
EVALUATION OF EDGE CLOUD SERVICE
SCENARIOS WITH APPLICATION SPECIFIC

ROUTING IN THE NETWORK

BY ANUSHA SHEELAVANT

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Dr. Dipankar Raychaudhuri

and approved by

New Brunswick, New Jersey

October, 2015



c© 2015

Anusha Sheelavant

ALL RIGHTS RESERVED



ABSTRACT OF THE THESIS

Evaluation of Edge Cloud Service Scenarios with

Application Specific Routing in the Network

by Anusha Sheelavant

Thesis Director: Dr. Dipankar Raychaudhuri

This thesis presents the evaluation of edge cloud service scenarios with Application

Specific Routing (ASR) in the network. Edge cloud service is a computing service

provided by decentralized servers which reside at the edge of the network and provide

services to client devices in the local area. By being in close proximity to end users,

there is a reduction in latency that may provide improved Quality of Experience (QoE).

The edge cloud provides services to Internet of Things (IoT) or Cyber Physical Systems

(CPS), such as, mobile phones, sensors, vehicles and augmented reality using devices

like Google glass, which host real time applications and require quick response. This

work evaluates the performance of such edge cloud services for mobile users in the

MobilityFirst (MF) architectural framework.

The Hadoop open source cloud software framework has been used in this study for

parallel and distributed processing of jobs at the edge cloud site. The performance

of Hadoop has been benchmarked for different network scenarios by varying the link

quality: bandwidth and latency. Results show that both link parameters and edge

cloud performance have a significant impact on the response time for a client’s cloud

service request. Hence, this work uses both these metrics in making routing decisions

to improve end users QoE with help of Virtual Network (VN) capabilities. VN on

ii



MF enables specification of customized network topologies and routing algorithms for

specific application scenarios such as cloud service. ASR is one such routing algorithm

that makes path selection based on application specific parameters that affect end users’

QoE such as the link and edge cloud performance metrics. The link performance metric

incorporates bandwidth and latency in the link from client to the edge cloud. The edge

cloud performance metric on the other hand captures the average job completion time

at the edge cloud site which gives a sense of the workload, the number of nodes and

the processing capability of the cluster. With the aid of ASR on MF VN, the best edge

cloud site for a client’s request is chosen with the objective to minimizing the overall

response time.

Evaluation of users’ QoE for edge cloud services was performed on the ORBIT

testbed by replicating cloud services on multiple edge cloud sites. Workload was induced

at each of these sites to control the job completion time and link quality is varied to

affect the link performance. Response time for a client’s request is evaluated using

ASR and also using the basic anycast service in MF, for performance comparison.

While anycast always chooses the nearest edge cloud, ASR provides the best response

time by either choosing a lightly loaded cluster or by choosing a high quality link or a

combination of both, and therefore provides a better QoE to the end user.

iii



Acknowledgements

I would like to express my sincere gratitude to my advisor Professor Dipankar Ray-

chaudhuri for his continual support and encouragement. It has been a great learning

experience and a pleasure working under his supervision. I am also grateful to my

committee members Professor Wade Trappe and Professor Janne Lindqvist for their

valuable suggestions.

I would like to thank Ivan Seskar for always being there to give feedbacks and

answer every doubt I approached him with. I am also thankful to Professor Yanyong

Zhang for her guidance during the initial stages of this research work. I would also

like to acknowledge Francesco Bronzino, Aishwarya Babu and Kai Su, members of the

MobilityFirst group at WINLAB, for all the invaluable discussions we have had through

out the course of this research work.

I am eternally grateful to my family for their love, support, and unwavering belief

in me. Lastly, I would like to thank my friends at WINLAB and Rutgers for making

this journey, a pleasant one.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Overview of MobilityFirst . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Service GUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. GSTAR Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. MobilityFirst Virtual Network . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Cloud Computing Framework . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1. Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. Scheduling in Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3. Simple Word Count Application . . . . . . . . . . . . . . . . . . . . . . 10

3.4. Modeling the Hadoop Cluster . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5. Synthetic Traffic Generator . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Application Specific Routing . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1. Link Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2. Effect of Link Performance on Response Time . . . . . . . . . . . . . . . 21

4.2.1. Variation in bandwidth of links . . . . . . . . . . . . . . . . . . . 23

4.2.2. Variation in latency of links . . . . . . . . . . . . . . . . . . . . . 24

v



4.3. Link Performance Metric on MobilityFirst . . . . . . . . . . . . . . . . . 27

4.4. Edge Cloud Performance Metric . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1. Effect of traffic intensity on average job completion time in an

M/M/1 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2. Effect of traffic intensity on average job completion time in a

Hadoop cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5. System Level Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1. Combined Effect of Performance of Link and Performance of an M/M/1

System on Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2. Combined Effect of Performance of Link and Performance of a Hadoop

cluster on Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3. Estimating the Transfer Time on MobilityFirst Virtual Network . . . . . 38

5.4. Performance of Application Specific Routing . . . . . . . . . . . . . . . . 39

6. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1. Service migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2. Edge cloud performance metric . . . . . . . . . . . . . . . . . . . . . . . 43

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



List of Figures

1.1. Key design features of MobilityFirst. . . . . . . . . . . . . . . . . . . . . 2

3.1. Hadoop job scheduler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2. Service time distributions for various job sizes. . . . . . . . . . . . . . . 12

4.1. Details of the relevant software modules used in this study. . . . . . . . 15

4.2. Experimental setup to study the effect of latency on transfer time. . . . 16

4.3. Block diagram for the experimental setup in figure 4.2. . . . . . . . . . . 16

4.4. Effect of latency on transfer time for small data size on a link bandwidth

of 1000 Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5. Effect of latency on transfer time for large data size on a link bandwidth

of 1000 Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6. Effect of latency on transfer time for small data size on a link bandwidth

of 500 Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7. Effect of latency on transfer time for large data size on a link bandwidth

of 500 Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.8. Effect of bandwidth on transfer time for different job sizes. . . . . . . . 20

4.9. Experimental setup to study the effect of link performance on response

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.10. Block diagram for the experimental setup in figure 4.9. . . . . . . . . . . 22

4.11. Study of response time for different job sizes on a Gigabit link. . . . . . 23

4.12. Effect of bandwidth on response time for a job size of 2.5 GB . . . . . . 24

4.13. Effect of latency on response time for a job size of 2.5 GB on a Gigabit

link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.14. Experimental setup to study the effect of link performance on response

time in MobilityFirst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



4.15. Block diagram for the experimental setup in figure 4.14. . . . . . . . . . 27

4.16. Effect of bandwidth on transfer time on a MobilityFirst Virtual Network. 28

4.17. Effect of latency on transfer time on a MobilityFirst Virtual Network

using Gigabit links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.18. Effect of latency on transfer time on a MobilityFirst Virtual Network

using 500 Mbps links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.19. Effect of number of nodes on service time in a Hadoop cluster for a data

size of 2.5 GB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.20. Effect of processing speed of different servers in a Hadoop cluster on

service time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.21. Effect of λ on average job completion time in an M/M/1 system. . . . . 34

