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ABSTRACT OF THE DISSERTATION

Multi-Objective Generation Expansion Planning
Considering Uncertainty and Modeling with the Pareto
Uncertainty Index
by
SALTUK BUGRA SELCUKLU

Dissertation Director: Dr. David W. Coit

Many real life optimization problems are multi-objective problems where objectives
under consideration usually conflict with each other and they are also stochastic due to
inherent uncertainties. The electricity Generation Expansion Planning (GEP) problem is
an example of such problems in which the goal is to expand the electric power network
with new power plant investments including renewable resources. Decisions are made
where and when to build new power plants and which technology to choose for new
investments. Objectives can include but are not limited to minimization of the cost and
pollutant emissions and maximization of reliability. There are inherent uncertainties in
the GEP problem due to climate change, demand increase, fuel prices, technological
progress and many other aspects that have to be considered. Some of these uncertainties
directly affect the objective functions and some affect the constraint sets in the
optimization model.

In this study, a new uncertainty metric, the Pareto Uncertainty Index (PUI), is

presented. The PUI includes uncertainty as part of the Pareto optimality concept so that



the decision or policy maker can observe the uncertainty of Pareto optimal solutions.
Using the PUI approach for objective function uncertainties and chance constrained
programming or scenarios for constraint set uncertainties, a new multi-objective
stochastic genetic algorithm, the Pareto Uncertain Genetic Algorithm (PUGA), is
presented in this research, as well. In contrast with the other multi-objective genetic
algorithms and classical methods, PUGA can incorporate both the multi-objective and
stochastic aspects of problem solving without any transformation. A new post-Pareto
pruning approach that reduces the number of Pareto optimal solutions to a smaller
practical set is aso included in PUGA with the help of the uncertainty information
preserved in the PUI. Furthermore, this uncertainty information is used for risk
assessments of solutions depending on the risk preferences of decision makers. The PUI
and PUGA concepts are demonstrated and tested on several problems including the US

Northeast region generation expansion planning (NEGEP) problem.



ACKNOWLEDGEMENT

As it is often the case, the acknowledgement part of this dissertation is too written in
a hurry at the last days of completion. Therefore, the words and sentences will never do
justice in delivering my appreciation for those mentioned here. Please do not hesitate to
magnify them with multiple folds.

| am truly fortunate to have advisors such as Prof. Dr. David Coit and Prof. Dr. Frank
Felder. | would like to express my sincere gratitude to them for their continuous support,
patience, motivation, and immense knowledge. Their guidance helped me in all the time
of research and writing of thisthesis.

The dissertation committee is often present to convey the decision about the work
done. However, | am further fortunate to have committee members such as Prof. Dr.
Melike Baykal-Gursoy, Prof. Dr. Abdullah Konak and Prof. Dr. James Luxhgj who have
helped me beyond their expected role. | would like to thank them for their insightful
comments and encouragement.

No journey starts with the first step delivered. There is aways inspiration and
encouragement for that first step, and there are the people who provide the inspiration
and encouragement. | would like to express my gratitude first to my father Prof. Dr.
Ahmet Selcuklu, and to Prof. Dr. Fahrettin Kelestemur and Prof. Dr. Hiseyin Yapiclt who
all made it possible for meto start and finish this journey for my PhD degree.

My sincere thanks also goes to my family especially to my mom and sister, and to all
my friends, Prof. Dr. Sadan Kiiltiirel-Konak, and to my Kokikai Aikido fellows for their

precious and continuous support.



Lastly, | would like to thank the reader not to judge this acknowledgement part as a
too-sentimental piece in a technical document, since this is maybe the most important

work | have completed so far.

Thisresearch is supported by:

The Council of Higher Education, Turkey (Yiksekdgretim Kurulu, YOK)
National Science Foundation (NSF) (Award Number: CMM-0969423)
National Science Foundation (NSF) (Award Number: OCE141958)
National Science Foundation (NSF) (Award Number: OCE1049088)

Erciyes University, Turkey



TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION ...ttt I
ACKNOWLEDGEMENT ..ottt et nrae e snee e v
TABLE OF CONTENTS ..ottt sttt st nnee e Vi
LIST OF TABLES ... ottt e sn e X
LIST OF FIGURES.......oo ettt ettt Xiv
LIST OF FREQUENTLY USED ACRONYMS.....cccoi e XX
1 a1 8 0o L1 T Lo o H S 1
1.1 Research CONtIDULION ......cc.oiiiiiiie e 3
1.2 Dissertation OrganiZation ..........ccccceeeereneeneeneesiesieesessee e sie e sees e ssesseesees 4

2. Background and Literatur@ ReVIEW .........coceieeiineeneieee e 6
2.1 Generation Expansion Planning Problem ... 6
211 Problem Formulation and Definitions..........cccveiirienneneneeeseeeese s 7

212 Single Objective Least COSt GEP MOEIS .......ccco i 11

213 Multi-Objective GEP MOGEIS ..o e 14

2.2 Uncertainty INthe GEP ..........ccceii et 18
221 GEP Models Considering UNCEMTaINTY .........coererirerierieneniesee e 19

222 Sources of Uncertainty iNthe GEP ........cvoeee e 23

223 Aleatory and Epistemic UNCErtaiNtY .......cceeeeeeeereereseseseeeeeeseesesee st reesee e e 31

224 Importance of Aleatory and Epistemic Uncertainty DisStinction ...........ccoeevveeeveveeceennnns 32

225 Mathematical Representations of Aleatory and Epistemic Uncertainties.................... 33

226 Aleatory and Epistemic Uncertainties in Power Systems and the GEP........................ 36

2.3 Multi-Objective OptimiZation.........cccccvevueeeereeeesie e eeas 40

Vi



231 L = (0 X @] 0|11 07 1 S 43

232 ClasSiCal MENOOS.........ccoiriierree e 45
233 Multi-Objective Evolutionary AIQOrithms............cccoviiiiiiiniieee e 51
234 Multi-Objective Genetic AlQOIthMS .......coeiiiiiee e 54
2.4 Uncertainty in Multi-Objective Optimization...........ccccceeveeveeieeseeseese s 63
2.5 POSt-ParetO Pruning ........cccccoeveeieieeiesieeseeseesieseesse e sseeeesssessee e snsssneenens 69
3. Pareto Uncertainty INdexX (PUI) .....oooooe e 71
31 PUI FOrMUIBLION ...ttt st 71
3.2 Risk Adjusted Pareto Uncertainty Index (rPUI) ......cceovveeveeceveece e 78
321 Case 1: RisK-AVerse DECISION MEKEY ........ccooeiiiiriieriesie e 79
322 Case 2: Risk-Seeking DeCISION MaKET ........ccvievirene e cese e 81
323 Case 3: Same Expected Values and Different Variances........ccocvevvevvievevenessesesennens 82
324 Case 4: Same VarianCe/EXpectation Ratio. ..........ccoeveiererenir e 84
3.25 DIfferent Py SEHINGS ....ooveeeeieeeeeee ettt seas 86
3.3 Discrete PUI and rPUI ........ccooiiiiiinieeee e 88
331 Comparison of Discrete and Continuous PUI and rPUI ..., 90
3.4 PUI and rPUI With SCENAIOS........ccueveieeeieieriesieeeeee e 9
3.5 SUMIMAIY ...ttt b e e be e s nn e et e e e nee 95
4. Pareto Uncertain Genetic Algorithm (PUGA) ..o, 96
4.1 Design ComponentS Of PUGA .......cocoiiriiniereniesiie e 97
41.1 Pareto Probability SOMting......cccccecerevirese e e 97
41.2 Preservation of Uncertainty Information and DiVErSity ......cccccevevevenvneseseeesennnnens 102
413 LU o PSSP 104
414 Constraint HanIiNg .......cooeeieeeeses e b ee s 104



415 TWin SolUtiON ElIMINGLION......ccei ittt ssae s sabessaee e 106

4.1.6 Neighborhood MechaniSmM...........cccciiiriiieii e 107
41.7 POSE-ParetO PrUNIiNG ........coeiiiieiiieie et ee s 108
4.2 ManLoop Of PUGA ..ottt see e e 108
421 EVAIUBLTON OPEIALON ... .eviiteieeeieiieeeee ettt et sae bbb see st b saesbe e eneeneens 109
422 SELECLION OPEIGLOL ...ttt et b et e bbb bt st esbeeseebe e e eneeseeas 109
423 Crossover and MUtation OPEratOrS........ccueoueruererereseseeereeseeseeseeseseessessessesssessessessens 110
424 Evaluation, Elitism and Sorting of the New Generation ............ccocevevvieveeveseereseneens 111
425 Extraction of the BeSt SOIULIONS...........cuiiriririinineseses e 112
4.2.6 Algorithm for PUGA Main LOOP......cceiiruiririeierierie et 112
4.3 PUGA ESIQNS......iieiiiieieieeiieeiese e steesteseesteseesseeeesseesseesseessesseessesseessessenns 112
44 CONSTR TESt Problem ..ot 113
45 Power Generation Test Problem ... 117
451 Muulti-objective stochastic model of the test problem ... 119
452 Calculation of ProbabilitiES........ccciiiiieeiereee e e 120
453 AlQOrthm ParameEterS.......ccvecverieieresesesteeseesese st e et se et eneene e enaenes 121
454 Design tests with stochastic objective function coefficients.........cccccoevvevvievincecinnnnns 122
455 RISK MEASUIE TESIS.....eiieiiterie ettt sttt et st re et se e sb e bt b sbe e ne et 125
45.6 Test with StochastiC CONSITAINES...........oiiririieeee e e 131
457 Test with three objective fuNCLIONS ... 139
458 Test with dependent objective coefficients and different distributions...................... 141
4.6 SUMIMBIY ...oeeiiieieteeeiee et e sieeeseeeseesseesseeesseesseeeseesae e e saeeeseesaeesaseaseesanesnneeenes 145
5. TheUSNortheast Generation Expansion Planning (NEGEP).................. 147
5.1 Multi-objective Stochastic NEGEP ...........ccoooiiriiinieeneee e 148
5.2 Aleatory and Epistemic Uncertainty Modeling in NEGEP ....................... 149

viii



521 Parameters with aleatory UNCEMaiNtY .........cceeeeeereerierereseeeeseesesesee e sre e see e 150

522 Parameters with epistemic UNCEItaINtY .........covevereerereresiesieereese e 151

5.3  REFEIENCE SCENAMIO ..c.veuveveiieeirieiees e 153
5.4 Climate Change and Technological Progress SCenarios..........ccccvvvereennnns 157
55 Solution and Decision Process of PUGA with Scenarios..........c.ccceeenneneee. 159
5.6 DECISION ProfilES.....c.oiiiciiiicireeeee e 160
5.7  RODUSE Pareto FIONES........ccoiiieeriirieiiniese e 160
58 NORISK Preference Case .........ccoovveirineneienesesecese e 161
5.9 Comparison of DeCiSion Profil€S........ccccovecviievinieseeseese s 165
510  Scenario COMPAIISONS .......cceerieeieesreesieseesseesseessesseessesssesseesseseesssesseessens 175
5.10.1  All scenarios with risk-averse preference, p = [15 15]...cccooirereienerenenerie e 175
5.10.2  All scenarios with risk-seeking preference, p = [-15-15] ..ccoceiiiinirenencneneene 179
511  Risk Preference Comparisons on the Robust Pareto Front S7................ 183
512 CONCIUSION ...ttt 188

6. Conclusionsand Future Research..........cccovviiiiinicisc e 190
6.1 Research ContribULION ..........cooiiiiiiie e 191
6.2  FULUre RESEAICN ......cocvviiiiicc s 193
APPENAIX | et 195
REFEIBNCES......coeee e e 200



LIST OF TABLES

Table 1. Nomenclature for multi-objective stochastic formulation of GEP....................... 8
Table 2. Reviewed multi-objective GEP MOEIS..........cccceiieiiniieneneeeeeseee e 18
Table 3. Reviewed models that include uncertainty inthe GEP............cccoccoviiiiiiiieenens 22
Table 4. Sources of uncertainty in utility resource planning ..........cccoceeerieeieniencnneennns 24
Table 5. Basic evolutionary algorithm form [70] .......cceeeiieiinieeeee e 52
Table 6. List of reviewed multi-objective genetic algorithms..........ccocviveiiiiieincenns 62
Table 7. Calculation of cumulative PUI for a bi-objective optimization problem ........... 75
Table 8. Prefer@nCe PUI ... ...t 77
Table 9. Expected values and variances for risk-averse Case .......oovvveveevieeeneesieesciieeinnns 80
Table 10. PUI and rPUI valuesfor risk-averse case (p1= 15, P2= 15) coovvvreeeerenereninnnnns 81
Table 11. Expected values and variances for risk-seeking Case ..........ccocvvveereriesenieeennns 81
Table 12. PUI and rPUI values for risk-seeking case (p1= -6, 2= -6) «ovovvreereererereriennnns 82
Table 13. Expected values and varianCes for Case 3........cooeevereenerrienieesiee e 82
Table 14. Different py, settings for two solutions of Case 3 .........cocccveveeviiecvieciee e, 84
Table 15. Risk-averse vs. risk-seeking for Case 3........coovieeierieenerie e 84
Table 16. Expected values and varianCes for Case 4 ........coovvvveieeciecveesiee e 85
Table 17. Risk-averse vs. risk-seeking for Case 4 ... eeeieneenienie e 86
Table 18. Different pm values for riSk-aversSe Case ........ccovvvviveeiiesieciee e 87
Table 19. Different pm values for risk-SeeKing CaSe.........ccveereriirrerieniese e 88
Table 20. Expected values and variances for risk-averSE Case ........coevvvvviveeieeiieeesiveesiens 90

Table 21. Comparison of continuous and discrete PUI and rPUI (D = 1000, p; = 15, p2 =



Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

Table 30.

Table 31.

Table 32.

Table 33.

Table 34.

Table 35.

Table 36.

Table 37.

Table 38.

Comparison of continuous and discrete PUI and rPUI (D =500, p1 =15, p2 =

(1) T OO 91
Comparison of continuous and discrete PUI and rPUI (D =100, p; = 15, p2 =
(1) T OO 91
Main differences of Pareto ranking designs of PUGA ..........ccccoocieiieneneee. 98
PUGA dESIONS......uiiiiieiiie ittt sttt sts et s e st ssae e s e e nteesreesneesneesnneens 113
Power generation CharaCteristiCs ........cvveererinerie e 117
Standard deviations of power generation characteristics..........cccevvevvveeiveenen. 117
Expected values and standard deviations of loads...........ccccceeveveeiieiiiecnienn, 118
Modified characteristics (expected ValUES)..........cccoevereerinienee e 126
Modified characteristics (Standard deviation Of COSES).......cccovveererrirrierninninns 126
Modified characteristics (Standard deviation of emisSIions).........cccceveeeverennns 126
Uncertainty levels of two SOIULIONS .........cooiriiiiiiieeceee e 126
Solutions with same objective values, but different decisions........................ 127
Comparison of solutioNS BY rPUI ... 127
Comparison of two solutions which minimizes the cost for deterministic and
StOChastiC CaSE 01 = 02 = 0.4 ... e 133
Comparison of three solutions which minimizes the emissions for deterministic
and stochastic case 01 = 0, = 0.4 and stochastic case 01 =0, =0.45............ 135
Comparison of two solutions which minimizes the cost for Case 1 where a; =
a2=04and Case3wherea; =1and a2 = 0.4......cooveiiiiiieieeieeere e 137
Comparison of solutions which minimizes the cost for the deterministic case

ANd Case 4 Where 01 = 00 = 0.55 .oiiiiiicceeeeeee ettt e e e e e e s ee s 138

Xi



Table 39.

Table 40.

Table41.

Table 42.

Table 43.

Table 44.

Table 45.

Table 46.

Table47.

Table 48.

Table 49.

Table 50.

Table 51.

Table52.

Table53.

Table 54.

Table 55.

Table 56.

Table57.

Table 58.

Probability distributions of objective function coefficients.............cccccoueeunene 141
Correlation matrix of objective function coefficients..........ccccocevcveveeiiennnen. 142
SCENMATOS. ...ttt e e e bt et e e e e e e s e nnenn e e e s 148
Classification and representation of stochastic NEGEP parameters............... 150
HOUISINtIME PEITOUS......ccvieiiie et ere e 154
Electricity demands (GWh) and peak demands (MW) in 2010...................... 155
Electricity |0ad growth rate...........cooeiiiieiineereee e 155
NEISO wind turbine derate faCtors...........cooeieriiinine e 156
Transmission CaPACILY (IMW)....oue i 157
NEGEP SCENAIIOS.......ccveieiiieiesiisie sttt e sresne e nneas 157
Y early percentage change in GEP parameters with respect to reference case due
to advanced level technological progress.........c.coveeeeeenere e 158
Probability of scenariosfor RPF S7 and S8 ........ccooviviieevie e 161
Cost and emissions comparisons of cost minimization solutions for all

SCENAITOS ..ttt eae et se e e e e e e s e e e se e se e st e st e e e e e e e e e n e e e nenr e e e 162
Cost and emissions comparisons of top risk selected solutions for each decision
010 1= SR 167
Probability of scenarioSfor RPF S7 ..o 183
Risk Preference Comparisons of Objectivesfor the RPF S7..........ccooceeennns 185
Generation teCNNOIOGIES .........coviriiiiiiee e s 195
Technical characteristics of all generation technologies...........cccocceveeiinnnne. 196
Cost characteristics of all generation technologies...........coovveeieeiniienieeeens 197
Existing generation capacity at the beginning of the planning horizon (MW)198

Xii



Table 59. Climate change effects on climate parameters .........occeevveevenenenseese s

Table 60. Climate change effects on GEP parameters..........coccoveeeneeneneeniencese s

Xiii



LIST OF FIGURES

Figure 1. Uncertainty in power systems modeling (adapted from [23]).......cccceverievrennen. 19
Figure 2. Effects of different types of uncertainty on variables of the GEP model.......... 26

Figure 3. One-by-one correspondence between the decision space and the objective space

Figure 4. Pareto optimal set gives atrade-off curve of conflicting objectives. Every point

is an expected solution to the multi-objective optimization problem.............. 43
Figure 5. The concept of dominance for aminimization problem ... 44
Figure 6. Flow chart of agenetic algorithm...........ccoceririiniine e 53
Figure 7. An example fOor CroSSOVEr OPEIaLOr ........ccooverieiereesie e et 57
Figure 8. An example for Mutation OPEIator ..........ccoeereriereereniee e s 58
Figure 9. MOGA ranking method (adapted from Konak et a. [76]).......ccccceveererensiennnn. 59
Figure 10. NSGA ranking method (adapted from Konak et a. [76]) ......ccccceveerercenniennnn. 60
Figure 11. NSGA-II crowding distance method (adapted from Deb et al. [76]) .............. 61

Figure 12. Steps for obtaining efficient solutions in the multi-objective approach [92] .. 64

Figure 13. Steps for obtaining efficient solutions in the stochastic approach [92] ........... 64
Figure 14. Deterministic examplefor Case 1 .......ccovviirieneereneee e 67
Figure 15. Stochastic example for Case ..o 67
Figure 16. Deterministic examplefor Case 2 ........cviiierieneereeeeeie e 67
Figure 17. Stochastic example for Case 2.........ooeeiieenieie e 67
Figure 18. Stochastic example for Case 3.........ooeiieeriiie e 68
Figure 19. RDGA cell-based density approach ..........ccceeveveeneninnie e 76

Xiv



Figure 20. Risk-averse case. @) Uncertainty neglected results. b) Uncertainty included

TESUITS. ...ttt b bbbt e 82
Figure 22. Solutions with same expected value different variance ..........c.cccocevereenenee. 83
Figure 23. Same and different variance/expectation ratios.............ccccvevvereereeieenenenenennes 85
Figure 24. Continuous and discrete representation of solutionswhen D = 1000............. 92
Figure 25. Continuous and discrete representation of solutionswhen D =500............... 92
Figure 26. Continuous and discrete representation of solutionswhen D = 100............... 93
Figure 27. Flow chart of agenetic algorithm...........ccooirii i 97
Figure 28. DeterminiStiC XaMPIE.........coiiiieieeiereeie e 101
Figure 29. Stochastic eXamPIe........c.ooiiriiiieee e 101
Figure 30. NSGA-II crowding distance method (adapted from Deb et a. [76]) ............ 103
Figure 31. RDGA cell-based density approach ..........ccccveevenenenieiese e 107

Figure 32. Feasible region and obtained non-dominated solutions with NSGA-11 on
CONSTR test problem (adapted from [83]) .......ovveererriinirereee e 115
Figure 33. Obtained non-dominated solutions with PUGA on CONSTR test problem. 116

Figure 34. Obtained non-dominated solutions with NSGA-I1 and PUGA on CONSTR test

[S10] = o SRR 116
Figure 35. Test problem results from augmented e-constraint method .............cccce.eee.e. 118
Figure 36. PUGA deSign 1 RESUILS........ccoiiiiireece e 123
Figure 37. PUGA deSign 2 RESUILS........ccoiiiiiieeee e 123
Figure 38. PUGA deSign 3 RESUILS........ccoiiiiiiireee e 124

XV



Figure 39. PUGA deSign 3 RESUILS........ccoiieiiieece e 125

Figure 40. Risk-averse PUGA FSUILS..........coiiriiiieie et 129
Figure 41. Risk-Seeking PUGA IESUILS.........ooiriiieiiree e 129
Figure 42. Risk-averse rPUI-selected SOIULIONS..........ccccoverrineeneniee e 130
Figure 43. Risk-seeking rPUI-selected SOIULIONS..........ccooeeiinieninin e 130
Figure44. Test resultsfor Case 1, 01 =02 = 0.4 ..o 132
Figure 45. Test resultsfor Case 2, 01 =02 = 045 134
Figure 46. Test resultsfor Case 3, 01 =1, 020 = 0.4 ..eciiiiiccieceece e 136
Figure47. Test resultsfor Case4, 01 =02 = 0.55...cciiiiiiiie e 137
Figure 48. Risk-averse results with 3 0DJECHIVES ........cocviieienieeee e 140
Figure 49. Risk-seeking results with 3 ODJeCtiVeS ..o 140
Figure 50. Discrete points generated to represent the randomness...........c.ccccceveeiennnne. 142

Figure 51. Dependent case (left) and independent normal case (right) for the same

S 0 [ 11 o o TSRS 143
Figure 52. Risk-averse results for dependent Case..........coccevereeneeinseeneese e 144
Figure 53. Risk-seeking results for dependent Case..........ccovvvererrnieenceese e 145

Figure 54. PIM peak demand expectation (green line) and realization (blue line) on

0T A R0 1 SN 152
Figure 55. Solution and Decision Process of PUGA with Scenarios ..........ccccoeeeieenene. 159
Figure 56. Pareto front comparison of all scenarios (no risk preference)...........ccce....... 162

Figure 57. Generation levels of cost minimization solutions for all scenarios and RPF S7

XVi



Figure 58. Investment levels of cost minimization solutions for all scenarios and RPF S7

Figure 60. Combustion turbine, wind and geothermal units investment levelsfor al
scenarios and RPF S7 and S8.......ccooiiiieiinieeee e 165
Figure 61. Pareto fronts for different decision profile results............cccccooeieniiininieens 166

Figure 62. Minimization of cost and top risk selected solutions for each decision profile

Figure 63. Generation levels of top risk selected solutions for each decision profile.... 168
Figure 64. Investment levels of top risk selected solutions for each decision profile.... 169
Figure 65. Nuclear and wind investment levels of top risk selected solutions for each
AECISION PrOfil@ ... et 169
Figure 66. Change in cost between top 20 risk selected solutions of the risk-neutral, risk-
averse and risk-seeking deciSion Profiles..........ccoeeveveenenienin e 170
Figure 67. Change in emissions between top 20 risk selected solutions of the risk-neutral,
risk-averse and risk-seeking deciSion profiles..........ccoccoveeviverienicneneene 171

Figure 68. Comparison of coefficients of variation (CV) for cost and emissions objectives

Figure 69. Change in generation levels of units between top 20 risk selected solutions of
the risk-neutral, risk-averse and risk-seeking decision profiles. .................... 173
Figure 70. Change in investment levels of units between top 20 risk selected solutions of

the risk-neutral, risk-averse and risk-seeking decision profiles. .................... 174

XVii



Figure 71. Pareto front comparison of all scenarios, p =[1515] ....ccccceveevineenercinneenne 176
Figure 72. Generation levels of the top risk selected solutions for all scenarios and RPF
S7 AN SBP = [15 15] ceuvereeeeeeeeeeeeeeeeeeeee e seeeeee e ees e 177
Figure 73. Investment levels of the top risk selected solutions for al scenarios and RPF
S7 AN SBP = [15 15] cervereeeeeeeeeeeeeeeeeeeeee e see e ees e 177
Figure 74. Coal, renewable and nuclear generation levels of the top risk selected solutions
for al scenariosand RPF S7 and S8, p = [1515] ....ccoveivervivneerieeeniieeee e 178
Figure 75. Nuclear and wind investment levels of the top risk selected solutions for all
scenarios and RPF S7 and S8, p = [15 15] ..covvveeiieeie e 178
Figure 76. Pareto front comparison of all scenarios, p = [-15-15].....ccccceveriineniinnnenne. 179
Figure 77. Generation levels of the top risk selected solutions for al scenarios and RPF
S7 AN SBP = [-15 -15] .o see e esee s 180
Figure 78. Investment levels of the top risk selected solutions for al scenarios and RPF
S7 AN SBP = [-15 -15] .o se e eee e 181
Figure 79. Coadl, renewable and nuclear generation levels of the top risk selected solutions
for al scenariosand RPF S7 and S8, p = [-15 -15] .....ceveveenenerneeienee e 182
Figure 80. Nuclear and wind investment levels of the top risk selected solutions for all
scenarios and RPF S7 and S8, p = [-15-15] ..ecciveeiieieereeeree e 182
Figure 81. Risk Preference Comparisons onthe RPF S7 ........ccoooviiiiiieniinecceeee 184
Figure 82. Codl, nuclear, renewable and combined cycle generation levels for the RPF S7
at different risk preference leVelS..... ..o 186
Figure 83. Combustion turbine, nuclear and renewable investment levels for the RPF S7

at different risk preference leVElS........oooveiieie e 186

XViil



Figure 84. Generation percentages of the risk selected solutions at different risk

preference levels and the cost minimization solution ............cceceeceeieecinenn,

XiX



LIST OF FREQUENTLY USED ACRONYMS

PUI Pareto Uncertainty Index

rPUI Risk Adjusted Pareto Uncertainty Index

PUGA Pareto Uncertainty Genetic Algorithm

GEP Generation Expansion Planning

NEGEP Northeast United States Generation Expansion Planning
NSGA-II Fast Elitist Non-dominated Sorting Genetic Algorithm

XX



1. Introduction

The major question today for electric power is no longer market design - regulation
versus deregulation. Rather, it is fuel choice. Whatever the setup in different parts of
the country, the United States faces the same question about the future of its
electricity supply as do many other countries. What kind of generation to build? This
struggle over fuel choice is not just about meeting today's needs, but also how to meet
expected growth in demand and new environmental objectives. Coal, nuclear power,
and natural gas will all be part of the picture, both in the United Sates and around
the world. Each, however, comes with its own constraints.

Daniel Yergin, The Quest

This dissertation focuses on multi-objective stochastic optimization problems,
particularly the electricity Generation Expansion Planning (GEP) problem, and presents a
new uncertainty index and a new multi-objective stochastic genetic algorithm to solve
such problems.

The GEP problem consists of the expansion of the electricity generation network to
satisfy the future electricity demand with new energy investments. The GEP problems
start with an existing power network. The existing network will be insufficient in the
future due to new policies, demand increase and/or existing unit retirements. Therefore,
the existing system should be expanded by new sources in order to provide economic and
reliable energy supply in the future. There are four main group of technologies that can
be added to the system; generation units, transmission lines, distribution lines and smart
grid technologies [1]. Decisions have to be made concerning the location and timing of
the investments and selection of technologies over a specified multi-decade planning
horizon.

Many real life optimization problems are multi-objective problems in which
objectives under consideration often conflict with each other. Objectives in the GEP, for

example, may include minimization of cost, minimization of pollutant emissions,



2

maximization of reliability and maximization of energy security and independency. It is
important for a decision maker to observe the trade-offs of objectives. However, most of
the multi-objective optimization problems as well as the most commonly studied GEP
problems are typically transformed to the single objective equivaents where the problem
is formulated with only one objective. Another common solution methodology for multi-
objective optimization problems is to determine a Pareto optimal set which provides a
trade-off curve of conflicting objectives. Although this approach preserves the muilti-
objective aspect of the problem, it does not include the uncertainty aspect.

Real life engineering and optimization problems are also stochastic due to inherent
uncertainties. For instance, uncertainties in climate change, electricity demand increase,
fuel prices, and technologica progress are examples of inherent uncertainties that have to
be considered in the GEP problem. Although stochastic programming problems are
frequently encountered in practice, most models assume deterministic conditions
especially when the problem is modeled to be multi-objective. Otherwise, the problem is
first aggregated to obtain a single objective stochastic model, which is then solved by a
stochastic programming approach. This kind of transformation maintains the randomness
and uncertainty but eliminates the multi-objective aspect of the problem.

This dissertation presents a new uncertainty index and a new multi-objective
stochastic genetic algorithm to overcome the transformations where either the multi-
objective or the uncertainty aspect is eliminated. The research contributions of the

dissertation are summarized next.



1.1 Research Contribution

This research results in severa distinct research contributions. As Gorenstin et al. [2]
states, it is necessary to reformulate the use of expected values and single objective
modeling. The use of expected values, i.e., the deterministic assumptions, does not
capture the uncertainty. The use of only one scalar measure (usually cost), i.e., single
objective modeling, is not adequate to represent conflicting objectives such as power
production and environmental impacts in the GEP. Therefore, a new uncertainty index,
the Pareto Uncertainty Index (PUI), and a new multi-objective stochastic genetic
algorithm, the Pareto Uncertain Genetic Algorithm (PUGA) are presented in this research
to solve multi-objective stochastic optimization problems. There are severa research
contributions of this research, some of them are related to the GEP problem domain and
some to the single and multi-objective stochastic optimization processes. These research

contributions are summarized as follows:

Sources of uncertainty in the GEP problem are identified and classified into
epistemic and aeatory uncertainty types. Effects of different types of
uncertainty on the variables of the GEP model are aso identified for
optimization modeling purposes. These contributions are useful to model the
uncertainty in the planning process. They also assist in providing transparency
in decision-making.

The GEP problem is modeled and solved as a multi-objective stochastic
problem. This allows a more redlistic representation of the problem and the
results of the optimization. The need for transforming the problem is

eliminated.
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The concept of Pareto optimality is extended from a purely deterministic
framework to amore realistic stochastic framework.

A new uncertainty index, the PUI, is presented which can be incorporated in
the problem solving methods to solve single or multi-objective optimization
problems without ignoring uncertainty.

A new multi-objective stochastic genetic algorithm, PUGA, is presented to
find stochastic - Pareto optimal solutions of multi-objective stochastic
optimization problems with the ability of observing uncertainty information of
solutions.

Risk measures are incorporated in the PUI and PUGA so that the risk
preference of the decision maker can affect the solution process. This is
important for both the GEP problem domain and the optimization processes.
Post-Pareto analysis is also integrated in the optimization process. The
probability information preserved in the PUI is utilized to make a preference
decision between solutions on the same front using the risk preference of the
decision maker. Thus, obtaining a smaller subset of the preferred solutions
from a large Pareto optimal set and the evaluation and interpretation of the

results can be accomplished within the optimization process.
1.2 Dissertation Organization

The dissertation is organized as follows:
In Chapter 2, the GEP problem is first explained and formulated. Single objective
least cost and multi-objective GEP models in the literature are reviewed. Second, the

uncertainty in GEP is introduced. GEP models that consider uncertainty are surveyed and
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aleatory-epistemic uncertainty classification is explained. Afterwards, a general review of
multi-objective optimization is provided. Classical methods and evolutionary algorithms,
particularly multi-objective genetic agorithms, are reviewed. Later, uncertainty in multi-
objective optimization and inadequacy of present methods are discussed. Finally, post-
Pareto pruning is introduced.

