the energy level of the f -electrons. The operator

c†jα =
∑

p∈(1,14),σ

c†σ(Rjp) Yσα(rp), (2.32)

creates a conduction electron in a Wannier state delocalized across the seven-fold boron

rings directly above and below the Yb ion at site j, with local f symmetry and α = ±5/2.

The Rjp = Rj + rp are the locations of the fourteen boron sites (p = 1, ..., 14) around the

upper and lower rings surrounding the given Yb site j (see Fig. 2.3). The form factor matrix

is written as:

Yσα(r) = C
7
2
σαY

3
α−σ(r) =

1√
7

√6Y 3
2 Y 3

3

Y 3
−3

√
6Y 3
−2

 (r̂), (2.33)

where the C
7
2
σα = 〈3α − σ, σ2 |

7
2 , α〉 are Clebsch-Gordan coefficients for the Yb3+, α = ±5/2

configurations, allowing the change of basis from spin to total angular momentum for the

conduction electrons.

Here Xαβ are Hubbard operators, which are written in terms of the |4f13,mJ ≡ α =

±5/2〉 “hole” states of the Yb3+ ion with total angular momentum component equal to α

and the completely filled shell (or empty state in the language of holes) Yb2+ state |4f14〉,
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omitting the site index, as:

Xαα = |4f13, α〉〈4f13, α|, (2.34)

X0α = |4f14〉〈4f13, α|, (2.35)

Xα0 = |4f13, α〉〈4f14|, (2.36)

X00 = |4f14〉〈4f14|. (2.37)

Here we note that these operators do not follow canonical commutation relations but:

[χαβ(i), χγδ(j)]± = δij(δβγχαδ ± δαδχγβ), (2.38)

where we have anti-commutation relations (+) between the “fermionic” Hubbard operators

(χ0γ and χγ0) and commutation relations (−) between the “bosonic” Hubbard operators

(χ00 and χγγ′) and between fermionic and bosonic operators as well.

Given the non-canonical commutation relations for the Hubbard operators, we cannot

simply apply approaches as diagrammatic expansion since Wick’s theorem does not hold

[35]. In order to proceed with such kind of formalism we employ a slave boson decomposition

of the Hubbard operators [89, 39], which can be written at each site as:

Xαα(j) = f †jαfjα, (2.39)

X0α(j) = b†jfjα, (2.40)

Xγ0(j) = f †jαbj , (2.41)

X00(j) = b†jbj , (2.42)

where bj and fjγ are a slave boson and Abrikosov pseudo-fermion, following the canonical

bosonic and fermionic commutation relations, respectively. Here the charge degree of free-

dom is assigned to the bosons, while the spin degree of freedom is assigned to the fermions.

This assignment can be understood in the following way: the filled shell (or empty state),

is represented by a bosonic state, while the states with one or two holes (or electrons) are



49

represented by fermionic states. Now the number operator at each site is written as:

∑
α

Xαα(j) +X00(j) =
∑
α

f †jαfjα + b†jbj = 1, (2.43)

which guarantees that the sites are never doubly occupied. The sites can be “empty” (with

the full filled shell) when nB = 1, or singly occupied (by a hole) when nF = 1. This condition

is implemented within a path integral formalism as a constraint in the theory. Here we note

the convenience of the slave-particle approach in which case we have a holonomic constraint

in stead of the non-holonomic constraint nF < 2 in case we do not introduce the slave

particle.

Within a mean-field approximation we can rewrite the Hamiltonian as

Hm(j)=V ∗0 [c†jαfjα + h.c.] + Ẽff
†
jαfjα + λ0(r2 − 1), (2.44)

where V ∗0 = V0r is the quasiparticle hybridization, renormalized by the mean-field amplitude

of the slave boson field, r = |〈b〉|, taken to be uniform. The parameter λ0 imposes the

mean-field constraint 〈nf 〉 + r2 = 1 as a Lagrange multiplier, excluding double occupancy

due to the strong Coulomb interaction, what was already encoded in the original form

of the Hubbard operators. Here we defined the renormalized position of the f -level as

Ẽf = λ0 + Ef .

Next, we transform the Hamiltonian from real space into momentum space and evaluate

the form-factor of the seven-fold symmetric Yb-B cluster. To obtain a simplified model,

let us assume a single band of dispersion εk hybridizing with the Yb ion. Rewriting the

creation operator at a given boron site in terms of plane wave states

c†σ(Rjp) = (4N )−1/2
∑
k

c†kσe
−ik·Rjp , (2.45)

and similarly for the f-operators:

fjα = N−1/2
∑
k

fkαe
ik·Rj , (2.46)



50

where N is the number of Yb sites, Eq. (2.32) becomes:

c†jα = (4N )−1/2
∑
kσ

c†kσγσα(k)e−ik·Rj , (2.47)

where the form-factor of the Yb-B cluster can be written as

γσα(k) =
∑
p=1,14

Yσα(rp)e
−ik·rp . (2.48)

The mean-field Hamiltonian in Eq. 2.44 can then be written in terms of the plane-wave

ckσ and fkα operators as

Heff =
∑
k

(c†k, f
†
k)

 εkI V (k)

V †(k) Ẽf I


ck
fk

 , (2.49)

where all details of the hybridization are hidden in the matrix [V (k)] = 1
2V
∗

0 γ(k).

We can now look into the form factor in more detail. In polar co-ordinates

Y(r̂) =

√
5

64π
s2
θ

6cθe
2iφ −sθe3iφ

sθe
−3iφ 6cθe

−2iφ

 , (2.50)

where we denote (cos θ, sin θ) ≡ (cθ, sθ). The important point here is that the hybridization

vanishes as sin2 θ along the c-axis. To obtain an analytic expression, we approximate the

discrete sum over the positions in the seven-fold B ring by a continuous integral:
∑

p →

7
∑
±
∫ dφ

2π . We find that V (k) is proportional to a unitary matrix,

V (k) = iṼ0

 v1k v2k

−v∗2k v∗1k

 , (2.51)

where Ṽ0 =
7V ∗0
16

√
5
π and

v1k = 6 sin(kza/2)(k̂x + ik̂y)
2J2(k⊥R) (2.52)

v2k = cos(kza/2)(k̂x + ik̂y)
3J3(k⊥R),
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where Jn are Bessel functions of order n, R is the radius of the seven-fold rings and a is the

distance between boron layers. Since Jn(x) ∝ xn for small x, near the c-axis, the diagonal

terms are the dominant ones and the hybridization vanishes as k2
⊥:

V (k) ∼

(kx + iky)
2 0

0 (kx − iky)2

 . (2.53)

As one proceeds around the c-axis, the phase of the hybridization advances by 4π,

forming a double vortex in the hybridization along the c-axis. Computing the winding

number introduced in the previous section:

W =
1

2πi

∮
C
dl
Tr[V †kσασ3∂φVkσα]

Tr[V †kσαVkσα]
, (2.54)

we find W = α − 1/2 = 2. This vorticity associated with the line defect is a consequence

of angular momentum conservation about the c-axis: plane waves |kσ〉 traveling along the

c-axis carry a spin angular momentum of ±1/2 along the c-axis, and because the f -states

are in an |±5/2〉 state, angular momentum conservation prevents the mixing of conduction

electrons traveling along the c-axis and f -electrons.

We can now diagonalize the mean-field Hamiltonian, to obtain the hybridized dispersion

E±k =
εk + Ẽf

2
±

√√√√(εk − Ẽf
2

)2

+ |V (k)|2, (2.55)

where |V (k)|2 = Ṽ 2
0 [|v1k|2 + |v2k|2]. Fig. 2.4 illustrates the hybridized band-structure. Near

the c-axis, the squared hybridization vanishes as V (k)2 = A(kz)k
4
⊥. The dispersion in the

vicinity of the c-axis is then given by

E(k⊥, kz) = Ẽf +
|V (k)|2

−ε(kz)
≈ Ẽf + η(kz)k

4
⊥, (2.56)

where η(kz) = A(kz)
−ε(kz) and we have assumed that |ε(kz)| is large compared to |V (k)|. In

other words, the system develops an emergent two-dimensional Fermi surface, with a k4
⊥

dispersion. A hole band is formed in the region where ε(kz) > 0, while an electron band is
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Figure 2.4: (a) Showing dispersion around the c-axis, with an electron pocket at the Γ point
and a hole pocket at the Z point. (b) Magnetic field fills the k4

⊥ flat band.

formed in the region where ε(kz) < 0. In the case where ε(kz) changes sign along the c-axis,

a two dimensional electron and hole band is formed above and below the f -level.

To explain the intrinsic criticality of β-YbAlB4 we conjecture that the f -level is pinned

to zero energy Ẽf = 0. A heuristic argument for this assumption, is to regard β-YbAlB4 as

a Kondo insulator in which the nodal hybridization closes the gap along the c-axis, pinching

the f -level in the gap at precisely zero energy. At the current stage of understanding, this

assumption is purely phenomenological, a point we return to later. If Ẽf = 0, the density

of states for this dispersing system is then given by

N∗(E) =
∑
±
N∗±(E)θ(±E), (2.57)
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where for each branch:

N∗±(E) = 2

∫
k⊥

dk⊥
dE±

dkz
(2π)2

, (2.58)

=
1√
|E|T±0

,

and

1√
T±0

=
1

8π2

∫
dkz√
|η(kz)|

θ[∓ε(kz)] (2.59)

determines the characteristic scales T±0 for the electron (+) and hole (−) branch of the

dispersion. Powerlaw scaling will extend out to characteristic Kondo temperature TK of

the system, so that the total weight x of f-electrons contained within the divergent peak is

2x =

∫ TK

−TK
N∗(E) ≈ 4

√
TK/T0, (2.60)

giving T0 = 4TK/x
2.

If the f -level is pinned to zero energy, then at low temperatures a Fermi line of zero

energy excitations forms along the c-axis. In a field, the Zeeman-splitting of the f -level

induces a singular polarization of nodal electron and hole bands, broadening the Fermi line

into a distinct tubular Fermi surface. When a field is introduced, a spin-polarized Fermi

surface grows around the line-zero in the hybridization, giving rise to a density of states

of order N∗[g2µBB] ∼ B−1/2, leading to a Pauli susceptibility that diverges as χ ∼ B−1/2.

We call this field-induced Fermi surface transition a vortex transition, see Fig. 2.5. Vortex

transitions are reminiscent of a Lifshitz transition, but whereas Lifshitz transitions involve

point defects in momentum space [81, 90], the vortex transition involves a line defect.

The non Fermi liquid physics of YbRh2Si2 was also associated with a Lifshitz transitions

driven by Zeeman splitting [90], with a model based on the presence of shallow bands close

to the Fermi level and consequently a large density of states. In this case a magnetic field of

the order of the shallow band width Zeeman splits the bands causing a Lifshitz transition

and anomalies in both the thermodynamics and transport properties.
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Figure 2.5: Schematic picture of the vortex transition. Under magnetic field the nodal Fermi
surface evolves towards an emergent 2D Fermi surface as a new kind of Lifshitz transition.

2.3.3 T/B Scaling

We can model the singular thermodynamics of the system writing the Free energy

F [B, T ] = −T
∑

α=±5/2

∫ ∞
−∞

dEN(E) ln[1 + e−β(E−gµBBα)] (2.61)

using the explicit form for the density of states from Eq. 2.58. Writing the free energy as a

function of T/B:

F [B, T ] = T 3/2Φ

(
gµBB

T

)
(2.62)

where

Φ(y) = − 1√
T0

∫ ∞
0

dx√
|x|

∑
α=±5/2

ln[1 + e−x−yα], (2.63)

and T
−1/2
0 = (1/2)

∑
±(T±0 )−1/2. Fig. 2.6 compares the experimental scaling curve [61]

with that predicted by our simple model. While a qualitatively good fit to the observations

is obtained using a gyromagnetic ratio consistent with the single ion properties of Yb in

β-YbAlB4 , the characteristic energy scale required to fit the experimental results is T0 ∼

6.5eV , far greater than the characteristic Kondo temperature (∼ 200K) of this system [61].
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Figure 2.6: Theoretical fit (red line) to the measured field-dependent magnetization of
β-YbAlB4 from [61] (gray dots) using Eq. 2.62 with gmJ = 2.85 and T0 = 6.65eV .

Using our relationship T0 = 4TK/x
2, we can understand this scale by assuming that about

x ∼ 0.1 of the f-spectral weight is contained within the vortex metal contribution to the

density of states.

2.3.4 Discussion and Perspectives

We now turn to discuss some of the assumptions behind our model. One issue is whether

the plane-wave description of the vortex metal survives inclusion of band-structure effects.

In this situation, angular momentum is only conserved modulo n~, where n refers to the

presence of n-fold rotation axis in the Yb site, requiring n ≥ 5 to avoid any admixture of

| ± 3/2〉 or | ± 1/2〉 states into the perfect | ± 5/2〉 doublet. In a model of β-YbAlB4 , using

tight-binding coupling within the B planes and perfect heptagonal Yb rings, the nodal

structure does indeed survive, as shown in Fig. 2.7. However more work is required to

understand whether the nodes persist in a more realistic model of β-YbAlB4 . Another

key assumption is that the the node in the hybridization perfectly pins the f -level to the

Fermi surface. Ultimately, this must arise from Coulomb screening, an effect that also needs

inclusion in future work.

Support for our model is provided by the locally isostructural polymorph α-YbAlB4 ,

which has a comparable characteristic Kondo scale TK ≈ 200K [86] to the beta phase, but
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develops a Fermi liquid ground state [91]. Recent experiments indicate that α-YbAlB4 develops

a two dimensional Fermi liquid at fields B > 3T [92], suggesting it is a phase in which the

f -level has become detached from the Fermi energy, but that can be tuned towards behav-

ior similar to β-YbAlB4 by large magnetic fields. More direct confirmation of our nodal

hybridization model of β-YbAlB4 might be obtained from de Haas-van Alphen measure-

ments. Using Onsager’s arguments, the free energy of an extremal orbit of area AFS in the

field-doped Fermi liquid will be a periodic function of ~AFS/(2πeB), and since AFS ∝
√
B,

unlike conventional metals, we predict the low-field quantum oscillations will be periodic in

1/
√
B rather than 1/B.

Figure 2.7: Fermi surface from a tight-binding calculation. Note the cylindrical feature
along the z-axis linked to an almost 2D surface in the kx− ky plane. For clarity, the 1st BZ
has been shifted by π/h to move the node into the center of the zone.

Finally, we note that the vortex structure in the hybridization suggests a kind of topolog-

ical line defect in momentum space. In Kondo insulators, the hybridization vanishes at the

high symmetry points forming point defects [81], corresponding to a homotopy Π2(H) = Z2.

Vortices in the hybridization suggest a further one dimensional homotopy, Π1(H) = Z. This

is an interesting direction for future work.
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Chapter 3

Theory of the Electron Spin Resonance in β-YbAlB4

This chapter briefly reviews and adds new contributions to the theory for Electron

Spin Resonance in heavy fermion systems. Motivated by striking experiments in β-

YbAlB4 we develop a phenomenological model based on the Anderson Lattice Model,

building up on early works by considering also the effects of spin-orbit coupling, crystal

electric fields and hyperfine coupling. We show that the key features of the observed

ESR signal in β-YbAlB4 , including the shift in the g-factor and the development of

anisotropy can be understood as a result of the development of a coherent many-body

hybridization between the conduction electrons and the localized f-states. These results

are published in Phys. Rev. Lett. 112, 116405 (2014).

3.1 Electron Spin Resonance

Electron Spin Resonance (ESR) is traditionally used as a probe of isolated magnetic ions

in dilute rare-earth systems [93], but recently emerged as a fascinating new tool to probe

the low energy paramagnetic spin fluctuations in heavy fermion systems with the discovery

of sharp bulk ESR absorption lines in certain heavy fermion materials.

The technique is based in the following setup: a static magnetic field H Zeeman splits the

originally degenerate spin states of a sample inside a resonant cavity in which a transverse

microwave field with a given frequency ν0 is present. The external magnetic field can

be tuned and in case the frequency of the microwave field matches the Zeeman energy a

resonance condition is satifyed:

∆EZ = geffµBH = ν0, (3.1)
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where geff is the effective g-factor, µB is the Bohr magneton and H the magnitude of

the applied static magnetic field. Under this condition some of the radiation in the cavity

is absorbed by the electrons when they are excited from the lower to the upper energy

level (see Fig. 3.1 top). Succinctly, the ESR experiment probes the absorbed power P of

a transverse magnetic microwave field at a fixed frequency ν0, as a function of an external

static magnetic field H.

H

ΔE

0

0
geffμBH

ħν0

Hres

H

H

P

dP/dH

+1/2

-1/2

L= ±1
H

Figure 3.1: Schematic figure depicting the energy levels shift in the presence of magnetic
field (top); the power absorption curve with a peak at the resonance field (middle); and
the derivative of the absorption curve, which is the form the experimental data is usually
displayed (bottom).

In the study of magnetic moments in metals the line-shapes accessed experimentally give

us information about the local moment state and the environment surrounding it, which

includes neighboring ions and conduction electrons. The main features of the line-shapes

are:
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• Resonance position: The resonance field is given by the field for which the ab-

sorption of the microwave power has a maximum (Fig. 3.1 middle), or for which the

derivative dP/dH passes through zero (Fig. 3.1 bottom). The resonance condition

allows one to extract the effective g-factor as:

geff =
ν0

µBHres
. (3.2)

For free electrons g ∼ 2, and for electrons with strong spin-orbit coupling the g-factor

is given by the Landé formula:

gL =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
, (3.3)

where S, L and J are the spin, orbital, and total angular momentum, respectively.

• Linewidth: It gives information about the relaxation of the magnetic moment being

probed by ESR. It is extracted as the width (or half width) at half maximum of

the resonance peak, as in Fig. 3.2 A). There are several relaxation mechanisms that

have distinct temperature dependences [93]. If the relaxation process is dominated by

relaxation towards the conduction electrons we have the so called Korringa mechanism

[94] with:

∆H ∼ (N(0)J)2kBT, (3.4)

where N(0) is the density of states of the conduction electrons at the Fermi level, J

the exchange constant between conduction and localized electrons and kB the Boltz-

mann constant. Other mechanisms can dominate the relaxation process, as a direct

relaxation to the lattice, for example [93]. The system can also be in what is called a

“bottleneck regime”, in which the relaxation of the angular momentum from the con-

duction electrons back to the local moments happens faster than the relaxation to the

lattice, so effectively the relaxation of the local moments is determined by the small

relaxation rate from the conduction electrons to the lattice, leading to a narrowing
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Figure 3.2: Schematic figure depicting the main features of the ESR line shape. A) Indicates
the linewidth ∆H as the width at half maximum. B) The shaded area indicates the intensity
of the ESR signal. C) Splitting of the ESR resonance in three peaks due to hyperfine
coupling, with the splitting being proportional to the hyperfine coupling A.

of the ESR lineshape [93]. Another mechanism that can lead to the narrowing of the

linewidth is the proximity to a ferromagnetic transition, in which case the linewidth

is essentially reduced by a factor (1−Θ/T ), where Θ is the Curie-Weiss temperature

[93].