4.22. Effect of λ on average job completion time in a Hadoop cluster. . . . . . 34

5.1. Effect of SETT and inter arrival rate (λ) on the response time in an

M/M/1 system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2. Effect of SETT and inter arrival rate (λ) on the response time in an

M/M/1 system for λ ≤ 0.0169 . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3. Effect of SETT and inter arrival rate (λ) on the response time in a

Hadoop cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4. Comparison of transfer time and FileDeliveryETT on a 500 Mbps link

with varying latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5. Experimental setup to study the performance of ASR against basic any-

cast service in MF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6. Block diagram for the experimental setup in figure 5.5. . . . . . . . . . . 41

5.7. Destination chosen by the ASR algorithm by choosing a minimum of the

estimated response times. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8. Performance comparison of ASR against basic anycast service in MF. . 42

viii



1

Chapter 1

Introduction

The rise in popularity of smart phones has increased interest in the area of mobile Cyber

Physical Systems (CPS). Smart phone platforms make ideal mobile CPS for a number

of reasons, like: availability of significant computational resources (such as processing

capability and local storage) and multiple sensory input/output devices (such as touch

screens, cameras, GPS chips, light sensors, proximity sensor, etc.).

For tasks that require more resources than are locally available, one common mech-

anism is to link the mobile system with either a server or a cloud environment, enabling

complex processing tasks that are time consuming to process under local resource con-

straints. Since CPS is associated with real time applications, the cloud and networking

environment must be reliable and must be able to provide quick response upon service

requests. Thus, cloud computing services are being pushed to the edge of the network to

provide quick response, resulting in a scenario called edge cloud or fog computing [1,2]

as edge cloud services.

1.1 Problem Statement

Edge cloud service is a computing service provided by decentralized servers which reside

at the edge of the network and provide services to client devices in the local area. By

being in close proximity to the mobile end users, there is a reduction in latency that

may provide improved Quality of Experience (QoE). Edge cloud provides services to

Internet of Things (IoT) or Cyber Physical Systems, such as, mobile phones, sensors,

vehicles and augmented reality using devices like Google glass, which host real time

applications and require quick response [2].

The MobilityFirst (MF) [3], Future Internet Architecture(FIA) [4] proposes a new



2

Sue’s_mobile_2

Server_1234

John’s_laptop_1
Sensor@XYZ

Media_file_ABC Taxis in NYC

Host 

Naming 

Service

Sensor 

Naming 

Service

Content  

Naming 

Service

Context 

Naming 

Service

Globally Unique Flat Identifier (GUID)

Global Name Resolution Service (GNRS)

Figure 1.1: Key design features of MobilityFirst.

named-object networking paradigm that is well suited for handling mobile nodes and

edge cloud service scenarios. As outlined in figure 1.1, in MobilityFirst, every object

or service - mobile phone, an embedded sensor, cloud site, or a cloud service is as-

signed a Globally Unique Identifier (GUID) which is independent of its current point

of attachment to the network.

The Global Name Resolution Service (GNRS) [5], a key feature of MobilityFirst,

provides a dynamic binding between GUID’s and their current network locators. This

makes it possible to support seamless mobility and service replication in a very natural

way, thus providing a strong foundation for building advanced cloud services across

global network. Since MF takes care of mobile objects and supports seamless mobility,

the remaining challenge we face here is to provide satisfactory quality-of-experience



3

(QoE) to mobile users for edge cloud services.

Edge cloud services reside at the edge of network and are in close proximity with the

clients, reducing latency to some extent [6]. This may improve user QoE by reducing

the response time for a user’s request. Response time is the time that a user has to wait

for a response to a request that has been made. This work evaluates the performance of

such edge cloud services for mobile users in the MobilityFirst architectural framework.

In this work, we focus on achieving improved QoE for a user by investigating the

factors that affect the response time for a client’s request and their contributions to

the response time. The Hadoop open source cloud software framework has been used

in this study for parallel and distributed processing of jobs at the edge cloud site. We

benchmark the performance of Hadoop for different network scenarios by varying the

link quality: bandwidth and latency, and performance of the edge cloud. The effect of

these parameters on response time is studied.

This work uses both link parameters and edge cloud performance metric in making

routing decisions to improve end users QoE with help of Virtual Network (VN) capabil-

ities. VN on MobilityFirst (MF) enables specification of customized network topologies

and routing algorithms for specific application scenarios such as cloud service. ASR

is one such routing algorithm that makes path selection based on application specific

parameters, such as the link and edge cloud performance metrics, that affect the end

users’ QoE . The link performance metric incorporates bandwidth and latency in the

link from client to the edge cloud. The edge cloud performance metric on the other

hand captures the average job completion time at the edge cloud site which gives a

sense of the workload, the number of nodes and the processing capability of the cluster.

With the aid of ASR on MF VN, the best edge cloud site for a client’s request is chosen

with the objective to minimizing the overall response time.

1.2 Related Work

Traditional networks forward packets from source to destination using the shortest

path but with innovations in networking, such as Software Defined Networking (SDN),



4

networks are forced to be application aware to improve user’s QoE. The key to improving

user’s QoE is providing visibility of application parameters at the network level in order

to enable improved routing decisions. Application aware routing has been proposed for

SDN where an SDN controller monitors the network conditions and ensures user’s

QoE [7].

In our work, we use this key concept of introducing application awareness for im-

proving user’s QoE by proposing ASR which is supported by VN on MF. We delve

into the factors that affect user’s QoE and study their contributions on response time.

Further, we derive a decision metric for ASR, which consists of parameters that affect

the response time and use this decision metric for making routing decisions to ensure

user’s QoE.

Improving user’s QoE has been one of the important topics of interest in the recent

times. In order to reduce the latency between a mobile client and the cloud environment,

service migration is done when a mobile client connects to a new edge cloud and if the

client’s data is in the old edge cloud. Service migration is the process of transferring

data from one edge cloud site to another. Once the migration is complete, processing

of client’s data resumes at the new edge cloud.

There are many approaches to service migration. One approach is called as VM

migration, in which an executing VM is suspended, it’s processor, disk and memory

state are transferred, and then the VM execution begins from the point of suspension

at the new edge cloud site. In the second approach, known as dynamic migration, all

the edge cloud sites have a base VM, and only the overlay is transferred. The base VM

is combined with the overlay and is known as launch VM [6]. The major contributions

to generating a launch VM are overlay transmission and decompressing/applying the

overlay on the edge cloud. Service migration must be done only if the new edge cloud site

can improve the user’s QoE as compared to the old edge cloud since transmission costs

incurred during migration are quite high, and could defeat the whole point of service

migration. Hence, in our work, with the ASR algorithm, the application running on

the edge cloud could decide if service migration is necessary, and only then migrate.