In Chapter 3, the PUI is presented. The formulations of the PUI for dependent and
independent objectives are explained. The risk adjusted PUI (rPUI), where a risk
measures is employed to incorporate the risk preference of the decision maker in the
solution process, is introduced. Formulations of the PUI and the rPUI for discrete cases
and scenarios are also explained.

In Chapter 4, PUGA is presented. First, design components of PUGA are explained
and algorithms for these components are provided. Second, the main loop of PUGA is
described and the algorithm is provided. Two modified test problems are employed to
demonstrate the algorithm and to test the performance of PUGA.

In Chapter 5, a multi-objective stochastic optimization model for the power
generation expansion planning of the Northeast region of the United States is presented.
Aleatory and epistemic uncertainty modeling of this problem is explained. Scenarios,
input data and assumptions for the NEGEP model is provided and the model is solved to
find Pareto solutions for the cost and CO, emissions objectives. To conclude the chapter,
the results, comparisons and conclusions are presented.

Finally, in Chapter 6, general conclusions of the dissertation and future research

opportunities are discussed.



2. Background and Literature Review

This dissertation involves multi-objective stochastic optimization problems and
presents a new uncertainty index and a new multi-objective stochastic genetic agorithm
to solve such problems, particularly the GEP problem. In this section, the GEP problem is
first explained and formulated. Single objective least cost and multi-objective GEP
models in literature are reviewed. Second, the uncertainty in GEP is introduced. GEP
models that consider uncertainty are surveyed and aleatory-epistemic uncertainty
classification is explained. Afterwards, a general review of multi-objective optimization
is provided. Classical methods and evolutionary algorithms, particularly multi-objective
genetic algorithms, are reviewed. Later, uncertainty in multi-objective optimization and

inadequacy of present methods are discussed. Finally, post-Pareto pruning is introduced.
2.1 Generation Expansion Planning Problem

The GEP problem pertains to the expansion of the electricity generation network to
satisfy the future electricity demand with new energy investments. Decisions have to be
made concerning the location and timing of the investment and selection of technology
over a specified multi-decade planning horizon. Objectives may include minimization of
cost, minimization of pollutant emissions, maximization of reliability, and maximization
of energy security and independency. Some commonly used constraints are energy
demand constraints, capacity constraints, investment and budget constraints,
environmental regulations and renewable portfolio standards. There are inherent
uncertainties in this problem due to climate change, demand increase, fuel prices,
technological progress and many other aspects that have to be considered. The GEP is

one of the most challenging real life multi-objective stochastic optimization problems.



2.1.1 Problem Formulation and Definitions

In practice, the GEP is a multi-objective stochastic problem. However, the most
commonly studied GEP problems are typically deterministic cost minimization problems
where the problem is formulated with only one objective and uncertainty is neglected.
Some researchers convert other objectives to the cost objective. For example, instead of
minimizing emissions directly, a cost or penalty function is used for emissions and this
function is added to the cost objective as another cost component. Other researchers use
the weighted sum method where all objectives are summed into a single objective by
assigning weights to each. Other classical methods (see Section 2.3.2) are also used for
converting the multi-objective GEP problem to a single objective formulation.

The needs of utility planners for GEP optimization models have changed in response
to environmental concerns, increased competition, and growing uncertainty. Some of the
new needs include:

The need to explicitly examine trade-offs among objectives (multi-objective
formulation)
The need to recognize uncertainty (stochastic formulation) [3].

Hobbs [3] presents a detailed review about the incorporation of transmission costs,
the treatment of multiple objectives, methods for including uncertainty, and the use of
resource planning models in a competitive environment. Hobbs’ review also provides a
basic mixed integer linear program formulation for single objective GEP problem.
Formulations and a literature review for single objective GEP models are presented in

Section 2.1.2.



Table 1. Nomenclature for multi-objective stochastic formulation of GEP

Indices and Sets

Generation units

y, Y | Yearsof planning horizon

u Y ears of planning horizon (uisan alias for y for modeling)
t, T | Timeperiodsin ayear

r,R | Regions

k, K Emissions gases (COz, SOz, NOx)

n, N | Renewable generation units (subset of generation units 1)

Decision Variables

Xy|t,r,i

Generation amount of generation unit i inregionr intimeperiodtinyeary
(MWh)

Sy,r,i

Investment amount of generation unit i inregionr inyear y (MW)

Random Parameters (Stochastic Inputs)

C,; Generation variable cost for generation unit i in year y ($/MWh)

~ Fixed operation and maintenance cost for new generation unit i in year y
o (EMW)

a,; | Investment cost for generation unit i in year y ($MW)

3. Fixed operation and maintenance cost for existing generation unit i in year y
L (EMW)

R | Amount of emissions gas k from generation unit i (IbsMWh)

fli Derate factor of generation unit i in time period t

P..i | Availability factor for generation unit i inregionr intime period t

&W Demand inregionr intime period t in year y (MWh)

dy‘fr Peak demand in year yin region r (MWh)

m Reserve margin percentage (rate) for region r

Deterministic Parameters (Deterministic Inputs)

ira | Interest rate

9, | Forced new capacity of generation unitiinregionr inyeary (MW)

qd, Initial capacity of generation unit i inregion r at the beginning (MW)

t,.: | Forced retirement capacity of generation unitiinregionr inyeary (MW)

P, Hoursin time period t

p min Annua minimum percentage of renewable generation requirement in region r
' linyeary

b Minimum percentage of renewable generation requirement from renewable
Y generation unit ninregionr in yeary

d Y early construction limit of generation unit i inregionr inyear y (MW)

yri
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GEP problems start with an existing power network. The existing network will be
insufficient in the future due to new policies, demand increase and/or existing unit
retirements. Therefore, the existing system should be expanded by adding new
technologies in order to provide an economic and reliable energy supply in the future.
There are four main groups of technologies can be added to the system: generation units,
transmission lines, distribution lines and smart grid technologies [1]. The formulation
presented in this section focuses on generation expansion only. In some papers (e.g., [4]),
transmission lines are also considered together with generation units. A few researchers
also consider demand side management as in [5], and distributed generation units and
smart grid technologies as expansion options asin [6].

An example model of the GEP problem is formulated here with two objectives
(minimization of cost and minimization of emissions). The economic uncertainties of
investment cost and generation variable cost, uncertainties in technologica progress for
operation and maintenance and amount of pollutant emissions and climate change
uncertainties for derate factor, availability factor, total annual and regional demand, peak
demand and reserve margin are included in the formulation. Table 1 explains the
nomenclature for this multi-objective stochastic formulation.

The first objective function (1) is to minimize the net present value of the total cost,
which consists of generation cost (2), investment cost (3), and fixed operation and
mai ntenance cost (4).

min Cost =& {(1+ira) " (C,, +C,,+C, ) 1)

y

Cy,l = é. é. é Xy,t,r,iéy,i (2)
t r
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= é Sy,r,i ay,i (3)

~ Qo

Cy,3 = é. é. (é. Z:l(s.l,r,i +gy,r,i )) I:]y,i + é. é. (qr,i - a uzlt Y,ri ) gy,i (4)
The second objective function (5) is to minimize the total pollutant emissions such as

CO,, SO, and NO.

min Emissions=3 § a a I (5

VYT AR

Equations (6) to (12) are the constraints of the model. Equation (6) is the supply-
demand constraint that ensures that the total generation from all units satisfies the total
annual demand. Equation (7) is the capacity constraint that states that the model cannot
generate €electricity over the built capacity. Equation (8) is the reserve margin
requirement that is areliability necessity and ensures that the built capacity is greater than
or equal to the peak demand capacity plus the reserve margin capacity. Equations (9) and
(20) represent the Renewable Portfolio Standards (RPS). Equation (9) satisfies the annual
minimum percentage of renewable generation requirement and, Equation (10) satisfies
the minimum percentage of renewable generation requirement from each renewable
generation unit such as solar, wind, biomass, etc. Equation (11) represents the annual

construction limit of each generation unit, and Equation (12) is the non-negativity

constraint.
é. Xy,t,r,i = ay,t,r ) y7t’r (6)
il
thr|£gqr|+a§1ri—ft|p ptrl "y't’r’i (7)
o 3/ o 3 p n
aqr,i+aash,r| d rrnr y’r (8)

i u=l il |
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aaaxX..cbrad, "vr (9)
AT riRAN T

é. é Xy,t,r,i 3 by,r,i é d.‘y,t,r ! ya r1| (10)
TR aT

Sy,r,i £dy,r,i " y' r’i (11)
Xy,t,r,i ’Sy,r,i 8 0 ! y’t!r1i (12)

2.1.2 Single Objective Least cost GEP Models

GEP research often focuses on minimizing the cost that satisfies predefined targets of
emissions, reliability and other important aspects of the problem by modeling them as
constraints. Therefore, single objective least cost GEP formulation is the same with the
above multi-objective formulation with only one difference. The second objective of the
multi-objective formulation becomes either part of the cost objective (13) as another cost
component (14) or as a constraint that limits the annual emissions amount of each
pollutant (15).

If the emissions objective becomes a part of the cost objective, then the single

objective function that minimizes the net present value of total cost is

min Cost = § {(1+ ira)”” (Cy’l +C,,+C,,+ CM)} (13)

y

where C, 4 isthetotal cost for emissions of all types of pollutants:

Cy4 é é é é Xy,t,r,iﬁi,kek (14)

ViYHT R
where e ($/ton) is the cost of pollutant type k per ton emitted while generating

electricity.
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If the modeler decides to convert the emissions objective to a constraint, then the cost
objective function stays the same as in the multi-objective formulation but a new
constraint is added to the constraint set as

o o o ~ "o
ddad X ELyy YK (15)

ITrIRIilI

—-

where Ly isthe annual emissions limit of pollutant type kin year y.

GEP researches in the literature are often least cost single objective models. Even
when other objectives such as minimization of emissions or maximization of reliability
are added to the model, the problem is generally modeled as a single objective one by
transforming multiple objectives to a single objective. The methods for transforming a
multi-objective problem into a single objective one are discussed in Section 2.3.2.

One of the earliest works where aleast cost GEP is solved is by Masse and Gibrat [7].
They use linear programming for the French electric power industry. In their paper, the
economy of uncertainty is converted into an economy of certainty by the use of safety
margins over and above the probable values.

Anderson [8] provides a survey for such earlier work on least cost GEP models. First
the investment problem is formulated in cost minimization form, and then the various
approaches used to find optimum solutions are reviewed. There are three classes
reviewed: marginal analysis, margina analysis using simulation models, and global
models. All the formulations presented in this survey are deterministic.

Later, Beglari and Laugton [9] describe a mathematical programming model for the
economic planning of generation and transmission systems. They solve the least cost
expansion plan for generation units and transmission lines where the objective is to

minimize the total capital cost and operations cost.
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Sawey and Zinn [10] also provide a linear mixed integer program for the planning of
generation and transmission systems. The objective function is the minimization of the
net present value of the capital investment cost associated with the construction of power
plants and transmission lines plus the operating costs of the system. The model provides
construction expansion schedules for power plants and transmission lines. Additionaly,
an approximate operating schedule for plants and transmission lines is provided.

Noonan and Giglio [11] formulate the GEP as a large-scale, chance constrained,
mixed integer program. The solution algorithm employs Benders' partitioning principle.
The objective function is to minimize the investment and operations cost. They use
chance constraints that ensure that the probability that annual peak demand for each year
will not be satisfied must be less than or equal to some specified level of risk. They
provide an equivalent deterministic constraint for this chance constraint when the
probability function of available capacity, at peak demand hour minus peak demand is
normal.

Sherali et a. [12] propose a branch-and-bound algorithm to solve the least cost GEP
problem that considers the option of investing in non-dispatchable or renewable energy
sources. They consider discrete capacity expansion options for plants.

Later GEP research are reviewed by Kagiannas [13] focusing on the shift of markets
from monopoly to competition. They first review the GEP models developed for a
centralized monopolistic electricity system. Afterwards they emphasize the need for new
techniques for GEP under the wholesale power competition.

Sirikum and Techanitisawad [14] present an application of genetic algorithms for

solving the GEP problem. The problem is formulated into a mixed integer nonlinear
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program that determines the most economica investment plan for additional thermal
power generating units over a planning horizon, subject to the requirements of power
demands, power capacities, loss of load probability (LOLP) levels, locations, and
environmental limitations. They model the demand side management (DSM) program
such that if the DSM program is implemented, it provides a power saving by the efficient
energy using equipment.

Kannan et a. [15] provide an application and comparison survey of meta-heuristic
techniques to the GEP problem and al papers surveyed treat the GEP as a single

objective problem.
2.1.3 Multi-Objective GEP Models

GEP may involve trade-offs encompassing a wide range of economic, financial,
social, security, independency and environmental criteria. Because of the size of the
electric utility industry, the extent of its environmental impacts, and many public
agencies who oversee it, multiple objectives have become a fact of life for decision
makers in the electric generation industry [16]. For instance, renewable portfolio
standards involve trade-offs between cost, reliability, system security and transmission
investments.

One way of addressing multi-criteria problems is to quantify the decision maker
priorities. Such methods in general are called Multi-Criteria Decision Making (MCDM)
and include additive utility functions, the Analytica Hierarchy Process (AHP) and god
programnming. In MCDM methods, the chosen objectives or criteria are compared and
alternatives are ranked by each decision maker or interest group. An example application

of that type is presented by Karni et al. [17], who had 19 policy makers use more than
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one method to rank aternative electricity pricing policies. One of the problems with
MCDM methods is that most decision makers are unsure of their priorities when a
decision involves a unique problem along with strongly held and conflicting values [3].
Another major obstacle is limited access to key decision makers and interest group
representatives.

Multi-objective optimization, on the other hand, helps to display the trade-offs
between objectives and quantify value judgments. A genera discussion about multi-
objective optimization and methods are presented in Section 2.3.

Climaco et a. [18] present a multi-objective linear programming (MOLP) model for
GEP that considers three objective functions: net present value of the expansion plans,
reliability of the supply system, and environmental impacts. There are three categories of
constraints: load requirements, operational restrictions and budget. Three generating
technologies are considered for power system expansion: oil, nuclear and coal.

Mavrotas et a. [19] solve single period GEP with a new approach based on a mixed
0-1 multi-objective linear programming (MOLP) model for the Greek electricity
generation industry where the objectives are to minimize cost and SO, emissions. The
core of the model is a branch and bound algorithm, which has been modified for the
multi-objective case and is capable of generating the whole set of efficient solutions.

Antunes et a. [5] present a multi-objective mixed integer linear programming
(MOMILP) model for electricity generation expansion planning that alows integer
values of investment decisions. This avoids the problem of converting continuous
capacity values to integer values in a post-processing phase. The model considers three

objectives: total expansion cost, the environmental impact associated with the installed
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power capacity, and the environmental impact associated with the energy generation.
Demand-side management (DSM) is aso considered as an option in the planning process.

Meza et a. [20] propose a model with four objectives. The first objective is to
minimize the investment, operation and transmission cost. The second objective is to
minimize the amount of carbon dioxide (CO,) emissions. The third objective function is
to minimize the imported fuel, which is calculated by fuel used in each year by the
corresponding forecasted price. The last objective function is to minimize the energy
price risks. The approach to solve the problem is based on multi-objective linear
programming to obtain the set of non-dominated solutions and the AHP to select the best
alternative.

Meza et al. [4] solve a single period GEP problem where they minimize the same
objective functions as in Meza et a. [20]. However, in this study they include the
Kirchoff’s second law into the model, making the problem nonlinear. Therefore, the GEP
problem is solved to determine the number of generating units, the number of new
circuits on the network and the voltage angle at each node. The proposed solution
framework first determines the set of non-dominated solutions via a multi-objective
evolutionary programming method based on a multi-objective genetic algorithm and then
utilizes a clustering algorithm to decrease the number of alternatives considered for the
alternative ranking process with the AHP.

Tekiner et al. [1] propose an approach to the GEP problem to minimize multiple
objectives, such as cost and pollutant emissions over a long term planning horizon and
explicitly consider the operational dispatching decisions and the availability of the system

components over the planning horizon. Monte-Carlo simulation is used to generate
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numerous scenarios based on the component availabilities and anticipated demand for
energy. The problem is formulated as a mixed integer linear program, and optimal
solutions are found based on the simulated scenarios with a combined objective function
considering the multiple problem objectives. The different objectives are combined using
dimensionless weights and a Pareto front is determined by varying these weights.

Tekiner et a. [6] later examine how the availability of smart grid technologies change
and improve the electric power system generation expansion plans. The model
specificaly considers the improvement in the distribution system and the shift in the
demand from peak to off-peak time periods. To consider the reliability of the system,
unmet demand is added as a cost in the objective function. Monte Carlo simulation is
used to generate component availability scenarios. The optimization problem is solved to
find optimum expansion solutions considering these scenarios.

Murugan et a. [21] present an application of the Elitist Non-dominated Sorting
Genetic Algorithm version 1l (NSGA-II) to solve the multi-objective generation
expansion planning (GEP) problem. The GEP problem in the paper is considered as a bi-
objective problem. The first objective is the minimization of investment cost and the
second objective is the minimization of outage cost (or maximization of reliability). As
they state in the paper, GEP has been treated as a multi-objective problem in very few
papers and conventional techniques have been used to solve the problem. There are just a
few applications of evolutionary algorithms used for the multi-objective GEP.

Nara[22] provides a genera survey for state-of-the-art research of modern heuristics
applications to power systems and notes that genetic algorithms are applied in many

areas, and further development is expected.
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Table 2 summarizes the reviewed multi-objective GEP models in this section

providing the objectives that researchers included in their models and their contribution

to the multi-objective GEP modeling.

Table 2. Reviewed multi-objective GEP models

Paper Objectives Contribution to the GEP
_ Cost, reliability and
Climaco [18] _ . MOLP
environmental impact
Mavrotas [19] Cost and SO, emissions Mixed 0-1 MOLP
Cost, environmental impact
Antunes [5] of capacity addition and MOMILP
generation
Cost, CO, emissions,
Meza[20] imported fuel, energy price | AHP to select the best alternative
risk
Cost, CO, emissions, o _
_ _ A multi-objective evolutionary
Meza [4] imported fuel, energy price . o
. algorithm application
risk
Considers the operational
dispatching decisions and the
Tekiner [1] Cost and air emissions availability of the system
components over the planning
horizon
) ) o Investigates the effects of smart
Tekiner [6] Cost and air emissions _ )
grid technologies.
Murugan [21] Cogt, reliability NSGA-II application

2.2 Uncertainty in the GEP

Uncertainty in power systems modeling is depicted in Figure 1 (adapted from [23]).

As this figure shows, the level of uncertainty in GEP is very high relative to other
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research areas because of its spatial dimensions and time scale. Therefore, it becomes
necessary to introduce in the decision making process a systematic and consistent
treatment of the various sources of uncertainty.

In the following subsections, first a literature review of the GEP models which
consider uncertainty is provided, second the sources of uncertainty in the GEP modeling
are summarized, and later, aleatory and epistemic uncertainties are introduced, as a way
of categorization of uncertainties in general, and uncertainties of GEP as aleatory or

epistemic are classified.

Time Scale

Climate Change
Modeling

Decades

Generation
Expansion Planning

Years
Regulatory
Initiatives

AYear

A Day Day Ahead
Scheduling
An Hour Computation § Distribution Dispatch & Reliabili

Spatial Scale

Figure 1. Uncertainty in power systems modeling (adapted from [23])

221 GEP ModesConsidering Uncertainty

The issues of uncertainty and risk associated with the GEP are mainly addressed by
stochastic optimization, decision analysis, trade-off analysis and fuzzy set theory.
Sahinidis [24] reviews theory and methodology that have been developed to cope with

the complexity of optimization problems under uncertainty. The review discusses and
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contrasts the classical recourse-based stochastic programming, robust stochastic
programming, probabilistic (chance constraint) programming, fuzzy programming, and
stochastic dynamic programming.

One of the first applications of stochastic programming to the GEP problem is
presented in Dapkus and Bowe [25]. They formulate the GEP problem as a stochastic
dynamic programming problem where they consider the uncertainties in demand, the
commercialization date of new technologies and the possible loss of existing nuclear
capacity due to an accident, regularity action or lack of fuel. Contingency plans are
established which consider how uncertainty is resolved over time. These contingency
plans are for decision makers to wait until uncertainty is resolved before committing to
construction.

Mo et a. [26] also describe a method for handling uncertainties in GEP problems
based on stochastic dynamic programming. The method is based on splitting up the
problem into operation and expansion problems. Uncertainties of demand, water inflow
for hydropower, fuel prices and investment costs are included in both the expansion
problem and the operation problem.

Gorenstin et a. [2] describe a methodology that draws upon three classes of
techniques. Decomposition and stochastic optimization provide the basic framework, and
allow an implicit representation of aternative investment strategies. Decision analysis is
used to represent the dynamic aspects of decision making as uncertainties are resolved
over time and trade-off analysis is used to select expansion strategies. Uncertainties of

inflows to hydro plants and |oad forecasts are considered in their case study.
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Escudero et al. [27] use scenarios to characterize the uncertainty. Solutions are
obtained for each scenario and then those individual solutions are aggregated to yield
generation expansion planning that either minimizes the regret of wrong decisions, or
minimizes the expected cost of the expansion plan. Uncertainties included are investment
and operation costs, energy demand, economic environment, generation availability, and
operation life.

Felder [28] integrates financia theory and methods in electricity resource planning
using risk adjusted discount rates (RADR) and options theory (OT). It is claimed in the
paper that by correctly using RADR and OT and understanding their limitations, decision
makers can improve their ability to value risk properly in power plant projects and
integrated resource plans.

Marin and Salmeron [29] present a stochastic optimization model under capacity
deterioration and demand uncertainty. The goa of the model is to provide an initial
generation plan for short periods of the planning horizon that might be adequately
modified in real time assuming penalties in the operation cost. Uncertainty is modeled
under the assumption that the demand is a random vector. The cost of the risk associated
with decisions, that may need some tuning in the future, is included in the objective
function. The proposed scheme to solve the nonlinear stochastic optimization model is
generalized Benders' decomposition.

Dhar [30] introduces the concept of a fuzzy algorithm based on fuzzy sets in the
power system long-range planning decision analysis. In the process of decision analysis,
both quantitative and linguistic measures are used to quantify the utility of an alternative.

The final objectives, the system states and constraints are not sharply defined and are
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fuzzy in nature. Dhar claims that the decision maker implicitly equates the system
imprecision or fuzziness with randomness because of unavailability of data. Therefore the
goal of the paper is to emphasize the need to differentiate between randomness and
fuzziness. By fuzziness, it is meant a type of imprecision which is associated with fuzzy

sets. This clam is indicative of the differentiation between aleatory and epistemic

uncertainties but the paper does not explicitly mention this classification.

Table 3. Reviewed models that include uncertainty in the GEP

Paper Considered Uncertainties Contribution to the GEP
Demand, the commercialization date of
Dapkus and new tlec.hnol ogiesand thg possibleloss A stochastic dynamic
Bowe [25] of existing nuclear capacity due to the roaramming model
accident, regularity action or lack of Prog g
fuel
Mo et al. [26] Demand, water inflow for hydropower, | A stochastic dynamic
' fuel prices and investment costs programming model
A model with
Gorenstin et Inflows to hydro plants and load corpb|.nat|.on of stp c':hastu:
a.[2] (demand) for optimization, decision
' analysis and tradeoff
analysis
Investment and operation costs, Uses scenarios to
Escudero et al. . . .
[27] demand, economic environment, characterize the
generation availability and book life uncertainty
Nonlinear stochastic
Marin and : S optimization model with
Salmeron [29] Capacity deterioration and demand Generalized Benders
decomposition
The final objectives, the system states The concept of fuzzy
Dhar [30] and constraints are not sharply defined | algorithm based on fuzzy
and are fuzzy. sets
Demand, reserve margin, transmission
. loss, generation unit capacity, costsand | A fuzzy multi-objective
Torabi and S . . : .
: emissions are modeled with fuzzy mixed integer linear
Madadi [31] L . .
numbers with triangular possibility programming model
distributions.
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Torabi and Madadi [31] propose a fuzzy multi-objective mixed integer linear
programming model (FMOMILP) for integrated power generation and transmission
expansion planning problem. Uncertainties are modeled by appropriate fuzzy numbers
with triangular possibility distributions. As such, for each fuzzy parameter, they consider
three prominent values i.e., the pessimistic, optimistic, and the most likely values based
on considering both available objective data and subjective data quoted by the field
experts. However, they convert the MOMILP model into an equivalent single-objective
MILP and solve this single-objective model. If the decision maker is satisfied with the
solution, the algorithm stops. Otherwise, another solution has to be provided by changing
the value of fuzzy parameters. Hence, the method is not very different than interactive
classical methods discussed in Section 2.3.2 except using the fuzzy set theory.

Reviewed models in this section are summarized in Table 3. The models that
explicitly consider uncertainty in the GEP problem have the issue of neglecting the multi-
objective aspect of the problem. For the discussion of issues of uncertainty modeling in

multi-objective optimization refer to Section 2.4.
2.2.2 Sourcesof Uncertainty in the GEP

Hobbs [3] lists some uncertainties that utility companies face in resource planning.
This list is aso viable in terms of the GEP problem and it is provided in Table 4.
Gorenstin et a. [2] also list some sources of uncertainty which includes load growth
rates, fuel costs, construction time, economic growth, environmental constraints, interest
rates and financial constraints. In their case study, however, they only consider

uncertainties of inflows to hydro plants and load forecast. Similarly, Mo et a. [26]
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include uncertainties of energy demand, water inflow for hydropower, fuel prices and
investment costs to their model.

Table 4. Sources of uncertainty in utility resource planning

Market / demand uncertainties
Load growth
Price elagticity

Markets for off-system sales and purchases
Competition with non-electric fuels

Resour ce uncertainties

Technological developments

Availability and initial costs of resource options

Construction times

Fuel prices and emissions allowance prices

Generating unit availability

Climate change

Water supplies

Amount and dependability of nonutility generation

Customer response to Demand-Side Management (DSM) programs
Dependability and persistence of DSM

Legal and economic uncertainties

Inflation, interest rates and economic growth

Government policies concerning ratemaking and cost recovery
Environmental regulations

Municipalization / government takeover

Public concerns

In this dissertation, the focus is on uncertainties due to climate change, economic
variations and technological development. Considered GEP problem parameters are peak

and annual total demand, costs, reserve margin, availability and efficiency of power
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plants (capacity and derate factors) and emissions rates of technologies. In our model we

classify uncertainties as follows:
Uncertainties due to climate change
0 Uncertainty in peak demand
0 Uncertainty in total demand
0 Uncertainty in reserve margin
0 Uncertainty in efficiency of power plants
Economic uncertainties
0 Uncertainty in investment cost
0 Uncertainty in generation cost
Uncertainties due to technologica devel opment
0 Uncertainty in fixed operation and maintenance cost
0 Uncertainty in availability factor
0 Uncertainty in derate factor

0 Uncertainty in emissions rate of technologies

Although variables are listed separately according to the most influential uncertainty,

in reality every variable can be affected by more than one type of uncertainty. Figure 2

shows these multiple effects on GEP modeling parameters for the model of this study

more explicitly.
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Figure 2. Effects of different types of uncertainty on variables of the GEP model

In the following subsections, these uncertainties and their impacts on GEP parameters
of the model of this study and also the uncertainty of the impacts on the GEP problem are

briefly discussed.

2.2.2.1 Climate Change Uncertainty

Assessing future benefits, risks and costs of different electricity options could
improved by integrating climate change into electricity and energy planning [32].
However, potential impacts of climate change and extreme weather on the energy sector
are hard to predict and have many uncertainties due to a number of factors, such as
insufficient data, models that are not yet able to represent the interactions and
interdependencies of multiple stresses, and incomplete understanding of physical climate
mechanisms. Furthermore, climate impacts tend to be localized and can be very difficult

to predict [32].
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According to the Energy Sector Vulnerabilities to Climate Change and Extreme
Weather report of the US Department of Energy [33], at least three mgjor climate trends
arerelevant to the energy sector:

Increasing air and water temperatures

Decreasing water availability in some regions and seasons

Increasing intensity and frequency of extreme events, such as storms and
flooding.

Chandramowli and Felder [34] provide a comprehensive review about the research
where the impact of these climate trends on electricity systems and markets are studied.
According to their review, the system-wide impact on renewable and thermal power
generation, economic modeling of extreme weather events, transmission and coastal
energy infrastructure vulnerabilities, long-term modeling and the effects on modeling
outcomes are still uncertain.

In the model proposed in this study, among the three maor climate trends listed
above, increasing air temperature affects peak and total demand; increasing water
temperature affects efficiency of thermal power plants and transmission system capacity;
decreasing water availability affects hydropower units; increasing intensity and frequency
of extreme weather events affect reserve margin and availability of power plants and
transmission lines.

Although impacts of climate change on the energy sector and the electricity
generation is a popular research area, uncertainty of climate change impact on the
electricity generation expansion is not sufficiently studied. To capture the range of

scientific uncertainty inherent in future projections of climate change, researchers usually
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use combinations of scenarios from different atmosphere-ocean general circulation
model (AOGCM) simulations by the Intergovernmental Panel on Climate Change (IPCC)
Special Report on Emissions Scenarios [35]. The scenarios provide the basis for future
assessments of climate change and possible response strategies. Using these scenarios,
researchers try to calculate or quantify the impact and range of climate change. For
example, Miller et al. [36] state that peak electricity demand and temperatures in
Cdlifornia are strongly correlated. For temperatures above 28°C (82°F), California peak
electricity demand exhibits a linear increase with temperature increase. For the
uncertainty part, they provide the range of residential peak electricity demand increase
between 2.8% and 10% under different scenarios. In another study by Gorenstin [2],
uncertainties due to the annua demand growth are considered as a binary tree
representing the different growth rates, resulting in 16 scenarios and 31 decision nodes
for the 5-year study. Scenario 9 is the forecasted demand growth for this period used in
the expansion planning studies. The other scenarios were built using small variations
around the annual increase rate.

Li [37] proposes a linear programming based least cost robust optimization model
where all the variables that are directly or indirectly impacted by the climate change are
defined. Different scenarios are presented to model the possible outcomes of future
weather. Each discrete climate scenario is a realization of a set of random variables over
the planning horizon. Climate scenarios have three major climate variables namely;
temperature, precipitation and extreme events. These climate variables correspond to six
sets of GEP parameters: demand, peak demand, availability factor, transmission capacity,

reserve margin and derate factor . The robust model finds a compromise solution that is
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good for all scenarios, which avoids the possible risk associated with a poor decision that

isonly beneficial for several particular scenarios.
2.2.2.2 Economic Uncertainties

Sometimes the cost of an investment is very uncertain, particularly for large projects
that take considerable time to build. An example is a nuclear power plant, for which total
construction costs are hard to predict due to both engineering and regulatory uncertainties
[38]. With projects that take time to complete, two different kinds of uncertainty arise:
technical uncertainty and input costs uncertainty ([39] and [38]). Technical uncertainty
relates to the physical difficulty of completing a project. This kind of uncertainty affects
the quantification of cost uncertainty because of the calculation of the net present value of
investment and uncertainty in interest rates.

