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ABSTRACT OF THE DISSERTATION
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by Heng Shu

Dissertation Director: Zhiqiang Tan

In this dissertation, we develop improved estimation of average treatment effect on

the treatment (ATT) which achieves double robustness, local efficiency, intrinsic effi-

ciency and sample boundedness, using a calibrated likelihood approach. Moreover, we

consider an extension of two-group causal inference problem to a general data combi-

nation problem, and develop estimators achieving desirable properties beyond double

robustness and local efficiency. The proposed methods are shown, both theoretically

and numerically, to be superior in robustness, efficiency or both to various existing

estimators.

In the first part, we review existing estimators on average treatment effect (ATE),

mainly based on Tan (2006, 2010). This review provides a useful basis for improved

estimation of average treatment effect on the treated (ATT).

In the second part, we propose new methods to estimate the average treatment effect

on the treated (ATT), which is of extensive interest in Econometrics, Biostatistics and

other research fields. This problem seems to be often treated as a simple modification or

extension of that of estimating overall average treatment effects (ATE). But the propen-

sity score is no longer ancillary for estimation of ATT, in contrast with estimation of

ATE. We study the efficient influence function and the corresponding semiparametric
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variance bound for the estimation of ATT under three different assumptions: a non-

parametric model, a correct propensity score model and known propensity score. Then

we construct Augmented Inverse Probability Weighted (AIPW) estimators which are

locally efficient and doubly robust. Furthermore, we develop calibrated regression and

likelihood estimators that are not only doubly robust and locally efficient, but also

intrinsically efficient and sample bounded. Two simulations and real data analysis on

a job training program are provided to demonstrate the advantage of our estimators

compared with existing estimators.

In the third part, we extend our methods to a general data combination problem

for moment restriction models (Chen et al. 2008). Similarly, we derive augmented

inverse probability weighted (AIPW) estimators that are locally efficient and doubly

robust. Moreover, we develop calibrated regression and likelihood estimators which

achieve double robustness, local efficiency and intrinsic efficiency. For illustration, we

take the linear two-sample instrumental variable problem as an example, and derive

all the relevant estimators by applying the general estimators in this specific example.

Finally, a simulation study and an Econometric application on a public housing project

are provided to demonstrate the superior performance of our improved estimators.
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Chapter 1

Introduction

1.1 Causal Inference

Drawing inference about average effects of some treatments or actions has applications

in various research fields, such as Biostatistics, Economics, political science, sociology

and so on. For example, we would like to find out whether a new drug or medical

treatment would cure/alleviate a disease effectively. In Economics, we want to set up

an experiment to investigate if a training program is useful to help people find better

jobs.

Considering the practical cases described above, let’s study the mathematical repre-

sentation. Suppose a simple random sample of n subjects is available from a population

under study. The observed data consist of independent and identically distributed ob-

servations {(Yi, Ti, Xi) : i = 1, ..., n} of (Y, T,X), where Y is an outcome variable, T is

a dichotomous treatment variable (T = 1 if treated or T = 0 otherwise), and X is a

vector of measured covariates. Our objective is to evaluate the effect of the treatment

on the outcome Y .

Ideally, we could design and carry out a randomized experiment to figure out the

difference. That is to assign the experiment objectives into two groups randomly,

then the difference between the sample average simply gives a valid estimate of the

treatment effect. The purpose of randomization is to ensure that two treatment groups

are comparable with regard to their pre-treatment variables or covariates.

However, in practice, we cannot employ randomized experiments due to some ethical

or practical considerations. We thereby have to use observational studies to investigate

the treatment or action effect. In most cases, the two groups have differences in various
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characteristics due to the self-selection in observational studies. Then simple difference

between treatment groups will not represent the effect purely caused by the treatment.

How to draw valid inference about treatment effects from observational studies is a

major challenge.

1.1.1 Neyman-Rubin Causal Model

Neyman-Rubin causal model, is originated with Neyman’s (Neyman, 1923) non-parametric

model for randomized experiments where each unit has two potential outcomes, one if

the unit is treated and the other if untreated. Rubin (1974) developed the model into

a general framework for causal inference with implications for observational studies.

Potential outcomes (Y 0, Y 1) are expressed in the form of counterfactual statements,

which state what would be the response under treatment 0 or 1 respectively. Generally,

we assume treatment 0 is the control group, while treatment 1 refers to the group

receiving the treatment. The consistency between the observed outcome Y and the

potential outcome (Y 0, Y 1) is Y = Y 1 if T = 1 and Y = Y 0 if T = 0. In another word,

Y = TY 1 + (1− T )Y 0.

Causal inference in this framework is a missing data problem because Y 1 and Y 0

are never both observed at the same time.

1.1.2 Treatment Effect (ATE & ATT)

There are two causal effects commonly of interest. The first one is the average treatment

effect (ATE), defined as E(Y 1 − Y 0) = µ1 − µ0, with µt = E(Y t). It is the most

commonly studied in statistical and econometric literature. And the other one is the

average treatment effect on the treated (ATT), defined as E(Y 1−Y 0|T = 1) = ν1− ν0

with νt = E(Y t|T = 1). From the definition formula, we can see that ATE is defined

as the mean difference of two potential outcomes under the active treatment and the

control over the entire population, whereas ATT is defined as the mean difference of

two potential outcomes over the subpopulation of individuals who received the active

treatment.

It is interesting to point out that these two concepts of effect are actually the same
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in a randomized experiment. In a randomized experiment, the following assumption

always holds:

T ⊥ (Y 0, Y 1) (1.1)

Then, we can see the definition of ATT reduces to E(Y 1 − Y 0) = µ1 − µ0, the ATE

definition.

Sometimes, we may be more interested in the treatment effect on a special subpop-

ulation rather than the whole population in the context of narrowly targeted programs.

Similarly as argued in Heckman & Robb (1985) and Heckman et al. (1997), we are

often interested in how much the people participating the program can benefit from the

program when evaluating the effect of some training program.

Drawing inferences about ATE and ATT is challenging because, in reality, all but one

potential outcome are missing for each subject. Nevertheless, under unconfoundedness

(i.e., exogeneity) and overlap assumptions, the ATE and ATT are point identifiable

from observed data (e.g., Imbens 2004). There is an extensive collection of theory and

methods developed for statistical estimation of ATE and ATT under exogeneity. Let

Y be an observed outcome, T a treatment indicator, and X a vector of covariates.

Semiparametric efficiency bounds for estimation of both ATE and ATT are obtained

by Hahn (1998), and can be seen as special cases of semiparametric theory in Robins

et al. (1994) and Chen et al. (2008) for conditional mean models with missing data.

Asymptotically globally efficient estimators for ATE and ATT are studied by Hahn

(1998), Hirano et al. (2003), and Chen et al. (2008) among others, using nonparametric

series/sieve estimation on the propensity score, π(X) = P (T = 1|X), or the outcome

regression function, mt(X) = E(Y |T = t,X), or both. But the smoothness conditions

typically assumed for such methods can be problematic in practical situations with a

high-dimensional covariate vector X (Robins & Ritov, 1997).

Alternatively, various methods are developed by using parametric working models

on the propensity score π(X) or the outcome regression function mt(X) or both, to

achieve desirable properties such as local efficiency, double robustness, and beyond.
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This line of research has been well pursued for estimation of ATE (e.g., Robins et al.

1994; Tan 2006, 2010; Cao et al. 2009). See also Kang & Schafer (2007) and its discus-

sion. For an estimator of ATE, double robustness means that the estimator remains

consistent if either the propensity score model or the outcome regression model is cor-

rectly specified. Local efficiency means that if both the propensity score model and

the outcome regression model are correctly specified, then the estimator achieves the

semiparametric efficiency bound, which is the same whether the propensity score is

known, parametrically modeled, or completely unknown due to the ancillarity of the

propensity score for estimation of ATE (Hahn, 1998).

1.2 Data Combination

Generally, Economists always need to draw some inferences regarding a population

based on a large enough sample. However, most of the times, they need to combine the

samples from different sources.

The reasons why they need to collect different samples could be different; one possi-

bility is a single sample doesn’t include all the relevant variables such as the estimation

of average treatment effect on the treated (ATT) for program evaluation (Heckman &

Robb, 1985; Imbens, 2004), or some variables in the sample are measured with error

(e.g., Carroll & Wand 1991), or even if all the relevant variables could be collected

from one sample, the limited sample size restricts the accuracy and efficiency of the

estimators.

Without loss of generality, suppose we have two independent random samples. The

first sample consists the measurements of variables (y, z), and is usually called primary

data with limited sample size n1. Let’s call it “Data (1)”, and use superscript (1) to

indicate the data set. While the second one contains measurements of variables (x, z),

and is generally called auxiliary data with large enough data size n0. We call it “Data

(0)”, and use superscript (0) to indicate the data set. The variable y is only available

from Data (1), and variable x is only available from Data (0), but z is available from

both Data (1) and Data (0).
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Since the statistical analysis of interest is considered under the distribution of the

primary data, the most straightforward and easiest assumption when we combine dif-

ferent samples is that the auxiliary data has the same distribution as the primary data.

However, the common variables across the samples may be measured with different lev-

els of error, and most likely, the common variables may sometimes have quite different

distributions across the samples. Different methods have been proposed to augment

the auxiliary data in order to ensure the comparability of primary data and auxiliary

data, mainly by introducing various forms of weights to balance the discrepancy be-

tween the two samples. Wooldridge (2002) introduced the inverse probability weighted

M-estimators for cross-section and two-period panel data applications. Hellerstein &

Imbens (1999) constructed the weights in least square by imposing the moment restric-

tions based on auxiliary data to be used in weighted regression analysis.

Hahn (1998) systematically studied the semiparametric efficiency bounds of ATT

estimation, a specific example of two-sample combination, under the nonparametric

model case and the case when propensity score model is known. Chen et al. (2008)

extended the problem to a general two-sample combination framework represented by

the moment restrictions and studied the semiparametric efficiency bounds of estimating

parameters of interest under the nonparametric model, propensity score model is known

or a correctly specified parametric propensity score model. They also propose Gener-

alized Method of Moments (GMM) estimator achieving the variance bounds in these

three cases using sieve estimation of conditional expectation. However, their procedure

requires nonparametric modelling which is too challenging when the common variables

z are high dimensional (Rothe & Firpo, 2013). The recent work done by Graham et al.

