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ABSTRACT OF THE DISSERTATION

Multi-Objective Generation Expansion Planning

Considering Uncertainty and Modeling with the Pareto

Uncertainty Index

by

SALTUK BUĞRA SELÇUKLU

Dissertation Director: Dr. David W. Coit

Many real life optimization problems are multi-objective problems where objectives

under consideration usually conflict with each other and they are also stochastic due to

inherent uncertainties. The electricity Generation Expansion Planning (GEP) problem is

an example of such problems in which the goal is to expand the electric power network

with new power plant investments including renewable resources. Decisions are made

where and when to build new power plants and which technology to choose for new

investments. Objectives can include but are not limited to minimization of the cost and

pollutant emissions and maximization of reliability. There are inherent uncertainties in

the GEP problem due to climate change, demand increase, fuel prices, technological

progress and many other aspects that have to be considered. Some of these uncertainties

directly affect the objective functions and some affect the constraint sets in the

optimization model.

In this study, a new uncertainty metric, the Pareto Uncertainty Index (PUI), is

presented. The PUI includes uncertainty as part of the Pareto optimality concept so that
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the decision or policy maker can observe the uncertainty of Pareto optimal solutions.

Using the PUI approach for objective function uncertainties and chance constrained

programming or scenarios for constraint set uncertainties, a new multi-objective

stochastic genetic algorithm, the Pareto Uncertain Genetic Algorithm (PUGA), is

presented in this research, as well. In contrast with the other multi-objective genetic

algorithms and classical methods, PUGA can incorporate both the multi-objective and

stochastic aspects of problem solving without any transformation. A new post-Pareto

pruning approach that reduces the number of Pareto optimal solutions to a smaller

practical set is also included in PUGA with the help of the uncertainty information

preserved in the PUI. Furthermore, this uncertainty information is used for risk

assessments of solutions depending on the risk preferences of decision makers. The PUI

and PUGA concepts are demonstrated and tested on several problems including the US

Northeast region generation expansion planning (NEGEP) problem.
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1. Introduction

The major question today for electric power is no longer market design - regulation
versus deregulation. Rather, it is fuel choice. Whatever the setup in different parts of
the country, the United States faces the same question about the future of its
electricity supply as do many other countries: What kind of generation to build? This
struggle over fuel choice is not just about meeting today's needs, but also how to meet
expected growth in demand and new environmental objectives. Coal, nuclear power,
and natural gas will all be part of the picture, both in the United States and around
the world. Each, however, comes with its own constraints.

Daniel Yergin, The Quest

This dissertation focuses on multi-objective stochastic optimization problems,

particularly the electricity Generation Expansion Planning (GEP) problem, and presents a

new uncertainty index and a new multi-objective stochastic genetic algorithm to solve

such problems.

The GEP problem consists of the expansion of the electricity generation network to

satisfy the future electricity demand with new energy investments. The GEP problems

start with an existing power network. The existing network will be insufficient in the

future due to new policies, demand increase and/or existing unit retirements. Therefore,

the existing system should be expanded by new sources in order to provide economic and

reliable energy supply in the future. There are four main group of technologies that can

be added to the system; generation units, transmission lines, distribution lines and smart

grid technologies [1]. Decisions have to be made concerning the location and timing of

the investments and selection of technologies over a specified multi-decade planning

horizon.

Many real life optimization problems are multi-objective problems in which

objectives under consideration often conflict with each other. Objectives in the GEP, for

example, may include minimization of cost, minimization of pollutant emissions,
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maximization of reliability and maximization of energy security and independency. It is

important for a decision maker to observe the trade-offs of objectives. However, most of

the multi-objective optimization problems as well as the most commonly studied GEP

problems are typically transformed to the single objective equivalents where the problem

is formulated with only one objective. Another common solution methodology for multi-

objective optimization problems is to determine a Pareto optimal set which provides a

trade-off curve of conflicting objectives. Although this approach preserves the multi-

objective aspect of the problem, it does not include the uncertainty aspect.

Real life engineering and optimization problems are also stochastic due to inherent

uncertainties. For instance, uncertainties in climate change, electricity demand increase,

fuel prices, and technological progress are examples of inherent uncertainties that have to

be considered in the GEP problem. Although stochastic programming problems are

frequently encountered in practice, most models assume deterministic conditions

especially when the problem is modeled to be multi-objective. Otherwise, the problem is

first aggregated to obtain a single objective stochastic model, which is then solved by a

stochastic programming approach. This kind of transformation maintains the randomness

and uncertainty but eliminates the multi-objective aspect of the problem.

This dissertation presents a new uncertainty index and a new multi-objective

stochastic genetic algorithm to overcome the transformations where either the multi-

objective or the uncertainty aspect is eliminated. The research contributions of the

dissertation are summarized next.
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1.1 Research Contribution

This research results in several distinct research contributions. As Gorenstin et al. [2]

states, it is necessary to reformulate the use of expected values and single objective

modeling. The use of expected values, i.e., the deterministic assumptions, does not

capture the uncertainty. The use of only one scalar measure (usually cost), i.e., single

objective modeling, is not adequate to represent conflicting objectives such as power

production and environmental impacts in the GEP. Therefore, a new uncertainty index,

the Pareto Uncertainty Index (PUI), and a new multi-objective stochastic genetic

algorithm, the Pareto Uncertain Genetic Algorithm (PUGA) are presented in this research

to solve multi-objective stochastic optimization problems. There are several research

contributions of this research, some of them are related to the GEP problem domain and

some to the single and multi-objective stochastic optimization processes. These research

contributions are summarized as follows:

 Sources of uncertainty in the GEP problem are identified and classified into

epistemic and aleatory uncertainty types. Effects of different types of

uncertainty on the variables of the GEP model are also identified for

optimization modeling purposes. These contributions are useful to model the

uncertainty in the planning process. They also assist in providing transparency

in decision-making.

 The GEP problem is modeled and solved as a multi-objective stochastic

problem. This allows a more realistic representation of the problem and the

results of the optimization. The need for transforming the problem is

eliminated.
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 The concept of Pareto optimality is extended from a purely deterministic

framework to a more realistic stochastic framework.

 A new uncertainty index, the PUI, is presented which can be incorporated in

the problem solving methods to solve single or multi-objective optimization

problems without ignoring uncertainty.

 A new multi-objective stochastic genetic algorithm, PUGA, is presented to

find stochastic - Pareto optimal solutions of multi-objective stochastic

optimization problems with the ability of observing uncertainty information of

solutions.

 Risk measures are incorporated in the PUI and PUGA so that the risk

preference of the decision maker can affect the solution process. This is

important for both the GEP problem domain and the optimization processes.

 Post-Pareto analysis is also integrated in the optimization process. The

probability information preserved in the PUI is utilized to make a preference

decision between solutions on the same front using the risk preference of the

decision maker. Thus, obtaining a smaller subset of the preferred solutions

from a large Pareto optimal set and the evaluation and interpretation of the

results can be accomplished within the optimization process.

1.2 Dissertation Organization

The dissertation is organized as follows:

In Chapter 2, the GEP problem is first explained and formulated. Single objective

least cost and multi-objective GEP models in the literature are reviewed. Second, the

uncertainty in GEP is introduced. GEP models that consider uncertainty are surveyed and
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aleatory-epistemic uncertainty classification is explained. Afterwards, a general review of

multi-objective optimization is provided. Classical methods and evolutionary algorithms,

particularly multi-objective genetic algorithms, are reviewed. Later, uncertainty in multi-

objective optimization and inadequacy of present methods are discussed. Finally, post-

Pareto pruning is introduced.

In Chapter 3, the PUI is presented. The formulations of the PUI for dependent and

independent objectives are explained. The risk adjusted PUI (rPUI), where a risk

measures is employed to incorporate the risk preference of the decision maker in the

solution process, is introduced. Formulations of the PUI and the rPUI for discrete cases

and scenarios are also explained.

In Chapter 4, PUGA is presented. First, design components of PUGA are explained

and algorithms for these components are provided. Second, the main loop of PUGA is

described and the algorithm is provided. Two modified test problems are employed to

demonstrate the algorithm and to test the performance of PUGA.

In Chapter 5, a multi-objective stochastic optimization model for the power

generation expansion planning of the Northeast region of the United States is presented.

Aleatory and epistemic uncertainty modeling of this problem is explained. Scenarios,

input data and assumptions for the NEGEP model is provided and the model is solved to

find Pareto solutions for the cost and CO2 emissions objectives. To conclude the chapter,

the results, comparisons and conclusions are presented.

Finally, in Chapter 6, general conclusions of the dissertation and future research

opportunities are discussed.
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2. Background and Literature Review

This dissertation involves multi-objective stochastic optimization problems and

presents a new uncertainty index and a new multi-objective stochastic genetic algorithm

to solve such problems, particularly the GEP problem. In this section, the GEP problem is

first explained and formulated. Single objective least cost and multi-objective GEP

models in literature are reviewed. Second, the uncertainty in GEP is introduced. GEP

models that consider uncertainty are surveyed and aleatory-epistemic uncertainty

classification is explained. Afterwards, a general review of multi-objective optimization

is provided. Classical methods and evolutionary algorithms, particularly multi-objective

genetic algorithms, are reviewed. Later, uncertainty in multi-objective optimization and

inadequacy of present methods are discussed. Finally, post-Pareto pruning is introduced.

2.1 Generation Expansion Planning Problem

The GEP problem pertains to the expansion of the electricity generation network to

satisfy the future electricity demand with new energy investments. Decisions have to be

made concerning the location and timing of the investment and selection of technology

over a specified multi-decade planning horizon. Objectives may include minimization of

cost, minimization of pollutant emissions, maximization of reliability, and maximization

of energy security and independency. Some commonly used constraints are energy

demand constraints, capacity constraints, investment and budget constraints,

environmental regulations and renewable portfolio standards. There are inherent

uncertainties in this problem due to climate change, demand increase, fuel prices,

technological progress and many other aspects that have to be considered. The GEP is

one of the most challenging real life multi-objective stochastic optimization problems.
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2.1.1 Problem Formulation and Definitions

In practice, the GEP is a multi-objective stochastic problem. However, the most

commonly studied GEP problems are typically deterministic cost minimization problems

where the problem is formulated with only one objective and uncertainty is neglected.

Some researchers convert other objectives to the cost objective. For example, instead of

minimizing emissions directly, a cost or penalty function is used for emissions and this

function is added to the cost objective as another cost component. Other researchers use

the weighted sum method where all objectives are summed into a single objective by

assigning weights to each. Other classical methods (see Section 2.3.2) are also used for

converting the multi-objective GEP problem to a single objective formulation.

The needs of utility planners for GEP optimization models have changed in response

to environmental concerns, increased competition, and growing uncertainty. Some of the

new needs include:

 The need to explicitly examine trade-offs among objectives (multi-objective

formulation)

 The need to recognize uncertainty (stochastic formulation) [3].

Hobbs [3] presents a detailed review about the incorporation of transmission costs,

the treatment of multiple objectives, methods for including uncertainty, and the use of

resource planning models in a competitive environment. Hobbs’ review also provides a

basic mixed integer linear program formulation for single objective GEP problem.

Formulations and a literature review for single objective GEP models are presented in

Section 2.1.2.
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Table 1. Nomenclature for multi-objective stochastic formulation of GEP

Indices and Sets
i, I Generation units
y, Y Years of planning horizon
u Years of planning horizon (u is an alias for y for modeling)
t, T Time periods in a year
r, R Regions
k, K Emissions gases (CO2, SO2, NOX)
n, N Renewable generation units (subset of generation units I)
Decision Variables

, , ,y t r ix Generation amount of generation unit i in region r in time period t in year y
(MWh)
Investment amount of generation unit i in region r in year y (MW)

Random Parameters (Stochastic Inputs)

,y ic Generation variable cost for generation unit i in year y ($/MWh)

,y ih Fixed operation and maintenance cost for new generation unit i in year y
($/MW)

,y ia Investment cost for generation unit i in year y ($/MW)

,y ig Fixed operation and maintenance cost for existing generation unit i in year y
($/MW)

,i k Amount of emissions gas k from generation unit i (lbs/MWh)

,t i Derate factor of generation unit i in time period t

, ,t r ip Availability factor for generation unit i in region r in time period t

, ,y t rd Demand in region r in time period t in year y (MWh)

,
p
y rd Peak demand in year y in region r (MWh)

rm Reserve margin percentage (rate) for region r

Deterministic Parameters (Deterministic Inputs)
ira Interest rate

, ,y r i Forced new capacity of generation unit i in region r in year y (MW)

,r i Initial capacity of generation unit i in region r at the beginning (MW)

, ,y r i Forced retirement capacity of generation unit i in region r in year y (MW)

t Hours in time period t

min
,y r Annual minimum percentage of renewable generation requirement in region r

in year y

, ,y r n Minimum percentage of renewable generation requirement from renewable
generation unit n in region r in year y

, ,y r i Yearly construction limit of generation unit i in region r in year y (MW)

, ,y r is
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GEP problems start with an existing power network. The existing network will be

insufficient in the future due to new policies, demand increase and/or existing unit

retirements. Therefore, the existing system should be expanded by adding new

technologies in order to provide an economic and reliable energy supply in the future.

There are four main groups of technologies can be added to the system: generation units,

transmission lines, distribution lines and smart grid technologies [1]. The formulation

presented in this section focuses on generation expansion only. In some papers (e.g., [4]),

transmission lines are also considered together with generation units. A few researchers

also consider demand side management as in [5], and distributed generation units and

smart grid technologies as expansion options as in [6].

An example model of the GEP problem is formulated here with two objectives

(minimization of cost and minimization of emissions). The economic uncertainties of

investment cost and generation variable cost, uncertainties in technological progress for

operation and maintenance and amount of pollutant emissions and climate change

uncertainties for derate factor, availability factor, total annual and regional demand, peak

demand and reserve margin are included in the formulation. Table 1 explains the

nomenclature for this multi-objective stochastic formulation.

The first objective function (1) is to minimize the net present value of the total cost,

which consists of generation cost (2), investment cost (3), and fixed operation and

maintenance cost (4).

    ,1 ,2 ,3min Cost 1
y

y y y
y

ira C C C
     (1)

,1 , , , ,y y t r i y i
t r i

C x c   (2)
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,2 , , ,y y r i y i
r t

C s a   (3)

    ,3 , , , , , , , , ,1 1

y y

y u r i y r i y i r i y r i y iu u
r i r i

C s h g  
 

        (4)

The second objective function (5) is to minimize the total pollutant emissions such as

CO2, SO2 and NOx.


, , , ,min = y t r i i k

y Y t T i Ir R

Emissions x 
  
  (5)

Equations (6) to (12) are the constraints of the model. Equation (6) is the supply-

demand constraint that ensures that the total generation from all units satisfies the total

annual demand. Equation (7) is the capacity constraint that states that the model cannot

generate electricity over the built capacity. Equation (8) is the reserve margin

requirement that is a reliability necessity and ensures that the built capacity is greater than

or equal to the peak demand capacity plus the reserve margin capacity. Equations (9) and

(10) represent the Renewable Portfolio Standards (RPS). Equation (9) satisfies the annual

minimum percentage of renewable generation requirement and, Equation (10) satisfies

the minimum percentage of renewable generation requirement from each renewable

generation unit such as solar, wind, biomass, etc. Equation (11) represents the annual

construction limit of each generation unit, and Equation (12) is the non-negativity

constraint.

, , , , , , ,y t r i y t r
i I

x d y t r


   (6)

, , , , , , , , ,
1

, , ,
y

y t r i r i u r i t i t t r i
u

x s p y t r i  


 
    

 
   (7)

, , , ,
1

,
y

p
r i u r i y r r

u i Ii I

s d m y r
 

   


  (8)
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min
, , , , , , ,y t r n y r y t r

t T r R n N t T

x d y r
   

    (9)

, , , , , , , , ,y t r i y r i y t r
t T r R t T

x d y r i
  

    (10)

, , , , , ,y r i y r is y r i  (11)

, , , , ,, 0 , , ,y t r i y r ix s y t r i  (12)

2.1.2 Single Objective Least cost GEP Models

GEP research often focuses on minimizing the cost that satisfies predefined targets of

emissions, reliability and other important aspects of the problem by modeling them as

constraints. Therefore, single objective least cost GEP formulation is the same with the

above multi-objective formulation with only one difference. The second objective of the

multi-objective formulation becomes either part of the cost objective (13) as another cost

component (14) or as a constraint that limits the annual emissions amount of each

pollutant (15).

If the emissions objective becomes a part of the cost objective, then the single

objective function that minimizes the net present value of total cost is

    ,1 ,2 ,3 ,4min Cost 1
y

y y y y
y

ira C C C C
      (13)

where Cy,4 is the total cost for emissions of all types of pollutants:

,4 , , , ,=y y t r i i k k
y Y t T r R i I

C x e
   
  (14)

where ek ($/ton) is the cost of pollutant type k per ton emitted while generating

electricity.
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If the modeler decides to convert the emissions objective to a constraint, then the cost

objective function stays the same as in the multi-objective formulation but a new

constraint is added to the constraint set as

, , , , , , ,y t r i i k y k
t T r R i I

x L y i k
  

   (15)

where Ly,k is the annual emissions limit of pollutant type k in year y.

GEP researches in the literature are often least cost single objective models. Even

when other objectives such as minimization of emissions or maximization of reliability

are added to the model, the problem is generally modeled as a single objective one by

transforming multiple objectives to a single objective. The methods for transforming a

multi-objective problem into a single objective one are discussed in Section 2.3.2.

One of the earliest works where a least cost GEP is solved is by Masse and Gibrat [7].

They use linear programming for the French electric power industry. In their paper, the

economy of uncertainty is converted into an economy of certainty by the use of safety

margins over and above the probable values.

Anderson [8] provides a survey for such earlier work on least cost GEP models. First

the investment problem is formulated in cost minimization form, and then the various

approaches used to find optimum solutions are reviewed. There are three classes

reviewed: marginal analysis, marginal analysis using simulation models, and global

models. All the formulations presented in this survey are deterministic.

Later, Beglari and Laugton [9] describe a mathematical programming model for the

economic planning of generation and transmission systems. They solve the least cost

expansion plan for generation units and transmission lines where the objective is to

minimize the total capital cost and operations cost.
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Sawey and Zinn [10] also provide a linear mixed integer program for the planning of

generation and transmission systems. The objective function is the minimization of the

net present value of the capital investment cost associated with the construction of power

plants and transmission lines plus the operating costs of the system. The model provides

construction expansion schedules for power plants and transmission lines. Additionally,

an approximate operating schedule for plants and transmission lines is provided.

Noonan and Giglio [11] formulate the GEP as a large-scale, chance constrained,

mixed integer program. The solution algorithm employs Benders' partitioning principle.

The objective function is to minimize the investment and operations cost. They use

chance constraints that ensure that the probability that annual peak demand for each year

will not be satisfied must be less than or equal to some specified level of risk. They

provide an equivalent deterministic constraint for this chance constraint when the

probability function of available capacity, at peak demand hour minus peak demand is

normal.

Sherali et al. [12] propose a branch-and-bound algorithm to solve the least cost GEP

problem that considers the option of investing in non-dispatchable or renewable energy

sources. They consider discrete capacity expansion options for plants.

Later GEP research are reviewed by Kagiannas [13] focusing on the shift of markets

from monopoly to competition. They first review the GEP models developed for a

centralized monopolistic electricity system. Afterwards they emphasize the need for new

techniques for GEP under the wholesale power competition.

Sirikum and Techanitisawad [14] present an application of genetic algorithms for

solving the GEP problem. The problem is formulated into a mixed integer nonlinear



14

program that determines the most economical investment plan for additional thermal

power generating units over a planning horizon, subject to the requirements of power

demands, power capacities, loss of load probability (LOLP) levels, locations, and

environmental limitations. They model the demand side management (DSM) program

such that if the DSM program is implemented, it provides a power saving by the efficient

energy using equipment.

Kannan et al. [15] provide an application and comparison survey of meta-heuristic

techniques to the GEP problem and all papers surveyed treat the GEP as a single

objective problem.

2.1.3 Multi-Objective GEP Models

GEP may involve trade-offs encompassing a wide range of economic, financial,

social, security, independency and environmental criteria. Because of the size of the

electric utility industry, the extent of its environmental impacts, and many public

agencies who oversee it, multiple objectives have become a fact of life for decision

makers in the electric generation industry [16]. For instance, renewable portfolio

standards involve trade-offs between cost, reliability, system security and transmission

investments.

One way of addressing multi-criteria problems is to quantify the decision maker

priorities. Such methods in general are called Multi-Criteria Decision Making (MCDM)

and include additive utility functions, the Analytical Hierarchy Process (AHP) and goal

programming. In MCDM methods, the chosen objectives or criteria are compared and

alternatives are ranked by each decision maker or interest group. An example application

of that type is presented by Karni et al. [17], who had 19 policy makers use more than
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one method to rank alternative electricity pricing policies. One of the problems with

MCDM methods is that most decision makers are unsure of their priorities when a

decision involves a unique problem along with strongly held and conflicting values [3].

Another major obstacle is limited access to key decision makers and interest group

representatives.

Multi-objective optimization, on the other hand, helps to display the trade-offs

between objectives and quantify value judgments. A general discussion about multi-

objective optimization and methods are presented in Section 2.3.

Climaco et al. [18] present a multi-objective linear programming (MOLP) model for

GEP that considers three objective functions: net present value of the expansion plans,

reliability of the supply system, and environmental impacts. There are three categories of

constraints: load requirements, operational restrictions and budget. Three generating

technologies are considered for power system expansion: oil, nuclear and coal.

Mavrotas et al. [19] solve single period GEP with a new approach based on a mixed

0-1 multi-objective linear programming (MOLP) model for the Greek electricity

generation industry where the objectives are to minimize cost and SO2 emissions. The

core of the model is a branch and bound algorithm, which has been modified for the

multi-objective case and is capable of generating the whole set of efficient solutions.

Antunes et al. [5] present a multi-objective mixed integer linear programming

(MOMILP) model for electricity generation expansion planning that allows integer

values of investment decisions. This avoids the problem of converting continuous

capacity values to integer values in a post-processing phase. The model considers three

objectives: total expansion cost, the environmental impact associated with the installed
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power capacity, and the environmental impact associated with the energy generation.

Demand-side management (DSM) is also considered as an option in the planning process.

Meza et al. [20] propose a model with four objectives. The first objective is to

minimize the investment, operation and transmission cost. The second objective is to

minimize the amount of carbon dioxide (CO2) emissions. The third objective function is

to minimize the imported fuel, which is calculated by fuel used in each year by the

corresponding forecasted price. The last objective function is to minimize the energy

price risks. The approach to solve the problem is based on multi-objective linear

programming to obtain the set of non-dominated solutions and the AHP to select the best

alternative.

Meza et al. [4] solve a single period GEP problem where they minimize the same

objective functions as in Meza et al. [20]. However, in this study they include the

Kirchoff’s second law into the model, making the problem nonlinear. Therefore, the GEP

problem is solved to determine the number of generating units, the number of new

circuits on the network and the voltage angle at each node. The proposed solution

framework first determines the set of non-dominated solutions via a multi-objective

evolutionary programming method based on a multi-objective genetic algorithm and then

utilizes a clustering algorithm to decrease the number of alternatives considered for the

alternative ranking process with the AHP.

Tekiner et al. [1] propose an approach to the GEP problem to minimize multiple

objectives, such as cost and pollutant emissions over a long term planning horizon and

explicitly consider the operational dispatching decisions and the availability of the system

components over the planning horizon. Monte-Carlo simulation is used to generate
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numerous scenarios based on the component availabilities and anticipated demand for

energy. The problem is formulated as a mixed integer linear program, and optimal

solutions are found based on the simulated scenarios with a combined objective function

considering the multiple problem objectives. The different objectives are combined using

dimensionless weights and a Pareto front is determined by varying these weights.

Tekiner et al. [6] later examine how the availability of smart grid technologies change

and improve the electric power system generation expansion plans. The model

specifically considers the improvement in the distribution system and the shift in the

demand from peak to off-peak time periods. To consider the reliability of the system,

unmet demand is added as a cost in the objective function. Monte Carlo simulation is

used to generate component availability scenarios. The optimization problem is solved to

find optimum expansion solutions considering these scenarios.

Murugan et al. [21] present an application of the Elitist Non-dominated Sorting

Genetic Algorithm version II (NSGA-II) to solve the multi-objective generation

expansion planning (GEP) problem. The GEP problem in the paper is considered as a bi-

objective problem. The first objective is the minimization of investment cost and the

second objective is the minimization of outage cost (or maximization of reliability). As

they state in the paper, GEP has been treated as a multi-objective problem in very few

papers and conventional techniques have been used to solve the problem. There are just a

few applications of evolutionary algorithms used for the multi-objective GEP.

Nara [22] provides a general survey for state-of-the-art research of modern heuristics

applications to power systems and notes that genetic algorithms are applied in many

areas, and further development is expected.
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Table 2 summarizes the reviewed multi-objective GEP models in this section

providing the objectives that researchers included in their models and their contribution

to the multi-objective GEP modeling.

Table 2. Reviewed multi-objective GEP models

Paper Objectives Contribution to the GEP

Climaco [18]
Cost, reliability and

environmental impact
MOLP

Mavrotas [19] Cost and SO2 emissions Mixed 0-1 MOLP

Antunes [5]

Cost, environmental impact

of capacity addition and

generation

MOMILP

Meza [20]

Cost, CO2 emissions,

imported fuel, energy price

risk

AHP to select the best alternative

Meza [4]

Cost, CO2 emissions,

imported fuel, energy price

risk

A multi-objective evolutionary

algorithm application

Tekiner [1] Cost and air emissions

Considers the operational

dispatching decisions and the

availability of the system

components over the planning

horizon

Tekiner [6] Cost and air emissions
Investigates the effects of smart

grid technologies.

Murugan [21] Cost, reliability NSGA-II application

2.2 Uncertainty in the GEP

Uncertainty in power systems modeling is depicted in Figure 1 (adapted from [23]).

As this figure shows, the level of uncertainty in GEP is very high relative to other
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research areas because of its spatial dimensions and time scale. Therefore, it becomes

necessary to introduce in the decision making process a systematic and consistent

treatment of the various sources of uncertainty.

In the following subsections, first a literature review of the GEP models which

consider uncertainty is provided, second the sources of uncertainty in the GEP modeling

are summarized, and later, aleatory and epistemic uncertainties are introduced, as a way

of categorization of uncertainties in general, and uncertainties of GEP as aleatory or

epistemic are classified.

Figure 1. Uncertainty in power systems modeling (adapted from [23])
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contrasts the classical recourse-based stochastic programming, robust stochastic

programming, probabilistic (chance constraint) programming, fuzzy programming, and

stochastic dynamic programming.

One of the first applications of stochastic programming to the GEP problem is

presented in Dapkus and Bowe [25]. They formulate the GEP problem as a stochastic

dynamic programming problem where they consider the uncertainties in demand, the

commercialization date of new technologies and the possible loss of existing nuclear

capacity due to an accident, regularity action or lack of fuel. Contingency plans are

established which consider how uncertainty is resolved over time. These contingency

plans are for decision makers to wait until uncertainty is resolved before committing to

construction.

Mo et al. [26] also describe a method for handling uncertainties in GEP problems

based on stochastic dynamic programming. The method is based on splitting up the

problem into operation and expansion problems. Uncertainties of demand, water inflow

for hydropower, fuel prices and investment costs are included in both the expansion

problem and the operation problem.

Gorenstin et al. [2] describe a methodology that draws upon three classes of

techniques. Decomposition and stochastic optimization provide the basic framework, and

allow an implicit representation of alternative investment strategies. Decision analysis is

used to represent the dynamic aspects of decision making as uncertainties are resolved

over time and trade-off analysis is used to select expansion strategies. Uncertainties of

inflows to hydro plants and load forecasts are considered in their case study.
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Escudero et al. [27] use scenarios to characterize the uncertainty. Solutions are

obtained for each scenario and then those individual solutions are aggregated to yield

generation expansion planning that either minimizes the regret of wrong decisions, or

minimizes the expected cost of the expansion plan. Uncertainties included are investment

and operation costs, energy demand, economic environment, generation availability, and

operation life.

Felder [28] integrates financial theory and methods in electricity resource planning

using risk adjusted discount rates (RADR) and options theory (OT). It is claimed in the

paper that by correctly using RADR and OT and understanding their limitations, decision

makers can improve their ability to value risk properly in power plant projects and

integrated resource plans.