This could reduce unwanted transmission costs and provide the user with better QoE.



5

Chapter 2

Overview of MobilityFirst

MobilityFirst [8] is a clean-slate redesign of the Internet architecture which supports

dynamic mobility at scale by cleanly separating names or identifiers from addresses or

network locations. It is centered on a new name based service layer which uses the

concept of flat GUIDs for network attached objects, a single abstraction that covers a

broad range of communicating objects from a simple device such as a smartphone, a

person, a group of devices/people, content or even context. GUIDs are basically public

keys assigned by a name certification service to the networks objects and are the long-

lasting network level identifiers for these objects. Network services invoked on messages

are defined first and foremost by the source and destination GUIDs.

For routing, a hybrid name/address based scheme is used for scalability, employing

a fast Global Name Resolution Service (GNRS) to dynamically bind the destination

GUID to a current set of network addresses (NA). The GNRS thus forms a central

feature of the mobility-centric architecture, enabling on-the-fly binding of names to

routing addresses as needed for dynamic mobility, disconnection or cloud migration

scenarios.

2.1 Service GUID

In MobilityFirst, the permanent host-identifiers are GUIDs, which are dynamically

mapped to the network addresses (NAs) through a centralized mapping service called

the Global Name Resolution Service (GNRS). Every application that runs on the

servers/ cloud site has it own service GUID and there could be multiple cloud sites

that host the same application with one service GUID. When a request is made for a

particular service GUID, any cloud site hosting that application is eligible to service



6

the request. With the help of VN on MF, ASR helps in routing the request to the

best edge cloud site that can provide good overall response time. This in turn aids in

balancing the application traffic among different cloud sites to make the best use of

available resources. In other words, ASR helps in load balancing and makes the best

use of already available resources to ensure user’s QoE.

2.2 GSTAR Routing

In GSTAR [9], all nodes periodically broadcast fine grained link quality information,

in the form of flooded link state advertisements(F-LSAs), that contain the short term

and long term Estimated Transmission Time(SETT and LETT respectively) of their

current 1-hop neighbors. These are then used to calculate the overall path quality to all

other nodes using Dijkstra’s shortest path algorithm . Path selection and transmission

decisions are based on factors such as link availability and link quality in terms of the

ratio of SETT over LETT. All nodes periodically probe for neighbors, making a note

of which neighbors are currently available and what the ETT (directly computed) for

the links are. Over a sufficiently long period of time, they average the ETT values for a

single link and compute a “long term ETT” value. In this work, the ETT values are a

function of both bandwidth and latency, similar to the cost metric calculation [10] for

EIGRP routing protocol [11]. The ETT values are given by:

ETT = 256 ∗ (
107

BW
) +

n∑
i=1

delay(i) (2.1)

Where BW is the bandwidth in Kbps and delay(i) is the delay in 10’s of µs on every

link along the path.

We use these aggregated SETT values to measure the network performance which

contributes to the ASR metric. Aggregated SETT is the sum of all the ETT values

along the path from source to destination which is more than one hop away and is

available in all the virtual routers on the VN.



7

2.3 MobilityFirst Virtual Network

MF supports virtual networks [12] which are logical abstractions of the physical router

substrate that runs MF stack. Since every object in the MF network has a GUID, an

application, service or even a whole virtual network can be identified by a GUID. The

GNRS keeps track of various mappings, the VN’s GUID to its member virtual router

GUIDs and each virtual router GUID to its true GUID.

The physical substrate uses the GSTAR routing protocol to move packets across the

network. The GSTAR routing tables are populated based on the link state messages

that are exchanged among the router nodes. This routing table information is made

available to the virtual layer in order to compute link performance metric. The edge

cloud also advertises its performance metric using Application Specific Packets (ASP).

ASR runs at the virtual layer to combine both link and edge cloud performance metrics

to make routing decisions.



8

Chapter 3

Cloud Computing Framework

3.1 Hadoop

The system model is designed to have Hadoop software framework [13] running on edge

cloud sites to process client requests. Hadoop is an open source software framework

which is used for distributed storage and large scale processing of data sets on computer

clusters. There are two components to Hadoop :

• Hadoop Distributed File System (HDFS)

HDFS [14] is the primary distributed storage used by Hadoop applications which

is based on Google’s Google File System (GFS). The files are stored as blocks

or chunks, usually of size 64MB. HDFS cluster consists of two parts: NameNode

and DataNode. NameNode manages the file system metadata while DataNodes

store the actual data. Data is replicated across several DataNodes to provide

reliability and to overcome node failure. When a job is submitted to the cluster,

HDFS breaks the job into chunks and distributes it to the nodes in the cluster.

The NameNode and Datanodes have built in web servers which make it possible

to check current status of the cluster.

• MapReduce

Hadoop MapReduce [15] is a software framework for processing large amounts of

data in parallel on clusters in a reliable, fault tolerant manner. A MapReduce job

usually splits the input data-set into independent chunks which are processed by

the map tasks in a completely parallel manner. The framework sorts the outputs

of the maps, which are then input to the reduce tasks. Typically both the input

and the output of the job are stored in a file system. The framework takes care



9

of scheduling tasks, monitoring them and re-executes the failed tasks. Typically

the compute nodes and the storage nodes are the same, that is, the MapReduce

framework and the Hadoop Distributed File System are running on the same set

of nodes.

The MapReduce programming model essentially consists of three phases:

1. Map: This phase performs parallel tasks on a given data. The input data on

which the processing is supposed to be done, is split across multiple servers in

the cluster and is the input to the mappers. The exact task to be executed inside

Map function needs to be provided by the programmer. Since the Map phase

executes the same task on all input splits, the programmer needs to make sure

that the functioning of the Map function does not depend on input data. Map

phase is completely parallel, i.e. all input splits are processed in parallel, hence it

provides faster results. The output of the Map phase is written to a temporary file

in terms of key-value pairs. With the Hadoop framework, the only responsibility

that the programmer has to carry out is writing these Map and Reduce functions.

Hadoop framework, using its cluster management services, decides which server

to put the task on to.

2. Shuffle: After Map phase generates its output in terms of key-value pairs, shuffle-

and-sort phase sorts all key-value pairs generated by all map tasks, based on keys.

After the keys are sorted, similar keys are put in the same bucket and forwarded

to Reduce functions on the nodes that run reduce tasks.

3. Reduce: This is the last phase of MapReduce programming model. In this phase,

all the key-value pairs are combined to get the final result. Similar to Map func-

tion, Reduce function is written by the application programmer. At the end of

the reduce phase, the output (key-value pairs) is written back to HDFS.