Input costs uncertainty arises when the prices of labor, land, and materials needed to
build a project fluctuate unpredictably, or when unpredictable changes in government
regulations change the cost of construction [38]. Uncertainty in government regulations
or uncertainty in decision making is not discussed in this dissertation, because the aim of
models such as the one built in this dissertation is to help decision or policy makers to be
more certain of their decisions or regulations. On the other hand, input costs uncertainty
of investment is one of the most important parts of the model, because it directly affects
one of the objective functions. minimization of cost.

Other than investment cost uncertainty, there is also operating cost uncertainty in
GEP models. Operating cost includes fuel costs and fixed operation and maintenance
costs and these costs and their uncertainty vary by type of technology. For example, the

uncertainty of natural gas pricesis very crucia to the investment decision of natural gas
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fired technologies. On the other hand, renewable technol ogies such as wind or solar have
no fuel costs so their operating cost uncertainty is very low.

The determination of operating cost of each of the expansion alternatives can be
calculated by ssimulation. For example, Booth [40] uses a method of production costing
based on probabilistic simulation methods which is combined with a dynamic
programming formulation of the problem in order to treat uncertainty. This technique
combines several factors subject to uncertainty in a calculation of both the probability of
loss of load and the expected value of the energy production of the various stations, and

thus, the total system operating cost.
2.2.2.3 Uncertainties Dueto Technological Development

Uncertainty about the future rate and direction of technological change is often an
important part of engineering problems. Technologica change creates new opportunities
and/or constraints and it has a meaningful effect on cost analysis of future investments.
The environmental impact of social and economic activity is greatly affected by the rate
and direction of technological change. New technologies may either create or mitigate
pollution, and many environmental problems and policy responses are evaluated over
time frames in which the cumulative impact of technologica changesislikely to be large.
However, technological advancement is difficult to project beyond a 10-year timeline
because of the large uncertainties pertaining to the rate of discovery, evaluation, and
social adaptation of new technologies [41]. Heal and Millner [42] give an example of
coa which provided 52% of the US electric power in 2008 and decreased to 38% in
2013. Asthey stated, such a change would have been hard to anticipate as recently as ten

years before this observation.
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Measuring the effects of environmental technological change is equally if not more
challenging, because innovation and market penetration of new technologies and the
environmental policy to encourage adoption of environmental technology should be
separately identified. As Popp et a. [43] state, one of the most difficult questions
remaning in aggregate energy-economic modeling is the appropriate treatment of
technological change, particularly for analyzing long-term environmental and resource
problems.

Technologica progress has direct effects on the availability factor, derate factor and
emissions rate of power plants in our model, which makes related input variables
uncertain. It can also indirectly affect peak demand and total demand if smart grid and
demand side management options are included in the modeling. Furthermore, if
technological development in the reliability area is considered, then reserve margin can

be reduced beyond its forecast.
2.2.3 Aleatory and Epistemic Uncertainty

While many sources of uncertainty may exist, a way of categorization is to classify
uncertainty into two categories: aeatory or epistemic. Epistemic uncertainty is one that is
presumed as being caused by lack of knowledge (or data). Uncertainties are characterized
as epistemic, if the modeler sees a possibility to reduce them by gathering more data or
by refining models [44]. Epistemic uncertainty is knowledge based and therefore can be
reduced by better information. But that information or knowledge may be not available to
the modeler at the time of modeling.

Aleatory uncertainty is one that is presumed to be the intrinsic randomness of a

phenomenon. Uncertainties are categorized as aleatory if the modeler does not foresee the
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possibility of reducing them [44]. Aleatory uncertainty arises because the study system
can potentially behave in many different ways. Faber [45] states that the uncertainty
associated with a model concerning the future transforms from a mixture of aleatory and
epistemic uncertainty to a purely epistemic uncertainty when the modeled phenomenon is
observed. Furthermore, a model dominated by epistemic uncertainties has the potential

for reducing the uncertainties by updating.
2.24 Importanceof Aleatory and Epistemic Uncertainty Distinction

Aven [46] and Paté-Cornell [47] state that classical decision theorists have often
taken the position that the distinction between aleatory and epistemic uncertainties is
unnecessary. The different probabilities for both types of uncertainties can be combined
for decision-making purposes asif al uncertainties were of the same nature. Dubois [49],
however, expresses that if the imperfect information about inputs or parameters are all
represented by probability distributions, then the resulting distribution of the output can
hardly be properly interpreted. The part of the resulting variance due to epistemic
uncertainty that could be reduced is unclear. Aven [46] aso clams that one should
acknowledge that the full scope of uncertainties cannot be transformed to a mathematical
formula using probabilities. By skipping the distinction and directly using probabilities,
important uncertainty aspects could easily be overlooked or truncated, meaning that
potential surprises could be left unconsidered. By classifying uncertainties beyond
probabilities, models are able to give the decision-makers more informative and detailed
risk description.

On the other hand, there are many occasions where the distinction is helpful and

needed. Paté-Cornell [47], for example, asserts that decision-makers may need or ask for
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a full display of the magnitudes and the sources of uncertainties before making an
informed judgment.

Kiureghian and Ditlevsen [44] argue that the nature of uncertainties and how one
addresses them depends on the context and application, so the distinction between
aleatory and epistemic uncertainties is determined by modeling choices. The distinction is
useful for identifying sources of uncertainty that can be reduced in the near-term, i.e,,
without waiting for maor advances to occur in scientific knowledge, and in developing
sound risk and reliability models. The distinction is aso important from the viewpoint of
transparency in decision-making, since it then becomes clear as to which reducible
uncertainties have been left unreduced.

As Faber [45] concludes, a central role for engineersis to provide abasis for decision
making in situations where uncertainties are present. The key point, as Aven [49] states,
IS to guarantee that uncertainties are taken into account in away that the information and
knowledge relevant for the problem are represented as precisely as possible. A planning
process that ignores or underestimates uncertainty may yield plans that perform
disappointingly under circumstances other than the narrow ones considered when

developing the plan [3].
2.25 Mathematical Representations of Aleatory and Epistemic Uncertainties

Climate change, future technological progress and the long-run global economy are a
few examples where incomplete knowledge of fundamental phenomena dominates
uncertainties in the problem. These are fundamentally irreducible uncertainties because
the uncertainties about these issues are not readily quantified and expressed in

probabilistic terms. Paté-Cornell [47] argues that epistemic uncertainties are sometimes
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ignored, especially in public policy studies of sensitive issues. By contrast to epistemic
uncertainty, aleatory uncertainty is more easily integrated in mathematical models
because there is sufficient historica data to model by probabilistic distributions.
According to Paté-Cornell [47] the problem is that available samples are insufficient to
represent exactly the phenomenon of interest.

Aleatory and epistemic uncertainties can be represented and analyzed by different
mathematical methods depending on the available information. In the situations where
the uncertainty of the variables is mainly due to inherent randomness and there is
sufficient information to assign probability distributions and estimate their parameters,
probabilistic modeling is preferred [50]. When there is limited or insufficient information
to determine parameters for probability distributions, fuzzy and possibility distributions
or scenarios can be suitable for alternative representations of epistemic uncertainties.

Helton et a. [51] provide a comprehensive review where the use of severd
uncertainty representations are explored and compared. The review summarizes
probability theory, evidence theory, possibility theory and interval anaysis. Problems
that involve both aeatory and epistemic uncertainty are solved with different
formulations of the uncertainty in the parameters. In these problems, aleatory uncertainty
is represented with probability theory, and representations of epistemic uncertainty with
probability theory, evidence theory, and possibility theory are demonstrated.

Joint propagation and aggregation of uncertainties under probability and possibility
theories have been studied by various researchers. Baudrit et al. [52], for example,
represent random variability (aleatory uncertainty) by probability distribution functions,

and imprecision (epistemic uncertainty) by possibility distributions. A hybrid method is
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then used to jointly propagate probabilistic and possibilistic uncertainty which produces
results in the form of a random fuzzy interval. Baraldi and Zio [53] extend this
framework to event tree analysis and propose a hybrid approach for the propagation of
mixed uncertainty information where the Monte Carlo technique is combined with fuzzy
set theory. To process the uncertainty of the probabilistic and possibilistic variables,
Monte Carlo sampling and fuzzy interval analysis are used, respectively. Flage et al. [54]
use a similar framework with fault tree analysis and possibility-probability (probability-
possibility) transformations to jointly propagate uncertainties within purely probabilistic
and possibilistic settings.

The review by Helton et al. [51] discusses very important issues for different

representations of uncertainties, which can be summarized as follows:

Separation of aeatory and epistemic uncertainties is a major conceptual and
computational challenge.

The uncertainty characterization is a very chalenging part of a practica
analysis because most practical analyses require expert review and assessment
process to convert available information into a mathematical form.

Multiple uncertainty characterizations must be aggregated into a single
characterization and this aggregation must be consistent with the supplied
uncertainty information and characterizations.

The cost of the model evaluations for propagation and aggregation of
uncertainties are often very expensive in real analyses.

A meaningful interpretation of results has to be based on underlying

uncertainty representations.
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In conclusion, as Aven [49] states, any method of uncertainty representation and
propagation must address a number of very practical issues such as complete and faithful
representation of available knowledge and information, cost of the analysis, and the

confidence that the decision maker gains from the analysis and the results.
2.2.6 Aleatory and Epistemic Uncertaintiesin Power Systemsand the GEP

There is no previous research that has focused on aleatory and epistemic uncertainty
identification and classification in GEP models. Furthermore, there is only a very limited
amount of research about such classification in power systems planning and optimization
in general. In one of the studies, Li and Zio [50] address the issues of identifying,
classifying and representing the epistemic and aeatory uncertainties in distributed
generation systems. Probability and possibility distributions are used to model the
aleatory and epistemic uncertainties, respectively. Five components of the distributed
system, solar generators, wind turbines, electrical vehicle (EV) aggregation, transformers
and load are considered as uncertain parameters. Uncertainties in operation parameters of
wind and solar units and power output of EV aggregation are represented by possibility
distributions, mainly because the type of information available for these variables is
expert judgments. Uncertainties in solar irradiation, wind speed, power fluctuations, time
to failure for transformers and load are represented by probability distributions because
there is sufficient historical datato define distributions and parameters of distributions.

Two different propagations are introduced for modeling probabilistic and possibilistic
uncertainties. The first technique is an algorithm of joint propagation of two types of
uncertainty. Repeated Monte Carlo Sampling (MCS) is used to process the uncertainty in

probabilistic variables as the outer loop of the algorithm and fuzzy interval anaysis is



37

used for treating the uncertainty in possibilistic variables as the inner loop of the
algorithm. The second technique presented for modeling probabilistic and possibilistic
uncertainties is the pure probabilistic propagation where the possibilistic distributions are
converted into probability density functions by normalization. In the numerical case study
the effects and comparison of the joint propagation and the pure probabilistic approach is
demonstrated and discussed. According to the numerical example results, the cumulative
distribution by the pure probabilistic method lies within the belief and plausibility
functions obtained by the joint propagation approach. It is claimed that the imprecision in
the parameters is explicitly reflected by the gap between the belief and plausibility
functions. It is also implied that incorporating the imprecison due to incomplete
knowledge, can be relevant for the decision maker.

In another power systems related work, Billinton and Huang [55] illustrate the
differences of aleatory and epistemic uncertainty by incorporating the implications of
these uncertainties in power system reliability evaluation. They examine the impacts of
load forecast uncertainty, wind power and their interactive effects on the system
reliability. Although future load growth uncertainty is defined as an epistemic
uncertainty, it is represented with a normal distribution whose parameters are estimated
from past data. The aleatory uncertainty associated with the annual loss of load index is
generated by Monte Carlo simulation using various load uncertainty standard deviations.
An Auto-Regressive Moving Average (ARMA) time series model is built for wind power
using the past data. The uncertainty in wind power model is due to the variability of the
wind speed which is modeled as a norma white noise process. The load forecast

uncertainty and wind model are incorporated in the simulation process. The effects of
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load forecast uncertainty and wind power on the test system are presented, and in
conclusion, it is asserted that better load forecasting techniques can reduce the effects of
both aleatory and epistemic uncertainty.

Although research on aeatory and epistemic uncertainty distinction in power systems
and GEP problems is minimal, uncertainties in parameters of power systems are studied
extensively. One of the most studied stochastic variables in the power systems modeling
is the load (demand) uncertainty. There are several factors that affect the electricity
demand and forecasts in modeling such as weather variability due to climate change, cost
variability due to economic uncertainty and forecast model imprecision due to lack of
knowledge. Tiabrat and Eua-arporn [56] discuss the application of the normal distribution
for a load distribution model because there are several factors having impact on the
forecasted demand. However, it is also important to investigate the historical data of
long-term load forecasts in the study region. For example, Tiabrat and Eua-arporn [56] in
their case study for Thailand find out that most of the forecasted peak load is aways
higher than the actual peak load. Therefore, a Weibull distribution function is chosen.
Marin and Salmeron [29] aso uses a statistical preprocessing to derive a probability
distribution representation of the demand. Zha et al. [57] use a Gauss-Markov random
sequence load model to model the uncertain load where the hourly load assumes a normal
probability distribution. Billinton and Huang [58] discuss that the most common practice
is to describe the load uncertainty by a normal distribution with a given standard
deviation. They represent the load uncertainty with a norma distribution whose

parameters are estimated from past data.
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Economic uncertainty is another important uncertainty source in power systems.
Therefore, costs are modeled as stochastic variables by many researchers and severd
methods are proposed to manage the cost uncertainty. Siriruk and Valenzuela [59] asserts
that the cost of a specific fuel type (coal, natural gas, etc.) is assumed to be a continuous
random variable which has an associated probability density function. They use past data
of coa and natural gasto fit a probability density function and alognormal distribution is
selected to represent the price of coa and the price of natural gas. The cost of uranium
and hydro are not notably volatile in their case study so they are assumed to be constant.
Torabi and Madadi [31] model fuel cost, maintenance cost, transmission cost and outage
cost by appropriate fuzzy numbers with triangular possibility distributions. Wang [60]
constructs a set of scenarios that represent the evolution of cost uncertainty. Shan [61]
models fuel costs as discretely distributed random variables and a rolling two-stage
approach is applied to solve the stochastic recourse problem. In long-term planning such
as a GEP problem, it is also reasonable to use normal distributions for the variability of
costs because an increase or a decrease is likely to occur on either side of the expected
cost in the long-term.

Other stochastic variables of the GEP problem such as reserve margin, capacity and
derate factors and emissions amounts are mostly affected by several sources as shown in
Figure 2. Furthermore, technological progress and climate change uncertainty, which
have the main effects on reserve margin, capacity and derate factors and emissions
amount of technologies, are hard to predict and have unpredictable variability due to a
number of factors. Therefore these uncertainties can be classified as epistemic uncertainty

and can be modeled by possibility distributions or scenarios. Torabi and Madadi [31]
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model reserve margin, transmission loss and generation unit capacity, forced outage rate,
and amount of emitted pollutant by appropriate fuzzy numbers with triangular possibility
distributions. They consider three values for the fuzzy numbers of triangular possibility
distributions, i.e., the pessimistic, optimistic, and the most likely values based on
considering both available objective data and subjective data quoted by the field experts.
This method is similar to defining pessimistic, optimistic, and the most likely scenarios
for future redizations. Escudero et al. [27] directly use scenarios to characterize the
uncertainty in investment and operation costs, energy demand, economic environment,
generation availability, and operation life of power plants. Li [37] defines al the
variables that directly or indirectly impacted by the climate change and different
scenarios are presented to cover the possible outcomes of future weather variability. Each
discrete climate scenario is a realization of a set of random variables over the planning
horizon. Climate scenarios have three mgor climate variables namely; temperature,
precipitation and extreme events. These climate variables correspond to six sets of GEP
parameters. demand, peak demand, availability factor, transmission capacity, reserve
margin and derate factor .

A GEP modéd for the Northeast US where the stochastic parameters are classified
according to their uncertainty type, i.e., aleatory or epistemic, is proposed in Section 5.

Uncertainty representation of each parameter is also discussed.
2.3 Multi-Objective Optimization

Optimization is the process of selecting the best solution for a problem, subject to
some constraints, from some set of available aternatives. An optimization model seeksto

find values of the decision variables that optimize (maximize or minimize) an objective
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function among the set of all values for the decision variables that satisfy the given
constraints [62].

An objective function is the performance measure to be maximized or minimized
(e.g., maximize profit, minimize cost). Decision variables are the set of values that
represent the decisions to be made and implemented (e.g., type of technology to invest in,
number of plants to be built). Constraints are limitations or requirements on the set of
allowable decisions (e.g., budget limitations). Mathematical notation of an optimization

model is as follows:

min/max z(x) m=12,..,M
. ) 3 L _
subjectto  g;(x)* 0 1=12,..,3J (16)
h(x)=0 k=12,..,K

P Ex ExXY i=12,..,n
where,

e X=(XuXa...,%) isthevector of the n decision variables.
« Z_(x) isthem™ objective function evaluated at solution vector x;.

* M isthe number of objectives.

* Jand K are the number of inequality and equality constraints.

o x and x“ are respectively the lower and upper bounds for each decision

variable x.

In the above optimization model when the number of objectives is equal to one
(M =1), the problem is called a single objective optimization.

However, most real life optimization problems are multi-objective problems in which
objectives under consideration often conflict with each other. When an optimization

problem involves more than one objective function (M = 2), the task of finding optimum
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solution(s) is known as multi-objective optimization. In multi-objective optimization
problems, the decision maker wants to obtain more than one goal. For example, in the
GEP problem, minimization of cost is a very important objective but increasing the
reliability and minimizing emissions of pollutants are also crucial. These two objectives
reguire spending which conflicts with minimization of the cost objective.

In multi-objective optimization problems, there is usually not a single optimal
solution, but there is a set of solutions as a result of the optimization process. Any
optimization process first produces the objective space as shown in Figure 3. Each value
of each objective function evaluated at different decision variable vectors is reflected in
the objective space with one-by-one correspondence. Then the set of solutions, which
provides a trade-off curve of conflicting objectives for the multi-objective optimization
problem, is determined. This set is called the Pareto optimal set and it is determined by
using the Pareto dominance concept.

Gi(Xx)
N
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Figure 3. One-by-one correspondence between the decision space and the objective space
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2.3.1 Pareto Optimality

For multi-objective optimization problems, a common solution methodology is to
determine a Pareto optimal set which provides a trade-off curve of conflicting objectives.
Solutions in the objective space are compared in pairs according to the Pareto dominance
concept to determine the Pareto optimal set. Moving from one point to another on the
trade-off curve (or in the Pareto optimal set) means|osing in one objective of the problem

in return for gaining in another objective for competing objective functions (Figure 4).

2,00 1

Paretooptimal set

< (afx)

>

Figure 4. Pareto optimal set gives atrade-off curve of conflicting objectives. Every point isan
expected solution to the multi-objective optimization problem

2.3.1.1 ThePareto Dominance Concept
Pareto optimality uses the concept of dominance. For a minimization problem, a
solution x; said to dominate another solution x;, X; > X , if these two conditions are both
satisfied:
1. The solution x; is no worse than x; for all M objective functions, that is,
z,(x)Ez (X;) fordlm=12,...,M
2. Thesolution x; is strictly better than x; for at least one objective function, that is,

Z,(X)<z,(X;) foratleast oneme {1,2,%4,M}
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where z__(x.) isthe m™ objective function evaluated at solution vector x; and M is the

number of objective functions.

For instance, in Figure 5 (all objectives are to be minimized), Solution 1 dominates
Solution 3 because, even though they have the same vaue for objective function 1,
Solution 1 is a better solution than Solution 3 in terms of objective function 2. On the
other hand, there is no solution that satisfies the above conditions compared to Solution 2.
Pairwise comparisons between Solutions 1 and 2, and Solutions 2 and 3 show that
Solution 2 is not dominated by 1 or 3, and also Solution 2 dominates neither 1 nor 3.
Therefore, Solutions 1 and 2 are called non-dominated Solutions and they are in the

Pareto optimal set. Solution 3 is called a dominated solution and it is not in the Pareto

optimal set.
X) A
24(x) ’ 5
e o_ .
Non-dominated 5 | Dominated
3 Co(X)

Figure 5. The concept of dominance for a minimization problem

Using the concept of dominance, solutions in the objective space can be compared in
pairs to find the Pareto optimal set, which provides a trade-off curve of conflicting
objectives (Figure 3). Moving from one point to another on the trade-off curve (or in the
Pareto optimal set) means losing in one objective of the problem in return for gaining in
the other objective.

There are two important tasks while finding the Pareto optimal set in multi-objective

optimization: convergence and diversity. Convergence is finding the closest Pareto front
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to the true Pareto front of the problem which is often unknown. Diversity means that
solutions in the best-known Pareto optimal set should be uniformly distributed and
diverse over the Pareto front in order to provide the decision-maker a true picture of
trade-offs and the diversity of solutions.

Many algorithms exist involving multiple objectives to determine the Pareto optimal
set. The mgority of these methods transform multiple objectives into a single objective
function. Thus, most of these classical methods do not treat multi-objective optimization
any differently than single objective optimization. Furthermore, these classica
optimization methods can at best find one solution, and thereby making those methods

inconvenient to solve multi-objective problems [63].
2.3.2 Classical Methods

In this section some of the commonly used classical methods for handling multi-
objective optimization problems are described. Following Deb’s explanation [63], these
methods are referred to as classica methods, mainly to distinguish them from
evolutionary algorithms, which are discussed in the following section.

Miettinen [64], classified the classical methods in the following four types:

1. No-preferences methods do not assume any information about the importance of

objectives but aheuristic is used to find a single optimal solution.

2. Posteriori methods use preference information of each objective and iteratively

generate a set of Pareto optimal solutions.

3. A priori methods use more information about the preference of the objectives

and usually find one preferred Pareto optimal solution.
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4. Interactive methods use the preference information progressively during the
optimization process.
The following presented classical methods are outlined in the order of increasing use

of preference information.

2.3.2.1 Weighted Sum Method

This method combines a set of objectives into a single objective by pre-multiplying

each objective with auser supplied weight as,

M

min 6°l W, Z..(X) (A7)
m=1
st. xI X

where 4w, =1, w_1 [0,1], " M {1,...,M} and X represent the feasible set.

It islikely that in an optimization problem different objectives take different orders of
magnitude. For example, cost of a product may vary between 100 to 1000 dollars but the
amount of wasted material may vary between 0.01 to 0.1 m®. Therefore, thereis aneed to
scale the objectives appropriately to make them equally important [63]. This is caled
normalization. This procedure is a drawback for the weighted sum method because it
may affect the solution quality [1]. Other disadvantages of the weighted sum method are
asfollows:

There is aneed to define weights for objectives.
In nonlinear problems, uniformity/diversity of Pareto set is not guaranteed.
More tests are needed to know whether the solution is truly optimal

(convergence).
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The method fails to find some Pareto optimal solutions in a non-convex objective
space.
On the other hand this method has some advantages such as:
Itisvery simple.
It is easy to implement.

For convex Pareto optimal fronts, it guarantees finding solutions on the entire set.

2.3.2.2 Thee-Constraint Method

This method selects one of the objectives and restricts the rest within user-specified

values. e, represents an upper bound of the value of m™ objective function (Zy) and not

need necessarily to mean a small value close to zero [65].

min z_(x)

st. z,(X)E£e, m=12..Mandm! m
g;(x)3 0 j=12,...,J
h.(x)=0 k=12,..,K

(18)

Mavrotas [66] proposes a novel version of the method (augmented e-constraint
method - AUGMECON) that avoids the production of weakly Pareto optimal solutions
and accelerates the whole process by avoiding redundant iterations. An interactive
approach that is based on AUGMECON and eventually results in the most preferred
Pareto optimal solution is also proposed in the paper.

Advantages of the e-constraint method are:

Itissimple.
It is easy to implement.

It can be used for convex or non-convex or discrete objective spaces.



48
Some disadvantages of this method are as follows:
Solution of the problem largely depends on chosen e-vector and it has to be
chosen carefully to find feasible solutions.
More objectives in the problem mean more elements in g-vector which means

more information is needed from the user.

2.3.2.3 Weighted Metric M ethods

These methods combine multiple objectives into single objective using weighted

metrics, |, and Wi

p
min 1,60=38 w,lz,09- 7,8
8m=1 (%]
st. g;(x)%0 i=12,..,J (29)
h () =0 K=12,.. K

where z,, istheideal solution to the m™ objective function of the problem.
When p = 1, this equation is simply the weighted sum method. When p = 2, a
weighted Euclidean distance of any point in the objective space from the ideal point is

minimized. When a very large p is used, problem becomes minimization of the largest
deviation ‘z - ztn\ . Thisis called the weighted Tchebycheff problem.

The weighted Tchebycheff method guarantees to find each and every Pareto optimal
solution. However, as p increases the problem becomes non-differentiable. Normalization
is needed in metric weighted methods, which requires the knowledge of minimum and
maximum function values of each objective. Furthermore idea solutions z,, are required

and all objectives are needed to be independently optimized.
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2.3.2.4 Value (Utility) Function Method

The user provides a mathematical value function relating all objectives. The value
function must be valid over the entire feasible search space and must be strongly
decreasing: The preference of a solution must increase if one of the objective function
values is decreased while keeping the others the same [63]. The task is to maximize the

value function:

max U ({(x))
st. ¢g,x3*0 j=12..,J (20)
h(x)=0 k=12,..K

where {(x) = (a(x), Z2(X), ..., Qu(x))"-

Again, this method is simple, easy to implement and it can be used with a discrete set
of feasible solutions. However, the method depends entirely on the value function and
there is adanger of using an over-simplified function. It is also a drawback of the method

that the value function must be valid over the entire feasible search space.
2.3.25 Goal Programming Methods

Goa programming was first introduced by Charnes et a. [67] and gained popularity
after the works of Lee [68] and Ignizio [69].

The main idea in these methods is to find predefined target solutions which can be
different from optimal solutions. If there are no solutions for the targets, then the task is
to find solutions which minimize deviations from the targets. Deviation variables n and p

are used for different target types as,



Less than or equal to z.(X) £t
Greater than or equal to z,,(X) 3 t,
Equal to z.,(X) =t,
Within arange

Zm(OT [thti]
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Zm(x)- pm£tm

Zm()()"'nm3 tm

Zm(X)' pm+nm:tm

Zm(x)' met:n andzm(x)'*'nm3 trLrj1

(21)

In general, the objective of goal programming methods is to minimize the deviation

variables n and p.

When targets are used as constraints and objectives are combined in a composite

objective function with deviations, it is called weighted goal programming asindicated in

Equation (22).

M
min é @,p,+b.n.)

m=1

st. z,(X)- p,+tn,=t. m=12..M (22
x1 X
Pm N, 2 0 m=12,..,M

When objectives are prioritized and goa programming problem is solved sequentially

for each objective, the method is called the lexicographic goal programming. In the first

level of the method al other objectives are ignored and the prioritized objective function

is optimized. In the second level the next prioritized objective function is optimized

considering the set of optimal solutions of the first objective function. The method

continues in this fashion until al the objective functions are optimized.

When the maximum deviation (d) in any goa from the target is minimized, the

method is called the min-max goal programming, as follows:

min d

st. a,p,+b,n, £d m=12,..,M
z.,(X)- p,+tn, =t m=12..M (23)
xI X
p,.N,30 m=12,...M
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2.3.2.6 Review of Classical Methods

The classical methods convert a multi-objective problem into a single objective
problem. Convergence to the Pareto optimal set is their strength. M ethods are simple and
easy to implement. However, only one Pareto optimal solution can be found in one
simulation run of a classical method and not every simulation run produces different
solutions. There can be identical solutions with different parameters. Not all Pareto
optimal solutions can be found by some methods in non-convex problems. Some problem
knowledge is required, such as weights or target values or value functions. Furthermore,
classica methods may not produce a uniformly spaced Pareto optimal set, which means

diversity may not be satisfied.
2.3.3 Multi-Objective Evolutionary Algorithms

Evolutionary agorithms are stochastic search methods that simulate the process of
natural evolution to solve problems with a complex objective space. They are inspired on
the survival of the fittest principle of the natural evolution.

In an evolutionary algorithm a population of solutions is processed in every
generation (or iteration) and this feature gives an evolutionary algorithm a tremendous
advantage for its use in multi-objective optimization because convergence can be
achieved in only one iteration [63]. Furthermore, evolutionary agorithms have specia
operators that preserve the diversity in the Pareto optimal set, which is a drawback of
most of the classical methods. In addition to these advantages, evolutionary algorithms

also specifically address the following difficulties of classical methods:
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In classicad methods, the convergence to an optima solution depends on the
chosen initial value. Evolutionary agorithms do not need initia values of
problems.

Most classical methods tend to converge to a suboptimal solution. Evolutionary
algorithms have specia operatorsto avoid this problem.

A classica method efficient in solving one problem may not be efficient in
solving another problem. Evolutionary algorithms, however, are capable of
dealing with any problem.

Some classica methods are not efficient with problems having a discrete search
space, but evolutionary algorithms are applicable to any kind of problem.

Classical methods cannot be efficiently used on parallel machines. Evolutionary
algorithms do not have such disadvantage.

Table 5. Basic evolutionary algorithm form [70]

Initialize the population with random individuals
Evaluate each individual

Repeat

Select parents

Recombine pairs of parents

Mutate the resulting offspring

Evaluate new individuals

Select individuals for the next generation

© 00 N O o A WODN P

Until atermination condition is satisfied

A generic form of a basic evolutionary algorithm is shown in Table 5. Every iteration
of the algorithm corresponds to a generation, where a population of candidate solutions to
a given optimization problem, called individuals, is capable of reproducing and is subject

to genetic variations followed by the environmental pressure that causes natural selection
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(surviva of the fittest). New solutions are created by applying recombination, that
combines two or more selected individuals (the so-called parents) to produce one or more
new individuals (the children or offspring), and mutation, that alows the appearance of
new traits in the offspring to promote diversity. The fitness (how good the solutions are)
of the resulting solutions is evaluated and a suitable selection strategy is then applied to
determine which solutions are to be maintained into the next generation. As atermination
condition, a predefined number of generations (or function evaluations) of simulated
evolutionary process is usually used, or some more complex stopping criteria can be

applied [70]. For example, Figure 6 shows the flow chart of a genetic algorithm.

Initial _ . Assign
population gen=0 Evaluation L=
Selection
No s
Reproduction COMng;gon
gen = gen+1 ;
Yes
Crossover
Stop
Mutation

Figure 6. Flow chart of a genetic algorithm

Multi-objective evolutionary algorithms are one of the developing evolutionary
algorithms. An excellent overview of current issues, algorithms, and existing systems in
this areais presented in [63]. Another very good survey about meta-heuristics in general
is[70]. Section 3 of the survey is devoted to evolutionary algorithms.

Jones et al. [70] reviewed 115 articles concerned with the theory and application of

multi-objective meta-heuristics and reported that 90% of the approaches to muilti-
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objective optimization aimed to approximate the true Pareto front for the underlying
problem. A majority of these used a meta-heuristic technique, and 70% of al meta-
heuristics approaches were based on evolutionary approaches, primarily genetic
algorithms.

There are several comparison studies of multi-objective evolutionary algorithms.
References [71] and [72] compares eight algorithms on six test problems. Knowles and
Corne [73] compare thirteen algorithms on a set of six test problems. In [74] and [75]
three different algorithms are compared on nine test problems. In al these comparisons
genetic algorithms are reported to outperform other evolutionary algorithms.