Marin and Salmeron [29] present a stochastic optimization model under capacity

deterioration and demand uncertainty. The goal of the model is to provide an initial

generation plan for short periods of the planning horizon that might be adequately

modified in real time assuming penalties in the operation cost. Uncertainty is modeled

under the assumption that the demand is a random vector. The cost of the risk associated

with decisions, that may need some tuning in the future, is included in the objective

function. The proposed scheme to solve the nonlinear stochastic optimization model is

generalized Benders' decomposition.

Dhar [30] introduces the concept of a fuzzy algorithm based on fuzzy sets in the

power system long-range planning decision analysis. In the process of decision analysis,

both quantitative and linguistic measures are used to quantify the utility of an alternative.

The final objectives, the system states and constraints are not sharply defined and are
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fuzzy in nature. Dhar claims that the decision maker implicitly equates the system

imprecision or fuzziness with randomness because of unavailability of data. Therefore the

goal of the paper is to emphasize the need to differentiate between randomness and

fuzziness. By fuzziness, it is meant a type of imprecision which is associated with fuzzy

sets. This claim is indicative of the differentiation between aleatory and epistemic

uncertainties but the paper does not explicitly mention this classification.

Table 3. Reviewed models that include uncertainty in the GEP

Paper Considered Uncertainties Contribution to the GEP

Dapkus and
Bowe [25]

Demand, the commercialization date of
new technologies and the possible loss
of existing nuclear capacity due to the
accident, regularity action or lack of
fuel

A stochastic dynamic
programming model

Mo et al. [26]
Demand, water inflow for hydropower,
fuel prices and investment costs

A stochastic dynamic
programming model

Gorenstin et
al. [2]

Inflows to hydro plants and load
(demand) forecast

A model with
combination of stochastic
optimization, decision
analysis and tradeoff
analysis

Escudero et al.
[27]

Investment and operation costs,
demand, economic environment,
generation availability and book life

Uses scenarios to
characterize the
uncertainty

Marin and
Salmeron [29]

Capacity deterioration and demand

Nonlinear stochastic
optimization model with
Generalized Benders'
decomposition

Dhar [30]
The final objectives, the system states
and constraints are not sharply defined
and are fuzzy.

The concept of fuzzy
algorithm based on fuzzy
sets

Torabi and
Madadi [31]

Demand, reserve margin, transmission
loss, generation unit capacity, costs and
emissions are modeled with fuzzy
numbers with triangular possibility
distributions.

A fuzzy multi-objective
mixed integer linear
programming model



23

Torabi and Madadi [31] propose a fuzzy multi-objective mixed integer linear

programming model (FMOMILP) for integrated power generation and transmission

expansion planning problem. Uncertainties are modeled by appropriate fuzzy numbers

with triangular possibility distributions. As such, for each fuzzy parameter, they consider

three prominent values i.e., the pessimistic, optimistic, and the most likely values based

on considering both available objective data and subjective data quoted by the field

experts. However, they convert the MOMILP model into an equivalent single-objective

MILP and solve this single-objective model. If the decision maker is satisfied with the

solution, the algorithm stops. Otherwise, another solution has to be provided by changing

the value of fuzzy parameters. Hence, the method is not very different than interactive

classical methods discussed in Section 2.3.2 except using the fuzzy set theory.

Reviewed models in this section are summarized in Table 3. The models that

explicitly consider uncertainty in the GEP problem have the issue of neglecting the multi-

objective aspect of the problem. For the discussion of issues of uncertainty modeling in

multi-objective optimization refer to Section 2.4.

2.2.2 Sources of Uncertainty in the GEP

Hobbs [3] lists some uncertainties that utility companies face in resource planning.

This list is also viable in terms of the GEP problem and it is provided in Table 4.

Gorenstin et al. [2] also list some sources of uncertainty which includes load growth

rates, fuel costs, construction time, economic growth, environmental constraints, interest

rates and financial constraints. In their case study, however, they only consider

uncertainties of inflows to hydro plants and load forecast. Similarly, Mo et al. [26]
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include uncertainties of energy demand, water inflow for hydropower, fuel prices and

investment costs to their model.

Table 4. Sources of uncertainty in utility resource planning

Market / demand uncertainties

Load growth

Price elasticity

Markets for off-system sales and purchases

Competition with non-electric fuels

Resource uncertainties

Technological developments

Availability and initial costs of resource options

Construction times

Fuel prices and emissions allowance prices

Generating unit availability

Climate change

Water supplies

Amount and dependability of nonutility generation

Customer response to Demand-Side Management (DSM) programs

Dependability and persistence of DSM

Legal and economic uncertainties

Inflation, interest rates and economic growth

Government policies concerning ratemaking and cost recovery

Environmental regulations

Municipalization / government takeover

Public concerns

In this dissertation, the focus is on uncertainties due to climate change, economic

variations and technological development. Considered GEP problem parameters are peak

and annual total demand, costs, reserve margin, availability and efficiency of power
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plants (capacity and derate factors) and emissions rates of technologies. In our model we

classify uncertainties as follows:

 Uncertainties due to climate change

o Uncertainty in peak demand

o Uncertainty in total demand

o Uncertainty in reserve margin

o Uncertainty in efficiency of power plants

 Economic uncertainties

o Uncertainty in investment cost

o Uncertainty in generation cost

 Uncertainties due to technological development

o Uncertainty in fixed operation and maintenance cost

o Uncertainty in availability factor

o Uncertainty in derate factor

o Uncertainty in emissions rate of technologies

Although variables are listed separately according to the most influential uncertainty,

in reality every variable can be affected by more than one type of uncertainty. Figure 2

shows these multiple effects on GEP modeling parameters for the model of this study

more explicitly.
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Figure 2. Effects of different types of uncertainty on variables of the GEP model

In the following subsections, these uncertainties and their impacts on GEP parameters

of the model of this study and also the uncertainty of the impacts on the GEP problem are

briefly discussed.

2.2.2.1 Climate Change Uncertainty

Assessing future benefits, risks and costs of different electricity options could

improved by integrating climate change into electricity and energy planning [32].

However, potential impacts of climate change and extreme weather on the energy sector

are hard to predict and have many uncertainties due to a number of factors, such as

insufficient data, models that are not yet able to represent the interactions and

interdependencies of multiple stresses, and incomplete understanding of physical climate

mechanisms. Furthermore, climate impacts tend to be localized and can be very difficult

to predict [32].
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According to the Energy Sector Vulnerabilities to Climate Change and Extreme

Weather report of the US Department of Energy [33], at least three major climate trends

are relevant to the energy sector:

 Increasing air and water temperatures

 Decreasing water availability in some regions and seasons

 Increasing intensity and frequency of extreme events, such as storms and

flooding.

Chandramowli and Felder [34] provide a comprehensive review about the research

where the impact of these climate trends on electricity systems and markets are studied.

According to their review, the system-wide impact on renewable and thermal power

generation, economic modeling of extreme weather events, transmission and coastal

energy infrastructure vulnerabilities, long-term modeling and the effects on modeling

outcomes are still uncertain.

In the model proposed in this study, among the three major climate trends listed

above, increasing air temperature affects peak and total demand; increasing water

temperature affects efficiency of thermal power plants and transmission system capacity;

decreasing water availability affects hydropower units; increasing intensity and frequency

of extreme weather events affect reserve margin and availability of power plants and

transmission lines.

Although impacts of climate change on the energy sector and the electricity

generation is a popular research area, uncertainty of climate change impact on the

electricity generation expansion is not sufficiently studied. To capture the range of

scientific uncertainty inherent in future projections of climate change, researchers usually
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use combinations of scenarios from different atmosphere–ocean general circulation

model (AOGCM) simulations by the Intergovernmental Panel on Climate Change (IPCC)

Special Report on Emissions Scenarios [35]. The scenarios provide the basis for future

assessments of climate change and possible response strategies. Using these scenarios,

researchers try to calculate or quantify the impact and range of climate change. For

example, Miller et al. [36] state that peak electricity demand and temperatures in

California are strongly correlated. For temperatures above 28°C (82°F), California peak

electricity demand exhibits a linear increase with temperature increase. For the

uncertainty part, they provide the range of residential peak electricity demand increase

between 2.8% and 10% under different scenarios. In another study by Gorenstin [2],

uncertainties due to the annual demand growth are considered as a binary tree

representing the different growth rates, resulting in 16 scenarios and 31 decision nodes

for the 5-year study. Scenario 9 is the forecasted demand growth for this period used in

the expansion planning studies. The other scenarios were built using small variations

around the annual increase rate.

Li [37] proposes a linear programming based least cost robust optimization model

where all the variables that are directly or indirectly impacted by the climate change are

defined. Different scenarios are presented to model the possible outcomes of future

weather. Each discrete climate scenario is a realization of a set of random variables over

the planning horizon. Climate scenarios have three major climate variables namely;

temperature, precipitation and extreme events. These climate variables correspond to six

sets of GEP parameters: demand, peak demand, availability factor, transmission capacity,

reserve margin and derate factor . The robust model finds a compromise solution that is
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good for all scenarios, which avoids the possible risk associated with a poor decision that

is only beneficial for several particular scenarios.

2.2.2.2 Economic Uncertainties

Sometimes the cost of an investment is very uncertain, particularly for large projects

that take considerable time to build. An example is a nuclear power plant, for which total

construction costs are hard to predict due to both engineering and regulatory uncertainties

[38]. With projects that take time to complete, two different kinds of uncertainty arise:

technical uncertainty and input costs uncertainty ([39] and [38]). Technical uncertainty

relates to the physical difficulty of completing a project. This kind of uncertainty affects

the quantification of cost uncertainty because of the calculation of the net present value of

investment and uncertainty in interest rates.

Input costs uncertainty arises when the prices of labor, land, and materials needed to

build a project fluctuate unpredictably, or when unpredictable changes in government

regulations change the cost of construction [38]. Uncertainty in government regulations

or uncertainty in decision making is not discussed in this dissertation, because the aim of

models such as the one built in this dissertation is to help decision or policy makers to be

more certain of their decisions or regulations. On the other hand, input costs uncertainty

of investment is one of the most important parts of the model, because it directly affects

one of the objective functions: minimization of cost.

Other than investment cost uncertainty, there is also operating cost uncertainty in

GEP models. Operating cost includes fuel costs and fixed operation and maintenance

costs and these costs and their uncertainty vary by type of technology. For example, the

uncertainty of natural gas prices is very crucial to the investment decision of natural gas
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fired technologies. On the other hand, renewable technologies such as wind or solar have

no fuel costs so their operating cost uncertainty is very low.

The determination of operating cost of each of the expansion alternatives can be

calculated by simulation. For example, Booth [40] uses a method of production costing

based on probabilistic simulation methods which is combined with a dynamic

programming formulation of the problem in order to treat uncertainty. This technique

combines several factors subject to uncertainty in a calculation of both the probability of

loss of load and the expected value of the energy production of the various stations, and

thus, the total system operating cost.

2.2.2.3 Uncertainties Due to Technological Development

Uncertainty about the future rate and direction of technological change is often an

important part of engineering problems. Technological change creates new opportunities

and/or constraints and it has a meaningful effect on cost analysis of future investments.

The environmental impact of social and economic activity is greatly affected by the rate

and direction of technological change. New technologies may either create or mitigate

pollution, and many environmental problems and policy responses are evaluated over

time frames in which the cumulative impact of technological changes is likely to be large.

However, technological advancement is difficult to project beyond a 10-year timeline

because of the large uncertainties pertaining to the rate of discovery, evaluation, and

social adaptation of new technologies [41]. Heal and Millner [42] give an example of

coal which provided 52% of the US electric power in 2008 and decreased to 38% in

2013. As they stated, such a change would have been hard to anticipate as recently as ten

years before this observation.
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Measuring the effects of environmental technological change is equally if not more

challenging, because innovation and market penetration of new technologies and the

environmental policy to encourage adoption of environmental technology should be

separately identified. As Popp et al. [43] state, one of the most difficult questions

remaining in aggregate energy-economic modeling is the appropriate treatment of

technological change, particularly for analyzing long-term environmental and resource

problems.

Technological progress has direct effects on the availability factor, derate factor and

emissions rate of power plants in our model, which makes related input variables

uncertain. It can also indirectly affect peak demand and total demand if smart grid and

demand side management options are included in the modeling. Furthermore, if

technological development in the reliability area is considered, then reserve margin can

be reduced beyond its forecast.

2.2.3 Aleatory and Epistemic Uncertainty

While many sources of uncertainty may exist, a way of categorization is to classify

uncertainty into two categories: aleatory or epistemic. Epistemic uncertainty is one that is

presumed as being caused by lack of knowledge (or data). Uncertainties are characterized

as epistemic, if the modeler sees a possibility to reduce them by gathering more data or

by refining models [44]. Epistemic uncertainty is knowledge based and therefore can be

reduced by better information. But that information or knowledge may be not available to

the modeler at the time of modeling.

Aleatory uncertainty is one that is presumed to be the intrinsic randomness of a

phenomenon. Uncertainties are categorized as aleatory if the modeler does not foresee the
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possibility of reducing them [44]. Aleatory uncertainty arises because the study system

can potentially behave in many different ways. Faber [45] states that the uncertainty

associated with a model concerning the future transforms from a mixture of aleatory and

epistemic uncertainty to a purely epistemic uncertainty when the modeled phenomenon is

observed. Furthermore, a model dominated by epistemic uncertainties has the potential

for reducing the uncertainties by updating.

2.2.4 Importance of Aleatory and Epistemic Uncertainty Distinction

Aven [46] and Paté-Cornell [47] state that classical decision theorists have often

taken the position that the distinction between aleatory and epistemic uncertainties is

unnecessary. The different probabilities for both types of uncertainties can be combined

for decision-making purposes as if all uncertainties were of the same nature. Dubois [48],

however, expresses that if the imperfect information about inputs or parameters are all

represented by probability distributions, then the resulting distribution of the output can

hardly be properly interpreted. The part of the resulting variance due to epistemic

uncertainty that could be reduced is unclear. Aven [46] also claims that one should

acknowledge that the full scope of uncertainties cannot be transformed to a mathematical

formula using probabilities. By skipping the distinction and directly using probabilities,

important uncertainty aspects could easily be overlooked or truncated, meaning that

potential surprises could be left unconsidered. By classifying uncertainties beyond

probabilities, models are able to give the decision-makers more informative and detailed

risk description.

On the other hand, there are many occasions where the distinction is helpful and

needed. Paté-Cornell [47], for example, asserts that decision-makers may need or ask for
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a full display of the magnitudes and the sources of uncertainties before making an

informed judgment.

Kiureghian and Ditlevsen [44] argue that the nature of uncertainties and how one

addresses them depends on the context and application, so the distinction between

aleatory and epistemic uncertainties is determined by modeling choices. The distinction is

useful for identifying sources of uncertainty that can be reduced in the near-term, i.e.,

without waiting for major advances to occur in scientific knowledge, and in developing

sound risk and reliability models. The distinction is also important from the viewpoint of

transparency in decision-making, since it then becomes clear as to which reducible

uncertainties have been left unreduced.

As Faber [45] concludes, a central role for engineers is to provide a basis for decision

making in situations where uncertainties are present. The key point, as Aven [49] states,

is to guarantee that uncertainties are taken into account in a way that the information and

knowledge relevant for the problem are represented as precisely as possible. A planning

process that ignores or underestimates uncertainty may yield plans that perform

disappointingly under circumstances other than the narrow ones considered when

developing the plan [3].

2.2.5 Mathematical Representations of Aleatory and Epistemic Uncertainties

Climate change, future technological progress and the long-run global economy are a

few examples where incomplete knowledge of fundamental phenomena dominates

uncertainties in the problem. These are fundamentally irreducible uncertainties because

the uncertainties about these issues are not readily quantified and expressed in

probabilistic terms. Paté-Cornell [47] argues that epistemic uncertainties are sometimes
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ignored, especially in public policy studies of sensitive issues. By contrast to epistemic

uncertainty, aleatory uncertainty is more easily integrated in mathematical models

because there is sufficient historical data to model by probabilistic distributions.

According to Paté-Cornell [47] the problem is that available samples are insufficient to

represent exactly the phenomenon of interest.

Aleatory and epistemic uncertainties can be represented and analyzed by different

mathematical methods depending on the available information. In the situations where

the uncertainty of the variables is mainly due to inherent randomness and there is

sufficient information to assign probability distributions and estimate their parameters,

probabilistic modeling is preferred [50]. When there is limited or insufficient information

to determine parameters for probability distributions, fuzzy and possibility distributions

or scenarios can be suitable for alternative representations of epistemic uncertainties.

Helton et al. [51] provide a comprehensive review where the use of several

uncertainty representations are explored and compared. The review summarizes

probability theory, evidence theory, possibility theory and interval analysis. Problems

that involve both aleatory and epistemic uncertainty are solved with different

formulations of the uncertainty in the parameters. In these problems, aleatory uncertainty

is represented with probability theory, and representations of epistemic uncertainty with

probability theory, evidence theory, and possibility theory are demonstrated.

Joint propagation and aggregation of uncertainties under probability and possibility

theories have been studied by various researchers. Baudrit et al. [52], for example,

represent random variability (aleatory uncertainty) by probability distribution functions,

and imprecision (epistemic uncertainty) by possibility distributions. A hybrid method is
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then used to jointly propagate probabilistic and possibilistic uncertainty which produces

results in the form of a random fuzzy interval. Baraldi and Zio [53] extend this

framework to event tree analysis and propose a hybrid approach for the propagation of

mixed uncertainty information where the Monte Carlo technique is combined with fuzzy

set theory. To process the uncertainty of the probabilistic and possibilistic variables,

Monte Carlo sampling and fuzzy interval analysis are used, respectively. Flage et al. [54]

use a similar framework with fault tree analysis and possibility-probability (probability-

possibility) transformations to jointly propagate uncertainties within purely probabilistic

and possibilistic settings.

The review by Helton et al. [51] discusses very important issues for different

representations of uncertainties, which can be summarized as follows:

 Separation of aleatory and epistemic uncertainties is a major conceptual and

computational challenge.

 The uncertainty characterization is a very challenging part of a practical

analysis because most practical analyses require expert review and assessment

process to convert available information into a mathematical form.

 Multiple uncertainty characterizations must be aggregated into a single

characterization and this aggregation must be consistent with the supplied

uncertainty information and characterizations.

 The cost of the model evaluations for propagation and aggregation of

uncertainties are often very expensive in real analyses.

 A meaningful interpretation of results has to be based on underlying

uncertainty representations.
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In conclusion, as Aven [49] states, any method of uncertainty representation and

propagation must address a number of very practical issues such as complete and faithful

representation of available knowledge and information, cost of the analysis, and the

confidence that the decision maker gains from the analysis and the results.

2.2.6 Aleatory and Epistemic Uncertainties in Power Systems and the GEP

There is no previous research that has focused on aleatory and epistemic uncertainty

identification and classification in GEP models. Furthermore, there is only a very limited

amount of research about such classification in power systems planning and optimization

in general. In one of the studies, Li and Zio [50] address the issues of identifying,

classifying and representing the epistemic and aleatory uncertainties in distributed

generation systems. Probability and possibility distributions are used to model the

aleatory and epistemic uncertainties, respectively. Five components of the distributed

system, solar generators, wind turbines, electrical vehicle (EV) aggregation, transformers

and load are considered as uncertain parameters. Uncertainties in operation parameters of

wind and solar units and power output of EV aggregation are represented by possibility

distributions, mainly because the type of information available for these variables is

expert judgments. Uncertainties in solar irradiation, wind speed, power fluctuations, time

to failure for transformers and load are represented by probability distributions because

there is sufficient historical data to define distributions and parameters of distributions.

Two different propagations are introduced for modeling probabilistic and possibilistic

uncertainties. The first technique is an algorithm of joint propagation of two types of

uncertainty. Repeated Monte Carlo Sampling (MCS) is used to process the uncertainty in

probabilistic variables as the outer loop of the algorithm and fuzzy interval analysis is
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used for treating the uncertainty in possibilistic variables as the inner loop of the

algorithm. The second technique presented for modeling probabilistic and possibilistic

uncertainties is the pure probabilistic propagation where the possibilistic distributions are

converted into probability density functions by normalization. In the numerical case study

the effects and comparison of the joint propagation and the pure probabilistic approach is

demonstrated and discussed. According to the numerical example results, the cumulative

distribution by the pure probabilistic method lies within the belief and plausibility

functions obtained by the joint propagation approach. It is claimed that the imprecision in

the parameters is explicitly reflected by the gap between the belief and plausibility

functions. It is also implied that incorporating the imprecision due to incomplete

knowledge, can be relevant for the decision maker.

In another power systems related work, Billinton and Huang [55] illustrate the

differences of aleatory and epistemic uncertainty by incorporating the implications of

these uncertainties in power system reliability evaluation. They examine the impacts of

load forecast uncertainty, wind power and their interactive effects on the system

reliability. Although future load growth uncertainty is defined as an epistemic

uncertainty, it is represented with a normal distribution whose parameters are estimated

from past data. The aleatory uncertainty associated with the annual loss of load index is

generated by Monte Carlo simulation using various load uncertainty standard deviations.

An Auto-Regressive Moving Average (ARMA) time series model is built for wind power

using the past data. The uncertainty in wind power model is due to the variability of the

wind speed which is modeled as a normal white noise process. The load forecast

uncertainty and wind model are incorporated in the simulation process. The effects of
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load forecast uncertainty and wind power on the test system are presented, and in

conclusion, it is asserted that better load forecasting techniques can reduce the effects of

both aleatory and epistemic uncertainty.

Although research on aleatory and epistemic uncertainty distinction in power systems

and GEP problems is minimal, uncertainties in parameters of power systems are studied

extensively. One of the most studied stochastic variables in the power systems modeling

is the load (demand) uncertainty. There are several factors that affect the electricity

demand and forecasts in modeling such as weather variability due to climate change, cost

variability due to economic uncertainty and forecast model imprecision due to lack of

knowledge. Tiabrat and Eua-arporn [56] discuss the application of the normal distribution

for a load distribution model because there are several factors having impact on the

forecasted demand. However, it is also important to investigate the historical data of

long-term load forecasts in the study region. For example, Tiabrat and Eua-arporn [56] in

their case study for Thailand find out that most of the forecasted peak load is always

higher than the actual peak load. Therefore, a Weibull distribution function is chosen.

Marin and Salmeron [29] also uses a statistical preprocessing to derive a probability

distribution representation of the demand. Zhai et al. [57] use a Gauss-Markov random

sequence load model to model the uncertain load where the hourly load assumes a normal

probability distribution. Billinton and Huang [58] discuss that the most common practice

is to describe the load uncertainty by a normal distribution with a given standard

deviation. They represent the load uncertainty with a normal distribution whose

parameters are estimated from past data.
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Economic uncertainty is another important uncertainty source in power systems.

Therefore, costs are modeled as stochastic variables by many researchers and several

methods are proposed to manage the cost uncertainty. Siriruk and Valenzuela [59] asserts

that the cost of a specific fuel type (coal, natural gas, etc.) is assumed to be a continuous

random variable which has an associated probability density function. They use past data

of coal and natural gas to fit a probability density function and a lognormal distribution is

selected to represent the price of coal and the price of natural gas. The cost of uranium

and hydro are not notably volatile in their case study so they are assumed to be constant.

Torabi and Madadi [31] model fuel cost, maintenance cost, transmission cost and outage

cost by appropriate fuzzy numbers with triangular possibility distributions. Wang [60]

constructs a set of scenarios that represent the evolution of cost uncertainty. Shan [61]

models fuel costs as discretely distributed random variables and a rolling two-stage

approach is applied to solve the stochastic recourse problem. In long-term planning such

as a GEP problem, it is also reasonable to use normal distributions for the variability of

costs because an increase or a decrease is likely to occur on either side of the expected

cost in the long-term.

Other stochastic variables of the GEP problem such as reserve margin, capacity and

derate factors and emissions amounts are mostly affected by several sources as shown in

Figure 2. Furthermore, technological progress and climate change uncertainty, which

have the main effects on reserve margin, capacity and derate factors and emissions

amount of technologies, are hard to predict and have unpredictable variability due to a

number of factors. Therefore these uncertainties can be classified as epistemic uncertainty

and can be modeled by possibility distributions or scenarios. Torabi and Madadi [31]



40

model reserve margin, transmission loss and generation unit capacity, forced outage rate,

and amount of emitted pollutant by appropriate fuzzy numbers with triangular possibility

distributions. They consider three values for the fuzzy numbers of triangular possibility

distributions, i.e., the pessimistic, optimistic, and the most likely values based on

considering both available objective data and subjective data quoted by the field experts.

This method is similar to defining pessimistic, optimistic, and the most likely scenarios

for future realizations. Escudero et al. [27] directly use scenarios to characterize the

uncertainty in investment and operation costs, energy demand, economic environment,

generation availability, and operation life of power plants. Li [37] defines all the

variables that directly or indirectly impacted by the climate change and different

scenarios are presented to cover the possible outcomes of future weather variability. Each

discrete climate scenario is a realization of a set of random variables over the planning

horizon. Climate scenarios have three major climate variables namely; temperature,

precipitation and extreme events. These climate variables correspond to six sets of GEP

parameters: demand, peak demand, availability factor, transmission capacity, reserve

margin and derate factor .

A GEP model for the Northeast US where the stochastic parameters are classified

according to their uncertainty type, i.e., aleatory or epistemic, is proposed in Section 5.

Uncertainty representation of each parameter is also discussed.

2.3 Multi-Objective Optimization

Optimization is the process of selecting the best solution for a problem, subject to

some constraints, from some set of available alternatives. An optimization model seeks to

find values of the decision variables that optimize (maximize or minimize) an objective



41

function among the set of all values for the decision variables that satisfy the given

constraints [62].

An objective function is the performance measure to be maximized or minimized

(e.g., maximize profit, minimize cost). Decision variables are the set of values that

represent the decisions to be made and implemented (e.g., type of technology to invest in,

number of plants to be built). Constraints are limitations or requirements on the set of

allowable decisions (e.g., budget limitations). Mathematical notation of an optimization

model is as follows:
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where,

• x = (x1, x2, . . . , xn)
T is the vector of the n decision variables.

•  m i x is the mth objective function evaluated at solution vector xi.

• M is the number of objectives.

• J and K are the number of inequality and equality constraints.

• xi
(L) and xi

(U) are respectively the lower and upper bounds for each decision

variable xi.

In the above optimization model when the number of objectives is equal to one

(M = 1), the problem is called a single objective optimization.

However, most real life optimization problems are multi-objective problems in which

objectives under consideration often conflict with each other. When an optimization

problem involves more than one objective function (M ≥ 2), the task of finding optimum



42

solution(s) is known as multi-objective optimization. In multi-objective optimization

problems, the decision maker wants to obtain more than one goal. For example, in the

GEP problem, minimization of cost is a very important objective but increasing the

reliability and minimizing emissions of pollutants are also crucial. These two objectives

require spending which conflicts with minimization of the cost objective.

In multi-objective optimization problems, there is usually not a single optimal

solution, but there is a set of solutions as a result of the optimization process. Any

optimization process first produces the objective space as shown in Figure 3. Each value

of each objective function evaluated at different decision variable vectors is reflected in

the objective space with one-by-one correspondence. Then the set of solutions, which

provides a trade-off curve of conflicting objectives for the multi-objective optimization

problem, is determined. This set is called the Pareto optimal set and it is determined by

using the Pareto dominance concept.

Figure 3. One-by-one correspondence between the decision space and the objective space
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2.3.1 Pareto Optimality

For multi-objective optimization problems, a common solution methodology is to

determine a Pareto optimal set which provides a trade-off curve of conflicting objectives.

Solutions in the objective space are compared in pairs according to the Pareto dominance

concept to determine the Pareto optimal set. Moving from one point to another on the

trade-off curve (or in the Pareto optimal set) means losing in one objective of the problem

in return for gaining in another objective for competing objective functions (Figure 4).

Figure 4. Pareto optimal set gives a trade-off curve of conflicting objectives. Every point is an
expected solution to the multi-objective optimization problem

2.3.1.1 The Pareto Dominance Concept

Pareto optimality uses the concept of dominance. For a minimization problem, a

solution xi said to dominate another solution xj, i jx x , if these two conditions are both

satisfied:

1. The solution xi is no worse than xj for all M objective functions, that is,

( ) ( )m i m j x x for all m = 1,2,…, M

2. The solution xi is strictly better than xj for at least one objective function, that is,

( ) ( )m i m j x x for at least one m ∈ 1, 2,{ , }M
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where ( )im x is the mth objective function evaluated at solution vector xi and M is the

number of objective functions.