10

3.2 Scheduling in Hadoop

The performance of Hadoop is dependent on its scheduler, which reactively assigns tasks

to servers for computation using a particular scheduling algorithm. Hadoop has different

scheduling algorithms, such as first in first out (FIFO) scheduling, fair scheduling and

capacity scheduling. The Hadoop job scheduler for HDFS and MapReduce is shown in

figure 3.1.

• HDFS : As the jobs are submitted to the cluster, they are converted to input

splits and distributed to different nodes on the cluster. For this, Hadoop uses

fair scheduling. Fair scheduling is a method of assigning resources to jobs such

that all jobs, on average, get an equal share of resources over time. When there

is a single job running, the job uses the entire cluster. When multiple jobs are

submitted, each job gets roughly the same amount of time to convert a part of

its job to input splits and distribute it among the nodes. As a consequence of fair

scheduling, short jobs finish in a reasonable amount of time while not starving for

long jobs to finish the HDFS phase.

• MapReduce: After the job completes the HDFS phase, it enters the MapReduce

phase. Here, FIFO scheduling is followed and the scheduler is non preemptive.

The job that completes HDFS first enters the MapReduce phase first. The next

job that follows to the MapReduce phase must wait until the current job finishes

its execution, following the principle of FIFO.

3.3 Simple Word Count Application

In this study, we use Hadoop word count as an example application to be running on

the edge cloud site. This application counts the frequency of words present in a file and

saves the count along with the words in an output file. The client sends an input file

to the edge cloud, which processes the file and sends back the output result file back

to the client. Basically, there are 3 steps in this process when the client requests to

compute the frequency of words in a file:



11

Figure 3.1: Hadoop job scheduler.

• File is transferred over a link to a particular edge cloud site, running Hadoop.

• At the cloud site:

1. HDFS - The input file is converted into splits or chunks and distributed

among the nodes of the cluster.

2. MapReduce - MapReduce program is run to count the occurrence of words

for each split at each mapper, (key,value) pairs are produced. These results

are aggregated from all the mappers and sorted. A final count of words from

all the mappers is made in the reducer which stores it in an output file. This

output file is placed back on HDFS.

• Output file that is generated is sent over the link to the client.

The time taken to complete these three steps contributes to the response time for

any given client request.

3.4 Modeling the Hadoop Cluster

In this study, the Hadoop cluster is modeled as an M/M/1 queuing system, considering

the entire cluster to be a single unit. In this type of a system, the inter arrival times

are exponentially distributed (Poisson arrivals), with average inter arrival rate λ. The

service time is the time taken to completely process the job in the cluster and it has

an exponential distribution, with average service rate µ. The service time is exclusive



12

Job size (GB)

0 1 2 3 4 5

S
e

rv
ic

e
 t

im
e

 (
s
)

20

40

60

80

100

120

140

160

Figure 3.2: Service time distributions for various job sizes.

of the waiting time in the cluster. Figure 3.2 shows the service time for different job

sizes and it is seen to be varying linearly with increase in job size. This means that if

the job sizes were exponentially distributed, service times would also be exponentially

distributed, making it an M/M/1 system. Waiting time is the sum of time spent by

the job in queue prior to the HDFS phase and the time spent in queue while waiting

for its turn to enter into the MapReduce phase after completing the HDFS phase. The

buffer is assumed to be infinite and the queuing discipline is first in first out (FIFO).

Cluster utilization factor ρ is defined as the ratio of average inter arrival rate by the

average service rate:

ρ = λ/µ. (3.1)

It represents the average proportion of time in which the cluster is occupied.

We measure the average job completion time at the edge cloud site which is the total

time taken to process a job and this is inclusive of the waiting times in the queues. Job

completion time is defined as the total amount of time a job spends in the system.



13

Job completion time = Waiting time + Service time. (3.2)

This average job completion time reflects the characteristics of the cluster such as

number of nodes, workload and processing capacity [16], rightly capturing the perfor-

mance of the edge cloud and is hence, used as one of the parameters for ASR.

3.5 Synthetic Traffic Generator

In this work, a synthetic traffic generator is designed to measure the performance of a

Hadoop cluster. It is used to induce traffic at the edge cloud and to study the effect

of workload or traffic on the job completion time for different jobs. It is seen that as

the traffic increases, waiting time in the system increases as MapReduce uses FIFO

scheduling (waiting time for a new customer is the sum of remaining service time for

jobs that are already in the queue) and thus, the job completion time which is a sum

of service time and waiting time, also increases with increase in traffic.

Synthetic traffic generator is used in different experimental setups to induce traffic

at the edge cloud site and to study the effect of inter arrival times on average job

completion time. This is further discussed in detail in section 4.4.



14

Chapter 4

Application Specific Routing

There is a need to add application awareness to improve the user’s QoE and to do so,

we need to make routing decisions based on parameters that are application specific.

For instance, a user watching videos may need more bandwidth than a user playing

games but the latter may need lower latency. Routing decisions that are taken on the

basis of such application specific parameters can not only help in improving user’s QoE

but can also aid in resource management.

In this work we propose a new method of routing called the Application Specific

Routing on top of MF VN which can use different parameters, such as, energy used at

cloud sites, cost of spawning new servers at cloud sites, high bandwidth requirements,

low latency requirements, time of the day, workload at the cloud sites and the like, to

make routing decisions.

For real time applications such as for CPS or IoT, typically a large amount of data

is sent from the user to the cloud site where processing (usually, heavy computation)

takes place. The processed data is then sent back to the user. For applications like

these, link performance and edge cloud performance greatly affect user’s QoE because

link performance affects the transfer of the large amount of data, while, edge cloud

performance affects the processing of big data. In the following section, we study the

parameters that affect link and edge cloud performance, and figure 4.1 tabulates the

details of the relevant software modules used in this study.

4.1 Link Performance Metric

Link performance metric is a measure of network performance which is affected by

various parameters, like:



15

Figure 4.1: Details of the relevant software modules used in this study.

• Bandwidth - Maximum rate at which data can be transferred.

• Latency - Delay with which a packet is transmitted from one point to another.

Several factors contribute to latency such as the processing at routers and trans-

mission delay( time it takes for a packet to be transmitted at speed of light).

• Jitter - Variation in the time of arrival of the packets at the receiver’s end.

• Bit Error Rate (BER) - Number of bits of a data stream that have been received

in error due to noise, interference, distortion or bit synchronization divided by

the total number of received bits.

In this work, link performance incorporates both bandwidth and latency as they sig-

nificantly affect the network performance and we study their effect on the network

link. Files are transferred from a client to a single hop cloud site as shown in figure

4.2 (the block diagram for the same is shown in figure 4.3)for different job sizes: 1

MB, 10MB, 100MB, 500 MB, 1 GB, 2.5 GB and 5 GB to study transfer time under



16

Figure 4.2: Experimental setup to study the effect of latency on transfer time.