In case excited CEF states are present and energetically close to the ground state,

they can also be accessed by ESR since they have a finite thermal population. Under

this circumstance there is an extra contribution to the relaxation rate is given by:

∆H ∼ e−∆X/T , (3.5)

where ∆X is the magnitude of the CEF splitting.

• Intensity: The intensity of the ESR signal is defined as the field integral over the

power, or the double field integral over dP/dH:

IESR ∝
∫ Hmax

0
P (ν0, H)dH, (3.6)

and can be understood as the area under the absorption curve, as depicted in Fig. 3.2

B).

• Hyperfine Structure: The hyperfine structure in ESR lines can be present in case

there are nuclei with non-zero magnetic moment I in the sample. The nuclear spins
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have a much larger relaxation time then the electronic spins, consequently the electrons

see the nuclear moments as static and the hyperfine coupling I·S generates an effective

magnetic field for the local moments, which causes a shift in the ESR resonance

proportional to the hyperfine coupling AHF , as depicted in Fig. 3.2 C). The nuclear

moments I can be in any of the allowed (2I + 1) states with equal probability, so

consequently the ESR lines will acquire a structure with extra (2I + 1) resonances

with equal intensity [93]. In case there are only a small concentration of isotopes with

non-zero nuclear moment, the intensity of the shifted resonances will be proportional

to the concentration of isotopes.

3.2 Electron Spin Resonance in Heavy Fermions

Normally, rare-earth ions display an ESR signal when they are weakly coupled to the sur-

rounding conduction sea, acting as dilute “probe atoms”. A bulk f-electron ESR signal

in heavy fermion metals was unexpected, for here the lattice of local moments is strongly

coupled to the conduction electron environment. Naively, one expects the ESR resonance to

be washed out by the Kondo effect since the spin-fluctuation rate increases the line-width

to values larger than the magnetic field window of most experiments, making the signal

undetectable. Given ∆H ∼ kBTK/geffµB, a naive prediction for a small TK ∼ 10K, using

geff = 2, finds ∆H ∼ 10T . Yet, surprisingly, sharp ESR lines have been seen to develop at

low temperatures in a variety of heavy electron materials. Some examples of heavy fermion

materials in which ESR is observed are:

• YbCuAl is the heavy fermion compound in which ESR was first observed in the

absence of doping by magnetic impurities [95]. A large g-factor shift is seen with

∆g ≈ −0.4, and the authors already point our the that the origin of the shift might

be related to a gradual mixing between the conduction and f-electrons.

• YbRh2Si2 is another heavy fermion which can be accessed by ESR. The anisotropic

ESR signal (clear only below 20K) reflects the crystalline structure surrounding the

Yb atoms. The intensity of the signal follows a Curie-like behavior, in accordance with

the static susceptibility. The width of the resonance displays a linear behavior at low
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temperatures due to the relaxation of the local moments in a metallic environment,

while at higher temperature the temperature dependence follows an exponential be-

havior, related to the presence of excited CEF states at higher energies. The authors

point out that the presence of local magnetic moments coming from the Yb3+ well

below the characteristic Kondo temperature TK ∼ 25K indicates a lack of Kondo

screening in this regime, related to the proximity to a quantum critical point [96]. In-

terestingly enough, experiments on Yb1−xLuxRh2Si2 show that the ESR signal only

survives up to x = 0.15 dilution with non-magnetic Lu, indicating that the ESR signal

is a collective resonance of a Kondo lattice rather than a single impurity phenomenon

[97, 98].

• YbIr2Si2 also displays an anisotropic ESR signal below TK ∼ 40K. Again, the

intensity of the signal follows the static susceptibility. The width of the resonance

is dominated by an activated exponential behavior, what suggests that the main

relaxation mechanism for the local moments is by the presence of excited CEF states

and not by the Korringa mechanism [99].

• CeRuPO is a ferromagnetic Kondo lattice system, while CeOsPO is the homologue

antiferromagnetic compound. The fact that the Ru compound displays ESR signal

while the Os compound does not suggests that the presence of ferromagnetic fluc-

tuations are important for the narrowing and observation of the ESR signal [100].

They authors in investigate several other compounds and conclude that the presence

of ferromagnetic fluctuations might be the key for the observation of ESR signal.

• ESR signals were also observed in YbBiPt, YbRh2Pb and YbT2Zn20 (T=Fe, Co)

[101].

• The case of β-YbAlB4 , in which the ESR signal evolves from a room temperature

conduction electron signal into an Ising-anisotropic f-electron signal at low temper-

atures, is particularly striking. As the temperature is lowered, the g-factor changes

from an isotropic g ≈ 2 to an anisotropic g-factor with magnitude characteristic of

the spin-orbit coupled magnetic Yb ions. Moreover, the signal develops hyperfine
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satellites characteristic of localized magnetic moments below 10K, yet the intensity

of the signal remains constant, a signature of Pauli paramagnetism [88]. In contrast,

the same measurements for the reference compound β-LuAlB4 displays no tempera-

ture dependence of the ESR line shape, with a constant isotropic g ≈ 2, no hyperfine

structure and constant signal intensity. These results challenge our current under-

standing and motivate the development of a theory of electron spin resonance in the

Anderson lattice.

The observation of ESR signal in both Ce and Yb compounds, close and far from quan-

tum criticality indicates that these are not important parameters for the presence of the

signal; by contrast, ferromagnetic correlations (and large Wilson ratios) are a recurrent

feature in the systems above, including β-YbAlB4 , and seems to play an important role in

the narrowing of the otherwise very broad resonance [100, 102].

Previous theories in the Anderson and Kondo lattice [84, 103] have shown that the

development of the hybridization between the conduction and f-electrons, giving origin to

heavy quasiparticles, and the presence of ferromagnetic exchange interactions between the

local moments are two mechanisms that can narrow the otherwise broad ESR line shape

in heavy fermion systems. The last mechanism can be understood by the fact that the

presence of ferromagnetic fluctuations prevents a spin-flip to be passed on to other sites,

what makes the relaxation process more difficult [103]. Note that motional narrowing is also

favored in presence of ferromagnetic correlations since the hopping of f-electrons is more

favorable if all sites have the same kind of local effective field. Also, the fact that the heavy

fermion systems are possibly in a bottleneck regime is an important factor to be considered

towards the understanding of the narrow linewidth [102].

These theories cannot pinpoint if the ESR signal seem in YbRh2Si2 and other heavy

fermion systems comes from the local moments or from the conduction electrons. The

experiments performed in β-YbAlB4 can shed some light on this point since it will be clear

from the discussion in the next section that the signal is originated from the conduction

electrons.
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3.3 Theory of the Electron Spin Resonance in β-YbAlB4

Here we formulate a phenomenological theory for the ESR of an Anderson lattice containing

anisotropic magnetic moments. Our theory builds on earlier works [83, 84, 103], focussing on

the interplay between the lattice Kondo effect and the paramagnetic spin fluctuations while

considering the effects of spin-orbit coupling, crystal electric field and hyperfine coupling.

We show that the key features of the observed ESR signal in β-YbAlB4 , including the shift

in the g-factor and the development of anisotropy can be understood as a result of the

development of a coherent many-body hybridization between the conduction electrons and

the localized f-states. We are able to account for the emergence of an hyperfine structure

as a consequence of the static Weiss field created by the nuclei of the odd-spin isotopes of

Yb. Moreover, using a spectral weight analysis, we show that the constancy of the intensity

can be understood as a consequence of the intermediate value of the CEF excitations,

comparable to the hybridization strength in this material.

ESR measurements probe the low frequency transverse magnetization fluctuations in

the presence of a static magnetic field. The power absorbed from a transverse AC electro-

magnetic field at fixed frequency ν0 as a function of the static external magnetic field H, is

given by

P (ν0, H) ∝ χ′′+−(ν0, H), (3.7)

where χ′′+−(ν0, H) is the imaginary part of

χ+−(ν0, H) = −i
∫ ∞

0
dteiν0t〈[M+(t),M−(0)]〉H (3.8)

is the dynamical transverse magnetic susceptibility and M± = Mx ± iMy are the raising

and lowering components of the magnetization density.

In β-YbAlB4 , the Yb ions are sandwiched between two heptagonal rings of boron atoms

[60], occupying a magnetic 4f13 state with total angular momentum J=7/2. Crystal fields

with 7-fold symmetry conserve Jz, splitting the J=7/2 Yb multiplet into four Kramers

doublets, each with definite |mJ |. Based on the maximal degree of overlap, the Curie

constant and the anisotropy of the magnetic susceptibility of β-YbAlB4 , the low lying Yb
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doublet appears to be |7/2,±5/2〉, with first excited state |7/2,±3/2〉 [87, 104].

Since β-YbAlB4 is a mixed valent system we start with an infinite-U Anderson lattice

model, based on the overlap of the boron orbitals with the |7/2,±5/2〉 f-electron ground

state doublet and the first excited CEF level, the pure |7/2,±3/2〉 state, given by

H = Hc +Hf +Hfc −M.H, (3.9)

where

Hc =
∑
k,σ

εkc
†
kσckσ, (3.10)

Hf =
∑
j,γ

εfγχγγ(j), (3.11)

Hfc =
∑
jkσγ

(e−ikRjVkσγc
†
kσX0γ(j) + H.c.) (3.12)

describe the conduction electron band (here taken to be a single band for simplicity); the

f-electron levels; and the hybridization between them, respectively. Here

M =
∑
j

µB

(
gcSc(j) + gfJf (j)

)
(3.13)

is the total magnetization, with gc = 2 and gf = 8/7 the conduction and f-electron g-factors,

Sc(j) is the conduction electron spin density and Jf (j) is the total angular momentum

operator of the f-states at site j. The operator c†kσ creates a conduction hole in the boron

band with dispersion εk. The composite Hubbard operators in the slave boson approach can

be written as X0γ = (b†fγ) ≡ |4f14〉〈4f13, γ| in terms of the |4f13, γ〉 ≡ f †γ |0〉, “hole” states

of the Yb3+ ion and the filled shell Yb2+ state |4f14〉 ≡ b†|0〉, as introduced in Sec. 2.3.2. The

azimuthal quantum number γ ≡ mJ has values γ ∈ [±5/2,±3/2] corresponding to ground

state doublet with energy εf±5/2 = εf and the next CEF level, with energy εf±3/2 = εf+∆X .
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3.3.1 Addendum: Energy Scales and Anisotropy Regimes

Now we highlight the main energy scales in this problem and find different regimes of

interest. First we compare the Zeeman energy available experimentally with the typical

Kondo energy scales: for fields of the order of H ∼ 1T , the Zeeman energy is of the

order of ∆Ez ∼ 0.1meV ∼ 1K, one to two orders of magnitude smaller than the usual

TK ∼ 10− 100K, so we can consider that the Kondo physics is only slightly perturbed by

the presence of the magnetic field.

In the ground-state of the Anderson lattice model, the ratio Ṽ 2/W ∼ TK determines the

Kondo temperature TK , where Ṽ is the characteristic size of the renormalized hybridization

(which will be defined in the next subsection) and W is the conduction electron band-width.

The degree of magnetic anisotropy in the Kondo lattice is set by the size of the crystal

field splitting ∆X . In a Kondo impurity problem, one can project out the crystal field

excited states, provided ∆X/TK >˜ 1, and crystal symmetry prevents any admixture of the

projected states with the Abrikosov-Suhl resonance. However, in a Kondo lattice the non-

conservation of crystal symmetry becomes important once ∆X
>˜ Ṽ ∼

√
TKW , a situation

that can occur even though ∆X � TK . In this situation, the hybridization will admix the

mobile f-quasiparticles with the higher crystal field states. We shall show that this produces

significant modification to the magnetization operator of the quasiparticles. There are thus

three regimes of interest:

1. Ising limit: ∆X/Ṽ � 1, ∆X/TK � 1;

In this limit the problem can be projected into the ground state manifold, with the

total angular momentum multiplet being substituted by the pseudo-spin operator in

the reduced space of states.

2. Intermediate anisotropy: ∆X/Ṽ >˜ 1, ∆X/TK � 1;

This intermediate regime the main features of the ESR experiment can be understood

with base on the Ising limit, but the details might depend on the inclusion of the next

CEF levels into the theory.

3. Weak anisotropy: ∆X/Ṽ < 1;
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In case the CEF splitting is smaller than the hybridization strength one should include

all the CEF levels in the computation.

3.3.2 Mean Field Approximation

We employ a mean-field approximation X0γ(j)→ rfγ(j), where the mean-field amplitude of

the slave boson, r = |〈bj〉| describes the emergence of the Abrikosov-Suhl resonance at each

site, resulting from Kondo screening. In the mean field theory, H → Hc+H̃f +H̃fc−M ·H,

where

H̃f =
∑
kγ

ε̃fγf
†
kγfkγ + λ(r2 − 1), (3.14)

H̃fc =
∑
kσγ

[
c†kσṼkσγfkγ + h.c.

]
,

whith Ṽkσγ = Vkσγr and ε̃fγ = εfγ + λ the renormalized quasiparticle hybridization and

f-level energy, and λ the Lagrange multiplier that enforces the average constraint 〈nf 〉 +

〈b†b〉 = 1. The temperature dependence of the many body amplitude r(T ) determines the

evolution of the ESR signal, as will be shown below.

Although β-YbAlB4 almost certainly lies in the Intermediate anisotropy regime, the Ising

limit captures most of the physics. In this limit, the | ± 3/2〉 and higher CEF states are

projected out, leading to a two-band model in which the matrix elements of the transverse f-

magnetization J±f are absent. This happens due to the conservation of angular momentum:

the incoming photon has angular momentum l = 1 (see Fig. 3.1), so it cannot flip the large

Ising spin since the f-electrons are in the | ± 5/2〉 state;

〈±5/2|J±| ± 5/2〉 = 0, (3.15)

thus the f-moments do not have a magnetic response to the microwaves and the trans-

verse susceptibility is purely determined by the fluctuations of the conduction electrons

magnetization in the presence of a Kondo lattice effect:

P (ν,H) ∝ χ′′c+−(ν,H), (Ising Limit) (3.16)
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and now the absorbed power is proportional to the imaginary part of the conduction electron

transverse magnetic susceptibility.

As a first step we examine the Ising limit using a simplified model in which the complex

momentum dependence of the hybridization is ignored and it is taken to be spin-diagonal,

replacing Ṽkσγ → Ṽ 1. Within the mean-field theory the transverse susceptibility can be

calculated in the imaginary time formalism and can be represented by the following bubble

diagram:

ky

kx

kz

ky

kx

kz

Point Defect Line Defect

Χc+-(iνn) = µΒ2  S+ S-

↓, iωr+iνn

↑, iωr

and written as:

χc+−(iνn) = −µ2
BkBT

∑
k,r

Gc↓(k, iω̃r + iνn)Gc↑(k, iω̃r). (3.17)

Note that the double lines in the bubble diagram above are referent to the effective

conduction electron propagator:

Gcσ(k, z) = [z − εkσ − Σcσ(z)]−1 , (3.18)

is the conduction electron propagator and Σcσ(z) = V 2r2/(z− ε̃fσ) is the self-energy gener-

ated by resonant scattering off f-states. Note also that the Zeeman energy is now absorbed

in the definition of the spin dependent dispersions:

εkσ = εk −
gcµB

2
σ ·H, (3.19)

εfσ = εf −
gfµB

2
σ̄ ·H, (3.20)

where σ refers to the spin for the conduction electrons in the | ± 1/2〉 state, and σ̄ refers

to the pseudo-spin for the f-electrons in the | ± 5/2〉 state.
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Here vertex corrections have been neglected and the spin relaxation has been included as

a white noise Weiss field acting on both conduction and f-electrons, shifting the Matsubara

frequency by the spin-relaxation rate: ω̃n = ωn + iΓ
2 sgn(ωn).

Carrying out the momentum sum as an energy integral, and expanding the self-energy

to linear order in frequency, at low temperatures we obtain, for the magnetic field along the

z-direction:

χc+−(ν − iδ,H) = µ2
BZcNc(0)

(
g∗µBH + iΓ

g∗µBH + iΓ− ν

)
. (3.21)

Here Nc(0) is the density of states of the conduction electrons at the Fermi level, Zc =

(1− ∂Σc/∂ω)−1 = (1 + V 2r2/ε̃2f )−1 is the conduction electron quasiparticle weight and

g∗ = gcZc + g∗f (1− Zc), (3.22)

is the effective g-factor of the new quasiparticles, where g∗f = gf (2mJ) = 5.7. At high

temperatures we have Zc = 1 and consequently g∗ ≈ 2 reflects the conduction character of

the Fermi surface, but as the temperature is lowered Zc diminishes and the g-factor rises

towards g∗f as the Fermi surface acquires f-character.

Temperature dependence

The temperature dependence of the ESR signal is determined by the temperature evolution

of the mean field parameters r(T ) and λ(T ). These are computed by the extremization of

the free energy, which can be written as:

F = −β−1
∑

k,σ,n=±
ln(1 + e−βE

n
kσ) + λ(r2 − 1), (3.23)

where β−1 = kBT and

E±kσ =
εkσ + ε̃fγ

2
±

√(
εkσ − ε̃fγ

2

)2

+ Ṽ 2, (3.24)

is obtained by the diagonalization of the mean field Hamiltonian within the assumption

that the hybridization is momentum independent and spin-diagonal.



70

The extremization of the free energy with respect to the mean field parameters r and λ

gives two coupled equations:

∂F

∂r
= 0⇒

∑
k,σ,n

f(Enkσ)
∂Enkσ
∂r

+ 2λr = 0, (3.25)

∂F

∂λ
= 0⇒

∑
k,σ,n

f(Enkσ)
∂Enkσ
∂λ

+ r2 − 1 = 0, (3.26)

where f(ε) = 1/(eε/kBT + 1) is the Fermi-Dirac distribution.

For the numerical solution we use the equations above in a two dimensional square

lattice with hopping parameter t = 1eV , chemical potential µ = −0.2eV . The bare location

of the f-level is εf = −0.15eV and V = 0.26eV . The temperature evolution of the mean

field parameters is shown in the figure below:

Figure 3.3: Temperature dependence of the mean field parameters r (solid line) and λ
(dashed line) determined numerically.

We can now calculate the temperature dependence of the g-factor from the ratio between

the photon energy ν0 and the Zeeman energy 2µBHres(T ) at the resonance field:

g(T ) = ν0/2µBHres(T ), (3.27)

where Hres is determined from the maximum of the imaginary part of the dynamical spin
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susceptibility

χc+−(ν0 − iδ,H) = −µ2
B

∑
k,n,m=±

Znk↓Z
m
k↑

f(Enk↓)− f(Emk↑)

−ν0 + Enk↓ − Emk↑ + iΓ
, (3.28)

where

Znkσ =
Enkσ − εfσ
Enkσ − E

−n
kσ

, (3.29)

calculated at a fixed frequency, as a function of magnetic field. In our calculations we

used the experimental value for the fixed ESR frequency ν0 = 3.9 × 10−5eV (for the X-

band frequency of 9.5 GHz) and Γ = 7.2 × 10−7eV . Note that the definition of g∗ =

gcZc + g∗f (1 − Zc) as a simple closed form for the effective g-factor comes from a zero

temperature calculation and gives only the value of the g-factor at the Fermi surface, what is

a good estimate of the real value of this parameter. The results of the numerical calculations

are plotted in Fig. 3.4 and are qualitatively similar to that observed in β-YbAlB4 , but the

asymptotic value at low temperatures is twice as large as that seen experimentally.
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Figure 3.4: Temperature dependence of the g-factor. The value of g∗f is equal to 5.7 in
the Ising limit and smaller for intermediate anisotropy. Inset shows the anisotropy of the
g-factor in the Ising limit.