For instance, in Figure 5 (all objectives are to be minimized), Solution 1 dominates

Solution 3 because, even though they have the same value for objective function 1,

Solution 1 is a better solution than Solution 3 in terms of objective function 2. On the

other hand, there is no solution that satisfies the above conditions compared to Solution 2.

Pairwise comparisons between Solutions 1 and 2, and Solutions 2 and 3 show that

Solution 2 is not dominated by 1 or 3, and also Solution 2 dominates neither 1 nor 3.

Therefore, Solutions 1 and 2 are called non-dominated Solutions and they are in the

Pareto optimal set. Solution 3 is called a dominated solution and it is not in the Pareto

optimal set.

Figure 5. The concept of dominance for a minimization problem

Using the concept of dominance, solutions in the objective space can be compared in

pairs to find the Pareto optimal set, which provides a trade-off curve of conflicting

objectives (Figure 3). Moving from one point to another on the trade-off curve (or in the

Pareto optimal set) means losing in one objective of the problem in return for gaining in

the other objective.

There are two important tasks while finding the Pareto optimal set in multi-objective

optimization: convergence and diversity. Convergence is finding the closest Pareto front
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to the true Pareto front of the problem which is often unknown. Diversity means that

solutions in the best-known Pareto optimal set should be uniformly distributed and

diverse over the Pareto front in order to provide the decision-maker a true picture of

trade-offs and the diversity of solutions.

Many algorithms exist involving multiple objectives to determine the Pareto optimal

set. The majority of these methods transform multiple objectives into a single objective

function. Thus, most of these classical methods do not treat multi-objective optimization

any differently than single objective optimization. Furthermore, these classical

optimization methods can at best find one solution, and thereby making those methods

inconvenient to solve multi-objective problems [63].

2.3.2 Classical Methods

In this section some of the commonly used classical methods for handling multi-

objective optimization problems are described. Following Deb’s explanation [63], these

methods are referred to as classical methods, mainly to distinguish them from

evolutionary algorithms, which are discussed in the following section.

Miettinen [64], classified the classical methods in the following four types:

1. No-preferences methods do not assume any information about the importance of

objectives but a heuristic is used to find a single optimal solution.

2. Posteriori methods use preference information of each objective and iteratively

generate a set of Pareto optimal solutions.

3. A priori methods use more information about the preference of the objectives

and usually find one preferred Pareto optimal solution.
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4. Interactive methods use the preference information progressively during the

optimization process.

The following presented classical methods are outlined in the order of increasing use

of preference information.

2.3.2.1 Weighted Sum Method

This method combines a set of objectives into a single objective by pre-multiplying

each objective with a user supplied weight as,

1

min ( )

s.t.

M

m m
m

w

X






 x

x

(17)

where 1m
m

w  , [0,1]mw  , {1,..., }m M  and X represent the feasible set.

It is likely that in an optimization problem different objectives take different orders of

magnitude. For example, cost of a product may vary between 100 to 1000 dollars but the

amount of wasted material may vary between 0.01 to 0.1 m3. Therefore, there is a need to

scale the objectives appropriately to make them equally important [63]. This is called

normalization. This procedure is a drawback for the weighted sum method because it

may affect the solution quality [1]. Other disadvantages of the weighted sum method are

as follows:

 There is a need to define weights for objectives.

 In nonlinear problems, uniformity/diversity of Pareto set is not guaranteed.

 More tests are needed to know whether the solution is truly optimal

(convergence).
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 The method fails to find some Pareto optimal solutions in a non-convex objective

space.

On the other hand this method has some advantages such as:

 It is very simple.

 It is easy to implement.

 For convex Pareto optimal fronts, it guarantees finding solutions on the entire set.

2.3.2.2 The ε-Constraint Method

This method selects one of the objectives and restricts the rest within user-specified

values. m represents an upper bound of the value of mth objective function (ζm) and not

need necessarily to mean a small value close to zero [65].

min ( )

s.t. ( ) 1, 2,..., and

( ) 0 1, 2,...,

( ) 0 1, 2,...,

m m

j

k

m M m

g j J

h k K


    

 
 

x

x

x

x

(18)

Mavrotas [66] proposes a novel version of the method (augmented ε-constraint

method – AUGMECON) that avoids the production of weakly Pareto optimal solutions

and accelerates the whole process by avoiding redundant iterations. An interactive

approach that is based on AUGMECON and eventually results in the most preferred

Pareto optimal solution is also proposed in the paper.

Advantages of the ε-constraint method are:

 It is simple.

 It is easy to implement.

 It can be used for convex or non-convex or discrete objective spaces.
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Some disadvantages of this method are as follows:

 Solution of the problem largely depends on chosen ε-vector and it has to be

chosen carefully to find feasible solutions.

 More objectives in the problem mean more elements in ε-vector which means

more information is needed from the user.

2.3.2.3 Weighted Metric Methods

These methods combine multiple objectives into single objective using weighted

metrics, lp and wm.

1/

*

1

min ( ) ( ) z

s.t. ( ) 0 1,2,...,
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pM p

p m m
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l w
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x x

x

x
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where zm
* is the ideal solution to the mth objective function of the problem.

When p = 1, this equation is simply the weighted sum method. When p = 2, a

weighted Euclidean distance of any point in the objective space from the ideal point is

minimized. When a very large p is used, problem becomes minimization of the largest

deviation *( ) zm x . This is called the weighted Tchebycheff problem.

The weighted Tchebycheff method guarantees to find each and every Pareto optimal

solution. However, as p increases the problem becomes non-differentiable. Normalization

is needed in metric weighted methods, which requires the knowledge of minimum and

maximum function values of each objective. Furthermore ideal solutions zm
* are required

and all objectives are needed to be independently optimized.
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2.3.2.4 Value (Utility) Function Method

The user provides a mathematical value function relating all objectives. The value

function must be valid over the entire feasible search space and must be strongly

decreasing: The preference of a solution must increase if one of the objective function

values is decreased while keeping the others the same [63]. The task is to maximize the

value function:

max ( ( ))

s.t. ( ) 0 1,2,...,

( ) 0 1,2,...,
j

k

U

g j J

h k K

 
 

ζ x
x

x

(20)

where ζ(x) = (ζ1(x), ζ2(x), …, ζM(x))T.

Again, this method is simple, easy to implement and it can be used with a discrete set

of feasible solutions. However, the method depends entirely on the value function and

there is a danger of using an over-simplified function. It is also a drawback of the method

that the value function must be valid over the entire feasible search space.

2.3.2.5 Goal Programming Methods

Goal programming was first introduced by Charnes et al. [67] and gained popularity

after the works of Lee [68] and Ignizio [69].

The main idea in these methods is to find predefined target solutions which can be

different from optimal solutions. If there are no solutions for the targets, then the task is

to find solutions which minimize deviations from the targets. Deviation variables n and p

are used for different target types as,
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In general, the objective of goal programming methods is to minimize the deviation

variables n and p.

When targets are used as constraints and objectives are combined in a composite

objective function with deviations, it is called weighted goal programming as indicated in

Equation (22).
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When objectives are prioritized and goal programming problem is solved sequentially

for each objective, the method is called the lexicographic goal programming. In the first

level of the method all other objectives are ignored and the prioritized objective function

is optimized. In the second level the next prioritized objective function is optimized

considering the set of optimal solutions of the first objective function. The method

continues in this fashion until all the objective functions are optimized.

When the maximum deviation (d) in any goal from the target is minimized, the

method is called the min-max goal programming, as follows:

min
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2.3.2.6 Review of Classical Methods

The classical methods convert a multi-objective problem into a single objective

problem. Convergence to the Pareto optimal set is their strength. Methods are simple and

easy to implement. However, only one Pareto optimal solution can be found in one

simulation run of a classical method and not every simulation run produces different

solutions. There can be identical solutions with different parameters. Not all Pareto

optimal solutions can be found by some methods in non-convex problems. Some problem

knowledge is required, such as weights or target values or value functions. Furthermore,

classical methods may not produce a uniformly spaced Pareto optimal set, which means

diversity may not be satisfied.

2.3.3 Multi-Objective Evolutionary Algorithms

Evolutionary algorithms are stochastic search methods that simulate the process of

natural evolution to solve problems with a complex objective space. They are inspired on

the survival of the fittest principle of the natural evolution.

In an evolutionary algorithm a population of solutions is processed in every

generation (or iteration) and this feature gives an evolutionary algorithm a tremendous

advantage for its use in multi-objective optimization because convergence can be

achieved in only one iteration [63]. Furthermore, evolutionary algorithms have special

operators that preserve the diversity in the Pareto optimal set, which is a drawback of

most of the classical methods. In addition to these advantages, evolutionary algorithms

also specifically address the following difficulties of classical methods:
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 In classical methods, the convergence to an optimal solution depends on the

chosen initial value. Evolutionary algorithms do not need initial values of

problems.

 Most classical methods tend to converge to a suboptimal solution. Evolutionary

algorithms have special operators to avoid this problem.

 A classical method efficient in solving one problem may not be efficient in

solving another problem. Evolutionary algorithms, however, are capable of

dealing with any problem.

 Some classical methods are not efficient with problems having a discrete search

space, but evolutionary algorithms are applicable to any kind of problem.

 Classical methods cannot be efficiently used on parallel machines. Evolutionary

algorithms do not have such disadvantage.

Table 5. Basic evolutionary algorithm form [70]

1 Initialize the population with random individuals

2 Evaluate each individual

3 Repeat

4 Select parents

5 Recombine pairs of parents

6 Mutate the resulting offspring

7 Evaluate new individuals

8 Select individuals for the next generation

9 Until a termination condition is satisfied

A generic form of a basic evolutionary algorithm is shown in Table 5. Every iteration

of the algorithm corresponds to a generation, where a population of candidate solutions to

a given optimization problem, called individuals, is capable of reproducing and is subject

to genetic variations followed by the environmental pressure that causes natural selection
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(survival of the fittest). New solutions are created by applying recombination, that

combines two or more selected individuals (the so-called parents) to produce one or more

new individuals (the children or offspring), and mutation, that allows the appearance of

new traits in the offspring to promote diversity. The fitness (how good the solutions are)

of the resulting solutions is evaluated and a suitable selection strategy is then applied to

determine which solutions are to be maintained into the next generation. As a termination

condition, a predefined number of generations (or function evaluations) of simulated

evolutionary process is usually used, or some more complex stopping criteria can be

applied [70]. For example, Figure 6 shows the flow chart of a genetic algorithm.

Figure 6. Flow chart of a genetic algorithm

Multi-objective evolutionary algorithms are one of the developing evolutionary

algorithms. An excellent overview of current issues, algorithms, and existing systems in

this area is presented in [63]. Another very good survey about meta-heuristics in general

is [70]. Section 3 of the survey is devoted to evolutionary algorithms.

Jones et al. [70] reviewed 115 articles concerned with the theory and application of

multi-objective meta-heuristics and reported that 90% of the approaches to multi-
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objective optimization aimed to approximate the true Pareto front for the underlying

problem. A majority of these used a meta-heuristic technique, and 70% of all meta-

heuristics approaches were based on evolutionary approaches, primarily genetic

algorithms.

There are several comparison studies of multi-objective evolutionary algorithms.

References [71] and [72] compares eight algorithms on six test problems. Knowles and

Corne [73] compare thirteen algorithms on a set of six test problems. In [74] and [75]

three different algorithms are compared on nine test problems. In all these comparisons

genetic algorithms are reported to outperform other evolutionary algorithms.

Multi-objective genetic algorithms have been the most popular heuristic approach to

multi-objective design and optimization problems because they are population-based

approaches and have the ability to find a set of multiple non-dominated solutions in a

single run. The ability of a genetic algorithm to simultaneously search different regions of

an objective space makes it possible to find a diverse set of solutions for difficult

problems with non-convex, discontinuous, and multi-modal objective spaces. The

crossover operator of a genetic algorithm may exploit structures of good solutions with

respect to different objectives to create new non-dominated solutions in unexplored parts

of the Pareto front. In addition, most multi-objective genetic algorithms do not require the

user to prioritize, scale, or weigh objectives [76].

2.3.4 Multi-Objective Genetic Algorithms

In this section, basic principles and design issues of genetic algorithms first for single

objective and then for multi-objective versions are discussed and a literature review for

multi-objective genetic algorithms is presented.
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2.3.4.1 Components of Genetic Algorithms

The concept of genetic algorithm was first conceived by Holland [77]. Genetic

algorithms are search heuristics that mimic the process of natural evolution. In its general

form, a genetic algorithm works as follows (also Figure 6):

 An initial population of individuals (solutions) is generated.

 At every generation, the individuals are evaluated and a fitness value is assigned.

 Selection operator selects the fittest individuals.

 If the stopping criterion is met the algorithm stops and gives the result.

 If not, new generation is created by operators such as mutation and crossover.

Crossover operator is mainly responsible for the convergence to the optimal

solution(s) and mutation operator keeps diversity in the population.

Encoding

The first design issue of genetic algorithm is how to represent a solution. A solution

vector of the optimization problem is called an individual or a chromosome in the genetic

algorithm. These chromosomes are made of units called genes. Each gene controls one or

more features of the chromosome. Normally, a chromosome corresponds to a unique

solution in the solution space. This requires a mapping mechanism between the solution

space and the chromosomes. This mapping is called an encoding. In fact, genetic

algorithm works on the encoding of a problem, not on the problem itself [76].

There are many different ways of encoding. In the original implementation by

Holland [77], binary coding was used. There are also permutation encoding, value

encoding, and tree encoding. These encoding schemes are discussed in [78].
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Fitness Assignment and Selection

Genetic algorithms are based on the idea of survival of the fittest. Therefore, the

algorithm assigns a fitness value to all individuals at every generation and selects the

fittest individuals for the creation of the next generation. Chromosomes are first decoded

(reverse of encoding) and a fitness value is assigned according to the objective and

constraint functions. In the absence of constraints, the fitness is the solution’s objective

function value. For the violated constraints a penalty value is often added to the fitness

value.

The selection operator is intended to eliminate bad solutions and improve the average

quality of the population while keeping the population size the same. This is achieved by

giving a higher quality individual a higher probability of selection. There exist a number

of methods for selection operator. Some common methods are roulette wheel selection,

tournament selection, proportionate selection, ranking selection, stochastic universal

sampling selection, and steady-state selection. Explanations and examples of these

selection operators can be found in [63] and [78].

Elitism

Elitism in the context of single objective genetic algorithm means that the best

solution found so far during the search always survives to the next generation. In this

respect, all non-dominated solutions discovered by a multi-objective genetic algorithm

are considered elite solutions. Early multi-objective genetic algorithm did not use elitism.

However, multi-objective genetic algorithms using elitist strategies tend to outperform

their non-elitist counterparts. Elitism can rapidly increase the performance of the

algorithm because it prevents the loss of the best found solution(s).
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Crossover and Mutation

The creation of new individuals is performed by crossover and mutation operators.

These are the most important parts of the genetic algorithm because the performance of

the algorithm is directly influenced by them.

Crossover operator selects two individuals from the previous generation (parents) and

some portion of the solution vectors (genes) are exchanged between the individuals to

create a new individual (offspring) for the next generation. For example in Figure 7, two

binary coded individuals, I1 and I2, are selected and left side genes of I1 from the dotted

line and right side genes of I2 from the dotted line are used to form the new individual,

I1-2.

Figure 7. An example for crossover operator

The crossover operator is mainly responsible for the convergence to the optimal

solution(s) because the new individual is often better than parent solutions. Although

creating a better individual is not always true for all crossover operations in the

algorithm, the chance of creating better individuals is very high because higher quality

individuals have a higher probability to be selected as parents.

The mutation operator works on only one parent individual from the previous

generation and changes some genes of the parent individual to create a new offspring
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individual for the next generation (Figure 8). Mutation operator keeps diversity in the

population and prevents premature convergence. Different crossover and mutation

operator types for different encoding schemes are presented in [78].

Figure 8. An example for mutation operator

2.3.4.2 Differences between Single- and Multi-Objective Genetic Algorithms

Being a population-based approach, genetic algorithms are well suited to solve multi-

objective optimization problems. A generic single-objective genetic algorithm can be

modified to find a set of multiple non-dominated solutions (the Pareto set) in a single run

[76]. Multi-objective genetic algorithms also use the same operators mentioned above.

Crossover and mutation operators do the same work for multi-objective genetic

algorithms. Elitism is used in several of them.

Multi-objective genetic algorithms differ from single objective genetic algorithms in

the way the selection is made and the fitness is assigned to each solution in the

population. The concept of dominance is implemented for selection of individuals.

Methods such as weighted sum approaches, altering objective functions and Pareto-

ranking approaches are proposed for selection and fitness assignment. Multi-objective

genetic algorithms introduce different methods to promote solution diversity. Most

commonly used methods are fitness sharing, crowding distance method and cell-based

density method.
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2.3.4.3 State-of-the-Art Multi-Objective Genetic Algorithms

The first real implementation of a multi-objective genetic algorithm (Vector

Evaluated Genetic Algorithm, VEGA) was suggested by Schaffer [79]. VEGA is a

modified genetic algorithm with selection, crossover and mutation operators which

performs independent selection cycles according to each objective. Population at every

generation is randomly divided into M equal sized subpopulations (M is the number of

objectives). Each solution in each subpopulation is assigned a fitness value based on each

objective function. Then all subpopulations are combined and crossover and mutation are

applied. VEGA is easy to implement and computationally efficient. The major drawback

is that the population tends to converge to solutions which are superior in one objective,

but poor at others.

Figure 9. MOGA ranking method (adapted from Konak et al. [76])

MOGA (Multi-Objective Genetic Algorithm) [80] is the first multi-objective genetic

algorithm that explicitly used Pareto-based ranking and niching techniques together.

Niching is a neighborhood formation scheme based on the Euclidean distances between

every solution pair, and it is used to maintain diversity. In MOGA, each solution
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(individual) is ranked according to its degree of dominance. Ranking of a solution equals

one plus the number of solutions that it is dominated by (Figure 9). This scheme

penalizes solutions located in the regions of the objective function space which are

dominated (covered) by densely populated sections of the Pareto front. MOGA is also a

simple extension of single objective genetic algorithm but it is usually slow at

convergence due to the niche size parameter.

Niched Pareto Genetic Algorithm (NPGA) [81] also uses the Pareto dominance

concept to solve the multi-objective problems. This method differs from the other

methods in the selection operator. NPGA uses the binary tournament selection. First, two

individuals are randomly selected as candidates from the parent population and they are

compared with solutions from a subpopulation of size Tdom from the parent population. If

only one of the individuals is dominated by any other individual from the subpopulation,

then the other candidate (non-dominated one) is selected for reproduction. If both

candidates are dominated or non-dominated then specialized fitness sharing is performed

and the candidate with the lower niche count is selected.

Figure 10. NSGA ranking method (adapted from Konak et al. [76])
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NSGA (Non-dominated Sorting Genetic Algorithm) [82] is another algorithm that

uses the dominance in ranking and a niche method for selection. It varies in the manner in

which the selection operator works. The first step of NSGA is to sort the population

according to non-dominance concept. The population is classified into non-dominated

fronts (Fi). The same ranked individuals are assigned to the same front (Figure 10). After

the fronts are determined, starting from the best (first) front, fitness functions are

assigned to each individual in each front. Niche count of each individual is also

calculated. Using fitness and niche count, shared fitness for each individual is calculated.

Once the shared fitness is assigned, the population is reproduced according to the shared

fitness values.

Figure 11. NSGA-II crowding distance method (adapted from Deb et al. [76])

NSGA-II (Fast Elitist Non-dominated Sorting Genetic Algorithm) [83] is an

improved version of the NSGA. In most aspects, this algorithm does not have much

similarity with the original NSGA version. NSGA-II does not have the problems of using

the shared fitness function which requires appropriate selection of the sharing parameter.

The algorithm first ranks the population and identifies non-dominated fronts (Fi). For

each objective function, the algorithm sorts the individuals in each front Fi in the

ascending order and it assigns crowding distance values to each of the individuals, which
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is a measure of population density around the individual as shown in Figure 11. The

crowding distance approach aims to obtain a uniform spread of solutions along the best-

known Pareto front without using a fitness sharing parameter. The main advantage of the

crowding distance approach is that it is computed without requiring a user-defined

parameter. In NSGA-II, the crowding distance measure is used as a tiebreaker in a

selection technique called the crowded tournament selection operator. In this method two

solutions are randomly selected. If the solutions are in the same non-dominated front,

then the solution with a higher crowding distance is the winner. Otherwise, the solution

with the lowest rank is selected [76].

Table 6 gives a list of mentioned multi-objective genetic algorithms with their

advantages and disadvantages. Konak et al. [76] provides a very informative tutorial

about multi-objective optimization using genetic algorithms. In the paper, design issues

and components of multi-objective genetic algorithms are explained and different

algorithms are compared according to their approach to fitness functions, diversity

mechanisms, elitism and constraint handling techniques.

Table 6. List of reviewed multi-objective genetic algorithms

Algorithm Description Advantages Disadvantages

VEGA

Fractions of succeeding
populations are selected
based on separate
objective performance.

Straightforward
implementation

Tend to converge to
the extreme of each
objective

MOGA
Incorporates niching and
ranking.

Simple extension of
single objective GA

Usually slow
convergence
Problems related to
niche size parameter
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NPGA
Specialized Pareto
domination tournaments.

Very simple
selection process
with tournament
selection

Problems related to
niche size parameter
Extra parameter for
tournament selection.

NSGA
Assigns and shares
dummy fitness in each
front.

Fast convergence
Problems related to
niche size parameter

NSGA-II

Uses elitism and a
crowded comparison
operator that keeps
diversity without
specifying any additional
parameters.

Single parameter
(N)
Well tested
Efficient

Crowding distance
works in objective
space only.

2.4 Uncertainty in Multi-Objective Optimization

Although multi-objective stochastic programming problems are frequently

encountered in practice, the literature on solution methodologies accounting for the

uncertainty is still in its nascence [84]. References [85] and [86] point out that the

resolution of multi-objective stochastic problem involves two kinds of transformations

namely; the multi-objective transformation and the stochastic transformation.

In many problems there are random constraints in addition to the random objectives.

Therefore, the first step for both transformations is addressing the random constraints.

Some researchers, as Ben Abdelaziz et al. [86], consider that random constraints can be

viewed as extra random objectives. Teghem et al. [87], for instance, consider the cost of

violation of these random constraints as an extra objective to be minimized. Other

authors, as Ben Abdelaziz et al. [88], require that the constraints as in the chance

constrained programming need to be satisfied with a certain probability, where there are

threshold values of constraints specified by the decision maker. All the constraints can

also be transformed at the same time by considering the joint chance constrained
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programming approach. After transforming the random constraints, a deterministic

feasible set is obtained [89]. Once the constraints are addressed, the second step is the

transformation of random objectives with the multi-objective transformation or the

stochastic transformation.

In the multi-objective transformation, as in [87], [90], and [91], the problem is

transformed as a multi-objective deterministic optimization problem and is generally

solved by means of interactive methods. The methodology follows a two-phase approach

where, in the first phase, the stochastic multiple objectives are converted into

deterministic equivalents based on the minimum expectation and variance efficiency

concepts (Figure 12). The second phase solves the deterministic multi objective problem,

using a Pareto generation methodology, which aims at generating the entire Pareto

surface of multi-objective programming problems [84]. This kind of transformation

eliminates the randomness and uncertainty.

Figure 12. Steps for obtaining efficient solutions in the multi-objective approach [92]

Figure 13. Steps for obtaining efficient solutions in the stochastic approach [92]

In the stochastic transformation, as in the stochastic goal programming proposed in

[85], the multi-objective problem is first aggregated to obtain a single objective stochastic

program, which is solved by a stochastic programming approach (Figure 13). This kind
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of transformation keeps the randomness and uncertainty but eliminates the multi-

objective aspect of the problem.

In both transformations at least one of the important aspects of the multi-objective

stochastic problem is eliminated. The problem after transformation is either a multi-

objective deterministic problem or a single objective stochastic problem. If the multi-

objective transformation is preferred, then the result is a Pareto optimal set but without

any knowledge of uncertainty. If the stochastic transformation is used, then the result is a

single optimal solution. Furthermore, the role of the modelers in understanding the

environment of the problem and their participation in the resolution process are very

important in providing good solutions to the original problem [89].

Ben Abdelaziz [89] formulates the multi-objective stochastic problem as follows:

      
   

1 2min/ max ( , ) , , , ,..., ,
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
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   
 
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
(24)

where

 M objectives      1 2, , , ,..., ,M     x x x   are random

 x is a solution in the objective space and it is an n-dimensional vector consisting

of n decision variables: x = (x1, …, xn)

 feasible set X( ) is random

 constraints jg and the parameters jb are random

 Ω is a probability space

 D is a deterministic convex set.
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According to Abdelaziz [89], when solving the multi-objective stochastic problem,

one can be observing the behavior of the Pareto set of the obtained deterministic multi-

objective problem for the different values of the state of the nature  . This kind of

distributional problem is not well addressed in the literature as in general [85], and from a

decision point-of-view, the need is to generate a here and now solution without

addressing the distributional problem. Abdelaziz [89] claims that a decision maker is

rarely interested in knowing how the Pareto set changes depending on the occurrence of

 .

In contrast, it is very important for a decision maker to have the knowledge of

uncertainty in the Pareto set. The following three example cases illustrate why it is

important to observe the uncertainty of each solution in the objective space. All cases are

examples of minimization problems.

Case 1: In Figure 14, Solutions 1 and 2 are non-dominated, and Solution 3 is

dominated (by Solution 1), but this is only strictly true if these results are deterministic.

Compare this example with the one presented in Figure 15. In Figure 15, the uncertainty

is depicted by clouds around the solutions. A large cloud means that the solution has a

high level of uncertainty. In Figure 15, Solution 1 has a high level of uncertainty whereas

Solution 3 has a lower level of uncertainty. All the solutions have a probability of being

dominated by other solutions. If the decision maker prefers to observe expected values of

results, then the preference of the solutions would be the same as in the deterministic case

(Figure 14), and Solution 3 would not be presented in the Pareto optimal set. However, if

the decision maker is interested in uncertainty or risk in these solutions, then the

dominance relation between solutions is not deterministic, and not always obvious or
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intuitive. The probability of Solution 3 being dominated by Solution 1 becomes very low.

Therefore, it should be presented to the decision maker as an alternative, i.e., it should

take its place in the Pareto optimal set.

Figure 14. Deterministic example for Case 1 Figure 15. Stochastic example for Case 1

Case 2: In Figure 16, Solution 1 clearly dominates Solution 2 since Solution 1 has

better values for both objectives 1 and 2. In Figure 17, however, the concept of

domination is not clear any more. Solution 1 has a higher level of uncertainty compared

to Solution 2. Again, if the decision maker prefers to observe expected values, then the

preference of the solutions would be the same as in the deterministic case, and Solution 2

would not be presented in the Pareto optimal set. However, when the uncertainty is

included, the probability of Solution 2 being dominated by Solution 1 becomes very low,

which gives it a probability to be a preferable solution.

Figure 16. Deterministic example for Case 2 Figure 17. Stochastic example for Case 2

Cases 1 and 2 show the importance of knowing the uncertainty, particularly for a risk-

averse decision maker. A risk-averse decision maker would be interested in worst case
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scenarios and expected results would not reveal the risk of the solutions to the decision

maker.

The following example case involves a risk-seeking decision maker and the concept

of regret. Making poor decisions under uncertainty can lead to disappointment that

alternative choices would have been preferable, which is called regret. If the decision

maker is willing to take the risk for more gain or wants to minimize the regret, then

again, the uncertainty of solutions gains importance.

Case 3: Compare Figure 16 and Figure 18. As in Case 2, Solution 1 clearly

dominates Solution 2 since Solution 1 has better values for both objectives 1 and 2 in the

minimization problem (Figure 16). In Figure 18 , the concept of domination is not clear

any more. Solution 2 has a higher level of uncertainty compared to Solution 1 but this is

not a problem for a risk-seeking decision maker. In fact, it is an opportunity. There is a

probability that Solution 2 will provide better results than Solution 1. This also means

that there is a probability that the decision maker will regret the decision if Solution 2

happens to be a better choice.