Figure 4.3: Block diagram for the experimental setup in figure 4.2.

different latencies(RTT): 15 ms, 30 ms and 60 ms and bandwidth: 1000 Mbps, 500

Mbps and 100 Mbps. These input parameters are chosen in accordance with real time

network scenarios wherein a client connects to an edge cloud site through a wireless

access point. A network emulator tool called ‘netEm’ is used to vary the link latency

for this experimental setup [17]. Buffer size of 16 MB and TCP CUBIC version is used

along with TCP auto scaling feature [18]. CUBIC is suitable for high speed network

environments because the window growth rate is independent of RTT which keeps TCP

friendly under both short and long RTT paths [19].

The experimental objectives were to study the effect of latency on transfer time for

different job sizes. The experiment was repeated for varying link bandwidths. Files

were transferred across the link for different network latencies and transfer times were

measured. Figures 4.4 and 4.5 show the effect of latency on transfer time on a Gigabit



17

Job size (GB)

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

No latency

15 ms latency

30 ms latency

60 ms latency

Figure 4.4: Effect of latency on transfer time for small data size on a link bandwidth
of 1000 Mbps.

link for small and large data sizes respectively. Similarly, figures 4.6 and 4.7 show the

effect of latency on transfer time on a 500 Mbps link for small and large data sizes

respectively . It is seen that, with increase in data size, effect of latency on transfer

time also increases. There are 3 observations to be made:

• When the data size is small, transfer time is affected by the slow start of TCP/IP

protocol, thus, with increase in data size, transfer time also increases significantly.

We see this effect for job size of up to 100 MB as shown in figures 4.4 and 4.6.

• As the data size increases transfer time is almost about the same for different

latencies because large amount of data is transmitted through the link to mask

latency affects, shown in figures 4.5 and 4.7. This is performed by TCP/IP

auto scaling. The amount of data sent out by the sender depends on factors like

congestion window size and receiver buffer size. When receiver buffer size is large,

receiver window size advertised is also large and thus, large amount of data is sent



18

Job size (GB)

0 1 2 3 4 5 6

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

10

20

30

40

50

60

70

80

No latency

15 ms latency

30 ms latency

60 ms latency

Figure 4.5: Effect of latency on transfer time for large data size on a link bandwidth of
1000 Mbps.

across the link to mask latency effect.

• With very large job sizes and large latencies, transfer time is severely affected.

This is because the amount of data to be sent from sender is either affected by

capacity of link or because of the application’s slow retrieval rate from the buffer

on the receiver end. If the application’s retrieval rate is slow, then the advertised

receive window size is small, so, the sender cannot send enough data to mask the

latency effects because of which transfer time is affected significantly [20]. This

is explained in detail in section 4.2.2.

We also study the effect of bandwidth on transfer time for different job sizes with

the same setup as in figure 4.2 and the results are in figure 4.8. The transfer time

depends on both bandwidth and job size. It is seen that, for any given job size, time

taken to transfer a file on a 100 Mbps link is almost ten times and for a 500 Mbps

link, it is twice of that on a 1000 Mbps link. This is because bandwidth determines the



19

Job size (GB)

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

No latency

15 ms latency

30 ms latency

60 ms latency

Figure 4.6: Effect of latency on transfer time for small data size on a link bandwidth
of 500 Mbps.

rate at which data can be transferred on a link. So, higher the bandwidth, higher the

data transfer rate and hence, lower the transfer time and vice versa. Bandwidth is an

essential parameter to be considered especially when considering big data for real time

applications as it plays a major role in determining the transfer time. Thus, bandwidth

is an important parameter to be considered for link performance.



20

Job size (GB)

0 1 2 3 4 5 6

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

10

20

30

40

50

60

70

80

90

100

No latency

15 ms latency

30 ms latency

60 ms latency

Figure 4.7: Effect of latency on transfer time for large data size on a link bandwidth of
500 Mbps.

Job size (GB)

0 1 2 3 4 5 6

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

50

100

150

200

250

300

350

400

450

1000 Mbps

500 Mbps

100 Mbps

Figure 4.8: Effect of bandwidth on transfer time for different job sizes.



21

4.2 Effect of Link Performance on Response Time

We study the effect of link performance on response time by conducting a set of ex-

periments, wherein the link quality between client and the edge cloud is changed with

respect to bandwidth: 1000 Mbps, 500 Mbps and 100 Mbps and latency: 15 ms, 30

ms and 60 ms. Edge cloud with a cluster of 9 nodes, runs Hadoop software for parallel

and distributed computing. The response time for a client’s request is given as a sum

of input file transfer time, job completion time at the edge cloud site and output file

transfer time as shown in figure 4.11. Simple word count application runs on the edge

cloud and a buffer size of 16 MB is used for the following set of experiments. The

experimental setup is shown in figure 4.9 and the block diagram for the same is shown

in figure 4.10.

Figure 4.9: Experimental setup to study the effect of link performance on response

time.



22

Figure 4.10: Block diagram for the experimental setup in figure 4.9.



23

Job size (GB)

0 1 2 3 4 5 6

T
im

e
(s

)

0

50

100

150

200

250

Transfer time

Job completion time

Response time

Figure 4.11: Study of response time for different job sizes on a Gigabit link.

4.2.1 Variation in bandwidth of links

Figure 4.11 shows the effect of transfer time and job completion time on the response

time, for different job sizes on a 500 Mbps link. The job completion time at the cluster

is a sum of HDFS and MapReduce time and they vary according to the job size. Figure

4.12 shows the effect of bandwidth on the response time for a job of size 2.5 GB.

Variation in the bandwidth of the link between the client and the edge cloud affects

the file transfer times which contributes to the total response time for a user’s request.

However, the HDFS and MapReduce time at the cluster remain the same for different

bandwidth links because it is only affected by the job size.

It is seen that time taken to transfer a file on a 100 Mbps link is almost ten times

of that on a 1000 Mbps link for the same job size and transfer time contributes to the



24

Bandwidth (Mbps)

100 500 1000

T
im

e
 (

s
)

0

50

100

150

200

250

300

350

400

Transfer time

HDFS time

MapReduce time

Response time

Figure 4.12: Effect of bandwidth on response time for a job size of 2.5 GB

response time. Thus, bandwidth is an important parameter to be considered for link

performance which will contribute to the ASR metric.

4.2.2 Variation in latency of links

The setup to study the effect of latency on response time is the same as mentioned in

4.2.1. Figure 4.13 shows the effect of latency on response time for a job of size 2.5 GB.

It is seen that the file transfer time increases as the latency of the link increases.