Anisotropy

The computation above was performed for the magnetic field applied along the z-direction.

In the Ising limit, the f-band responds uniquely to z-axis fields, so that when a field is
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applied at an angle θ out of the z-axis, we may decompose the g-factor in parallel and

perpendicular components:

g∗‖ = gcZc + g∗f (1− Zc), (3.30)

g∗⊥ = gcZc, (3.31)

and the effective g-factor as a function of the angle θ can be written as:

g∗(θ) =
√

(g∗‖ sin θ)2 + (g∗⊥ cos θ)2. (3.32)

At high temperatures g∗(θ) = gc is isotropic, but at low temperatures g∗(θ) ∼ g∗f cos θ

exhibits extreme Ising anisotropy (see inset of Fig. 3.4).

Note that this anisotropy analysis only considered the anisotropy due to the Ising nature

of the local moments. The fact that the hybridization between the conduction and f-

electrons is not isotropic will also affect the magnitude and anisotropy of the effective

g-factor. The hybridization anisotropy will also give rise to some linewidth broadening due

to the different values that g can acquire around the Fermi surface. This effect will depend

on the details of the Fermi surface and hybridization function and can be explored in more

detail.

Hyperfine Structure

Next we consider the effect of hyperfine coupling on the heavy fermion ESR signal. A small

isotopic percentage of the Yb atoms in β-YbAlB4 carry nuclear spins, which give rise to a

hyperfine coupling between the f-states and the nuclei.

The hyperfine term in the Hamiltonian can be written as:

HHF = AHF
∑
{i}

Ii · Si, (3.33)

where AHF is the magnitude of the hyperfine coupling, Ii the nuclear moment at site i,

with the sum over sites which have a non-zero nuclear moment.
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The effect of the isotopes 173Yb (I=5/2, present at a concentration ∼ 16%) is much

smaller than the effect of the isotope171Yb (I=1/2, present at a concentration ∼ 14%) since

the former has its contribution divided in six new lines, while the last is divided just in

two [88, 105]. Here we consider only the presence of the 171Yb isotope. The f-electrons

at these sites experience a Weiss field of magnitude AHF that shifts the central energy ε̃f

of the Abrikosov-Suhl resonance. The dominant isotope 170Yb (present at a concentration

∼ 70%) does not carry a nuclear moment.

Since the f-moments are in the pure |±5/2〉 state there is no spin flip processes allowed by

the hyperfine coupling with spin-1/2 nuclear spins, so effectively the hyperfine interaction is

this case reduces to HHF = AHF
∑
{i} I

z
i S

z
i and can be treated as a random potential. Here

we consider only multiple scattering on a single impurity given the low concentration of the

odd isotopes and the localized character of the f-electrons. When we impurity average over

the positions of the isotopic impurities, this modifies the conduction electron self-energy

Σcγ(z)→ Σcγ(z) + δΣcγ(z), where

δΣcγ(z) = (3.34)

=
niṼ

2

2

∑
σ=±1

(
1

z − ε̃fγ +AHFσ
− 1

z − ε̃fγ

)
,

with the crosses representing the hyperfine field AHFσ (σ = ±1). The resulting electron

self energy

Σcγ(z) =
(1− ni)Ṽ 2

z − ε̃fγ
+

ni
2 Ṽ

2

z − ε̃fγ +AHF
+

ni
2 Ṽ

2

z − ε̃fγ −AHF
(3.35)

contains two extra resonances, shifted by the hyperfine coupling constant AHF , which lead

to two corresponding side peaks in the ESR lines at low temperatures, as shown in Fig. 3.5.

We are thus able to interpret the appearance of hyperfine peaks in the ESR signal of β-

YbAlB4 as a consequence of the hyperfine splitting of the resonant scattering in this Kondo

lattice.
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Figure 3.5: ESR line shape computed using the mean-field theory. Note the development
of the hyperfine satellite peaks at low temperatures.

Intensity

Now we turn to a discussion of the ESR signal intensity in β-YbAlB4 . Here we employ a

sum rule relating the quasiparticle, or Pauli component of the magnetization to the ESR

intensity. The ESR intensity is the field-integral of the absorbed power:

IESR ∝
∫ Hmax

0
χ′′+−(ν0, H)dH, (3.36)

where Hmax is the maximum field applied and ν0 the fixed ESR frequency. We can write

this in the form

IESR ∝ H0

∫ Hmax

0

χ′′+−(ν0, H)

ν0
g∗µBdH, (3.37)

using the identity H0 = ν0/(g
∗µB) at the resonance field. Due to the narrowness of the

peak we can replace ν0 → ν in the denominator, what makes the integrand an even function

of ν0− g∗µBH, as can be seen from Eq. 3.21, and it follows that χ′′+−(ν0, H) = χ′′+−(ν,H0),

where ν = g∗µBH. Writing dν = g∗µBdH, then

IESR ∝ H0

∫ νmax

0

χ′′+−(ν,H0)

ν
dν, (3.38)
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where νmax = g∗µBHmax.

There is also a sum rule for the total transverse static susceptibility, given by the

Kramers-Krönig relation:

χ′+−(ν = 0, H0) =
1

2π

∫ ∞
−∞

χ′′+−(ν,H0)

ν
dν. (3.39)

In anisotropic f-electron systems like β-YbAlB4 , the transverse susceptibility is dom-

inated by Van Vleck paramagnetism, and is temperature independent. In this situation,

(3.39) plays the role of a magnetic f-sum rule. In fact, the static susceptibility

χ′Total(ν = 0, H0) = χPauli + χV V (3.40)

is a sum of Pauli and Van-Vleck (VV) susceptibilities, where the Pauli contribution derives

from low-frequency spin-flip processes, lying within the frequency range detected by ESR,

whereas the Van-Vleck contributions derive from much larger frequencies of the order of the

crystal-field splitting ∆X . In this way, we see that the ESR intensity measures the Pauli

component of the transverse magnetization,

IESR(T ) ∝ 2πH0χPauli(T ). (3.41)

Experimentally, both the transverse static susceptibility (χTotal(T ) = χ0, [106]) and the

ESR intensity (IESR(T ) = I0, [88]) are temperature independent. While the large constant

value of the total susceptibility reflects its Van-Vleck character, telling us that the total

spectral weight in Eq. 3.39 is conserved, the temperature independence of the ESR intensity

tells us that the Pauli contribution to the spectral weight is also conserved. In the Ising

limit, as the hybridization turns on, there is a large reduction in the conduction electron

character at the Fermi surface, giving rise to a much reduced transverse magnetization and

ESR intensity. Thus to account for these features we need to reinstate the finite CEF.

In the presence of a CEF level, the decomposition of the quasiparticles into conduction
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and f-electrons contains an additional amplitude to be in the excited state |f3/2β〉,

|nkσ〉 = anσ|ckσ〉+ bnα|f5/2α〉+ cnβ|f3/2β〉. (3.42)

The low temperature Pauli part of the transverse susceptibility is written as χPauli =

N∗(0)|〈1k ↑ |M+|1k ↓〉|2, where N∗(0) ∼ 1/TK is the low temperature quasiparticle density

of states, thus the ratio between the zero and room temperature intensities is given by

IESR(0)

IESR(T > TK)
∝ N∗(0)

Nc(0)

|〈1k ↑ |M+|1k ↓〉|2

µ2
B

, (3.43)

where Nc(0) ∼ 1/W is the conduction electron density of states and the matrix element

squared at high temperatures is equal to µ2
B. The matrix element squared of the lower band

(n=1) is |〈1k ↑ |M+|1k ↓〉|2 = |a1↑a1↓ + gf
√

3(b1↑c1↓ + c1↑b1↓)|2. Transitions between the

5/2 and 3/2 states happens via an intermediate conduction state:

c
f f

5 / 2 3 / 2

V V1/W

giving rise to a transition matrix element between the crystal field states of magnitude

Ṽ 2/W ∼ TK . The ground-state quasiparticle amplitudes (a1σ, b1α, c1β) are thus of or-

der (
√
TK/W, 1, TK/∆X), respectively. In the pure Ising limit (∆X → ∞) we have

IESR(0)/IESR(T > TK) ∼ TK/W � 1 but at intermediate anisotropy (∆X/Ṽ >˜ 1) new

contributions to the transverse magnetization appear and it acquires a value of order unity,

IESR(0)/IESR(T > TK) ∼WTK/∆
2
X = (Ṽ /∆X)2 ∼ 1.

The preservation of ESR intensity at low temperatures can also be understood in terms

of magnetic sum rules (see Fig. 3.3.2). From Eq. 3.38, we see that the ESR signal is a kind

of “magnetic Drude peak” in the dynamical spin susceptibility, slightly shifted from zero

frequency by the applied magnetic field. In a simple hybridization model with Ising spins,

there is a transfer of magnetic Drude weight to high energies, a magnetic analog of the

spectral weight transfer which develops in the optical conductivity [107]. However, when a

crystal field is introduced, the transfer of spectral weight to high energies is compensated

by the downwards transfer of spectral weight from the crystal field levels due to admixture
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of ±3/2 states into the heavy bands. This preserves a fraction of order O(Ṽ /∆X)2 of the

low frequency spectral weight.




 














  

 



































 






Figure 3.6: Schematic plots of the bands a) Ising limit and c) Intermediate anisotropy.
The arrows indicate the order of magnitude of the possible excitations. Imaginary part of
the transverse spin susceptibility b) Ising limit and d) Intermediate anisotropy The arrows
indicate the flow of spectral weight as the temperature is lowered.

Although we have not calculated it in detail, we note that the intermediate anisotropy

limit allows us to understand the reduction of the ESR anisotropy. In particular, the

momentum-space anisotropy of the hybridization matrices Vkσγ will introduce a k-dependent

rotation of the field quantization axes. Quite generally, this effect will broaden the ESR

line, reducing both the average value of the g-factor and the degree of anisotropy of the

signal.

3.3.3 Perspectives

Our theory suggests various experiments to shed further light on our understanding on the

spin paramagnetism of heavy fermion systems. In particular, since β-YbAlB4 is a Pauli
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limited superconductor, we expect its upper critical field Hc2 to be inversely proportional

to the effective g-factor, so measuring the angular dependence of Hc2 would allow us to

independently confirm the size and anisotropy of the g-factor on the Fermi surface. It

would also be interesting to examine whether similar Ising anisotropic systems, such as

CeAl3 or URu2Si2 and the recently discovered heavy electron quasicrystal Au51Al34Yb15

[63] exhibit ESR signals. Our emergent hybridization model also raises many interesting

questions. For example, what is the underlying origin of the sharp f-electron ESR line,

which we have modeled phenomenologically? Another aspect that remains unanswered,

is the possible connection between the ESR resonance and quantum criticality in both β-

YbAlB4 [60, 61, 88, 85, 108] and YbRh2Si2 [45, 109]. Tantalizingly, α-YbAlB4, a system with

a structure locally similar to the β phase does not exhibit a g-shift, yet iron doping appears

to drive it into quantum criticality where a g-shift develops in the ESR [110], suggesting

these two effects are closely related. Clearly, these are issues for further investigation.
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Chapter 4

The Spin Dilemma and Supersymmetric Symplectic Spins

The spin dilemma can be simply stated as the ambiguity in the choice of a spin repre-

sentation in terms of canonical creation an annihilation operators and the consequences

a given choice brings to the theoretical description and to our ability to account for

different phases of matter. In this chapter we discuss this dilemma and introduce the

traditional formalisms, highlighting their successes and limitations. From this discus-

sion we motivate the need to introduce the idea of supersymmetric symplectic spins.

We define and explore some of the properties of this new spin representation in this

chapter.

In this chapter we discuss the ambiguity in the choice of how to write spin operators

in terms of canonical creation and annihilation operators in order to approach the heavy

fermion problem within a path integral formalism. Spin operators are present in the Kondo

model and represent the local moments originated from f-electrons, when both empty and

doubly occupied states are projected out and the only remaining degree of freedom of the

f-electrons is the spin. In this case the Hilbert space is very constrained, and in order to

proceed with canonical operators one needs to make a choice: to write the spin operator

using bosons or fermions.

In Section 4.1 we discuss the traditional ways one can write the spin operators in terms of

bosons, fermions or even Majorana fermions. From this discussion one can see that different

representations are more suitable for the description of different phenomena. Once we are

interested in describing systems as heavy fermions, with a complex phase diagram which

usually includes magnetic order, heavy Fermi liquid state and superconductivity, we would

like to start with an approach that is less biased and would allow us to explore this kind of
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Figure 4.1: Here we revisit the figure of the schematic phase diagram of heavy fermions
pointing out the different spin representations that are traditionally used in different regions
of the phase diagram.

phase diagram on its entirety. More importantly, if we want to study the character of the

quantum phase transitions in these systems, it is not clear which is the most appropriate

spin representation to work with.

From Fig. 4.1, we have a suggestive direction to loot at. We know that magnetism is well

described in terms of a bosonic representation of the spin (in blue), while a heavy fermion

state asks for a fermionic representation of the spin (in red). The phases arbitrarily close

to the quantum critical point approaching from the left and from the right appear to be

described by completely different representations. If we want to characterize the quantum

critical point, we need a description that can properly account for the phases of matter in

both sides of the phase transition. One way to unify the approaches discussed above is to

build what is called a supersymmetric representation, the topic that will permeate the rest of
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this thesis. In Sections 4.1 and 4.2 we give more technical motivations for the construction

of a supersymmetric symplectic representation of the spin. In Section 4.4 we introduce

the necessary definitions and study the properties and implications of a new representation

which unifies supersymmetry and symplectic symmetry. The supersymmetric symplectic

spin representation provides an approach which carries less bias and is more powerful in

accounting for the correct physics in different regions of the phase diagram of heavy fermion

systems, as will be shown in the next chapter by the study of two toy models.

4.1 Spin Representations

When modeling systems in the integer valent regime we usually start with effective models

in which the operators relative to the f-electrons are in fact spin operators, reflecting the

complete loss of the charge degree of freedom of these electrons at low temperatures due to

the strong Coulomb repulsion.

Spin operators do not follow canonical commutation relations:

[Sa, Sb] = iεabcSc, (4.1)

so in principle we cannot use the standard many-body techniques as diagrammatic expansion

since Wick’s theorem cannot be applied in this case [35]. One way to go around this issue is

to write the spin operators in terms of creation and annihilation operators plus a constraint

or projection operator that will restrict the states to the correct Hilbert subspace. Below we

introduce some representations for the spin operators, highlighting its uses and limitations.

4.1.1 Schwinger-Boson representation

In his report to the US Atomic Energy Commission [111], J. Schwinger shows that “the

commutation relations of an arbitrary angular momentum vector can be reduced to those of

the harmonic oscillator”. That means that it is possible to write the spin operator in terms

of bosonic creation and annihilation operators. Introducing bosonic operators (bα, b
†
α) with
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an index which can assume two values (↑, ↓), following the commutation relations:

[bα, bα′ ] = [b†α, b
†
α′ ] = 0, (4.2)

[bα, b
†
α′ ] = δα,α′ ,

one can write the spin operators as:

SB =
∑
αα′

b†α
σαα′

2
bα′ , (4.3)

where, for spin-1/2, σ are the three Pauli matrices:

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (4.4)

Writing the spin components explicitly we have:

S1 =
b†↑b↓ + b†↓b↑

2
, (4.5)

S2 =
b†↑b↓ − b

†
↓b↑

2i
,

S3 =
b†↑b↑ − b

†
↓b↓

2
=
n↑ − n↓

2
,

and using the bosonic commutation relations above it is a straightforward task to show that

the commutation relations in Eq. 4.1 for the spin operators are satisfied.

Now the spin states |↑〉 or |↓〉 can be written in terms of the bosonic operators acting on

the vacuum state |0〉 as b†↑|0〉 and b†↓|0〉, respectively. Note, though, that the Hilbert space

for the bosons actually has many more states, it can be empty or multiply occupied with
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several bosons:

|0〉 ⇒ × (4.6)

b†↑|0〉 ⇒ |↑〉

b†↓|0〉 ⇒ |↓〉

Physical States

(b†↓)
n(b†↑)

m|0〉 ⇒ × for (m,n) 6= (0, 1) or (1, 0)

In order to restrict the states to the physical spin subspace we need to introduce a

constraint in the number of bosons nB = nB↑ + nB↓ = 1. This condition can also be

obtained by the analysis on the magnitude of the spin, written in terms of the bosonic

operators:

SB · SB =
∑
αα′

b†α
σαα′

2
bα′ ·

∑
ββ′

b†β
σββ′

2
bβ′ (4.7)

=
1

4

∑
αα′ββ′

b†αbα′b
†
βbβ′σαα′ · σββ′ ,

where we can use the completeness relation of the Pauli matrices:

σαα′ · σββ′ = 2δαβ′δα′β − δαα′δββ′ , (4.8)

and the bosonic commutation relations above to find:

SB · SB = S(S + 1) =
nB
2

(nB
2

+ 1
)
, (4.9)

where nB =
∑

α b
†
αbα. Note that we can identify nb = 1 for S = 1/2.

This spin representation has been extensively used in the study of magnetism, mainly

within large-N treatments, in which case the rotation group of the spin is generalized from

SU(2) to a larger group, usually taken to be SU(N) [41, 112, 113]. In this case the spin-spin

interactions in the Hamiltonian lead to bosonic interacting terms which can be decoupled by

the use of Hubbard-Stratonovich transformations and the solution determined by a saddle

point solution in the large-N limit . The bosons can condense below a critical temperature at
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which the chemical potential for the bosons reaches zero, indicating the onset of long-range

order [114].

4.1.2 Abrikosov-Fermion representation

In an analogous fashion, we can write the spin operator in terms of fermionic operators,

as first proposed by Abrikosov and Dzyaloshinski [115]. Abrikosov noticed that the non-

commutativity of the spins is what in fact makes the calculation difficult since Wick’s

theorem does not apply.

Introducing fermionic operators (fα, f
†
α) with an index which can assume two values

(↑, ↓) and follow the commutation relations:

{fα, fα′} = {f †α, f
†
α′} = 0, (4.10)

{fα, f †α′} = δα,α′ ,

one can write the spin operators as:

SF =
∑
αα′

f †α
σαα′

2
fα′ , (4.11)

where σ are the three Pauli matrices, as defined above for spin-1/2. As for the bosonic rep-

resentation, one can write the components explicitly and check that the spin commutation

relations hold.