Figure 18. Stochastic example for Case 3

The above discussion about transformation of stochastic multi-objective problems

and example cases illustrate why it is important to observe the uncertainty of each

solution in the objective space. They demonstrate that there is a need for a new approach
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to solve stochastic multi-objective problems without a transformation which also keeps

the uncertainty information of Pareto solutions. Therefore, a new metric, the PUI is

presented in this research. This metric enables a direct approach to solve a stochastic

multi-objective problem without any transformation of the problem, and it also provides

the opportunity to the decision maker to observe the uncertainty of solutions in the Pareto

set. Later the PUI is used in PUGA, a new multi-objective stochastic genetic algorithm

that is also presented in this research, to solve multi-objective stochastic optimization

problems.

2.5 Post-Pareto Pruning

Multi-objective optimization techniques often yield a very large number of non-

dominated Pareto optimal solutions, which makes the selection of one single best solution

very difficult, especially as the number of objectives increase. Eliminating the less

satisfactory trade-offs and reducing the number of alternatives is not a simple task.

Although, several methods for solving multi-objective optimization problems have been

developed and studied, little prior work has been done on the evaluation of results

obtained in multi-objective optimization. This selection stage is often referred as post-

Pareto optimality. The two main objectives of the post-Pareto optimality analysis are i) to

obtain a smaller sub-set of preferred solutions from the large Pareto optimal set, and ii)

the evaluation and interpretation of the results obtained from any optimization method

[78]. Taboada et al. [93] propose following two methods to reduce or limit the size of the

Pareto optimal set, 1) pruning by using non-numerical objective function ranking

preferences method, and 2) pruning by using data clustering. The first method is a

pseudo-ranking scheme that helps decision makers select solutions that reflect their
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objective function priorities. In the second approach, data mining clustering techniques

are used to group the data by using the k-means algorithm to find clusters of similar

solutions. This provides the decision maker with just k general solutions to choose from.

With this second method, from the clustered Pareto optimal set, they attempt to find

solutions which are likely to be more relevant to the decision maker.

Aguirre and Taboada [94] introduce the dynamic self organizing tree algorithm as a

method to perform post-Pareto analysis. This algorithm offers two main advantages.

There is no need to provide an initial number of clusters, and at each hierarchical level,

the algorithm optimizes the number of clusters, and can reassign data from previous

hierarchical levels in order to rearrange misclustered data.

Kulturel-Konak et al. [95] use a tabu search meta-heuristic approach to initially find

the entire Pareto optimal front, and then, Monte-Carlo simulation to provide the decision

maker with a pruned and prioritized set of Pareto optimal solutions based on user-defined

objective function preferences.

In this research, finding the Pareto optimal set and pruning for post-Pareto analysis

are incorporated in one approach. PUGA uses the PUI to calculate the domination

probability of two solutions on the same Pareto front. The algorithm can use this

probability information to make a preference decision between solutions on the same

front using the risk preference of the decision maker. Thus, obtaining a smaller subset of

preferred solutions from a large Pareto optimal set and the evaluation and interpretation

of the results can be accomplished within the optimization process.



71

3. Pareto Uncertainty Index (PUI)

A new metric, the Pareto Uncertainty Index (PUI), is presented in this section. This

metric enables a direct approach to solve a multi-objective stochastic problem without

any transformation of the problem, and it also provides the opportunity to the decision

maker to observe the uncertainty of solutions in the Pareto set. For a discussion of how

uncertainty is modeled in multi-objective optimization and why it is important, see

Section 2.4.

3.1 PUI Formulation

A stochastic multi-objective problem can be formulated as follows:

      
   

1 2min/ max ( , ) , , , ,..., ,
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(25)

where

 M objectives      1 2, , , ,..., ,M     x x x   are random.

 x is a solution in the objective space and it is an d-dimensional vector consisting

of d decision variables: x = (x1, …, xd)

 feasible set X( ) is random.

 parameters of constraints  jg  and  jb  are random

 Ω is a probability space

 D is a deterministic convex set.
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The first step for calculating PUIj, the Pareto Uncertainty Index of solution xj, is

calculating the probability that other solutions dominate the considered solution xj.

Solution xj is the vector of decision variables such that xj = (x1, x2, x3, … xd), where d is

the number of decision variables. Pr{ }i jx x , the probability that solution xi dominates

solution xj, can be formulated as in (26). Pr{ }i jx x is the combination of probabilities

that solution xi has a better objective function value than solution xj for all M objective

functions.

1, 1, 2, 2, , ,Pr{ } Pr{ ... }
i j i j i ji j M M        x x x x x xx x    (26)

 x1, x2,…, xi,…, xj,… , xn are solutions in the objective space.

 , im x is the value of mth objective function evaluated at ith solution, xi.

For continuous dependent objective functions, Pr{ }i jx x can be calculated with

several integration operations of joint probability density function for all objectives

evaluated at xj,
1 2, ,..., 1 2( , ,..., )

M M jf z z z   x ; and joint cumulative density function for all

objectives evaluated at xi,
1 2, ,..., 1 2( , ,..., )

M M iF z z z   x . Formulation of Pr{ }i jx x for N

dependent objective functions is presented in Equation (27).

The probability that a solution xi dominates a solution xj can be used in different ways

to form different designs of the PUI. We propose four different designs of the PUI:

1. Cumulative PUI

2. Pairwise PUI

3. Neighborhood PUI

4. Preference PUI
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Cumulative PUI utilizes the sum of domination probabilities of all solutions in the

objective space. Therefore, the PUI of solution xj is calculated as in Equation (28).
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If objectives are independent from each other, then there is no need for integration

over joint probability functions and Pr{ }i jx x is the multiplication of probabilities that

solution xi has a better objective function value than solution xj for all objective

functions. Therefore, PUIj for independent objective functions can be calculated as in

Equation (29).
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For example, if all of the objective functions are distributed as independent normal

distributions, then the calculation is carried out as in Equation (30) where      mi x is the

mean of the mth objective function evaluated at the ith solution and  i    mx is the standard

deviation of the mth objective function evaluated at the ith solution.

   

   

   

   

1,

, ,
1, 1

1,
2

1
2

Pr{ }

1

}

Φ

Pr{

i

i

m j m

m j m

i j

n

j i j
i i j

Mn

m m
i i j m

Mn

i i j m

PUI

 

 





 





 

  

  

         















 

 

x x

x x

x x

x x

(30)

An easier way to explain the calculation of the cumulative PUI for a solution is to

give an example of a problem with two objective functions. For a bi-objective problem a

matrix as in Table 7 can be formed by calculating the probabilities in each cell. Priq or

Pr{ }i qx x is the probability that solution i dominates solution q. Then, for each

solution, row sums give the PUI of the solution as in (31).

1 2 2 4Pr Pr Pr Prq q q q qPUI     
(31)
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Table 7. Calculation of cumulative PUI for a bi-objective optimization problem

x1 x2 x3 x4 … xq PUI
x1 - Pr21 Pr31 Pr41 … Prq1 PUI1 = sum of the first row
x2 Pr12 - Pr23 Pr42 … Prq2 PUI2 = sum of the second row
x3 Pr13 Pr23 - Pr43 … Prq3 PUI3 = sum of the third row
x4 Pr14 Pr24 Pr34 - … Prq4 PUI4 = sum of the fourth row
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
xq Pr(x1≻xq) Pr2q Pr3q Pr4q … - PUIq = sum of the qth row

Pairwise PUI utilizes the sum of domination probabilities of only the closest

neighbor solutions for each objective function in the objective space. This is similar to

the crowding distance idea of NSGA-II [74] but it includes the stochastic nature of the

problem into calculation. Crowding distance is of NSGA-II explained in Section 4.1.2.

Pairwise PUI of a solution xj is calculated as in Equation (32) where M is the number

of objective functions, xm,j-1 and xm,j+1 are the closest neighbor solutions for mth objective

function.

, 1 , 1
1

Pr{ } Pr{ }
M

j m j j m j j
m

PUI  


  x x x x  (32)

Neighborhood PUI utilizes the sum of domination probabilities of the solutions in

the same neighborhood. For this design of PUI, the objective space is partitioned into

neighborhoods similar to cells of RDGA shown in Figure 19 [96]. The neighborhood

approach is explained in Section 4.1.6.

Neighborhood PUI for a solution xj is calculated as in Equation (33) where Ck is the

neighborhood of solution xj and i is a neighbor solution in the same neighborhood.

Pr{ }
k

j i j
i C

PUI


  x x (33)
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Figure 19. RDGA cell-based density approach

Preference PUI utilizes the domination probabilities to assign a preference value to

each solution. For a minimization problem, a solution xi is said to dominate another

solution xj, , if these two conditions are both satisfied:

1. The solution xi is no worse than xj for all M objective functions, that is,

( ) ( )m i m j x x for all m = 1,2,…, M

2. The solution xi is strictly better than xj for at least one objective function, that is,

( ) ( )m i m j x x for at least one   {1, 2, , }m M 

where ( )im x is the mth objective function evaluated at solution vector xi and M is the

number of objective functions. This is the Pareto dominance concept where the

uncertainty is neglected. We call this design the expected domination. This is similar to

the ranking design of NSGA-II.

A solution xi is said to dominate another solution xj probabilistically if the probability

that solution xi dominates solution xj is greater than the probability that solution xj

dominates solution xi, that is, Pr{ } Pr{ }i j j ix x x x  .

i jx x
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If a solution xi dominates a solution xj both expectedly and probabilistically, then xi

dominates xj and it is also preferred over xj. If a solution xi dominates a solution xj

expectedly but not probabilistically, then there is no dominance relation between these

two solutions, that is, they are on the same Pareto front, but xj is preferred over xi.

Preference PUI design is explained in Table 8.

Table 8. Preference PUI

Expected

Domination

(No Probability)

Stochastic

Domination

Final Decision

of

Dominance

Preference

of

the solution

i dominates j i dominates j i dominates j i is preferred

i dominates j j dominates i
No domination

between i and j
j is preferred

j dominates i i dominates j
No domination

between i and j
i is preferred

j dominates i j dominates i j dominates i j is preferred

As a fifth option, preference PUI and neighborhood PUI designs can be incorporated

as described below:

1. Partition the objective space into neighborhoods.

2. Calculate the PUI of every solution i in a neighborhood by summing all the

probabilities that each neighbor solution of solution i in its neighborhood

dominates solution i.

3. Prefer the solution with the smallest PUI in each neighborhood.

These PUI interpretations are used in different designs of the Pareto Uncertain

Genetic Algorithm (PUGA) in Section 4. Different designs can be used in different steps

of an algorithm when it is more appropriate to use a specific design. For example for the
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post-Pareto analysis, neighborhood design is more relevant but for the selection operator

of a genetic algorithm cumulative PUI design can give better results.

3.2 Risk Adjusted Pareto Uncertainty Index (rPUI)

A risk measure can be incorporated in the PUI formulation so that the risk can also be

analyzed in the objective space, and the risk preference of the decision maker can affect

the selection of Pareto solutions. The risk function is included into the cumulative PUI

formulation as in (34). Other designs of the PUI can also have the risk measure similar to

the cumulative PUI example provided here.
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where 1, 2, ,( , ,..., )j j j M jz z zz and ( )j z is calculated as:
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where ,( )m jz is a risk function and shifts the probability according to the risk

preference of the decision maker. ,( )m jz risk function is formulated as in (36), and the

risk adjusted PUI, rPUI, is calculated as in (37).
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where m is the risk measure for the mth objective function and designates the growth

and decay effect on the probability. When m is 0 (zero) the PUI is risk-neutral for the

considered objective function. If the decision maker is risk-averse, then m takes values

larger than 0. Therefore, a solution which has less probability to have higher values than

the expected value for a minimization objective is favored over a solution which has

higher probability to have higher values for the same objective function. If the decision

maker is risk-seeking, then m takes values smaller than zero. In this case, a solution

which has higher probability to provide lower values than the expected value for a

minimization objective is favored. The risk function adopted in this research works

effectively; however, other risk function forms could be used as well.

In any case (risk-neutral/seeking/averse), the smaller PUI or rPUI shows a better

solution than others. Following example cases are provided to explain the workings of the

risk adjusted PUI for three solutions in the objective space with two objective functions.

3.2.1 Case 1: Risk-Averse Decision Maker

Let there be three solutions in the objective space of a bi-objective (cost and

emissions) minimization problem. Figure 20a shows solutions when the uncertainty is



80

neglected. Assume solutions are all normally distributed random variables. Their

expected values and variances are provided in Table 9. Figure 20b shows expected values

of solutions (squares) and their 3σ-distances from expected values (ellipses).

Table 9. Expected values and variances for risk-averse case

Solutions Expected Values [Cost, Emissions] Variances [Cost, Emissions]

1 [3075,160] [700,80]

2 [3085,165] [150,15]

3 [3090,155] [700,90]

Figure 20. Risk-averse case. a) Uncertainty neglected results. b) Uncertainty included results

When uncertainty is neglected (Figure 20a), Solution 2 (blue colored in figures) is a

dominated solution which means it is not considered as an alternative in the final Pareto

set. However, it has a lower variance and a lower probability to have high cost and high

emissions in worse case realizations compared to the other solutions (Figure 20b). It

might be more favorable to a risk-averse decision maker and should be presented in the

Pareto set. Therefore, its Pareto order with rPUI is lower than the order with PUI. The

PUI and rPUI of solutions and their respective Pareto orders are presented in Table 10.
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Table 10. PUI and rPUI values for risk-averse case (ρ1 = 15, ρ2 = 15)

Solutions PUI Pareto order with PUI rPUI Pareto order with rPUI

1 0.3347 Second 0.8045 First

2 0.8022 Third 0.9176 Second

3 0.3234 First 1.0716 Third

3.2.2 Case 2: Risk-Seeking Decision Maker

In this case, assume that the variance of Solution 2 is higher and the variance of

Solution 1 is lower as shown in Table 11. Although Solution 1 in this case is a safer

(more certain) solution for a risk-averse decision maker, Solution 2 may provide better

opportunities for a risk-seeking decision maker, if optimistic future projections are

realized.

Table 11. Expected values and variances for risk-seeking case

Solutions Expected Values [Cost, Emissions] Variances [Cost, Emissions]

1 [3075,160] [1000,100]

2 [3085,165] [7000,800]

3 [3090,155] [5000,500]

When uncertainty is neglected Figure 21a, Solution 2 is a dominated solution which

means it is not considered as an alternative in the final Pareto set. However, it provides

better opportunities in better case realizations because it has a higher probability to have

lower cost and emissions compared to the other solutions (Figure 21b). Therefore, its

rPUI is calculated to be lower than the others, so it might be more favorable to a risk-

seeking decision maker and should be presented in the Pareto set. The PUI and rPUI of

solutions and their respective Pareto orders are presented in Table 12.
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Table 12. PUI and rPUI values for risk-seeking case (ρ1 = -6, ρ2 = -6)

Solutions PUI Pareto order with PUI rPUI Pareto order with rPUI

1 0.4434 First 0.4162 Third

2 0.6018 Third 0.3974 Second

3 0.4442 Second 0.2711 First

Figure 21. Risk-seeking case. a) Uncertainty neglected results. b) Uncertainty included results

3.2.3 Case 3: Same Expected Values and Different Variances

Assume there are two solutions which have the same expected value but different

variances. The expected values and variances for the solutions are provided in Table 13.

This may not generally be a very realistic case but provides additional explanations and

demonstrations for working of the rPUI.

Table 13. Expected values and variances for Case 3

Solutions Expected Values [Cost, Emissions] Variances [Cost, Emissions]

1 [3075,1000] [400,200]

2 [3075,1000] [100,50]

Figure 22 shows the expected value of solutions as a black square. Different colored

ellipses are the 3σ-distances from expected values. Solution 2 has a higher variance so its

ellipse (blue colored) is wider.
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Figure 22. Solutions with same expected value different variance

Table 14 shows different risk-averse and risk-seeking ρm settings for two solutions

and their objectives. When ρm = 0 for both objectives, it is the risk-neutral case and the

result is the PUI with no risk adjustment. For other settings, the shaded cells show the

better solution for that ρm setting.

When ρ1 = ρ2 = -1, i.e., risk-seeking settings in both objectives, or risk-neutral in one

objective and risk-seeking in the other, Solution 2 is a better choice because it may offer

better results for a risk-seeking decision maker. On the contrary, when ρ1 = ρ2 = 1, i.e.,

risk-averse settings in both objectives, or risk-neutral in one objective and risk-averse in

the other, Solution 1 is a better choice because it is a safer option.
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Table 14. Different ρm settings for two solutions of Case 3

Sol.
ρm = 0

(PUI)

ρ1 = 0

ρ2 = 1

ρ1 = 0,

ρ2 = -1

ρ1 = 1

ρ2 = 0

ρ1 = -1

ρ2 = 0

ρ1 = 1

ρ2 = 1

ρ1 = -1

ρ2 = -1

rPUI
1 0.2500 0.2506 0.2494 0.2503 0.2497 0.2509 0.2490

2 0.2500 0.2525 0.2475 0.2512 0.2488 0.2537 0.2464

Table 15 shows the rPUI results when the ρm setting is risk-seeking in one objective

and risk-averse in the other. When the setting is risk-seeking in objective 2 and risk-

averse in objective 1, Solution 2 is a better solution unless risk-aversion is very strong in

objective 1 (ρ1 = 10, ρ2 = -1).

Table 15. Risk-averse vs. risk-seeking for Case 3

Sol. ρ1 = 1, ρ2 = -1 ρ1 = 1, ρ2 = -10 ρ1 = 10, ρ2 = -10 ρ1 = 10, ρ2 = -1

rPUI
1 0.2497 0.2446 0.2473 0.2524

2 0.2487 0.2282 0.2381 0.2595

Sol. ρ1 = -1, ρ2 = 1 ρ1 = -1, ρ2 = 10 ρ1 = -10, ρ2 = 10 ρ1 = -10, ρ2 = 1

rPUI
1 0.2503 0.2566 0.2541 0.2479

2 0.2514 0.2766 0.2656 0.2414

Similarly, when the setting is risk-seeking in objective 1 and risk-averse in objective

2, Solution 1 is a better solution unless risk-seeking is very strong in objective 2 (ρ1 = -

10, ρ2 = 1). This is due to sensitivity of objectives to the risk. Objective 2 in this example

case is more sensitive to risk setting, and its ρm value determines the outcome unless ρm

value of objective 1 is significantly higher. Objective 2 is more sensitive to the risk

because its variance/expectation ratio is lower compared to objective 1.

3.2.4 Case 4: Same Variance/Expectation Ratio

Assume there are two solutions which have the same expected value and different

variances similar to Case 3 but variance/expectation ratio is the same for both objectives.
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The expected values and variances for the solutions are provided in Table 16. Again, this

may not often be a realistic case but it is easier to compare how different ρm settings

change the Pareto order of solutions with their rPUI values.

Table 16. Expected values and variances for Case 4

Solutions Expected Values [Cost, Emissions] Variances [Cost, Emissions]

1 [3000, 3000] [300, 300]

2 [3000, 3000] [3000, 3000]

Figure 23a shows the expected value of solutions as a black square. Different colored

circles are the 3σ-distances from the expected values. Solution 2 has a higher variance so

its circle (blue colored) is wider. Figure 23b is provided for visual explanation of

different variance/expectation ratio. Compare parts a and b of Figure 23 for different

variance/expectation ratios. When the ratio is different as in part b, 3σ-distances from the

expected values are ellipses rather than circles.

Figure 23. Same and different variance/expectation ratios
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Table 17 shows the rPUI results for Case 4. When ρ1 = ρ2 = 1, risk-averse in both

objectives, Solution 1 is a safer choice. When ρ1 = ρ1 = -1, risk-seeking in both objectives,

Solution 2 is a better choice. When ρ1 = 1 and ρ2 = -1 or ρ1 = -1 and ρ2 = 1, risk-seeking in

one objective and risk-averse in the other, the result is the same as the risk-neutral case

because neither of the solutions is better than the other. If risk-seeking effect is larger in

one of the objectives (ρ1 = -2, ρ2 = 1) then Solution 2 is again a better option. If risk-

aversion effect is larger in one of the objectives (ρ1 = 2, ρ2 = -1) then Solution 1 is a better

option.

Table 17. Risk-averse vs. risk-seeking for Case 4

Sol.
ρ1 = 1,

ρ2 = 1

ρ1 = -1,

ρ2 = -1

ρ1 = 1,

ρ2 = -1

ρ1 = -1,

ρ2 = 1

ρ1 = -2,

ρ2 = 1

ρ1 = 2,

ρ2 = -1

rPUI
1 0.2507 0.2493 0.2500 0.2500 0.2497 0.2504

2 0.2570 0.2432 0.2500 0.2500 0.2466 0.2536

3.2.5 Different ρm Settings

The risk measure ρm in the risk function ,( )m jz effects how much the probability is

shifted towards the risk-averse or risk-seeking aspects of a solution. Table 18 shows a

comparison of rPUI values for Case 1 (the risk-averse case) with different ρm values.

When ρm is zero for both objective functions, rPUI is equal to PUI value, i.e. it becomes a

risk-neutral case.

In Table 18, only ρm value settings in the shaded columns change the Pareto order of

solutions. The last column of Table 18 shows ρ1 = -15 and ρ2 = 15 case where decision

maker is risk-seeking in objective 1 but risk-averse in objective 2. This setting gives the

same order with the previous settings where decision maker is risk-averse or neutral in

objective 1 but strictly risk-averse in objective 2. The Pareto order of solutions does not



87

change when ρ1 = 15 and ρ2 = -15, risk-averse in objective 1 but risk-seeking in objective

2. From these experiments it can be observed that the second objective function

(emissions) is more sensitive to risk-aversion and the first objective function (cost) is less

sensitive.

Table 18. Different ρm values for risk-averse case

Solutions
ρm = 0

(PUI)

ρ1 = 0,

ρ2 = 1

ρ1 = 1,

ρ2 = 0

ρ1 = 5,

ρ2 = 5

ρ1 = 10,

ρ2 = 10

rPUI

1 0.3347 0.3467 0.3370 0.4234 0.5672

2 0.8022 0.8054 0.8032 0.8279 0.8658

3 0.3234 0.3431 0.3247 0.4544 0.6775

Solutions
ρ1 = 15,

ρ2 = -15

ρ1 = 15,

ρ2 = 15

ρ1 = 15,

ρ2 = 0

ρ1 = 0,

ρ2 = 15

ρ1 = -15,

ρ2 = 15

rPUI

1 0.2886 0.8045 0.3736 0.7192 0.6488

2 0.8195 0.9176 0.8184 0.8994 0.8845

3 0.1870 1.0716 0.3452 1.0012 0.9455

Table 19 shows a comparison of rPUI values for Case 2 (the risk-seeking case) with

different ρm values. Once again, when ρm is zero for both objective functions, rPUI is

equal to the PUI value, i.e. it becomes a risk-neutral case. In Table 19, only ρm value

settings in the shaded columns change the Pareto order of solutions. When the setting is

risk-neutral or risk-averse for one of the objective functions, the Pareto order of the

solutions does not change. The order only changes only when the setting is risk-seeking

and ρm are higher than 5 for both objective functions.

In general, the value of ρm determines the magnitude of decision maker’s risk

preference. Assigning a higher value means the decision maker is more risk-averse, and

assigning a lower value means the decision maker is more risk-seeking. The decision

maker or the modeler of a problem can run experimental simulations to understand the
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effect of different settings and find the appropriate risk settings (ρm). This task is not

computationally expensive if an evolutionary algorithm is used. On the other hand,

weighting methods similar to Multi-Criteria Decision Making (MCDM) techniques can

be used to determine the appropriate risk preference. For example, in the Analytic

Hierarchy Process (AHP) [97], an important task of the decision makers is to determine

the weight to be given to each criterion in making the choice. A meaningful and objective

numerical value on each of the criteria is set in the process.

Table 19. Different ρm values for risk-seeking case

Solutions
ρm = 0

(PUI)

ρ1 = -1,

ρ2 = -1

ρ1 = -4,

ρ2 = -4

ρ1 = -5,

ρ2 = -5

ρ1 = -6,

ρ2 = -6

rPUI

1 0.3347 0.4348 0.4189 0.4168 0.4162

2 0.8022 0.5400 0.4293 0.4100 0.3974

3 0.3234 0.3965 0.3040 0.2853 0.2711

Solutions
ρ1 = 0,

ρ2 = -6

ρ1 = -6,

ρ2 = 0

ρ1 = -6,

ρ2 = 6

ρ1 = 6,

ρ2 = -6

ρ1 = -6,

ρ2 = 15

rPUI

1 0.4245 0.4348 0.5163 0.4344 0.8513

2 0.4388 0.5446 1.3659 0.4917 24.937

3 0.2908 0.4135 0.9851 0.3157 9.6542

3.3 Discrete PUI and rPUI

For some problems, the variables are naturally discrete, and there are other instances,

where it is convenient to approximate a continuous distribution with random selected

outcomes using Monte Carlo simulations. If probability distributions are not available for

objective function uncertainties, then simulation methods can be used to provide discrete

points for each solution to represent the uncertainty. When there are discrete points for
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each solution, the cumulative PUI is formulated as in (38). Other designs of the PUI can

be modified for discrete case similar to the cumulative PUI example provided here.
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where D is the number of discrete points for each solution. id and jd are the indices

for discrete points of solutions i and j, respectively. m, i

id x is the mth objective function

value of idth discrete point of solution i. , ,( )
i j

id jd
m m  x x is a binary function where it

takes 1 if , ,i j

id jd
m m x x is true and 0 else.

When risk adjustment is necessary, the rPUI is used and the continuous rPUI formula

is as follows:
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where
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When we have discrete points for each solution we can formulate the rPUI as follows:
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where m,( )
j

jd x for the discrete rPUI is formulated as follows:
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3.3.1 Comparison of Discrete and Continuous PUI and rPUI

Let there be three solutions in the objective space of a bi-objective minimization

problem. Assume solution objective functions ( , im x ) are all normally distributed random

variables. Their expected values and variances are provided in Table 20.

Table 20. Expected values and variances for risk-averse case

Solutions Expected Values [Cost, Emissions] Variances [Cost, Emissions]

1 [3075,160] [700,80]

2 [3085,165] [150,15]

3 [3090,155] [700,90]

Using Monte Carlo simulation and the same values for expectation and variance, we

generate D number of discrete points for each solution and compare results of continuous

and discrete PUI formulas for the same solutions. Table 21, Table 22 and Table 23 show
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the comparison between continuous and discrete PUI and rPUI for 1000, 500 and 100

discrete points, respectively.

Table 21. Comparison of continuous and discrete PUI and rPUI
(D = 1000, ρ1 = 15, ρ2 = 15)

PUI rPUI

Solutions Continuous Discrete Error Continuous Discrete Error

1 0.3347 0.3269 2.33% 0.8046 0.7298 9.30%

2 0.8023 0.7940 1.03% 0.9176 0.9223 0.51%

3 0.3234 0.3371 4.24% 1.0716 1.1501 7.33%

Table 22. Comparison of continuous and discrete PUI and rPUI
(D = 500, ρ1 = 15, ρ2 = 15)

PUI rPUI

Solutions Continuous Discrete Error Continuous Discrete Error

1 0.3347 0.3453 3.17% 0.8046 0.7917 1.60%

2 0.8023 0.7795 2.84% 0.9176 0.8712 5.06%

3 0.3234 0.3455 6.83% 1.0716 1.3578 26.71%

Table 23. Comparison of continuous and discrete PUI and rPUI
(D = 100, ρ1 = 15, ρ2 = 15)

PUI rPUI

Solutions Continuous Discrete Error Continuous Discrete Error

1 0.3347 0.2922 12.70% 0.8046 0.6643 17.44%

2 0.8023 0.8471 5.58% 0.9176 1.0120 10.29%

3 0.3234 0.3576 10.58% 1.0716 1.2043 12.38%

The following figures depict the expected values, 3σ-distances and discrete points for

solutions in the objective space. Squares are the expected values of solutions and ellipses

are 3σ-distance from the expectations. Asterisks (*) are the discrete points generated for

each solution. Figure 24, Figure 25 and Figure 26 show the comparison between
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continuous and discrete representation of solutions for 1000, 500 and 100 discrete points,

respectively.