Multi-objective genetic algorithms have been the most popular heuristic approach to
multi-objective design and optimization problems because they are population-based
approaches and have the ability to find a set of multiple non-dominated solutions in a
single run. The ability of a genetic agorithm to simultaneously search different regions of
an objective space makes it possible to find a diverse set of solutions for difficult
problems with non-convex, discontinuous, and multi-modal objective spaces. The
crossover operator of a genetic algorithm may exploit structures of good solutions with
respect to different objectives to create new non-dominated solutions in unexplored parts
of the Pareto front. In addition, most multi-objective genetic agorithms do not require the

user to prioritize, scale, or weigh objectives [76].
2.3.4 Multi-Objective Genetic Algorithms

In this section, basic principles and design issues of genetic agorithmsfirst for single
objective and then for multi-objective versions are discussed and a literature review for

multi-objective genetic algorithmsiis presented.
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2.3.4.1 Componentsof Genetic Algorithms

The concept of genetic agorithm was first conceived by Holland [77]. Genetic
algorithms are search heuristics that mimic the process of natura evolution. In its generdl
form, a genetic agorithm works as follows (also Figure 6):

Aninitial population of individuals (solutions) is generated.

At every generation, the individuals are evaluated and a fithess value is assigned.
Selection operator selects the fittest individuals.

If the stopping criterion is met the algorithm stops and gives the result.

If not, new generation is created by operators such as mutation and crossover.

Crossover operator is mainly responsible for the convergence to the optimal
solution(s) and mutation operator keeps diversity in the population.

Encoding

The first design issue of genetic algorithm is how to represent a solution. A solution
vector of the optimization problem is called an individual or a chromosome in the genetic
algorithm. These chromosomes are made of units called genes. Each gene controls one or
more features of the chromosome. Normally, a chromosome corresponds to a unique
solution in the solution space. This requires a mapping mechanism between the solution
gpace and the chromosomes. This mapping is caled an encoding. In fact, genetic
algorithm works on the encoding of a problem, not on the problem itself [76].

There are many different ways of encoding. In the original implementation by
Holland [77], binary coding was used. There are also permutation encoding, value

encoding, and tree encoding. These encoding schemes are discussed in [78].
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Fitness Assignment and Selection

Genetic algorithms are based on the idea of survival of the fittest. Therefore, the
algorithm assigns a fitness value to al individuals at every generation and selects the
fittest individuals for the creation of the next generation. Chromosomes are first decoded
(reverse of encoding) and a fitness value is assigned according to the objective and
constraint functions. In the absence of constraints, the fitness is the solution’s objective
function value. For the violated constraints a penalty value is often added to the fitness
value.

The selection operator is intended to eliminate bad solutions and improve the average
quality of the population while keeping the population size the same. Thisis achieved by
giving a higher quality individual a higher probability of selection. There exist a number
of methods for selection operator. Some common methods are roulette wheel selection,
tournament selection, proportionate selection, ranking selection, stochastic universal
sampling selection, and steady-state selection. Explanations and examples of these
selection operators can be found in [63] and [78].

Elitism

Elitism in the context of single objective genetic algorithm means that the best
solution found so far during the search aways survives to the next generation. In this
respect, al non-dominated solutions discovered by a multi-objective genetic algorithm
are considered elite solutions. Early multi-objective genetic algorithm did not use elitism.
However, multi-objective genetic algorithms using elitist strategies tend to outperform
their non-elitist counterparts. Elitism can rapidly increase the performance of the

algorithm because it prevents the loss of the best found solution(s).
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Crossover and Mutation

The creation of new individuals is performed by crossover and mutation operators.
These are the most important parts of the genetic algorithm because the performance of
the algorithm is directly influenced by them.

Crossover operator selects two individuals from the previous generation (parents) and
some portion of the solution vectors (genes) are exchanged between the individuals to
create a new individual (offspring) for the next generation. For example in Figure 7, two
binary coded individuals, I; and |,, are selected and left side genes of 1, from the dotted
line and right side genes of |, from the dotted line are used to form the new individual,

[1-0.

/= ‘OO 001010001010 1110 11 1000;1000000001 001000‘

/= |101000101T 10 00 00 01 00 00 1050001 000100101010 ‘

d

/, ,= 10000101000 10 10 11 10 11 1000;0001 0001001010 10

Figure 7. An example for crossover operator

The crossover operator is mainly responsible for the convergence to the optimal
solution(s) because the new individua is often better than parent solutions. Although
creating a better individual is not always true for all crossover operations in the
algorithm, the chance of creating better individuals is very high because higher quality
individuals have a higher probability to be selected as parents.

The mutation operator works on only one parent individual from the previous

generation and changes some genes of the parent individual to create a new offspring
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individual for the next generation (Figure 8). Mutation operator keeps diversity in the
population and prevents premature convergence. Different crossover and mutation

operator types for different encoding schemes are presented in [78].

/= ‘0011 011010000001001000 1011100000 1000 1010

\ \ v
/,’=10011001010001001 0010001011 100000 11 00 10 10

Figure 8. An example for mutation operator

2.3.4.2 Differencesbetween Single- and Multi-Objective Genetic Algorithms

Being a population-based approach, genetic algorithms are well suited to solve multi-
objective optimization problems. A generic single-objective genetic algorithm can be
modified to find a set of multiple non-dominated solutions (the Pareto set) in asingle run
[76]. Multi-objective genetic algorithms also use the same operators mentioned above.
Crossover and mutation operators do the same work for multi-objective genetic
algorithms. Elitism is used in several of them.

Multi-objective genetic algorithms differ from single objective genetic algorithms in
the way the selection is made and the fitness is assigned to each solution in the
population. The concept of dominance is implemented for selection of individuas.
Methods such as weighted sum approaches, altering objective functions and Pareto-
ranking approaches are proposed for selection and fitness assignment. Multi-objective
genetic agorithms introduce different methods to promote solution diversity. Most
commonly used methods are fitness sharing, crowding distance method and cell-based

density method.
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2.3.4.3 State-of-the-Art Multi-Objective Genetic Algorithms

The first rea implementation of a multi-objective genetic agorithm (Vector
Evaluated Genetic Algorithm, VEGA) was suggested by Schaffer [79]. VEGA is a
modified genetic algorithm with selection, crossover and mutation operators which
performs independent selection cycles according to each objective. Population at every
generation is randomly divided into M equal sized subpopulations (M is the number of
objectives). Each solution in each subpopulation is assigned a fitness value based on each
objective function. Then all subpopulations are combined and crossover and mutation are
applied. VEGA is easy to implement and computationally efficient. The major drawback
is that the population tends to converge to solutions which are superior in one objective,

but poor at others.
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Figure 9. MOGA ranking method (adapted from Konak et al. [76])

MOGA (Multi-Objective Genetic Algorithm) [80] is the first multi-objective genetic
algorithm that explicitly used Pareto-based ranking and niching techniques together.
Niching is a neighborhood formation scheme based on the Euclidean distances between

every solution pair, and it is used to maintain diversity. In MOGA, each solution
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(individual) is ranked according to its degree of dominance. Ranking of a solution equals
one plus the number of solutions that it is dominated by (Figure 9). This scheme
penalizes solutions located in the regions of the objective function space which are
dominated (covered) by densely populated sections of the Pareto front. MOGA is dso a
simple extension of single objective genetic algorithm but it is usualy slow at
convergence due to the niche size parameter.

Niched Pareto Genetic Algorithm (NPGA) [81] aso uses the Pareto dominance
concept to solve the multi-objective problems. This method differs from the other
methods in the selection operator. NPGA uses the binary tournament selection. First, two
individuals are randomly selected as candidates from the parent population and they are
compared with solutions from a subpopulation of size Tgom from the parent population. If
only one of the individuals is dominated by any other individual from the subpopulation,
then the other candidate (non-dominated one) is selected for reproduction. If both
candidates are dominated or non-dominated then specialized fitness sharing is performed

and the candidate with the lower niche count is sl ected.
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Figure 10. NSGA ranking method (adapted from Konak et a. [76])



61

NSGA (Non-dominated Sorting Genetic Algorithm) [82] is another algorithm that
uses the dominance in ranking and a niche method for selection. It variesin the manner in
which the selection operator works. The first step of NSGA is to sort the population
according to non-dominance concept. The population is classified into nhon-dominated
fronts (F;). The same ranked individuals are assigned to the same front (Figure 10). After
the fronts are determined, starting from the best (first) front, fitness functions are
assigned to each individual in each front. Niche count of each individua is also
calculated. Using fitness and niche count, shared fitness for each individual is calculated.
Once the shared fitness is assigned, the population is reproduced according to the shared

fitness values.

Figure 11. NSGA-II crowding distance method (adapted from Deb et a. [76])

NSGA-Il (Fast Elitist Non-dominated Sorting Genetic Algorithm) [83] is an
improved version of the NSGA. In most aspects, this algorithm does not have much
similarity with the original NSGA version. NSGA-II does not have the problems of using
the shared fitness function which requires appropriate selection of the sharing parameter.
The agorithm first ranks the population and identifies non-dominated fronts (F;). For
each objective function, the algorithm sorts the individuas in each front F; in the

ascending order and it assigns crowding distance values to each of the individuals, which
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is a measure of population density around the individual as shown in Figure 11. The
crowding distance approach aims to obtain a uniform spread of solutions along the best-
known Pareto front without using a fitness sharing parameter. The main advantage of the
crowding distance approach is that it is computed without requiring a user-defined
parameter. In NSGA-II, the crowding distance measure is used as a tiebreaker in a
selection technique called the crowded tournament selection operator. In this method two
solutions are randomly selected. If the solutions are in the same non-dominated front,
then the solution with a higher crowding distance is the winner. Otherwise, the solution
with the lowest rank is selected [76].

Table 6 gives a list of mentioned multi-objective genetic agorithms with their
advantages and disadvantages. Konak et a. [76] provides a very informative tutoria
about multi-objective optimization using genetic algorithms. In the paper, design issues
and components of multi-objective genetic agorithms are explained and different
algorithms are compared according to their approach to fitness functions, diversity
mechanisms, elitism and constraint handling techniques.

Table 6. List of reviewed multi-objective genetic algorithms

Algorithm Description Advantages Disadvantages

Fractions of succeeding

populations are selected | Straightforward Tend to converge to

VEGA based on separate implementation th‘? extreme of eacn
o objective
objective performance.
Usualy slow
MOGA Incorporates niching and | Simple extension of | convergence
ranking. single objective GA | Problemsrelated to

niche size parameter
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Very simple Problemsrelated to
NPGA Specialized Pareto selection process niche size parameter
domination tournaments. | with tournament Extra parameter for
selection tournament selection.
Assigns and shares
NSGA dummy fitnessin each Fast convergence P_rort‘) | ems related to
front. niche size parameter
Useselitismand a
crowded comparison Single parameter , ,
NSGA-I| | operator that keeps (N) \?v:)?\livsd : Q%S’Ztc??fg
diversity without Well tested o o )
specifying any additional | Efficient P y-
parameters.

24 Uncertainty in Multi-Objective Optimization

Although multi-objective stochastic programming problems are frequently
encountered in practice, the literature on solution methodologies accounting for the
uncertainty is still in its nascence [84]. References [85] and [86] point out that the
resolution of multi-objective stochastic problem involves two kinds of transformations
namely; the multi-objective transformation and the stochastic transformation.

In many problems there are random constraints in addition to the random objectives.
Therefore, the first step for both transformations is addressing the random constraints.
Some researchers, as Ben Abdelaziz et al. [86], consider that random constraints can be
viewed as extra random objectives. Teghem et al. [87], for instance, consider the cost of
violation of these random constraints as an extra objective to be minimized. Other
authors, as Ben Abdelaziz et a. [88], require that the constraints as in the chance
constrained programming need to be satisfied with a certain probability, where there are
threshold values of constraints specified by the decision maker. All the constraints can

also be transformed at the same time by considering the joint chance constrained
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programming approach. After transforming the random constraints, a deterministic
feasible set is obtained [89]. Once the constraints are addressed, the second step is the
transformation of random objectives with the multi-objective transformation or the
stochastic transformation.

In the multi-objective transformation, as in [87], [90], and [91], the problem is
transformed as a multi-objective deterministic optimization problem and is generaly
solved by means of interactive methods. The methodology follows a two-phase approach
where, in the first phase, the stochastic multiple objectives are converted into
deterministic equivalents based on the minimum expectation and variance efficiency
concepts (Figure 12). The second phase solves the deterministic multi objective problem,
using a Pareto generation methodology, which aims at generating the entire Pareto
surface of multi-objective programming problems [84]. This kind of transformation

eliminates the randomness and uncertainty.

STOCHASTIC EQUIVALENT EQUIVALENT
MULTIOBJECTIVE DETERMINISTIC — DETERMINISTIC
PROGRAMMING MULTIOBJECTIVE MONQOBJECTIVE
PROBLEM PROBLEM PROBLEM
Figure 12. Steps for obtaining efficient solutions in the multi-objective approach [92]
STOCHASTIC STOCHASTIC EQUIVALENT
MULTIOBJECTIVE MONOBJECTIVE — DETERMINISTIC
PROGRAMMING PROGRAMMING MONOBJECTIVE
PROBLEM PROBLEM PROBLEM

Figure 13. Steps for obtaining efficient solutions in the stochastic approach [92]

In the stochastic transformation, as in the stochastic goal programming proposed in
[85], the multi-objective problem is first aggregated to obtain a single objective stochastic

program, which is solved by a stochastic programming approach (Figure 13). This kind
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of transformation keeps the randomness and uncertainty but eliminates the multi-
objective aspect of the problem.

In both transformations at least one of the important aspects of the multi-objective
stochastic problem is eliminated. The problem after transformation is either a multi-
objective deterministic problem or a single objective stochastic problem. If the multi-
objective transformation is preferred, then the result is a Pareto optimal set but without
any knowledge of uncertainty. If the stochastic transformation is used, then theresult isa
single optimal solution. Furthermore, the role of the modelers in understanding the
environment of the problem and their participation in the resolution process are very
important in providing good solutions to the original problem [89].

Ben Abdelaziz [89] formulates the multi-objective stochastic problem as follows:
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where

M objectives z, (W,x),z, (W,x),...,z,, (W,x) arerandom

X is asolution in the objective space and it is an n-dimensional vector consisting

of n decision variables: x = (xg, ..., Xn)
feasible set X(W) is random
constraints §; and the parameters 5]. are random

Q isaprobability space

D is adeterministic convex set.
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According to Abdelaziz [89], when solving the multi-objective stochastic problem,
one can be observing the behavior of the Pareto set of the obtained deterministic multi-
objective problem for the different values of the state of the nature W. This kind of
distributional problem is not well addressed in the literature asin genera [85], and from a
decision point-of-view, the need is to generate a here and now solution without
addressing the distributional problem. Abdelaziz [89] claims that a decision maker is
rarely interested in knowing how the Pareto set changes depending on the occurrence of
W.

In contrast, it is very important for a decision maker to have the knowledge of
uncertainty in the Pareto set. The following three example cases illustrate why it is
important to observe the uncertainty of each solution in the objective space. All cases are
examples of minimization problems.

Case 1. In Figure 14, Solutions 1 and 2 are non-dominated, and Solution 3 is
dominated (by Solution 1), but this is only strictly true if these results are deterministic.
Compare this example with the one presented in Figure 15. In Figure 15, the uncertainty
is depicted by clouds around the solutions. A large cloud means that the solution has a
high level of uncertainty. In Figure 15, Solution 1 has a high level of uncertainty whereas
Solution 3 has a lower level of uncertainty. All the solutions have a probability of being
dominated by other solutions. If the decision maker prefers to observe expected values of
results, then the preference of the solutions would be the same as in the deterministic case
(Figure 14), and Solution 3 would not be presented in the Pareto optimal set. However, if
the decision maker is interested in uncertainty or risk in these solutions, then the

dominance relation between solutions is not deterministic, and not always obvious or
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intuitive. The probability of Solution 3 being dominated by Solution 1 becomes very low.
Therefore, it should be presented to the decision maker as an alternative, i.e., it should

take its place in the Pareto optimal set.

L) 4 ,
A% S o
: . e ; -
> Ca(X) > Cz(x)
Figure 14. Deterministic example for Case 1 Figure 15. Stochastic example for Case 1

Case 2: In Figure 16, Solution 1 clearly dominates Solution 2 since Solution 1 has
better values for both objectives 1 and 2. In Figure 17, however, the concept of
domination is not clear any more. Solution 1 has a higher level of uncertainty compared
to Solution 2. Again, if the decision maker prefers to observe expected values, then the
preference of the solutions would be the same as in the deterministic case, and Solution 2
would not be presented in the Pareto optimal set. However, when the uncertainty is
included, the probability of Solution 2 being dominated by Solution 1 becomes very low,

which givesit a probability to be a preferable solution.
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5 G2(%) > Co(x)
Figure 16. Deterministic example for Case 2 Figure 17. Stochastic example for Case 2

Cases 1 and 2 show the importance of knowing the uncertainty, particularly for arisk-

averse decision maker. A risk-averse decison maker would be interested in worst case
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scenarios and expected results would not reveal the risk of the solutions to the decision
maker.

The following example case involves a risk-seeking decision maker and the concept
of regret. Making poor decisions under uncertainty can lead to disappointment that
alternative choices would have been preferable, which is called regret. If the decision
maker is willing to take the risk for more gain or wants to minimize the regret, then
again, the uncertainty of solutions gains importance.

Case 3: Compare Figure 16 and Figure 18. As in Case 2, Solution 1 clearly
dominates Solution 2 since Solution 1 has better values for both objectives 1 and 2 in the
minimization problem (Figure 16). In Figure 18 , the concept of domination is not clear
any more. Solution 2 has a higher level of uncertainty compared to Solution 1 but thisis
not a problem for a risk-seeking decision maker. In fact, it is an opportunity. Thereis a
probability that Solution 2 will provide better results than Solution 1. This also means
that there is a probability that the decision maker will regret the decision if Solution 2

happens to be a better choice.

Zi(x) 4

5 500
Figure 18. Stochastic example for Case 3

The above discussion about transformation of stochastic multi-objective problems

and example cases illustrate why it is important to observe the uncertainty of each

solution in the objective space. They demonstrate that there is a need for a new approach
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to solve stochastic multi-objective problems without a transformation which also keeps
the uncertainty information of Pareto solutions. Therefore, a new metric, the PUI is
presented in this research. This metric enables a direct approach to solve a stochastic
multi-objective problem without any transformation of the problem, and it also provides
the opportunity to the decision maker to observe the uncertainty of solutionsin the Pareto
set. Later the PUI is used in PUGA, a new multi-objective stochastic genetic algorithm
that is also presented in this research, to solve multi-objective stochastic optimization

problems.
2.5 Post-Pareto Pruning

Multi-objective optimization techniques often yield a very large number of non-
dominated Pareto optimal solutions, which makes the selection of one single best solution
very difficult, especially as the number of objectives increase. Eliminating the less
satisfactory trade-offs and reducing the number of alternatives is not a simple task.
Although, several methods for solving multi-objective optimization problems have been
developed and studied, little prior work has been done on the evauation of results
obtained in multi-objective optimization. This selection stage is often referred as post-
Pareto optimality. The two main objectives of the post-Pareto optimality analysis arei) to
obtain a smaller sub-set of preferred solutions from the large Pareto optimal set, and ii)
the evaluation and interpretation of the results obtained from any optimization method
[78]. Taboada et al. [93] propose following two methods to reduce or limit the size of the
Pareto optima set, 1) pruning by using non-numerical objective function ranking
preferences method, and 2) pruning by using data clustering. The first method is a

pseudo-ranking scheme that helps decision makers select solutions that reflect ther
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objective function priorities. In the second approach, data mining clustering techniques
are used to group the data by using the k-means algorithm to find clusters of similar
solutions. This provides the decision maker with just k general solutions to choose from.
With this second method, from the clustered Pareto optimal set, they attempt to find
solutions which are likely to be more relevant to the decision maker.

Aguirre and Taboada [94] introduce the dynamic self organizing tree agorithm as a
method to perform post-Pareto analysis. This algorithm offers two main advantages.
There is no need to provide an initial number of clusters, and at each hierarchical level,
the algorithm optimizes the number of clusters, and can reassign data from previous
hierarchical levelsin order to rearrange misclustered data.

Kulturel-Konak et al. [95] use a tabu search meta-heuristic approach to initially find
the entire Pareto optimal front, and then, Monte-Carlo simulation to provide the decision
maker with a pruned and prioritized set of Pareto optimal solutions based on user-defined
objective function preferences.

In this research, finding the Pareto optimal set and pruning for post-Pareto analysis
are incorporated in one approach. PUGA uses the PUI to calculate the domination
probability of two solutions on the same Pareto front. The algorithm can use this
probability information to make a preference decision between solutions on the same
front using the risk preference of the decision maker. Thus, obtaining a smaller subset of
preferred solutions from a large Pareto optimal set and the evaluation and interpretation

of the results can be accomplished within the optimization process.



71

3. Pareto Uncertainty Index (PUI)

A new metric, the Pareto Uncertainty Index (PUI), is presented in this section. This
metric enables a direct approach to solve a multi-objective stochastic problem without
any transformation of the problem, and it also provides the opportunity to the decision
maker to observe the uncertainty of solutions in the Pareto set. For a discussion of how
uncertainty is modeled in multi-objective optimization and why it is important, see

Section 2.4.
3.1 PUI Formulation

A stochastic multi-objective problem can be formulated as follows:

min/ max z (W,x):(zl(vv,x),zz(vv,x),...,zM (W,X))
st g; (W,x) £b, (W) j=1,..K (25)
xT D,Wi W

where

M objectives z, (W,x),z, (W,x),...,z,, (W,x) arerandom.

X is a solution in the objective space and it is an d-dimensional vector consisting

of d decision variables: X = (X, ..., X4)
feasible set X(W) is random.
parameters of constraints g; (W) and b, (W) are random

Q isaprobability space

D is adeterministic convex set.
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The first step for calculating PUI;, the Pareto Uncertainty Index of solution x;, is
calculating the probability that other solutions dominate the considered solution X;.

Solution ¥x; is the vector of decision variables such that X; = (X1, X2, X3, ... X4), Where d is
the number of decision variables. Pr{x; > X;}, the probability that solution x; dominates
solution x;, can be formulated as in (26). Pr{X X} isthe combination of probabilities

that solution x; has a better objective function value than solution x; for al M objective

functions.

Pr{xi >Xj} = Pr{zl,xi <Zl,xj r122,xi <22,xj ﬂ"'r]ZM,xi <ZM,xj} (26)

X1, X2+, Xiy..y Xj,... , Xn @re solutions in the objective space.

z . isthevalue of m" objective function evaluated at i solution, x;.

For continuous dependent objective functions, Pr{x >x;} can be caculated with
several integration operations of joint probability density function for all objectives

evaluated at x;, f, , ., (2,2,...2, ‘xj); and joint cumulative density function for all

objectives evaluated at xi, F, , , (,Z,..,.2,|x;). Formulation of Pr{x; »x;}for N

dependent objective functionsis presented in Equation (27).
The probability that a solution x; dominates a solution x; can be used in different ways

to form different designs of the PUI. We propose four different designs of the PUI:

1. Cumulative PUI
2. Pairwise PUI
3. Neighborhood PUI

4. Preference PUI
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Pr{x, = x;} = Pr{zLxi <z, ﬂ...ﬂzM,xi <zM’xj}

= 0 0 Pr{z. <Zyy ﬁ"'ﬂZM,xi SZyx, [2ax, T Ay Zux, T ZM,xj}

Zl,xJ ZM,XJ

= 0 0Pz, <z, N..Nzy, < Zy 3202y (20 2y ‘xj)dzlyxj...dzM . (27
ézl,xl' ZN,Xj L‘:l
=0 0800 f., (Zmz, |Xi)dzl,xi"'dZM,xi§
21y Zmxg 3 0 0

.....

.......... j
Zl,xJ ZM,><J

Cumulative PUI utilizes the sum of domination probabilities of al solutions in the
objective space. Therefore, the PUI of solution x; is calculated as in Equation (28).

égl Pr{x. > xj}

i=1it |

PUI.

I

é. Pr{zl,xi <Zl,xj m"mZM,xi <ZM,xj} (28)

i=Lit |
u
u

o
£ Qos
(ol i e

h z .
1xj M xj

If objectives are independent from each other, then there is no need for integration
over joint probability functions and Pr{x; > x;} is the multiplication of probabilities that
solution x; has a better objective function value than solution x; for all objective
functions. Therefore, PUI; for independent objective functions can be calculated as in

Equation (29).
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PUI

én Pr{x. > xj}

i=1it |

n
o)
a Pr{zl,xi <Zl,Xj r]ZZ,Xi <22,XJ‘ r)"'(]ZM,Xi <ZM,X~}

L ]
i=1,itj

s XN
a Opr{zm,xi <Zm,xj}

i=Lit j m=l

(29)

-
a O OF, @), (Z.[x)dz,,

i=Litj melg,

For example, if al of the objective functions are distributed as independent normal

distributions, then the calculation is carried out as in Equation (30) where M () is the

mean of the m™ objective function evaluated at the i solution and Sy (2, sthe standard

deviation of the m™" objective function evaluated at the i"" solution.
3

a Pr{x >=x}

i=1,it

4 Opiz,, <z,,) (30)

J
i=1it | m=1

PUI .

J

e 60
én 6 gl q)(; rT‘!(i (Zm) ) n](j(zm) =

An easier way to explain the calculation of the cumulative PUI for a solution is to

give an example of a problem with two objective functions. For a bi-objective problem a

matrix as in Table 7 can be formed by calculating the probabilities in each cell. Priq or

Pr{x; >x,} is the probability that solution i dominates solution g. Then, for each

solution, row sums give the PUI of the solution asin (31).

PUI, = Prg+ Pryg + Pryg + Pr +%4 (31)
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Table 7. Calculation of cumulative PUI for a bi-objective optimization problem

X1 X X3 X4 Xq PUI
Xy | - Pry; Pra; Pra; Pro. PUI; = sum of the first row
Xo | Prop - Pr,3 Prs Pro PUI, = sum of the second row
X3 | Pris Pro; - Prss Prys PUI; = sum of the third row
X4 | Pria Prs, Pra, - Proa PUI, = sum of the fourth row
Xq | Pr(x;>%g) | Pryg Praq Praq - PUI, = sum of the " row

Pairwise PUI utilizes the sum of domination probabilities of only the closest
neighbor solutions for each objective function in the objective space. This is similar to
the crowding distance idea of NSGA-II [74] but it includes the stochastic nature of the
problem into calculation. Crowding distance is of NSGA-1I explained in Section 4.1.2.

Pairwise PUI of a solution x; is calculated as in Equation (32) where M is the number
of objective functions, Xmj.1 and Xmj+1 are the closest neighbor solutions for m™" objective
function.

M
[o]
PUI, = Pr{x

m=1

>xj}+Pr{x =X} (32

m,j-1 m,j+1 j

Neighborhood PUI utilizes the sum of domination probabilities of the solutions in
the same neighborhood. For this design of PUI, the objective space is partitioned into
neighborhoods similar to cells of RDGA shown in Figure 19 [96]. The neighborhood
approach is explained in Section 4.1.6.

Neighborhood PUI for a solution x; is calculated as in Equation (33) where Cy is the
neighborhood of solution x; and i isaneighbor solution in the same neighborhood.

PUI, = g Pr{x =X} (33)
i c,
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A
Figure 19. RDGA cell-based density approach

Preference PUI utilizes the domination probabilities to assign a preference value to

each solution. For a minimization problem, a solution x; is said to dominate another

solution Xj, X; > Xj, if these two conditions are both satisfied:

1. The solution x; is no worse than x; for al M objective functions, that is,
z,(x)Ez,(x;) fordlm=12,...,M

2. Thesolution x; is strictly better than x; for at least one objective function, that is,
z,(%)<z,(x,) foratleastone mi {1L,2% M }

where z__(x.) isthe m" objective function evaluated at solution vector x; and M is the

number of objective functions. This is the Pareto dominance concept where the
uncertainty is neglected. We call this design the expected domination. This is similar to
the ranking design of NSGA-II.

A solution x; is said to dominate another solution x; probabilistically if the probability
that solution x; dominates solution Xx; is greater than the probability that solution X;

dominates solution x;, that is, Pr{x; > x,} >Pr{x; = x}.
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If a solution x; dominates a solution X; both expectedly and probabilistically, then x;
dominates x; and it is also preferred over x;. If a solution x; dominates a solution X;
expectedly but not probabilisticaly, then there is no dominance relation between these
two solutions, that is, they are on the same Pareto front, but x; is preferred over x;.
Preference PUI design is explained in Table 8.

Table 8. Preference PUI

Expected _ Final Decision Preference
Stochastic
Domination o of of
. Domination ] )
(No Probability) Dominance the solution
i dominatesj| i dominates | i dominates | i ispreferred
_ ) , No domination .
i dominates]| J dominatesi _ _ j ispreferred
betweeni and

. : : No domination »
j dominatesi i dominates | : _ i ispreferred
between i and

j dominatesi j dominatesi j dominatesi j ispreferred

As afifth option, preference PUI and neighborhood PUI designs can be incorporated

as described below:

1. Partition the objective space into neighborhoods.

2. Cadculate the PUI of every solution i in a neighborhood by summing al the
probabilities that each neighbor solution of solution i in its neighborhood
dominates solution i.

3. Prefer the solution with the smallest PUI in each neighborhood.

These PUI interpretations are used in different designs of the Pareto Uncertain

Genetic Algorithm (PUGA) in Section 4. Different designs can be used in different steps

of an algorithm when it is more appropriate to use a specific design. For example for the
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post-Pareto analysis, neighborhood design is more relevant but for the selection operator

of a genetic algorithm cumulative PUI design can give better results.
3.2 Risk Adjusted Pareto Uncertainty Index (rPUI)

A risk measure can be incorporated in the PUI formulation so that the risk can aso be
anayzed in the objective space, and the risk preference of the decision maker can affect
the selection of Pareto solutions. The risk function is included into the cumulative PUI
formulation asin (34). Other designs of the PUI can aso have the risk measure similar to

the cumulative PUI example provided here.

A(z,)Pr{x > x}

Il
. QJos

rPUI,

1l
=

it
d -
a A(Zj)Pr{Zl,xi <Zl,xj r-]ZZ,xi <22,xj r-]"'mZM,xi <ZM,xj}

i1t j

= a. OA(Zm )F)r{zmxI <z m,xj}
i=Lit j m=1
I
=a O 0A@)F,, @y <ZniZng=Z) ., (Z0)dZ,,
i=Litj m=1 mej
where z, =(2,,,2,,...2y ;) and A(z,) iscalculated as:
A(z)=A(z)A(z,))..A(z, )
(35)

N
=0OA(z,))
m=1
where A(zm ;) is arisk function and shifts the probability according to the risk

preference of the decision maker. A(zm, ;) risk function is formulated as in (36), and the

risk adjusted PUI, rPUI, is calculated asin (37).
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& -E uOO
A(zm,j)=exp9rm§ezm’ gzme - (36)
"8 E&ml
rPUI, = én_ A(z;)Pr{x, =X}
i=Lit j
aezm E€ uOO (37)

J N mx] .
=a O oexp‘?r g SR @ <20 (2,))d7,,
mzlzmXJ g & Egmxj 0 Qﬂ

where 1, isthe risk measure for the m " objective function and designates the growth
and decay effect on the probability. When 1, is O (zero) the PUI is risk-neutral for the

considered objective function. If the decision maker is risk-averse, then r , takes values

larger than 0. Therefore, a solution which has less probability to have higher values than
the expected value for a minimization objective is favored over a solution which has

higher probability to have higher values for the same objective function. If the decision
maker is risk-seeking, then 1, takes values smaller than zero. In this case, a solution

which has higher probability to provide lower values than the expected value for a
minimization objective is favored. The risk function adopted in this research works
effectively; however, other risk function forms could be used as well.

In any case (risk-neutral/seeking/averse), the smaller PUI or rPUl shows a better
solution than others. Following example cases are provided to explain the workings of the

risk adjusted PUI for three solutions in the objective space with two objective functions.
3.21 Casel: Risk-Averse Decision Maker

Let there be three solutions in the objective space of a bi-objective (cost and

emissions) minimization problem. Figure 20a shows solutions when the uncertainty is
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neglected. Assume solutions are al normaly distributed random variables. Their

expected values and variances are provided in Table 9. Figure 20b shows expected values

of solutions (squares) and their 30-distances from expected val ues (ellipses).