Now the spin states |↑〉 or |↓〉 can be written in terms of the fermionic operators acting

on the vacuum state |0〉 as f †↑ |0〉 and f †↓ |0〉, respectively. Note, though, that the Hilbert

space for the fermions actually has two more states, it can be empty or doubly occupied:

|0〉 ⇒ × (4.12)

f †↑ |0〉 ⇒ |↑〉

f †↓ |0〉 ⇒ |↓〉

Physical States

f †↓f
†
↑ |0〉 ⇒ ×
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In order to restrict the states to the correct spin subspace we proceed as before and

introduce a constraint in the number of fermions nF = nF↑ + nF↓ = 1. This condition

can also be obtained by the analysis on the magnitude of the spin, written in terms of the

fermionic operators:

SF · SF =
∑
αα′

f †α
σαα′

2
fα′ ·

∑
ββ′

f †β
σββ′

2
fβ′ (4.13)

=
3nF (2− nF )

4
,

where nF =
∑

α f
†
αfα. Note that for S = 1/2, we can identify nF = 1.

The fermionic spin representation seems to be a more natural representation given the

fact that the spins we are talking about are actually localized electrons, therefore fermions,

with a constrained Hilbert space due to the large Coulomb repulsion. This representation

was first proposed in the treatment of the Kondo impurity model [115] and is very appropri-

ate for problems in which spins interact with other electrons which have their complete set

of degrees of freedom. In case of a large spin, within a bosonic representation, the spin can

only be partially screened since only one boson can be in an antisymmetric state with the

fermionic conduction electrons; in order to compeltely screen the spin one needs to intro-

duce other conduction electron channels. On the other hand, a large spin within a fermionic

representation can be successfully screened if there are enough conduction electrons avail-

able. Within the Kondo lattice model, due to the fermionic character of the excitations in

the heavy fermi liquid state, a fermionic representation of the spin is more appropriate if

one is interested in describing this metallic phase of matter.

Despite this advantage in the description of the Kondo physics, the fermionic represen-

tation is not very successful in the description of magnetism, with the fermionic mean field

theories usually giving higher energy solutions if compared to the bosonic counterpart.

From the discussion above on the Schwinger boson and Abrikosov fermion represen-

tations of the spin, one can conclude that each spin representation properly satisfies the

spin commutation relations and that the Hilbert space can be appropriately constrained so

we explore only the physical states related to the original spin states. In principle these
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representations are completely equivalent. But once we apply them to different problems

this statement does not hold anymore.

4.1.3 Other spin representations

The Schwinger-boson and Abrikosov-fermion representations described above are not the

only possible ways to write the spin in terms of canonical operators. Below we briefly

introduce other spin representations in terms of spin operators.

Holstein-Primakoff

The Holstein-Primakoff representation was introduced with the aim of studying the small

deviations of the spin from a fully polarized state [116]. In this case the spin is written as:

S+ = Sx + iSy =
√

2S − b†b b, (4.14)

S− = Sx + iSy = b†
√

2S − b†b,

Sz = S − b†b,

where S is the magnitude of the spin (and its maximum component in the z-direction) and

b a bosonic operator. Note that b†b gives a measure of the deviation of the spin from the

fully polarized state in the z-direction. This representation has the inconvenience of the

square root of operators, which is ultimately expanded, what is justified for b†b/2S � 1.

This representation leads to the well known spin wave theory of magnetism [41].

Majorana Fermion Representation

The Majorana fermion representation was introduced in condensed matter theory by A. M.

Tsvelik as an interesting way to study antiferromagnets with strong quantum fluctuations

in order to describe spin-liquid states [117]. In this representation the states built from

the Majorana fermions are only (several copies of the) physical states so a constraint is not

required. Once there are no constraints, the trial state gives a variational upper bound for
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the ground-state energy. The spin operator can be written as:

Sa = −iεabcηbηc, (4.15)

where ηi are real fermions following the anti-commutation relations:

{ηa, ηb} = δab, (4.16)

and a, b, c = {1, 2, 3} label three different kinds of fermions.

Drone Fermion Representation

This representation was used by Kenan [118] and is essentially a fermionic representation

of the spin that uses an auxiliary (drone) fermion in order to guarantee the commutativity

of the spin in different sites. Noticing that fermionic operators follow:

(ci)
2 = 0, (c†i )

2 = 0, cic
†
i + c†ici = 1 (4.17)

and that these relations resemble the behavior of the Pauli matrices:

(σ−i )2 = 0, (σ+
i )2 = 0, σ+

i σ
−
i + σ−i σ

+
i = 1, (4.18)

one is led to identify [119]:

σ+
i → c†i , (4.19)

σ−i → ci. (4.20)

The issue with this mapping is the fact that the spin operators commute in different sites

but the fermionic operators anticommute in different sites. One can introduce auxiliary

fermionic operators (di, d
†
i ) at each site, which anticommute with the original fermionic

operators (ci, c
†
i ) in order to guarantee the commutation of the spins in different sites. A
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construction that achieves this objective is:

S+
i = c†i (di + d†i ), (4.21)

S−i = (di + d†i )ci,

Szi = c†ici − 1/2.

It is interesting to notice that the Majorana and Drone fermion representations are

actually related [120]. We can write three Majorana fermions in terms of only two complex

fermions as:

η1 =
(c† + c)√

2
, η2 =

(c† − c)
i
√

2
, γ3 =

(d† + d)√
2

, (4.22)

in which case the Majorana representation leads to the drone representation.

4.2 Symplectic Spins

One of the defining characteristics of the spin operator S is its property of inverting under

time reversal T :

T S = −S. (4.23)

When writing spin Hamiltonians we have terms as S · S which are invariant under time

reversal and under SU(2) transformations. As these invariances are independent, it follows

that:

[T , U ] = 0, (4.24)

where U is an SU(2) transformation. If we now write the time-reversal operator as T = εK,

where ε = εab is an antisymmetric matrix and K is the complex conjugation operation, it

follows that:

UεUT = ε, (4.25)
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a condition which states that an orthogonal transformation by U should leave an anti-

symmetric matrix invariant. This is a symplectic condition, and SU(2) transformations do

follow it since SU(2) ∼ SP (2).

As mentioned previously in this thesis, when dealing with strongly correlated systems

large-N approaches are very convenient as a way to perform controlled calculations. The

large-N parameter usually comes from generalizing the rotation group of the spin from SU(2)

to a larger group, usually taken as SU(N). Turns out that the SU(N) generalization does

not follow the symplectic condition above, therefore it is not in accordance with one of the

fundamental properties of the spin. As thoroughly explored by Flint [121], the symplectic-N

generalization preserves this property and that is the one we are going to use in this work.

On the top of satisfying a very fundamental property of the spin, there are a couple of

advantages that we bring in to our theory by using the symplectic-N generalization:

• Geometric Frustration: For the study of antiferromagnetism the SU(N) general-

ization is restricted to the study of bipartite lattices, in which a given representation

and its conjugate are assigned to each sublattice [41, 112, 113]. This assignment is

necessary since the product of a representation and its conjugate always include a

singlet in its decomposition, fact that is not true for the product of a generic rep-

resentation with itself, unless it is self-conjugate. In case of geometrical frustration

as in the triangular or Kagome lattices, in which there is no bipartite structure, this

approach fails to describe magnetism since it does not provide a systematic way to

form singlets with spins in neighboring sites.

A first step in the solution of this issue was proposed by Read and Sachdev by the

generalization of SU(2) to SP(N) in stead of SU(N) [122]. The advantage of this

generalization is that the product of a representation with itself in SP(N) always in-

cludes a singlet, so one can assign the same representation in every site and be able

to form singlets consistently. In this approach the spin-spin interacting terms in the

Hamiltonian are decoupled in terms of antiferromagnetic bond variables. Recently,

Coleman and Flint proposed what is called the symplectic-N generalization which in-

cludes the decoupling of the spin-spin interacting terms by means of antiferromagnetic
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bond variables and variables that promote the resonance of these bonds [121, 123].

This is a more appropriate description for frustrated systems since it introduces the

possibility of both ferro and antiferromagnetic correlations.

• Superconductivity: Within an SU(N) generalization of the rotation group of the

spin, Kondo-like terms can only be decoupled in the particle-hole channel. Based

on the known SU(2) symmetry of the fermionic spin representation [124], previous

works would perform an SU(2) rotation of the fermions as an after thought in order

to be able to decouple the interacting terms in the particle-particle channel as well

[125]. The use of the symplectic-N generalization naturally brings into the problem

terms that can be decoupled in the particle-particle channel in the large-N limit, so

superconductivity can be properly accounted for.

Note that within the symplectic-N generalization we still fall in the dilemma of choosing

a bosonic of fermionic representation for the spin.

4.2.1 Bosonic symplectic-N

The generalization of the bosonic spin representation in the symplectic-N approach can be

written as:

SB =
∑
αα′

b†α
Γαα′

2
bα′ , (4.26)

where Γ are the N(N − 1)/2 generators of the symplectic group SP(N), for N even. These

follow the completeness relation:

Γαα′ · Γββ′ = δαβ′δα′β − α̃β̃δα−βδβ′−α′ , (4.27)
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where α̃ = sign(α). As before, to guarantee we are working on the physical subspace we

need to fix the value of SB · SB:

SB · SB =
∑
αα′

b†α
Γαα′

2
bα′ ·

∑
ββ′

b†β
Γββ′

2
bβ′ , (4.28)

=
N2

4

nB
N

(nB
N

+ 1
)
,

which falls back into the SU(2) constraint for N = 2.

Here we note that writing the spin as in Eq. 4.26 we introduce some redundancy to the

problem: we can introduce an arbitrary phase bα → eiφbα, so that the spin is left invariant.

This means that there is an U(1) local gauge invariance in the description of the spin in

terms of bosonic operators.

The bosonic spin representations can be labelled by Young diagrams (for a brief intro-

duction to Young diagrams see Appendix B.1). In this case the indexes composing the spin

are all symmetrized given the commutation relation of the bosons, and the Young diagrams

are depicted as a single row of boxes:

. . .

with the number of boxes ranging from one to infinity. The number of boxes, or nB in this

case, defines which representation of the spin we are working with and assigns a magnitude

for the spin.

4.2.2 Fermionic symplectic-N

In analogous fashion, we can write down the symplectic-N generalization for the fermionic

spin representation introduced above:

SF =
∑
αα′

f †α
Γαα′

2
fα′ , (4.29)
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where Γ are the N(N−1)/2 generators of the symplectic group SP(N) for N even. In order

to guarantee we are working on the physical subspace we need to fix the value of SF · SF :

SF · SF =
∑
αα′

f †α
Γαα′

2
fα′ ·

∑
ββ′

f †β
Γββ′

2
fβ′ , (4.30)

=
N2

4

[
nF
N

(
1 +

2

N
− nF
N

)
− Ψ†Ψ

N2

]
,

where now

Ψ =
1

2

∑
α

α̃f−αfα, (4.31)

Ψ† =
1

2

∑
α

α̃f †αf
†
−α. (4.32)

Perhaps a more interesting way to look at this constraint is the following:

SF · SF =
N

4

(
N

4
+ 1

)
−Ψ ·Ψ, (4.33)

where Ψ = 1
2(Ψ1,Ψ2,Ψ3) is a three component vector which components are the following

fermionic bilinears:

Ψ1 =
Ψ† + Ψ

2
, (4.34)

Ψ2 =
Ψ† −Ψ

2i
,

Ψ3 = nF −N/2.

Here we note that the bilinears above actually follow an SU(2) commutation relation:

[Ψa,Ψb] = 2iεabcΨc, (4.35)

and commute with the spin operator:

[SF ,Ψa] = 0, (4.36)
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for a, b, c = {1, 2, 3}, what means that the spin operator is invariant under transformations

generated by these operators. So, in the case of a fermionic representation of the spin, the

gauge invariance that is introduced is a local SU(2).

Since fermionic operators anticommute, they give rise to a completely antisymmetric

representation of the spin, depicted by column Young diagrams:

...

4.3 Supersymmetric Spins

Following the motivations above we can now construct a supersymmetric spin representation

of the spin as an unification of the previously introduced bosonic and fermionic represen-

tations. First we review the history of the supersymmetric spin operators in condensed

matter physics and its potential.

Supersymmetric spin operators were first proposed by Coleman and Gan [126] with the

aim of studying the micromagnetism experimentally observed in some heavy fermions at

the time. They focused on the single underscreend impurity Kondo model as a toy model

which includes both Fermi liquid excitations and magnetic degrees of freedom [127]. The

authors already identify the need for a two-fluid description, in which they assign a bosonic

character to the part of the spin which is not screened and a fermionic character to part

screened by the conduction electron spins. It is curious that the two-fluid picture proposed

in this work came much before the phenomenological construction of the two-fluid picture

[72, 73, 74].

A few years later Pépin and Lavagna [128] propose an enlarged representation of the

spin, writing:

S = SF + SB =
∑
αα′

(
f †α

σαα′

2
fα′ + b†α

σαα′

2
bα′
)
, (4.37)
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where σ are the Pauli matrices in case of a spin-1/2, which is essentially a combination

of the previously proposed bosonic and fermionic representations. Note now that there

is again an over counting of states: besides the already discussed non-physical states for

the bosonic and fermionic cases (which can be dealt with by the implementation of the

constraint nB + nF = 1), now there are two states associated with each spin state:

f †↑ |0〉

b†↑|0〉

 |↑〉,
f †↓ |0〉

b†↓|0〉

 |↓〉.
The authors suggest that this double counting of states does not interfere in the computation

of physical quantities since both representations are faithful representations of the spin. The

new feature of this work is that they find the ratio of bosons and fermions self-consistently

for a given value of the Kondo coupling over the bandwidth.

The next step by Coleman, Pépin and Tsvelik [129] proposes a large-N treatment of the

supersymmetric spin by generalizing the rotation group of the spin from SU(2) to SU(N).

Within this approach they showed that it is possible to develop a treatment in which both

the Kondo physics and magnetism can be considered concomitantly. The focus now was to

understand the character of the antiferromagnetic quantum critical points in heavy fermions

from a different perspective, after the observation of spin correlations which are critical in

time in CeCu1−xAux [71]. They introduce the notation of Young diagrams to the discussion

in order to label different spin representations and note that for an SU(2) spin-1/2 the Young

diagram is a single box which can have either bosonic or fermionic character, but as SU(2)

is generalized to a larger group there is a whole new plethora of representations one can

work with, as schematically depicted in Fig. 4.2.

The study and application of the SU(N) supersymmetric spins was limited to the inves-

tigation of the single impurity Kondo model, what suggests that more work on this area is

needed to elucidate the real potential of this spin representation. Also, given the discussion

in the previous subsection a symplectic-N generalization seems to be more appropriate.

Below we introduce the supersymmetric-symplectic spins for large-N approaches.
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Figure 4.2: Young diagrams. Left: generic diagram. Center: rectangular diagram. Right:
L-shaped diagram.

4.4 Supersymmetric-Symplectic Spins

We start defining the supersymmetric-symplectic spin as:

Sa =
∑
σσ′

(
f †σ

Γaσσ′

2
fσ′ + b†σ

Γaσσ′

2
bσ′

)
, (4.38)

where f †σ(b†σ), fσ(bσ) are fermionic (bosonic) creation and annihilation operators of particles

with spin component σ and Γa are the generators of the sp(N) algebra, with a = 1, ...N(N+

1)/2, which follow the completeness relation:

∑
a

Γaσ1σ2 · Γ
a
σ3σ4 = δσ1σ4δσ2σ3 − εσ1σ3εσ2σ4 . (4.39)

Alternatively, the supersymmetric-symplectic spin can also be written as:

Sσσ′ = f †σfσ′ − σ̃σ̃′f
†
−σ′f−σ + b†σbσ′ − σ̃σ̃′b

†
−σ′b−σ, (4.40)

where σ̃ = sgn(σ). In this form the oddness of the spin under time reversal is made

explicit. Note that the way the spin components are labelled now differs from the labeling

in Eq. 4.38. In SP(N) σ = −N/2, ..., N/2, assuming N different values (for N even), so

apparently there are N2 components. Note that not all Sσσ′ are independent and one

can show that the correct number of independent components in this representation is

N(N + 1)/2. This can be checked by noticing that Sσσ′ = −σ̃σ̃′S−σ′−σ, so the generators

are not all independent. For σ, σ′ > 0, we have Sσσ′ = −S−σ′−σ, so the generators with

both indexes negative are linearly dependent on the generators with both indexes positive.
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For σ > 0, σ′ < 0, σ 6= −σ′ we have Sσσ′ = S−σ′−σ, but note that for the case of σ = σ′ we

have the condition Sσ,−σ = Sσ,−σ, which does not give a relation between the generators

in the off diagonal. One can check that indeed Sσ,−σ is not linearly dependent on S−σ,σ.

Within these considerations the number of independent spin components is N(N + 1)/2, as

expected.

More concisely the spin can be written as:

Sσσ′ = Ψ†σγ0Ψσ′ = Ψ̄σΨσ′ , (4.41)

with Ψ̄σ = Ψ†σγ0 after the introduction of the spinors,

Ψσ =



fσ

σ̃f †−σ

bσ

σ̃b†−σ


, (4.42)

and the matrix

γ0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (4.43)
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4.4.1 Symmetries of the Supersymetric Symplectic Spin

The supersymmetric-symplectic spin commutes with the following operator bilinears and

the respective conjugates:

n̂F = f †σfσ,

n̂B = b†σbσ,

ψ̂ = σ̃fσf−σ, (4.44)

θ̂ = b†σfσ,

η̂ = σ̃fσb−σ,

in which an implicit sum over σ should de understood. Note that ψ̂ and η̂ are present in

the symplectic but not in the SU(N) generalization of the supersymmetric spin [129]. Note

also that n̂F , n̂B and Ψ̂ have bosonic character, while θ̂ and η̂ have fermionic character.

We can redefine these operators in order to make the symmetry of the supersymmetric-

symplectic spin more evident:

ψ0 = n̂B +N/2,

ψ1 =
ψ̂† + ψ̂

2
,

ψ2 =
ψ̂† − ψ̂

2i
,

ψ3 = n̂F −N/2, (4.45)

A1 = θ̂ − θ̂†,

A2 = −i(θ̂ + θ̂†),

B1 = η̂ − η̂†,

B2 = −i(η̂ + η̂†),

so that the bosonic operators are Hermitian and the fermionic operators are anti-Hermitian.
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These form a representation of the super-algebra su(2|1) [130]:

ψ0 }U(1)

[ψa, ψb] = 2iεabcψc }SU(2)

Even

{An, Am} = −2δnm(Ψ0 + Ψ3)

{Bn, Bm} = −2δnm(Ψ0 −Ψ3)

{An, Bm} = δnm(δ1n − δ2n)Ψ1 + (1− δnm)Ψ2


Odd

(4.46)

where a, b, c = {1, 2, 3} and m,n = {1, 2}. Note the U(1) sub-algebra generated by ψ0,

related to phase redundancy of the bosonic part of the spin; the SU(2) sub-algebra generated

by ψi=1,2,3, coming from the possible rotations of the fermionic part of the spin. These two

sub-algebras together form the even part of the super-algebra, the part that closes under

commutation on itself. The operators with fermionic character An and Bn form the odd

part of the super-algebra; they follow anti-commutation relations which close into the even

part of the super-algebra; these are present due to the supersymmetric character of the

spin.

Note that one can perform a super-rotation on the spinors Ψσ → gΨσ such that the spin

is left invariant:

Sσσ′ = Ψ†σγ0Ψσ′ → Ψ†σg
†γ0gΨσ′ , (4.47)

if g satisfies

g†γ0g = γ0, (4.48)

what is essentially the unitarity condition to the transformation after taking appropriate

care of the commutativity of the bosons.