(2015) provides a locally efficient parametric estimator under the general two-sample

combination framework, and it is doubly robust under some assumption regarding the

equivalence of the covariate matrix between propensity score (PS) model and outcome

regression (OR) model.
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1.3 Outline of Thesis

The estimation of ATE has drawn lots of attention and research, but there seems to

be much less attention on locally efficient and doubly robust estimation of ATT except

for Graham et al. (2015) and Zhao & Percival (2015) recently. There are two possible

reasons. On one hand, ATT can often be estimated by a simple modification or exten-

sion of estimators of ATE. On the other hand, semiparametric theory for estimation of

ATT is complicated by the fact that the propensity score is no longer ancillary Hahn

(1998).

In Chapter 2, we review the estimation of average treatment effect (ATE), in order

to get a better understanding of the difference and the relationship with ATT. We show

that the semiparametric efficiency bounds of estimating ATE remain the same regardless

of the information of propensity score, demonstrating the ancillary role of propensity

score in estimating ATE. Then we mainly review the methods in Tan (2006, 2010),

where the estimators achieve double robustness, local efficiency, intrinsic efficiency and

sample boundedness. This review provides us a good basis to carry out the study of

ATT estimation.

Improved estimators of average treatment effect on the treated (ATT) are proposed

in Chapter 3. According to three different efficient influence functions under different

model information of the propensity score, we derive an augmented inverse probability

probability (AIPW) estimator which is doubly robust and locally efficient. Moreover,

we develop calibrated regression and likelihood estimators that are not only locally

efficient and doubly robust, but also intrinsically efficient and sample bounded. By in-

trinsic efficiency, this estimator achieves greater efficiency than AIPW estimators when

a propensity score model is correctly specified but an outcome regression model may be

misspecified. We further present data two simulation studies and an Econometric ap-

plication on evaluating a job training program first studied by LaLonde (1986). All the

numerical results demonstrate the advantage of the proposed methods when compared

with existing methods.



7

In Chapter 4, we extend the methods in ATT estimation to deal with data combi-

nation problems, where different datasets need to be combined for regression analysis.

We formulate the problem in the form of moment estimating equations similar to Chen

et al. (2008), and derive doubly robust and locally efficient AIPW estimators directly

based on the efficient influence functions. Then calibrated regression and likelihood es-

timator are proposed to achieve intrinsic efficiency beyond double robustness and local

efficiency. Specifically, we show how to use our methods to solve the linear two-sample

instrumental variable problem by applying the general estimators to this special case.

Finally, we provide one simulation study and one Econometric application on a public

housing project. Our improved estimators are found to perform better than existing

estimators.
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Chapter 2

Review of Methodologies for Estimation of Average

Treatment Effect (ATE)

2.1 Set-up

As introduced in Chapter 1, the observed data consist of independent and identically

distributed observations {(Yi, Ti, Xi) : i = 1, ..., n} of (Y, T,X), where Y is an outcome

variable, T is a dichotomous treatment variable (T = 1 if treated or T = 0 otherwise),

and X is a vector of measured covariates. Potential outcomes (Y 0, Y 1) represent the

response under control group T = 0 or under active treatment T = 1 respectively.

2.2 Assumptions for Identification of ATE

• Unconfoundedness

(Y 0, Y 1) ⊥ T |X (2.1)

This assumption was first proposed in this form by Rosenbaum & Rubin (1983),

who named it as “ignorable treatment assignment”.

• Overlap

0 < P (T = 1|X) < 1 (2.2)

This assumption requests the population across two treatments share the same

support of the pretreatment variables to avoid extrapolation. In another word, for

each unit in the whole sample, it cannot enter one certain group with probability

one; otherwise, it is impossible for us to find out the corresponding potential
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outcome if the unit enters the opposite group.

2.3 Two Modelling Approaches

2.3.1 Outcome Regression Model

The first approach is building a regression model for the outcome regression (OR)

function, mt(x) = E(Y |T = t,X)

E(Y |T = t,X) = mt(X;αt) = Ψ{αTt gt(X)}, t = {0, 1} (2.3)

where Ψ(·) is an inverse link function, g0(X) and g1(X) are vectors of known functions of

X, and (α0, α1) are vectors of unknown parameters. Let (α̂0, α̂1) be the maximum quasi-

likelihood estimates of (α0, α1), and let’s denote m̂t(X) = Ψ{α̂Tt gt(X)} for t = 0, 1.

If the model (2.3) is correctly specified for t=0 and 1, we could construct consistent

estimators of µ1 and µ0 through

µ̂1
OR =

1

n

n∑
i=1

m̂1(Xi) µ̂0
OR =

1

n

n∑
i=1

m̂0(Xi) (2.4)

Then ATE could be estimated by µ̂1
OR − µ̂0

OR.

2.3.2 Propensity Score Model

Another basic approach is to build a regression model of propensity score (PS) (Rosen-

baum & Rubin, 1983), the conditional probability of receiving the treatment, π(X) =

P (T = 1|X).

P (T = 1|X) = π(X; γ) = Π{γT f(X)} (2.5)

where Π(·) is an inverse link function, f(x) is a vector of known functions, and γ is

a vector of unknown parameters. Based on the log-likelihood function, we define the
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score function of γ as

Sγ(T,X) =

[
T

π(X; γ)
− 1− T

1− π(X; γ)

]
∂π(X; γ)

∂γ
(2.6)

Generally, logistic regression is typically used: π(X; γ) = [1+exp{−γT f(X)}]−1. Then

the score function reduces to Sγ = {T−π(X; γ)}f(X). Let γ̂ be the maximum likelihood

estimator of γ and let’s denote π̂(X) = π(X; γ̂) for simplicity. γ̂ is the parameter which

satisfies the score equation Ẽ{Sγ(T,X)} = 0, which for logistic regression reduces to

Ẽ
{

[T − π(X; γ)]f(X)
}

= 0 (2.7)

where Ẽ(·) represents the simple sample average, and we will use this representation in

the remainder of this thesis.

ATE can be estimated by matching, stratification, or weighting on the fitted propen-

sity score π̂(X), and the details could be found in Imbens (2004). We mainly discuss

the inverse probability weighting (IPW) estimators here.

Two standard IPW estimators of µt for t = 0, 1 are

µ̂1
IPW =

1

n

n∑
i=1

Ti
π̂(Xi)

Yi, µ̂1
IPW,ratio =

n∑
i=1

Ti
π̂(Xi)

Yi

/ n∑
i=1

Ti
π̂(Xi)

(2.8)

µ̂0
IPW =

1

n

n∑
i=1

1− Ti
1− π̂(Xi)

Yi, µ̂0
IPW,ratio =

n∑
i=1

1− Ti
1− π̂(Xi)

Yi

/ n∑
i=1

1− Ti
1− π̂(Xi)

(2.9)

Then ATE could be simply estimated by µ̂1
IPW − µ̂0

IPW or µ̂1
IPW,ratio − µ̂0

IPW,ratio. If

model (2.5) is correctly specified, the IPW estimators are consistent. While even mild

mis-specification would lead to poor estimation. For example, the fitted propensity

score are close to 0 or 1 for some observations, then the IPW estimates will be very

unstable because π̂−1(Xi) or {1− π̂(Xi)}−1 is large.

2.4 Semiparametric Theory in Estimation of ATE

We review the semiparametric theory for ATE estimation in Robins et al. (1994), Hahn

(1998) and Chen et al. (2008). We will also review their findings on ATT estimation



11

later in Chapter 3. In Proposition 2.1, we first describe the semiparametric influence

functions and efficiency bounds for estimating ATE in three different settings.

Proposition 2.1 For estimation of µ1 = E(Y 1), under the assumption “unconfonded-

ness” and “overlap”, based on three different assumptions on the propensity score listed

as follows:

(i) No information is known about the propensity score,

(ii) The propensity score π(X) is known,

(iii) The propensity score π(X) is unknown but assumed to belong to a correctly spec-

ified parametric family π(X; γ).

In all the three assumptions above, the efficient influence function of estimating µ1

remains the same, and it is

ϕ1(Y, T,X) =
T

π(X)
[Y −m1(X)]+m1(X)− µ1

Proposition 2.2 For estimation of µ0 = E(Y 0), under the assumption “unconfond-

edness” and “overlap”, based on three different assumptions on the propensity score

defined in Proposition 2.1, the efficient influence function of estimating µ0 remains the

same, and it is

ϕ0(Y, T,X) =
1− T

1− π(X)
[Y −m0(X)] +m0(X)− µ

Proposition 2.3 For estimation of µ = E(Y 1 − Y 0), under the assumption “uncon-

fondedness” and “overlap”, based on three different assumptions on the propensity score

defined in Proposition 2.1, the efficient influence function of estimating µ remains the

same, and it is

ϕ(Y, T,X) =
T

π(X)
[Y −m1(X)]− 1− T

1− π(X)
[Y −m0(X)]

+m1(X)−m0(X)− µ
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We can see that the efficient influence functions and semiparametric variance bounds

remain the same in all three cases. This means the propensity score is ancillary in the

estimation of ATE, µ; the knowledge of propensity score doesn’t reduce the semipara-

metric variance bound.

Proposition 2.4 Under the assumption “unconfondedness” and “overlap”, the asymp-

totic variance bound is the same regardless of the information about the propensity score,

and the bound is

V = Var{ϕ(Y, T,X)} = E
[σ2

1(X)

π(X)
+

σ2
0(X)

1− π(X)
+ (m1(X)−m0(X)− µ)2

]
(2.10)

where σ2
1(X) = Var(Y 1|X) and σ2

0(X) = Var(Y 0|X).

Later in Chapter 3, we will see this property doesn’t hold in the estimation of average

treatment effect on the treated (ATT). The semiparametric variance bound will be the

lowest with the exact knowledge of the propensity score, and the bound is the highest

under the nonparametric model of the propensity score.

2.5 Existing Estimators

As discussed above, the estimator µ̂1
OR − µ̂0

OR is consistent when OR model (2.3) is

correctly specified for both t = 1 and 0.