Table 9. Expected values and variances for risk-averse case

Solutions | Expected Values[Cost, Emissions] | Variances [Cost, Emissions]
1 [3075,160] [700,80]
2 [3085,165] [150,15]
3 [3090,155] [700,90]
a) Uncertainty Neglected b) Uncertainty Included
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Figure 20. Risk-averse case. d) Uncertainty neglected results. b) Uncertainty included results

When uncertainty is neglected (Figure 20a), Solution 2 (blue colored in figures) is a

dominated solution which means it is not considered as an alternative in the final Pareto

set. However, it has a lower variance and a lower probability to have high cost and high

emissions in worse case realizations compared to the other solutions (Figure 20b). It

might be more favorable to a risk-averse decision maker and should be presented in the

Pareto set. Therefore, its Pareto order with rPUI is lower than the order with PUI. The

PUI and rPUI of solutions and their respective Pareto orders are presented in Table 10.



Table 10. PUI and rPUI values for risk-averse case (p1 = 15, p.= 15)

Solutions| PUI | Pareto order with PUI | rPUI | Pareto order with rPUI
1 0.3347 Second 0.8045 First
2 0.8022 Third 0.9176 Second
3 0.3234 First 1.0716 Third
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3.2.2 Case2: Risk-Seeking Decision Maker

In this case, assume that the variance of Solution 2 is higher and the variance of
Solution 1 is lower as shown in Table 11. Although Solution 1 in this case is a safer
(more certain) solution for a risk-averse decision maker, Solution 2 may provide better

opportunities for a risk-seeking decision maker, if optimistic future projections are

realized.
Table 11. Expected values and variances for risk-seeking case
Solutions | Expected Values[Cost, Emissions] | Variances [Cost, Emissions]
1 [3075,160] [1000,100]
2 [3085,165] [7000,800]
3 [3090,155] [5000,500]

When uncertainty is neglected Figure 21a, Solution 2 is a dominated solution which
means it is not considered as an alternative in the final Pareto set. However, it provides
better opportunities in better case realizations because it has a higher probability to have
lower cost and emissions compared to the other solutions (Figure 21b). Therefore, its
rPUI is calculated to be lower than the others, so it might be more favorable to a risk-
seeking decision maker and should be presented in the Pareto set. The PUI and rPUI of

solutions and their respective Pareto orders are presented in Table 12.
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Table 12. PUI and rPUI values for risk-seeking case (p1 = -6, p2 = -6)

Solutions | PUI | Paretoorder with PUI | rPUl | Pareto order with rPUI

1 0.4434 First 0.4162 Third

2 0.6018 Third 0.3974 Second

3 0.4442 Second 0.2711 First

a) Uncertainty Meglected s h) Uncertainty Included
5 S
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Figure 21. Risk-seeking case. a) Uncertainty neglected results. b) Uncertainty included results

3.2.3 Case3: Same Expected Values and Different Variances

Assume there are two solutions which have the same expected value but different
variances. The expected values and variances for the solutions are provided in Table 13.
This may not generally be a very readlistic case but provides additional explanations and
demonstrations for working of the rPUI.

Table 13. Expected values and variances for Case 3

Solutions | Expected Values[Cost, Emissions] | Variances [Cost, Emissions]
1 [3075,1000] [400,200]
2 [3075,1000] [100,50]

Figure 22 shows the expected value of solutions as a black square. Different colored
ellipses are the 3o-distances from expected values. Solution 2 has a higher variance so its

ellipse (blue colored) iswider.



83

Soldtizn 1
Soldtizn z
TC4Z

i = B

Emission

| |
020 3042 F0e0 00 3100 jabeil

Cosf _

Figure 22. Solutions with same expected value different variance

Table 14 shows different risk-averse and risk-seeking pn, Settings for two solutions
and their objectives. When p,, = 0 for both objectives, it is the risk-neutral case and the
result is the PUI with no risk adjustment. For other settings, the shaded cells show the
better solution for that pm, Setting.

When p1 = p2= -1, i.e., risk-seeking settings in both objectives, or risk-neutral in one
objective and risk-seeking in the other, Solution 2 is a better choice because it may offer
better results for a risk-seeking decision maker. On the contrary, when p; = p, =1, i.e,
risk-averse settings in both objectives, or risk-neutral in one objective and risk-averse in

the other, Solution 1 is a better choice because it is a safer option.



Table 14. Different pn, settings for two solutions of Case 3

Sol. Pm=0 | p1=0 | p1=0,| p1=1 |p1=-1| p1=1 | p1=-1

(PUI) | p2=1 | p2=-1| p2=0| p2=0 | p2=1 | pp=-1

1 |0.2500 | 0.2506 | 0.2494 | 0.2503 | 0.2497 | 0.2509 | 0.2490

rPul 2 |0.2500 | 0.2525 | 0.2475 | 0.2512 | 0.2488 | 0.2537 | 0.2464

Table 15 shows the rPUI results when the py, setting is risk-seeking in one objective
and risk-averse in the other. When the setting is risk-seeking in objective 2 and risk-
averse in objective 1, Solution 2 is a better solution unless risk-aversion is very strong in
objective 1 (p1 =10, p2 =-1).

Table 15. Risk-averse vs. risk-seeking for Case 3

Sol. | p1=1,p2=-1|p1=1,p2=-10| p; =10,p2=-10 | p1 =10, p2=-1

1 0.2497 0.2446 0.2473 0.2524

Pul 2 0.2487 0.2282 0.2381 0.2595
Sol. | p1=-1,p2=1|p1=-1,p2=10| p1=-10,p2=10 | p; =-10,p2=1

1 0.2503 0.2566 0.2541 0.2479

Pul 2 0.2514 0.2766 0.2656 0.2414

Similarly, when the setting is risk-seeking in objective 1 and risk-averse in objective
2, Solution 1 is a better solution unless risk-seeking is very strong in objective 2 (p; = -
10, p2 = 1). Thisis due to sensitivity of objectives to the risk. Objective 2 in this example
case is more sensitive to risk setting, and its pn, value determines the outcome unless pn,
value of objective 1 is significantly higher. Objective 2 is more sensitive to the risk

because its variance/expectation ratio is lower compared to objective 1.
3.24 Case4: Same Variance/Expectation Ratio

Assume there are two solutions which have the same expected value and different

variances similar to Case 3 but variance/expectation ratio is the same for both objectives.
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The expected values and variances for the solutions are provided in Table 16. Again, this
may not often be a realistic case but it is easier to compare how different p,, settings
change the Pareto order of solutions with their rPUI values.

Table 16. Expected values and variances for Case 4

Solutions | Expected Values[Cost, Emissions] | Variances [Cost, Emissions]
1 [3000, 3000] [300, 300]
2 [3000, 3000] [3000, 3000]

Figure 23a shows the expected value of solutions as a black square. Different colored
circles are the 3o-distances from the expected values. Solution 2 has a higher variance so
its circle (blue colored) is wider. Figure 23b is provided for visual explanation of
different variance/expectation ratio. Compare parts a and b of Figure 23 for different
variance/expectation ratios. When the ratio is different asin part b, 3o-distances from the

expected values are ellipses rather than circles.

a) Same Ratio b) Different Ratic
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Figure 23. Same and different variance/expectation ratios
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Table 17 shows the rPUI results for Case 4. When p; = p, = 1, risk-averse in both
objectives, Solution 1 isasafer choice. When p; = p1 = -1, risk-seeking in both objectives,
Solution 2 is a better choice. When p1=1and p,=-1o0r p;=-1and p,= 1, risk-seeking in
one objective and risk-averse in the other, the result is the same as the risk-neutral case
because neither of the solutions is better than the other. If risk-seeking effect is larger in
one of the objectives (p1 = -2, p2 = 1) then Solution 2 is again a better option. If risk-
aversion effect islarger in one of the objectives (p1= 2, p2 = -1) then Solution 1 is a better
option.

Table 17. Risk-averse vs. risk-seeking for Case 4

Pr=1, | p1=-1,|p1=1 | p1=-1,|p1=-2, | p1=2,
P2=1 | p2=-1 |p2=-1] p2=1 | p2=1 |p2=-1
1 | 0.2507 | 0.2493 | 0.2500 | 0.2500 | 0.2497 | 0.2504
2 | 0.2570 | 0.2432 | 0.2500 | 0.2500 | 0.2466 | 0.2536

Sol.

rPUI

3.25 Different py, Settings

The risk measure pmin the risk function A(Zm, ;) effects how much the probability is

shifted towards the risk-averse or risk-seeking aspects of a solution. Table 18 shows a
comparison of rPUI values for Case 1 (the risk-averse case) with different pn, values.
When pnis zero for both objective functions, rPUI is equal to PUI value, i.e. it becomes a
risk-neutral case.

In Table 18, only pn, value settings in the shaded columns change the Pareto order of
solutions. The last column of Table 18 shows p1 = -15 and p, = 15 case where decision
maker is risk-seeking in objective 1 but risk-averse in objective 2. This setting gives the
same order with the previous settings where decision maker is risk-averse or neutra in

objective 1 but strictly risk-averse in objective 2. The Pareto order of solutions does not
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change when p; = 15 and p, = -15, risk-averse in objective 1 but risk-seeking in objective
2. From these experiments it can be observed that the second objective function

(emissions) is more sensitive to risk-aversion and the first objective function (cost) is less

sensitive.
Table 18. Different pm values for risk-averse case
Solutions Pm=01 =01 =1 ) pr=5, ) 0 =10,
(PUI) | p2=1 | p2=0 | p2=5 | p2=10
1 0.3347 | 0.3467 | 0.3370 | 0.4234 | 0.5672
r PUI 2 0.8022 | 0.8054 | 0.8032 | 0.8279 | 0.8658
3 0.3234 | 0.3431 | 0.3247 | 0.4544 | 0.6775
Solutions P1=15 | p1=15, | p1=15, | p1=0, | p1=-15,
P2=-15|p2=15 | p2=0 |[p2=15|p2=15
1 0.2886 | 0.8045 | 0.3736 | 0.7192 | 0.6488
rPUI 2 0.8195 | 0.9176 | 0.8184 | 0.8994 | 0.8845
3 0.1870 | 1.0716 | 0.3452 | 1.0012 | 0.9455

Table 19 shows a comparison of rPUI values for Case 2 (the risk-seeking case) with
different pm values. Once again, when pn, is zero for both objective functions, rPUI is
equal to the PUI value, i.e. it becomes a risk-neutral case. In Table 19, only pn, value
settings in the shaded columns change the Pareto order of solutions. When the setting is
risk-neutral or risk-averse for one of the objective functions, the Pareto order of the
solutions does not change. The order only changes only when the setting is risk-seeking
and pn, are higher than 5 for both objective functions.

In genera, the value of p, determines the magnitude of decision maker’s risk
preference. Assigning a higher value means the decision maker is more risk-averse, and
assigning a lower value means the decision maker is more risk-seeking. The decision

maker or the modeler of a problem can run experimental simulations to understand the
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effect of different settings and find the appropriate risk settings (pm). This task is not
computationally expensive if an evolutionary algorithm is used. On the other hand,
weighting methods similar to Multi-Criteria Decision Making (MCDM) techniques can
be used to determine the appropriate risk preference. For example, in the Analytic
Hierarchy Process (AHP) [97], an important task of the decision makers is to determine
the weight to be given to each criterion in making the choice. A meaningful and objective
numerical value on each of the criteriais set in the process.

Table 19. Different pn, values for risk-seeking case

pm=0 | p1=-1, | p1=-4, | p1=-5 | p1=-6,
(PUI) | p2=-1 | p2=-4|p2=-5 | p2=-6
1 0.3347 | 0.4348 | 0.4189 | 0.4168 | 0.4162
rPUI 2 0.8022 | 0.5400 | 0.4293 | 0.4100 | 0.3974
3 0.3234 | 0.3965 | 0.3040 | 0.2853 | 0.2711
P1=0, | pr=-6, | p1=-6, | p1=6, | p1=-6,
P2=-6| p2=0 [p2=6 |p2=-6 | p2=15
1 0.4245 | 0.4348 | 0.5163 | 0.4344 | 0.8513
rPUI 2 0.4388 | 0.5446 | 1.3659 | 0.4917 | 24.937
3 0.2908 | 0.4135 | 0.9851 | 0.3157 | 9.6542

Solutions

Solutions

3.3 Discrete PUI and rPUI

For some problems, the variables are naturally discrete, and there are other instances,
where it is convenient to approximate a continuous distribution with random selected
outcomes using Monte Carlo simulations. If probability distributions are not available for
objective function uncertainties, then simulation methods can be used to provide discrete

points for each solution to represent the uncertainty. When there are discrete points for
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each solution, the cumulative PUI is formulated as in (38). Other designs of the PUI can

be modified for discrete case similar to the cumulative PUI example provided here.
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where D is the number of discrete points for each solution. id and jd are the indices
for discrete points of solutions i and j, respectively. z ‘dm,xi is the m" objective function

X

value of id" discrete point of solutioni. Y (z" <z jdm,xj) is abinary function where it
tekes1if z' | <z’  istrueandOelse

X

When risk adjustment is necessary, the rPUI is used and the continuous rPUI formula

isasfollows:
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When we have discrete points for each solution we can formulate the rPUI as follows:

n
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where A(z ) for the discrete rPUI is formulated as follows:
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3.3.1 Comparison of Discrete and Continuous PUI and rPUI

(42)

Let there be three solutions in the objective space of a bi-objective minimization

problem. Assume solution objective functions (z . ) are al normally distributed random

variables. Their expected values and variances are provided in Table 20.

Table 20. Expected values and variances for risk-averse case

Solutions | Expected Values [Cost, Emissions] | Variances [Cost, Emissions]
1 [3075,160] [700,80]
2 [3085,165] [150,15]
3 [3090,155] [700,90]

Using Monte Carlo simulation and the same values for expectation and variance, we
generate D number of discrete points for each solution and compare results of continuous

and discrete PUI formulas for the same solutions. Table 21, Table 22 and Table 23 show
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the comparison between continuous and discrete PUI and rPUI for 1000, 500 and 100
discrete points, respectively.

Table 21. Comparison of continuous and discrete PUI and rPUI
(D = 1000, p; = 15, p, = 15)

PUI rPUl
Solutions | Continuous | Discrete | Error Continuous | Discrete | Error
1 0.3347 0.3269 | 2.33% 0.8046 0.7298 | 9.30%
2 0.8023 0.7940 | 1.03% 0.9176 0.9223 | 0.51%
3 0.3234 0.3371 | 4.24% 1.0716 1.1501 | 7.33%
Table 22. Comparison of continuous and discrete PUI and rPUI
(D =500, p; = 15, p, = 15)
PUI rPUl
Solutions | Continuous | Discrete | Error | Continuous | Discrete | Error
1 0.3347 0.3453 | 3.17% 0.8046 0.7917 | 1.60%
2 0.8023 0.7795 | 2.84% 0.9176 0.8712 | 5.06%
3 0.3234 0.3455 | 6.83% 1.0716 1.3578 | 26.71%
Table 23. Comparison of continuous and discrete PUI and rPUI
(D = 100, p; = 15, p, = 15)
PUI rPUl
Solutions | Continuous | Discrete | Error Continuous | Discrete | Error
1 0.3347 0.2922 | 12.70% 0.8046 0.6643 | 17.44%
2 0.8023 0.8471 | 5.58% 0.9176 1.0120 | 10.29%
3 0.3234 0.3576 | 10.58% 1.0716 1.2043 | 12.38%

The following figures depict the expected values, 30-distances and discrete points for

solutions in the objective space. Squares are the expected values of solutions and ellipses
are 3o-distance from the expectations. Asterisks (*) are the discrete points generated for

each solution. Figure 24, Figure 25 and Figure 26 show the comparison between
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continuous and discrete representation of solutions for 1000, 500 and 100 discrete points,

respectively.

Continucus vs. Discrete, D=1000
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Figure 24. Continuous and discrete representation of solutions when D = 1000
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Figure 25. Continuous and discrete representation of solutions when D = 500
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Continuous vs. Discrete, D=100
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Figure 26. Continuous and discrete representation of solutions when D = 100

The more discrete points that are used to represent the uncertainty, the more accurate
the PUI and rPUI are. Using discrete points, especialy in large numbers, may increase
the computation time but it is very useful when underlying uncertainty is from a
combination of different probability distributions or dependency of objective functions or
coefficients exists. As discussed in the dependent PUI formulations, if objectives are
dependent, then the PUI formulation requires multivariate integration. This might be
impractical or inefficient. However, ssimulating the randomness and using the discrete
PUI can make it very simple and effective to consider dependent random coefficients of
the objective functions. Section 4.5.8 presents a test problem where the discrete PUI is

used.
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3.4 PUI and rPUI with Scenarios

If probability distributions are not available for objective function uncertainties and
simulation methods are computationally expensive, then scenarios can be used to
represent the uncertainty. Similar to the discrete case we can formulate the cumulative
PUI with scenarios and their respective probabilities asin (43). Other designs of PUI can
be modified for scenario case similar to the cumulative PUI example provided here.
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(43)

where Sisthe number of scenarios and Pr(s) is the probability of scenario s occurring.

S S

z°,, isthe m" objective function value of solution i for scenarios. Y (z “mg <2 myx,) 1S
abinary function equal to 1if z°,, <z°,, istrueand O else.
We can aso formulate the rPUI with scenarios as follows:
g -
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where A (z vaxj ) for the rPUI with scenariosis formulated as follows:
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3.5 Summary

A new metric, the Pareto Uncertainty Index (PUI), is presented in this section. This
metric enables a direct approach to solve a multi-objective stochastic problem without
any transformation of the problem, and it also provides the opportunity to the decision
maker to observe the uncertainty of solutionsin the Pareto set.

We first explain the PUI formulation for continuous objective functions without a risk
preference. Objective functions can be dependent or independent and PUI formulations
are presented for each case. There can be several ways to form different designs of the
PUI. We propose four different designs which can be used for different purposes in a
search agorithm. Later, the risk adjusted PUI (rPUI) formulation is explained and tested
with different cases.

PUI can aso be formulated for simulated discrete values or scenarios. Formulations
for these are also explained and discrete PUI is compared with the continuous cases.

In the next chapter, a new multi-objective genetic agorithm, the Pareto Uncertainty
Genetic Algorithm (PUGA), is presented. PUGA incorporates the PUI models and
provides a direct approach to solve a stochastic multi-objective problem without any

transformation of the problem.
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4. Pareto Uncertain Genetic Algorithm (PUGA)

Genetic algorithm is a search heuristic that mimics the process of natural evolution.
Being a population-based approach, genetic algorithms are well suited to solve the multi-
objective optimization problems. A generic single-objective genetic algorithm can be
modified to find a set of multiple non-dominated solutions (the Pareto set) in asingle run
[76]. Multi-objective genetic algorithms differ from single objective genetic algorithmsin
the way the selection is made and the fitness is assigned to each solution in the
population. The concept of dominance isimplemented for selection of individuals.

Multi-objective genetic algorithms introduce different methods to promote solution
diversity. Most commonly used methods are fitness sharing, crowding distance method
and cell-based density method. State-of-the-art multi-objective genetic algorithms are
introduced in Section 2.3.4.3. All of the introduced genetic algorithms are for multi-
objective problems but they do not consider the stochastic nature of real world problems.
As we have discussed in Section 2.4, uncertainty in multi-objective optimization, the
multi-objective stochastic problem is transformed into a multi-objective deterministic
problem and then solved by genetic algorithms. The trade-off of objectives (Pareto front)
can be captured but the randomness and uncertainty are eliminated. However, it is very
important for a decison maker to have the knowledge of uncertainty in the Pareto set.
There are three example cases in Section 2.4 to illustrate why it is important to observe
the uncertainty of each solution in the objective space.

In this section, a new multi-objective genetic agorithm is presented: the Pareto
Uncertainty Genetic Algorithm (PUGA). PUGA incorporates the Pareto Uncertainty

Index (PUI) models explained in Section 3 and provides a direct approach to solve a
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stochastic multi-objective problem without any transformation of the problem, and it also
gives the opportunity to the decision maker to observe the uncertainty of solutionsin the
Pareto set.

4.1 Design Components of PUGA
In the next subsections, design components of PUGA are explained in detall.
Components of a generic genetic algorithm are explained in Section 2.3.4.1. In its genera
form, a genetic agorithm works as follows and as depicted in Figure 27.
Aninitial population of individuals (solutions) is generated.
At every generation, the individuals are evaluated and afitness value is assigned.
Selection operator selects the fittest individuals.
If the stopping criterion is met the agorithm stops and gives the result.

If not, anew generation is created by operators such as mutation and crossover.

ln't'a! gen=0 Evaluation A_sagn

populatiocn Fitness
Selection

No Condition
Reproduction Met?
gen = gen+1
Yes
Crossover
Stop
Mutation

Figure 27. Flow chart of a genetic algorithm

4.1.1 Pareto Probability Sorting

A multi-objective optimization technique should achieve the closest possible Pareto

front to the true Pareto front. This is called the convergence to the Pareto optimal set.
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Pareto ranking approaches are one of the most commonly used techniques in multi-
objective genetic algorithms. Examples of the multi-objective genetic algorithms that use
a kind of Pareto-ranking approaches arez MOGA [80], PAES [73], NSGA [82] and
NSGA-IlI [83]. Pareto-ranking approaches use the concept of an expected Pareto
dominance idea (Section 2.3.1) to rank solutions in the objective space where only the
expected values of objective functions are considered, thus uncertainty is neglected.
Solutions are ranked according to a dominance rule, and then they are ranked
accordingly. The actual objective function value is not a fitness criterion after this type of
ranking procedure. When al objectives are to be minimized, alower rank corresponds to
a better solution. We will assume minimization problemsin all sectionsto follow.

The sorting mechanism of PUGA uses one of the PUI formulations explained in
Section 3.1, so that the probability isincluded in the Pareto-ranking. There can be severd
sorting designs using PUI formulations. We propose four different designs in this study.
Table 24 shows the main differences of proposed Pareto ranking designs of PUGA.

Table 24. Main differences of Pareto ranking designs of PUGA

Ranking Design

_ - First check expected domination
Desgn 1 | . pul calculated pairwise with dominated solutions
- Rerank with stochastic domination

_ - No domination scheme
Design 2 | . py| calculated cumulatively
- Order by PUI only

_ - First check expected domination
Design 3 | . puJ calculated in neighborhoods
- Preference by stochastic domination

_ - First check expected domination
Design 4 | . pul calculated pairwise with closest solutions
- Preference by stochastic domination
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For a minimization problem, a solution x; said to dominate another solution X;,

X; = X; , if these two conditions are both satisfied:

1. Thesolution x; is no worse than x; for al M objective functions, that is,
z,(X)Ez (X;) fordlm=12,...,M
2. Thesolution x;is strictly better than x; for at least one objective function, that is,
Z (%) <z,(x,) foratleast one mi {1,2,¥s,M}
where z_(x.) isthe m" objective function evaluated at solution vector x; and M is the

number of objective functions. This is the Pareto dominance concept where the
uncertainty is neglected. We call this design the expected domination. This is similar to
the ranking design of NSGA-II [74].

For the expected domination, algorithm finds the domination count (n), which is the
number of solutions which dominate the solution i for each solution in the population.
When we compare two solutions for their domination relationship, we first consider their
expected domination to each other. If the two solutions i and j do not expectedly
dominate each other, then both of them keep their n value as zero (not changed), that is
they are both non-dominated to each other in the expected domination sort. While
counting the number of solutions (n) which dominate the solution we also keep a set of
solutions that the solution dominates (S).

In PUGA design 1, if one of the solutions expectedly dominate the other one, then we
calculate the probability that solution i dominates solution j (Pri;) and the probability that

solution j dominates solution i (Pr;). If Prj is greater than Prj, then we say solution i
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dominates solution j and n; value of solution j is increased by one. Otherwise (if Prji >
Prij), we say solution j dominates solution i and n; value of solution i isincreased by one.
Therest of the sorting works similar to NSGA-I1. All solutions with domination count
of zero are designated in the first non-dominated front. For each solution in the first front,
we visit each member of its set § and reduce its domination count n; by one. If the
domination count n; becomes zero for any member, it is put in a separate list which
defines the second non-dominated front. This procedure is continued until all fronts are
identified. The algorithm for Pareto Probability Sorting with ranking design 1 is as

follows:

Foreach il P
S=Aadn=0
Foreach jT Pand jti
If X, > X; or X; =X
If Pr{x >x}>Pr{x =x}
§S=SEjadn =n +1
Elseif Pr{x; > x} > Pr{x; > x}
S =SEiadn=n+1
End | loop
If n=0
i =1land F =F E{i}
r=1
While F. 1 A
Q=£
Foreach il F
Foreach j1 S
n=n-1
If n;=0then j, =r+land Q=QE{j}

End | loop
Endi loop
r=r+l

F=Q
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End while loop

Calculation of probabilities increases the complexity of the procedure, particularly in
the beginning of the algorithm when many solutions may expectedly dominate many
other solutions, but by doing so we eliminate the situation in example cases mentioned in
Section 2.4. For example in Figure 29 compared to Figure 28, the concept of domination
isnot clear any more. Solution 1 has a higher level of uncertainty compared to Solution 2.
If the decision maker prefers to observe expected values, then the preference of the
solutions would be the same as in the deterministic case, and Solution 2 would not be
presented in the Pareto optimal set. However, when the uncertainty is included, the
probability of Solution 2 being dominated by Solution 1 becomes low, which gives it a

probability to be a preferable solution.

Zi(x) 4 5 ¢(x) 4 N > 2
: ® )
- -
1 1
L 3 x
5 (%) 5 &)
Figure 28. Deterministic example Figure 29. Stochastic example

In the second ranking design (design 2), there is no domination scheme. The
algorithm uses the cumulative PUI to sort al the solutions in the population. The solution
with the smallest PUI value is the best in the population. This design tends to eliminate
the diversity of solutions and promotes a single solution. Thus, it is better for single
objective genetic agorithms. The algorithm for Pareto Probability Sorting with ranking

design 2 isasfollows:
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Foreach il P
PUI, = § Pr{x, ~x}
=Lt j
Endi loop
Sortand rank (il P, PUI.)

In design 3, the algorithm first utilizes the expected domination, similar to design 1.
Then the PUI is calculated in neighborhoods. The neighborhood approach is explained in
Section 4.1.6. Ranking is based on the expected domination but in each neighborhood the
solution with the smallest PUI value is the preferred solution of the neighborhood. The
solutions are sorted based on their rankings first and then PUI values. The smallest
ranking solution with the smallest PUI value is the best solution of the population. This
scheme is very helpful in operators for extraction of the best solutions, selection of parent
solutions for reproduction and the Pareto pruning in post-Pareto analysis.

Design 4 differs from the previous design with PUI calculation. In this design,
pairwise PUI calculation is utilized, that is, the PUI is the sum of domination probabilities
of only the closest neighbor solutions for each objective function. Again, the solutions are
sorted based on their rankings first and then PUI values. The smallest ranking solution

with the smallest PUI value is the best solution of the population.
4.1.2 Preservation of Uncertainty I nformation and Diversity

Maintaining diversity is one of the most important issues in multi-objective
optimization. In order to provide the decision maker atrue representation of the trade-offs
of the objectives, Pareto solutions should be uniformly distributed over the Pareto front.
NSGA-II uses the crowding distance approach for diversity preservation. The average

distance of two points on either side of a solution i along each of the objectives is
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calculated. The higher this value is, the better the diversity of solution i. The crowding

distance computation is applicable to more than two objectives.

2

Cuboid

Figure 30. NSGA-II crowding distance method (adapted from Deb et a. [76])

For each objective function, the algorithm sorts the individuals in each front F, in the
ascending order and it assigns crowding distance values to each of the individuals, as
shown in Figure 30. Although Figure 30 illustrates the crowding distance computation for
two objectives, the procedure is applicable to more than two objectives as well. The main
advantage of the crowding distance approach is that it is computed without requiring a
user-defined parameter. In NSGA-II, the crowding distance measure is used as a
tiebreaker in a selection technique called the crowded tournament selection operator. The
algorithm randomly selects two solutions; if the solutions are in the same non-dominated
front, the solution with a higher crowding distance is the winner. Otherwise, the solution
with the lowest rank is selected [76]. This approach considers only the expected values of
objective functions. Therefore, uncertainty is neglected.

PUGA, on the other hand, uses one of the PUI methods to preserve the diversity and
uncertainty information of solutions. The PUI of a solution, PUI;, is used to compare

solutions in the same front. The solution with a smaller PUI is a more diverse and less
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uncertain solution so it has a higher probability to be selected for the next generation or
the last Pareto front.
4.1.3 Elitism

Elitism means that the best solutions found so far during the search always survivesto
the next generation. In this respect, all non-dominated solutions discovered by a multi-
objective genetic algorithm are considered elite solutions [ 76].

PUGA uses the same strategy as NSGA-1I and combines the parent population and
the new offspring population, and then the combined population is sorted according to the
Pareto probability sorting. This approach makes sure that all the non-dominated solutions

are included in the next population. The algorithm for elitism is as follows:

Q, : Offspring population from reproduction

Combine parents and offspringR =P E Q

Sort the combined solutionsinto fronts F =sort(R)

Initialize next generation population P,, =/ andranks r =1

Until the population size N is reached: |R,,|+|F,|£ N

P, =PR.EF §:(N-|R..|)§: Choosethebest (N - |R,,|) members of the front F,
r=r+1
End

4.1.4 Constraint Handling

Most optimization problems include constraints that must be satisfied. Constraints are
often treated as deterministic but they usually include stochastic elements. PUGA can

accommodate both deterministic and stochastic constraints.
4.1.4.1 Deterministic Constraints

Deterministic constraints can be efficiently handled with the approach proposed for

constrained NSGA-II. For each solution in the population, the algorithm checks all
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constraints and stores the number of violations and sum of all violations of each solution.
When comparing two sol utions, the algorithm uses the following rules:
If both solutions are feasible choose the better ranked solution, and if they have
the same rank choose the less crowded solution, i.e., that is the solution with
higher crowding distance value.
If one solution is feasible and the other is not, then choose the feasible solution.
If both solutions are infeasible, then choose the solution with smaller overall
constraint violation.
PUGA uses the same rules if the constraints are assumed as deterministic. Instead of

the crowding distance value, the PUI value can also be used for the first rule.
4.1.4.2 Constraintswith Uncertainty

For constraints with uncertainty we present a method that is based on chance
constraint method. PUGA checks all constraints for each solution depending on their
probability of satisfying the constraints over a user-defined risk measure a; for each

constraint i. For example, let the optimization problem is subject to below constraints:

ax£bt, ax=b*, a>x3 b’
The decision maker defines o; for each constraint and the constraints are converted to

the following, respectively:
Pr{a'x £b} 2 a,, Pr{a’x=b’} 2 a, ,Pr{a’x3 b’} 3 a,

If asolution satisfies al aj, then it is stored as a feasible solution. If it does not satisfy

any of the constraints, then the number of violations and sum of all violations are stored.
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In the selection process, PUGA uses the same rules described above to compare two
solutions.

The constraint handling technique based on chance constraint method and the user-
defined 0; values are also used as a risk measure in PUGA. For instance, a risk-seeking
decision maker may choose a smaler value for a;, so that the agorithm provides
solutions with more relaxed constraints. On the contrary, a risk-averse decision maker
may choose a bigger value for aj, and the algorithm provides solutions with strictly
satisfied constraints.

For every constraint in the model, o; can be defined separately, so that every
constraint can be considered, however the decision maker prefers. If the decision maker
prefers expected values for constraints only, then PUGA can easily be converted to a
deterministic constraint handling algorithm.