The most general transformation g can be obtained by exponentiation of the generators
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of the algebra introduced in Eqs. 4.45. Exponentiation of the even part of the algebra gives:

gE =



u v 0 0

−v̄ ū 0 0

0 0 x 0

0 0 0 x̄


, (4.49)

where the parameters u, v and x are complex numbers satisfying |u|2+|v|2 = 1 and |x|2 = 1.

Note the SU(2) and U(1) substructure of this transformation for the fermionic and bosonic

parts of the spinor Ψσ, respectively.

Exponentiating the odd part of the algebra we find:

gA =



1 + αᾱ
2 0 −ᾱ 0

0 1 + αᾱ
2 0 −α

α 0 1− αᾱ
2 0

0 −ᾱ 0 1− αᾱ
2


, (4.50)

and

gB =



1− ββ̄
2 0 0 −β̄

0 1− ββ̄
2 β 0

0 −β̄ 1 + ββ̄
2 0

−β 0 0 1 + ββ̄
2


, (4.51)

where the parameters α and β are complex Grassmann numbers.

The most general transformation can be obtained by the composition of the three trans-

formations above:

g = gEgAgB, (4.52)

which satisfies the condition g†γ0g = γ0, as required.
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4.4.2 Time reversal and charge conjugation

Now we analyze the linear dependence of the particle and hole components of the spinor

Ψσ, showing that the spinors are also invariant under a transformation that combines time

reversal and particle-hole transformation. For that we define:

[Ψ]ν,σ =



fN/2 fN/2−1 ... f−N/2+1 f−N/2

f †−N/2 f †−N/2+1 ... −f †N/2−1 −f †N/2
bN/2 bN/2−1 ... b−N/2+1 b−N/2

b†−N/2 b†−N/2+1 ... −b†N/2−1 −b†N/2


, (4.53)

in such a away that the previously defined Ψσ are selected columns of this more general

object. The first index ν is related to the particle/hole and bosonic/fermionic character of

the operators and can assume values ν = {1, 2, 3, 4}. Now we can write the spin as:

Sσσ′ = [Ψ†]σ,ν [γ0]νν′ [Ψ]ν′,σ′ , (4.54)

with the sum over ν, ν ′ implied. The time reversal operation transforms [Ψ]ν,σ as:

T ([Ψ]ν,σ) = σ̃[Ψ∗]ν,−σ, (4.55)

or in matrix form:

T = I2 ⊗ (iτ2), (4.56)

where In is the n× n identity matrix and τ2 the second Pauli matrix.

Charge conjugation transformation acts as:

C([Ψ]ν,σ) = ν̃[Ψ]−ν,σ, (4.57)

where ν̃ = ±1 for ν even and odd, respectively. Here −ν corresponds to {2, 1, 4, 3} for
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ν = {1, 2, 3, 4}. In matrix form:

C = I2 ⊗ (−iσ2), (4.58)

where σ2 is again the second Pauli matrix.

The composition of these transformations leads to:

CT ([Ψ]ν,σ) = ν̃σ̃[Ψ∗]−ν,−σ = [Ψ]ν,σ, (4.59)

or

CT = [I2 ⊗ (−iσ2)][I2 ⊗ (iτ2)] = I4. (4.60)

This shows that [Ψ]ν,σ has an extra internal symmetry, and as a consequence the unitary

transformation of the spinors introduced above should be in accordance with this symmetry

as well. This requirement introduces the condition:

[U,CT ] = 0. (4.61)

In order to proceed with the analysis we redefine the time-reversal operation as complex

conjugation, represented by the operator K, times an antisymmetric matrix:

T ([Ψ]νσ) = TK([Ψ]νσ) = T ([Ψ∗]νσ), (4.62)

where:

T = (−iτ2)⊗DN/2, (4.63)

where DN/2 is the N/2×N/2 anti-diagonal matrix with entries equal to one. Note that in

this form T acts only on the spin indexes, in this case by a multiplication through the left.

Noticing now that the unitary transformation U is spin independent, it commutes with
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the matrix T and the condition given by Eq. 4.61 becomes:

UTCU = C, (4.64)

what introduces an extra symplectic condition to the unitary transformations.

4.4.3 The Casimir

To uniquely characterize an irreducible representation of SP(N), in principle one needs to

define r = N/2−1 invariants, or Casimirs, where r is the rank of the group (the dimension of

the Cartan sub-algebra). In terms of Young diagrams, one can understand these parameters

as the number of boxes in each row of the diagram (the maximum number of rows in the

Young diagram for SP(N) is N/2). In this work we are only considering L-shaped diagrams,

so we have the extra information that all the rows below the first one have only a single

box. This reduces the number of parameters to define the representation to two numbers:

w the width of the representation, and h its height, as depicted in Fig. 4.3.

w

h

Figure 4.3: L-shape Young diagram and the parameters that characterize it: the width w
and the height h.

From [131] we can deduce that for an L-shaped representation in SP(N) the second

Casimir can be written in terms of the width w of the first row and the height h of the

column in the diagram as:

C2 = 2(w + h)(N + w − h) + 4h− 2− 4N, (4.65)
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and identifying Q = w + h− 1 and Y = h− w, we have

C2 = 2Q(N + 1− Y ), (4.66)

see details in Appendix B. Now the two characteristic quantities are Q and Y , relative to

the total number of boxes and the asymmetry of the representation, respectively.

Now we relate the magnitude of the spin S2 in terms of operators with the Casimir

computed above. We start computing:

S2 =
∑
αβ

SαβSβα, (4.67)

whith Sαβ is defined in Eq. 4.40. Taking the operator products and relabeling the summed

indexes we find:

S2 =
∑
αβ

2
(
f †αfβf

†
βfα + b†αbβb

†
βbα − α̃β̃f

†
αfβf

†
−αf−β − α̃β̃b†αbβb

†
−αb−β (4.68)

+ 2f †αfβb
†
βbα − 2α̃β̃f †αfβb

†
−αb−β

)
.

Using the bosonic commutation and fermionic anticommutation relations we can identify

the sum of operators with the definitions in Eq. 4.44:

S2 = 2
[
Nn̂F − n̂2

F +Nn̂B + n̂2
B − ψ̂†ψ̂ + 2θ̂†θ̂ − 2η̂†η̂

]
, (4.69)

which can be rearranged as

S2 = 2
[
(n̂B + n̂F )(N + 1 + n̂B − n̂F )− ψ̂†ψ̂ − [θ̂, θ̂†]− 2η̂†η̂

]
, (4.70)

so we can identify:

S2 = 2Q̂(N + 1− Ŷ ), (4.71)
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where

Q̂ = n̂F + n̂B, (4.72)

Ŷ = n̂F − n̂B +
ψ̂†ψ̂ + [θ̂, θ̂†] + 2η̂†η̂

Q̂
, (4.73)

so we can identify the operators Q̂ and Ŷ as operators that measure the parameters of the

Young diagram, and that therefore fully characterize the representation.

We can also write S · S in terms of the redefined generators of the group:

S · S = Ψ2
0 −Ψ ·Ψ +

i

2
X. ·M ·X, (4.74)

where we introduced the vectors Ψ = (Ψ1,Ψ2,Ψ3) and X = (A1, A2, B1, B2) and the matrix

M =



0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


. (4.75)

From this form, the constraint can be understood as the condition defining a super-

surface in an 8-dimensional space with directions referent to each generator, subject to a

complex measure Λ which can be inferred from the form above:

S · S = VS ·Λ ·VS , (4.76)

where VS = (Ψ0,Ψ1,Ψ2,Ψ3, A1, A2, B1, B2) and

Λ =

 γ1 0

0 M

 , (4.77)

with γ1 = diag[1,−1,−1,−1].

Further discussion on the Casimir and how it will be implemented in the large-N ap-

proach are points addressed in the next chapter and Appendix C.
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Chapter 5

Applications of the Supersymmetric Symplectic Spins

In this chapter we apply the supersymmetric symplectic spins to two minimal models

which allow us to make a parallel with the physics of heavy fermions. Our new ap-

proach allows us to explore different L-shaped representations and to determine which

representation is more favorable in different regions in parameter space. We start ex-

ploring a two-impurity model that includes a Kondo coupling between the impurities

and their respective bath of electrons and a Heisenberg coupling between them. We also

study a three-impurity model that introduces the concept of geometrical frustration.

We find promising results towards an unified description of the heavy fermion global

phase diagram and a microscopic understanding of the two-fluid picture.

5.1 The need for a new approach to study heavy fermions

Heavy fermion systems are composed of a lattice of magnetic moments from electrons in

f-orbitals, and a conduction sea originated from lighter bands of electrons [20, 32]. These

systems have a very rich phase diagram due to the interplay of two energy scales originated

from the Kondo coupling JK :

TK ∼ De−1/N(0)JK , TRKKY ∼ N(0)J2
K , (5.1)

where N(0) ∼ 1/D is the density of states of the conduction electrons at the Fermi energy

and D the bandwidth. While the Kondo temperature, TK , sets the energy scale for the

onset of the Kondo effect and consequently the formation of a coherent heavy Fermi liquid,

the RKKY temperature defines the energy scale for the onset of magnetic order.

This family of materials is a great playground for the study of quantum criticality [26, 46];
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they are characterized by relatively small energy scales, which allow experimentalists to

explore their phase diagram as a function of pressure, magnetic field or doping. Tuning

the system by one of these external parameters usually supresses or induces magnetic order

and superconductivity is usually found around the magnetic quantum critical point, above

which, at finite temperatures, non Fermi liquid behavior is observed, usually characterized

by:

ρ ∝ Tα, γ ∝ log T, (5.2)

a power law temperature dependence of the resistivity with α < 2 and a logarithmic tem-

perature dependence of the specific heat coefficient (for a review on experimental results

see [27]).

One of the central challenges of heavy fermion materials is to understand the mechanism

by which magnetism develops within the heavy electron fluid. Traditionally, magnetism and

heavy fermion behavior have been regarded as two mutually exclusive states, separated by

a single quantum critical point. However, a variety of recent experiments suggest a richer

state of affairs, in particular:

• YbRh2Si2 can be driven to a quantum critical point by the application of magnetic

field, where both the Néel temperature and the Kondo energy scale appear to simul-

taneously vanish. However, when doped, these two energy scales appear to separate

from one-another, indicating that the break-down of Fermi liquid behavior and the

development of magnetism are not rigidly pinned together [132, 133, 134];

• In the 115 superconductor CeRhIn5 there is evidence for a microscopic and homoge-

nious coexistence of local moment magnetism and superconductivity under pressure

[6];

• The spontaneous development of inhomogenious Kondo states with partial magnetic

order in the geometrically frustrated CePdAl [135, 136], in which one third of the Ce

moments undergo a Kondo effect, while the other two thirds magnetically order [67].
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Several phenomenological frameworks were proposed for the understanding of heavy

fermion systems. The classical framework proposed in the 70’s by Doniach [44], consists

in the competition between TK and TRKKY determining the ground state to be a heavy

Fermi liquid or magnetically ordered. More recently a new axis was added to this picture,

by the inclusion of geometric frustration or reduction of dimensionality [53, 54]. These two

factors contribute towards the suppression of magnetism in a different way, if compared to

the competition with the Kondo effect. Also, based on experiments in several families of

heavy fermions, a phenomenological two-fluid picture was proposed by Nakatsuji and Pines,

with predictive power on the ground state [60, 74].

Unfortunately these proposals do not give us information on the character of the tran-

sition between the heavy Fermi liquid and magnetic phases, and its theoretical description

has been a challenge for several decades. Theoretical proposals based on a spin density wave

description of the quantum critical point [49], Kondo breakdown [137], deconfined quantum

criticality [50] and local quantum criticality [48] were suggested, but their results are not

able to fully account for experimental observations.

5.1.1 Spin Representations in the Kondo Model

The minimal model for heavy fermion systems is given by a Kondo lattice Hamiltonian:

HKL =
∑
kσ

εkc
†
kσckσ + JK

∑
i

Sj · sj , (5.3)

where the first term describes a conduction band of electrons with dispersion εk, JK is

the antiferromagnetic Kondo coupling between the local moment Sj and the spin of the

conduction electron sj at site j. The local moments present in these systems are neutral

entities that have completely lost their charge degree of freedom and are hence uniquely

characterized by their spin quantum numbers.

The removal of the charge degrees of freedom from the Hilbert space of the localized

f-electrons implies that spin operators do not follow canonical commutation relations; con-

sequently, their treatment within a path integral or diagrammatic approach is complicated

by the absence of a Wick’s theorem for spin operators. To circumvent this difficulty, the
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spin operator is traditionally factorized in terms of creation and annihilation operators:

Sσσ′ = a†σaσ′ , (5.4)

where the aσ can be either a boson or a fermion operator, and the index σ = {1, 2} for

an SU(2) spin. There are actually several spin representations one can choose from: the

Holstein-Primakoff [88], the Schwinger boson [111], the Abrikosov pseudo-fermion [84] and

drone or Majorana fermion [118] representations, among others.

The physics that each of these representations properly accounts for varies widely. For

example, the antiferromagnetic (AFM) phase is well described by a Schwinger boson repre-

sentation of the local moments, with the condensation of the bosons corresponding to the

onset of magnetic order [138, 139]. By contrast, the heavy Fermi liquid phase is successfully

understood in terms of a fermionic representation of the spin, forming a singlet state with

the conduction electrons [140]. While these two examples successfully describe different

extremes of the heavy fermion phase diagram, there is no theory that is able to account the

most interesting region in the vicinity of the magnetic quantum critical point.

In this paper, we argue that to fully describe heavy fermion systems one needs to build

an approach that allows the character of the spins to flow along the phase diagram. This

need calls for the use of a supersymmetric representation of the spin:

Sσσ′ = f †σfσ′ + b†σbσ′ , (5.5)

a combination of the previously proposed bosonic and fermionic representations, where f †σ,

fσ are fermionic and b†σ, bσ bosonic creation and annihilation operators.

One of the difficulties which arise once spin operators are factorized in terms of creation

and annihilation operators is that one must introduce projection operators or constraints to

guarantee that the solution lies within the correct Hilbert space. In terms of wave functions

we now have:

|Ψ〉 = PG|ΨF 〉|ΨB〉, (5.6)
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where |ΨF 〉 is the fermionic part of the wave function which describes the formation of

singlets with the conduction electron spins, and |ΨB〉 is the bosonic part of the wave function

which describes the formation of magnetic bonds. PG is a Gutzwiller projection operator

which keeps the system in the physical constrained Hilbert space and can be written as:

PG =

∫
Πj
dθj
2π

eiθj(nB+nF−1), (5.7)

effectively imposing the condition nB + nF = 1 for an SU(2) spin-1/2, and entangling the

fermionic and bosonic character of the spin at each site.

These two components of the wave function behave as two complimentary fluids which

can give rise to magnetism and heavy Fermi liquid behaviors and potentially provides a

microscopic description of the phenomenological two-fluid picture.

5.1.2 Large-N Approch

The absence of a small energy scale in the Kondo model does not allow one to apply

perturbative methods in the interaction. The alternative approach, followed here, is the

use of a large N expansion in which the Kondo lattice model is generalized to a family

of models in which the fundamental spin has N components, introducing the artificial

small parameter 1/N in the large-N limit. The simplest generalization takes SU(2) to

SU(N)[141, 140, 142, 143, 144]:

S
SU(N)
σσ′ = f †σfσ′ + b†σbσ′ , (5.8)

where now σ = {1, ..., N}. However, in this paper we choose the generalization to the

symplectic subgroup SP (N) [112, 123, 145]:

S
SP (N)
σσ′ = f †σfσ′ − σ̃σ̃′f

†
−σ′f−σ + b†σbσ′ − σ̃σ̃′b

†
−σ′b−σ,

(5.9)
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where σ = {−N/2, ...N/2}, which we believe provides the most appropriate large-N treat-

ment. In this second generalization all spin components explicitly invert under time reversal

and it allows the development of mean field theories which incorporate magnetism and su-

perconductivity, in contrast to the SU(N) generalization.

The concept of a supersymmetric spin was introduced in previous studies of impurity

Kondo models [126, 127, 128, 129]. In the work presented here, we follow the lines of [129],

now with the generalization to SP (N), and discuss the spin representations in terms of

Young tableaus. Young tableaus provide a pictorial way to label different representations:

horizontal Young tableaus label completely symmetric representations, which are naturally

described by bosons, while vertical Young tableaus label completely antisymmetric repre-

sentations, usually described by fermions. In case of supersymmetric representations we

consider the set of representations characterized by L-shaped Young tableaux that arise

once one combines the Schwinger boson and Abrikosov fermion spin representations. These

representations are characterized by two constants:

- the total number of elementary spins (or boxes) in the representation Q = h+w− 1,

where h and w are height, and width of the Young tableau, respectively, and

- the asymmetry Y = h− w of the L-shaped Young tableau, as in [129].

The asymmetry of the representation is absent in a physical SU(2) spin-1/2, in which

case the Young tableau is depicted by a single box, but once we enlarge the symmetry group

of the spin in order to develop a large-N theory, we find a family of representations that range

from a completely symmetric representation, fully described by bosons, to a completely

antisymmetric representation, described only by fermions, including a whole plethora of
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…

Bosonic!
(magnetic)

Fermionic!
(paramagnetic)

Mixed

SU(2)

Large-N

Figure 5.1: Series of Young tableaux in the large-N limit ranging from a fully symmetric
(top) towards a fully antisymmetric (bottom), passing through a series of L-shape repre-
sentations.

intermediate representations that we refer to as mixed representations, depicted by L-shaped

Young tableaux (see Fig. 5.1). The possibility of mean-field solutions described by mixed

representations is interesting as it may permit the description of new states of matter,

including coexistence of magnetism, superconductivity and heavy Fermi liquid phases.

For a given value of N , one needs to decide which representation to choose in order

to proceed with the calculations. Traditionally a purely bosonic representation or a purely

fermionic representation is chosen, but the supersymmetric approach provides the possibility

of considering an L-shaped representation. To constrain the problem to such a representa-

tion one must fix the values of Q̂ = Q0 and Ŷ = Y0 through the introduction of projection

operators into the partition function:

Z = Tr[PQ0,Y0e
−βH ]. (5.10)

Typically, the more negative Y , the more symmetric the spin representation and the
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more magnetic the resulting ground-state whereas the more positive Y , the more antisym-

metric the spin representation and the more Fermi-liquid like the ground-state. To avoid

biasing the physics, we consider a grand-canonical ensemble of representations defined by

the partition function with indefinite asymmetry Y ,

Z = Tr[PQ0e
−βH ] =

∑
Y0

Tr[PQ0,Y0e
−βH ], (5.11)

where now we can identify PQ0 with the large-N generalization of the Gutzwiller projection

operator introduced in Eq. 5.7:

PG ⇒ PQ0 =

∫
Πj
dθj
2π

eiθj(nB+nF−Q0). (5.12)

This procedure will enable the ensemble to explore the lowest energy configurations.

Another motivation to work with the constraint that fixes only the total number of boxes of

the representation is the fact that the asymmetry of the representation appears only in the

large-N limit, so by letting Y run free provides an unbiased way to take the limit N → 2

(see Fig. 5.1).