25

Latency (ms)

15 30 60

T
im

e
 (

s
)

0

50

100

150

Transfer time

HDFS time

MapReduce time

Response time

Figure 4.13: Effect of latency on response time for a job size of 2.5 GB on a Gigabit

link.

To optimize TCP throughput for scenarios where the bandwidth is high or there is

high latency between client and edge cloud (called as long fat pipes), the client should

send enough packets to fill the fat pipe between the sender and receiver. The capacity

of the logical pipe can be calculated by:

Capacity in bits = Path bandwidth in bits per second * Round-trip time (seconds).

(4.1)

Links with high bandwidth and large latency have high BDP. High BDP links need

large window sizes and for these window sizes, RFC 1323 [21] defines window scaling



26

that allows receivers to advertise a window size larger than 65,535 bytes. A TCP

window scale option includes a window scaling factor that, which when combined with

the 16-bit window field in the TCP header, can increase the receive window size to

a maximum of approximately 1 GB. Both TCP peers can indicate different window

scaling factors to use for their receive window sizes. By allowing a sender to send more

data on a connection, TCP window scaling allows TCP nodes to better utilize some

types of links with high BDPs and provides higher throughput.

From figures 4.5 and 4.7, it is seen that the transfer time is strongly affected by

latency for 1000 Mbps, 60 ms latency link because the buffer size is 16 MB and the

bandwidth delay product (BDP) is about 7.5 MB , whereas for 500 Mbps, 60 ms link

(BDP is 3.75 MB) and 500 Mbps, 30 ms link (BDP is 1.875 MB), transfer time is

about the same because the buffer size is much greater than the amount of data to be

transferred every RTT. TCP stack doesn’t allow data to be sent if there is no room in

the receiver’s buffer for the incoming data, therefore, as latency increases, amount of

data to be sent on the link also increases to compensate for the latency, but, if there is no

room in the receiver’s buffer then the amount of data to be sent will reduce depending

on the receiver buffer. The receiver’s buffer becomes the bottleneck in determining the

amount of data that must be in flight over the link to compensate for latency [20].

Although the receive window size is important for TCP throughput, another factor

for determining the optimal TCP throughput is the application’s retrieval rate from

the receiver buffer. If the application does not retrieve the data quickly, the receiver

buffer can begin to fill, causing the receiver to advertise a smaller receive window size.

In the extreme case, the entire maximum receive buffer is filled, causing the receiver

to advertise a window size of 0 bytes. In this case, the sender must stop sending data

until the receive buffer has been cleared. Therefore, to optimize TCP throughput, the

TCP receive buffer for a connection should be set to a value that reflects both the BDP

of the connection’s transmission path and the application’s retrieval rate.

Latency affects transfer time and is an important parameter for link performance,

hence, contributes to the ASR metric.



27

Figure 4.14: Experimental setup to study the effect of link performance on response
time in MobilityFirst.

Figure 4.15: Block diagram for the experimental setup in figure 4.14.

4.3 Link Performance Metric on MobilityFirst

We also study how transfer time is affected by link quality on MF. Link quality is varied

by adjusting bandwidth and latency (using netEm tool) which affects MF’s SETT

values. In these set of experiments, we transfer the same set of files as mentioned in

section 4.2 on MF virtual network to study the effect of bandwidth and latency on

transfer time.

The experimental setup is shown in figure 4.14, where (B,L) represents the bandwidth

and latency respectively, of each link on the path from the client to the edge cloud.

The block diagram for the same is shown in figure 4.15. The file to be transferred is

divided in to messages of size 1 MB and the buffer size used here is 10 MB. Figure

4.16 shows the effect of bandwidth on transfer time, while figures 4.17 and 4.18 show



28

the effect of latency on transfer time. Like mentioned is section 4.1, bandwidth plays

a crucial role in determining the transfer time as it influences the rate at which data

must be transferred over the link. Hence, transfer time on a 100 Mbps link is at least

four times as that on 500 Mbps link.

Job size (GB)

0 0.5 1 1.5 2 2.5 3

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

50

100

150

200

250

1000 Mbps

500 Mbps

100 Mbps

Figure 4.16: Effect of bandwidth on transfer time on a MobilityFirst Virtual Network.



29

Job size (GB)

0 0.5 1 1.5 2 2.5 3

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

20

40

60

80

100

120

1.350 ms

9.435 ms

16.762 ms

31.959 ms

Figure 4.17: Effect of latency on transfer time on a MobilityFirst Virtual Network using

Gigabit links.



30

Job size (GB)

0 0.5 1 1.5 2 2.5 3

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

20

40

60

80

100

120

140

1.350 ms

9.435 ms

16.762 ms

31.959 ms

Figure 4.18: Effect of latency on transfer time on a MobilityFirst Virtual Network using

500 Mbps links.

Figures 4.17 and 4.18 show the effect of latency on transfer time on an MF network.

The flow control mechanism on MF in still under development. When a chunk of data

needs to be sent over the link, the next chunk of data is not sent until an acknowledgment

is received for the previous chunk. Hence, latency affects transfer times more than

expected in these set of experiments though this is likely to be reduced in future releases

of the MF code with better optimized link layer protocol.

4.4 Edge Cloud Performance Metric

Edge cloud performance metric is another metric that is chosen to determine the best

destination/ edge cloud to service a request and to ensure good QoE for a client. Each

edge cloud site is characterized by its utilization (ρ). When ρ is high, it implies that the

work done by the nodes in the cluster is high which is because of high traffic intensity,

thus, ρ directly reflects the traffic intensity at the edge cloud. For instance, if ρ at



31

an edge cloud is high, say 0.8, then, the job completion time at this cluster would be

much higher than at an edge cloud with ρ = 0.4 . As the traffic intensity increases,

the amount of time a new client request has to wait until it is serviced increases and

thus the total time taken for the entire job to be processed by the cluster also increases.

Job completion time can be defined as the time a client has to wait until the job is

serviced; including both service time and waiting time in the cluster. Thus, the average

job completion time at the cluster reflects the traffic intensity or ρ at that cloud site.

The job completion time is indirectly affected by other parameters of the cluster

such as; capacity of the servers, number of nodes in the cluster and the like [16] . An

experiment is conducted to study the effect of number of nodes on job completion time

in the cluster. From figure 4.19, we see that as the number of nodes in the cluster

increases, processing time or job completion time in the cluster decreases; i.e., job

completion time and the number of nodes in the cluster are inversely proportional. As

the number of nodes increase, there are more nodes available to process the job in

parallel because of which the overall job completion time decreases. This is seen in

figure 4.19. However, if the number of nodes in the cluster is more than required for a

given job size, communication overhead among the nodes dominate over the processing

time and subsequently, the job completion time in the cluster increases after a certain

point.