Figure 24. Continuous and discrete representation of solutions when D = 1000

Figure 25. Continuous and discrete representation of solutions when D = 500
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Figure 26. Continuous and discrete representation of solutions when D = 100

The more discrete points that are used to represent the uncertainty, the more accurate

the PUI and rPUI are. Using discrete points, especially in large numbers, may increase

the computation time but it is very useful when underlying uncertainty is from a

combination of different probability distributions or dependency of objective functions or

coefficients exists. As discussed in the dependent PUI formulations, if objectives are

dependent, then the PUI formulation requires multivariate integration. This might be

impractical or inefficient. However, simulating the randomness and using the discrete

PUI can make it very simple and effective to consider dependent random coefficients of

the objective functions. Section 4.5.8 presents a test problem where the discrete PUI is

used.
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3.4 PUI and rPUI with Scenarios

If probability distributions are not available for objective function uncertainties and

simulation methods are computationally expensive, then scenarios can be used to

represent the uncertainty. Similar to the discrete case we can formulate the cumulative

PUI with scenarios and their respective probabilities as in (43). Other designs of PUI can

be modified for scenario case similar to the cumulative PUI example provided here.
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where S is the number of scenarios and Pr(s) is the probability of scenario s occurring.

, i

s
m x is the mth objective function value of solution i for scenario s. , ,( )

i j

s s
m m  x x is

a binary function equal to 1 if , ,i j

s s
m m x x is true and 0 else.

We can also formulate the rPUI with scenarios as follows:
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where ,( )
j

s
m x for the rPUI with scenarios is formulated as follows:
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3.5 Summary

A new metric, the Pareto Uncertainty Index (PUI), is presented in this section. This

metric enables a direct approach to solve a multi-objective stochastic problem without

any transformation of the problem, and it also provides the opportunity to the decision

maker to observe the uncertainty of solutions in the Pareto set.

We first explain the PUI formulation for continuous objective functions without a risk

preference. Objective functions can be dependent or independent and PUI formulations

are presented for each case. There can be several ways to form different designs of the

PUI. We propose four different designs which can be used for different purposes in a

search algorithm. Later, the risk adjusted PUI (rPUI) formulation is explained and tested

with different cases.

PUI can also be formulated for simulated discrete values or scenarios. Formulations

for these are also explained and discrete PUI is compared with the continuous cases.

In the next chapter, a new multi-objective genetic algorithm, the Pareto Uncertainty

Genetic Algorithm (PUGA), is presented. PUGA incorporates the PUI models and

provides a direct approach to solve a stochastic multi-objective problem without any

transformation of the problem.
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4. Pareto Uncertain Genetic Algorithm (PUGA)

Genetic algorithm is a search heuristic that mimics the process of natural evolution.

Being a population-based approach, genetic algorithms are well suited to solve the multi-

objective optimization problems. A generic single-objective genetic algorithm can be

modified to find a set of multiple non-dominated solutions (the Pareto set) in a single run

[76]. Multi-objective genetic algorithms differ from single objective genetic algorithms in

the way the selection is made and the fitness is assigned to each solution in the

population. The concept of dominance is implemented for selection of individuals.

Multi-objective genetic algorithms introduce different methods to promote solution

diversity. Most commonly used methods are fitness sharing, crowding distance method

and cell-based density method. State-of-the-art multi-objective genetic algorithms are

introduced in Section 2.3.4.3. All of the introduced genetic algorithms are for multi-

objective problems but they do not consider the stochastic nature of real world problems.

As we have discussed in Section 2.4, uncertainty in multi-objective optimization, the

multi-objective stochastic problem is transformed into a multi-objective deterministic

problem and then solved by genetic algorithms. The trade-off of objectives (Pareto front)

can be captured but the randomness and uncertainty are eliminated. However, it is very

important for a decision maker to have the knowledge of uncertainty in the Pareto set.

There are three example cases in Section 2.4 to illustrate why it is important to observe

the uncertainty of each solution in the objective space.

In this section, a new multi-objective genetic algorithm is presented: the Pareto

Uncertainty Genetic Algorithm (PUGA). PUGA incorporates the Pareto Uncertainty

Index (PUI) models explained in Section 3 and provides a direct approach to solve a
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stochastic multi-objective problem without any transformation of the problem, and it also

gives the opportunity to the decision maker to observe the uncertainty of solutions in the

Pareto set.

4.1 Design Components of PUGA

In the next subsections, design components of PUGA are explained in detail.

Components of a generic genetic algorithm are explained in Section 2.3.4.1. In its general

form, a genetic algorithm works as follows and as depicted in Figure 27.

 An initial population of individuals (solutions) is generated.

 At every generation, the individuals are evaluated and a fitness value is assigned.

 Selection operator selects the fittest individuals.

 If the stopping criterion is met the algorithm stops and gives the result.

 If not, a new generation is created by operators such as mutation and crossover.

Figure 27. Flow chart of a genetic algorithm

4.1.1 Pareto Probability Sorting

A multi-objective optimization technique should achieve the closest possible Pareto

front to the true Pareto front. This is called the convergence to the Pareto optimal set.
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Pareto ranking approaches are one of the most commonly used techniques in multi-

objective genetic algorithms. Examples of the multi-objective genetic algorithms that use

a kind of Pareto-ranking approaches are: MOGA [80], PAES [73], NSGA [82] and

NSGA-II [83]. Pareto-ranking approaches use the concept of an expected Pareto

dominance idea (Section 2.3.1) to rank solutions in the objective space where only the

expected values of objective functions are considered, thus uncertainty is neglected.

Solutions are ranked according to a dominance rule, and then they are ranked

accordingly. The actual objective function value is not a fitness criterion after this type of

ranking procedure. When all objectives are to be minimized, a lower rank corresponds to

a better solution. We will assume minimization problems in all sections to follow.

The sorting mechanism of PUGA uses one of the PUI formulations explained in

Section 3.1, so that the probability is included in the Pareto-ranking. There can be several

sorting designs using PUI formulations. We propose four different designs in this study.

Table 24 shows the main differences of proposed Pareto ranking designs of PUGA.

Table 24. Main differences of Pareto ranking designs of PUGA

Ranking Design

Design 1
 First check expected domination
 PUI calculated pairwise with dominated solutions
 Rerank with stochastic domination

Design 2
 No domination scheme
 PUI calculated cumulatively
 Order by PUI only

Design 3
 First check expected domination
 PUI calculated in neighborhoods
 Preference by stochastic domination

Design 4
 First check expected domination
 PUI calculated pairwise with closest solutions
 Preference by stochastic domination
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For a minimization problem, a solution xi said to dominate another solution xj,

i jx x , if these two conditions are both satisfied:

1. The solution xi is no worse than xj for all M objective functions, that is,

( ) ( )m i m j x x for all m = 1,2,…, M

2. The solution xi is strictly better than xj for at least one objective function, that is,

( ) ( )m i m j x x for at least one {1, 2, , }m M 

where ( )im x is the mth objective function evaluated at solution vector xi and M is the

number of objective functions. This is the Pareto dominance concept where the

uncertainty is neglected. We call this design the expected domination. This is similar to

the ranking design of NSGA-II [74].

For the expected domination, algorithm finds the domination count (n), which is the

number of solutions which dominate the solution i for each solution in the population.

When we compare two solutions for their domination relationship, we first consider their

expected domination to each other. If the two solutions i and j do not expectedly

dominate each other, then both of them keep their n value as zero (not changed), that is

they are both non-dominated to each other in the expected domination sort. While

counting the number of solutions (n) which dominate the solution we also keep a set of

solutions that the solution dominates (Si).

In PUGA design 1, if one of the solutions expectedly dominate the other one, then we

calculate the probability that solution i dominates solution j (Prij) and the probability that

solution j dominates solution i (Prji). If Prij is greater than Prji, then we say solution i
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dominates solution j and nj value of solution j is increased by one. Otherwise (if Prji >

Prij), we say solution j dominates solution i and ni value of solution i is increased by one.

The rest of the sorting works similar to NSGA-II. All solutions with domination count

of zero are designated in the first non-dominated front. For each solution in the first front,

we visit each member of its set Si and reduce its domination count nj by one. If the

domination count nj becomes zero for any member, it is put in a separate list which

defines the second non-dominated front. This procedure is continued until all fronts are

identified. The algorithm for Pareto Probability Sorting with ranking design 1 is as

follows:

For each i P
iS   and 0in 

For each j P and j i
If i jx x or j ix x

If Pr{ } Pr{ }i j j ix x x x 

i iS S j  and 1j jn n 

Else if Pr{ } Pr{ }j i i jx x x x 

j jS S i  and 1i in n 
End j loop
If 0in 

1ranki  and 1 1 { }F F i 
1r 

While rF  
Q  

For each ri F
For each ij S

1j jn n 

If 0jn  then 1rankj r  and { }Q Q j 
End j loop

End i loop
1r r 

rF Q
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End while loop

Calculation of probabilities increases the complexity of the procedure, particularly in

the beginning of the algorithm when many solutions may expectedly dominate many

other solutions, but by doing so we eliminate the situation in example cases mentioned in

Section 2.4. For example in Figure 29 compared to Figure 28, the concept of domination

is not clear any more. Solution 1 has a higher level of uncertainty compared to Solution 2.

If the decision maker prefers to observe expected values, then the preference of the

solutions would be the same as in the deterministic case, and Solution 2 would not be

presented in the Pareto optimal set. However, when the uncertainty is included, the

probability of Solution 2 being dominated by Solution 1 becomes low, which gives it a

probability to be a preferable solution.

Figure 28. Deterministic example Figure 29. Stochastic example

In the second ranking design (design 2), there is no domination scheme. The

algorithm uses the cumulative PUI to sort all the solutions in the population. The solution

with the smallest PUI value is the best in the population. This design tends to eliminate

the diversity of solutions and promotes a single solution. Thus, it is better for single

objective genetic algorithms. The algorithm for Pareto Probability Sorting with ranking

design 2 is as follows:
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For each i P

1,

Pr{ }
n

i j i
j i j

PUI
 

  x x

End i loop
Sort and rank ( i P , iPUI )

In design 3, the algorithm first utilizes the expected domination, similar to design 1.

Then the PUI is calculated in neighborhoods. The neighborhood approach is explained in

Section 4.1.6. Ranking is based on the expected domination but in each neighborhood the

solution with the smallest PUI value is the preferred solution of the neighborhood. The

solutions are sorted based on their rankings first and then PUI values. The smallest

ranking solution with the smallest PUI value is the best solution of the population. This

scheme is very helpful in operators for extraction of the best solutions, selection of parent

solutions for reproduction and the Pareto pruning in post-Pareto analysis.

Design 4 differs from the previous design with PUI calculation. In this design,

pairwise PUI calculation is utilized, that is, the PUI is the sum of domination probabilities

of only the closest neighbor solutions for each objective function. Again, the solutions are

sorted based on their rankings first and then PUI values. The smallest ranking solution

with the smallest PUI value is the best solution of the population.

4.1.2 Preservation of Uncertainty Information and Diversity

Maintaining diversity is one of the most important issues in multi-objective

optimization. In order to provide the decision maker a true representation of the trade-offs

of the objectives, Pareto solutions should be uniformly distributed over the Pareto front.

NSGA-II uses the crowding distance approach for diversity preservation. The average

distance of two points on either side of a solution i along each of the objectives is
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calculated. The higher this value is, the better the diversity of solution i. The crowding

distance computation is applicable to more than two objectives.

Figure 30. NSGA-II crowding distance method (adapted from Deb et al. [76])

For each objective function, the algorithm sorts the individuals in each front Fr in the

ascending order and it assigns crowding distance values to each of the individuals, as

shown in Figure 30. Although Figure 30 illustrates the crowding distance computation for

two objectives, the procedure is applicable to more than two objectives as well. The main

advantage of the crowding distance approach is that it is computed without requiring a

user-defined parameter. In NSGA-II, the crowding distance measure is used as a

tiebreaker in a selection technique called the crowded tournament selection operator. The

algorithm randomly selects two solutions; if the solutions are in the same non-dominated

front, the solution with a higher crowding distance is the winner. Otherwise, the solution

with the lowest rank is selected [76]. This approach considers only the expected values of

objective functions. Therefore, uncertainty is neglected.

PUGA, on the other hand, uses one of the PUI methods to preserve the diversity and

uncertainty information of solutions. The PUI of a solution, PUIi, is used to compare

solutions in the same front. The solution with a smaller PUI is a more diverse and less
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uncertain solution so it has a higher probability to be selected for the next generation or

the last Pareto front.

4.1.3 Elitism

Elitism means that the best solutions found so far during the search always survives to

the next generation. In this respect, all non-dominated solutions discovered by a multi-

objective genetic algorithm are considered elite solutions [76].

PUGA uses the same strategy as NSGA-II and combines the parent population and

the new offspring population, and then the combined population is sorted according to the

Pareto probability sorting. This approach makes sure that all the non-dominated solutions

are included in the next population. The algorithm for elitism is as follows:

tQ : Offspring population from reproduction

Combine parents and offspring t t tR P Q 
Sort the combined solutions into fronts sort( )tF R
Initialize next generation population 1tP   and ranks 1r 

Until the population size N is reached: 1t rP F N  

 1 1 11:t t r tP P F N P       : Choose the best  1tN P members of the front Fr

1r r 
End

4.1.4 Constraint Handling

Most optimization problems include constraints that must be satisfied. Constraints are

often treated as deterministic but they usually include stochastic elements. PUGA can

accommodate both deterministic and stochastic constraints.

4.1.4.1 Deterministic Constraints

Deterministic constraints can be efficiently handled with the approach proposed for

constrained NSGA-II. For each solution in the population, the algorithm checks all
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constraints and stores the number of violations and sum of all violations of each solution.

When comparing two solutions, the algorithm uses the following rules:

 If both solutions are feasible choose the better ranked solution, and if they have

the same rank choose the less crowded solution, i.e., that is the solution with

higher crowding distance value.

 If one solution is feasible and the other is not, then choose the feasible solution.

 If both solutions are infeasible, then choose the solution with smaller overall

constraint violation.

PUGA uses the same rules if the constraints are assumed as deterministic. Instead of

the crowding distance value, the PUI value can also be used for the first rule.

4.1.4.2 Constraints with Uncertainty

For constraints with uncertainty we present a method that is based on chance

constraint method. PUGA checks all constraints for each solution depending on their

probability of satisfying the constraints over a user-defined risk measure αi for each

constraint i. For example, let the optimization problem is subject to below constraints:

1 1ba x , 2 2ba x , 3 3ba x

The decision maker defines αi for each constraint and the constraints are converted to

the following, respectively:

1 1
1Pr{ }b  a x , 2 2

2Pr{ }b  a x , 3 3
3Pr{ }b  a x

If a solution satisfies all αi, then it is stored as a feasible solution. If it does not satisfy

any of the constraints, then the number of violations and sum of all violations are stored.
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In the selection process, PUGA uses the same rules described above to compare two

solutions.

The constraint handling technique based on chance constraint method and the user-

defined αi values are also used as a risk measure in PUGA. For instance, a risk-seeking

decision maker may choose a smaller value for αi, so that the algorithm provides

solutions with more relaxed constraints. On the contrary, a risk-averse decision maker

may choose a bigger value for αi, and the algorithm provides solutions with strictly

satisfied constraints.

For every constraint in the model, αi can be defined separately, so that every

constraint can be considered, however the decision maker prefers. If the decision maker

prefers expected values for constraints only, then PUGA can easily be converted to a

deterministic constraint handling algorithm.

4.1.5 Twin Solution Elimination

Genetic algorithms sometimes produce the same solutions in the same generation

which reduces the effectiveness of the process and diversity of the population. These

solutions which have the exact same decision variable vectors are called twin solutions.

PUGA checks all solutions with others in the population and if there are twins of a

solution, then twin solutions are punished by increasing their rankings to the last front

rank. The algorithm for twin solution elimination is as follows:

For i = 1 to N-1
For j = i+1 to N

If xi = xj

xj(rank) = max (Fr)
End j loop

End i loop
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4.1.6 Neighborhood Mechanism

Haiming and Yen [96] present a cell-based density approach in Rank-Density Based

Genetic Algorithm (RDGA). RDGA cell-based density approach is depicted in Figure 31.

A modified version of this approach is used to improve the diversity and post-Pareto

pruning performance of PUGA.

Figure 31. RDGA cell-based density approach

In every generation, the neighborhood approach in PUGA first creates neighborhoods

by dividing the range of the current objective space based on user given number of

neighborhoods for each objective function (Km). To form neighborhoods, PUGA

calculates the neighborhood width (dm):

max ( ) min ( )m m
m

m

f f
d

K




x x
(46)

where dm is the width of the neighborhood in the mth dimension, Km denotes the

number of neighborhoods designated for the mth dimension. max ( )mf x and min ( )mf x

are maximum and minimum fitness values of the mth objective function (dimension).

Second, each individual of the population searches for its neighborhood and considers

the other individuals who share the same neighborhood as its neighbors. Then, the PUI
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by dividing the range of the current objective space based on user given number of

neighborhoods for each objective function (Km). To form neighborhoods, PUGA

calculates the neighborhood width (dm):

max ( ) min ( )m m
m

m

f f
d

K




x x
(46)

where dm is the width of the neighborhood in the mth dimension, Km denotes the

number of neighborhoods designated for the mth dimension. max ( )mf x and min ( )mf x

are maximum and minimum fitness values of the mth objective function (dimension).

Second, each individual of the population searches for its neighborhood and considers

the other individuals who share the same neighborhood as its neighbors. Then, the PUI
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for each individual of each neighborhood is calculated. The algorithm for the

neighborhood is as follows:

For m = 1 to M
max ( ) min ( )m m

m
m

f f
d

K




x x

End m loop
For i = 1 to N

For m = 1 to M

( ) min ( )m i m
m

m

f f
idx round

d

 
  

 

x x

End m loop
neighborhoodi = idx

End i loop

4.1.7 Post-Pareto Pruning

While PUGA uses the PUI to find diverse and less uncertain solutions, it calculates

the domination probability of solutions. The algorithm can use this probability

information to make a preference decision between two solutions on the same front so

that the preference of a solution i can be determined for post-Pareto pruning. The

algorithm for preference calculation of PUGA is as follows:

Set of solutions in the Front r: { }  rF

Number of solutions in the non-dominated set  :  l

For i = 1 to l-1
If PUIi+1 > PUIi

prefi = prefi+1
Else prefi+1 = prefi+1+1

End i loop

4.2 Main Loop of PUGA

Genetic algorithms start the process with an initial population. The initial population

can be randomly created in the objective space or it can be provided by the user. If the

user provides an initial population, then the performance of algorithm increases because
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convergence would be faster. The initial population can be created by one of the classical

methods discussed in Section 2.3.2. Operators of the main loop are explained in the next

subsections.

4.2.1 Evaluation Operator

After creation of initial population, each solution is sent to evaluation operator to

compute its expected values of objective functions and variances of objective functions,

feasibility and violation of constraints if it is infeasible. The initial population is then

sorted according to the Pareto Probability Sorting mechanisms described in Section

4.1.1. This step concludes the initialization and the main loop starts and works until the

stopping criterion is met. The algorithm for evaluation operator is as follows:

For i = 1 to N

 E ( )k iP for all k

 Var ( )k iP
for all k

(feasibility)iP

If (feasibility) 0iP 
(violation)iP

End if
End i loop

4.2.2 Selection Operator

The first step of the main loop is to select parent solutions to create the next

generation offspring solutions. There are several techniques proposed for selection

operator. PUGA uses tournament selection technique to increase the selection probability

of better ranked and less uncertain solutions. The algorithm for selection operator with

tournament selection technique is as follows:
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For i = 1 to N
Randomly choose C1 and C2 as candidates for next population Q
If PUI1 > PUI2 select candidate 1: Qi = C1

Else Qi = C2

End i loop

4.2.3 Crossover and Mutation Operators

After selecting parent solutions, the algorithm utilizes crossover and mutation

operators to create an offspring population Qt of size N. PUGA uses the intermediate

crossover [98] which creates offspring solutions by taking a weighted average of the

parents. User can specify the weights by a single parameter, ratio, which can be a scalar

or a row vector of length number of variables. The operator creates the offspring from

parent1 and parent2 using the following formula:

Qi = parent1 + rand × ratio × (parent2 - parent1)

where rand is a random number uniformly distributed between 0 and 1.

If all the entries of ratio lie in the range [0, 1], the offspring produced are within the

hypercube defined by placing the parents at opposite vertices. If ratio is not in that range,

the children might lie outside the hypercube. If ratio is a scalar, then all the children lie

on the line between the parents.

All of the individuals in the population would be processed by the crossover operator,

but only crossover fraction of all variables would have the crossover operator applied.

Although default value of crossover fraction is set to 2/numVar, where numVar is the

number of variables of the model, it can also be defined by the user.

PUGA uses the Gaussian mutation [98] which creates offspring solutions by adding a

random number taken from a Gaussian distribution with mean zero (0) to each entry

(decision variable) of the parent vector. The standard deviation of this distribution is
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determined by the parameters scale and shrink. Mutation operator uses the following

equations:

Qi = parent + ss × randn × (ub - lb)

ss = scale × (1- shrink × currGen / maxGen)

The scale parameter determines the standard deviation at the first generation. The

shrink parameter controls how the standard deviation shrinks as generations go by. ub

and lb are upper and lower bounds of decision variables, respectively. randn is a

normally distributed random variable.

As in the crossover operator, all of the individuals in the population would be

processed by the mutation operator but only mutation fraction of all variables would have

the mutation operator applied. Although default value of mutation fraction is set to

2/numVar, it can also be defined by the user.

4.2.4 Evaluation, Elitism and Sorting of the New Generation

When the creation of the offspring population is completed, the algorithm evaluates

the offspring population using the evaluation operator explained in Section 4.2.1.

PUGA uses the same strategy for elitism as NSGA-II and combines the parent

population and the new offspring population, and then this combined population is sorted

according to Pareto probability sorting. This approach makes sure that all non-dominated

solutions are included in the next population. Pareto probability sorting and elitism are

also explained in Section 4.1.1 and Section 4.1.3, respectively.



112

4.2.5 Extraction of the Best Solutions

PUGA first sorts all solutions in the combined population, Rt, of size 2N according to

their front ranks and PUI. The best N solutions of the combined population, Rt, with

smallest front ranks and PUI values are extracted as the next generation population, Pt+1.

If the stopping criterion is not met, then the generation counter is increased by one

and the main loop of PUGA continues to generate another set of solutions. The stopping

criterion of PUGA is the number of maximum generations defined by the user.

4.2.6 Algorithm for PUGA Main Loop

PUGA follows the main loop below while the generation counter (t) is less than the

maximum number of generations provided by the user. When the main loop reaches to

the maximum number of generations the algorithm outputs the results in the user defined

format.

While t maxgen
1t t 

( )t tQ select P
( )t tQ crossover Q

( )t tQ mutation Q
( )t tQ evaluate Q

t t tR P Q 
( )t tR sort R

1 ( )t tP extract R 
End loop

4.3 PUGA designs

Using different PUI designs (explained in Section 3.1) in different algorithm

operators mentioned above, we define four PUGA designs and test them. Table 25 shows

the main differences of operators in these PUGA designs. Mainly the way that the PUI is
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used in ranking and selecting solutions are different. Extraction operator uses the given

PUI design with the expected domination scheme. Only the second design does not have

domination approach. Instead, it completely depends on the cumulative PUI design for all

related operators.

Table 25. PUGA designs

Pareto Sorting
Extraction
(Order of
ranking)

Selection
(Tournament

Criteria)

Design
1

1. First check expected domination
2. PUI calculated pairwise with

dominated solutions
3. Rerank with stochastic domination

1. Rank
2. Pairwise PUI Pairwise PUI

Design
2

1. No domination scheme
2. PUI calculated cumulatively
3. Order by PUI only

Cumulative PUI Cumulative PUI

Design
3

1. First check expected domination
2. PUI calculated in neighborhoods
3. Preference by stochastic

domination

1. Rank
2. Preference
3. Neighborhood

PUI

Neighborhood
PUI

Design
4

1. First check expected domination
2. PUI calculated pairwise with

closest solutions (Preference PUI
design)

3. Preference by stochastic
domination

1. Rank
2. Preference
3. Pairwise PUI

Pairwise PUI

4.4 CONSTR Test Problem

To test Pareto convergence and diversity performance of PUGA, a test problem,

CONSTR, from Deb et al. [68] is used in this section. The CONSTR problem is used by

Deb et al. [68] to test constraint handling of NSGA-II and the objective functions are as

follows:

1 1min  ( )f xx (47)
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2
2

1

1
min  ( )

x
f

x


x (48)

Variable bounds are 1 [0.1,1.0]x  and 2 [0,5]x  , and the model is subject to the

following constraints:

2 19 6x x  (49)

2 19 1x x   (50)

In this problem, a part of the unconstrained Pareto optimal region is not feasible.

Thus, the resulting constrained Pareto optimal region is a concatenation of the first

constraint boundary and some part of the unconstrained Pareto optimal region (Figure

32).

Deb et al. [83] use the simulated binary crossover (SBX) operator and polynomial

mutation for real-coded NSGA-II. The crossover probability is 0.9 and the mutation

probability is 1/numVar, where numVar is the number of decision variables. Distribution

indexes for crossover and mutation operators are 20 and 100, respectively. The

population size is 100 and maximum number of generations is 500. This rather large

number of generations is chosen by Deb et al. [83] to investigate if the spread in solutions

can be maintained for a large number of generations. Figure 32 shows the feasible region

and obtained non-dominated solutions with NSGA-II on the CONSTR test problem.

Since PUGA is an entirely new concept that solves multi-objective stochastic

problems without any transformation, test problems that are used in literature are not

adequate to test PUGA. Therefore, modified versions of problems are used to

demonstrate the workings of PUGA. The CONSTR test problem is modified by assuming
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uncertainty in its objective function coefficients and constants. The modified objective

functions are as follows:

1 1 1min  ( )f c xx  (51)

2 3 2
2

1

min  ( )
c c x

f
x


x
 

(52)

where ci are all random variables and are normally distributed with mean of 1, and

standard deviation of 0.001. Decision variable bounds are 1 [0.1,1.0]x  and 2 [0,5]x  ,

and the model is subject to the same constraint set as the original model.

Figure 32. Feasible region and obtained non-dominated solutions with NSGA-II on CONSTR test
problem (adapted from [83])

PUGA uses the intermediate crossover [98] and the Gaussian mutation [98] for real-

coded decision variables. PUGA operator parameters are explained in Section 4.2.3. The

population size and maximum number of generations for CONSTR problem are the same

with NSGA-II, 100 and 500, respectively.

Figure 33 shows only PUGA results on CONSTR test problem and Figure 34 shows

PUGA and NSGA-II results together for comparison. It is clear that PUGA performs as

well as NSGA-II in terms of converging to the true Pareto optimal front and also in terms
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of maintaining a diverse population of non-dominated solutions. According to Deb et al.

[83], NSGA-II obtains a reasonably good spread of solutions as early as 200 generations.

Although PUGA is slower due to the PUI probability calculations, it obtains a good

spread of solutions as early as 80 generations. Additionally, in contrast to other

optimization methods, PUGA has the ability to incorporate uncertainty.

Figure 33. Obtained non-dominated solutions with PUGA on CONSTR test problem

Figure 34. Obtained non-dominated solutions with NSGA-II and PUGA on CONSTR test problem
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4.5 Power Generation Test Problem

The test problem in this section is originally a simplified power generation problem

excerpted from [66]. Four types of power generation units are considered in a region,

namely, lignite fired, oil fired, natural gas fired and units exploiting renewable energy

sources (RES) which are mostly small hydro and wind. The power generation

characteristics of these units are shown in Table 26.

Table 26. Power generation characteristics

Production units, p Lignite Oil Natural Gas RES

Maximum production per year (GWh), 31,000 15,000 22,000 10,000

Cost of production ($/MWh), 30 75 60 90

CO2 emissions coefficient (t/MWh), 1.44 0.72 0.45 0

The yearly demand is 64,000 GWh and is characterized by a load duration curve

which can be divided into three types of loads: base load (60%), medium load (30%) and

peak load (10%). The lignite fired units can be used only for base and middle load, the oil

fired units for middle and peak load, the RES units for base and peak load and the natural

gas fired units for all type of loads. Two objective functions are considered: the

minimization of production cost and the minimization of CO2 emissions.