5.1.3 New features of this work

The large-N limit we now develop places all L-shaped representations with a given number

of boxes on the same footing, and the asymmetry of the representation can be thought of

as a variational parameter. The character the representation (bosonic, fermionic or mixed)

will now be decided by the energetics of the problem. This will permit us to completely

explore the phase diagram of systems as heavy fermions, in which the character of the spin

changes from fermionic in the HFL phase towards bosonic in the AFM region.

Fig. 5.2 illustrates schematically the evolution of the energy landscape as a function of

qF , the number of fermions in the representation, for three different values of TK/TRKKY .

For small TK/TRKKY the energy landscape has a minima for qF = 0, what means that the

system prefers to have a bosonic spin representation and possibly develops magnetic order.

Analogously, for large TK/TRKKY , the energy landscape has a minimum for the maximum
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Figure 5.2: Schematic representation of the evolution of the energy landscape as a function
of qF for different values of the ratio TK/TRKKY .

possible value of qF , indicating a purely fermionic representation, what would possibly

lead to the development of a heavy Fermi liquid. For intermediate values of TK/TRKKY

we find that the representation is actually mixed since the energy minima happens for an

intermediate value of qF , and that the minima is a saddle point as a function of qF . Here

we highlight the different nature of the minima by labeling:

- Type I minima: For this kind of minima there is no saddle point for the free energy as

a function of the representation and the minima occurs for purely bosonic or purely

fermionic representations, indicating that the original supersymmetry of the spin is

severely broken. In this case the results of a purely bosonic or fermionic representa-

tions are recovered;

- Type II minima: This kind of minima is in fact a saddle point of the free energy as a

function of the representation and happens when mixed representations are energeti-

cally favorable. This minima potentially represents a new phase of matter, in which

bosons and fermions coexist, naturally bringing the idea of a two fluid-picture. Ap-

parently, associated with this saddle point there will be a goldstino, a fermionic zero

mode, related to a partial restoration of supersymmetry coming from the fact that the

corner box in the Young tableaux can be either represented by a boson or a fermion,

and in this case we say that supersymmetry is only weakly broken.
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Other new features of this work are:

- Symplectic Spins: we generalize the rotation group of the spin from SU(2) to SP (N)

for a large-N treatment [123, 145]. This generalization guarantees that all the com-

ponents of the generalized spin properly invert under time reversal and also brings

in some advantages. First, it allows the description of geometrically frustrated mag-

netism; one can use the same spin representation in every site of a lattice and be able

to form singlets between those [112], which is not possible within an SU(N) general-

ization, in which case one is restricted to treat only bipartite lattices with conjugate

representations in different sub-lattices [144]. Second, it naturally introduces super-

conductivity into the problem since now one can also decouple the four-body terms

in the particle-particle channel;

- Inhomogeneous representation: We explore the possibility of solutions with different

spin representations in different sites. This is motivated by the partially ordered

phase verified experimentally in CePdAl. Fig. 5.3 represents this kind of solution

schematically in a frustrated triangular geometry: one of the local moments in the

triangle have a fermionic representation and form a singlet with an electron from the

conduction sea, while the other two local moments have a bosonic representation,

forming an antiferromagnetic bond.

Local moment

Conduction electron spin

Figure 5.3: Schematic representation of the inhomogeneous solution for the frustrated tri-
angular geometry.
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5.2 The formalism

Starting with the Kondo Lattice Model, including now a Heisenberg exchange between

nearest neighbors:

H = Hc + JK
∑
j

Sσσ′(j)sσ′σ(j) + JH
∑
〈jj′〉

Sσσ′(j)Sσ′σ(j′), (5.13)

with an implied sum over σ and σ′. The first term is the conduction electron Hamiltonian

Hc =
∑

kσ εkc
†
kσckσ for electrons with dispersion εk, where c†kσ, ckσ are creation and an-

nihilation operators of electrons with momentum k and spin σ. s(j) is the spin density of

conduction electrons at site j and S(j) is the local moment spin at the same site. Intro-

ducing the supersymmetric-symplectic spin, the Hamiltonian can be written in the large-N

limit in terms of fermionic and bosonic operators as:

H = Hc −
JK
N

∑
j

cjσΨ̄jσΨjσ′c
†
jσ′ +

JH
2N

∑
〈jj′〉

Ψ̄jσΨjσ′Ψ̄j′σ′Ψj′σ, (5.14)

with Ψ̄σ = Ψ†σγ0, as defined in Eq. 4.42. Note that the Hamiltonian is invariant under any

transformation Ψaσ → gΨaσ that satisfies g†γ0g = γ0. For explicit form of the transforma-

tions g we refer the reader to the previous chapter.

The constraint fixing the total number of bosons plus fermions at each site nFj +nBj =

Q0 can also be written in terms of the spinors Ψjσ:

nFj + nBj =
1

2

∑
σ

Ψ̄jσΛΨjσ, (5.15)

where

Λ =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


. (5.16)

We can now write the partition function as a functional integral, already introducing
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the constraint in the form above by the means of the Lagrange multiplayer λj for each site:

Z =

∫
Dµe−S , Dµ = D[c, f, b, λ], (5.17)

where

S = Sc + SS + SK + SH . (5.18)

The components of the action are:

Sc =

∫ β

0
dτ
∑
kσ

c†kσ(∂τ + εk)ckσ, (5.19)

the conduction electron part of the action,

SS =

∫ β

0
dτ
∑
j

(∑
σ

Ψ̄jσ
(∂τ + Λj)

2
Ψjσ − λjQ0

)
, (5.20)

describes the Berry phase and constraint associated with the localized spins, by the intro-

duction of the Lagrange multiplier λj , where Λj = λjΛ,

SK = −JK
N

∑
j

cjσΨ̄jσΨjσ′c
†
jσ′ , (5.21)

is the Kondo term and

SH =
JH
2N

∑
〈jj′〉

Ψ̄jσΨjσ′Ψ̄j′σ′Ψj′σ, (5.22)

the Heisenberg term in the action.

The components SK and SH include interacting terms that we decouple by Hubbard-

Stratonovich transformations. The Kondo term decouples as:

SK → S̃K =

∫ β

0
dτ
∑
j

[∑
σ

(
Ψ̄jσVjcjσ + h.c.

)
+

N

JK
V †j γ0Vj

]
, (5.23)
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where the Hubbard-Stratonovich fields are organized in the matrixes:

Vj =



vj

d̄j

−φj

ξ̄j


. (5.24)

Here vj and dj are complex fields related to the hybridization between f-fermions and

c-electrons and the development of superconductivity by the formation of pairs between

f-fermions and c-electrons, respectuvely. The parameters φj and ξj are complex Grassmann

numbers, the first related to the hybridization between b-bosons and c-electrons and the

second related to the development os pairs formed between b-bosons and c-fermions.

The Heisenberg term decouples as:

SH → S̃H =

∫ β

0
dτ

1

2

∑
〈jj′〉

Ψ̄jσ∆jj′γ0Ψj′σ +
N

4JH

∑
〈jj′〉

STr(∆†jj′γ0∆jj′γ0)

 , (5.25)

where STr is the super-trace defined as STr(A) = A11 + A22 − A33 − A44. The Hubbard-

Stratonovich fields are now:

∆jj′ =

 ∆Fjj′ ∆Sjj′

∆Sj′j ∆Bjj′

 , (5.26)

where

∆Fjj′ =

 pjj′ tjj′

t̄jj′ −p̄jj′

 , (5.27)

∆Bjj′ =

 qjj′ −gjj′

ḡjj′ q̄jj′

 , (5.28)
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∆Sjj′ =

 −γjj′ −µjj′
µ̄jj′ −γ̄jj′

 . (5.29)

Here the complex fields pjj′ and tjj′ promote hopping and pairing amongst the f-fermions

in different sites and the complex fields qjj′ and gjj′ promote hopping and magnetic bond

formation between the b-bosons. The Grassmannian parameters γjj′ and µjj′ are related

to a kind of hopping which transmutes bosons into fermions and vice-versa and pairing

between bosons and fermions in different sites, respectively.

The partition function now reads:

Z =

∫
Dµ∗e−S̃ , Dµ∗ = DµD[V,∆], (5.30)

where

S̃ = Sc + SS + S̃K + S̃H , (5.31)

and the integral over D[V,∆] indicates the integral over all the fluctuating fields introduced

by the Hubbard-Stratonovich transformations. Here c-number fields are represented by the

latin letters (v, d, p, t, q, g), while the Grassmannian fields are represented by the greek letters

(φ, ξ, γ, µ). Grassmannian fields are introduced in order to decouple terms with fermionic

bilinears. Note that the Kondo and Heisenberg parts of the action are invariant under

the transformation Ψaσ → gΨaσ if the fluctuating field matrices transform accordingly as

Va → gVa and ∆ = g∆g†.

Now we move to the discussion of the implementation of constraint by fixing Q̂ = Q0

(see also discussion in Appendix C). The constraint can be imposed as a projection operator

in each site j, written as a delta function:

PQ0 = ΠjP
j
Q0

= Πjδ(Q̂j −Q0). (5.32)

In order to treat the bosonic and fermionic components of the spin in the grand canonical
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ensemble, we split the constraint into three terms as follows:

P jQ0
=

∑
QFj ,QBj

δ(n̂Fj −QFj)δ(n̂Bj −QBj)δ(QFj +QBj −Q0). (5.33)

The constraint fix the total number of bosons plus fermions equal toQ0, leaving the exact

representation (or asymmetry) undetermined. As discussed in the introductory section here

the representation is in fact determined by the energetics of the problem.

This constraint can be implemented in the path integral as a Dirac delta function in its

integral form:

PQ0 =

∫
Dλe−SP , Dλ = ΠjdλjdλFjdλBj , (5.34)

with

SP =

∫ β

0
dτ
∑
j

(λFj(nFj −QFj) + λBj(nBj −QBj)

+λj(QFj +QBj −Q0)) , (5.35)

where λj , λFj and λBj are integrated along the imaginary axis. Within these considerations

SS can be rewritten as:

SS → S̃S =

∫ β

0
dτ
∑
j

(∑
σ

Ψ̄jσ
(∂τ + Λ̃j)

2
Ψjσ (5.36)

−λFjQFj − λBjQBj − λj(QFj +QBj −Q0)

)
,

where now

Λ̃j =



λFj 0 0 0

0 −λFj 0 0

0 0 λBj 0

0 0 0 −λBj


, (5.37)
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and the partition function is now written as: The partition function now reads:

Z =

∫
Dµ∗Dλe−S′ , (5.38)

where

S′ = Sc + S̃S + S̃K + S̃H , (5.39)

Anticipating that we are interested in a static mean field solution, we can already drop

the terms with fermionic bilinears (formed by a boson times a fermion). Fermionic operators

are anti-periodic and bosonic operators are periodic in imaginary time with period β. As a

consequence, the terms with fermionic bilinears do not contribute to the static mean field

solution since the action should be periodic in imaginary time. For this kind of term to

contribute the fluctuating fields introduced by the Hubbard-Stratonovich transformation

should be anti-periodic in time, what would require them to be dynamic. As a conclusion

the Grassmannian fields contribute just to the fluctuations, not to the static mean field

solution, so we have:

Vj → V 0
j =



vj

d̄j

0

0


, (5.40)

and

∆jj′ → ∆0
jj′ =

 ∆Fjj′ 0

0 ∆Bjj′

 . (5.41)

Note that the fermionic and bosonic parts of the action decouple since all the matrices

in the action now have the off-diagonal blocks equal to zero. Now it is possible to solve

the fermionic and bosonic problems separately, imposing the constraint QFj + QBj = Q0

to the solution in the end of the calculation. Note that this provides a picture of two
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asymptotically independent fluids, bosonic and fermionic, in the large-N limit and that the

introduction of fluctuations will provide interactions between them.

Now, as a first exploration of this idea we illustrate the formalism with two simple

examples: a two-impurity and a frustrated three-impurity model and show that there are

stable mean field solutions with mixed representations, as well as with purely bosonic and

purely fermionic representations.

5.3 A first exploration: Two impurity model

As a first application of the supersymmetric-symplectic spin, we study a minimal model

that allows one to make connections to the physics of heavy fermion systems. The model

consists of two local moments interacting among themselves by a Heisenberg coupling JH

and interacting with its respective bath of conduction electrons by a Kondo coupling JK .

JKJK

JH1 2

Lead 1 Lead 2

JH

Lead 1

Lead 3

Lead 2

JK3 2

1

Figure 5.4: Schematic representation of the two-impurity model.

The Hamiltonian is written as:

H = Hc + JK
∑
a

saσσ′(0)Saσ′σ + JHS1σσ′S2σ′σ, (5.42)

where Hc =
∑

akσ εkc
†
akσcakσ is the conduction electron Hamiltonian, a = {1, 2} is the lead

and local moment index, k the momentum and σ the spin index. Here sa(0) is the spin

density of conduction electrons at the site that is connected to the local moment spin Sa.

Introducing the supersymmetric-symplectic spin, the Hamiltonian can be written in the
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large-N limit in terms of fermionic and bosonic operators as:

H = Hc −
JK
N

∑
akσσ′

cakσΨ̄aσΨaσ′c
†
akσ′ +

JH
2N

∑
σσ′

Ψ̄1σΨ1σ′Ψ̄2σ′Ψ2σ, (5.43)

where Ψ̄σ = Ψ†σγ0, as defined in Eq. 4.42.

We can now apply the formalism introduced in the previous section. We perform a

Hubbard-Stratonovich transformation in order to decouple the interacting terms in the

Hamiltonian by introducing fluctuating fields. Within a static mean field solution the

fermionic and bosonic problem decoupled and are effectively linked only by the constraint;

we can now factor the partition function as:

Z = Z0ZFZB, (5.44)

where

Z0 =

∫
dλe−βNλ(qF+qB−q0) (5.45)

guarantees that the constraint is satisfied when the free energy is minimized with respect

to λ. Here we defined qF,B,0 = QF,B,0/N and assumed the representation to be the same in

both sites, so we drop the index a in λ and qF,B,0.

5.3.1 The fermionic part of the solution

The fermionic part of the partition function reads:

ZF =

∫
DµF e−SF , DµF = D[c, f, v, λF ] (5.46)

SF = Sc +

∫ ∞
0

∑
aσ

[
f †aσ(∂τ + λF )faσ +

∑
k

(
f †aσvacakσ + h.c.

)]

+βN
∑
a

|va|2

JK
− 2βNλF qF , (5.47)
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where we already dropped the terms in pa and ta, since it can be shown that these do not

contribute to the saddle point solution. Also, the f-operators can be redefined to eliminate

the pairing term between c- and f-operators from the Hamiltonian:

faσ → f̃aσ =
v̄afaσ + daσ̃f

†
a−σ√

|va|2 + |da|2
. (5.48)

Under these considerations, the fermionic part of the solution reduces to two decoupled

impurity problems. Taking va = v to be site independent and integrating out the conduction

electrons in each lead and transforming from imaginary time to Matsubara frequencies (see

details in Appendix D):

SF =
∑
naσ

f †aσ(iωn)(−iωn + λF + iΓn)faσ(iωn) + 2β
N |v|2

JK
− 2βNλF qF , (5.49)

with

Γn = ΓΘ(D − |iωn|)sgn(iωn), Γ = πρ0|v|2, (5.50)

where ρ0 is a constant DOS, D is the bandwidth and Θ(x) is a Heaviside step function.

Summing over Matsubara frequencies, in the limit T → 0, the free energy has the form:

FF
N

=
2

π
Im

[
ξF ln

(
ξF

eTKeiπqF

)]
, (5.51)

where we define

ξF = λF + iΓ, (5.52)

and the Kondo temperature

TK = De−1/ρ0JK . (5.53)

In the large-N limit the partition function is dominated by the saddle point. Minimizing
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the free energy with respect to ξF one finds

ξF = TKe
iπqF , (5.54)

and substituting back into the fermionic free energy:

FF
N

= − 2

π
TK sin(πqF ). (5.55)

5.3.2 The bosonic part of the solution

The bosonic part of the partition function can be concisely written as:

ZB =

∫
DµBe−SB , DµB = D[b, g, λB]

SB =

∫ β

0
dτ
∑
σ

Ψ†BσLBΨBσ + βN
|g|2

JH
− 2βNλB(qB + 1/2), (5.56)

where

LB =

 ∂τ + λB g

ḡ −∂τ + λB

 , (5.57)

ΨBσ =

 b1σ

σ̃b†2−σ

 . (5.58)

Here we already dropped the fluctuating field q since the saddle point solution results in q =

0. Integrating out the bosons and summing over Matsubara frequencies (see Appendix E),

in the zero temperature limit, the free energy is given by:

FB
N

=
√
λ2
B − |g|2 +

|g|2

JH
− 2λB(qB + 1/2). (5.59)
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Minimizing the free energy with respect to g and λB one finds:

λB = JH(qB + 1/2), |g|2 = J2
HqB(qB + 1), (5.60)

so the the bosonic free energy can be written as:

FB
N

= −JH(qB + 1/2)2, (5.61)

up to a constant term.

5.3.3 Analysis of the free energy

The total free energy can be written, already making explicit use of the constraint condition

qF + qB = q0, as:

F

JHN
= − 2

π
A sin(πqF )− (q0 − qF + 1/2)2, (5.62)

where A = TK
JH

and the free energy is given in units of JH . For each value of A and q0 the

representation was determined by the minimization of the free energy with respect to qF and

the result is plotted in Fig. 5.5. In case qF = q0 the phase is purely fermionic, meaning that

a completely antisymmetric representation is favored. Analogously, for qF = 0 (or qB = q0)

the phase is purely bosonic, and a symmetric representation is more appropriate. Solutions

with 0 < qF < q0 are solutions in which both bosons and fermions coexist, what we call

mixed phase and label as F + B in Fig. 5.5. Note that for a fixed value of q0, as the ratio

TK/JH is increased the spins tend to develop fermionic character. Also, for a fixed value of

TK/JH , increasing 1/q0 (or reducing q0, what is equivalent to decreasing the magnitude of

the spin) the spin representation also tends towards a fermionic representation (at least for

TK/JH > 1).

The dashed line between F and F+B regions indicates a second order “phase transition”
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Inhomogeneous

F

B
F+B

1st order
2nd order

qF=q0 
qB=0

qF=0 
qB=q0

Figure 5.5: “Phase diagram” of the most favorable representations as a function of A = TK
JH

and 1/q0 for the two-impurity model. A purely fermionic representation phase (red) is
labeled by F , a pure bosonic representation phase (blue) is labeled as B and the mixed
representation phase (intermediate colors) is labeled by F +B.

and can be determined from the condition:

F [qF = q0]

N
=
F [qF = q0 − δ]

N

∣∣∣∣∣
δ→0

, (5.63)

which leads to:

A =
1

2Cos(πq0)
. (5.64)

The continuous line represents a first order “phase transition”. The line between the

purely fermionic and purely bosonic representations is determined by:

F [qF = q0]

N
=
F [qF = 0]

N
, (5.65)
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which gives the condition:

A =
πq0(q0 + 1)

2Sin(πq0)
. (5.66)

The first order line between the phases B and F + B cannot be computed analytically

and was determined numerically.