415 Twin Solution Elimination

Genetic agorithms sometimes produce the same solutions in the same generation
which reduces the effectiveness of the process and diversity of the population. These
solutions which have the exact same decision variable vectors are caled twin solutions.
PUGA checks al solutions with others in the population and if there are twins of a
solution, then twin solutions are punished by increasing their rankings to the last front

rank. The algorithm for twin solution elimination is as follows:

Fori=1toN-1
Forj=i+1toN
If Xi = Xj
xj(rank) = max (F)
End | loop
Endi loop
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4.1.6 Neghborhood Mechanism
Haiming and Y en [96] present a cell-based density approach in Rank-Density Based
Genetic Algorithm (RDGA). RDGA cell-based density approach is depicted in Figure 31.
A modified version of this approach is used to improve the diversity and post-Pareto

pruning performance of PUGA.

S

A
Figure 31. RDGA cell-based density approach

In every generation, the neighborhood approach in PUGA first creates neighborhoods
by dividing the range of the current objective space based on user given number of
neighborhoods for each objective function (K,). To form neighborhoods, PUGA

calculates the neighborhood width (dpy):

_max f(x)- min f_(x)
me K

m

d (46)

where dy, is the width of the neighborhood in the m™ dimension, K., denotes the
number of neighborhoods designated for the m™ dimension. max f_(x) and min f_(x)
are maximum and minimum fitness values of the m" objective function (dimension).

Second, each individual of the population searches for its neighborhood and considers

the other individuals who share the same neighborhood as its neighbors. Then, the PUI
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for each individual of each neighborhood is calculated. The algorithm for the

neighborhood is as follows:

Form=1toM
L f..(X)- minf_(X)
m Km
End mloop
Fori=1toN
Form=1toM
idx . = round ?fm(xi) -dmln fm(x)g
e m a
End mloop
neighborhood; = idx
Endi loop

4.1.7 Post-Pareto Pruning

While PUGA uses the PUI to find diverse and less uncertain solutions, it calculates
the domination probability of solutions. The agorithm can use this probability
information to make a preference decision between two solutions on the same front so
that the preference of a solution i can be determined for post-Pareto pruning. The

algorithm for preference calculation of PUGA is asfollows:

Set of solutionsintheFrontr: G={F}
Number of solutions in the non-dominated set G: | =|@
Fori=1tol-1
If PUli+1 > PUI;
pref; = prefi+1
Else prefi., = prefi+1
Endi loop

4.2 Main Loop of PUGA

Genetic agorithms start the process with an initial population. The initial population
can be randomly created in the objective space or it can be provided by the user. If the

user provides an initial population, then the performance of algorithm increases because
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convergence would be faster. The initial population can be created by one of the classica
methods discussed in Section 2.3.2. Operators of the main loop are explained in the next

subsections.
4.2.1 Evaluation Operator

After creation of initial population, each solution is sent to evaluation operator to
compute its expected values of objective functions and variances of objective functions,
feasibility and violation of constraints if it is infeasible. The initial population is then
sorted according to the Pareto Probability Sorting mechanisms described in Section
4.1.1. This step concludes the initialization and the main loop starts and works until the

stopping criterion is met. The algorithm for evaluation operator is as follows:

Fori=1toN
E[z,(P)] forall k
Var[z,(P)] ¢or a
P (feasibility)

If P (feasibility) =0
P (violation)

End if
Endi loop

4.2.2 Selection Operator

The first step of the main loop is to select parent solutions to create the next
generation offspring solutions. There are severa techniques proposed for selection
operator. PUGA uses tournament selection technique to increase the selection probability
of better ranked and less uncertain solutions. The algorithm for selection operator with

tournament selection techniqueis as follows:
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Fori=1toN
Randomly choose C; and C, as candidates for next population Q
If PUI, > PUI, select candidate 1: Q; = C,
ElseQ =C;

End i loop

4.2.3 Crossover and Mutation Operators

After selecting parent solutions, the algorithm utilizes crossover and mutation
operators to create an offspring population Q; of size N. PUGA uses the intermediate
crossover [98] which creates offspring solutions by taking a weighted average of the
parents. User can specify the weights by a single parameter, ratio, which can be a scalar
or a row vector of length number of variables. The operator creates the offspring from
parent; and parent, using the following formula:

Qi = parent; + rand x ratio x (parent; - parent)

where rand is arandom number uniformly distributed between 0 and 1.

If al the entries of ratio lie in the range [0, 1], the offspring produced are within the
hypercube defined by placing the parents at opposite vertices. If ratio is not in that range,
the children might lie outside the hypercube. If ratio is a scalar, then all the children lie
on the line between the parents.

All of the individuals in the population would be processed by the crossover operator,
but only crossover fraction of all variables would have the crossover operator applied.
Although default value of crossover fraction is set to 2/numVar, where numVar is the
number of variables of the model, it can also be defined by the user.

PUGA uses the Gaussian mutation [98] which creates offspring solutions by adding a
random number taken from a Gaussian distribution with mean zero (0) to each entry

(decision variable) of the parent vector. The standard deviation of this distribution is
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determined by the parameters scale and shrink. Mutation operator uses the following
eguations:
Qi = parent + ss x randn x (ub - |b)
ss = scale x (1- shrink x currGen / maxGen)

The scale parameter determines the standard deviation at the first generation. The
shrink parameter controls how the standard deviation shrinks as generations go by. ub
and Ib are upper and lower bounds of decision variables, respectively. randn is a
normally distributed random variable.

As in the crossover operator, al of the individuals in the population would be
processed by the mutation operator but only mutation fraction of all variables would have
the mutation operator applied. Although default value of mutation fraction is set to

2/numVar, it can also be defined by the user.

4.2.4 Evaluation, Elitism and Sorting of the New Generation

When the creation of the offspring population is completed, the algorithm evaluates
the offspring population using the evaluation operator explained in Section 4.2.1.

PUGA uses the same strategy for elitism as NSGA-II and combines the parent
population and the new offspring population, and then this combined population is sorted
according to Pareto probability sorting. This approach makes sure that all non-dominated
solutions are included in the next population. Pareto probability sorting and elitism are

also explained in Section 4.1.1 and Section 4.1.3, respectively.



112

425 Extraction of the Best Solutions

PUGA first sorts all solutions in the combined population, R;, of size 2N according to
their front ranks and PUI. The best N solutions of the combined population, R;, with
smallest front ranks and PUI values are extracted as the next generation population, Py 1.

If the stopping criterion is not met, then the generation counter is increased by one
and the main loop of PUGA continues to generate another set of solutions. The stopping

criterion of PUGA isthe number of maximum generations defined by the user.
4.2.6 Algorithm for PUGA Main L oop

PUGA follows the main loop below while the generation counter (t) is less than the
maximum number of generations provided by the user. When the main loop reaches to
the maximum number of generations the algorithm outputs the results in the user defined

format.

While t <maxgen
t=t+1
Q, = select(R)
Q, = crossover (Q,)
Q, = mutation(Q,)
Q =evaluate(Q,)
R=REQ
R =sort(R)
P,, = extract(R)
End loop

4.3 PUGA designs
Using different PUI designs (explained in Section 3.1) in different agorithm
operators mentioned above, we define four PUGA designs and test them. Table 25 shows

the main differences of operatorsin these PUGA designs. Mainly the way that the PUI is
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used in ranking and selecting solutions are different. Extraction operator uses the given
PUI design with the expected domination scheme. Only the second design does not have

domination approach. Instead, it completely depends on the cumulative PUI design for al

related operators.
Table 25. PUGA designs
Extraction Selection
Pareto Sorting (Order of (Tournament
ranking) Criteria)
_ 1. First check expected domination
Design | 2. pUI calculated pairwise with 1. Rank Pairvise PUI
1 dominated solutions 2. Pairwise PUI arwise
3. Rerank with stochastic domination
Design | 1- No domination scheme _
5 | 2. PUI calculated cumulatively Cumulative PUl | Cumulative PUI
3. Order by PUI only
| 1. First check expected domination | 1. Rank
Design | 2. pUI calculated in neighborhoods | 2. Preference Neighborhood
3 | 3. Preference by stochastic 3. Neighborhood PUI
domination PUI
1. First check expected domination
2. PUI calculated pairwise with 1. Rank
Design i '
49 gl osest solutions (Preference PUL - | Preference Pairwise PUI
esign) _ 3. Pairwise PUI
3. Preference by stochastic
domination

44 CONSTR Test Problem

To test Pareto convergence and diversity performance of PUGA, a test problem,
CONSTR, from Deb et a. [68] is used in this section. The CONSTR problem is used by
Deb et al. [68] to test constraint handling of NSGA-I1 and the objective functions are as

follows:

min f,(X) =X 47)
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min £,() =1 % (48)

Variable bounds are x 1 [0.1,1.0] and x,1 [0,5], and the model is subject to the

following constraints:

X, +9x % 6 (49)
"X +O% 1 (50)

In this problem, a part of the unconstrained Pareto optimal region is not feasible.
Thus, the resulting constrained Pareto optimal region is a concatenation of the first
constraint boundary and some part of the unconstrained Pareto optimal region (Figure
32).

Deb et al. [83] use the simulated binary crossover (SBX) operator and polynomial
mutation for real-coded NSGA-II. The crossover probability is 0.9 and the mutation
probability is 1/numVar, where numVar is the number of decision variables. Distribution
indexes for crossover and mutation operators are 20 and 100, respectively. The
population size is 100 and maximum number of generations is 500. This rather large
number of generations is chosen by Deb et al. [83] to investigate if the spread in solutions
can be maintained for alarge number of generations. Figure 32 shows the feasible region
and obtained non-dominated solutions with NSGA-11 on the CONSTR test problem.

Since PUGA is an entirely new concept that solves multi-objective stochastic
problems without any transformation, test problems that are used in literature are not
adequate to test PUGA. Therefore, modified versions of problems are used to

demonstrate the workings of PUGA. The CONSTR test problem is modified by assuming
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uncertainty in its objective function coefficients and constants. The modified objective

functions are as follows:

min f,(x) =X, (51)

min f,(x) :M (52)

where ¢; are all random variables and are normally distributed with mean of 1, and
standard deviation of 0.001. Decision variable bounds are 1 [0.1,1.0] and x,1 [0,5],

and the model is subject to the same constraint set as the original model.

.. ”'FeaSiB]B B T8s

Z Region

1 1 L] 1 1 1 |
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h

Figure 32. Feasible region and obtained non-dominated solutions with NSGA-11 on CONSTR test
problem (adapted from [83])

PUGA uses the intermediate crossover [98] and the Gaussian mutation [98] for real-
coded decision variables. PUGA operator parameters are explained in Section 4.2.3. The
population size and maximum number of generations for CONSTR problem are the same
with NSGA-I11, 100 and 500, respectively.

Figure 33 shows only PUGA results on CONSTR test problem and Figure 34 shows
PUGA and NSGA-II results together for comparison. It is clear that PUGA performs as

well as NSGA-II in terms of converging to the true Pareto optimal front and also in terms
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of maintaining a diverse population of non-dominated solutions. According to Deb et al.

[83], NSGA-II obtains a reasonably good spread of solutions as early as 200 generations.

Although PUGA is slower due to the PUI probability calculations, it obtains a good

spread of solutions as early as 80 generations. Additionally, in contrast to other

optimization methods, PUGA has the ability to incorporate uncertainty.
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Figure 33. Obtained non-dominated solutions with PUGA on CONSTR test problem
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Figure 34. Obtained non-dominated solutions with NSGA-I1 and PUGA on CONSTR test problem
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4.5 Power Generation Test Problem

The test problem in this section is originally a smplified power generation problem
excerpted from [66]. Four types of power generation units are considered in a region,
namely, lignite fired, oil fired, natural gas fired and units exploiting renewable energy
sources (RES) which are mostly smal hydro and wind. The power generation
characteristics of these units are shown in Table 26.

Table 26. Power generation characteristics

Production units, p Lignite | Qil Natural Gas | RES

Maximum production per year (GWh), cap, | 31,000 | 15,000 22,000 10,000

Cost of production ($/MWh), c, 30 75 60 90

CO; emissions coefficient (YMWh), ¢, | 1.44 0.72 0.45 0

The yearly demand is 64,000 GWh and is characterized by a load duration curve
which can be divided into three types of loads: base load (60%), medium load (30%) and
peak load (10%). The lignite fired units can be used only for base and middle load, the oil
fired units for middle and peak load, the RES units for base and peak |oad and the natural
gas fired units for al type of loads. Two objective functions are considered: the
minimization of production cost and the minimization of CO, emissions.

Table 27. Standard deviations of power generation characteristics

Production units, p Lignite | Oil Natural Gas | RES
Maximum production per year (GWh) 3,100 | 1,500 2,200 1,000
Cost of production ($/MWh) 0.6 3.6 3.6 0.6
CO; emissions coefficient (t/MWh) 0.23 0.01 0.01 0

In the origina problem, everything is assumed to be deterministic, which ignores

uncertainty and cannot accurately represent the problem. For the modification of the
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problem, uncertainty is assumed for cost coefficients of production, CO, emissions
coefficients, maximum production of power generation units and demand. For PUGA test
problem, these deterministic coefficients and constants of the origina problem are
assumed to be random variables with a normal distribution and values provided in Table
26 are used as the expected values of these random variables. Standard deviations of the
random variables are provided in Table 27. The expected values and standard deviations
of three types of loads are provided in Table 28.

Table 28. Expected values and standard deviations of |oads
Loads, | Base | Medium | Peak
Expected 38400 | 19200 | 6400
Standard Deviation 3840 | 1920 640

Mavrotas [es] solves the deterministic problem with the augmented e-constraint
method. Expected Pareto front from the augmented e-constraint method is presented in
Figure 35 and these solutions are used as the initial population for PUGA test problem to

increase the performance of the algorithm.

Emission
¥

: . ; — 3 = ;
Figure 35. Test problem results from augmented e-constraint method
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45.1 Multi-objective stochastic model of the test problem

Two objective functions considered in the problem are the minimization of
production cost and the minimization of CO, emissions. There is uncertainty in both of
the objective functions due to the randomness of their coefficients. Each coefficient is a
random variable with a normal distribution. All random variables have the tilde symbol
(~) over them. The expected values and standard deviations of all random variables are

presented in Table 26, Table 27 and Table 28.

mincost =§ & €. o Xo) (53)
p |
minemissions = C, o Xl (54)
p |

where ¢, isthe coefficient of decision variable xp, in objective function k. There are

12 decision variables in the problem which are al amounts of electricity production per
unit p in load type |. For example, X1, X1.2, and X3 3 are amounts of electricity production
of lignite unit in base, medium and peak |oads, respectively.

The model is subject to the following constraints:

a x,, £ cap, for each unit p (55)
|

a x,, ° load, for each load | (56)
p

Xl,3’ X2,1’ and X4,2 = 0 (57)

x,, 30" pand| (58)

Equation (55) is the capacity limit for each production unit p and céppis a normal
random variable which is the capacity limit of production unit p. Equation (56) is the

demand constraint and load, is a normal random variable which is the demand amount
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that has to be satisfied in load |. Equation (57) is the availability of some units. The
lignite fired units can be used only for base and middle load, so x; 31s 0, the ail fired units
are only available for middle and peak load, so X1 is O, the RES units can be used only
for base and peak load, so x4, is 0. Finally, Equation (58) is the positive variable
constraint, that is, all decision variables have to be greater than or equal to zero.

45.2 Calculation of probabilities

All random variables in the test problem are assumed to be normal random variables
with a mean and a standard deviation. Objective functions and constraints are treated as
independent functions, that is, there is no covariance considered in the test problem.
When PUGA calculates a probability that a solution dominates another solution, it first
obtains the mean and variance of every solution in every objective function. For example,

let x; and x; be two solutions in the objective space to be compared. PUGA calculates the

mean, E[z,(x;)], and the variance, Var[z, (X;)], of objective function k evaluated at

solution vector X; = (Xq, X2, X3, ...) asfollows:

Elz, (x)]=m x+m % +m X+.. (59)

Varz, (x)]= (s %xl)z +(s Ck)zxz)z + (s Ck’3x3)2 +... (60)

where m, is the expected value of the first coefficient of objective function k and
S, is the standard deviation of the first coefficient of objective function k.

The second step is to calculatePr{x; > X;}, that is, the probability that solution Xx;

dominates solution x;, using Equation (61):
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Pr{x; > x;}

RS

2, =2 | 1 (2[x)dz,

= OPr{zllXi <z,
-¥

¥

, c‘)Pr{Zz,xi <Zoy [Zox, = Zz,x,.} fzz(zz‘xj)dzzlXj (61)
-¥

¥ ¥
= OF, (@)1, (z|x)dz,, * OF,(2[x) 1, (z|x)dz,,
-¥ -¥

e TE Enf)0 O eln ) Etufu) -0 ¢
g\/Var[Zl(Xi )] +Var[Zl(Xj )] ; g\/Var[Zz(xi )] +Var[zz(xj )] ;

When the problem includes uncertain constraints, chance constraint model is used to

calculate the probability that the constraint is satisfied. For example, a constraint in the

form of a'x £b" with a random right hand side b, is converted into Pr{a’x £b'} 3 a,.
Then, Pr{a'x £b'} is calculated as:

Pr{a'x £ b'} = Pr{b" 3 a'x}
_E &E[b'] - alx? (62)
§ WValo] 5
If this probability is bigger than the user-defined a; value, then the solution x; is
considered as a feasible solution. Note that when there are two or more constraints, the
solution has to satisfy all o; valuesfor all constraints to be counted as a feasible solution.
453 Algorithm Parameters
There are some parameters that are used for genetic algorithm such as the number of

maximum generations or the crossover rate. The parameters used in PUGA for the test
problem are as follows:
Maximum Generations: 500

Population Size : 40
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Crossover rate: All of the individuals in the population would be processed by a
crossover operator, but only crossover fraction of all variables would do
crossover. Default value of crossover fraction is set to 2/numVar (numVar =
Number of decision variables). There are 12 decision variables in the test
problem.

Mutation rate: Asin the crossover operator, all of the individualsin the population
would be processed by the mutation operator but only mutation fraction of all
variables would do mutation. Default value of mutation fraction is set to
2/numVar .

454 Design testswith stochastic objective function coefficients

PUGA designs are first tested with random objective function coefficients while
uncertainty of constraints isignored, that is, expected values of constraints are used. The
risk measure is set to risk-neutral, that is, p; = 0 and p, = 0. Neighborhood number for
design 3is set to 10 for each objective function so the objective space is divided into 100
cellsin total.

Design 1 gives similar results to the no uncertainty (deterministic assumption) case
(Figure 36) but it provides afew more solutions that are expectedly dominated but are not
dominated probabilisticaly. These solutions are similar to the cases we discussed in
Section 2.4 and they are the reason we implement PUI to include uncertainty in the
algorithm.

Design 2 tends to eliminate the diversity of solutions and promotes a few solutions
over al (Figure 37). Thus, it might be better for single objective genetic agorithms.

However, the design automatically prunes solutions which is, in general, applied as a
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post-Pareto analysis technique. Therefore, this design can be useful for some multi-

objective problems, too.
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Design 3 also gives similar results to the no uncertainty (deterministic assumption)
case (Figure 38) but it provides more solutions that are expectedly dominated but are not
dominated probabilisticaly. Furthermore, neighborhood approach provides selected
solutions (red star solutions in the figure) for each neighborhood which is helpful for
post-Pareto analysis. Neighborhood approach also increases the performance of the
algorithm and helps with operators for extraction of the best solutions and selection of

parent solutions for reproduction. Overall, this design is the best option for the test

problem.
Design 3
°
&
.. | @ PUGA Results
L 3 % Promred Sotiioon
] L
® o
L ) )
6 e 8
n
e[ ha N -
LLI o
n N
..\_M_.\
; ‘txh_‘ °
“‘H‘O
48 H‘H\t.
i =
.'
Cost

Figure 38. PUGA design 3 Results

Design 4 is similar to designs 1 and 3 with respect to Pareto results. However, the
algorithm tends to focus on a particular side of the trade-off curve where the solutions are
less uncertain. This is clearly seen with the preferred solutions chosen by the pairwise
PUI calculation. Figure 39 shows the top 5 preferred solutions with red stars and they are

al on the cost minimization side of the Pareto set. Design 4 is not very helpful for post-
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Pareto analysis but gives a good idea about where solutions are less uncertain in the

objective space.
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Figure 39. PUGA design 3 Results

455 Risk MeasureTests

In order to test how the risk measure of rPUI (risk adjusted PUI) affects solutions, we
modify the test problem once again to equalize the expected value of the cost of
production and emissions for lignite and renewable sources while diverging their
standard deviations. We assume that there will be a new lignite technology with carbon
capture in the future with low expected emissions but the emissions uncertainty is high.
We also assume that there will be a new renewable technology with low expected cost
but high cost uncertainty. Table 29, Table 30 and Table 31 show the new modified

characteristics for lignite and renewabl e sources (RES).



Table 29. Modified characteristics (expected values)

Production units, p Lignite | RES
Expected cost of production ($/MWh) 30 30
Expected CO, emissions 0 0

Table 30. Modified characteristics (Standard deviation of costs)

Lignite | Qil | Gas | RES
Base 01 |36|36| 4
Middle| 05 |36| 36| 8
Peak 1 36| 36| 12

Table 31. Modified characteristics (Stan

Lignite | Oil | Gas | RES
Base 02 (01|01 O
Middle| 04 |01|01| O
Peak 08 |01|01| O

dard deviation of emissions)
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In this case, if the problem is treated without uncertainty, then there are solutions with

the same expected value but different decisions. For example, the cost and emissions of

two solutions in Table 33 are the same but this can be achieved by two different vectors

of decision variables by varying generation decisions from lignite and renewable sources

(RES) as seen in the table. Furthermore, the uncertainty levels of these two solutions in

each objective function are different from each other (Table 32).

Table 32. Uncertainty levels of two solutions

Solution 1 | Solution 2
Expected Cost 2,625,000 | 2,625,000
Expected Emissions 10,620 10,620
Cost standard deviation 139,340 175,340
Emissions standard deviation 16,180 14,180
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Table 33. Solutions with same objective values, but different decisions
Solution 1 Solution 2
Base | Middle | Peak Base | Middle | Peak

Lignite | 5,400 | 19,200 | 6,400 | 15,400 | 9,200 | 6,400
Oil 1,000 0 0 1,000 0 0
Gas 22,000 0 0 22,000 0 0
RES 10,000 0 0 0 10,000 0

Table 34. Comparison of solutions by rPUI

Risk measure | rPUI of Solution 1 | rPUI of Solution 2 | Selected
p1=0,p2=0 0.2500 0.2500 lor2
p1=1,p2=0 0.2569 0.2610 1
pP1=0,p2=1 1.3945 0.9883 2
p1=1p2=1 1.4333 1.0318 2
p1=-1,p2=0 0.2438 0.2401 2
P1=0,p2=-1 0.2010 0.2310 1
p1=-1,p2=-1 0.1960 0.2218 1

An agorithm which neglects uncertainty treats these two solutions the same, that is,
they are equaly likely to be selected. However, if the uncertainty is taken into
consideration the choice of the decision maker would change. For example, a decision
maker who is risk-averse for the cost objective would prefer Solution 1 since its
uncertainty is lower than Solution 2. Table 34 gives the comparison of two solutions by
their rPUI values. p; is the risk measure for i objective function. If p; is set to zero then
the risk measure is neutral. When p; is greater than zero it is risk-averse, and when it is
less than zero it is risk-seeking. When the setting is risk-neutral for both objectives there

is no difference among two solutions so there is no selection of one over the other. When
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the second objective is set to more risk-averse or both objectives are equally risk-averse,
then Solution 2 is selected. Otherwise, Solution 1 is more preferable.

Example above demonstrates how the selection of two solutions change when they
have the same expected value for both objective functions but different uncertainty level.
We further test PUGA with the original assumptions of the test problem and different risk
preferences. PUGA design 3 is used for this test and two different risk preference sets,
risk-averse (p = [15 15]) and risk-seeking (p = [-15 -15]), are used.

Figure 40 and Figure 41 show the Pareto fronts for the risk-averse and risk-seeking
cases. Blue dots are full Pareto results and red stars are the rPUI-selected solutions for
neighborhoods. Figure 42 and Figure 43 show the decision changes between these rPUI -
selected solutions. In each graph solutions are ordered by minimization of cost. The
number in the x-axis shows the rPUI order of the solution. For example, Solution 8 in
Figure 42 is the solution with the minimum cost value among rPUI-selected solutions for

the risk-averse case but its rPUI order is the eighth.
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456 Test with stochastic constraints
Congtraints in the test problem are assumed as deterministic constraints. The test

problem model is subject to the following constraints:

é X, E cépp for each unit p (63)
|
a x,, * load, for each load | (64)
p
X].,S’ X2,1’ and X4,2 = O (65)
X, 20" pandl (66)

In this section PUGA is tested with constraints where uncertainty is included. Only

Equations (63) and (64) have stochastic elements. The maximum production of unit p per
year (Cépp) and demand in load type | (Ioédl) are random variables with normal

distributions. Values for their means and standard deviations are presented in Table 26,
Table 27 and Table 28.

For the test problem Equations (63) and (64) are converted to the following forms:

Pr{4 x,, - cap, £0} >a, for each unit p (67)
|

Pr{a x,, - load, 30} >a, for each load | (68)
p

The user defined o; values mean that the probability of satisfying constraint i is
greater than ;. This can also be used as a risk measure. For instance, a risk-seeking
decision maker may choose a smaler value for 0;, so that the agorithm provides
solutions with more relaxed constraints. On the contrary, a risk-averse decision maker
may choose a larger value for a;, and the agorithm provides solutions with strictly

satisfied constraints.
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In this test problem, al stochastic elements of the constraints are random variables
with normal distributions. Therefore assigning 0.5 for a o; provides the same results as in
the deterministic assumption case. From another point-of-view, in deterministic
assumption the probability of satisfying a constraint is only 0.5. For this test problem, a
risk-neutral decision maker may assume the problem is deterministic or assign 0.5 for q;
values; a risk-seeking decision maker may choose a smaller value than 0.5 for o; values;
and a risk-averse decision maker may choose a bigger value than 0.5. The agorithm is

tested in cases where 0; values are changed for Equations (67) and (68).
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Figure 44. Test resultsfor Case 1, a; =0,=0.4

Casel:a;=0,=04

The user defined o; values mean that the probability of satisfying constraint i is
greater than 0.4. Test results for the case are presented in Figure 44. The green line shows
the deterministic Pareto front and green circles are initial solutions provided to the
algorithm which are also the deterministic assumption results. The red dotted line is the

new Pareto front for the test case where a; = a, = 0.4 and red squared solutions are the
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preferred solutions for post-Pareto pruning. When constraints are relaxed, the Pareto front
extends to lower values for both objective functions. This is shown by red arrows in the
figure.

Table 35. Comparison of two solutions which minimizes the cost for deterministic and
stochastic case a; =0, = 0.4

Deterministic | Stochastic
Lignite 22,800 21,900
Qil 0 0
B2 I Gas 15,600 15,523
RES 0 13
Lignite 8,200 9,740
_ Qil 11,000 8,998
Middle
Gas 0 0
RES 0 0
Lignite 0 0
Qil 0 0
Peak
Gas 6,400 6,302
RES 0 0
Lignite 31,000 31,640
Qil 11,000 8,998
Gas 22,000 21,825
Total | RES 0 13
Production 64,000 62,477
Cost 3,075,000 2,934,744
Emissions 62,460 61,862

Table 35 shows the comparison of the two extreme solutions where the cost is
minimized for the deterministic case and the stochastic test case where a; = 0, = 0.4.
Total production is reduced because the demand constraint is relaxed. This reduces both
the cost and emissions objective. In total, the gas and oil usage is reduced but the lignite
usage is increased. Lignite is used more than its expected limit because the limit of

maximum production per unit is relaxed by a; = 0.4.
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Case2: a3 =0a,=045
Test results for the case are presented in Figure 45. The dotted green line shows the
deterministic Pareto front and green circles are initial solutions provided to the algorithm
which are also deterministic case results. The solid blue line is the new Pareto front for
the test case where a; = 0, = 0.45 and red squared solutions are the preferred solutions for
post-Pareto pruning. The dotted black line is the Pareto front of the previous case where
a1 = 0z = 0.4. Constraints are less relaxed compared to the previous case but the Pareto

front still can extend to lower values for both objective functions.
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Figure 45. Test resultsfor Case 2, a; = 0, = 0.45

Table 36 shows the comparison of the three extreme solutions where the emissions
objective is minimized for the deterministic case and two stochastic test cases where a; =
0, = 0.4 and a; = a, = 0.45. Total production is reduced in stochastic cases because the

demand constraint is relaxed. This reduces both the cost and emissions objective. In
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genera, production from al units in al load types is reduced but usage of renewable

sources in peak load is slightly increased in case 1.

Table 36. Comparison of three solutions which minimizes the emissions for deterministic

and stochastic case a1 = 0, = 0.4 and stochastic caseo; = a0, =045

Deterministic | Casel Case?2
Lignite 12,800 12,263 12,548
Qil 0 0 0
Base Gas 22,000 21,539 21,893
RES 3,600 3,762 3,507
Lignite 4,200 4,200 4,200
_ Qil 15,000 14,558 14,843
Middle
Gas 0 0 0
RES 0 0 0
Lignite 0 0 0
Qil 0 0 0
Peak
Gas 0 0 0
RES 6,400 6,376 6,400
Lignite 17,000 16,463 16,748
Qil 15,000 14,558 14,843
Gas 22,000 21,539 21,893
Total RES 10,000 10,138 9,907
Production 64,000 62,699 63,390
Cost 3,855,000 | 3,790,529 | 3,820,820
Emissions 45,180 43,881 44,655

Case3:a;=1landa,=04

In this case only the constraint set related to the load types is relaxed (0, = 0.4). The

maximum production limit is assumed to be deterministic (when a; = 1, the agorithm

treats the first constraint set as deterministic). Test results for the case are presented in

Figure 46. The dotted green line shows the deterministic Pareto front and green circles

are initial solutions provided to the algorithm which are also the deterministic case

results. The solid blue line is the new Pareto front for the test case where a; = 1 and o, =
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0.4 and red sguared solutions are the preferred solutions for post-Pareto pruning. The

dotted black line is the Pareto front of Case 1 where a; = a, = 0.4.
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Figure 46. Test resultsfor Case 3, a; =1, a,=0.4

Table 37 shows the comparison of the two extreme solutions, shown by red arrowsin
Figure 46, where the cost is minimized for Case 3 where a; = 1 and a, = 0.4, and Case 1
where a; = a; = 0.4. Total production is reduced in these cases because the demand
constraint is relaxed. This reduces both the cost and emissions objective. In Case 1, the
model could use more lignite than it is allowed in the deterministic case but in Case 3 this
constraints is assumed to be deterministic. Therefore usage of lignite is reduced and

substituted by oil and renewable sources.
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Table 37. Comparison of two solutions which minimizes the cost for Case 1 where a; = o,

Emission

gar

=0.4and Case3wherea;=1anda, =04

Casel Case 3

Lignite 21,900 21,105

Qil 0 0

B2 I Gas 15523 | 15352

RES 13 986

Lignite 9,740 9,750

. Qil 8,998 9,004
Middle

Gas 0 0

RES 0 0

Lignite 0 0

Qil 0 0

Peak Gas 6,302 6,400

RES 0 0

Lignite 31,640 30,855

Qil 8,998 9,004

Gas 21,825 21,752

Total RES 13 986

Production 62,477 62,597

Cost 2,934,744 | 2,994,785

Emissions 61,862 60,702
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Figure 47. Test resultsfor Case 4, a; = 0, = 0.55
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Case4: a1 =0,=0.55

In this case a values are set to 0.55 which is higher than the risk-neutral case o; = 0.5.
This means that the probability of satisfying the constraints is stricter, and the decision
maker isrisk-averse. Test results for the case are presented in Figure 47. The dotted green
line shows the deterministic Pareto front and green circles are initial solutions provided to
the algorithm which are also deterministic case results. The solid blue line is the new
Pareto front for the test case where a; = 0, = 0.55 and red squared solutions are the
preferred solutions for post-Pareto pruning.