Moreover, µ̂1
IPW − µ̂0

IPW or µ̂1
IPW,ratio − µ̂0

IPW,ratio is consistent when the PS model

(2.5) is correctly specified. But even slight mis-specification of the propensity score

model can result in poor estimates, e.g. Kang & Schafer (2007).

It is desirable to design an estimator using both PS model (2.5) and OR model (2.3)

to achieve double robustness, which means the estimator is consistent as long as only

one of the two models is correctly specified.

A prototypical doubly robust estimator is the augmented inverse-probability-weighted
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(AIPW) estimator which is proposed by Robins et al. (1994):

µ̂1
AIPW =

1

n

n∑
i=1

Ti
π̂(Xi)

Yi −
1

n

n∑
i=1

(
Ti

π̂(Xi)
− 1

)
m̂1(Xi) (2.11)

µ̂0
AIPW =

1

n

n∑
i=1

1− Ti
1− π̂(Xi)

Yi −
1

n

n∑
i=1

(
1− Ti

1− π̂(Xi)
− 1

)
m̂0(Xi) (2.12)

The difference µ̂1
AIPW − µ̂0

AIPW is exactly the same form as the efficient influence

function in Proposition 2.3 with (π(X),mt(X)) replaced by (π̂(X), m̂t(X)). And this

estimator is already shown to be locally efficient in Robins et al. (1994), achieving the

semiparametric variance bound when both PS model (2.5) and OR model (2.3) are

correctly specified.

Various doubly robust and locally efficient estimators of ATE have been proposed

recently. It is interesting to pursue additional good properties beyond these two. In

fact, all the locally efficient estimators are equivalent to the first order of each other

when both PS and OR model are correctly specified, we need to compare their statistical

properties if only one of the two models is correct.

In Tan (2006), he constructed a likelihood estimator based on a nonparametric

likelihood approach, and also constructed a regression estimator which is equivalent to

the first order of the likelihood estimator. The regression estimator is of a special form

to achieve “intrinsic efficiency”, meaning if the propensity score model is correctly

specified, then this estimator is asymptotically efficient among a class of augmented

inverse-probability-weighted estimators that use the same fitted outcome regression

(OR) function.

Robins et al. (2007) discussed the concept of population-boundedness or sample-

boundedness, which means an estimator will lie within, respectively, the range of all

possible values or that of observed values of the outcome. This property could prevent

us from obtaining poor estimates even when the inverse probability weights are highly

variable.

Tan (2010) built on the work in Tan (2006) and developed a calibrated likelihood

estimator possessing all the desirable properties described above, doubly robustness,
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locally efficiency, intrinsically efficiency and sample boundedness. In the following sec-

tions of this chapter, we will review this approach for the ATE estimation, since this

approach provides a basis for the research in the ATT estimation in Chapter 3 and data

combination problem we investigated in Chapter 4.

2.6 Regression Estimator

Based on the fitted values (π̂(X), m̂t(X)), we define the regression estimator of µt =

E(Y t) as

µ̂treg = Ẽ
(
η̂t − β̃T

t ξ̂t

)
, t = 0 or 1 (2.13)

where β̃t = Ẽ−1(ξ̂tζ̂
T
t )Ẽ(ξ̂tη̂t) with

η̂1 =
T

π̂(X)
Y, η̂0 =

1− T
1− π̂(X)

Y,

ξ̂1 =

{
T

π̂(X)
− 1

}
ĥ(X)

1− π̂(X)
, ξ̂0 (= −ξ̂1) =

{
1− T

1− π̂(X)
− 1

}
ĥ(X)

π̂(X)
,

ζ̂1 =
T

π̂(X)

ĥ(X)

1− π̂(X)
, ζ̂0 =

1− T
1− π̂(X)

ĥ(X)

π̂(X)
,

and ĥ(X) = {ĥT
1 (X), ĥT

2 (X)}T, where

ĥ1(X) = [{1− π̂(X)}v̂T
1 (X), π̂(X)v̂T

0 (X)]T ,

ĥ2(X) =
∂π(X; γ)

∂γT
= π̂(X){1− π̂(X)}f(X),

v̂1(X) = {1, m̂1(X)}T , v̂0(X) = {1, m̂0(X)}T .

(2.14)

where f(X) is the vector of variables in propensity score model (2.5) including the

constant 1.

The variables included in ĥ(X) are designed with special considerations. We include

m̂0(X) and m̂1(X) into v̂0(X) and v̂1(X) respectively to achieve double robustness and

local semiparametric efficiency, in view of the form of AIPW estimator (2.11). The

variables in ĥ2(X) are included for achieving intrinsic efficiency, which is justified in

the proof of intrinsic efficiency in Tan (2006). Also, constant 1 is included in v̂0(X)
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and v̂1(X) to ensure efficiency gains over the ratio formed IPW estimator µ̂1
IPW,ratio and

µ̂0
IPW,ratio under a correctly specified PS model.

When PS model is correctly specified, Ẽ(η̂t) converges asymptotically to µt, and ξt

converges to 0. In another word, we design ξ̂t as control variates in Monte Carlo integra-

tion or auxiliary variables in survey sampling. The name “regression estimator” is used

according to the Monte Carlo integration literature, such as Hammersley & Handscomb

(1964) and the Survey Sampling literature, such as Cochran (1977). The effect of using

control variates is variance reduction, as shown in the following proposition proved in

Tan (2006).

Proposition 2.5 Under suitable regularity conditions (see Tan (2006)), the estimator

µ̂treg for µt has the following properties for t = 0, 1.

(i) µ̂treg is locally efficient: it achieves the nonparametric efficiency bound (2.10).

when both model (2.3) for the corresponding t and model (2.5) are correctly spec-

ified.

(ii) µ̂treg is doubly robust: it remains consistent when either model (2.3) for the corre-

sponding t or model (2.5) is correctly specified.

(iii) µ̂treg is intrinsically efficient: if model (2.5) is correctly specified, then it achieves

the lowest asymptotic variance among the class of estimators

Ẽ
(
η̂t − bTt ξ̂t

)
(2.15)

where bt is an arbitrary vector of constants.

Based on the properties above, the estimator of ATE µ̂1
reg− µ̂0

reg obtain the following

desirable properties.

Corollary 2.6 The estimator µ̂1
reg − µ̂0

reg for ATE has the following properties.

(i) µ̂1
reg − µ̂0

reg is locally efficient: it achieves the nonparametric efficiency bound,

(2.10). when both model (2.3) for t = 0, 1 and model (2.5) are correctly specified.
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(ii) µ̂1
reg − µ̂0

reg is doubly robust: it remains consistent when either model (2.3) for

t = 0, 1 or model (2.5) is correctly specified.

(iii) µ̂1
reg − µ̂0

reg is intrinsically efficient: if model (2.5) is correctly specified, then it

achieves the lowest asymptotic variance among the class of estimators

Ẽ
(
η̂1 − η̂0 − bT0 ξ̂0

)

where b0 is an arbitrary vector of constants.

When the OR model (2.3) for t = 0 and 1 are both correctly specified, as discussed

in Tan (2006), β̂t converges to a constant vector β∗t such that

µ̂treg = Ẽ(η̂t − β∗Tt ξ̂t) + op(n
−1/2) = µ̂tAIPW + op(n

−1/2) for t = 0, 1 (2.16)

This is because m̂1(X) is a linear combination of variables in ĥ(X)/{1 − π̂(X)} and

m̂0(X) is a linear combination of the variables in ĥ(X)/π̂(X). And we already know

µ̂tAIPW is locally efficient estimator of µt from the previous discussion, so µtreg is also

locally efficient. Moreover, µ̂tAIPW is also known to be doubly robust. Therefore, as

long as the OR model (2.3) is correctly specified, µ̂treg is consistent even if we have

a misspecified PS model (2.5). On the other hand, if the PS model is correct, Ẽ(ξ̂t)

converges to 0, so µ̂treg converges to µ̂tIPW, hence Ẽ(ξ̂t) is also consistent under a correctly

specified PS model (2.5). So we could conclude that µ̂treg is doubly robust.

A canonical estimator of the optimal choice of bt in minimizing the asymptotic

variance of (2.15) is β̂∗t = Ẽ(ξ̂tξ̂
T
t )−1Ẽ(ξ̂tη̂t), which differs subtly from β̃t. It can be

proved that the corresponding estimator, µ̂t∗reg = Ẽ(η̂t− β̂∗Tt ξ̂t), for µt is asymptotically

equivalent to the first order to µ̂treg when the PS model is correctly specified. But when

PS model is misspecified, µ̂t∗reg is no longer consistent, even when OR model is correctly

specified. While µ̂treg remains consistent even under a misspecified PS model (2.5).

Therefore, this specific form of β̃t makes this regression estimator not only intrinsic

efficiency, but also double robustness.

The IPW estimator µ̂tIPW(π̂) falls into the class (2.15) with bt = 0 for t = 0, 1. The
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ratio estimator µ̂tIPW,ratio(π̂) doesn’t obviously belongs to this class (2.15), but when

PS model (2.5) is correctly specified, it could be proven to be asymptotically equivalent

to the first order to Ẽ
[
η̂1 − [T/π̂(X)− 1]µ1

]
and Ẽ

[
η̂0 − [(1− T )/{1− π̂(X)} − 1]µ0

]
for t = 1 and 0 separately, which fall into the class because constant 1 is included in

ĥ(X)/{1− π̂(X)} and ĥ(X)/π̂(X) for t = 1 and 0 respectively.

Therefore, by intrinsic efficiency, µ̂treg is asymptotically as least as efficient as not

only µ̂tAIPW(π̂, m̂t), but also µ̂tIPW(π̂) and µ̂tIPW,ratio(π̂) for t = 0, 1, when PS model

(2.5) is correctly specified.

The estimator µ̂tAIPW(π̂, m̂t) belongs to the class of estimators (2.15) since m̂1(X)

and m̂0(X) are included in ĥ(X)/{1− π̂(X)} and ĥ(X)/π̂(X) respectively. Therefore,

µ̂1
reg − µ̂0

reg is asymptotically as least as efficient as µ̂1
AIPW(π̂, m̂1) − µ̂0

AIPW(π̂, m̂0) for

estimation of average treatment effect (ATE), when PS model (2.5) is correctly specified.