Table 27. Standard deviations of power generation characteristics

Production units, p Lignite Oil Natural Gas RES

Maximum production per year (GWh) 3,100 1,500 2,200 1,000

Cost of production ($/MWh) 0.6 3.6 3.6 0.6

CO2 emissions coefficient (t/MWh) 0.23 0.01 0.01 0

In the original problem, everything is assumed to be deterministic, which ignores

uncertainty and cannot accurately represent the problem. For the modification of the

pcap

1,pc

2 ,pc
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problem, uncertainty is assumed for cost coefficients of production, CO2 emissions

coefficients, maximum production of power generation units and demand. For PUGA test

problem, these deterministic coefficients and constants of the original problem are

assumed to be random variables with a normal distribution and values provided in Table

26 are used as the expected values of these random variables. Standard deviations of the

random variables are provided in Table 27. The expected values and standard deviations

of three types of loads are provided in Table 28.

Table 28. Expected values and standard deviations of loads

Loads, l Base Medium Peak

Expected 38400 19200 6400

Standard Deviation 3840 1920 640

Mavrotas [66] solves the deterministic problem with the augmented ε-constraint

method. Expected Pareto front from the augmented ε-constraint method is presented in

Figure 35 and these solutions are used as the initial population for PUGA test problem to

increase the performance of the algorithm.

Figure 35. Test problem results from augmented ε-constraint method
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4.5.1 Multi-objective stochastic model of the test problem

Two objective functions considered in the problem are the minimization of

production cost and the minimization of CO2 emissions. There is uncertainty in both of

the objective functions due to the randomness of their coefficients. Each coefficient is a

random variable with a normal distribution. All random variables have the tilde symbol

(~) over them. The expected values and standard deviations of all random variables are

presented in Table 26, Table 27 and Table 28.

1,min  = p p,l
p l

cost c x  (53)

2,min  = p p,l
p l

emissions c x  (54)

where ,k pc is the coefficient of decision variable xp,l in objective function k. There are

12 decision variables in the problem which are all amounts of electricity production per

unit p in load type l. For example, x1,1, x1,2, and x1,3 are amounts of electricity production

of lignite unit in base, medium and peak loads, respectively.

The model is subject to the following constraints:


,p l p

l

x cap for each unit p (55)


,p l l

p

x load for each load l (56)

1,3 2,1 4,2, ,and 0x x x  (57)

, 0    andp lx p l  (58)

Equation (55) is the capacity limit for each production unit p and 
pcap is a normal

random variable which is the capacity limit of production unit p. Equation (56) is the

demand constraint and 
lload is a normal random variable which is the demand amount
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that has to be satisfied in load l. Equation (57) is the availability of some units. The

lignite fired units can be used only for base and middle load, so x1,3 is 0, the oil fired units

are only available for middle and peak load, so x2,1 is 0, the RES units can be used only

for base and peak load, so x4,2 is 0. Finally, Equation (58) is the positive variable

constraint, that is, all decision variables have to be greater than or equal to zero.

4.5.2 Calculation of probabilities

All random variables in the test problem are assumed to be normal random variables

with a mean and a standard deviation. Objective functions and constraints are treated as

independent functions, that is, there is no covariance considered in the test problem.

When PUGA calculates a probability that a solution dominates another solution, it first

obtains the mean and variance of every solution in every objective function. For example,

let xi and xj be two solutions in the objective space to be compared. PUGA calculates the

mean,  E[ ]k i x , and the variance,  Var[ ]k i x , of objective function k evaluated at

solution vector xi = (x1, x2, x3, …) as follows:

 
,1 ,2 ,31 2 3E[ ] ...

k k kk i c c cx x x      x (59)

       ,1 ,2 ,3

2 2 2

1 2 3Var[ ] ...
k k kk i c c cx x x      x (60)

where
,1kc is the expected value of the first coefficient of objective function k and

,1kc is the standard deviation of the first coefficient of objective function k.

The second step is to calculate Pr{ }i jx x , that is, the probability that solution xi

dominates solution xj, using Equation (61):
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When the problem includes uncertain constraints, chance constraint model is used to

calculate the probability that the constraint is satisfied. For example, a constraint in the

form of 1 1ba x with a random right hand side b1 is converted into 1 1
1Pr{ }b  a x .

Then, 1 1Pr{ }ba x is calculated as:

1 1 1 1

1 1

1

Pr{ } Pr{ }

E[ ]

Var[ ]

b b

b

b

  

 
  
 
 

a x a x

a x (62)

If this probability is bigger than the user-defined α1 value, then the solution xi is

considered as a feasible solution. Note that when there are two or more constraints, the

solution has to satisfy all αi values for all constraints to be counted as a feasible solution.

4.5.3 Algorithm Parameters

There are some parameters that are used for genetic algorithm such as the number of

maximum generations or the crossover rate. The parameters used in PUGA for the test

problem are as follows:

 Maximum Generations: 500

 Population Size : 40
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 Crossover rate: All of the individuals in the population would be processed by a

crossover operator, but only crossover fraction of all variables would do

crossover. Default value of crossover fraction is set to 2/numVar (numVar =

Number of decision variables). There are 12 decision variables in the test

problem.

 Mutation rate: As in the crossover operator, all of the individuals in the population

would be processed by the mutation operator but only mutation fraction of all

variables would do mutation. Default value of mutation fraction is set to

2/numVar.

4.5.4 Design tests with stochastic objective function coefficients

PUGA designs are first tested with random objective function coefficients while

uncertainty of constraints is ignored, that is, expected values of constraints are used. The

risk measure is set to risk-neutral, that is, ρ1 = 0 and ρ2 = 0. Neighborhood number for

design 3 is set to 10 for each objective function so the objective space is divided into 100

cells in total.

Design 1 gives similar results to the no uncertainty (deterministic assumption) case

(Figure 36) but it provides a few more solutions that are expectedly dominated but are not

dominated probabilistically. These solutions are similar to the cases we discussed in

Section 2.4 and they are the reason we implement PUI to include uncertainty in the

algorithm.

Design 2 tends to eliminate the diversity of solutions and promotes a few solutions

over all (Figure 37). Thus, it might be better for single objective genetic algorithms.

However, the design automatically prunes solutions which is, in general, applied as a
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post-Pareto analysis technique. Therefore, this design can be useful for some multi-

objective problems, too.

Figure 36. PUGA design 1 Results

Figure 37. PUGA design 2 Results
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Design 3 also gives similar results to the no uncertainty (deterministic assumption)

case (Figure 38) but it provides more solutions that are expectedly dominated but are not

dominated probabilistically. Furthermore, neighborhood approach provides selected

solutions (red star solutions in the figure) for each neighborhood which is helpful for

post-Pareto analysis. Neighborhood approach also increases the performance of the

algorithm and helps with operators for extraction of the best solutions and selection of

parent solutions for reproduction. Overall, this design is the best option for the test

problem.

Figure 38. PUGA design 3 Results

Design 4 is similar to designs 1 and 3 with respect to Pareto results. However, the

algorithm tends to focus on a particular side of the trade-off curve where the solutions are

less uncertain. This is clearly seen with the preferred solutions chosen by the pairwise

PUI calculation. Figure 39 shows the top 5 preferred solutions with red stars and they are

all on the cost minimization side of the Pareto set. Design 4 is not very helpful for post-
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Pareto analysis but gives a good idea about where solutions are less uncertain in the

objective space.

Figure 39. PUGA design 3 Results

4.5.5 Risk Measure Tests

In order to test how the risk measure of rPUI (risk adjusted PUI) affects solutions, we

modify the test problem once again to equalize the expected value of the cost of

production and emissions for lignite and renewable sources while diverging their

standard deviations. We assume that there will be a new lignite technology with carbon

capture in the future with low expected emissions but the emissions uncertainty is high.

We also assume that there will be a new renewable technology with low expected cost

but high cost uncertainty. Table 29, Table 30 and Table 31 show the new modified

characteristics for lignite and renewable sources (RES).
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Table 29. Modified characteristics (expected values)

Production units, p Lignite RES

Expected cost of production ($/MWh) 30 30

Expected CO2 emissions 0 0

Table 30. Modified characteristics (Standard deviation of costs)

Lignite Oil Gas RES

Base 0.1 3.6 3.6 4

Middle 0.5 3.6 3.6 8

Peak 1 3.6 3.6 12

Table 31. Modified characteristics (Standard deviation of emissions)

Lignite Oil Gas RES

Base 0.2 0.1 0.1 0

Middle 0.4 0.1 0.1 0

Peak 0.8 0.1 0.1 0

In this case, if the problem is treated without uncertainty, then there are solutions with

the same expected value but different decisions. For example, the cost and emissions of

two solutions in Table 33 are the same but this can be achieved by two different vectors

of decision variables by varying generation decisions from lignite and renewable sources

(RES) as seen in the table. Furthermore, the uncertainty levels of these two solutions in

each objective function are different from each other (Table 32).

Table 32. Uncertainty levels of two solutions

Solution 1 Solution 2

Expected Cost 2,625,000 2,625,000

Expected Emissions 10,620 10,620

Cost standard deviation 139,340 175,340

Emissions standard deviation 16,180 14,180
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Table 33. Solutions with same objective values, but different decisions

Solution 1 Solution 2

Base Middle Peak Base Middle Peak

Lignite 5,400 19,200 6,400 15,400 9,200 6,400

Oil 1,000 0 0 1,000 0 0

Gas 22,000 0 0 22,000 0 0

RES 10,000 0 0 0 10,000 0

Table 34. Comparison of solutions by rPUI

Risk measure rPUI of Solution 1 rPUI of Solution 2 Selected

ρ1 = 0, ρ2 = 0 0.2500 0.2500 1 or 2

ρ1 = 1, ρ2 = 0 0.2569 0.2610 1

ρ1 = 0, ρ2 = 1 1.3945 0.9883 2

ρ1 = 1, ρ2 = 1 1.4333 1.0318 2

ρ1 = -1, ρ2 = 0 0.2438 0.2401 2

ρ1 = 0, ρ2 = -1 0.2010 0.2310 1

ρ1 = -1, ρ2 = -1 0.1960 0.2218 1

An algorithm which neglects uncertainty treats these two solutions the same, that is,

they are equally likely to be selected. However, if the uncertainty is taken into

consideration the choice of the decision maker would change. For example, a decision

maker who is risk-averse for the cost objective would prefer Solution 1 since its

uncertainty is lower than Solution 2. Table 34 gives the comparison of two solutions by

their rPUI values. ρi is the risk measure for ith objective function. If ρi is set to zero then

the risk measure is neutral. When ρi is greater than zero it is risk-averse, and when it is

less than zero it is risk-seeking. When the setting is risk-neutral for both objectives there

is no difference among two solutions so there is no selection of one over the other. When
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the second objective is set to more risk-averse or both objectives are equally risk-averse,

then Solution 2 is selected. Otherwise, Solution 1 is more preferable.

Example above demonstrates how the selection of two solutions change when they

have the same expected value for both objective functions but different uncertainty level.

We further test PUGA with the original assumptions of the test problem and different risk

preferences. PUGA design 3 is used for this test and two different risk preference sets,

risk-averse (ρ = [15 15]) and risk-seeking (ρ = [-15 -15]), are used.

Figure 40 and Figure 41 show the Pareto fronts for the risk-averse and risk-seeking

cases. Blue dots are full Pareto results and red stars are the rPUI-selected solutions for

neighborhoods. Figure 42 and Figure 43 show the decision changes between these rPUI-

selected solutions. In each graph solutions are ordered by minimization of cost. The

number in the x-axis shows the rPUI order of the solution. For example, Solution 8 in

Figure 42 is the solution with the minimum cost value among rPUI-selected solutions for

the risk-averse case but its rPUI order is the eighth.
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Figure 40. Risk-averse PUGA results

Figure 41. Risk-seeking PUGA results



130

Figure 42. Risk-averse rPUI-selected solutions

Figure 43. Risk-seeking rPUI-selected solutions
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Figure 42. Risk-averse rPUI-selected solutions

Figure 43. Risk-seeking rPUI-selected solutions
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Figure 42. Risk-averse rPUI-selected solutions

Figure 43. Risk-seeking rPUI-selected solutions
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4.5.6 Test with stochastic constraints

Constraints in the test problem are assumed as deterministic constraints. The test

problem model is subject to the following constraints:


,p l p

l

x cap for each unit p (63)


,p l l

p

x load for each load l (64)

1,3 2,1 4,2, ,and 0x x x  (65)

, 0    andp lx p l  (66)

In this section PUGA is tested with constraints where uncertainty is included. Only

Equations (63) and (64) have stochastic elements. The maximum production of unit p per

year (  pcap ) and demand in load type l ( 
lload ) are random variables with normal

distributions. Values for their means and standard deviations are presented in Table 26,

Table 27 and Table 28.

For the test problem Equations (63) and (64) are converted to the following forms:


, 1Pr{ 0}p l p

l

x cap    for each unit p (67)


, 2Pr{ 0}p l l

p

x load    for each load l (68)

The user defined αi values mean that the probability of satisfying constraint i is

greater than αi. This can also be used as a risk measure. For instance, a risk-seeking

decision maker may choose a smaller value for αi, so that the algorithm provides

solutions with more relaxed constraints. On the contrary, a risk-averse decision maker

may choose a larger value for αi, and the algorithm provides solutions with strictly

satisfied constraints.



132

In this test problem, all stochastic elements of the constraints are random variables

with normal distributions. Therefore assigning 0.5 for a αi provides the same results as in

the deterministic assumption case. From another point-of-view, in deterministic

assumption the probability of satisfying a constraint is only 0.5. For this test problem, a

risk-neutral decision maker may assume the problem is deterministic or assign 0.5 for αi

values; a risk-seeking decision maker may choose a smaller value than 0.5 for αi values;

and a risk-averse decision maker may choose a bigger value than 0.5. The algorithm is

tested in cases where αi values are changed for Equations (67) and (68).

Figure 44. Test results for Case 1, α1 = α2 = 0.4

Case 1: α1 = α2 = 0.4

The user defined αi values mean that the probability of satisfying constraint i is

greater than 0.4. Test results for the case are presented in Figure 44. The green line shows

the deterministic Pareto front and green circles are initial solutions provided to the

algorithm which are also the deterministic assumption results. The red dotted line is the

new Pareto front for the test case where α1 = α2 = 0.4 and red squared solutions are the
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preferred solutions for post-Pareto pruning. When constraints are relaxed, the Pareto front

extends to lower values for both objective functions. This is shown by red arrows in the

figure.

Table 35. Comparison of two solutions which minimizes the cost for deterministic and
stochastic case α1 = α2 = 0.4

Deterministic Stochastic

Base

Lignite 22,800 21,900

Oil 0 0

Gas 15,600 15,523

RES 0 13

Middle

Lignite 8,200 9,740

Oil 11,000 8,998

Gas 0 0

RES 0 0

Peak

Lignite 0 0

Oil 0 0

Gas 6,400 6,302

RES 0 0

Total

Lignite 31,000 31,640

Oil 11,000 8,998

Gas 22,000 21,825

RES 0 13

Production 64,000 62,477

Cost 3,075,000 2,934,744

Emissions 62,460 61,862

Table 35 shows the comparison of the two extreme solutions where the cost is

minimized for the deterministic case and the stochastic test case where α1 = α2 = 0.4.

Total production is reduced because the demand constraint is relaxed. This reduces both

the cost and emissions objective. In total, the gas and oil usage is reduced but the lignite

usage is increased. Lignite is used more than its expected limit because the limit of

maximum production per unit is relaxed by α1 = 0.4.
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Case 2: α1 = α2 = 0.45

Test results for the case are presented in Figure 45. The dotted green line shows the

deterministic Pareto front and green circles are initial solutions provided to the algorithm

which are also deterministic case results. The solid blue line is the new Pareto front for

the test case where α1 = α2 = 0.45 and red squared solutions are the preferred solutions for

post-Pareto pruning. The dotted black line is the Pareto front of the previous case where

α1 = α2 = 0.4. Constraints are less relaxed compared to the previous case but the Pareto

front still can extend to lower values for both objective functions.

Figure 45. Test results for Case 2, α1 = α2 = 0.45

Table 36 shows the comparison of the three extreme solutions where the emissions

objective is minimized for the deterministic case and two stochastic test cases where α1 =

α2 = 0.4 and α1 = α2 = 0.45. Total production is reduced in stochastic cases because the

demand constraint is relaxed. This reduces both the cost and emissions objective. In
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general, production from all units in all load types is reduced but usage of renewable

sources in peak load is slightly increased in case 1.

Table 36. Comparison of three solutions which minimizes the emissions for deterministic
and stochastic case α1 = α2 = 0.4 and stochastic case α1 = α2 = 0.4 5

Deterministic Case 1 Case 2

Base

Lignite 12,800 12,263 12,548

Oil 0 0 0

Gas 22,000 21,539 21,893

RES 3,600 3,762 3,507

Middle

Lignite 4,200 4,200 4,200

Oil 15,000 14,558 14,843

Gas 0 0 0

RES 0 0 0

Peak

Lignite 0 0 0

Oil 0 0 0

Gas 0 0 0

RES 6,400 6,376 6,400

Total

Lignite 17,000 16,463 16,748

Oil 15,000 14,558 14,843

Gas 22,000 21,539 21,893

RES 10,000 10,138 9,907

Production 64,000 62,699 63,390

Cost 3,855,000 3,790,529 3,820,820

Emissions 45,180 43,881 44,655

Case 3: α1 = 1 and α2 = 0.4

In this case only the constraint set related to the load types is relaxed (α2 = 0.4). The

maximum production limit is assumed to be deterministic (when α1 = 1, the algorithm

treats the first constraint set as deterministic). Test results for the case are presented in

Figure 46. The dotted green line shows the deterministic Pareto front and green circles

are initial solutions provided to the algorithm which are also the deterministic case

results. The solid blue line is the new Pareto front for the test case where α1 = 1 and α2 =
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0.4 and red squared solutions are the preferred solutions for post-Pareto pruning. The

dotted black line is the Pareto front of Case 1 where α1 = α2 = 0.4.

Figure 46. Test results for Case 3, α1 = 1, α2 = 0.4

Table 37 shows the comparison of the two extreme solutions, shown by red arrows in

Figure 46, where the cost is minimized for Case 3 where α1 = 1 and α2 = 0.4, and Case 1

where α1 = α2 = 0.4. Total production is reduced in these cases because the demand

constraint is relaxed. This reduces both the cost and emissions objective. In Case 1, the

model could use more lignite than it is allowed in the deterministic case but in Case 3 this

constraints is assumed to be deterministic. Therefore usage of lignite is reduced and

substituted by oil and renewable sources.
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Table 37. Comparison of two solutions which minimizes the cost for Case 1 where α1 = α2

= 0.4 and Case 3 where α1 = 1 and α2 = 0.4

Case 1 Case 3

Base

Lignite 21,900 21,105

Oil 0 0

Gas 15,523 15,352

RES 13 986

Middle

Lignite 9,740 9,750

Oil 8,998 9,004

Gas 0 0

RES 0 0

Peak

Lignite 0 0

Oil 0 0

Gas 6,302 6,400

RES 0 0

Total

Lignite 31,640 30,855

Oil 8,998 9,004

Gas 21,825 21,752

RES 13 986

Production 62,477 62,597

Cost 2,934,744 2,994,785

Emissions 61,862 60,702

Figure 47. Test results for Case 4, α1 = α2 = 0.55
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Case 4: α1 = α2 = 0.55

In this case α values are set to 0.55 which is higher than the risk-neutral case αi = 0.5.

This means that the probability of satisfying the constraints is stricter, and the decision

maker is risk-averse. Test results for the case are presented in Figure 47. The dotted green

line shows the deterministic Pareto front and green circles are initial solutions provided to

the algorithm which are also deterministic case results. The solid blue line is the new

Pareto front for the test case where α1 = α2 = 0.55 and red squared solutions are the

preferred solutions for post-Pareto pruning.

Table 38 shows the comparison of the two extreme solutions where the cost is

minimized for the deterministic case and Case 4 where α1 = α2 = 0.55. Total production is

increased in Case 4 because the demand constraint is stricter. The model uses more

renewable sources in the base load and more lignite and oil in the middle load to satisfy

the increased demand constraint. In total the production is increased 250 GWh.

Table 38. Comparison of solutions which minimizes the cost for the deterministic case
and Case 4 where α1 = α2 = 0.55

Deterministic Case 4

Base

Lignite 22,800 22,600

Oil 0 0

Gas 15,600 15,600

RES 0 200

Middle

Lignite 8,200 8,400

Oil 11,000 11,050

Gas 0 0

RES 0 0

Peak

Lignite 0 0

Oil 0 0

Gas 6,400 6,400

RES 0 0
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Total

Lignite 31,000 31,000
Oil 11,000 11,050

Gas 22,000 22,000

RES 0 200

Production 64,000 64,250

Cost 3,075,000 3,096,729

Emissions 62,460 62,496

4.5.7 Test with three objective functions

The test problem excerpted from [66] originally has three objective functions. So far

we simplified this problem into two objectives for other test purposes. In this section we

consider the third objective, too. The third objective of the problem is to minimize the

external dependence, that is, to minimize the generation amount from oil and natural gas

units:

 3 3min   = ,oil oil,l ,gas gas,l
l

dependence c x c x   (69)

where 3,pc are artificial coefficients of the third objective function for oil and natural

gas units and added arbitrarily just to include some level of uncertainty for test purposes.

3,pc are assumed to be normally distributed with an expected value of 1 and standard

deviation of 0.01.

Pareto results for the three objective function test obtained by PUGA design 3 are

presented in Figure 48 and Figure 49 for the risk-averse (ρ = [15 15 15]) and the risk-

seeking (ρ = [-15 -15 -15]) cases, respectively. As in the bi-objective tests, PUGA finds

extra solutions depending on the risk preference that were not considered in the expected

case and it also eliminates some expectedly non-dominated solutions in favor of newly

found more preferred solutions.
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Figure 48. Risk-averse results with 3 objectives

Figure 49. Risk-seeking results with 3 objectives
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4.5.8 Test with dependent objective coefficients and different distributions

Two objective functions considered in the test problem are the minimization of

production cost and the minimization of CO2 emissions:

1min  = ,p p,l
p l

cost c x  (70)

2,min  = p p,l
p l

emissions c x  (71)

where k,pc is the coefficient of decision variable xp,l in objective function k. There is

uncertainty in both of the objective functions due to the randomness of their coefficients.

In all of the previous tests a general assumption is that all the coefficients in the objective

functions are normally distributed independent random variables.

Table 39. Probability distributions of objective function coefficients

Coefficients of
Cost rate per MW generation

Distribution Parameters

Lignite 1,lignitec Gamma (51, 0.6)

Oil 1,oilc Normal (75, 3.6)

Natural Gas 1,gasc Uniform (55, 65)

RES 1,RESc Normal (90, 0.6)

Coefficients of
Emissions rate per MW generation

Distribution Parameters

Lignite 2 ,lignitec Gamma (6.275, 0.23)

Oil 2,oilc Weibull (0.83, 2.5)

Natural Gas 2,gasc Uniform (0.3, 0.6)

RES 2,RESc N/A (Constant) 0

In this section, PUGA, which uses the discrete version of the PUI, is tested with

dependent objective coefficients that have different probability distributions. Each

coefficient is a random variable with its probability distribution shown in Table 39. The
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probability distributions and their parameters are randomized for the test problem. The

correlation matrix for indicated dependencies is provided in Table 40.

Table 40. Correlation matrix of objective function coefficients

Lignite Oil Gas RES

Cost Emis. Cost Emis. Cost Emis. Cost Emis.

Lignite
Cost 1 -0.5 0.4 0 -0.2 0 0 0

Emissions -0.5 1 0 0 0 0 0 0

Oil
Cost 0.4 0 1 0 -0.8 0 0 0

Emissions 0 0 0 1 0 0 0 0

Gas
Cost -0.2 0 -0.8 0 1 0 0 0

Emissions 0 0 0 0 0 1 0 0

RES
Cost 0 0 0 0 0 0 1 0

Emissions 0 0 0 0 0 0 0 1

The discrete version of the PUI uses discrete points generated for each solution in the

objective space. Discrete points represent the randomness of each solution. For the test in

this section, we use a copula-based simulation technique to generate discrete points for

each solution. The details of this simulation technique is presented in [99]. PUGA design

3 with the discrete PUI is employed for the test case. The discrete PUI formulation is

explained in Section 3.3.

Figure 50. Discrete points generated to represent the randomness
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Figure 50 shows the expected values and discrete points generated for seven Pareto

solutions. Squares in the figure are the expected values of solutions and smaller dotted

points are discrete points generated to represent the randomness of each solution. If

parameters of the problem are assumed to be deterministic, then the high level of

uncertainty is neglected which can be a significant factor for the decision making process.

Figure 51 shows the expected values and discrete points generated for dependent case

and independent normal case for the same solution. The dependent case has the same

probability distribution assumptions of this section. Independent normal case considers

that all objective function coefficients are independent and normally distributed as in

previous sections. The importance of representing the uncertainty as realistic as possible

is obvious from this comparison. Simulating discrete points to represent the uncertainty

and using the discrete PUI formulation in PUGA help to overcome the difficulties of

representing the uncertainty and provide an effective approach for stochastic multi-

objective problems with complicated relationships among the problem parameters.

Figure 51. Dependent case (left) and independent normal case (right) for the same solution

As discussed in Section 3, if the objectives are dependent, the PUI formulation needs

several integrations. This might be impractical or very inefficient for an algorithm to run
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several generations. However, simulating the randomness and using the discrete PUI in

PUGA makes it very simple and effective to consider dependent random coefficients of

the objective functions. For the test problem in this section, neighborhood partitioning is

set to 100 and 1000 discrete points are generated for each solution of population size of

40 for each generation. PUGA completed 500 generations in 700 seconds. This is a fairly

good performance considering the information gained by including uncertainty of the

dependent coefficients. Test results for the risk-averse and the risk-seeking cases are

presented in Figure 52 and Figure 53, respectively.

Figure 52. Risk-averse results for dependent case
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Figure 53. Risk-seeking results for dependent case

4.6 Summary

Many optimization problems are multi-objective and stochastic in practice; however,

multi-objective models often use deterministic assumptions, and when uncertainty is

considered models are transformed to single objective equivalents.

In this section, PUGA, a new multi-objective stochastic genetic algorithm is

presented. PUGA incorporates the PUI model (explained in Section 3) and provides a

direct approach to solve a multi-objective stochastic problem without any transformation

of the problem. The main architecture of PUGA is built on general multi-objective

genetic algorithm design components such as Pareto ranking or elitism but preservation

of uncertainty information is accomplished by incorporating the PUI model so that the

algorithm gives the opportunity to the decision maker to observe the uncertainty of

solutions in the Pareto optimal set. Furthermore, PUGA handles stochastic constraints as

well as deterministic ones with a method that is based on a chance constraint model. This
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type of constraint handling technique based on the chance constraint method and the

user-defined αi values are also used as a risk measure. In addition to Pareto optimality,

PUGA uses the domination probability of solutions provided by the PUI model to make a

preference decision between solutions as part of post-Pareto analysis.

PUGA is tested with two modified problems first to test the performance and second

to demonstrate the workings of PUGA. Results from a simplified power generation

problem excerpted from [66] show that considering uncertainty changes the Pareto front

and the preference of solutions in the Pareto front. The modified CONSTR test problem

results, on the other hand, show that PUGA performs as well as NSGA-II in terms of

converging to the true Pareto optimal front and also in terms of maintaining a diverse

population of non-dominated solutions.
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5. The US Northeast Generation Expansion Planning (NEGEP)

The first objective of this chapter is to provide a multi-objective stochastic

optimization model for the power generation expansion planning of the Northeast region

of the United States presented in Section 5.1. This model also defines stochastic

coefficients and parameters of the problem. The stochastic parameters are classified

according to their uncertainty type. Aleatory and epistemic uncertainty modeling of the

problem is explained in Section 5.2. The stochastic nature of the problem is due to the

uncertainties in the economy, climate change and technological progress. Uncertainties

due to the economy are included by modeling cost parameters as random variables with

normal distributions. Uncertainties due to climate change and technological progress are

modeled via scenarios. There are six scenarios: a reference scenario and five alternative

scenarios considering climate change and technological progress. Section 5.3 gives

details of the US Northeast GEP (NEGEP) model and the reference scenario where

climate change effects are considered insignificant with respect to the beginning of the

planning horizon and technological progress is assumed to be the business-as-usual, that

is, there is only normal progress. Section 5.4 explains how the remaining five scenarios

are defined. The scenarios consider two technological levels, namely, reference

(business-as-usual) and advanced progress levels. The amount of climate change is

considered in three different levels, namely, reference (no significant climate change),

medium change and high change (Table 41). Objective function cost and emissions

parameters are adjusted in every scenario so that the dependency of objective functions is

assured. There is a trade-off between the number of scenarios and complexity. The

number of scenarios can be increased by including more levels of climate change and
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technological progress but it also increases the complexity of the problem and

computation time.