Table 38 shows the comparison of the two extreme solutions where the cost is
minimized for the deterministic case and Case 4 where a; = a, = 0.55. Tota production is
increased in Case 4 because the demand constraint is stricter. The model uses more
renewable sources in the base load and more lignite and oil in the middle load to satisfy
the increased demand constraint. In total the production isincreased 250 GWh.

Table 38. Comparison of solutions which minimizes the cost for the deterministic case
and Case 4 where a; = 0, = 0.55

Deterministic| Case4
Lignite 22,800 22,600
Oil 0 0
Base
Gas 15,600 15,600
RES 0 200
Lignite 8,200 8,400
] Oil 11,000 11,050
Middle
Gas 0 0
RES 0 0
Lignite 0 0
Oil 0 0
Peak
Gas 6,400 6,400
RES 0 0
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Lignite 31,000 31,000
Qil 11,000 | 11,050
Gas 22,000 | 22,000
Tota | RES 0 200
Production 64,000 64,250
Cost 3,075,000 | 3,096,729
Emissions 62,460 | 62,496

45.7 Test with three objective functions

The test problem excerpted from [66] originally has three objective functions. So far
we simplified this problem into two objectives for other test purposes. In this section we
consider the third objective, too. The third objective of the problem is to minimize the
external dependence, that is, to minimize the generation amount from oil and natural gas

units:
min dependence =§ (63,oilxoil,l +63,gasxgasl) (69
|

where ¢, , are artificial coefficients of the third objective function for oil and natural

gas units and added arbitrarily just to include some level of uncertainty for test purposes.

C,, are assumed to be normally distributed with an expected value of 1 and standard

deviation of 0.01.

Pareto results for the three objective function test obtained by PUGA design 3 are
presented in Figure 48 and Figure 49 for the risk-averse (p = [15 15 15]) and the risk-
seeking (p = [-15 -15 -15]) cases, respectively. As in the bi-objective tests, PUGA finds
extra solutions depending on the risk preference that were not considered in the expected
case and it also eiminates some expectedly non-dominated solutions in favor of newly

found more preferred solutions.
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458 Test with dependent objective coefficients and different distributions

Two objective functions considered in the test problem are the minimization of

production cost and the minimization of CO, emissions:

mincost =§ a € o X, (70)
p |
minemissions =g C, o Xy (71)
p |

where €, , isthe coefficient of decision variable x,, in objective function k. There is

uncertainty in both of the objective functions due to the randomness of their coefficients.
In al of the previous tests a general assumption isthat all the coefficients in the objective
functions are normally distributed independent random variables.

Table 39. Probability distributions of objective function coefficients

Coefficients of Distribution | Parameters
Cost rate per MW generation

Lignite Clignite Gamma (51, 0.6)
Oil C il Normal (75, 3.6)
Natural Gas Cges Uniform (55, 65)
RES Cres Normal (90, 0.6)
Emissions?;)tifggrerl\l/ﬁ/\?fgeneration Distribution Parameters
Lignite C, jignite Gamma (6.275, 0.23)
Oil Coi Weibull (0.83, 2.5)
Natural Gas C, gas Uniform (0.3,0.6)
RES Cres N/A (Constant) 0

In this section, PUGA, which uses the discrete version of the PUI, is tested with
dependent objective coefficients that have different probability distributions. Each

coefficient is a random variable with its probability distribution shown in Table 39. The
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probability distributions and their parameters are randomized for the test problem. The
correlation matrix for indicated dependenciesis provided in Table 40.

Table 40. Correlation matrix of objective function coefficients

Lignite Oil Gas RES
Cost | Emis. | Cost | Emis. | Cost | Emis. | Cost | Emis.

- Cost 1 -05 | 04 0 -0.2 0 0 0
Hgnite e sions| 05| 1 | 0| 0 | 0| 0 | 0| o
oil Cost 04 0 1 0 -0.8 0 0 0
Emissions| O 0 0 1 0 0 0 0

Gas Cost -0.2 0 -0.8 0 1 0 0 0
Emissions| O 0 0 0 0 1 0 0

Cost 0 0 0 0 0 0 1 0

RES Emissions| O 0 0 0 0 0 0 1

The discrete version of the PUI uses discrete points generated for each solution in the
objective space. Discrete points represent the randomness of each solution. For thetest in
this section, we use a copula-based simulation technique to generate discrete points for
each solution. The details of this simulation technique is presented in [99]. PUGA design
3 with the discrete PUI is employed for the test case. The discrete PUI formulation is

explained in Section 3.3.

| | | | | |
3 3 4 B i

Figure 50. Discrete points generated to represent the randomness
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Figure 50 shows the expected values and discrete points generated for seven Pareto
solutions. Squares in the figure are the expected vaues of solutions and smaller dotted
points are discrete points generated to represent the randomness of each solution. If
parameters of the problem are assumed to be deterministic, then the high level of
uncertainty is neglected which can be a significant factor for the decision making process.

Figure 51 shows the expected values and discrete points generated for dependent case
and independent normal case for the same solution. The dependent case has the same
probability distribution assumptions of this section. Independent normal case considers
that all objective function coefficients are independent and normally distributed as in
previous sections. The importance of representing the uncertainty as realistic as possible
is obvious from this comparison. Simulating discrete points to represent the uncertainty
and using the discrete PUI formulation in PUGA help to overcome the difficulties of
representing the uncertainty and provide an effective approach for stochastic multi-

objective problems with complicated rel ationships among the problem parameters.
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Figure 51. Dependent case (left) and independent normal case (right) for the same solution

As discussed in Section 3, if the objectives are dependent, the PUI formulation needs

several integrations. This might be impractical or very inefficient for an agorithm to run
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several generations. However, ssimulating the randomness and using the discrete PUI in
PUGA makes it very simple and effective to consider dependent random coefficients of
the objective functions. For the test problem in this section, neighborhood partitioning is
set to 100 and 1000 discrete points are generated for each solution of population size of
40 for each generation. PUGA completed 500 generations in 700 seconds. Thisis afairly
good performance considering the information gained by including uncertainty of the
dependent coefficients. Test results for the risk-averse and the risk-seeking cases are

presented in Figure 52 and Figure 53, respectively.
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46 Summary

Many optimization problems are multi-objective and stochastic in practice; however,
multi-objective models often use deterministic assumptions, and when uncertainty is
considered models are transformed to single objective equivalents.

In this section, PUGA, a new multi-objective stochastic genetic agorithm is
presented. PUGA incorporates the PUI model (explained in Section 3) and provides a
direct approach to solve a multi-objective stochastic problem without any transformation
of the problem. The main architecture of PUGA is built on genera multi-objective
genetic algorithm design components such as Pareto ranking or elitism but preservation
of uncertainty information is accomplished by incorporating the PUI model so that the
algorithm gives the opportunity to the decision maker to observe the uncertainty of
solutions in the Pareto optimal set. Furthermore, PUGA handles stochastic constraints as

well as deterministic ones with a method that is based on a chance constraint model. This
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type of constraint handling technique based on the chance constraint method and the
user-defined 0; values are also used as a risk measure. In addition to Pareto optimality,
PUGA uses the domination probability of solutions provided by the PUI model to make a
preference decision between solutions as part of post-Pareto analysis.

PUGA is tested with two modified problems first to test the performance and second
to demonstrate the workings of PUGA. Results from a simplified power generation
problem excerpted from [66] show that considering uncertainty changes the Pareto front
and the preference of solutions in the Pareto front. The modified CONSTR test problem
results, on the other hand, show that PUGA performs as well as NSGA-II in terms of
converging to the true Pareto optimal front and also in terms of maintaining a diverse

population of non-dominated solutions.
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5. The US Northeast Generation Expansion Planning (NEGEP)

The first objective of this chapter is to provide a multi-objective stochastic
optimization model for the power generation expansion planning of the Northeast region
of the United States presented in Section 5.1. This model aso defines stochastic
coefficients and parameters of the problem. The stochastic parameters are classified
according to their uncertainty type. Aleatory and epistemic uncertainty modeling of the
problem is explained in Section 5.2. The stochastic nature of the problem is due to the
uncertainties in the economy, climate change and technological progress. Uncertainties
due to the economy are included by modeling cost parameters as random variables with
normal distributions. Uncertainties due to climate change and technological progress are
modeled via scenarios. There are six scenarios: a reference scenario and five alternative
scenarios considering climate change and technological progress. Section 5.3 gives
details of the US Northeast GEP (NEGEP) model and the reference scenario where
climate change effects are considered insignificant with respect to the beginning of the
planning horizon and technological progress is assumed to be the business-as-usual, that
is, there is only normal progress. Section 5.4 explains how the remaining five scenarios
are defined. The scenarios consider two technological levels, namely, reference
(business-as-usual) and advanced progress levels. The amount of climate change is
considered in three different levels, namely, reference (no significant climate change),
medium change and high change (Table 41). Objective function cost and emissions
parameters are adjusted in every scenario so that the dependency of objective functionsis
assured. There is a trade-off between the number of scenarios and complexity. The

number of scenarios can be increased by including more levels of climate change and
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technological progress but it also increases the complexity of the problem and
computation time.

Table 41. Scenarios

Climate Technological Progress

Change Normal Progress | Advanced
No Change | Reference (Scenario 1) | Scenario 4
Medium Scenario 2 Scenario 5
High Scenario 3 Scenario 6

The second objective of this chapter is to provide input data and assumptions for the
NEGEP model. The data of this problem is collected from various sources, mainly from
reports of Eastern Interconnection Planning Collaborative (EIPC) [100], National
Renewable Energy Laboratory (NREL) [101], Environmental Protection Agency (EPA)
[102], Energy Information Administration (EIA) [103]. Reference scenario modeling,
assumptions and data are based on the base scenario of [37]. Other scenarios and
assumptions are based on literature review and expert judgments [104-108].

The final objective of the chapter is to solve the NEGEP problem to find Pareto
solutions for cost and CO, emissions objectives. PUGA design 3 (with neighborhood
approach) is used to solve the problem. Sections 5.8, 5.9, 5.10 and 5.11 provide various

results and comparisons of these results for the NEGEP model.
5.1 Multi-objective Stochastic NEGEP

The NEGEP model used in this chapter is similar to the example of the muilti-
objective stochastic model provided in Section 2.1.1 and details of the model equations
can be found in that section. Two objectives are considered in the NEGEP model. The

first objective function isto minimize the net present value of total cost, which consists of
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generation cost, investment cost, and fixed operation and maintenance cost. The second
objective function is to minimize the total CO, emissions.

Decision variables in the NEGEP model are generation amount (MWh) of generation
unitsin all regions in each time period of every year of the planning horizon, investment
amount (integer units) of generation units in al regions in every year of the planning
horizon, and transmission amount (MWh) between regions in each time period of every
year of the planning horizon. Generation and transmission decisions are continuous
variables and investment decisions are integer variables, and thus, the NEGEP mode is a
Mixed Integer Linear Program (MILP).

The NEGEP model considers the supply-demand constraint that ensures that the
model satisfies the demand of each region in each time period with generation from all
units and transmission from other regions. There is aso the capacity constraint which
states that the model cannot generate electricity over the built capacity. The reserve
margin requirement is modeled as the third constraint. This constraint is a necessity of
reliability and ensures that the built capacity is greater than or equal to the peak demand
capacity plus the capacity added due to the reserve margin requirement. The annual and
total construction limit of each generation unit, transmission limit between regions and
the non-negativity of generation, investment and transmission decision variables are
ensured by upper and lower bounds in genetic algorithm modeling, therefore, they are not

modeled as constraints in the NEGEP mode.

5.2 Aleatory and Epistemic Uncertainty Modeling in NEGEP

In this section the stochastic parameters of the NEGEP model are classified according

to their uncertainty type, i.e. aeatory or epistemic. Uncertainty representation of each
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parameter is also discussed. Classification and representation of considered parameters
(peak and annual total demand, cost coefficients, reserve margin, capacity and derate
factors and emissions rates of technologies) are summarized in Table 42 and they are
explained in the following sub-sections.

Table 42. Classification and representation of stochastic NEGEP parameters

GEP Variable Symbol | Uncertainty Type | Representation
Peak demand c]j’r Epistemic Scenarios
Reserve margin m Epistemic Scenarios
Availahility factor Bui Epistemic Scenarios
Derate factor f, Epistemic Scenarios
Emissions amount of i Epistemic Normal
technologies b P Distribution

. ~ Normal
Operation cost h, Aleatory Distribution
. ~ Normal
Maintenance cost 9y, Aleatory Distribution

~ Normal
Investment cost a,; Aleatory Ditribution
. ~ Normal
¢ .
Generation cost vi Aleatory Distribution
Total demand d,, Aleatory Scenarios

5.2.1 Parameterswith aleatory uncertainty

Total demand of each region in each time period ( dw ): There is sufficient historical

data for total annual demand and its variability so it is reasonable to assume a probability
density function for annual demand. On the other hand, annual demand uncertainty

affects constraints, and from the modeling aspect, it is often easier to model the constraint
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uncertainties with scenarios. In this study uncertainty of total yearly demand of each

region is modeled in scenarios.
Fixed operation cost (ﬁy’i ), maintenance cost (§,;), investment cost (4,),
generation cost ( €, ; ): Costs are often assumed to be continuous random variables, which

have associated probability density functions. The use of a symmetrical distribution is
justifiable for the variability of costs in long-term planning because an increase or a
decrease is likely to occur on either side of the expected cost in the long-term. Therefore

costs are modeled with normal distribution in this study.

5.2.2 Parameterswith epistemic uncertainty

Peak demand (dy‘;): Although annual total demand is classified as aleatory

uncertainty and can be modeled with probability distributions, peak demand is classified
as epistemic uncertainty because changes in peak demand are highly affected by weather
variability and climate change and these are hard to predict, and modeling their
variability with probability distributions is not very redlistic. For example, The PIM
(Pennsylvania - New Jersey - Maryland Interconnection) demand curve for January 7,
2014, was 35,000 MW higher than typical of a January peak load [109]. Figure 54 shows
the difference between the expectation and the realization of the daily demand and peak
demand for the PIM on January 7, 2014. On this particular day the weather was
unexpectedly cold due to a phenomenon called polar vortex and the demand for
electricity due to heating needs was aso unexpectedly high. This kind of unexpected
extreme weather and climate events make the associated uncertainty of system

parameters epistemic.
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Figure 54. PIM peak demand expectation (green line) and realization (blue line) on January 7, 2014

Reserve margin (m, ), availability factor ( p,;) and derate factor (f,): Reserve

margin is the percent of excess capacity to maintain reliability in electric power systems.
For instance, a reserve margin of 15% means that available generation capacity is 15%
more than the expected peak demand. Reserve margin is a parameter to be assigned for
each region.

Availability factor is the potential availability of each generation unit, as an upper
bound of generation output [37]. For example, a wind turbine with availability factor of
20% means at most 20% of the time the wind turbine can work due to insufficient wind
power or other conditions.

Derate factor is a reduction rate in the available capacity of an electric generating
unit, commonly due to a system or equipment modification or environmental,
operational, or reliability considerations [103]. For example, the onshore class 3 wind
turbine (WT_on3) has a derate factor of 0.1781 during summer peak in NEISO, which
means at most 17.81% of time the wind turbine can work due to insufficient wind power

or other conditions [37].
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These NEGEP parameters have uncertainty mainly due to technological development
and climate change. For example, extreme climate events are likely to increase
transmission and generation losses in the system. Therefore, there is uncertainty in
reserve margin due to the climate change. Uncertainty of technological progress and
climate change is difficult to forecast and they have unpredictable variability due to a
number of volatile factors. Hence, these uncertainties are classified as epistemic
uncertainties and uncertainty of the associated variables are model ed by scenarios.

Emissions amount of technologies (H;, ): Only CO, emissions from different types of

generation technologies are considered in the NEGEP model. CO, emissions of
technologies are dependent on the technology used and the uncertainty associated with
the parameter is due to the uncertainty in the technological development in the future. As
discussed before, the uncertainty of technological progress is hard to forecast. Thus, the
uncertainty is classified as epistemic but for modeling purposes and to provide explicit
information about uncertainty and risk of the Pareto solutions to the decision maker, this

parameter is modeled with anormal distribution.
5.3 Reference Scenario

Reference scenario modeling, assumptions and data are based on the base scenario in
[37]. The planning horizon is from 2015 to 2040. The year is divided into three seasons
(summer, winter, and spring/fall) and the related time periods in the model are summer-
peak, summer-offpeak, winter-peak, winter-offpeak, shoulder-peak and shoulder-offpeak.
The summer is defined from May through September. The winter includes December,

January and February. Spring and fall is combined and named as shoulder in the study,
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which includes March, April, October, and November. The corresponding number of
hoursin the time periodsin ayear is provided in Table 43.

Table 43. Hoursin time periods

Summer-peak 1749
Summer-offpeak | 1923
Shoulder-peak 1394
Shoulder-offpeak | 1534
Winter-peak 1029
Winter-offpeak 1131

The regions considered in this study are the same with [37]: NEISO, NYISO_A-F,
NYISO G-I, NYISO J}K, PIM_E, PIM_ROM, PJM_ROR. These regions are the
Regional Transmission Organizations (RTO) in the Eastern Interconnection grid of North
America, namely, NEISO-Independent System Operator of New England, NY1SO-New
York Independent System Operator, PIM-PIJM Interconnection. New York state is
divided into eleven sub-regions (A-K), we consider Upstate (A-F), Lower Hudson Valley
(G-1), New York City/Long Island (J-K) as three big sub-regions. We consider PIM
Eastern Mid-Atlantic Area Council (NJ, DE, east MD), PIM Rest of Mid-Atlantic Area
Council (east PA, DC, west MD), PIM Rest of Regional Transmission Operator (north
IL, OH, west PA, west MD, WV, VA, east NC) as three big sub-regions.

The existing, new and renewable generation technology types are shown in Table 55
in Appendix |. This study uses the same technology types with [37]. Table 56 and Table
57 in Appendix | summarize the technical and cost characteristics of generation
technologies for the reference scenario, respectively. It is assumed that existing or aready

planned and under construction (forced new) generation plant investment costs are sunk
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and are not included in the result. Investment costs are not listed for some technologies
that are not allowed to be invested in the future. Costs and emissions rates are assumed to
be normal random variables and expected values of parameters and outage rates are from
[37]. Standard deviations are calculated based on data and assumptions of several
references [37;100;101;104-108] and expert judgments. Table 58 in Appendix | gives the
existing capacity at the beginning of the planning horizon. The information is gathered
from [37;100].

Table 44 and Table 45 present the electricity demands and peak demands at the
beginning of the planning horizon and projected growth rates for the reference scenario,
respectively. The data for demand and peak demand for the reference scenario is the

same with base scenario of [37] and the datais mainly from [100].

Table 44. Electricity demands (GWh) and peak demands (MW) in 2010

Time Periods NEISO| NYISO_A-F | NYISO_G-I | NYISO_J}K |PIM_E| PIM_ROM | PIM_ROR
Summer-peak 30,115| 14,710 5,048 19759 |38,078| 35124 | 124,635
Summer-offpeak | 23,953| 12,918 4,001 15185 [29,507| 28614 | 102,943
Shoulder-peak 20,773| 10,908 3,266 12,162 [23,305| 23731 84,720
Shoulder-offpesk | 18,014 | 9,985 2,858 10,495 [20,819| 21,511 78,294
Winter-pesk 16,628| 8,687 2,601 9229 |18642| 19,527 68,549
Winter-offpeak | 14,608 | 8,021 2,329 8,196 |16,948| 17,856 63,614
Peak (MW) 26,043| 11,455 4,356 17,030 [32,910| 27,332 99,146

Table 45. Electricity load growth rate
NEISO|NYISOA-F|NYISO_G-I [NYISO_JK |PIM_E|[PIM_ROM [PIM_ROR

Annual load |2010-2020| 0.23%|  0.2% 0.14% 0.39% |-0.98%| 0.86% | 0.4%
growth  |2021-2040| 0% | 051% 0.85% 0.88% |0.67%| 0.67% | 0.61%
Peak load  |2010-2020|0.49% | 0.1% -0.09% 01% |-0.92% 0.71% | 0.42%
growth  |2021-2040|0.12%| 0.51% 0.85% 0.88% |0.67%| 0.67% | 0.61%

Derate factor is a discount rate in the available capacity of an electric generating unit,
commonly due to a system or equipment modification or environmental, operational, or

reliability considerations [103]. For example, the onshore class 3 wind turbine has a
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availability factor of 0.1781 during summer peak in NEISO, which means that 17.81% of
time the wind turbine can work due to insufficient wind power or other conditions [37].
Derate factors for wind turbines in NEISO region are provided in Table 46 as an
example. Datafor derate factors of all generation units are derived from and can be found
in[100;101].

Table 46. NEISO wind turbine derate factors

NEISO WT | WT_on3 | WT_ond | WT_off
summer-peak 19.50% | 17.81% | 21.18% | 41.85%
summer-offpeak | 25.81% | 23.31% | 28.31% | 40.46%
shoul der-peak 31.96% | 28.95% | 34.96% | 44.63%
shoulder-offpeak | 33.18% | 29.78% | 36.57% | 44.24%
winter-peak 42.00% | 37.92% | 46.07% | 54.28%
winter-offpeak | 41.83% | 37.83% | 45.83% | 52.06%

Electric power systems have excess capacity available than may be required to
maintain reliability. Thisis called the reserve margin and it is the ratio of capacity minus
peak demand over peak demand, where capacity is the expected maximum available
supply. For instance, a reserve margin of 0.15 means available generation capacity must
be 15% more than the expected peak demand [103]. Reserve margin requirements for
each region can be found in [100].

Transmission within regions is also considered but transmission to and from Canada
and other states are neglected, and transmission losses are not included. Transmission
capacity within regions is provided in Table 47 [100]. Transmission capacity remains
constant throughout the planning horizon, that is, there will be no new transmission line

investment.



Table 47. Transmission capacity (MW)
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Regions NEISO [NYISO A-F |NYISO G-I |NYISO 3K |PIM_E [PIM_ROM [PIM_ROR
NEISO - 600 600 430 - -
NYISO A-F | 600 - 4,250 - 1,000 -
NYISO G-I | 600 1,999 - 6,130 1,500 -
NY1SO_JK - - 1,999 - -
PIM_E - - 500 330 - 8,000 -
PJM_ROM - 2,000 - 8,000 8,000
PIJM_ROR - - - - 8,000 -

5.4 Climate Change and Technological Progress Scenarios

The remaining five scenarios are formed as in Table 48. There are two technological
levels considered in this study, namely, reference (business-as-usual) and advanced
progress levels. Climate change is considered in three different levels, namely, reference
(no significant climate change), medium change and high change levels.

Table 48. NEGEP Scenarios

Climate Technological Progress
Change Normal Progress | Advanced
No Change | Reference (Scenario 1) | Scenario 4
Medium Scenario 2 Scenario 5
High Scenario 3 Scenario 6

Reference scenario is not a frozen scenario but it considers the business-as-usual case
for technological progress where there is no significant climate change expected in the
future. Scenarios 2 and 3 assume normal (business-as-usual) progress in technology but
medium level and high level changes in climate, respectively. Scenarios 4, 5 and 6
assume advanced progress in technology but climate change levels differ; being no

significant change, medium level and high level changes, respectively.
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Climate change effects on power systems are studied in [37] reviewing a wide range
of literature. Three maor climate variables (temperature, precipitation and extreme
weather events) are identified to have effects on six parameters of the generation
expansion model, namely, demand, peak demand, derate factor, transmission capacity,
reserve margin and outage rate. This study uses the results and assumptions of [37] to
define climate change effects of Scenarios 2, 3, 5 and 6. For example, Table 59 in
Appendix | presents the percentage change in climate variables corresponding to the
considered climate change levels in Scenarios 2, 3, 5 and 6 with respect to the beginning
of the planning horizon. Table 60 in Appendix | presents the percentage change in GEP
parameters corresponding to the considered climate change levelsin Scenarios 2, 3, 5 and
6 with respect to the beginning of the planning horizon.

Table 49. Y early percentage change in GEP parameters with respect to reference case due
to advanced level technological progress

Unit Type Investment Cost | Fixed O&M Cost | Emissionsrate | Derate
CcC -0.75% -0.75% -0.55% 0.55%
CT -0.75% -0.75% -0.55% 0.55%
GEO 0.00% 0.32% - 0.32%
LFG -0.75% -0.75% -0.55% 0.55%
NU -0.18% -0.18% - -

PV -1.47% -0.37% - 2.00%
Wind Turbines -0.36% -0.12% - 1.73%
IGCC -0.75% -0.75% -0.31% 0.31%
IGCC_seq -0.75% -0.75% -0.31% 0.31%
AC -0.75% -0.75% -0.31% 0.31%
Biomass -0.38% -0.38% -0.32% 0.32%

In this study, costs and efficiencies of generation units are considered to be affected

by the technological progress. An increase in efficiency of a generation unit increases the
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derate factor and decreases the emissions rate of the unit. Yearly percentage change in
parameters with respect to the reference case due to advanced level technological

progressis presented in Table 49. Data and assumptions are based on [104-108].
5.5 Solution and Decision Process of PUGA with Scenarios

The solution and decision process of PUGA with the given scenarios in the previous
sections and formed decision profiles and robust Pareto fronts (RPF) in the next sections

are explained in the process chart given in Figure 55.

Economic uncertainty is Probabilities are assigned

Scenarios are built for 7 : : :
embedded in each scenario for scenarios according to

technology and climate

et with random cost the decision profiles and

coefficients. robust cases are formed.

PUGA finds the most Risk preferenceis

preferred solutions for each emploved by PUGA to find
case based omn the risk non-dominated solutions for
preference vector p. each decision profile.

Comparisons are provided.

Figure 55. Solution and Decision Process of PUGA with Scenarios

Uncertainties due to climate change and technological progress are modeled via
scenarios. Uncertainties due to the economy are included by modeling cost parameters as
random variables with normal distributions. Objective function cost and emissions
coefficients are adjusted in every scenario so that each scenario is internally consistent.
For example, both the cost coefficients and emissions coefficients of objective functions
are adjusted in advanced technology scenarios so that they are both lower than normal
technological progress scenarios. PUGA finds non-dominated Pareto solutions for each
decision profile after forming robust cases according to the given probabilities of

scenarios and risk preferences of each decision profile. Comparisons of results are
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provided between decision profiles and different risk preference cases in the next

sections.
5.6 Decision Profiles

Three decision maker profiles are formed to provide an easy comparison of results of
different preferences of risk. The first decision profile is risk-neutral where the reference
scenario (S1) is assumed to occur in the future and the decision maker is risk-neutral for
both objectives; cost and emissions. Therefore the risk preference is set to zero for both
objectives, p = [0 0]. The risk-averse decision profile assumes higher probability for the
worst case scenario (S3) and risk-averse in both objectives, that is, the risk preference
vector p = [15 15]. The risk-seeking decision profile assumes higher probability for the
best case scenario (S4) and risk-seeking in both objectives, that is, the risk preference
vector p = [-15 -15]. These decision profiles are created only for easy presentation

purposes and can be extended to any risk preference and scenario combination.
5.7 Robust Pareto Fronts

The risk-averse decision profile assumes higher probability for the worst case
scenario (S3) and the risk-seeking decision profile assumes higher probability for the best
case scenario ($4). Therefore two compromise and robust Pareto fronts (RPF) S7 and S8
are formed for each decision profile. Table 50 presents the assumed probabilities for each
case. Robust Pareto fronts are created to provide robust and compromise solutions that
consider al of the scenarios.

Objective function and constraint coefficients and parameters are calculated using the

given probabilitiesin Table 50 and equations (72) and (73).
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min fmzé é )gcm,i,s ps (72)
é_. é. psai,j,sx £ é. psbj,s ) J (73)
where f_ isthe m" objective function, X is the i"" decision variable, c,,; is the i"

coefficient of the m™ objective function in scenario s, P, is the probability of scenario s,
a,,, isthei™ coefficient of the j"" constraint in scenario s and b, is the right-hand side

parameter of the j™ constraint in scenario s.

Table 50. Probability of scenariosfor RPF S7 and S8

Scenarios | Probabilitiesfor RPF S7 | Probabilitiesfor RPF S8
1 0.1 0.1
2 0.1 0.1
3 0.5 0.1
4 0.1 05
5 0.1 0.1
6 0.1 0.1

5.8 NoRisk Preference Case

In this section results for the no risk preference case are presented, that is, uncertainty
in the objective space is neglected but scenarios are still in consideration. Table 51 shows
the objective function values and comparisons for the cost minimization solutions for al
scenarios and robust Pareto fronts. Cost increases due to climate change effects in
scenarios 2, 3 and 5 but decreases in scenarios 4 and 6 due to technology advancement.

Emissions are only decreased in advanced technology scenarios 4, 5 and 6.
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Table 51. Cost and emissions comparisons of cost minimization solutions for all scenarios

Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4
Cost (9) 6.392E+11 | 6.493E+11 | 6.810E+11 | 6.315E+11
Emissions (Ibs) 4.168E+13 | 4.194E+13 | 4.262E+13 | 3.945E+13
Cost Change from Scenario 1 0.00% 1.57% 6.54% -1.20%
Emiss‘gzzni:;”ge”om 000% | 062% | 225% | -536%
Cost Variance 1.844E+21 | 1.861E+21 | 1.887E+21 | 1.747E+21
Emissions Variance 1.791E+25 | 1.821E+25 | 1.896E+25 | 1.627E+25
Scenario5 | Scenario6 | RPF S7 RPF S8
Cost (9) 6.405E+11 | 6.711E+11 | 6.626E+11 | 6.431E+11
Emissions (Ibs) 3.906E+13 | 3.874E+13 | 4.068E+13 | 4.002E+13
Cost Change from Scenario 1 0.20% 4.98% 3.65% 0.60%
Emisggz:ﬂz:'?ggefmm 630% | -7.07% | -241% | -3.99%
Cost Variance 1.710E+21 | 1.647E+21 | 1.774E+21 | 1.758E+21
Emissions Variance 1.593E+25 | 1.568E+25 | 1.715E+25 | 1.666E+25

Emission
7

No Risk Preference

- - Seanario 1 Rasults
«  Seenario 2 Results
-+ Goenario 3 Results
-« Scanario 4 Rasults
¢ Scenario 5 Results

-+ Seenatio B Results
=#=RPF 57 Resulls
== RPF 58 Results

Figure 56. Pareto front comparison of all scenarios (no risk preference)
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Figure 56 presents non-dominated solutions for all scenarios for the no risk
preference case. Scenario 3 gives the highest cost and solutions for both objectives
because it is the worst case scenario and scenario 4 is the best case scenario and gives the
lowest cost and emissions solutions for both objectives.