In another experiment, we study the effect of processing speed of the servers on

the job completion time. The ORBIT [22] testbed’s GRID and Sandbox 9 (SB9) have

been used for these set of experiments. GRID nodes have CPU speed varying from

970 MHz to 3400 MHz, while SB9 have CPU speed of 2300 MHz. SB9 provides lower

job completion time since it has better performance in terms of average CPU speed as

compared to the GRID nodes and this is seen in figure 4.20.

4.4.1 Effect of traffic intensity on average job completion time in an

M/M/1 system

In this work, we study the effect of traffic intensity on average job completion for

different inter arrival rates of the job requests.



32

Number of nodes in the cluster

3 4 5 6 7 8 9

S
e
rv

ic
e
 t
im

e
 (

s
)

0

20

40

60

80

100

120

140

160

180

200

Figure 4.19: Effect of number of nodes on service time in a Hadoop cluster for a data
size of 2.5 GB.

The average job completion time is given by:

Average job completion time =
1

µ− λ
(seconds). (4.2)

By calculating average service rate, µ = 0.01766 (from figure 3.2), we study the

effect of traffic or inter arrival rate of requests on average job completion time in the

cluster, shown in figure 4.21. For an M/M/1 system the input job sizes and the proba-

bilities of their requests need to be exponentially distributed in order to calculate their

average service rate but here, we assume that the requests have equal probability and

then calculate the average service rate because these parameters are highly application

dependent.



33

Job size (GB)

0 0.5 1 1.5 2 2.5 3

S
e

rv
ic

e
 t

im
e

 (
s
)

0

50

100

150

200

250

300

SB9

Grid

Figure 4.20: Effect of processing speed of different servers in a Hadoop cluster on service
time.

4.4.2 Effect of traffic intensity on average job completion time in a

Hadoop cluster

We study the effect of λ on average job completion time by setting up a Hadoop cluster

of 9 nodes on ORBIT testbed. Traffic is induced at this edge cloud site by a synthetic

traffic generator and we measure the job completion time for every client’s request. The

job completion time is averaged over a large number of requests and the effect of inter

arrival rate on average job completion time is studied. Here, job sizes of 545 MB, 1.1

GB and 2.6 GB have been used. Figure 4.22 shows the effect of inter arrival rate on

average job completion time and this performance study is done from zero initial state

of the Hadoop cluster.



34

λ

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 4.21: Effect of λ on average job completion time in an M/M/1 system.

λ

0 0.05 0.1 0.15 0.2 0.25

A
v
e
ra

g
e
 j
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

50

100

150

200

250

300

Figure 4.22: Effect of λ on average job completion time in a Hadoop cluster.



35

Chapter 5

System Level Evaluation

This work evaluates the combined effect of both access network and edge cloud perfor-

mance on the response time, which is given by :

Response Time = Transfer time + Job completion time at the edge cloud. (5.1)

5.1 Combined Effect of Performance of Link and Performance of an

M/M/1 System on Response Time

0.02

0.015

λ

0.01

0.0050

1
SETT

2
×10 4

2000

10000

8000

6000

4000

0
3

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Figure 5.1: Effect of SETT and inter arrival rate (λ) on the response time in an M/M/1

system.



36

0.02

0.015

λ

0.01

0.0050

0.5

1

1.5

SETT

2

2.5

×10 4

1000

0

200

400

600

800

1600

1400

1200

3

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Figure 5.2: Effect of SETT and inter arrival rate (λ) on the response time in an M/M/1

system for λ ≤ 0.0169

From figure 5.1, it is seen that response time steeply increases when λ > 0.0169, this is

because the average job completion time of the system becomes very large as the inter

arrival rate, λ approaches the service rate, µ. In order to provide the user with good

QoE, this region of the graph needs to be avoided and we can do so by restricting the

ASR algorithm to avoid destinations where λ is greater than 0.0169. Figure 5.2 shows

the same plot with restricted λ values and this region looks smooth.



37

5.2 Combined Effect of Performance of Link and Performance of a

Hadoop cluster on Response Time

0.25
0.2

0.15

λ

0.1
0.05

00

1
SETT

2
×10 4

500

400

300

200

100

0

3

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Figure 5.3: Effect of SETT and inter arrival rate (λ) on the response time in a Hadoop

cluster.

From figure 5.3 it is seen that the region is smooth and there is no region which we

particularly need to avoid to provide the user with the best QoE. Hence, for both figures

5.2 and 5.3, the decision metric can be written as :

Estimated response time = Estimated transfer time + Average job completion time.

(5.2)

The estimated transfer time is a function of client’s file size or job size, while the

average job completion time is dependent on the size of files or jobs that the edge cloud

services. The file size plays a key role in determining the destination as it significantly



38

affects the link performance as well as the edge cloud performance and is considered

as an application specific parameter. That is, routing decisions are based on this input

parameter provided by the client. The destination edge cloud and the path to it is

chosen by estimating the response time for all the destination edge clouds and then

choosing the minimum among the estimated response times.

5.3 Estimating the Transfer Time on MobilityFirst Virtual Network

The MF architecture provides SETT values which takes into account both bandwidth

and latency parameters of the link. Using these parameters along with file or job size

submitted by the client, we try to estimate the transfer time as follows:

File Delivery ETT =
file size

min(bandwidth)
+ sum of latency. (5.3)

Where, the file size is in bytes, bandwidth is in bytes per second and latency is in

seconds. The File Delivery ETT (FDETT) is the estimated transfer time using both

bandwidth and latency of the link from client to the edge cloud. We consider minimum

bandwidth or minimum throughput in the equation as the link with the lowest band-

width along the path becomes the bottleneck during the transfer, and latency is taken

as the sum of delays on links along the path between the client and the edge cloud.

As mentioned in section 4.3, the flow control mechanism has not been fully optimized

in MF, so every chunk of data that is sent across the network is subjected to a sum of

delay along the links. When a file transfer is initiated, the file is divided into messages

of size 1 MB and these chunks of 1 MB are sent through the network, hence, each chunk

of data is subjected to a latency that equals the sum of delays along the path. So we

revise equation 5.3 to:

File Delivery ETT =

[
file size

min(bandwidth)

]
+

[
file size

message size
∗ sum of latency

]
. (5.4)

Where, the file size and the message size are in bytes, bandwidth is in bytes per second



39

Job size (GB)

0.5 1.1 2.5

T
ra

n
s
fe

r 
ti
m

e
 (

s
)

0

20

40

60

80

100

120

140

No latency

No latency estimate

15 ms latency

15 ms latency estimate

30 ms latency

30 ms latency estimate

60 ms latency

60 ms latency estimate

Figure 5.4: Comparison of transfer time and FileDeliveryETT on a 500 Mbps link with
varying latency.

and latency is in seconds.

Figure 5.4 shows how the estimated values are quite close to the actual transfer

times. This estimation is used in equation 5.2 to estimate the response time, and ASR

then chooses the best edge cloud to service a client’s request.