2.7 Likelihood Estimator

The regression estimator in the last section is already doubly robust, locally and in-

trinsically efficient. However, a common drawback of regression estimator and AIPW

estimators are that they may lie outside either the sample or the population range of

observed outcomes. This may be caused by the case that the fitted propensity score

π̂(X) is close to 0 among the treated or close to 1 among the control group. Tan (2006)

proposed a nonparametric likelihood estimator to solve this issue, but it is not doubly

robust. Tan (2010) built on the previous work, and developed a calibrated likelihood

estimator achieving all the good features described above.

In this section, we will review likelihood estimators of µt that are not only doubly

robust, locally nonparametric efficient, and intrinsically efficient similarly to the regres-

sion estimators, but also sample-bounded in falling within the range of {Yi : Ti = t, i =

1, . . . , n}.

There are two steps to construct the desired likelihood estimators. The first step is

to derive locally and intrinsically efficient, but non-doubly robust, likelihood estimators.
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The nonparametric likelihood of (Xi, Ti, Yi)(i = 1, . . . , n) is

L1 × L2 =
n∏
i=1

[
π(Xi; γ)Ti{1− π(Xi; γ)}1−Ti

]
×

n∏
i=1

[
G1({Xi, Yi})TiG0({Xi, Yi})1−Ti

]
(2.17)

where Gt is the joint distribution of (X,Y t) for t = 0, 1. Maximizing L1 will get the

maximum likelihood estimator γ̂, thereby π̂(X).

When considering maximizing L2, we choose to ignore the fact that Gt, t = 0, 1 will

induce the same marginal distribution of X, and retain only the constraints

∫
ĥ(X)dG1 =

∫
ĥ(X)dG0

where ĥ(X) is defined exactly the same as (2.14). Furthermore, we require that G1 is

a probability measure supported on {(Xi, Yi) : Ti = 1, i = 1, . . . , n} and hence
∫
dG1 =

1. And G0 is a nonnegative measure with support on {Xi : Ti = 0, i = 1, . . . , n}.

Maximizing L2 subject to these constraints leads to the estimators

Ĝ1({Xi, Yi}) =
n−1

ω(Xi; λ̂)
(Ti = 1) (2.18)

Ĝ0({Xi, Yi}) =
n−1

1− ω(Xi; λ̂)
(Ti = 0) (2.19)

where ω(X,λ) = π̂(X) + λTĥ(X), λ̂ = argmaxλ`(λ), and

`(λ) = Ẽ
[
T log{ω(X;λ)}+ (1− T ) log{1− ω(X;λ)}

]
(2.20)

subject to ω(Xi;λ) > 0 if Ti = 1 and ω(Xi;λ) < 1 if Ti = 0 for i = 1, . . . , n. Setting

the gradient of `(λ) to zero shows that λ̂ is a solution to

Ẽ

[
T − ω(X;λ)

ω(X;λ){1− ω(X;λ)}
ĥ(X)

]
= 0. (2.21)
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Then the resulting estimator of µ1 and µ0 are

µ̂1
lik = Ẽ

{
TY

ω(X; λ̂)

}
(2.22)

µ̂0
lik = Ẽ

{
(1− T )Y

1− ω(X; λ̂)

}
(2.23)

However, the estimators µ̂tlik for t = 0, 1 are not doubly robust, although they are proved

to be locally efficient and intrinsically efficient among the class of estimators with the

form (2.15). Tan (2010) proposed calibration on the coefficients in the linear extended

propensity score. The process is described as below:

For t = 0 or 1, partition ĥ as ĥ = (ĥT
1t, ĥ

T

1(t), ĥ
T
2 )T and accordingly λ as λ = (λT

1t, λ
T

1(t),

λT
2 )T, where ĥ1t = π̂v̂0 or (1− π̂)v̂1 if t = 0 or 1, and ĥ1(t) consists of the elements of ĥ1

excluding ĥ1t. Moreover, let’s denote Rt = 1{T = t}, π̂(t,X) = P̂ (T = t|X), so π̂(t =

1, X) = π̂(X) and π̂(t = 0, X) = 1− π̂(X). Similarly, we define ω(t,X;λ) = 1−ω(X;λ)

or ω(X;λ) for t = 0 or 1 respectively. Define λ̃t = (λ̃T
1t, λ̂

T

1(t), λ̂
T
2 )T, where λ̂T

1(t) and λ̂2

are obtained from λ̂, and λ̃1t is a maximizer of the function

κt(λ1t) = Ẽ

[
Rt

log{ω(t,X;λ1t, λ̂1(t), λ̂2)} − log{ω(t,X; λ̂)}
1− π̂(t,X)

− λT
1tv̂t(X)

]
,

subject to ω(t,Xi;λ1t, λ̂1(t), λ̂2) > 0 if Ti = t for i = 1, . . . , n. Setting the gradient of

κt(λ1t) to 0 shows that λ̃1t is a solution to

Ẽ

[{
Rt

ω(t,X;λ1t, λ̂1(t), λ̂2)
− 1

}
v̂t(X)

]
= 0. (2.24)

For t = 0, 1, the resulting estimator of µt is

µ̃tlik = Ẽ

{
RtY

ω(t,X; λ̃t)

}

The likelihood estimator µ̃tlik has several desirable properties as follows.

Proposition 2.7 Under suitable regularity conditions (see Tan (2010)), the estimator

µ̃tlik for µt has the following properties for t = 0, 1.
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(i) µ̃tlik is sample-bounded: it lies within the range of {Yi : Ti = t, i = 1, . . . , n}.

(ii) If model (2.5) is correctly specified, then µ̃tlik is asymptotically equivalent, to the

first order, to µ̂treg. Hence µ̃tlik is intrinsically efficient among the class (2.15) and

locally nonparametric efficient, similarly as µ̂treg in Proposition 4.3.

(iii) µ̃tlik is doubly robust, similarly as µ̂treg in Proposition 4.3.

The sample-boundedness of µ̃tlik holds because ω(t,Xi; λ̃
t) > 0 if Ti = t for i =

1, . . . , n and Ẽ{Rt/ω(t,Xi; λ̃
t)} = 1 by Eq. (3.7) with constant 1 is included in v̂t(X).

The double robustness of µ̃tlik follows mainly due to: Ẽ{Rtm̂t(X)/ω(t,Xi; λ̃
t)} = Ẽ{m̂t(X)}

by Eq. (3.7) with m̂t(X) included in v̂t(X).

The implication of intrinsic efficiency for µ̃tlik is similar to that for µ̂treg as discussed

in Section 2.6. If the PS model (2.5) is correctly specified while the OR model (2.3)

may be misspecified, then µ̃tlik is asymptotically at least as efficient as µ̂tAIPW(π̂, m̂t) for

t = 0 or 1, and µ̃1
lik−µ̃0

lik is asymptotically at least as efficient as µ̂1
AIPW−µ̂0

AIPW(π̂, m̂0).

2.8 Conclusion

In this chapter, we mainly review the semiparametric efficiency theory for estimation

of ATE and the existing estimators of ATE. ATE estimation is special due to the

ancillary role of propensity score, that is the variance bounds remain the same regardless

of the information of propensity score. We presented a doubly robust and locally

efficient estimator of ATE by simply using efficient influence functions as estimating

functions, and this estimator is just the AIPW estimator proposed by Robins et al.

(1994). Moreover, we described the calibrated regression and likelihood estimators

discussed in Tan (2006, 2010) in details. The proposed estimators of ATE achieve

not only double robustness and local efficiency, but also intrinsic efficiency and sample

boundedness. And this work provide us an important basis for the study of ATT

estimation in Chapter 3.
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Chapter 3

Improved Estimation of Average Treatment Effects on the

Treated (ATT): Local Efficiency, Double Robustness, and

Beyond

In this chapter, we will introduce a new approach to obtain an improved estimator of

ATT. First, we derive augmented inverse probability weighted (AIPW) estimators of

ATT that are locally efficient and doubly robust, by directly using efficient influence

functions as estimating functions, and then to develop calibrated regression and like-

lihood estimators that achieve desirable properties beyond local efficiency and double

robustness.

There are several interesting phenomena clarified from our work, all different from

familiar results for estimation of ATE. First, there are two AIPW estimators achiev-

ing local efficiency of different types. If the propensity score and outcome regression

models are correctly specified, the first estimator achieves the semiparametric efficiency

bound, VNP, calculated when the propensity score is unknown, whereas the second es-

timator achieves the semiparametric efficiency bound, VSP (≤ VNP), calculated under

the parametric propensity score model used. These two estimators are then referred to

as locally nonparametric or, respectively, semiparametric efficient.

Second, the locally nonparametric efficient estimator AIPW of ATT is doubly ro-

bust, but the locally semiparametric efficient AIPW estimator is generally not. There-

fore, it is the efficient influence function calculated under the nonparametric model (i.e.,

when the propensity score as well as the outcome regression function is unknown) that

leads to doubly robust estimation. Incidentally, it can be shown that the doubly robust

estimators of ATT in Graham et al. (2015) and Zhao & Percival (2015) are also locally

nonparametric efficient.
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Third, due to the discrepancy between the locally nonparametric and semiparamet-

ric AIPW estimators, a direct application of the techniques in Tan (2006, 2010) and Cao

et al. (2009) would fail to yield an improved estimator of ATT that is not only doubly

robust and locally nonparametric efficient, but also intrinsically efficient in achieving

greater efficiency than AIPW estimators when the propensity score model is correctly

specified but the outcome regression model may be misspecified. We show that such im-

proved estimators can still be developed by introducing a simple idea, namely, working

with an augmented propensity score model which includes the fitted outcome regression

functions as additional regressors.

To illustrate the advantage of the improved estimators, we present two simula-

tion studies and an econometric application related to LaLonde (1986) and subsequent

analyses (e.g., Dehejia & Wahba 2002; Smith & Todd 2005a). In contrast with these

previous works, we compare the performance of different methods by examining not

only the effect or bias estimates (where the experimental treatment or, respectively,

control group is compared with a non-experimental comparison group), but also how

well the differences between the effect and bias estimates agree with the benchmark

estimate (where the experimental control and treatment groups are compared). The

latter comparisons are relevant even if the non-experimental group might inherently

differ from the cohort on which the experiment was conducted.