Table 41. Scenarios

Climate
Change

Technological Progress

Normal Progress Advanced

No Change Reference (Scenario 1) Scenario 4

Medium Scenario 2 Scenario 5

High Scenario 3 Scenario 6

The second objective of this chapter is to provide input data and assumptions for the

NEGEP model. The data of this problem is collected from various sources, mainly from

reports of Eastern Interconnection Planning Collaborative (EIPC) [100], National

Renewable Energy Laboratory (NREL) [101], Environmental Protection Agency (EPA)

[102], Energy Information Administration (EIA) [103]. Reference scenario modeling,

assumptions and data are based on the base scenario of [37]. Other scenarios and

assumptions are based on literature review and expert judgments [104-108].

The final objective of the chapter is to solve the NEGEP problem to find Pareto

solutions for cost and CO2 emissions objectives. PUGA design 3 (with neighborhood

approach) is used to solve the problem. Sections 5.8, 5.9, 5.10 and 5.11 provide various

results and comparisons of these results for the NEGEP model.

5.1 Multi-objective Stochastic NEGEP

The NEGEP model used in this chapter is similar to the example of the multi-

objective stochastic model provided in Section 2.1.1 and details of the model equations

can be found in that section. Two objectives are considered in the NEGEP model. The

first objective function is to minimize the net present value of total cost, which consists of
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generation cost, investment cost, and fixed operation and maintenance cost. The second

objective function is to minimize the total CO2 emissions.

Decision variables in the NEGEP model are generation amount (MWh) of generation

units in all regions in each time period of every year of the planning horizon, investment

amount (integer units) of generation units in all regions in every year of the planning

horizon, and transmission amount (MWh) between regions in each time period of every

year of the planning horizon. Generation and transmission decisions are continuous

variables and investment decisions are integer variables, and thus, the NEGEP model is a

Mixed Integer Linear Program (MILP).

The NEGEP model considers the supply-demand constraint that ensures that the

model satisfies the demand of each region in each time period with generation from all

units and transmission from other regions. There is also the capacity constraint which

states that the model cannot generate electricity over the built capacity. The reserve

margin requirement is modeled as the third constraint. This constraint is a necessity of

reliability and ensures that the built capacity is greater than or equal to the peak demand

capacity plus the capacity added due to the reserve margin requirement. The annual and

total construction limit of each generation unit, transmission limit between regions and

the non-negativity of generation, investment and transmission decision variables are

ensured by upper and lower bounds in genetic algorithm modeling, therefore, they are not

modeled as constraints in the NEGEP model.

5.2 Aleatory and Epistemic Uncertainty Modeling in NEGEP

In this section the stochastic parameters of the NEGEP model are classified according

to their uncertainty type, i.e. aleatory or epistemic. Uncertainty representation of each
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parameter is also discussed. Classification and representation of considered parameters

(peak and annual total demand, cost coefficients, reserve margin, capacity and derate

factors and emissions rates of technologies) are summarized in Table 42 and they are

explained in the following sub-sections.

Table 42. Classification and representation of stochastic NEGEP parameters

GEP Variable Symbol Uncertainty Type Representation

Peak demand Epistemic Scenarios

Reserve margin Epistemic Scenarios

Availability factor Epistemic Scenarios

Derate factor Epistemic Scenarios

Emissions amount of
technologies

Epistemic
Normal

Distribution

Operation cost Aleatory
Normal

Distribution

Maintenance cost Aleatory
Normal

Distribution

Investment cost Aleatory
Normal

Distribution

Generation cost Aleatory
Normal

Distribution

Total demand Aleatory Scenarios

5.2.1 Parameters with aleatory uncertainty

Total demand of each region in each time period ( ): There is sufficient historical

data for total annual demand and its variability so it is reasonable to assume a probability

density function for annual demand. On the other hand, annual demand uncertainty

affects constraints, and from the modeling aspect, it is often easier to model the constraint
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uncertainties with scenarios. In this study uncertainty of total yearly demand of each

region is modeled in scenarios.

Fixed operation cost ( ), maintenance cost ( ), investment cost ( ),

generation cost ( ): Costs are often assumed to be continuous random variables, which

have associated probability density functions. The use of a symmetrical distribution is

justifiable for the variability of costs in long-term planning because an increase or a

decrease is likely to occur on either side of the expected cost in the long-term. Therefore

costs are modeled with normal distribution in this study.

5.2.2 Parameters with epistemic uncertainty

Peak demand ( ): Although annual total demand is classified as aleatory

uncertainty and can be modeled with probability distributions, peak demand is classified

as epistemic uncertainty because changes in peak demand are highly affected by weather

variability and climate change and these are hard to predict, and modeling their

variability with probability distributions is not very realistic. For example, The PJM

(Pennsylvania - New Jersey - Maryland Interconnection) demand curve for January 7,

2014, was 35,000 MW higher than typical of a January peak load [109]. Figure 54 shows

the difference between the expectation and the realization of the daily demand and peak

demand for the PJM on January 7, 2014. On this particular day the weather was

unexpectedly cold due to a phenomenon called polar vortex and the demand for

electricity due to heating needs was also unexpectedly high. This kind of unexpected

extreme weather and climate events make the associated uncertainty of system

parameters epistemic.
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Figure 54. PJM peak demand expectation (green line) and realization (blue line) on January 7, 2014

Reserve margin ( ), availability factor ( ) and derate factor ( ): Reserve

margin is the percent of excess capacity to maintain reliability in electric power systems.

For instance, a reserve margin of 15% means that available generation capacity is 15%

more than the expected peak demand. Reserve margin is a parameter to be assigned for

each region.

Availability factor is the potential availability of each generation unit, as an upper

bound of generation output [37]. For example, a wind turbine with availability factor of

20% means at most 20% of the time the wind turbine can work due to insufficient wind

power or other conditions.

Derate factor is a reduction rate in the available capacity of an electric generating

unit, commonly due to a system or equipment modification or environmental,

operational, or reliability considerations [103]. For example, the onshore class 3 wind

turbine (WT_on3) has a derate factor of 0.1781 during summer peak in NEISO, which

means at most 17.81% of time the wind turbine can work due to insufficient wind power

or other conditions [37].

rm trip ti
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These NEGEP parameters have uncertainty mainly due to technological development

and climate change. For example, extreme climate events are likely to increase

transmission and generation losses in the system. Therefore, there is uncertainty in

reserve margin due to the climate change. Uncertainty of technological progress and

climate change is difficult to forecast and they have unpredictable variability due to a

number of volatile factors. Hence, these uncertainties are classified as epistemic

uncertainties and uncertainty of the associated variables are modeled by scenarios.

Emissions amount of technologies ( ): Only CO2 emissions from different types of

generation technologies are considered in the NEGEP model. CO2 emissions of

technologies are dependent on the technology used and the uncertainty associated with

the parameter is due to the uncertainty in the technological development in the future. As

discussed before, the uncertainty of technological progress is hard to forecast. Thus, the

uncertainty is classified as epistemic but for modeling purposes and to provide explicit

information about uncertainty and risk of the Pareto solutions to the decision maker, this

parameter is modeled with a normal distribution.

5.3 Reference Scenario

Reference scenario modeling, assumptions and data are based on the base scenario in

[37]. The planning horizon is from 2015 to 2040. The year is divided into three seasons

(summer, winter, and spring/fall) and the related time periods in the model are summer-

peak, summer-offpeak, winter-peak, winter-offpeak, shoulder-peak and shoulder-offpeak.

The summer is defined from May through September. The winter includes December,

January and February. Spring and fall is combined and named as shoulder in the study,

ik
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which includes March, April, October, and November. The corresponding number of

hours in the time periods in a year is provided in Table 43.

Table 43. Hours in time periods

Summer-peak 1749

Summer-offpeak 1923

Shoulder-peak 1394

Shoulder-offpeak 1534

Winter-peak 1029

Winter-offpeak 1131

The regions considered in this study are the same with [37]: NEISO, NYISO_A-F,

NYISO_G-I, NYISO_J-K, PJM_E, PJM_ROM, PJM_ROR. These regions are the

Regional Transmission Organizations (RTO) in the Eastern Interconnection grid of North

America, namely, NEISO-Independent System Operator of New England, NYISO-New

York Independent System Operator, PJM-PJM Interconnection. New York state is

divided into eleven sub-regions (A-K), we consider Upstate (A-F), Lower Hudson Valley

(G-I), New York City/Long Island (J-K) as three big sub-regions. We consider PJM

Eastern Mid-Atlantic Area Council (NJ, DE, east MD), PJM Rest of Mid-Atlantic Area

Council (east PA, DC, west MD), PJM Rest of Regional Transmission Operator (north

IL, OH, west PA, west MD, WV, VA, east NC) as three big sub-regions.

The existing, new and renewable generation technology types are shown in Table 55

in Appendix I. This study uses the same technology types with [37]. Table 56 and Table

57 in Appendix I summarize the technical and cost characteristics of generation

technologies for the reference scenario, respectively. It is assumed that existing or already

planned and under construction (forced new) generation plant investment costs are sunk
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and are not included in the result. Investment costs are not listed for some technologies

that are not allowed to be invested in the future. Costs and emissions rates are assumed to

be normal random variables and expected values of parameters and outage rates are from

[37]. Standard deviations are calculated based on data and assumptions of several

references [37;100;101;104-108] and expert judgments. Table 58 in Appendix I gives the

existing capacity at the beginning of the planning horizon. The information is gathered

from [37;100].

Table 44 and Table 45 present the electricity demands and peak demands at the

beginning of the planning horizon and projected growth rates for the reference scenario,

respectively. The data for demand and peak demand for the reference scenario is the

same with base scenario of [37] and the data is mainly from [100].

Table 44. Electricity demands (GWh) and peak demands (MW) in 2010

Time Periods NEISO NYISO_A-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR

Summer-peak 30,115 14,710 5,048 19,759 38,078 35,124 124,635

Summer-offpeak 23,953 12,918 4,001 15,185 29,507 28,614 102,943

Shoulder-peak 20,773 10,908 3,266 12,162 23,305 23,731 84,720

Shoulder-offpeak 18,014 9,985 2,858 10,495 20,819 21,511 78,294

Winter-peak 16,628 8,687 2,601 9,229 18,642 19,527 68,549

Winter-offpeak 14,608 8,021 2,329 8,196 16,948 17,856 63,614

Peak (MW) 26,043 11,455 4,356 17,030 32,910 27,332 99,146

Table 45. Electricity load growth rate

NEISO NYISOA-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR

Annual load
growth

2010-2020 0.23% 0.2% 0.14% 0.39% -0.98% 0.86% 0.4%

2021-2040 0% 0.51% 0.85% 0.88% 0.67% 0.67% 0.61%

Peak load
growth

2010-2020 0.49% 0.1% -0.09% 0.1% -0.92% 0.71% 0.42%

2021-2040 0.12% 0.51% 0.85% 0.88% 0.67% 0.67% 0.61%

Derate factor is a discount rate in the available capacity of an electric generating unit,

commonly due to a system or equipment modification or environmental, operational, or

reliability considerations [103]. For example, the onshore class 3 wind turbine has a
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availability factor of 0.1781 during summer peak in NEISO, which means that 17.81% of

time the wind turbine can work due to insufficient wind power or other conditions [37].

Derate factors for wind turbines in NEISO region are provided in Table 46 as an

example. Data for derate factors of all generation units are derived from and can be found

in [100;101].

Table 46. NEISO wind turbine derate factors

NEISO WT WT_on3 WT_on4 WT_off

summer-peak 19.50% 17.81% 21.18% 41.85%

summer-offpeak 25.81% 23.31% 28.31% 40.46%

shoulder-peak 31.96% 28.95% 34.96% 44.63%

shoulder-offpeak 33.18% 29.78% 36.57% 44.24%

winter-peak 42.00% 37.92% 46.07% 54.28%

winter-offpeak 41.83% 37.83% 45.83% 52.06%

Electric power systems have excess capacity available than may be required to

maintain reliability. This is called the reserve margin and it is the ratio of capacity minus

peak demand over peak demand, where capacity is the expected maximum available

supply. For instance, a reserve margin of 0.15 means available generation capacity must

be 15% more than the expected peak demand [103]. Reserve margin requirements for

each region can be found in [100].

Transmission within regions is also considered but transmission to and from Canada

and other states are neglected, and transmission losses are not included. Transmission

capacity within regions is provided in Table 47 [100]. Transmission capacity remains

constant throughout the planning horizon, that is, there will be no new transmission line

investment.
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Table 47. Transmission capacity (MW)

Regions NEISO NYISO_A-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR

NEISO - 600 600 430 - - -

NYISO_A-F 600 - 4,250 - - 1,000 -

NYISO_G-I 600 1,999 - 6,130 1,500 - -

NYISO_J-K - - 1,999 - - - -

PJM_E - - 500 330 - 8,000 -

PJM_ROM - 2,000 - - 8,000 - 8,000

PJM_ROR - - - - - 8,000 -

5.4 Climate Change and Technological Progress Scenarios

The remaining five scenarios are formed as in Table 48. There are two technological

levels considered in this study, namely, reference (business-as-usual) and advanced

progress levels. Climate change is considered in three different levels, namely, reference

(no significant climate change), medium change and high change levels.

Table 48. NEGEP Scenarios

Climate
Change

Technological Progress

Normal Progress Advanced

No Change Reference (Scenario 1) Scenario 4

Medium Scenario 2 Scenario 5

High Scenario 3 Scenario 6

Reference scenario is not a frozen scenario but it considers the business-as-usual case

for technological progress where there is no significant climate change expected in the

future. Scenarios 2 and 3 assume normal (business-as-usual) progress in technology but

medium level and high level changes in climate, respectively. Scenarios 4, 5 and 6

assume advanced progress in technology but climate change levels differ; being no

significant change, medium level and high level changes, respectively.
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Climate change effects on power systems are studied in [37] reviewing a wide range

of literature. Three major climate variables (temperature, precipitation and extreme

weather events) are identified to have effects on six parameters of the generation

expansion model, namely, demand, peak demand, derate factor, transmission capacity,

reserve margin and outage rate. This study uses the results and assumptions of [37] to

define climate change effects of Scenarios 2, 3, 5 and 6. For example, Table 59 in

Appendix I presents the percentage change in climate variables corresponding to the

considered climate change levels in Scenarios 2, 3, 5 and 6 with respect to the beginning

of the planning horizon. Table 60 in Appendix I presents the percentage change in GEP

parameters corresponding to the considered climate change levels in Scenarios 2, 3, 5 and

6 with respect to the beginning of the planning horizon.

Table 49. Yearly percentage change in GEP parameters with respect to reference case due
to advanced level technological progress

Unit Type Investment Cost Fixed O&M Cost Emissions rate Derate

CC -0.75% -0.75% -0.55% 0.55%

CT -0.75% -0.75% -0.55% 0.55%

GEO 0.00% 0.32% - 0.32%

LFG -0.75% -0.75% -0.55% 0.55%

NU -0.18% -0.18% - -

PV -1.47% -0.37% - 2.00%

Wind Turbines -0.36% -0.12% - 1.73%

IGCC -0.75% -0.75% -0.31% 0.31%

IGCC_seq -0.75% -0.75% -0.31% 0.31%

AC -0.75% -0.75% -0.31% 0.31%

Biomass -0.38% -0.38% -0.32% 0.32%

In this study, costs and efficiencies of generation units are considered to be affected

by the technological progress. An increase in efficiency of a generation unit increases the
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derate factor and decreases the emissions rate of the unit. Yearly percentage change in

parameters with respect to the reference case due to advanced level technological

progress is presented in Table 49. Data and assumptions are based on [104-108].

5.5 Solution and Decision Process of PUGA with Scenarios

The solution and decision process of PUGA with the given scenarios in the previous

sections and formed decision profiles and robust Pareto fronts (RPF) in the next sections

are explained in the process chart given in Figure 55.

Figure 55. Solution and Decision Process of PUGA with Scenarios

Uncertainties due to climate change and technological progress are modeled via

scenarios. Uncertainties due to the economy are included by modeling cost parameters as

random variables with normal distributions. Objective function cost and emissions

coefficients are adjusted in every scenario so that each scenario is internally consistent.

For example, both the cost coefficients and emissions coefficients of objective functions

are adjusted in advanced technology scenarios so that they are both lower than normal

technological progress scenarios. PUGA finds non-dominated Pareto solutions for each

decision profile after forming robust cases according to the given probabilities of

scenarios and risk preferences of each decision profile. Comparisons of results are
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provided between decision profiles and different risk preference cases in the next

sections.

5.6 Decision Profiles

Three decision maker profiles are formed to provide an easy comparison of results of

different preferences of risk. The first decision profile is risk-neutral where the reference

scenario (S1) is assumed to occur in the future and the decision maker is risk-neutral for

both objectives; cost and emissions. Therefore the risk preference is set to zero for both

objectives, ρ = [0 0]. The risk-averse decision profile assumes higher probability for the

worst case scenario (S3) and risk-averse in both objectives, that is, the risk preference

vector ρ = [15 15]. The risk-seeking decision profile assumes higher probability for the

best case scenario (S4) and risk-seeking in both objectives, that is, the risk preference

vector ρ = [-15 -15]. These decision profiles are created only for easy presentation

purposes and can be extended to any risk preference and scenario combination.

5.7 Robust Pareto Fronts

The risk-averse decision profile assumes higher probability for the worst case

scenario (S3) and the risk-seeking decision profile assumes higher probability for the best

case scenario (S4). Therefore two compromise and robust Pareto fronts (RPF) S7 and S8

are formed for each decision profile. Table 50 presents the assumed probabilities for each

case. Robust Pareto fronts are created to provide robust and compromise solutions that

consider all of the scenarios.

Objective function and constraint coefficients and parameters are calculated using the

given probabilities in Table 50 and equations (72) and (73).
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, ,min =m i m i s s
i s

f x c p (72)

, , ,s i j s i s j s
i s s

p a x p b j   (73)

where mf is the mth objective function, ix is the ith decision variable, , ,m i sc is the ith

coefficient of the mth objective function in scenario s, sp is the probability of scenario s,

, ,i j sa is the ith coefficient of the jth constraint in scenario s and ,j sb is the right-hand side

parameter of the jth constraint in scenario s.

Table 50. Probability of scenarios for RPF S7 and S8

Scenarios Probabilities for RPF S7 Probabilities for RPF S8

1 0.1 0.1

2 0.1 0.1

3 0.5 0.1

4 0.1 0.5

5 0.1 0.1

6 0.1 0.1

5.8 No Risk Preference Case

In this section results for the no risk preference case are presented, that is, uncertainty

in the objective space is neglected but scenarios are still in consideration. Table 51 shows

the objective function values and comparisons for the cost minimization solutions for all

scenarios and robust Pareto fronts. Cost increases due to climate change effects in

scenarios 2, 3 and 5 but decreases in scenarios 4 and 6 due to technology advancement.

Emissions are only decreased in advanced technology scenarios 4, 5 and 6.
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Table 51. Cost and emissions comparisons of cost minimization solutions for all scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Cost ($) 6.392E+11 6.493E+11 6.810E+11 6.315E+11

Emissions (lbs) 4.168E+13 4.194E+13 4.262E+13 3.945E+13

Cost Change from Scenario 1 0.00% 1.57% 6.54% -1.20%

Emissions Change from
Scenario 1

0.00% 0.62% 2.25% -5.36%

Cost Variance 1.844E+21 1.861E+21 1.887E+21 1.747E+21

Emissions Variance 1.791E+25 1.821E+25 1.896E+25 1.627E+25

Scenario 5 Scenario 6 RPF S7 RPF S8

Cost ($) 6.405E+11 6.711E+11 6.626E+11 6.431E+11

Emissions (lbs) 3.906E+13 3.874E+13 4.068E+13 4.002E+13

Cost Change from Scenario 1 0.20% 4.98% 3.65% 0.60%

Emissions Change from
Scenario 1

-6.30% -7.07% -2.41% -3.99%

Cost Variance 1.710E+21 1.647E+21 1.774E+21 1.758E+21

Emissions Variance 1.593E+25 1.568E+25 1.715E+25 1.666E+25

Figure 56. Pareto front comparison of all scenarios (no risk preference)
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Figure 56 presents non-dominated solutions for all scenarios for the no risk

preference case. Scenario 3 gives the highest cost and solutions for both objectives

because it is the worst case scenario and scenario 4 is the best case scenario and gives the

lowest cost and emissions solutions for both objectives.

Figure 57 and Figure 58 present minimization of cost solution generation and

investment results and comparisons for all scenarios and robust Pareto fronts for the no

risk preference case, respectively. Figure 59 and Figure 60 shows more detailed

generation and investment comparisons for specific generation units between scenarios

and robust Pareto fronts. Generation from coal decreases and generation from wind

increases from scenario 1 through scenario 6 with the help of technological advancement

in renewable energy sources and due to the efficiency decreasing effects of climate

change on thermal technologies.

Figure 57. Generation levels of cost minimization solutions for all scenarios and RPF S7 and S8
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Figure 58. Investment levels of cost minimization solutions for all scenarios and RPF S7 and S8

Figure 59. Coal, renewable and nuclear generation levels for all scenarios and RPF S7 and S8
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Figure 58. Investment levels of cost minimization solutions for all scenarios and RPF S7 and S8

Figure 59. Coal, renewable and nuclear generation levels for all scenarios and RPF S7 and S8
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Figure 60. Combustion turbine, wind and geothermal units investment levels for all scenarios and RPF S7
and S8

5.9 Comparison of Decision Profiles

In this section, results and comparisons of decision profiles are presented. Decision

profiles are created as demonstrations and can be extended to any risk preference and

scenario combination. In a sense, a certain scenario or a robust Pareto front is associated

with a risk preference vector ρ to test how the decision of investment and generation

changes among different profiles. This section provides results for three decision profiles,

namely, risk-neutral, risk-averse and risk-seeking decision profiles.

Figure 61 shows the non-dominated solutions for decision profiles. Although risk-

neutral decision profile does not consider any risk preference, PUGA still sorts all

solutions according to their PUI values to provide more information for the decision
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process. Solutions with star markers in the figure are the neighborhood risk selected

solutions for each decision profile.

Figure 61. Pareto fronts for different decision profile results

Figure 62 shows the minimization of cost solutions for reference scenario (S1) and

robust Pareto fronts S7 and S8 and the top risk selected solutions for each decision profile

on the objective space. When risk preferences are taken into account, PUGA favors

solutions on the emissions side of the trade of curve, that is, solutions with high cost but

low emissions. Table 52 presents cost and emissions comparisons of the minimization of

cost solutions and the top risk selected solutions. The risk-averse decision profile selects

a solution with lower uncertainty for both cost and emissions although the expected cost

is higher than the solution selected in the risk-neutral case. On the other hand, risk-

seeking decision profile favors a solution with lower expected cost. Furthermore, cost

variance is high which means that cost can be even lower in the future, so taking risk in

favor of cost and ignoring the high emissions level compared to the risk-averse case.
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Figure 62. Minimization of cost and top risk selected solutions for each decision profile

Table 52. Cost and emissions comparisons of top risk selected solutions for each decision
profile

Minimization of cost solutions Min Cost S1
Min Cost

RPF S7

Min Cost

RPF S8

Cost 6.392E+11 6.626E+11 6.431E+11

Emissions 4.168E+13 4.068E+13 4.002E+13

Cost Change from Risk Neutral -23.89% -21.11% -23.44%

Emissions Change from Risk Neutral 227.45% 219.56% 214.40%

Cost Standard Deviation 4.294E+10 4.212E+10 4.192E+10

Emissions Standard Deviation 4.232E+12 4.142E+12 4.082E+12

Decision Profiles Risk Neutral Risk Averse
Risk

Seeking

Cost 8.399E+11 9.587E+11 7.870E+11

Emissions 1.273E+13 7.920E+12 1.433E+13

Cost Change from Risk Neutral 0.00% 14.14% -6.31%

Emissions Change from Risk Neutral 0.00% -37.78% 12.59%

Cost Standard Deviation 1.414E+10 8.576E+09 1.906E+10

Emissions Standard Deviation 2.421E+12 1.838E+12 1.840E+12
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Figure 63 and Figure 64 present the generation and investment levels of top risk

selected solutions for each decision profile, respectively. Nuclear investment and

generation decrease both in risk-averse and risk-seeking profiles compared to risk-neutral

profile. Generation from renewable sources and investment in renewable technologies,

however, increase with inclusion of risk preference. Figure 65 shows this change for

nuclear and wind investment levels.

Figure 63. Generation levels of top risk selected solutions for each decision profile
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Figure 64. Investment levels of top risk selected solutions for each decision profile

Figure 65. Nuclear and wind investment levels of top risk selected solutions for each decision profile
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Figure 64. Investment levels of top risk selected solutions for each decision profile

Figure 65. Nuclear and wind investment levels of top risk selected solutions for each decision profile
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Figure 64. Investment levels of top risk selected solutions for each decision profile

Figure 65. Nuclear and wind investment levels of top risk selected solutions for each decision profile
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Figure 66. Change in cost between top 20 risk selected solutions of the risk-neutral, risk-averse and
risk-seeking decision profiles

Figure 66 displays changes in cost between top 20 risk selected solutions of the risk-

neutral, risk-averse and risk-seeking decision profiles. Figure 67 is similar but displays

emissions change. These graphs show the competing nature of cost and emissions

objectives of the problem.
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Figure 67. Change in emissions between top 20 risk selected solutions of the risk-neutral, risk-averse
and risk-seeking decision profiles

Figure 68 is a comparison of coefficients of variation (CV) for cost and emissions

objectives, and it shows that uncertainty level and expected values of both objectives are

competing. When this figure is compared to Figure 66 and Figure 67, it is observed that if

the expected value of an objective function is minimized, then the uncertainty level

increases.
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Figure 67. Change in emissions between top 20 risk selected solutions of the risk-neutral, risk-averse
and risk-seeking decision profiles

Figure 68 is a comparison of coefficients of variation (CV) for cost and emissions

objectives, and it shows that uncertainty level and expected values of both objectives are

competing. When this figure is compared to Figure 66 and Figure 67, it is observed that if

the expected value of an objective function is minimized, then the uncertainty level

increases.
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Figure 67. Change in emissions between top 20 risk selected solutions of the risk-neutral, risk-averse
and risk-seeking decision profiles

Figure 68 is a comparison of coefficients of variation (CV) for cost and emissions

objectives, and it shows that uncertainty level and expected values of both objectives are

competing. When this figure is compared to Figure 66 and Figure 67, it is observed that if

the expected value of an objective function is minimized, then the uncertainty level

increases.
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Figure 68. Comparison of coefficients of variation (CV) for cost and emissions objectives

Figure 69 and Figure 70 display the change in generation and investment levels of

units between top 20 risk selected solutions of the risk-neutral, risk-averse and risk-

seeking decision profiles. In the risk-neutral profile, reference scenario is assumed to be

occurring in the future. Therefore, generation levels of nuclear for all solutions are the

highest. However, generation from renewable sources is always below 30% of the total

generation. Generation from wind units is the lowest in the risk-neutral profile. For

investment decisions, the risk-neutral profile has the highest level of nuclear investment.

Renewable source investments in the risk-neutral profile are less than the others.
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In the risk-averse profile, nuclear generation is still high but generation from

renewable sources is over 30% of the total generation for all solutions. Generation from

wind in average doubles the levels of the risk-neutral profile. The major difference from

the risk-neutral profile is in investment levels. Nuclear investment on average is cut in

half and renewable investment increased by 30% on average. Renewable sources, mainly

wind units, make more than 80% of the total investment in almost all solutions.

Figure 69. Change in generation levels of units between top 20 risk selected solutions of the risk-
neutral, risk-averse and risk-seeking decision profiles.