5.4 Performance of Application Specific Routing

Evaluation of users’ QoE for edge cloud services is performed on the ORBIT testbed

by replicating simple word count application on multiple edge cloud sites. The edge

cloud sites have Hadoop software running on them. Traffic is induced at each of these

sites using synthetic traffic generator to control the job completion time, and the link

quality is varied using ‘netEm’ tool. The setup is as shown in figure 5.5 and the block

diagram for the same is shown in figure 5.6.

For performance comparison, response time for a client’s request is evaluated using



40

Figure 5.5: Experimental setup to study the performance of ASR against basic anycast
service in MF.

ASR and also using the basic anycast service in MF. The basic anycast service in

MF chooses the destination that is reachable with the least number of hops, while the

ASR algorithm chooses the destination and the path by finding the minimum estimated

response time (using equation 5.2) among the available destination nodes. The following

tables show the destination edge cloud chosen by ASR and response time for both ASR

and anycast service on MF under different link and edge cloud performances.

In the above figures: L1, L2 represent (bandwidth in Mbps, latency in ms) from client

to the edge clouds 1 and 2 respectively. C1, C2 represent the average job completion

time in seconds at edge clouds 1 and 2 respectively .

It is seen that while anycast always chooses the nearest edge cloud: C1, ASR pro-

vides the best response time by either choosing a lightly loaded cluster, or by choosing

a high quality link, or a combination of both, and therefore provides a better QoE to

the end user.



41

Figure 5.6: Block diagram for the experimental setup in figure 5.5.

Figure 5.7: Destination chosen by the ASR algorithm by choosing a minimum of the
estimated response times.



42

Figure 5.8: Performance comparison of ASR against basic anycast service in MF.



43

Chapter 6

Future Work

6.1 Service migration

For mobile users, service migration is one of the techniques that is used to keep the

edge cloud, servicing a user’s request in close proximity to the user in order to reduce

latency [23]. Service migration involves the process of transferring application data

from one edge cloud to another.

Let’s say a user makes a request at an edge cloud site A and moves. It is now

in close proximity to edge cloud site B. Is there a need for service migration from A

to B by transferring the state or would A still provide the user with good QoE? By

knowing the size of the state that needs to be transferred, link performance from A to

B and edge cloud performance of B, we can use ASR in deciding whether there is a

need to migrate. Service migration always comes with a certain cost and would be best

if large state transfers can be avoided. ASR can support the application in deciding

whether it is necessary to migrate and thus avoids unnecessary costs to ensure user’s

QoE. Further work needs to be done in designing a module that is supported by ASR

that can support service migration.

6.2 Edge cloud performance metric

Currently, we use utilization or traffic intensity at the edge cloud site as a parameter

to measure the edge cloud performance which contributes to the ASR metric. This

utilization factor is calculated over a long period of time and it reflects the performance

history of the system rather than the current performance which may provide better



44

results. Therefore, there is a need for edge cloud performance metric to reflect the cur-

rent workload or most recent average job completion time by measuring the utilization

of the system or job completion time over a particular period of time or a window size.

It may also be necessary to take into account variations in the job arrival process and

the specific scheduling policies used at the cluster.



45

References

[1] Fog Computing: Extending the Cloud to the Edge,
http://www.datacenterknowledge.com/archives/2013/08/23/welcome-to-the-
fog-a-new-type-of-distributed-computing/.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in
the internet of things,” in Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. ACM, 2012, pp. 13–16.

[3] I. Seskar, K. Nagaraja, S. Nelson, and D. Raychaudhuri, “MobilityFirst Future
Internet Architecture Project,” in MobilityFirst Project, Proc. ACM AINTec 2011.

[4] NSF Future Internet Architecture Project, http://www.nets-fia.net/.

[5] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P. Martin, and D. Ray-
chaudhuri, “Dmap: A shared hosting scheme for dynamic identifier to locator
mappings in the global internet,” in Distributed Computing Systems (ICDCS),
2012 IEEE 32nd International Conference on. IEEE, 2012, pp. 698–707.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” Pervasive Computing, IEEE, vol. 8, no. 4, pp.
14–23, 2009.

[7] S. Velrajan, “Application aware routing in software defined networks.”

[8] “Mobilityfirst future internet architecture project,”
http://mobilityfirst.winlab.rutgers.edu/.

[9] S. C. Nelson, G. Bhanage, and D. Raychaudhuri, “GSTAR: Generalized storage-
aware routing for MobilityFirst in the future mobile Internet,” in Proceedings of
MobiArch’11, 2011, pp. 19–24.

[10] A. Riedl and D. A. Schupke, “A flow-based approach for ip traffic engineering
utilizing routing protocols with multiple metric types,” in Proceedings of the 6th
INFORMS Telecommunication Conference, Boca Raton, USA, 2002.

[11] Introduction to EIGRP - Cisco, http://www.cisco.com/c/en/us/support/docs/ip/enhanced-
interior-gateway-routing-protocol-eigrp/13669-1.html.

[12] Design and implementation of a virtual networking frame-
work for the MobilityFirst Future Internet Architecture,
http://www.winlab.rutgers.edu/ ababu/downloads/thesis.pdf.

[13] Apache Hadoop, https://hadoop.apache.org/.



46

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file
system,” in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on. IEEE, 2010, pp. 1–10.

[15] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-reduce-merge: sim-
plified relational data processing on large clusters,” in Proceedings of the 2007
ACM SIGMOD international conference on Management of data. ACM, 2007,
pp. 1029–1040.

[16] B. T. Rao, N. Sridevi, V. K. Reddy, and L. Reddy, “Performance issues of het-
erogeneous hadoop clusters in cloud computing,” arXiv preprint arXiv:1207.0894,
2012.

[17] S. Hemminger et al., “Network emulation with netem,” in Linux conf au. Citeseer,
2005, pp. 18–23.

[18] T. Kelly, “Scalable tcp: Improving performance in highspeed wide area networks,”
ACM SIGCOMM computer communication Review, vol. 33, no. 2, pp. 83–91, 2003.

[19] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp variant,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64–74, 2008.

[20] TCP Receive Window Auto-Tuning, https://technet.microsoft.com/en-
us/magazine/2007.01.cableguy.aspx.

[21] TCP Extensions for High Performance, https://www.ietf.org/rfc/rfc1323.txt.

[22] WINLAB, ORBIT, http://www.orbit-lab.org/wiki/WikiStart.

[23] D. Arora, M. Bienkowski, A. Feldmann, G. Schaffrath, and S. Schmid, “Online
strategies for intra and inter provider service migration in virtual networks,” in
Proceedings of the 5th International Conference on Principles, Systems and Appli-
cations of IP Telecommunications. ACM, 2011, p. 10.