3.1 Setup and Classical Estimators

Here we use exactly the same setup as the ATE case. Two causal parameters commonly

of interest are the average treatment effect (ATE), defined as E(Y 1 − Y 0) = µ1 − µ0

with µt = E(Y t), and the average treatment effect on the treated (ATT), defined as

E(Y 1 − Y 0|T = 1) = ν1 − ν0 with νt = E(Y t|T = 1).

While the parameter ν1 is directly identifiable as E(TY )/E(T ), a fundamental

difficulty in identification of ν0 is that Y 0 is missing for treated subjects with T = 1.

Nevertheless, it is known (e.g., Imbens 2004) that the ν0 and hence ATT are identifiable

from observed data under the two assumptions:
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(A1) Unconfoundedness for controls: T ⊥ Y 0|X, i.e., T and Y 0 are conditionally inde-

pendent given X;

(A2) Weak overlap: 0 ≤ P (T = 1|X = x) < 1 for all x.

Assumption (A2) allows that P (T = 1|X = x) is 0 for some values x, i.e., subjects with

certain covariate values will always take treatment 0.

By the fact that ν1 = E(TY )/E(T ), a consistent, nonparametric estimator of ν1

is ν̂1
NP = n−1

1

∑n
i=1 TiYi, where n1 =

∑n
i=1 Ti and n0 = n − n1 are the sizes of treated

and untreated groups respectively in the sample. However, modeling (or dimension-

reduction) assumptions, in addition to (A1)–(A2), are, in general, needed to obtain

consistent estimation of ν0 and ATT from finite samples with high-dimensional X.

There are broadly two modelling approaches as follows.

One approach is to build a regression model for the outcome regression (OR) func-

tion defined in (2.3). If model (2.3) is correctly specified for t = 0 or 1, then a consistent

estimator for νt is ν̂tOR = n−1
1

∑n
i=1 Ti m̂t(Xi). The ATT can be estimated by ν̂1

OR−ν̂0
OR.

In the special case where Ψ(·) is the identity link and parallel regression functions are

assumed for the two treatment groups, i.e., E(Y |T = t,X) = α1,t + αT

(1)g(1)(X) with

g(1)(X) excluding 1, the ATT can be directly estimated as α1,1 − α1,0.

An alternative approach is to build a regression model for the propensity score (PS)

defined in (2.5). Let’s use Ẽ(·) denote a sample average, for example, Ẽ(T ) = n1/n.

Then ν0 and ATT can be estimated by matching, stratification, or weighting on the

fitted propensity score π̂(X) (e.g., Imbens 2004). We focus on inverse probability

weighting (IPW), which is central to rigorous theory of statistical estimation in missing-

data problems (e.g., Tsiatis 2006). Two standard IPW estimators for ν0 are (e.g.,

McCaffrey et al. 2004; Abadie 2005)

ν̂0
IPW(π̂) = Ẽ

{
(1− T )π̂(X)Y

1− π̂(X)

}/
Ẽ(T ),

ν̂0
IPW,ratio(π̂) = Ẽ

{
(1− T )π̂(X)Y

1− π̂(X)

}/
Ẽ

{
(1− T )π̂(X)

1− π̂(X)

}
.
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The estimator of ATT based on ν̂0
IPW(π̂) and ν̂1

NP is then

ν̂1
NP − ν̂0

IPW(π̂) = Ẽ

{
T − π̂(X)

1− π̂(X)
Y

}/
Ẽ(T ).

If model (2.5) is correctly specified, then the IPW estimators are consistent. However,

if model (2.5) is misspecified or even mildly so, these estimators can perform poorly,

especially due to the instability of inverse weighting to fitted propensity scores π̂(Xi)

near 1 for some untreated subjects (e.g., Kang & Schafer 2007).

3.2 Semiparametric Theory and AIPW Estimation

For consistency, the estimator ν̂0
OR requires a correctly specified OR model (2.3) for

t = 0, whereas ν̂0
IPW and ν̂0

IPW,ratio require a correctly specified PS model (2.5). Al-

ternatively, it is desirable to develop estimators of ν0 and ATT using both OR model

(2.3) and PS model (2.5) to gain efficiency and robustness, similarly as in estimation

of ATE. In this section, we review semiparametric theory obtained in Hahn (1998) and

Chen et al. (2008), and then derive locally efficient and doubly robust estimators of ν0

and ATT in the form of augmented IPW (AIPW) estimators.

First, Proposition 3.1 gives semiparametric influence functions and Table 3.1 with

t = 0 gives the semiparametric efficiency bounds for estimation of ν0 under three

different settings, based on Hahn (1998) and Chen et al. (2008).

Proposition 3.1 Let q = E(T ) and define

τ0(π, h) =
1− T

1− π(X)
π(X)Y −

{
1− T

1− π(X)
− 1

}
h(X).

The efficient influence function for estimation of ν0 is as follows, depending on as-

sumptions on the propensity score.

(i) The efficient influence function is

ϕ0
NP(Y, T,X) =

{
τ0(π,m0)− Tν0

}/
q.
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Table 3.1: Efficiency bounds for estimation of νt = E(Y t|T = 1)

Assumption Efficiency bound

Nonparametric model V t
NP = var{ϕt

NP(Y, T,X)}
Parametric PS model V t

SP = var{ϕt
SP(Y, T,X)}

Known PS V t
SP* = var{ϕt

SP*(Y, T,X)}

(ii) If the propensity score π(X) is known, then the efficient influence function is

ϕ0
SP*(Y, T,X) =

{
τ0(π, πm0)− π(X)ν0

}/
q

= ϕ0
NP(Y, T,X)− {T − π(X)}m0(X)− ν0

q
.

(iii) If the propensity score π(X) is unknown but assumed to belong to a correctly

specified parametric family π(X; γ), then the efficient influence function is

ϕ0
SP(Y, T,X) = ϕ0

SP*(Y, T,X) + Π

[
{T − π(X)}m0(X)− ν0

q

∣∣∣sγ(T,X)

]
,

where for two random vectors Z1 and Z2, Π(Z2|Z1) = cov(Z2, Z1)var−1(Z1)Z1, i.e., the

projection of Z2 onto Z1.

As discussed in Hahn (1998) and Chen et al. (2008), the efficiency bounds in Table

3.1 satisfy the following order: V 0
NP ≥ V 0

SP ≥ V 0
SP*, with strict inequalities in general. In

fact, the influence functions ϕ0
NP, ϕ0

SP, and ϕ0
SP* can all be expressed as the following

functional with suitable choices of h(X):

ϕ0
h(Y, T,X) =

{
τ0(π, h)− Tν0

}/
q. (3.1)

The minimum variance of ϕ0
h(Y, T,X) over possible choices of h(X) is exactly V 0

SP*,

corresponding to the choice h(X) = π(X)m0(X) + {1− π(X)}ν0.

This ordering of efficiency bounds agrees with the usual comparison that the effi-

ciency bound under a more restrictive model is no greater than under a less restrictive

model. But this relationship differs from the result that the semiparametric efficiency
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bounds for estimation of µt = E(Y t) are the same whether under the nonparametric

model for π(X), or under a parametric model for π(X), or with exact knowledge of

π(X). Conceptually, these differences reflect the fact the propensity score is ancillary

for estimation of ATE, but not ancillary for estimation of ATT (Hahn, 1998).

We now derive two estimators of ν0 that depend on both fitted outcome regression

function m̂0(X) and fitted propensity score π̂(X), by directly taking the efficient in-

fluence functions in Proposition 3.1 as estimating functions, with m̂0(X) and π̂(X) in

place of the unknown truth m0(X) and π(X). Proposition 3.2 shows that both esti-

mators possess local efficiency but of different types, and only one estimator is doubly

robust. For clarity, the semiparametric efficiency bound V 0
NP under the nonparametric

model is hereafter referred to as the nonparametric efficiency bound. See, for example,

Newey (1990), Robins & Rotnitzky (2001), and Tsiatis (2006) for general discussions

on local efficiency and double robustness.

Proposition 3.2 Under suitable regularity conditions (see Appendix), the following

results hold.

(i) Define an estimator of ν0 as

ν̂0
NP(π̂, m̂0) = Ẽ

{
τ0(π̂, m̂0)

}/
Ẽ(T ).

Then ν̂0
NP(π̂, m̂0) is locally nonparametric efficient: it achieves the nonparamet-

ric efficiency bound V 0
NP when both model (2.3) for t = 0 and model (2.5) are

correctly specified. Moreover, ν̂0
NP(π̂, m̂0) is doubly robust: it remains consistent

when either model (2.3) for t = 0 or model (2.5) is correctly specified.

(ii) Define an estimator of ν0 as

ν̂0
SP(π̂, m̂0) = Ẽ

{
τ0(π̂, π̂m̂0)

}/
Ẽ{π̂(X)}.

For logistic PS model (2.5), ν̂0
SP(π̂, m̂0) can be equivalently expressed as

ν̂0
SP(π̂, m̂0) = Ẽ

{
τ0(π̂, π̂m̂0)

}/
Ẽ(T ),
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because Ẽ(T ) = Ẽ{π̂(X)} by Eq. (2.7) with f(X) including 1. Then ν̂0
SP(π̂, m̂0) is

locally semiparametric efficient: it achieves the semiparametric efficiency bound

V 0
SP when both model (2.3) for t = 0 and model (2.5) are correctly specified. But

ν̂0
SP(π̂, m̂0) is, generally, not doubly robust.

The estimators ν̂0
NP(π̂, m̂0) and, for a logistic PS model, ν̂0

SP(π̂, m̂0) are in the form

of AIPW estimators, with the choice h = m̂0 or h = π̂m̂0 respectively:

ν̂0(π̂, h) = Ẽ
{
τ0(π̂, h)

}/
Ẽ(T )

= Ẽ

[
1− T

1− π̂(X)
π̂(X)Y −

{
1− T

1− π̂(X)
− 1

}
h(X)

]/
Ẽ(T ),

which are defined by directly taking (3.1) as the estimating function with the fitted

propensity score π̂(X) in place of the unknown truth π(X). Setting h(X) ≡ 0 leads to

the simple estimator ν̂0
IPW. Although AIPW estimators for µt = E(Y t) have been well

studied in estimation of ATE and other missing-data problems (Robins et al., 1994;

Tan, 2006), the estimators ν̂0
NP(π̂, m̂0) and ν̂0

SP(π̂, m̂0) seem to be derived for the first

time using efficient influence functions from semiparametric theory.