In the risk-seeking profile, nuclear generation is decreased further to 30% of the total

generation. Renewable sources surpass the nuclear generation in all solutions and make
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up almost half of the total generation. Generation from wind units in average is 25% of

the total. Nuclear investment in the risk-seeking profile is almost reduced to zero. More

than 90% of all investment is from renewable sources for the most of the risk selected

solutions. Share of wind units in renewable sources are the highest of all profiles,

comprising almost all of the renewable investment.

Figure 70. Change in investment levels of units between top 20 risk selected solutions of the risk-
neutral, risk-averse and risk-seeking decision profiles.

In all profiles, coal and CC (combined cycle natural gas) have steady shares of

generation levels. CC is used at 10% on average. Coal is not usually chosen for the top

five or six solutions of any risk profile but in most of the solutions it has up to a 30%

share of the total generation. Share of coal tends to decrease with risk ranking of
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solutions. Neither coal nor CC is preferred for investment in any risk profiles. Generation

and investment are dominated by nuclear and wind units in all profiles.

5.10 Scenario Comparisons

In this section, all scenarios are compared according to the risk preferences of both

objectives. In the previous section, certain scenarios are assumed to be realized in the

future and decision profiles are tested. In this section, we fix the risk preference vector ρ

and vary the scenarios. The risk-averse preference compares all scenarios when the risk

preference vector ρ is set to risk aversion for both objective functions, that is, ρ = [15 15].

The risk-seeking preference compares all scenarios when the risk preference vector ρ is

set to risk seeking for both objective functions, that is, ρ = [-15 -15].

5.10.1 All scenarios with risk-averse preference, ρ = [15 15]

When ρ = [15 15], risk preference is set to risk-averse in both objectives, cost and

CO2 emissions. In this section, all scenarios are compared with ρ = [15 15]. Figure 71

presents non-dominated and neighborhood risk selected solutions for all scenarios for the

risk-averse preference. In the figure, there are 40 Pareto and 10 risk selected solutions for

each scenario, and in total 320 solutions. It is impractical to compare them all, even with

neighborhood pruning. Therefore, we confine our comparison to the top risk selected

solutions of each scenario. The top risk selected solutions are the solutions with the

lowest PUI value among the 40 Pareto solutions of each scenario.

Figure 72 and Figure 73 present generation and investment results and comparisons

of the top risk selected solutions for all scenarios and robust Pareto fronts. Figure 74 and

Figure 75 show more detailed generation and investment comparisons for specific

generation units between scenarios and robust Pareto fronts to easily observe the change
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in major decisions. Generation and investment decisions mainly change between nuclear

and renewable sources due to the technological progress assumptions of scenarios.

Scenarios and Pareto front with advanced technologies (S4, S5, S6 and S8) have higher

levels of renewable generation and investment. However, generation from nuclear, and

investment in nuclear is lower in those scenarios. As soon as the cheap and efficient

renewables are available, they replace the nuclear investment and generation. Wind

investment in particular is almost the only investment option (over 90% of total) when

advanced technology is available. Generation from coal units, on the other hand, remains

at similar levels through all scenarios.

Figure 71. Pareto front comparison of all scenarios, ρ = [15 15]
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Figure 72. Generation levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [15 15]

Figure 73. Investment levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [15 15]
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Figure 72. Generation levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [15 15]

Figure 73. Investment levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [15 15]
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Figure 72. Generation levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [15 15]

Figure 73. Investment levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [15 15]
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Figure 74. Coal, renewable and nuclear generation levels of the top risk selected solutions for all scenarios
and RPF S7 and S8, ρ = [15 15]

Figure 75. Nuclear and wind investment levels of the top risk selected solutions for all scenarios and RPF
S7 and S8, ρ = [15 15]
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Figure 74. Coal, renewable and nuclear generation levels of the top risk selected solutions for all scenarios
and RPF S7 and S8, ρ = [15 15]

Figure 75. Nuclear and wind investment levels of the top risk selected solutions for all scenarios and RPF
S7 and S8, ρ = [15 15]

178

Figure 74. Coal, renewable and nuclear generation levels of the top risk selected solutions for all scenarios
and RPF S7 and S8, ρ = [15 15]

Figure 75. Nuclear and wind investment levels of the top risk selected solutions for all scenarios and RPF
S7 and S8, ρ = [15 15]
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5.10.2 All scenarios with risk-seeking preference, ρ = [-15 -15]

When ρ = [-15 -15], the risk preference is set to risk-seeking in both objectives, cost

and CO2 emissions. In this section, all scenarios are compared with ρ = [-15 -15]. Figure

76 presents non-dominated and neighborhood risk selected solutions for all scenarios for

the risk-seeking preference. Again, we confine our comparison to the top risk selected

solutions of each scenario. The top risk selected solutions are the solutions with the

lowest PUI value among the 40 Pareto solutions of each scenario.

Figure 76. Pareto front comparison of all scenarios, ρ = [-15 -15]

Figure 77 and Figure 78 present generation and investment results and comparisons

of the top risk selected solutions for all scenarios and robust Pareto fronts. Figure 79 and

Figure 80 show more detailed generation and investment comparisons for specific

generation units between scenarios and robust Pareto fronts to easily observe the change
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in major decisions. Similar to the previous section results, generation and investment

decisions mainly change between nuclear and renewable sources due to the technological

progress assumptions of scenarios. Generation from coal units in the risk-seeking

preference again remains at similar levels (below 10%) through all scenarios but it is

lower compared to the risk-averse case results (average 15%).

Figure 77. Generation levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [-15 -15]
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Figure 78. Investment levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [-15 -15]

181

Figure 78. Investment levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [-15 -15]
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Figure 78. Investment levels of the top risk selected solutions for all scenarios and RPF S7 and S8
ρ = [-15 -15]
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Figure 79. Coal, renewable and nuclear generation levels of the top risk selected solutions for all scenarios
and RPF S7 and S8, ρ = [-15 -15]

Figure 80. Nuclear and wind investment levels of the top risk selected solutions for all scenarios and RPF
S7 and S8, ρ = [-15 -15]
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Figure 79. Coal, renewable and nuclear generation levels of the top risk selected solutions for all scenarios
and RPF S7 and S8, ρ = [-15 -15]

Figure 80. Nuclear and wind investment levels of the top risk selected solutions for all scenarios and RPF
S7 and S8, ρ = [-15 -15]
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Figure 79. Coal, renewable and nuclear generation levels of the top risk selected solutions for all scenarios
and RPF S7 and S8, ρ = [-15 -15]

Figure 80. Nuclear and wind investment levels of the top risk selected solutions for all scenarios and RPF
S7 and S8, ρ = [-15 -15]



183

5.11 Risk Preference Comparisons on the Robust Pareto Front S7

In the previous sections, first, decision profiles are compared where a certain scenario

or a robust Pareto front is assumed to be realized in the future, and later risk preferences

are kept constant while scenarios are compared. In this section risk preferences of

objective functions are compared on the robust Pareto front S7 which is a compromise

trade-off curve of all scenarios with the probability of the worst case scenario (S3) being

the highest. Assumed probabilities of scenarios to form robust Pareto front S7 are shown

in Table 53. The objective in this section is to keep the robust Pareto front S7 constant

and to vary the risk preference vector ρ to test how the selection of a solution on the

Pareto front and decision of investment and generation changes.

Table 53. Probability of scenarios for RPF S7

Scenarios Probability
1 0.1
2 0.1
3 0.5
4 0.1
5 0.1
6 0.1

Figure 81 shows the top risk selected solutions for different risk preference vectors.

When the risk preference of an objective function is greater than zero, risk preference is

on the risk-averse side and when it is less than zero risk preference is on the risk-seeking

side. For example, ρ = [15 -15] means preference is risk-averse for the cost objective and

it is risk-seeking for the emissions objective.
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Figure 81. Risk Preference Comparisons on the RPF S7

When we only consider the minimization of cost neglecting the uncertainty and the

emissions objective, the cost is minimized subject to constraint sets, and since the

objectives are competing, the emissions objective is at its highest value (Table 54). Coal

generation and combustion turbine investment have their highest share when cost is

minimized (Figure 82 and Figure 83). Renewable generation and investment, and nuclear

generation are at their lowest level and there is no nuclear investment in this case. These

are expected results because generation from coal and combustion turbine investment are

the cheapest options and nuclear investment is the most expensive one.

When ρ = [0 0], the risk preference is neutral for both objectives. PUGA does not

evaluate the PUI values based on a risk preference but it still sorts solutions based on the

stochastic domination, that is, it still selects the least dominated solution on the Pareto

front but without considering the risk preference. The top selected solution of this case (ρ

= [0 0]) is a balance solution between the cost and the emissions objectives (Figure 81) in

the vicinity of averages of the cost and emissions minimization solutions (Table 54).

Objective values and standard deviations of the selected solutions are provided in

Table 54. In general, the cost minimization solution has the highest variability. The
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emissions minimization solution, on the other hand, has the lowest variability, but cost

objective variances for all solutions are always lower than emissions objective and the

risk preference favors solutions with less variability when it is set to risk-averse and it

favors solutions with higher variability or lower expected value. For example, when ρ =

[15 -15], the risk preference is risk-averse for the cost objective and risk-seeking in the

emissions objective. The top selected solution of this case is the closest one among others

to the emissions minimization solution which also has the smallest variability for cost

emissions. On the other hand, when ρ = [-15 15], the risk preference is risk-averse for the

emissions objective and risk-seeking in the cost objective. This time, the top selected

solution is the closest one among others to the cost minimization solution.

Table 54. Risk Preference Comparisons of Objectives for the RPF S7

Risk Preference
Comparisons on

S7

Cost Emissions
Cost
Standard
Deviation

Emissions
Standard
Deviation

Cost
Change
from
Minimized
Cost

Emissions
Change
from
Minimized
Cost

Min. Cost 6.626E+11 4.068E+13 4.212E+10 4.142E+12 0.00% 0.00%
ρ 0 0 8.117E+11 1.594E+13 2.116E+10 1.944E+12 22.51% -60.82%
ρ 0 15 7.801E+11 1.914E+13 2.367E+10 2.067E+12 17.73% -52.94%
ρ 0 -15 8.540E+11 1.273E+13 1.630E+10 2.053E+12 28.89% -68.71%
ρ -15 0 7.801E+11 1.914E+13 2.367E+10 2.067E+12 17.73% -52.94%
ρ 15 0 8.315E+11 1.433E+13 1.920E+10 1.991E+12 25.49% -64.77%
ρ 15 15 7.301E+11 2.556E+13 2.799E+10 2.625E+12 10.19% -37.18%
ρ -15 -15 8.540E+11 1.273E+13 1.630E+10 2.053E+12 28.89% -68.71%
ρ -15 15 6.759E+11 3.521E+13 3.713E+10 3.566E+12 2.01% -13.46%
ρ 15 -15 8.794E+11 1.113E+13 1.104E+10 2.286E+12 32.73% -72.65%

Min. Emissions 1.041E+12 6.317E+12 8.002E+09 1.303E+12 57.06% -84.47%

Generation levels of the selected solutions are shown in Figure 82. A more detailed

comparison for generation percentages of the risk selected solutions at selected risk

preference levels and the cost minimization solution is presented in Figure 84. The main

decision changes for generation levels are of nuclear, coal and renewable units (mainly

wind) while combined cycle generation levels are always below 10%. Coal is utilized
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more when the algorithm focuses on minimizing the cost objective or accepts risk to

minimize it. Nuclear levels are higher in balance solutions such as ρ = [0 0] or ρ = [-15 -

15] cases. Renewable generation is a strong alternative to nuclear and coal especially

when the algorithm seeks possibilities to minimize emissions objective (when ρ = -15 for

the emissions objective function).

Figure 82. Coal, nuclear, renewable and combined cycle generation levels for the RPF S7 at different risk
preference levels

Figure 83. Combustion turbine, nuclear and renewable investment levels for the RPF S7 at different risk
preference levels
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a) Cost Minimization b) ρ = [0 0]

c) ρ = [15 -15] d) ρ = [-15 15]

Figure 84. Generation percentages of the risk selected solutions at different risk preference levels and the
cost minimization solution

Investment levels of the selected solutions are shown in Figure 83. Investment level

of combustion turbine (CT at 65%) in the cost minimization solution is considerable

especially when its level of generation is not that high (7%). The algorithm invests highly

in CT because of the reserve margin constraint and it is the cheapest available option for

investment. CT capacity is needed for reliability reasons. On the other hand, investment

levels of renewable units are remarkable in the top risk selected solutions at selected risk

preference levels. The cost objective increases (between 2% to 33%) in these solutions

but uncertainties in both objectives and emissions objective decrease significantly (Table

54) with the help of renewable and nuclear investment and generation.
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Figure 84. Generation percentages of the risk selected solutions at different risk preference levels and the
cost minimization solution

Investment levels of the selected solutions are shown in Figure 83. Investment level

of combustion turbine (CT at 65%) in the cost minimization solution is considerable

especially when its level of generation is not that high (7%). The algorithm invests highly

in CT because of the reserve margin constraint and it is the cheapest available option for

investment. CT capacity is needed for reliability reasons. On the other hand, investment

levels of renewable units are remarkable in the top risk selected solutions at selected risk

preference levels. The cost objective increases (between 2% to 33%) in these solutions

but uncertainties in both objectives and emissions objective decrease significantly (Table

54) with the help of renewable and nuclear investment and generation.
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Investment levels of the selected solutions are shown in Figure 83. Investment level

of combustion turbine (CT at 65%) in the cost minimization solution is considerable

especially when its level of generation is not that high (7%). The algorithm invests highly

in CT because of the reserve margin constraint and it is the cheapest available option for

investment. CT capacity is needed for reliability reasons. On the other hand, investment

levels of renewable units are remarkable in the top risk selected solutions at selected risk

preference levels. The cost objective increases (between 2% to 33%) in these solutions

but uncertainties in both objectives and emissions objective decrease significantly (Table

54) with the help of renewable and nuclear investment and generation.
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5.12 Conclusion

This chapter provides a multi-objective stochastic optimization model, input data and

assumptions for the model, uncertainty modeling and results and comparison of results

for the power generation expansion planning of the Northeast region of the United States.

The model (NEGEP) is constructed with basic constraint sets such as demand-supply

equality or reserve margin requirement. Detailed constraint sets such as Renewable

Portfolio Standards (RPS) or emissions caps are not included, so that the Pareto set can

be observed as broad as possible; because these constraints would prune the feasible

region if applied. On the other hand, the main objective of this chapter is to examine the

effects of uncertainty and risk associated with it rather than to provide specific solutions,

although the model is constructed as realistic as possible with real data and rational and

systematic assumptions. The practical aspect of the model can be further improved by

working with decision or policy makers and incorporating their input and modifying the

model for their interest.

Electricity generation network expansion planning already confronts several

complicated economic, environmental and technological challenges and the impact of

these challenges will only increase in the future. Inherent uncertainties in economic and

technological development and climate change make it much harder to determine

planning decisions today. As it is seen throughout the chapter, the amount of information

is extensive when compared to the single-objective or deterministic assumption cases. It

might seem to be easier to make such assumptions for the decision or policy making

processes. However, the amount of lost information, especially from the uncertainty
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perspective, has to be considered. Ignoring uncertainty while modeling these planning

problems may cause greater risks.

Results of this chapter suggest that the extent of capacity addition is expected to be

nuclear and especially renewable units when uncertainty is taken into consideration.

Mitigating pollutant emissions also necessitates emissions-free electricity generation

from nuclear or renewable units. Investing in clean and renewable energy technologies to

cost effectively satisfy the electricity demand while maintaining the reliability of the

network requires more technological advancement and also regulation and policy

encouragement.

On the other hand, technologies such as advanced coal units with carbon capture and

sequestration (CCS) will need to attain even higher advances in technology and discounts

in costs to be employed. The high costs and slow advancement of their technology

prevent CCS units to be preferred in large scale and long term planning.
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6. Conclusions and Future Research

This dissertation focuses on multi-objective stochastic optimization problems,

particularly the electricity Generation Expansion Planning (GEP) problem. Although

multi-objective stochastic programming problems are frequently encountered in practice,

there is not much research that focuses on solution methodologies incorporating the

uncertainty of multi-objective problems. Current solution methods of multi-objective

stochastic problem involve two kinds of transformations, namely the multi-objective

transformation and the stochastic transformation, where either the multi-objective aspect

or the stochastic aspect of the problem is neglected or greatly simplified.

This research presents a new uncertainty metric, the Pareto Uncertainty Index (PUI),

and a new multi-objective stochastic genetic algorithm, the Pareto Uncertainty Genetic

Algorithm (PUGA), which incorporates the PUI, to solve multi-objective stochastic

optimization problems without any transformation of the problem. These new methods

also provide the opportunity to the decision maker to observe the uncertainty of solutions.

The PUI can also be used in single objective optimization methods or other multi-

objective evolutionary algorithms; however, this study does not include these prospects.

The Generation Expansion Planning (GEP) problem, being a multi-objective

stochastic problem, may include many objectives such as minimization of cost,

minimization of pollutant emissions, maximization of reliability and maximization of

energy security and independence. The GEP problem already confronts several

complicated economic, environmental and technological challenges and the impact of

these challenges will only increase in the future. Inherent uncertainties in economic and

technological development and climate change make it much harder to determine
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planning decisions today. Thus, the GEP is one of the most difficult real life multi-

objective stochastic optimization problems, and it is an exceptional problem domain for

this study.

One of the main objectives of this dissertation is to provide a multi-objective

stochastic optimization model for the power generation expansion planning of the

Northeast region of the United States. The presented model (NEGEP) also defines

stochastic coefficients and parameters of the problem. The stochastic parameters are

classified according to their uncertainty type, i.e., aleatory and epistemic uncertainty.

Input data and assumptions for the NEGEP model are also provided. The data of the

problem, scenario modeling and assumptions are established with the help of various

reports, literature reviews and expert judgments. Finally the NEGEP problem is solved to

find Pareto solutions for cost and CO2 emissions objectives. Results of NEGEP problem

suggest that the extent of capacity addition is expected to be nuclear and especially

renewable units when uncertainty is taken into consideration. Mitigating pollutant

emissions also necessitates emissions-free electricity generation from nuclear or

renewable units. Investing in clean and renewable energy technologies to cost effectively

satisfy the electricity demand while maintaining the reliability of the network requires

more technological advancement and also regulation and policy encouragement.

In the next two sections research contributions of this dissertation are summarized

and future research opportunities are outlined.

6.1 Research Contribution

This research results in several distinct research contributions. For multi-objective

stochastic problems, it is necessary to address the uncertainty and account for risk
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attitudes while preserving multi-objective aspect and representing tradeoffs of conflicting

objectives such as power production cost and environmental impacts in the GEP.

Therefore, a new uncertainty metric, the Pareto Uncertainty Index (PUI), and a new

multi-objective stochastic genetic algorithm, the Pareto Uncertain Genetic Algorithm

(PUGA) are presented in this research. Among the two approaches, there are several

research contributions of this research, some of them being related to the GEP problem

domain and some to the single and multi-objective stochastic optimization processes.

These research contributions are summarized as follows:

 Sources of uncertainty in the GEP problem are identified and classified into

epistemic and aleatory uncertainty types. Effects of different types of

uncertainty on the variables of the GEP model are also identified for

optimization modeling purposes. These contributions are useful to model the

uncertainty in the planning process. They also provide transparency in

decision-making.

 The GEP problem is modeled and solved as a multi-objective stochastic

problem. This allows a more realistic representation of the problem and the

results of the optimization. The need for transforming the problem is

eliminated.

 The concept of Pareto optimality is extended from a purely deterministic

framework to a more realistic stochastic framework.

 A new uncertainty index, the PUI, is presented which can be incorporated in

problem solving methods to solve single or multi-objective optimization

problems without ignoring uncertainty.
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 A new multi-objective stochastic genetic algorithm, PUGA, is presented to

find Pareto optimal solutions of multi-objective stochastic optimization

problems with the ability of observing uncertainty information of solutions.

 Risk measures are incorporated in the PUI and PUGA so that the risk

preference of the decision maker can affect the solution process. This is

important for both the GEP problem domain and the stochastic optimization

processes.

 Post-Pareto analysis is also integrated in the optimization process. The

probability information preserved in the PUI is utilized to make a preference

decision between solutions on the same front using the risk preference of the

decision maker. Thus, obtaining a smaller subset of the preferred solutions

from a large Pareto optimal set and the evaluation and interpretation of the

results can be accomplished within the optimization process.

6.2 Future Research

This research focuses on multi-objective stochastic problems, particularly the GEP

problem, and results in several contributions but these research topics and opportunities

are extensive.

Although most of the real life engineering and policy problems are inherently multi-

objective and stochastic in practice, solution methodologies accounting for the

uncertainty in multi-objective problems are still very few in numbers and they are in their

developing phase. As a future research task, The PUI and PUGA presented in this

dissertation, for example, can be investigated in different real life problems than the GEP

and the test problems. They are also bound to be compared with other similar
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methodologies. Even though the PUI is initially offered for multi-objective formulations

it can also be applied to single objective methodologies.

There is already a large collection of research focused on the GEP problems.

However, there are still areas to be investigated, especially in multi-objective and

uncertainty modeling of the problem. For instance, this dissertation incorporates cost and

emissions objectives and uncertainties in economic and technological development and

climate change effects, however, reliability and resiliency aspects are not examined fully.

Especially the climate change effects on electricity grid resiliency and the uncertainty

arises from this issue are very important subjects to investigate.

Uncertainty classification and representation are fairly well studied in the literature

but their application in modeling, especially in multi-objective optimization is rare. This

dissertation, for the first time, attempted to classify the GEP uncertainties into aleatory

and epistemic uncertainty types and utilized their representation in the optimization

model. Yet, the representation and modeling can be improved by employing possibility

and probability distributions that represent the uncertainty better for problem parameters.

Especially for the NEGEP model there is a need to further investigate the uncertainty of

parameters and their mathematical modeling. Furthermore, the practical aspect of the

model can be improved by working with decision or policy makers and incorporating

their input and modifying the model for their interest.
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Appendix I

Table 55. Generation technologies

Generation Type Description

Existing

CC Combined Cycle - Natural Gas

Nonrenewable

Coal Steam Turbine - Coal

CT Combustion Turbine - Natural Gas or Oil

NU Nuclear

STOG Steam Turbine - Oil/Gas

STWD Steam Turbine - Wood

GEO Geothermal

Renewable

HY Hydro - Conventional

LFG Landfill Gas

PS Hydro - Pumped Storage

PV Solar - Photovoltaic

ST Solar - Solar Thermal/Solar Power

WT Wind Turbine onshore

New

WT_on3 Wind Turbine (onshore class 3 wind)

WT_on4 Wind Turbine (onshore class 4+ wind)

WT_off Wind Turbine offshore
Biomass Biomass
IGCC Integrated Gasification Combined Cycle

NonrenewableIGCC_seq IGCC with carbon capture/sequestration

AC Advanced or Pulverized Coal

WT_on3 and WT_on4 are both onshore wind turbine technologies but have different

target wind resources (depending on the wind power, wind can be divided into different

classes, class 3 and class 4+ wind are considered in this study), they are only

distinguished for new generation units.
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Table 56. Technical characteristics of all generation technologies

Type
Outage

rate

Expected emissions
rates (lbs/MWh)

Standard Deviation of
emissions rates

SO2 NOX CO2 SO2 NOX CO2

CC 6.1% 0.1 1.7 1,135 0.04 0.71 475.64
Coal 6.5% 13 6 2,249 1.43 0.66 247.42
CT 9% 0.66 2.9 1,565 0.28 1.22 655.84

GEO 13% 0 0 0 0.00 0.00 0.00
HY 4.9% 0 0 0 0.00 0.00 0.00
LFG 5% 0.8 5.4 2,988 0.09 0.59 328.72
NU 3.2% 0 0 0 0.00 0.00 0.00
PS 4% 0 0 0 0.00 0.00 0.00
PV 60% 0 0 0 0.00 0.00 0.00
ST 1% 0 0 0 0.00 0.00 0.00

STOG 6.7% 3 2.4 1,325 0.33 0.26 145.77
STWD 10% 3 4 1562 0.33 0.44 171.84

WT 0% 0 0 0 0.00 0.00 0.00
WT_on3 0% 0 0 0 0.00 0.00 0.00
WT_on4 0% 0 0 0 0.00 0.00 0.00
WT_off 0% 0 0 0 0.00 0.00 0.00
IGCC 8% 0.13 0.4 1,540 0.05 0.17 645.36

IGCC_seq 8% 0.13 0.4 154 0.05 0.17 64.54
AC 6% 0.13 1.6 1,540 0.03 0.42 407.07

Biomass 7.5% 28.6 11 0 3.15 1.21 0.00
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Table 57. Cost characteristics of all generation technologies

Type

Expected
Investment

cost
2010$/kW

Standard
Deviation

of
Investment

cost

Expected Fixed
O&M Cost
(2010$/kW)

Standard
Deviation of
Fixed O&M

Cost

Expected
Variable cost
2010$/MWh

Standard
Deviation

of
Variable

costExisting New Existing New
CC 1,035 57.50 29.68 14.39 3.30 1.60 47.45 3.95

Coal - - 48.22 - 19.03 - 28.63 14.60
CT 711 39.50 - 6.7 0.74 0.74 78.43 6.54

GEO 4,163 231.28 89.76 84.27 4.68 4.68 0 0
HY - - 14.24 - 0.79 - 0 0
LFG 2,525 238.24 120.65 120.33 11.35 11.35 0 0
NU 5,615 1,334.33 112.77 88.75 42.54 33.48 12.06 1.01
PS - - 23.74 - 1.32 - 5.98 0.50
PV 4,777 1,239.92 14.66 16.7 10.08 11.48 0 0
ST 4,714 1,223.57 60.32 64 41.46 43.99 0 0

STOG - - 37.15 - 4.13 - 58.82 4.90
STWD - - 32.05 - 3.56 - 78.43 6.54

WT - - 34.22 28.07 14.69 12.05 0 0
WT_on3 2,460 584.02 34.22 28.07 14.69 12.05 0 0
WT_on4 2,460 584.02 34.22 28.07 14.69 12.05 0 0
WT_off 5,997 1,423.73 - 53.33 - 22.89 0 0
IGCC 3,262 181.22 - 48.9 - 5.43 44.12 3.68

IGCC_seq 5,389 299.39 - 69.3 - 7.70 53.04 4.42
AC 2,885 581.95 - 29.67 - 9.03 30.1 16.71

Biomass 3,901 368.06 - 100.5 - 9.48 41.47 3.91
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Table 58. Existing generation capacity at the beginning of the planning horizon (MW)

Type NEISO NYISO_A-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR

CC 11,463 3,594 1,157 3,658 7,649 3,986 10,542

Coal 2,570 2,252 369 3,853 16,381 59,868

CT 2,384 260 152 4,948 6,899 3,555 21,073

HY 1,933 4,395 32 258 1,236 1,604

LFG 532 166 64 124 462 338 482

NU 4,645 3,197 2,045 8,472 5,036 20,000

PS 1,674 1,412 400 1,513 3,081

PV 2 22 4 24

STOG 6,236 1,701 2,431 6,799 3,252 4,109 2,122

STWD 609 86 70 194

WT 202 1,283 10 731 2,597
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Table 59. Climate change effects on climate parameters

Climate Change
Level

Temperature Precipitation Extreme events
frequencyAnnual Annual Summer

High +4.4°C +12% -4% +300%
Medium +1.7°C +4% +1% +75%

Table 60. Climate change effects on GEP parameters

Climate Change Level

High Medium

Additional demand
growth

Summer +0.24% +0.092%
Shoulder (spring/fall) +0.19% +0.075%
Winter -0.2% -0.078%

Additional peak demand growth +0.56% +0.175%
Additional reserve margin requirement +0.6% +0.15%
Additional maintenance time +1.2% +0.3%
Additional transmission loss +0.31% +0.096%

Additional summer
derate factor
decrease

Coal, STOG, STWD, AC -0.209% -
CT -0.257% -
CC, IGCC, IGCC_seq -0.099% -
GEO, LFG, Biomass -0.249% -
PV -0.057% -
NU -0.284% -
ST -0.297% -
HY -0.48% -

Additional shoulder
(spring/fall) and
winter derate factor
decrease

Coal, STOG, STWD, AC -0.009% -0.003%
CT -0.057% -0.022%
CC, IGCC, IGCC_seq -0.035% -0.014%
GEO, LFG, Biomass -0.009% -0.003%
NU -0.044% -0.017%
PV -0.057% -0.022%
ST -0.057% -0.022%
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