Throughout the mixed phase we have λF = λB, as if both fluids have the same chemical

potential. This is related to the presence of the Type II minima of the free energy (see

discussion in the introduction), with a saddle point that allows the coexistence of bosons

and fermions and the interchange of one into another at no energy cost. In particular, at

the second order “phase transition” line discussed above, when qF = q0−δ and qB = δ with

δ → 0, one can check explicitly from Eq. 5.60 and 5.54 that the condition λF = λB gives

the same condition that defines the second order line in Eq. 5.64.

5.3.4 Fluctuations of the local fermionic fields

We now analyze the effects of fluctuations of the local fermionic fields. Further investigation

on the effect of fluctuations are left for future work.

In Section 5.2 above we introduced the time dependent local fields φa and ξa, which allow

us to decouple the terms (b†aσcakσ)(c†akσ′baσ′) and (σ̃b†aσc
†
ak−σ)(σ̃′cak−σ′baσ′) in the action,

respectively. These fields do not acquire an expectation value, but fluctuate around zero.

The partition function can now be written in terms of the saddle point solution determined

in the former subsection times Zφ,ξ, the new contributions to the partition function due

to the presence of the fluctuating fields δφ and δξ, that we take to be site independent.

Focusing first in the δφ field:

Zφ =

∫
Dφe

−
∫ β
0 dτ

[∑
akσ(b†aσcakσδφ+h.c.)+

2N|δφ|2
JK

]
. (5.67)

Expanding up to second order in δφ we can identify the propagator for the fluctuating
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field δφ:

[Dφ(iωr)]
−1 = 2N

[
χcb(iωr)−

1

JK

]
, (5.68)

where χcb(iωr) can be identified with the following bubble diagram:

αa(iω )m αa(iω )m

cakσ(iω )n

baσ(iω  m n+iω )

and written as:

χcb(iωr) = − 1

β

∑
kk′m

Gb(iωr + iωm)Gkk′(iωm), (5.69)

where Gb(iνn) is the bosonic propagator and Gkk′(iωn) is the full c-electron propagator.

Details of the calculation of χcb(ω) can be found in Appendix F.

One interesting region for the analysis of Dφ(iωr) is the second order transition line,

where the energy levels of the bosons and fermions are equal. In the infinite bandwidth

limit we find:

χcb(ω − iε)−
1

JK
= N(0)ωRe

[
log(λ+ i∆)

ω + i∆

]
− N(0)ω2

∆2 + ω2
log(λ− ω + iε). (5.70)

Note that at zero frequency, χcb(0)− 1
JK

= 0, so [Dφ(0)]−1 = 0, and the propagator for

the fermionic hybridization field φ diverges at the second order phase transition, indicating

the presence of a fermionic zero mode. Also, there is a gap of magnitude equal to λ =

λF = λB with a continuum which goes up to the bandwidth. This gap is always present

in the 2-impurity model since λ = ξB = JH/2 is aways finite at the transition. For a

Kondo-Heisenberg model in the lattice, the bosonic level will acquire a dispersion and when

magnetic order sets in it will be gapless at some points in the Brillouin zone. In that

case the spectrum for the fermionic hybridization field is expected to have a continuum of

excitations, which can potentially lead to non Fermi liquid behavior.
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Figure 5.6: Plot of the imaginary part of the δφ propagator. The parameters used in this
plot were a solution of the mean field theory at a specific point of the second order phase
transition: A = 1.57 and 1/q0 = 2.5, what gives λF = λB = λ = 1.01 and ∆ = 2.97 (in
units of JH).

For the second fermionic mode δξ a similar calculation follows, where now:

[Dξ(iωr)]
−1 = 2N

[
χ̄cb(iωr)−

1

JK

]
, (5.71)

where χ̄cb(iωr) can be identified with the following bubble diagram:

β (iω  )ma

c (iω )nakσ

β (iω  )ma

b (iω maσ -iω )n

and written as:

χ̄cb(iωr) =
1

β

∑
kk′m

Gb(iωr − iωm)Gkk′(iωm). (5.72)

In an analogous fashion we find:

χ̄cb(ω − iε)−
1

JK
= N(0)(ω − 2λ)Re

[
log(−λ+ i∆)

ω − 2λ+ i∆

]
(5.73)

− N(0)(ω − 2λ)2

∆2 + (ω − 2λ)2
log(λ− ω + iε).
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Here we note that there is no zero mode for this fermionic field at the transition, and a

continuum starts at a finite λ = ξB = JH/2. In the limit of λ→ 0, when we recover particle-

hole symmetry the propagators for the φ and ξ fields actually coincide and there are two zero

modes. That can be checked by assuming particle-hole symmetry: Gkk′(−iω) = −Gkk′(iω),

in which case:

χ̄cb(iωm) =
1

β

∑
nkk′

Gkk′(iωn)Gb(iωm − iωn), (5.74)

=
1

β

∑
nkk′

Gkk′(−iωn)Gb(iωm + iωn),

= − 1

β

∑
nkk′

Gkk′(iωn)Gb(iωm + iωn),

= χcb(iωm).

Further work is needed for the complete understanding of the effect of fluctuations of

the fermionic fields in the mean field result.

5.4 Three Impurity Model: Exploring geometric frustration

As a second application of the supersymmetric-symplectic spin, we study a minimal model

which brings in the issue of geometric frustration into play. The model consists of three

local moments interacting among themselves by an antiferromagnetic Heisenberg coupling

JH and interacting with its respective bath of conduction electrons by a Kondo coupling

JK , as depicted in Fig. 5.7. We are motivated to look at this problem by experiments in

CePdAl in which a partially ordered state is verified [67] and to explore the ability of the

symplectic representation of the spin to describe frustrated systems.

The Hamiltonian is written as:

H = Hc + JK
∑
a

sa(0) · Sa + JH
∑
a

Sa ·Sa+1, (5.75)

where now a = {1, 2, 3} is the lead and local moment index with periodic boundary condi-

tions. As in the previous section, Hc is the conduction electron Hamiltonian, sa(0) is the

spin density of conduction electrons at the site that is connected to the local moment Sa.
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Figure 5.7: Schematic representation of the frustrated three-impurity model.

Introducing the supersymmetric-symplectic spin from Eq. 4.38 into the Hamiltonian,

this can be written in the large-N limit as:

H = Hc −
JK
N

∑
akσσ′

cakσΨ̄aσΨaσ′c
†
akσ′ +

JH
2N

∑
aσσ′

Ψ̄aσΨaσ′Ψ̄a+1σ′Ψa+1σ, (5.76)

with Ψaσ as defined in Eq. 4.42.

Proceeding as in the previous section, within a path integral formalism we introduce

fluctuating fields in oder to decouple the quartic terms in the action and impose the con-

straint by the introduction of a delta function in the integral form. Within a static saddle

point solution the problem decouples in to a bosonic and a fermionic part, effectively linked

by the constraint. In this section we are going to leave the representation of the spin and the

mean field parameters to be determined independently in each site. Omitting the details

(similarly to the steps worked out in the previous section), the partition function in this

case can be written as:

Z = Z0ZFZB, (5.77)
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where

Z0 =

∫
Πadλae

−βN
∑
a λa(qFa+qBa−q0), (5.78)

now fix the constraint in each site independently, allowing different sites to have different

representations.

The fermionic part of the partition function can be written as:

ZF =

∫
DµF e−SF , DµF = D[c, f, va, λFa], (5.79)

SF = Sc +

∫ β

0
dτ
∑
aσ

[
f̄aσ(∂τ + λFa)faσ +

∑
k

(
f †aσvacakσ + h.c.

)]
(5.80)

+βN
∑
a

|va|2

JK
− βN

∑
a

λFaqFa,

where as in the previous section, we assume that the only fluctuating field that acquires a

finite value at the saddle point solution is va. In this case the fermionic part of the solution

reduces to three decoupled impurity problems, with the same solution as the previous

section, now for 3 the leads:

FF
N

= −TK
π

∑
a

sin(πqFa). (5.81)

The bosonic part of the partition function reads:

ZB =

∫
DµBe−SB , DµB = D[b, qa, ga, λBa], (5.82)

SB =

∫ β

0
dτ
∑
σ

Ψ†Bσ
LB
2

ΨBσ −
βN

2JH

∑
a

Tr[∆†Baγ
B
0 ∆Baγ

B
0 ] (5.83)

− βN
∑
a

λBa(qBa + 1/2),
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where now:

LB =


mB1 ∆B1 ∆†B3

∆†B1 mB2 ∆B2

∆B3 ∆†B2 mB3

 , (5.84)

with

mBa =

 ∂τ + λBa 0

0 −∂τ + λBa

 , (5.85)

∆Ba =

 qa −ga

ḡa q̄a

 , (5.86)

and

ΨBσ =



b1σ

σ̃b†1−σ

b2σ

σ̃b†2−σ

b3σ

σ̃b†3−σ


. (5.87)

Note that the trace term in the action now appears with a minus sign since it is related

to the bosonic part of the super-trace defined below Eq. 5.25. Here we define γB0 = σ3 as

the bosonic part of the original matrix γ0. The solution of the bosonic part of the partition

function is more involved if we allow the representations of the spin to be different in each

lead.
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5.4.1 Homogeneous solution

As a first solution we consider the same representation on every site, and look for an

homogeneous solution, taking λBa → λB, qa → q and ga → g. Integrating out the bosons

and summing over Matsubara frequencies, in the zero temperature limit, the free energy

can be written as:

FB
N

= (λB + 2q) + 2
√

(λB − q)2 − 3g2 +
3(g2 − q2)

JH
− 3λB(qB + 1/2). (5.88)

Minimizing the free energy with respect to q, g and λB one finds:

FB
N

= −3JH
2

(qB + 1/2)2, (5.89)

up to a constant term.

The total free energy for the homogeneous solution can be written, already making

explicit use of the constraint condition qF + qB = q0, as:

FHom
N

= − 3

π
A sin(πqF )− 3

2
(q0 − qF + 1/2)2, (5.90)

where again A = TK
JH

and the free energy is given in units of JH . Note that this is functionally

the same as the 2-impurity model up to an overall factor of 3/2, and as a consequence the

representation diagram determining the most favorable representation for the spin within

an homogeneous solution will be identical to the 2-impurity case.

5.4.2 Inhomogeneous solution

Now we move on to investigate solutions with different representations in each site, what

we call inhomogeneous solution. Due to frustration, we expect that it is energetically favor-

able for one of the spins to be in a fermionic representation, essentially disconnected from

the other two spins with a bosonic or mixed representation, forming an antiferromagnetic

bond. We assume one of the spins to always have a fermionic representation and let the

representation of the two other spins to be selected as the one which minimizes the total
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energy.

Now the problem reduces to a single impurity problem with a purely fermionic repre-

sentation plus the two-impurity problem solved in the previous section. The free energy for

the inhomogeneous solution reads:

FInh
N

= − 1

π
A sin(πq0)− 2

π
A sin(πqF )− (q0 − qF + 1/2)2,

in units of JH . Again, the “phase diagram” of the representations will be the same as before,

but now we compare the free energies of the homogeneous and inhomogeneous solutions for

the 3-impurity problem. The hashed area in Fig. 5.8 is the region of the “phase diagram”

in which the inhomogeneous solution is more favorable. This result provides an interesting

interpretation for what is possibly happening in CePdAl [67]: one third of the local moments

in the frustrated Kagome lattice (formed by an assemble of corner shared triangles) can be

relieving the frustration by assuming an antisymmetric character and forming a Kondo

singlet with a conduction electron, while the other two thirds of the local moments are

assuming a bosonic character and developing magnetic order, allowing a partially disordered

phase to be formed, as depicted in Fig. 5.3.

5.5 Conclusions and Perspectives

In this work we introduced a new supersymmetric-symplectic spin representation for large-N

treatments. We have analyzed the properties of the supersymmetric-symplectic spin and its

symmetries. We identified the supergroup SU(2|1) as the group of transformations under

which the spin is invariant.

We have proposed a new framework in the large-N limit, which allows the problem to

sample different representations and to select the one which lowers the energy in a given

point in parameter space. This gives the possibility of describing the phase diagram of

heavy fermions within a single approach that is now able to capture the evolving character

of the spin, and naturally provides microscopic framework for the phenomenological two-

fluid picture for heavy fermions.
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Figure 5.8: “Phase diagram” of the most favorable representation as a function of A = π JHTK
and 1/q0 for the three-impurity model. The color code is the same as in Fig. 5.5. The
hashed area represents the region of the phase diagram in which an inhomogeneous solution
is energetically favorable.

Applying this approach to two toy models, the two-impurity model and the frustrated

three-impurity model, we find positive results towards an unified description of heavy

fermion systems. We find a mixed phase solution in which bosons and fermion coexist

what allows the description of unusual phases of matter with coexistence of magnetism and

Kondo effect, for example. Also, we find stable inhomogenous solutions, which can account

for states as the partially ordered state in CePdAl, starting from a microscopic model.

This work motivates further investigations and leaves several open questions.

First, within the mixed phase, we find a new kind of zero mode due to the partial

breaking of supersymmetry. This can be understood looking at an L-shape Young tableaux

and verifying that the corner box in such kind of tableau can be associated either with

a boson or a fermion. Given a state |Ψ〉 with a fermion assigned to the corner box, for
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example, one can rotate:

|Ψ〉 → b†f |Ψ〉, (5.91)

and find a new state which has same energy. This is an interesting property of the mixed

phase and raises the questions: is there any new physics to this degeneracy or is it a trivial

gauge degeneracy? Does it provide new kinds of zero modes or excitations which can lead

to non-trivial physical consequences? These are very important questions and should be

answered by the calculation of physical properties in this new phase in order to verify the

effects of the new modes on scattering properties. One interesting possibility to find that

these modes can provide novel critical behavior. These questions are left as subject for

future work.

Second, we would like to discuss the application of this approach to lattice models.

Extrapolating the results found in this work to the lattice we expect to find that for small

ratios of TK/JH a bosonic representation is more favorable and consequently magnetic

order can emerge once the bosons are able to condense given he dispersive character the

bosonic energy acquires in the lattice solution. Heavy Fermi liquid behavior is expected to

develop when there are fermions in the representation, which are able to hybridize with the

conduction electrons. In case a mixed phase is stable in the lattice model, a heavy Fermi

liquid phase is able coexist with magnetic order. In principle, this approach allows us to

explore the different kinds of phase transitions as seen in YbRh2Si2 within a single approach:

given that the fermions now can form a Fermi surface, the magnetic phase can emerge both

from local moments within the bosonic representation or as an instability of the large Fermi

surface. More interesting is the possibility of the description of superconductivity; this

phase is likely to develop in the mixed phase and its vicinity, as a consequence of a valence-

bond kind of magnetism emerging from the fermionic antiferromagnetic bonds. This is an

interesting direction for future work.

Further investigations are needed for better understanding of the consequences of the

new framework for the implementation of the constraint in the symplectic generalization.

By fixing the total number of boxes in the representation we explicitly break the original
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SU(2|1) symmetry of the spin down to SU(1|1), and only one zero mode is observed, related

to the transformations of bosons into fermions, which is still a symmetry since the total

number of bosons and fermions is preserved under this kind of transformation. Further

analysis of a lattice model solution with the full constraint is needed in order to understand

the effects of such zero mode.
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Appendix A

Hubbard Operators

Hubbard operators were introduced in order to study strongly correlated systems in case

the Coulomb interaction, ultimately related to the Hubbard U , is much larger than the

hopping parameter t. The Hubbard operators are defined in such a way that they carry

information about the specific initial and final state of a hopping process and exclude the

possibility of double occupancy.

When treating f-electrons, the large Coulomb repulsion usually allows us to project

out double occupied states, in which case the Hubbard operators come in hand. Here

we introduce a notation for the Hubbard operators which highlights the f-character of the

operators in order to make a better connection to the main text:

Xγγ′ = |4f13, γ〉〈4f13, γ′|, (A.1)

X0γ = |4f14〉〈4f13, γ|, (A.2)

Xγ0 = |4f13, γ〉〈4f14|, (A.3)

X00 = |4f14〉〈4f14|. (A.4)

The Hubbard operators are written in terms of the |4f13, γ〉 “hole” states of the Yb3+

ion with total angular momentum component equal to γ and the filled shell Yb2+ state

|4f14〉. Here we note that these operators do not follow canonical commutation relations

but:

[Xαβ(i), Xγδ(j)]± = δij(δβγXαδ ± δαδXγβ), (A.5)

where we have anti-commutation relations (+) between the “fermionic” Hubbard operators
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(X0γ and Xγ0) and commutation relations (−) between the “bosonic” Hubbard operators

(X00 and Xγγ′) and between fermionic and bosonic operators as well.

A.1 Slave Boson representation

In order to proceed with calculations using the standard many-body techniques we would

like to write the Hubbard operators in terms of creation and annihilation operators. The

most widely used representation of the Hubbard operators is the slave boson representation

[89, 39], which can be written as:

Xγγ′(j) = f †jγfjγ′ , (A.6)

X0γ(j) = b†jfjγ , (A.7)

Xγ0(j) = f †jγbj , (A.8)

X00(j) = b†jbj , (A.9)

where bj and fjγ are a slave boson and Abrikosov pseudo-fermion, following the canonical

bosonic and fermionic commutation relations, respectively. Here the charge degree of free-

dom is assigned to the bosons, while the spin degree of freedom is assigned to the fermions.

This assignment can be understood in the following way: the filled shell (or empty state),

is represented by a bosonic state, while the states with one or two holes (or electrons) are

represented by fermionic states. Now the constraint is written as:

∑
γ

Xγγ +X00 =
∑
γ

f †jγfjγ + b†jbj = 1, (A.10)

which guarantees that the sites are never doubly occupied. The sites can be “empty” (with

the full filled shell) when nB = 1, or singly occupied (by a hole) when nF = 1. This condition

is implemented within a path integral formalism as a constraint in the theory. Here we note

the convenience of the slave-particle approach in which case we have a holonomic constraint

in stead of the non-holonomic constraint nF < 2 in case we do not introduce the slave

particle.
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A.2 Slave Fermion representation

In an analogous fashion we can write the Hubbard operators with the inverse assignment

of charge and spin [146]:

Xγγ′(j) = b†jγbjγ′ , (A.11)

X0γ(j) = f †j bjγ , (A.12)

Xγ0(j) = b†jγfj , (A.13)

X00(j) = f †j fj , (A.14)

in which case the bosons carry the spin and the fermions the charge degrees of freedom.

The constraint is now:

∑
γ

Xγγ +X00 =
∑
γ

b†jγbjγ + f †j fj = 1. (A.15)
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Appendix B

Some facts about SP(N)

The SP(N) group is the group of N × N matrices over the reals which preserve a nonde-

generate antisymmetric bilinear form 1. The group is only defined for N even. In terms of

matrices it can be defined as the matrices U which satisfy [147]:

UT εU = ε, (B.1)

where ε is an antisymmetric matrix εT = −ε.

Symplectic transformations are unimodular with detU = 1.

B.1 Irreducible representations and Young diagrams

Young diagrams provide a simple way to label and characterize irreducible representations.