By local semiparametric efficiency, the estimator ν̂0
SP(π̂, m̂0) achieves the minimum

asymptotic variance among all regular estimators under PS model (2.5), including

AIPW estimators ν̂0
h(π̂, m̂0) over possible choices of h(X), when both model (2.3) for

t = 0 and model (2.5) are correctly specified. But ν̂0
SP(π̂, m̂0) is not doubly robust, and

ν̂0
NP(π̂, m̂0) is doubly robust. This situation differs from the case where among the class

of AIPW estimators of µ0, the estimator

µ̂0
AIPW = Ẽ

[
1− T

1− π̂(X)
Y −

{
1− T

1− π̂(X)
− 1

}
m̂0(X)

]
,

is doubly robust, i.e., consistent when either OR model (2.3) for t = 0 or PS model

(2.5) is correctly specified, and locally semiparametric or nonparametric efficient, i.e.,

achieving the minimum asymptotic variance among all regular estimators under para-

metric PS model (2.5) or, respectively, under the nonparametric model when model

(2.3) for t = 0 and model (2.5) are correctly specified. As discussed after Proposition
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3.1, the semiparametric efficient bound for estimation of µ0 under a parametric PS

model coincides with that under the nonparametric model.

Next, we present semiparametric influence functions in Proposition 3.3 and semi-

parametric efficiency bounds in Table 3.1 with t = 1 for estimation of ν1, based on

Hahn (1998) and Chen et al. (2008). Similarly as for estimation of ν0, the efficiency

bounds satisfy V 1
NP ≥ V 1

SP ≥ V 1
SP*, with strict inequalities in general.

Proposition 3.3 The efficient influence function for estimation of ν1 is as follows,

depending on assumptions on the propensity score.

(i) The efficient influence function is

ϕ1
NP(Y, T,X) =

(
TY − Tν1

)/
q.

(ii) If the propensity score π(X) is known, then the efficient influence function is

ϕ1
SP*(Y, T,X) =

[
TY − {T − π(X)}m1(X)− π(X)ν1

]/
q

= ϕ1
NP(Y, T,X)− {T − π(X)}m1(X)− ν1

q
.

(iii) If the propensity score π(X) is unknown but assumed to belong to a correctly

specified parametric family π(X; γ), then the efficient influence function is

ϕ1
SP(Y, T,X) = ϕ1

SP*(Y, T,X) + Π

[
{T − π(X)}m1(X)− ν1

q

∣∣∣sγ(T,X)

]
.

The estimator ν̂1
NP = Ẽ(TY )

/
Ẽ(T ) is always consistent and has the efficient influ-

ence function ϕ1
NP(Y, T,X). Therefore, ν̂1

NP is fully robust to model misspecification,

and globally nonparametric efficient. Alternatively, taking ϕ1
SP*(Y, T,X) as an estimat-

ing function with m̂1(X) and π̂(X) in place of m1(X) and π(X) gives an estimator of

ν1 that is locally semiparametric efficient, but not doubly robust.

Proposition 3.4 Under suitable regularity conditions (see Appendix), the following

results hold.
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(i) The estimator ν̂1
NP = Ẽ(TY )

/
Ẽ(T ) is consistent and achieves the nonparametric

efficiency bound V 1
NP, independently of model (2.3) for t = 1 and model (2.5).

(ii) Define an estimator of ν1 as

ν̂1
SP(π̂, m̂1) = Ẽ [TY − {T − π̂(X)}m̂1(X)]

/
Ẽ{π̂(X)}.

For logistic PS model (2.5), ν̂1
SP(π̂, m̂1) can be equivalently expressed as

ν̂1
SP(π̂, m̂1) = Ẽ [TY − {T − π̂(X)}m̂1(X)]

/
Ẽ(T ).

Then ν̂1
SP(π̂, m̂1) is locally semiparametric efficient: it attains the semiparametric

efficiency bound V 1
SP when both model (2.3) for t = 1 and model (2.5) are correctly

specified. But ν1
SP(π̂, m̂1) is not doubly robust.

Finally, for estimation of ATT = ν1 − ν0, the efficient influence function is the

difference of the efficient influence functions for estimation of ν1 and ν0 under each of

the three settings in Propositions 3.1 and 3.3. Combining the estimators of ν0 and ν1

in Propositions 3.2 and 3.4 leads to the following results.

Corollary 3.5 Under suitable regularity conditions (see Appendix), the following re-

sults hold.

(i) The estimator ν̂1
NP − ν̂0

NP(π̂, m̂0) for ATT is locally nonparametric efficient: it

achieves the nonparametric efficiency bound, var{ϕ1
NP(Y, T,X) − ϕ0

NP(Y, T,X)},

when both model (2.3) for t = 0 and model (2.5) are correctly specified. Moreover,

this estimator is doubly robust: it remains consistent when either model (2.3) for

t = 0 or model (2.5) is correctly specified.

(ii) The estimator ν̂1
SP(π̂, m̂0)−ν̂0

SP(π̂, m̂0) for ATT is locally semiparametric efficient:

it achieves the semiparametric efficiency bound, var{ϕ1
SP(Y, T,X)−ϕ0

SP(Y, T,X)},

when both model (2.3) for t = 0, 1 and model (2.5) are correctly specified. But

this estimator is, generally, not doubly robust.
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3.3 Improved Estimation

We develop estimators of ν0 that are not only locally nonparametric efficient and doubly

robust, but also intrinsically efficient: when the PS model (2.5) is correctly specified

but the OR model (2.3) for t = 0 may be misspecified, these estimators achieve at least

as small asymptotic variances among a class of AIPW estimators, including ν̂0
NP(π̂, m̂0)

but only with π̂(X) replaced by the fitted value from a slightly augmented PS model

as defined later in (3.2). The new estimators are then similar to ν̂0
NP(π̂, m̂0), in being

consistent when either the PS model or the OR model is correctly specified and achieving

the nonparametric efficiency bound V 0
NP when both models are correctly specified, but

often achieve greater efficiency over ν̂0
NP(π̂, m̂0) when the PS model is correctly specified

but the OR model is misspecified.

Similarly, we develop estimators of ATT that are not only locally nonparametric

efficient and doubly robust, but also often provide efficiency gains over ν̂1
NP−ν̂0

NP(π̂, m̂0)

when the PS model is correctly specified but the OR model is misspecified.

Before proceeding, we point out that although, by symmetry, it also seems desirable

to construct estimators of ν0 or ATT that are not only locally nonparametric efficient

and doubly robust, but also achieve efficiency gains approximately over ν̂0
NP(π̂, m̂0)

or ν̂1
NP − ν̂0

NP(π̂, m̂0) when the OR model is correctly specified but the PS model is

misspecified, such estimators have not been obtained so far.

3.3.1 Regression Estimators

We derive regression estimators for ν0 and ATT to achieve the desired properties,

similarly to regression estimators for ATE (Tan, 2006) but with an important new

idea as follows. For simplicity, assume in Sections 3.3.1–3.3.2 that PS model (2.5) is

logistic regression. See Appendix for an extension when PS model (2.5) is non-logistic

regression. Consider an augmented logistic PS model

P (T = 1|X) = πaug(X; γ, δ, α̂)

= expit {γTf(X) + δ0 m̂0(X) + δ1 m̂1(X)} , (3.2)
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where expit(c) = {1 + exp(−c)}−1, α̂ = (α̂T
0 , α̂

T
1 )T are estimates of α = (αT

0 , α
T
1 )T from

OR model (2.3), and δ = (δ0, δ1)T are unknown coefficients for additional regressors

m̂0(X) and m̂1(X). Let (γ̃, δ̃) be the MLE of (γ, δ) and π̃(X) = πaug(X; γ̃, δ̃, α̂). An

important consequence of including the additional regressors is that, by Eq. (2.7), we

have, in addition to Ẽ[{T − π̃(X)}f(X)] = 0,

Ẽ [{T − π̃(X)}m̂t(X)] = 0, t = 0, 1. (3.3)

For the augmented PS model, there may be linear redundancy in the variables, {f(X),

m̂0(X), m̂1(X)}, in which case the regressors need to be redefined accordingly. For

example, if all variables in gt(X) are linear combinations of f(X), and Ψ(·) is the

identity link corresponding to linear regression in (2.3), then

Condition L: m̂t(X) is a linear combination of variables in f(X) for t = 0, 1.

Under Condition L, the augmented model (3.2) reduces to the original model (2.5), and

hence all the subsequent results are valid with π̃(X) = π̂(X).

With π̃(X) the fitted value from the augmented PS model (3.2), we define the

regression estimator of νt = E(Y t|T = 1) as

ν̃treg = Ẽ
(
η̃t − β̃T

t ξ̃t

)/
Ẽ(T ), t = 0 or 1,

where β̃t = Ẽ−1(ξ̃tζ̃
T
t )Ẽ(ξ̃tη̃t) with

η̃1 = TY, η̃0 =
1− T

1− π̃(X)
π̃(X)Y,

ξ̃1 =

{
T

π̃(X)
− 1

}
h̃(X)

1− π̃(X)
, ξ̃0 (= −ξ̃1) =

{
1− T

1− π̃(X)
− 1

}
h̃(X)

π̃(X)
,

ζ̃1 =
T

π̃(X)

h̃(X)

1− π̃(X)
, ζ̃0 =

1− T
1− π̃(X)

h̃(X)

π̃(X)
,



32

and h̃(X) = {h̃T
1 , (Ch̃2)T}T(X) are defined with a constant matrix C such that the

variables in h̃(X) are linearly independent, and

h̃1(X) = [{1− π̃(X)}ṽT
1 (X), π̃(X)ṽT

0 (X)]T ,

h̃2(X) = π̃(X){1− π̃(X)}
{
fT

(1)(X), m̂0(X)
}T

,

ṽ1(X) = {π̃(X), π̃(X)m̂1(X)}T , ṽ0(X) = {π̃(X), π̃(X)m̂0(X)}T .

where f(1)(X) is the vector of nonconstant variables in f(X), because π̃(X){1− π̃(X)}

is already a component of {1 − π̃(X)}ṽT
1 (X) in h̃1(X). For example, if Condition L

holds for t = 0 or 1, then h̃(X) should be specified such that one variable is removed

from the vector π̃(X){1− π̃(X)}f(1)(X) in h̃2(X).