Figure 57 and Figure 58 present minimization of cost solution generation and
investment results and comparisons for all scenarios and robust Pareto fronts for the no
risk preference case, respectively. Figure 59 and Figure 60 shows more detailed
generation and investment comparisons for specific generation units between scenarios
and robust Pareto fronts. Generation from coa decreases and generation from wind
increases from scenario 1 through scenario 6 with the help of technological advancement
in renewable energy sources and due to the efficiency decreasing effects of climate

change on thermal technologies.
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Figure 57. Generation levels of cost minimization solutions for all scenarios and RPF S7 and S8
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Figure 58. Investment levels of cost minimization solutions for al scenarios and RPF S7 and S8
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Figure 59. Coal, renewable and nuclear generation levels for all scenarios and RPF S7 and S8
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Figure 60. Combustion turbine, wind and geothermal units investment levels for all scenarios and RPF S7
and S8

5.9 Comparison of Decision Profiles

In this section, results and comparisons of decision profiles are presented. Decision
profiles are created as demonstrations and can be extended to any risk preference and
scenario combination. In a sense, a certain scenario or a robust Pareto front is associated
with a risk preference vector p to test how the decision of investment and generation
changes among different profiles. This section provides results for three decision profiles,
namely, risk-neutral, risk-averse and risk-seeking decision profiles.

Figure 61 shows the non-dominated solutions for decision profiles. Although risk-
neutral decision profile does not consider any risk preference, PUGA till sorts all

solutions according to their PUI values to provide more information for the decision
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process. Solutions with star markers in the figure are the neighborhood risk selected

solutions for each decision profile.

LRS- = Risk Neutral
‘t\ x4 * Risk Selected for Risk Neutral
Wk -~ Risk Averse
b '1.'_' Y * Risk Selected for Risk Averse
\ e ——Risk Seeking
L * Risk Selected for Risk Seeking

Emissions
 dl
ot

Figure 61. Pareto fronts for different decision profile results

Figure 62 shows the minimization of cost solutions for reference scenario (S1) and
robust Pareto fronts S7 and S8 and the top risk selected solutions for each decision profile
on the objective space. When risk preferences are taken into account, PUGA favors
solutions on the emissions side of the trade of curve, that is, solutions with high cost but
low emissions. Table 52 presents cost and emissions comparisons of the minimization of
cost solutions and the top risk selected solutions. The risk-averse decision profile selects
a solution with lower uncertainty for both cost and emissions athough the expected cost
is higher than the solution selected in the risk-neutral case. On the other hand, risk-
seeking decision profile favors a solution with lower expected cost. Furthermore, cost
variance is high which means that cost can be even lower in the future, so taking risk in

favor of cost and ignoring the high emissions level compared to the risk-averse case.
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Figure 62. Minimization of cost and top risk selected solutions for each decision profile

Table 52. Cost and emissions comparisons of top risk selected solutions for each decision

profile
Minimization of cost solutions Min Cost S1 Minost | Min Cos
RPF S7 RPF S8
Cost 6.392E+11 6.626E+11 | 6.431E+11
Emissions 4.168E+13 | 4.068E+13 | 4.002E+13
Cost Change from Risk Neutral -23.89% -21.11% -23.44%
Emissions Change from Risk Neutral 227.45% 219.56% 214.40%
Cost Standard Deviation 4.294E+10 4.212E+10 | 4.192E+10
Emissions Standard Deviation 4.232E+12 4.142E+12 | 4.082E+12
Decision Profiles Risk Neutral | Risk Averse Risk
Seeking
Cost 8.399E+11 9.587E+11 | 7.870E+11
Emissions 1.273E+13 | 7.920E+12 | 1.433E+13
Cost Change from Risk Neutral 0.00% 14.14% -6.31%
Emissions Change from Risk Neutral 0.00% -37.78% 12.59%
Cost Standard Deviation 1.414E+10 | 8.576E+09 | 1.906E+10
Emissions Standard Deviation 2.421E+12 1.838E+12 | 1.840E+12
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Figure 63 and Figure 64 present the generation and investment levels of top risk
selected solutions for each decision profile, respectively. Nuclear investment and
generation decrease both in risk-averse and risk-seeking profiles compared to risk-neutral
profile. Generation from renewable sources and investment in renewable technologies,
however, increase with inclusion of risk preference. Figure 65 shows this change for

nuclear and wind investment levels.
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Figure 63. Generation levels of top risk selected solutions for each decision profile
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Figure 65. Nuclear and wind investment levels of top risk selected solutions for each decision profile
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Figure 66. Changein cost between top 20 risk selected solutions of the risk-neutral, risk-averse and
risk-seeking decision profiles

Figure 66 displays changes in cost between top 20 risk selected solutions of the risk-
neutral, risk-averse and risk-seeking decision profiles. Figure 67 is similar but displays
emissions change. These graphs show the competing nature of cost and emissions

objectives of the problem.
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Figure 67. Change in emissions between top 20 risk selected solutions of the risk-neutral, risk-averse
and risk-seeking decision profiles

Figure 68 is a comparison of coefficients of variation (CV) for cost and emissions
objectives, and it shows that uncertainty level and expected values of both objectives are
competing. When this figure is compared to Figure 66 and Figure 67, it is observed that if
the expected value of an objective function is minimized, then the uncertainty level

increases.
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Figure 68. Comparison of coefficients of variation (CV) for cost and emissions objectives

Figure 69 and Figure 70 display the change in generation and investment levels of

units between top 20 risk selected solutions of the risk-neutral, risk-averse and risk-

seeking decision profiles. In the risk-neutral profile, reference scenario is assumed to be

occurring in the future. Therefore, generation levels of nuclear for al solutions are the

highest. However, generation from renewable sources is always below 30% of the total

generation. Generation from wind units is the lowest in the risk-neutral profile. For

investment decisions, the risk-neutral profile has the highest level of nuclear investment.

Renewable source investments in the risk-neutral profile are less than the others.
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In the risk-averse profile, nuclear generation is still high but generation from
renewable sources is over 30% of the total generation for all solutions. Generation from
wind in average doubles the levels of the risk-neutral profile. The major difference from
the risk-neutral profile is in investment levels. Nuclear investment on average is cut in
half and renewable investment increased by 30% on average. Renewable sources, mainly

wind units, make more than 80% of the total investment in ailmost all solutions.
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Figure 69. Change in generation levels of units between top 20 risk selected solutions of the risk-
neutral, risk-averse and risk-seeking decision profiles.

In the risk-seeking profile, nuclear generation is decreased further to 30% of the total

generation. Renewable sources surpass the nuclear generation in al solutions and make
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up amost half of the total generation. Generation from wind units in average is 25% of
the total. Nuclear investment in the risk-seeking profile is ailmost reduced to zero. More
than 90% of al investment is from renewable sources for the most of the risk selected
solutions. Share of wind units in renewable sources are the highest of al profiles,

comprising amost all of the renewable investment.
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Figure 70. Change in investment levels of units between top 20 risk selected solutions of the risk-
neutral, risk-averse and risk-seeking decision profiles.

In all profiles, coa and CC (combined cycle natural gas) have steady shares of
generation levels. CC is used at 10% on average. Coal is not usually chosen for the top
five or six solutions of any risk profile but in most of the solutions it has up to a 30%

share of the total generation. Share of coa tends to decrease with risk ranking of
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solutions. Neither coa nor CC is preferred for investment in any risk profiles. Generation

and investment are dominated by nuclear and wind unitsin al profiles.
5.10 Scenario Comparisons

In this section, all scenarios are compared according to the risk preferences of both
objectives. In the previous section, certain scenarios are assumed to be realized in the
future and decision profiles are tested. In this section, we fix the risk preference vector p
and vary the scenarios. The risk-averse preference compares all scenarios when the risk
preference vector p is set to risk aversion for both objective functions, that is, p = [15 15].
The risk-seeking preference compares all scenarios when the risk preference vector p is

set to risk seeking for both objective functions, that is, p = [-15 -15].
5.10.1 All scenarioswith risk-averse preference, p =[15 15]

When p = [15 15], risk preference is set to risk-averse in both objectives, cost and
CO; emissions. In this section, al scenarios are compared with p = [15 15]. Figure 71
presents non-dominated and neighborhood risk selected solutions for all scenarios for the
risk-averse preference. In the figure, there are 40 Pareto and 10 risk selected solutions for
each scenario, and in total 320 solutions. It is impractical to compare them al, even with
neighborhood pruning. Therefore, we confine our comparison to the top risk selected
solutions of each scenario. The top risk selected solutions are the solutions with the
lowest PUI value among the 40 Pareto solutions of each scenario.

Figure 72 and Figure 73 present generation and investment results and comparisons
of the top risk selected solutions for all scenarios and robust Pareto fronts. Figure 74 and
Figure 75 show more detailed generation and investment comparisons for specific

generation units between scenarios and robust Pareto fronts to easily observe the change
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in mgjor decisions. Generation and investment decisions mainly change between nuclear
and renewable sources due to the technological progress assumptions of scenarios.
Scenarios and Pareto front with advanced technologies ($4, S5, S6 and S8) have higher
levels of renewable generation and investment. However, generation from nuclear, and
investment in nuclear is lower in those scenarios. As soon as the cheap and efficient
renewables are available, they replace the nuclear investment and generation. Wind
investment in particular is amost the only investment option (over 90% of total) when
advanced technology is available. Generation from coal units, on the other hand, remains

at similar levels through all scenarios.
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Figure 71. Pareto front comparison of all scenarios, p = [15 15]
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Figure 72. Generation levels of the top risk selected solutions for all scenarios and RPF S7 and S8
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Figure 73. Investment levels of the top risk selected solutions for all scenarios and RPF S7 and S8
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Figure 74. Coal, renewable and nuclear generation levels of the top risk selected solutions for all scenarios

and RPF S7 and S8, p = [15 15]
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Figure 75. Nuclear and wind investment levels of the top risk selected solutions for all scenarios and RPF

S7and S8, p =[15 15]
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5.10.2 All scenarioswith risk-seeking preference, p = [-15 -15]

When p = [-15 -15], the risk preference is set to risk-seeking in both objectives, cost
and CO, emissions. In this section, al scenarios are compared with p = [-15 -15]. Figure
76 presents non-dominated and neighborhood risk selected solutions for all scenarios for
the risk-seeking preference. Again, we confine our comparison to the top risk selected
solutions of each scenario. The top risk selected solutions are the solutions with the

lowest PUI value among the 40 Pareto solutions of each scenario.
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Figure 76. Pareto front comparison of all scenarios, p = [-15 -15]

Figure 77 and Figure 78 present generation and investment results and comparisons
of the top risk selected solutions for all scenarios and robust Pareto fronts. Figure 79 and
Figure 80 show more detailed generation and investment comparisons for specific

generation units between scenarios and robust Pareto fronts to easily observe the change
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in maor decisions. Similar to the previous section results, generation and investment
decisions mainly change between nuclear and renewable sources due to the technological
progress assumptions of scenarios. Generation from coal units in the risk-seeking
preference again remains at similar levels (below 10%) through al scenarios but it is

lower compared to the risk-averse case results (average 15%).
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Figure 77. Generation levels of the top risk selected solutions for all scenarios and RPF S7 and S8
p =[-15-15]
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Figure 78. Investment levels of the top risk selected solutions for all scenarios and RPF S7 and S8

p=[-15-15]
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Figure 79. Coal, renewable and nuclear generation levels of the top risk selected solutions for all scenarios

and RPF S7 and S8, p = [-15 -15]
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Figure 80. Nuclear and wind investment levels of the top risk selected solutions for all scenarios and RPF
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5.11 Risk Preference Comparisonson the Robust Pareto Front S7

In the previous sections, first, decision profiles are compared where a certain scenario
or arobust Pareto front is assumed to be realized in the future, and later risk preferences
are kept constant while scenarios are compared. In this section risk preferences of
objective functions are compared on the robust Pareto front S7 which is a compromise
trade-off curve of all scenarios with the probability of the worst case scenario (S3) being
the highest. Assumed probabilities of scenarios to form robust Pareto front S7 are shown
in Table 53. The objective in this section is to keep the robust Pareto front S7 constant
and to vary the risk preference vector p to test how the selection of a solution on the
Pareto front and decision of investment and generation changes.

Table 53. Probability of scenarios for RPF S7

Scenarios Probability
0.1
0.1
05
0.1
0.1
0.1

DO, WN B

Figure 81 shows the top risk selected solutions for different risk preference vectors.
When the risk preference of an objective function is greater than zero, risk preferenceis
on the risk-averse side and when it is less than zero risk preference is on the risk-seeking
side. For example, p = [15 -15] means preference is risk-averse for the cost objective and

it isrisk-seeking for the emissions objective.
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Figure 81. Risk Preference Comparisons on the RPF S7

When we only consider the minimization of cost neglecting the uncertainty and the
emissions objective, the cost is minimized subject to constraint sets, and since the
objectives are competing, the emissions objectiveis at its highest value (Table 54). Coal
generation and combustion turbine investment have their highest share when cost is
minimized (Figure 82 and Figure 83). Renewable generation and investment, and nuclear
generation are at their lowest level and there is no nuclear investment in this case. These
are expected results because generation from coal and combustion turbine investment are
the cheapest options and nuclear investment is the most expensive one.

When p = [0 Q], the risk preference is neutral for both objectives. PUGA does not
evaluate the PUI values based on arisk preference but it still sorts solutions based on the
stochastic domination, that is, it still selects the least dominated solution on the Pareto
front but without considering the risk preference. The top selected solution of this case (p
=[00]) is abaance solution between the cost and the emissions objectives (Figure 81) in
the vicinity of averages of the cost and emissions minimization solutions (Table 54).

Objective values and standard deviations of the selected solutions are provided in

Table 54. In general, the cost minimization solution has the highest variability. The
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emissions minimization solution, on the other hand, has the lowest variability, but cost
objective variances for all solutions are always lower than emissions objective and the
risk preference favors solutions with less variability when it is set to risk-averse and it
favors solutions with higher variability or lower expected value. For example, when p =
[15 -15], the risk preference is risk-averse for the cost objective and risk-seeking in the
emissions objective. The top selected solution of this caseis the closest one among others
to the emissions minimization solution which aso has the smallest variability for cost
emissions. On the other hand, when p = [-15 15], therisk preference is risk-averse for the
emissions objective and risk-seeking in the cost objective. This time, the top selected
solution is the closest one among others to the cost minimization solution.

Table 54. Risk Preference Comparisons of Objectives for the RPF S7

Cost Emissions
Risk Preference Cost Emissions | Change Change
Comparisons on Cost Emissions | Standard Standard from from
S7 Deviation Deviation Minimized | Minimized
Cost Cost
6.626E+11 | 4.068E+13 | 4.212E+10 | 4.142E+12 0.00% 0.00%
8.117E+11 | 1.594E+13 | 2.116E+10 | 1.944E+12 22.51% -60.82%
7.801E+11 | 1.914E+13 | 2.367E+10 | 2.067E+12 17.73% -52.94%
8.540E+11 | 1.273E+13 | 1.630E+10 | 2.053E+12 28.89% -68.71%
7.801E+11 | 1.914E+13 | 2.367E+10 | 2.067E+12 17.73% -52.94%
8.315E+11 | 1.433E+13 | 1.920E+10 | 1.991E+12 25.49% -64.77%
7.301E+11 | 2.556E+13 | 2.799E+10 | 2.625E+12 10.19% -37.18%
8.540E+11 | 1.273E+13 | 1.630E+10 | 2.053E+12 28.89% -68.71%
6.759E+11 | 3.521E+13 | 3.713E+10 | 3.566E+12 2.01% -13.46%
8.794E+11 | 1.113E+13 | 1.104E+10 | 2.286E+12 32.73% -72.65%
1.041E+12 | 6.317E+12 | 8.002E+09 | 1.303E+12 57.06% -84.47%

Generation levels of the selected solutions are shown in Figure 82. A more detailed
comparison for generation percentages of the risk selected solutions at selected risk
preference levels and the cost minimization solution is presented in Figure 84. The main
decision changes for generation levels are of nuclear, coal and renewable units (mainly

wind) while combined cycle generation levels are always below 10%. Coal is utilized
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more when the algorithm focuses on minimizing the cost objective or accepts risk to
minimize it. Nuclear levels are higher in balance solutions such asp =[0 0] or p = [-15 -
15] cases. Renewable generation is a strong alternative to nuclear and coal especially
when the a gorithm seeks possibilities to minimize emissions objective (when p = -15 for

the emissions objective function).
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Figure 82. Coal, nuclear, renewable and combined cycle generation levels for the RPF S7 at different risk
preference levels
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Figure 83. Combustion turbine, nuclear and renewable investment levels for the RPF S7 at different risk
preference levels
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Figure 84. Generation percentages of the risk selected solutions at different risk preference levels and the
cost minimization solution

Investment levels of the selected solutions are shown in Figure 83. Investment level
of combustion turbine (CT at 65%) in the cost minimization solution is considerable
especialy when itslevel of generation is not that high (7%). The algorithm invests highly
in CT because of the reserve margin constraint and it is the cheapest available option for
investment. CT capacity is needed for reliability reasons. On the other hand, investment
levels of renewable units are remarkable in the top risk selected solutions at selected risk
preference levels. The cost objective increases (between 2% to 33%) in these solutions
but uncertainties in both objectives and emissions objective decrease significantly (Table

54) with the help of renewable and nuclear investment and generation.
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5.12 Conclusion

This chapter provides a multi-objective stochastic optimization model, input data and
assumptions for the model, uncertainty modeling and results and comparison of results
for the power generation expansion planning of the Northeast region of the United States.
The model (NEGEP) is constructed with basic constraint sets such as demand-supply
equality or reserve margin requirement. Detailed constraint sets such as Renewable
Portfolio Standards (RPS) or emissions caps are not included, so that the Pareto set can
be observed as broad as possible; because these constraints would prune the feasible
region if applied. On the other hand, the main objective of this chapter is to examine the
effects of uncertainty and risk associated with it rather than to provide specific solutions,
although the model is constructed as redlistic as possible with real data and rational and
systematic assumptions. The practical aspect of the model can be further improved by
working with decision or policy makers and incorporating their input and modifying the
model for their interest.

Electricity generation network expansion planning already confronts severa
complicated economic, environmental and technological challenges and the impact of
these challenges will only increase in the future. Inherent uncertainties in economic and
technological development and climate change make it much harder to determine
planning decisions today. As it is seen throughout the chapter, the amount of information
is extensive when compared to the single-objective or deterministic assumption cases. It
might seem to be easier to make such assumptions for the decision or policy making

processes. However, the amount of lost information, especialy from the uncertainty
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perspective, has to be considered. Ignoring uncertainty while modeling these planning
problems may cause greater risks.

Results of this chapter suggest that the extent of capacity addition is expected to be
nuclear and especially renewable units when uncertainty is taken into consideration.
Mitigating pollutant emissions also necessitates emissions-free electricity generation
from nuclear or renewable units. Investing in clean and renewable energy technologies to
cost effectively satisfy the electricity demand while maintaining the reliability of the
network requires more technological advancement and also regulation and policy
encouragement.

On the other hand, technologies such as advanced coal units with carbon capture and
sequestration (CCS) will need to attain even higher advances in technology and discounts
in costs to be employed. The high costs and slow advancement of their technology

prevent CCS units to be preferred in large scale and long term planning.
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6. Conclusions and Future Research

This dissertation focuses on multi-objective stochastic optimization problems,
particularly the electricity Generation Expansion Planning (GEP) problem. Although
multi-objective stochastic programming problems are frequently encountered in practice,
there is not much research that focuses on solution methodologies incorporating the
uncertainty of multi-objective problems. Current solution methods of multi-objective
stochastic problem involve two kinds of transformations, namely the multi-objective
transformation and the stochastic transformation, where either the multi-objective aspect
or the stochastic aspect of the problem is neglected or greatly smplified.

This research presents a new uncertainty metric, the Pareto Uncertainty Index (PUI),
and a new multi-objective stochastic genetic algorithm, the Pareto Uncertainty Genetic
Algorithm (PUGA), which incorporates the PUI, to solve multi-objective stochastic
optimization problems without any transformation of the problem. These new methods
also provide the opportunity to the decision maker to observe the uncertainty of solutions.
The PUI can aso be used in single objective optimization methods or other multi-
objective evolutionary algorithms; however, this study does not include these prospects.

The Generation Expansion Planning (GEP) problem, being a multi-objective
stochastic problem, may include many objectives such as minimization of cost,
minimization of pollutant emissions, maximization of reliability and maximization of
energy security and independence. The GEP problem aready confronts severd
complicated economic, environmental and technological challenges and the impact of
these challenges will only increase in the future. Inherent uncertainties in economic and

technological development and climate change make it much harder to determine
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planning decisions today. Thus, the GEP is one of the most difficult rea life multi-
objective stochastic optimization problems, and it is an exceptiona problem domain for
this study.

One of the main objectives of this dissertation is to provide a multi-objective
stochastic optimization model for the power generation expansion planning of the
Northeast region of the United States. The presented model (NEGEP) aso defines
stochastic coefficients and parameters of the problem. The stochastic parameters are
classified according to their uncertainty type, i.e., aleatory and epistemic uncertainty.
Input data and assumptions for the NEGEP model are also provided. The data of the
problem, scenario modeling and assumptions are established with the help of various
reports, literature reviews and expert judgments. Finally the NEGEP problem is solved to
find Pareto solutions for cost and CO, emissions objectives. Results of NEGEP problem
suggest that the extent of capacity addition is expected to be nuclear and especially
renewable units when uncertainty is taken into consideration. Mitigating pollutant
emissions also necessitates emissions-free electricity generation from nuclear or
renewable units. Investing in clean and renewable energy technologies to cost effectively
satisfy the electricity demand while maintaining the reliability of the network requires
more technological advancement and al so regulation and policy encouragement.

In the next two sections research contributions of this dissertation are summarized

and future research opportunities are outlined.
6.1 Research Contribution

This research results in severa distinct research contributions. For multi-objective

stochastic problems, it is necessary to address the uncertainty and account for risk
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attitudes while preserving multi-objective aspect and representing tradeoffs of conflicting
objectives such as power production cost and environmental impacts in the GEP.
Therefore, a new uncertainty metric, the Pareto Uncertainty Index (PUI), and a new
multi-objective stochastic genetic algorithm, the Pareto Uncertain Genetic Algorithm
(PUGA) are presented in this research. Among the two approaches, there are severd
research contributions of this research, some of them being related to the GEP problem
domain and some to the single and multi-objective stochastic optimization processes.

These research contributions are summarized as follows:

Sources of uncertainty in the GEP problem are identified and classified into
epistemic and aeatory uncertainty types. Effects of different types of
uncertainty on the variables of the GEP model are aso identified for
optimization modeling purposes. These contributions are useful to model the
uncertainty in the planning process. They aso provide transparency in
decision-making.

The GEP problem is modeled and solved as a multi-objective stochastic
problem. This allows a more redlistic representation of the problem and the
results of the optimization. The need for transforming the problem is
eliminated.

The concept of Pareto optimality is extended from a purely deterministic
framework to amore realistic stochastic framework.

A new uncertainty index, the PUI, is presented which can be incorporated in
problem solving methods to solve single or multi-objective optimization

problems without ignoring uncertainty.
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A new multi-objective stochastic genetic algorithm, PUGA, is presented to
find Pareto optimal solutions of multi-objective stochastic optimization
problems with the ability of observing uncertainty information of solutions.
Risk measures are incorporated in the PUI and PUGA so that the risk
preference of the decision maker can affect the solution process. This is
important for both the GEP problem domain and the stochastic optimization
Processes.

Post-Pareto analysis is also integrated in the optimization process. The
probability information preserved in the PUI is utilized to make a preference
decision between solutions on the same front using the risk preference of the
decision maker. Thus, obtaining a smaller subset of the preferred solutions
from a large Pareto optimal set and the evaluation and interpretation of the

results can be accomplished within the optimization process.
6.2 FutureResearch

This research focuses on multi-objective stochastic problems, particularly the GEP
problem, and results in several contributions but these research topics and opportunities
are extensive.

Although most of the real life engineering and policy problems are inherently multi-
objective and stochastic in practice, solution methodologies accounting for the
uncertainty in multi-objective problems are still very few in numbers and they are in their
developing phase. As a future research task, The PUl and PUGA presented in this
dissertation, for example, can be investigated in different real life problems than the GEP

and the test problems. They are also bound to be compared with other similar
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methodologies. Even though the PUI is initialy offered for multi-objective formulations
it can also be applied to single objective methodol ogies.

There is dready a large collection of research focused on the GEP problems.
However, there are still areas to be investigated, especially in multi-objective and
uncertainty modeling of the problem. For instance, this dissertation incorporates cost and
emissions objectives and uncertainties in economic and technological development and
climate change effects, however, reliability and resiliency aspects are not examined fully.
Especidly the climate change effects on electricity grid resiliency and the uncertainty
arises from thisissue are very important subjects to investigate.

Uncertainty classification and representation are fairly well studied in the literature
but their application in modeling, especially in multi-objective optimization is rare. This
dissertation, for the first time, attempted to classify the GEP uncertainties into aeatory
and epistemic uncertainty types and utilized their representation in the optimization
model. Yet, the representation and modeling can be improved by employing possibility
and probability distributions that represent the uncertainty better for problem parameters.
Especialy for the NEGEP model there is a need to further investigate the uncertainty of
parameters and their mathematical modeling. Furthermore, the practical aspect of the
model can be improved by working with decision or policy makers and incorporating

their input and modifying the model for their interest.
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Table 55. Generation technologies
Generation Type Description
CcC Combined Cycle - Natural Gas
Cod Steam Turbine - Coal
CT Combustion Turbine - Natural Gas or Qil
Nonrenewable
NU Nuclear
STOG Steam Turbine - Qil/Gas
STWD Steam Turbine - Wood
Existing | GEO Geothermal
HY Hydro - Conventional
LFG Landfill Gas
PS Hydro - Pumped Storage
PV Solar - Photovoltaic
ST Solar - Solar Thermal/Solar Power Renewable
WT Wind Turbine onshore
WT_on3 Wind Turbine (onshore class 3 wind)
WT_ond Wind Turbine (onshore class 4+ wind)
WT _off Wind Turbine offshore
New | Biomass Biomass
IGCC Integrated Gasification Combined Cycle
IGCC_seq IGCC with carbon capture/sequestration Nonrenewable
AC Advanced or Pulverized Coal
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WT_on3 and WT_on4 are both onshore wind turbine technologies but have different

target wind resources (depending on the wind power, wind can be divided into different

classes, class 3 and class 4+ wind are considered in this study), they are only

distinguished for new generation units.



Table 56. Technical characteristics of all generation technologies

Outage Expected emissions Standa?rd.Deviation of
Type oo rates (IbssMWh) emissions rates
SO, | NOx | CO, | SO, | NOy CO,
CC 6.1% 0.1 17 | 1,135 | 0.04 | 0.71 | 475.64
Cod 6.5% 13 6 2,249 | 1.43 | 0.66 | 247.42
CT 9% 066 | 29 | 1,565 | 0.28 | 1.22 | 655.84
GEO 13% 0 0 0 0.00 | 0.00 0.00
HY 4.9% 0 0 0 0.00 | 0.00 0.00
LFG 5% 0.8 54 | 2,988 | 0.09 | 0.59 | 328.72
NU 3.2% 0 0 0 0.00 | 0.00 0.00
PS 4% 0 0 0 0.00 | 0.00 0.00
PV 60% 0 0 0 0.00 | 0.00 0.00
ST 1% 0 0 0 0.00 | 0.00 0.00
STOG 6.7% 3 24 | 1,325 | 0.33 | 0.26 | 145.77
STWD 10% 3 4 1562 | 0.33 | 0.44 | 171.84
WT 0% 0 0 0 0.00 | 0.00 0.00
WT_on3 0% 0 0 0 0.00 | 0.00 0.00
WT_on4 0% 0 0 0 0.00 | 0.00 0.00
WT_off 0% 0 0 0 0.00 | 0.00 0.00
IGCC 8% 013 | 04 | 1,540 | 0.05 | 0.17 | 645.36
IGCC_seq 8% 013 | 04 154 | 0.05 | 0.17 | 64.54
AC 6% 013 | 16 | 1,540 | 0.03 | 0.42 | 407.07
Biomass 75% | 286 | 11 0 315 | 1.21 0.00
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Table 57. Cost characteristics of al generation technologies
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Expected Star.1dz.ard Expected Fixed Stgn(.:iard Star.1dz.ard
Investment Deviation 0&M Cost D_ewatlon of E>_<pected Deviation
Type cost of (20108/kW) Fixed O&M Variable cost (_)f
20108/KW Investment - _ Cost 2010$/MWh | Variable
cost Existing | New | Existing | New cost
CcC 1,035 57.50 29.68 | 14.39 3.30 1.60 47.45 3.95
Cod - - 48.22 - 19.03 - 28.63 14.60
CT 711 39.50 - 6.7 0.74 0.74 78.43 6.54
GEO 4,163 231.28 89.76 | 84.27 4.68 4.68 0 0
HY - - 14.24 - 0.79 - 0 0
LFG 2,525 238.24 120.65 | 120.33 | 11.35 | 11.35 0 0
NU 5,615 1,334.33 | 11277 | 88.75 | 4254 | 33.48 12.06 101
PS - - 23.74 - 1.32 - 5.98 0.50
PV 4,777 1,239.92 14.66 16.7 10.08 | 11.48 0 0
ST 4,714 1,223.57 60.32 64 41.46 | 43.99 0 0
STOG - - 37.15 - 413 - 58.82 4.90
STWD - - 32.05 - 3.56 - 78.43 6.54
WT - - 34.22 | 28.07 14.69 | 12.05 0 0
WT_on3 2,460 584.02 34.22 | 28.07 14.69 | 12.05 0 0
WT_on4 2,460 584.02 34.22 | 28.07 14.69 | 12.05 0 0
WT_off 5,997 1,423.73 - 53.33 - 22.89 0 0
IGCC 3,262 181.22 - 48.9 - 5.43 44.12 3.68
IGCC_seq 5,389 299.39 - 69.3 - 7.70 53.04 4.42
AC 2,885 581.95 - 29.67 - 9.03 30.1 16.71
Biomass 3,901 368.06 - 100.5 - 9.48 41.47 391




198

Table 58. Existing generation capacity at the beginning of the planning horizon (MW)

Type NEISO | NYISO_A-F| NYISO_G-I [ NYISO_JK | PIM_E | PIM_ROM | PIM_ROR
CC | 11,463 3,594 1,157 3,658 7,649 3,986 10,542
Coal 2,570 2,252 369 3,853 16,381 59,868
CT 2,384 260 152 4,948 6,899 3,555 21,073
HY 1,933 4,395 32 258 1,236 1,604
LFG 532 166 64 124 462 338 482
NU 4,645 3,197 2,045 8,472 5,036 20,000
PS 1,674 1,412 400 1,513 3,081
PV 2 22 4 24
STOG | 6,236 1,701 2,431 6,799 3,252 4,109 2,122
STWD | 609 86 70 194
WT 202 1,283 10 731 2,597




Table 59. Climate change effects on climate parameters
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Climate Change Temperature Precipitation Extreme events
Level Annual Annual Summer frequency
High +4.4°C +12% -4% +300%

Medium +1.7°C +4% +1% +75%

Table 60. Climate change effects on GEP parameters

Climate Change Level
High Medium
. Summer +0.24% +0.092%
gAris\l:r?nal demand o ider (spring/fail) +0.19% +0.075%
Winter -0.2% -0.078%
Additional peak demand growth +0.56% +0.175%
Additional reserve margin requirement +0.6% +0.15%
Additional maintenance time +1.2% +0.3%
Additional transmission loss +0.31% +0.096%
Coadl, STOG, STWD, AC -0.209% -
CT -0.257% -
o CC, IGCC, IGCC_seq -0.099% -
Q;ig?gftosr”mmer GEO, LFG, Biomass 20.249% :
PV -0.057% -
decrease
NU -0.284% -
ST -0.297% -
HY -0.48% -
Coal, STOG, STWD, AC -0.009% -0.003%
. CT -0.057% -0.022%
g;ﬂ':;?jlf‘a%' der "5C.1GCC, IGCC seq ~0.035% -0.014%
winter derate factor GEO, LFG, Biomass -0.009% -0.003%
NU -0.044% -0.017%
decrease
PV -0.057% -0.022%
ST -0.057% -0.022%
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