It was introduced within the symmetric group and its use was also generalized to general

linear groups. A Young diagram consists of a set of boxes arranged in left-justified rows of

decreasing length:

For tensor representations of a given rank r, the total number of boxes in the tableau is

equal to r. To each box one can assign one index which is symmetrized with other indexes

1Note that different references use different notations. Here we use SP(N) as the group formed by N ×N
matrices.
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in the same row and anti-symmetrized with other indexes in the same column. The shape

of the diagram is labelled by a set of numbers (fN/2, fN/2−1, ..., f1), called partition, referent

to the number of boxes in each row (here we already introduce the notation that will be

convenient for the discussion of SP(N) in particular), where fN/2 + fN/2−1 + ... + f1 = r.

From these diagrams one can infer the dimension of the given representation and also use

them for the determination of characters [147].

B.2 Casimirs

Following [131], the second Casimir for SU(N) representation given by the partition

(fN/2, fN/2−1, ..., f1) can be written as:

C2 =

N/2∑
i=−N/2

(λ2
i − ρ2

i ), (B.2)

where the sum does not include i = 0 and

λi = fi +N/2 + i

ρi = N/2 + i

 for i > 0 (B.3)

λi = −f−i +N/2 + i

ρi = N/2 + i

 for i < 0 (B.4)

Since we are interested in L-shaped Young diagrams with width w and height w we can

find a simplified form for the second Casimir if terms of these parameters. We know that:

fi =


w, for i = N/2

1, for N/2− 1 ≤ i ≤ N/2− h+ 1

0, for i > N/2− h+ 1

(B.5)
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so that

λ2
i − ρ2

i =



w2 + 4Nw, for i = N/2

w2, for i = −N/2

1 + 2(N + 1), for i > 0

1− 2(N + 1), for i < 0

0, for |i| > N/2− h+ 1

(B.6)

Summing over i:

C2 = 2(w + h)(w − h+ 2N) + 4h− 2− 4N. (B.7)

In case we identify Q = w + h− 1 and Y = h− w, we can write:

C2 = 2Q(N + 1− Y ). (B.8)

B.3 Decomposition of Products of Representations

Following [148], the Young diagrammatic method to decompose the product of represen-

tations in SU(N) can be generalized for SP(N). If we are interested in the product of two

representations [f1]ξ1 e [f2]ξ2 , where ξn is the number of boxes used to describe the repre-

sentation and [f ] = (fN/2, fN/2−1, ...), the procedure goes as follows:

• Start with the product of the representations in the usual way using the Young dia-

grams.

• Also take the product of the representations after removing simultaneously k-boxes

from the original representations. Here k = 1, 2, 3, ...min{ξ1, ξ2}. This removal can

be done in all possible ways under two restrictions:

A) The resulting diagram should be standard Young diagram.

B) No more than two boxes in the same column (row) in [f1] with those in the

same row (column) in [f2] can be removed simultaneously. This is required given the
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symmetrization (antisymmetrization) of the indexes if the boxes are in a row (column)

in the diagram. Removing two indices means to trace over them and the trace over

antisymmetrized indices is zero.

• For SP(N = 2l), if the representation obtained [λ] = (λN/2, λN/2−1, ..., λN/2−p+1, 0, 0, ...)

has p > l then we have a non-standard diagram (p is in fact the number of rows with

nonzero boxes). In this case we need to remove boxes from the diagram along a con-

tinuous hook of length 2p − n − 2 and depth x, with x being counted from the first

column to the right most column the hook reaches. The resultant Young diagram will

be admissible or set to zero if, at any stage, the removal of the required hook leaves

an irregular Young diagram. The diagram gets a factor of (−1)x+1.

One important result is the fact that the decomposition of the product of a representation

with itself always gives rise to a singlet state (this follows from the removal of all boxes from

both representations in the product, leading to singlets).
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Appendix C

Discussion on the linearization of the constraint

In Chapter 4 we introduced the second Casimir in its operator form as the condition defining

a super-surface in an 8-dimensional space with directions referent to each generator, subject

to a complex measure Λ:

4S · S = VS ·Λ ·VS , (C.1)

where VS = (Ψ0,Ψ1,Ψ2,Ψ3, A1, A2, B1, B2) and

Λ =

 γ1 0

0 M

 , (C.2)

with γ1 = diag[1,−1,−1,−1] and

M =



0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


, (C.3)

as introduced in the main text.

When implementing the above constraint in our theory, it introduces interacting terms

that can be decoupled by a Hubbard-Stratonovich transformation. Within a static mean

field solution we already know that the fermionic part of the constraint will not contribute

to the mean field solution (fermionic operators are anti-periodic in imaginary time), so we

can take A1 = A2 = B1 = B2 = 0. Also, if we are not interested in superconducting
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solutions the constraint reduces to fixing:

4S · S = Ψ2
0 −Ψ2

3, (C.4)

what defines a hyperbola in a 2-dimensional space. Redefining the operators as:

ΨB =
Ψ0

N
= nB/N + 1/2, (C.5)

ΨF =
Ψ3

N
= nF /N − 1/2, (C.6)

we can write the constraint as:

s2 = Ψ2
B −Ψ2

F , (C.7)

where the parameter s now controls the magnitude of the spin according to:

S · S =
s2N2

4
. (C.8)

From the form above we can note the following points:

1. The values of ΨB are bounded from below to ΨB = 1/2 (for nB = 0) and unbounded

from above.

2. The values of ΨF are bounded from below to ΨF = −1/2 (for nF = 0) and from above

to ΨF = 0 (maximum number of fermions is nF = N/2).

3. A completely bosonic representation is characterized by ΨF = −1/2 (or nF = 0).

4. A completely fermionic representation is characterized by ΨB = 1/2 (or nB = 0).

Note now that the maximum value of S · S which can be described purely by fermions

is for the case nB = 0 and nF = N/2:

s2 =

(
0 +

1

2

)2

−
(

1

2
− 1

2

)2

= 1/4, (C.9)

restricting the maximum value of the spin to s = 1/2. For s > 1/2 the spin cannot
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be described purely by fermions, and there is always a bosonic component to it. Given

this fact we restrict the discussion to values of s < 1/2 so that our solution can sample

representations ranging from purely bosonic to purely fermionic for a given N .

Within the restrictions on the values of ΨB and ΨF enumerated above, we can plot the

hyperbolic constraint as shown in Fig. C.1.
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s=0.5

s=0.4

s=0.3

s=0.2

s>0.5

Figure C.1: Plot of the hyperbolae constraints for different magnitudes of the spin, or values
of s. The full colored lines indicate the physical s < 1/2, and the black dotted hyperbolae
the unphysical s > 1/2 lines. The straight dashed lines indicate the linear constraint
approximation. The lower horizontal axis (in blue) refers to a fully bosonic representation,
while the left vertical axis (in red) refers to a purely fermionic representation.

From the figure above we can see that only the colored curves (for s < 1/2) actually span

from the completely bosonic representation (located an the bottom horizontal axis, in blue)

to the fully fermionic representation (located in the left vertical axis, in red) for a given

value of S · S. The figure also shows hyperbolae for s > 1/2, which does not have a fully

fermionic representation. Also, we note that as s→ 0 the constraint behaves essentially as

a straight line satisfying ΨB + ΨF = cte, what motivates the use of a simplified form of the

constraint in our approach.

Approximating the hyperbolae of constant S · S by straight lines, we can write:

ΨB + ΨF = nB + nF = q. (C.10)
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We can now relate the size of the spin, or the parameter s, with the value of the parameter

q = Q/N . By matching the left most point of the hyperbola with the linear constraint, we

are matching the point with coordinates ΨB = 1/2 and:

ΨF = −
√

Ψ2
B − s2 = −

√
1/4− s2, (C.11)

so

ΨB + ΨF = q = 1/2−
√

1/4− s2, (C.12)

what defines the relation between s and q. Note that the minimum value of q = 0 (for s = 0

and the maximum value q = 2 (for s = 1/2). Fig. C.1 shows the hyperbolae constraints

and the respective linear constraints.

We can also estimate by how much the magnitude of the spin is deviating from its

starting value by taking the linear constraint in stead of the hyperbolic constraint. Note

that the linear and hyperbolic constraints are not exactly the same in the other extreme,

what means that the linear constraint is now matching some other hyperbolic curve referent

to a different spin size s. We can estimate this new spin size by finding the hyperbola which

passes through the point ΨF = −1/2 and

ΨB = q −ΨF = q + 1/2 = 1−
√

1/4− s2. (C.13)

The new hyperbola can be written as:

(s′)2 = Ψ2
B −Ψ2

F = 1− s2 − 2
√

1/4− s2. (C.14)

Note that the ratio s′/s tends to one as s → 0, as expected, and has its maximum

deviation for s ∼ 1/2.
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Appendix D

Fermionic part of the free energy

The fermionic part of the solution reduces to two decoupled impurity problems. Here we

show explicitly the single impurity solution. The partition function for a single impurity

can be written as:

ZF =

∫
DµF e−SF , DµF = D[c, f, v, λF ], (D.1)

already transforming from imaginary time to Matsubara frequencies:

SF =
∑
n

[∑
kσ

c†kσ(−iωn + εk)ckσ +
∑
σ

f †σ(−iωn + λF )fσ (D.2)

+
∑
σ

(∑
k

f †σvckσ + h.c.

)]
+ βN

∑
k

|v|2

JK
− βNλF qF .

We start by integrating out the conduction electrons, taking into account their effect in

the self energy of the fermions that compose the spin. The effective fermion propagator can

be written as:

Gf = G0
f +G0

fv
∗
∑
k

G0
ckvG

0
f +G0

fv
∗
∑
k

G0
ckvG

0
fv
∗
∑
k′

G0
ck′vG

0
f + ... (D.3)

= G0
f +G0

fv
∗
∑
k

G0
ckvGf ,

= [(G0
f )−1 − Σf ]−1,

where (G0
f )−1 = iωn − λF is the bare f-fermion propagator, and

Σf =
∑
k

|v|2G0
ck, (D.4)
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is the f-fermion free energy, where (G0
ck)−1 = iωn − εk is the bare conduction electron

propagator.

We evaluate the sum over k in Σf as an integral over energy with a constant density of

states. Analytically continuing the Matsubara frequencies to the real axis (ωn → ω ± iδ):

Σf = |v|2
∑
k

1

ω ± iδ − εk
(D.5)

= |v|2
∫ D

−D
ρ(ε)dε

(
1

w − ε
∓ iπδ(ω − ε)

)
,

= −iΓΘ(D − |ω|)sgn(ω̃),

where Γ = πN(0)|v|2, D the bandwidth, N(0) the constant density of states, Θ(x) the

Heaviside step function. Here ω̃ indicates the imaginary part of the frequency.

Now the fermionic part of the free energy reads:

SF =
∑
nσ

f †σ(iωn)(−iωn + λF + iΓn)fσ(iωn) + β
N |v|2

JK
− βNλF qF , (D.6)

where Γn = ΓΘ(D−|ωn|)sgn(ω̃n). We can integrate out the f-fermions and write an effective

action at the saddle point values of v and λF (to be determined by extremization of the

free energy, see main text):

SEffF = −
∑
nσ

log[−iωn + λF + i∆n] + β
N |v|2

JK
− βNλF qF . (D.7)

The sum over Matsubara frequencies can be performed as an integral in the complex

plane weighted by the Fermi distribution function f(z) = (eβz − 1)−1. Note that the
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integrand has a branch-cut:

∑
nσ

log[−iωn + λF + i∆Θ(D − |ωn|)sgn(ω̃n)] (D.8)

=
βN

2πi

∫
C
dx log[−z + λF + i∆Θ(D − |z|)sgn(z̃)]f(z)

=
βN

2πi

[∫ D

−D
dzf(z) log[−z + λF − i∆]

+

∫ −D
D

dzf(z) log[−z + λF + i∆]

]
,

which simplifies to:

∑
nσ

log[−iωn + λF + i∆Θ(D − |ωn|)sgn(ω̃n)] (D.9)

= −βN
π

∫ D

−D
dzf(z)Im[log[−z + λF + i∆]]. (D.10)

In the zero temperature limit the Fermi function sets the upper limit of the integral to

zero. Evaluating the integral we determine the free energy:

FF
N

=
1

π
Im

[
(λF + i∆) ln

(
λF + i∆

De

)]
+
|v|2

JK
− λF qF , (D.11)

which can be rewritten as:

FF
N

=
1

π
Im

[
ξF ln

(
ξF

eTKeiπqF

)]
, (D.12)

once we define

ξF = λF + i∆, (D.13)

and the Kondo temperature

TK = De−1/N(0)JK . (D.14)
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Appendix E

Bosonic part of the free energy

From the main text we have that the bosonic part of the partition function is:

ZB =

∫
DµBe−SB , DµB = D[b, g, λB], (E.1)

already transforming from imaginary time to Matsubara frequencies:

SB =
∑
nσ

Ψ†Bσ(iνn)LB(iνn)ΨBσ(iνn) + βN
|g|2

JH
− 2βNλB(qB + 1/2), (E.2)

where

LB(iνn) =

 −iνn + λB g

ḡ iνn + λB

 , (E.3)

ΦBσ(iνn) =

 b1α(iνn)

σ̃b†2−σ(−iνn)

 . (E.4)

Integrating out the bosons and taking the saddle point value of λB and g, which will

be determined by the extremization of the free energy with respect to these parameters, we

can write:

ZB = e−S
Eff
B , (E.5)
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where

SEffB =
∑
nσ

log[Det[LB(iνn)]] + βN
|g|2

JH
− 2βNλB(qB + 1/2), (E.6)

= N
∑
n,x=±

log[ExB − iνn] + βN
|g|2

JH
− 2βNλB(qB + 1/2),

where

ExB = x
√
λ2
B − g2. (E.7)

The sum over Matsubara frequencies can be written in terms of an integral over the

imaginary plane weighted by the bosonic distribution function n(z) = (eβz − 1)−1:

∑
n,x=±

log[ExB − iνn] = −βN
∑
x=±

∫
C

dz

2πi
log[ExB − z]n(z). (E.8)

In the zero temperature limit:

∑
nσ

log[Det[LB(iνn)]]
T→0−−−→ N

∑
x=±

(−ExB)Θ(−ExB), (E.9)

where Θ(x) is the Heaviside step function, so that the bosonic part of the free energy reads:

FB
N

=
√
λ2
B − g2 +

g2

JH
− 2λB(qB + 1/2). (E.10)
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Appendix F

Fluctuations of the local fermionic fields

In this appendix we define and compute χcb(iωn). From the main text we have:

χcb(iωr) = − 1

β

∑
kk′m

Gb(iωr + iωm)Gkk′(iωm) (F.1)

where,

Gb(iνn) = (iνn − ξB)−1 (F.2)

is the bosonic propagator, with ξB =
√
λ2
B − |g|2, and

Gkk′(iωn) = G0
k(iωn)δkk′ + |v|2G0

k(iωn)Gf (iωn)G0
k′(iωn), (F.3)

with same definitions as in Appendix D.

Evaluating the sum over momenta:

∑
kk′

Gkk′(iωn) =
∑
k

G0
k(iωn) + |v|2Gf (iωn)

(∑
k

G0
k(iωn)

)2

, (F.4)

we know

∑
k

G0
k(iωn) = −iπN(0)sgn(ωn), (F.5)

as computed in the evaluation of the fermionic part of the free energy. In the infinite
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bandwidth limit the sum over k can be written as:

∑
kk′

Gkk′(iωn) = −iπN(0)sgn(ωn)− πN(0)Γ

iωn − λF + iΓsgn(ωn)
(F.6)

where N(0) is a constant density of states and Γ = πN(0)|v|2 as before.

Back to the computation of χcb:

χcb(iωr) = χ1
cb(iωr) + χ2

cb(iωr), (F.7)

the first term is equal to:

χ1
cb(iωr) =

1

β

∑
m

iπN(0)sgn(ωm)

iωm + iωr − ξB
(F.8)

=
iπN(0)

2πi

∮
dzf(z)

sgn(z̃)

z + iωr − ξB
= −iπN(0)f(λB − iωr)

+
iπN(0)

2πi

[∫ D

−D
dzf(z)

(−1)

z + iωr − ξB
+

∫ −D
D

dzf(z)
(+1)

z + iωr − ξB

]
,

where z̃ = Im(z) and f(λB − iωr) = −n(λB). In the zero temperature limit f(z)→ θ(−z)

and n(λB > 0)→ 0, so:

χ1
cb(iωr) = −N(0) log

(
−ξB + iωr

−ξB + iωr −D

)
. (F.9)

The second part of χcb(iωr):

χ2
cb(iωr) =

1

β

∑
m

πN(0)∆

iωm − λF + i∆sgn(ωm)

1

iωm + iωr − ξB
(F.10)

can be computed in analogous fashion:

χ2
cb(iωr) =

N(0)∆

2i

1

iωr − ξB + λF + i∆
(F.11)

×
[
Log

(
−λF − i∆

−λF − i∆−D

)
− Log

(
−ξB + iωr

−ξB + iωr −D

)]
+ (i∆→ −i∆).
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Continuing to real frequencies ωr → ω ± iε, writing 1/JK = −N(0)Log|(λ+ i∆)/D|, in

the infinite bandwidth limit:

χcb(ω − iε)−
1

JK
= +N(0)Log

∣∣∣∣ λF + i∆

ξB − ω ∓ iε

∣∣∣∣− iπN(0)Θ(ω − λ) (F.12)

+
N(0)∆

2i

1

ω ± iε− ξB + λF + i∆
Log

(
λF + i∆

ξB − ω ∓ iε

)
− N(0)∆

2i

1

ω ± iε− ξB + λF − i∆
Log

(
λF − i∆

ξB − ω ∓ iε

)
.

In the transition line, where ξB = ξF ⇒
√
λ2
B − g2 = λB = λF = λ, we have the

simplified form:

χcb(ω − iε)−
1

JK
= +N(0)Log

∣∣∣∣ λ+ i∆

λ− ω + iε

∣∣∣∣− iπN(0)Θ(ω − λ) (F.13)

+
N(0)∆

2i

(ω − i∆)

ω2 + ∆2
Log

(
λ+ i∆

λ− ω + iε

)
+ (i∆→ −i∆),

rewriting,

χcb(ω − iε)−
1

JK
= N(0)ωRe

[
Log(λ+ i∆)

ω + i∆

]
− N(0)ω2

∆2 + ω2
log(λ− ω + iε), (F.14)

which is the form of χcb discussed in the main text.
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[129] P. Coleman, C. Pépin and A. M. Tsvelik, Phys. Rev. B 62, 3852 (2000).

[130] I. Bars, Physica D 15, 42 (1985).

[131] C. O. Nwachuku and M. A. Rashid, J. of Math. Phys. 18, 1387 (1977).

[132] S. Paschen, T. Lhmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich,
P. Coleman and Q. Si, Nature 432, 881 (2004).

[133] P. Gegenwart, Science 315, 969 (2007).

[134] S. Friedmann, et al., Nature Physics 5, 465 (2009).

[135] A. Donni, G. Ehlers, H. Maletta, P. Fischer, H. Kitazawa and M. Zolliker, J. Phys.:
Condens. Matter 8, 11213 (1996).



164

[136] M. Dolores Nunez-Regueriro, C. LaCroix and B. Canals, Physica C 282-287, 1885-
1886 (1997).
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