The variables in h̃(X) are included for the following considerations. The variables

π̃(X)m̂0(X) and π̃(X)m̂1(X) are included in ṽ0(X) and ṽ1(X) respectively to achieve

double robustness and local nonparametric efficiency, as later seen from Eq. (3.5).

Moreover, the variables in h̃2(X), in addition to {1 − π̃(X)}ṽ1(X), are included to

accommodate the variation of (γ̃, δ̃) for achieving intrinsic efficiency, as later described

in Proposition 3.6. The corresponding variables in ξ̃0 or ξ̃1 are exactly the scores

{T − π̃(X)}{fT(X), m̂0(X), m̂1(X)}T for the augmented PS model (3.2). Finally, π̃(X)

is included in ṽ0(X) and ṽ1(X) to ensure efficiency gains over the ratio estimator

ν̂0
IPW,ratio(π̃) under a correctly specified PS model, as discussed after Corollary 3.7.

The name “regression estimator” is adopted from the literatures of survey sampling

(Cochran, 1977) and Monte Carlo integration (Hammersley & Handscomb, 1964), and

should be distinguished from the estimator ν̂tOR based on outcome regression in Sec-

tion 3.1. The idea is to exploit the fact that if the PS model is correct, then Ẽ(η̃t)

asymptotically has mean E(TY t) (to be estimated) and ξ̃t mean 0 (known). That is, ξ̃t

serves as auxiliary variables (in the terminology of survey sampling) or control variates

(in that of Monte Carlo integration). The effect of variance reduction using regression

estimators is seen from in the following results.

Proposition 3.6 Under suitable regularity conditions (see Appendix), the estimator

ν̃treg for νt has the following properties for t = 0, 1.
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(i) ν̃treg is locally nonparametric efficient: it achieves the nonparametric efficiency

bound V t
NP when both model (2.3) for the corresponding t and model (2.5) are

correctly specified.

(ii) ν̃treg is doubly robust: it remains consistent when either model (2.3) for the corre-

sponding t or model (2.5) is correctly specified.

(iii) ν̃treg is intrinsically efficient: if model (2.5) is correctly specified, then it achieves

the lowest asymptotic variance among the class of estimators

Ẽ
(
η̃t − bTt ξ̃t

)/
Ẽ(T ), (3.4)

where bt is an arbitrary vector of constants.

Corollary 3.7 The estimator ν̃1
reg − ν̃0

reg for ATT has the following properties.

(i) ν̃1
reg − ν̃0

reg is locally nonparametric efficient: it achieves the nonparametric ef-

ficiency bound, var{ϕ1
NP(Y, T,X) − ϕ0

NP(Y, T,X)}, when both model (2.3) for

t = 0, 1 and model (2.5) are correctly specified.

(ii) ν̃1
reg − ν̃0

reg is doubly robust: it remains consistent when either model (2.3) for

t = 0, 1 or model (2.5) is correctly specified.

(iii) ν̃1
reg − ν̃0

reg is intrinsically efficient: if model (2.5) is correctly specified, then it

achieves the lowest asymptotic variance among the class of estimators

Ẽ
(
η̃1 − η̃0 − bT0 ξ̃0

)/
Ẽ(T ),

where b0 is an arbitrary vector of constants.

The use of augmented propensity scores π̃(X) is crucial for ν̃treg to be doubly robust

or, specifically, consistent under a correctly specified OR model but a misspecified PS

model. [There are special cases, for example, Condition L, where π̃(X) reduces to

π̂(X).] If the OR model (2.3) for t = 0 or 1 is correctly specified, then, as shown in the
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Appendix, the vector β̃t converges to a constant vector β∗t such that

ν̃treg = Ẽ
(
η̃t − β∗t

Tξ̃t

)/
Ẽ(T ) + op(n

−1/2) = ν̂tSP(π̃, m̂t) + op(n
−1/2), (3.5)

mainly because π̃(X)m̂0(X) is a linear combination of variables in h̃(X)/π̃(X) and

π̃(X)m̂1(X) is a linear combination of variables in h̃(X)/{1 − π̃(X)}. By Eq. (3.3)

for the augmented PS model, ν̂tSP(π̃, m̂t) is identical to ν̂0
NP(π̃, m̂0) for t = 0, which is

doubly robust, or to ν̂1
NP for t = 1, which is fully robust. Therefore, ν̃treg is consistent

when the OR model (2.3) for the corresponding t is correctly specified. This result

would not hold when ν̃treg were defined with π̂(X) in place of π̃(X).

The estimator ν̃treg is locally nonparametric efficient, similarly as ν̂0
NP(π̃, m̂0) or ν̂1

NP.

In fact, ν̃treg is generally not locally semiparametric efficient with respect to PS model

(2.5), but locally semiparametric efficient with respect to PS model (3.2) in the following

sense: ν̃treg achieves the semiparametric efficiency bounded calculated under model (3.2),

when both model (2.3) and model (2.5) are correctly specified. When model (2.5) holds,

the efficiency bound V t
SP under model (3.2) coincides with the nonparametric efficiency

bound V t
NP, because {T − π(X)}{mt(X) − νt} is a linear combination of the score

function, which contains {T − π(X)}{1,m0(X),m1(X)}T under model (3.2) as shown

in Appendix I. On the other hand, ν̃treg with π̃(X) replaced by π̂(X) throughout would

be locally semiparametric efficient with respect to original PS model (2.5), but generally

not doubly robust, similarly as ν̂tSP(π̃, m̂t).

A classical estimator of the optimal choice of bt in minimizing the asymptotic vari-

ance of (3.4) is β̂t = Ẽ(ξ̃tξ̃
T
t )−1Ẽ(ξ̃tη̃t), which differs from β̃t in a subtle manner. It

can be shown that the corresponding estimator, ν̂treg = Ẽ(η̃t − β̂T
t ξ̃t)/Ẽ(T ), for νt is

asymptotically equivalent to the first order to ν̃treg when the PS model is correctly spec-

ified. But ν̂treg, unlike ν̃treg, is generally inconsistent for νt, even when the OR model is

correctly specified and the PS model may be misspecified. The particular form of β̃t,

although seems ad hoc in the above definition, can also be derived through empirical

efficiency maximization (Rubin & van der Laan, 2008; Tan, 2008) and design-optimal

regression estimation in Poisson sampling (Tan, 2013). See further discussion related
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to calibration estimation after Proposition 3.8.

By intrinsic efficiency, if the PS model is correctly specified, then ν̃0
reg is asymptot-

ically at least as efficient as not only ν̂0
NP(π̃, m̂0), but also ν̂0

IPW(π̃) and ν̂0
IPW,ratio(π̃).

The estimator ν̂0
NP(π̃, m̂0), defined as ν̂0

NP(π̂, m̂0) with π̂(X) replaced by π̃(X), re-

mains locally nonparametric efficient and doubly robust, and falls in the class (3.4)

for t = 0 because m̂0(X) is a linear combination of the variables, π̃(X)m̂0(X) and

{1 − π̃(X)}m̂0(X), included in h̃(X)/π̃(X). Moreover, the simple estimator ν̂0
IPW(π̃)

based on π̃(X) also falls in the class (3.4) for t = 0, with b0 = 0. The ratio esti-

mator ν̂0
IPW,ratio(π̃) does not directly fall in the class (3.4), but can be shown to be

asymptotically equivalent to the first order, under a correctly specified PS model, to

Ẽ(η̂0 − [(1− T )/{1− π̃(X)} − 1]ν0)/Ẽ(T ), which falls in class (3.4) for t = 0 becauase

1 is a linear combination of the variables, π̃(X) and 1− π̃(X), in h̃(X)/π̃(X).

The estimator ν̂1
NP = Ẽ(η̂1) falls in the class (3.4) for t = 1, with b1 = 0. Therefore,

the estimator ν̃1
reg−ν̃0

reg for ATT is asymptotically at least as efficient as ν̂1
NP−ν̂0

NP(π̃, m̂0)

when the PS model is correctly specified, even though both estimators are locally non-

parametric efficient and doubly robust.

A technical complication of using augmented propensity scores π̃(X) is that ν̃0
reg

may not, in general, be intrinsically efficient, when compared to the class of estimators

(3.4) with π̃(X) replaced by π̂(X) in η̃0 and ξ̃0. [Nevertheless, such intrinsic efficiency

holds in the special case where the OR model (2.3) for t = 0 is linear regression with

all variables in g0(X) also included in f(X).] Particularly, if the PS model (2.5) is

correctly specified, then ν̃0
reg may not be as efficient as ν̂0

NP(π̂, m̂0) based on π̂(X) even

though ν̃0
reg is proven to be asymptotically at least as efficient as ν̂0

NP(π̃, m̂0) based on

π̃(X) and, when the OR model (2.3) for t = 0 is also correctly specified, asymptotically

equivalent to ν̂0
NP(π̂, m̂0) and ν̂0

NP(π̃, m̂0). However, the increase in the asymptotic

variance of ν̂0
NP(π̃, m̂0) over that of ν̂0

NP(π̂, m̂0) is usually small, caused by the use of a

slightly augmented PS model (3.2). The estimator ν̃0
reg may still often achieve efficiency

gains over ν̂0
NP(π̂, m̂0) when the PS model is correctly specified but the OR model is

misspecified, as shown in our simulation studies.
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3.3.2 Likelihood Estimators

A practical limitation of the regression estimators as well as AIPW estimators is that

they may lie outside either the sample or the population range of observed outcomes.

For example, ν̃treg may take values outside the interval (0, 1) for binary outcomes. Such

behavior may occur due to the presence of fitted propensity scores π̃(Xi) near 1 or,

equivalently, large inverse weights {1− π̃(Xi)}−1 among the untreated. In this section,

we derive likelihood estimators for νt that are not only doubly robust, locally nonpara-

metric efficient, and intrinsically efficient similarly to the regression estimators, but

also sample-bounded in falling within the range of {Yi : Ti = t, i = 1, . . . , n}. These

likelihood estimators are therefore much less sensitive to large inverse weights than the

regression and AIPW estimators.

There are two steps in constructing the desired likelihood estimators, similarly as

for ATE estimation in Tan (2010) but using the fitted propensity scores π̃(X) from

augmented PS model (3.2). First, we derive intrinsically efficient, but non-doubly

robust, likelihood estimators by the approach of empirical likelihood (Owen, 2001)

taking η̃t−νtT and ξ̃t as asymptotically unbiased estimating functions or, equivalently,

the approach of nonparametric likelihood (Tan, 2006, 2010). Specifically, our approach

is to maximize the log empirical likelihood,
∑n

i=1 log pi, subject to the constraints

n∑
i=1

piξ̃1,i = 0 and
n∑
i=1

pi(η̃t,i − νtTi) = 0 for t = 0, 1,

where pi is a nonnegative weight assigned to (Yi, Ti, Xi) for i = 1, . . . , n with
∑n

i=1 pi =

1. We show in the Appendix that the resulting estimates of ν0 and ν1 are

ν̂0
lik = Ẽ

{
(1− T )π̃(X)Y

1− ω(X; λ̂)

}/
Ẽ

{
(1− T )π̃(X)

1− ω(X; λ̂)

}
,

ν̂1
lik = Ẽ

{
T π̃(X)Y

ω(X; λ̂)

}/
Ẽ

{
T π̃(X)

ω(X; λ̂)

}
,
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where ω(X;λ) = π̃(X) + λTh̃(X) and λ̂ is a maximizer of the function

`(λ) = Ẽ[T logω(X;λ) + (1− T ) log{1− ω(X;λ)}],

subject to ω(Xi;λ) > 0 if Ti = 1 and ω(Xi;λ) < 1 if Ti = 0 for i = 1, . . . , n. Setting

the gradient of `(λ) to zero shows that λ̂ is a solution to

Ẽ

[
T − ω(X;λ)

ω(X;λ){1− ω(X;λ)}
h̃(X)

]
= 0. (3.6)

Because π̃(X) is a linear combination of variables in h̃(X), it follows from Eq. (3.6)

that the two denominators, Ẽ[(1− T )π̃(X)/{1− ω(X; λ̂)}] and Ẽ[T π̃(X)/ω(X; λ̂)], in

the definitions of ν̂0
lik and ν̂1

lik are equal to each other.

The estimator ν̂tlik can be shown to be intrinsically efficient among the class of

estimators (3.4) and locally nonparametric efficient, but generally not doubly robust.

We introduce the following modified likelihood estimators, to achieve double robustness

but without affecting the first-order asymptotic behavior.

For t = 0 or 1, partition h̃ as h̃ = {h̃T
1t, h̃

T

1(t), (Ch̃2)T}T for a constant matrix C

and accordingly λ as λ = (λT
1t, λ

T

1(t), λ
T
2 )T, where h̃1t = π̃ṽ0 or (1 − π̃)ṽ1 if t = 0 or 1,

and h̃1(t) consists of the elements of h̃1 excluding h̃1t. Moreover, write Rt = 0 or 1,

π̃(t,X) = 1 − π̃(X) or π̃(X), and ω(t,X;λ) = 1 − ω(X;λ) or ω(X;λ) respectively for

t = 0 or 1. Define λ̃t = (λ̃T
1t, λ̂

T

1(t), λ̂
T
2 )T, where λ̂1(t) and λ̂2 are obtained from λ̂, and

λ̃1t is a maximizer of the function

κt(λ1t) = Ẽ

[
Rt

log{ω(t,X;λ1t, λ̂1(t), λ̂2)} − log{ω(t,X; λ̂)}
1− π̃(t,X)

− λT
1tvt(X)

]
,

subject to ω(t,Xi;λ1t, λ̂1(t), λ̂2) > 0 if Ti = t for i = 1, . . . , n. Setting the gradient of

κt(λ1t) to 0 shows that λ̃1t is a solution to

Ẽ

[{
Rt

ω(t,X;λ1t, λ̂1(t), λ̂2)
− 1

}
ṽt(X)

]
= 0. (3.7)
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For t = 0, 1, the resulting estimator of νt is

ν̃tlik = Ẽ

{
Rtπ̃(X)Y

ω(t,X; λ̃t)

}/
Ẽ

{
Rtπ̃(X)

ω(t,X; λ̃t)

}
= Ẽ

{
Rtπ̃(X)Y

ω(t,X; λ̃t)

}/
Ẽ(T ),

where the second equation holds due to Eq. (3.7) with π̃(X) included in ṽ0(X) and

ṽ1(X), and Ẽ{T − π̃(X)} = 0 by the score equation for model (3.2). The likelihood

estimator ν̃tlik has several desirable properties as follows.

Proposition 3.8 Under suitable regularity conditions (see Appendix), the estimator

ν̃tlik for νt has the following properties for t = 0, 1.

(i) ν̃tlik is sample-bounded: it lies within the range of {Yi : Ti = t, i = 1, . . . , n}.

(ii) If model (2.5) is correctly specified, then ν̃tlik is asymptotically equivalent, to the

first order, to ν̃treg. Hence ν̃tlik is intrinsically efficient among the class (3.4) and

locally nonparametric efficient, similarly as ν̃treg in Proposition 3.6.

(iii) ν̃tlik is doubly robust, similarly as ν̃treg in Proposition 3.6.

The sample-boundedness of ν̃tlik holds because ω(t,Xi; λ̃
t) > 0 if Ti = t for i =

1, . . . , n and Ẽ{Rtπ̃(X)/ω(t,Xi; λ̃
t)} = Ẽ{π̃(X)} = Ẽ(T ) by Eq. (3.7). The double

robustness of ν̃tlik follows mainly for two reasons: Ẽ{Rtπ̃(X)m̂t(X)/ω(t,Xi; λ̃
t)} =

Ẽ{π̃(X)m̂t(X)} by Eq. (3.7) with π̃(X)m̂t(X) included in ṽt(X), and Ẽ{π̃(X)m̂t(X)}

= Ẽ{Tm̂t(X)} by Eq. (3.3) for the augmented PS model (3.2).

Eq. (3.7), which underlies both sample-boundedness and double robustness as dis-

cussed above, can be connected to calibration estimation using auxiliary information

in survey sampling (Deville & Sarndal, 1992; Tan, 2013). In fact, the inverse weighted

average of ṽt(X) = π̃(X){1, m̂t(X)}T is matched (or calibrated) with the simple sample

average of ṽt(X). This is equivalent to saying that if Y is replaced by m̂t(X), then the

numerator in the definition of ν̃tlik yields exactly Ẽ{π̃(X)m̂t(X)}. A similar property

holds for ν̃treg : if Y is replaced by m̂t(X), then the numerator in the definition of ν̃treg

yields exactly Ẽ{π̃(X)m̂t(X)}. By this relationship, ν̃treg and ν̃tlik can be referred to as

calibrated regression and likelihood estimators.
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The implication of intrinsic efficiency for ν̃tlik is similar to that for ν̃treg as discussed

in Section 3.3.1. If the PS model (2.5) is correctly specified while the OR model (2.3)

may be misspecified, then ν̃0
lik is asymptotically at least as efficient as ν̂0

NP(π̃, m̂0), and

ν̃1
lik − ν̃0

lik is asymptotically at least as efficient as ν̂1
NP − ν̂0

NP(π̃, m̂0).

3.4 Extensions and Comparisons

To possibly enhance numerical stability and finite-sample performance, we suggest the

following versions of ν̃treg and ν̃tlik with simplifications of π̃(X) and h̃(X):

(i) Consider an augmented logistic PS model in place of (3.2):

P (T = 1|X) = πaug2(X; γ0, δ, α̂, γ̂)

= expit [logit{π̂(X)}+ γ0 + δ0 m̂0(X) + δ1 m̂1(X)] , (3.8)

where logit(π̂) = log{π̂/(1− π̂)} is included as an offset, and γ0 and δ = (δ0, δ1)T

are unknown coefficients. Let (γ̃0, δ̃) be the MLE of (γ0, δ), and redefine π̃(X) =

πaug2(X; γ̃0, δ̃, α̂, γ̂). This augmented model (3.8) is meaningful even when the

original model (2.5) is non-logistic regression or when γ̂ is obtained by non-

maximum likelihood estimation, for example, penalized estimation.

(ii) Redefine h̃(X) = h̃1(X), that is, with h̃2(X) removed. Then β̃t is defined by

projection of η̃t on a lower-dimensional vector ξ̃t, and λ̂ is defined by solving a

lower-dimensional optimization problem. The dimension reduction may improve

numerical stability and finite-sample performance of ν̃treg and ν̃tlik.

For concreteness, the resulting estimators ν̃treg and ν̃tlik are denoted by ν̃treg2 and ν̃tlik2

respectively. These simplified estimators can be shown to remain locally nonparamet-

ric efficient and doubly robust as in Propositions 3.6 and 3.8; they are generally not

intrinsically efficient, but are expected to asymptotically nearly as efficient as ν̃treg and

ν̃tlik when the PS model (2.5) is correctly specified. Informally, ν̃treg2 and ν̃tlik2 would be

intrinsically efficient if π̂(X) = π(X; γ̂) were replaced, in model (3.8) and the definition

of π̃(X), by π(X; γ∗) with γ∗ the limit of γ̂ in probability.
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While h̃2(X) can be removed from h̃(X) for dimension reduction, we point out that

h̃1(X) can be extended to include additional functions of X for achieving calibration

on those variables in addition to ṽt(X). Specifically, let ct(X) be a vector of known

but possibly data-dependent functions of X including 1, for example, gt(X) in the OR

model (2.3) for t = 0, 1. Redefine the augmented PS model (3.8) as

P (T = 1|X) = πaug2(X; γ0, δ, γ̂)

= expit
[
logit{π̂(X)}+ γ0 + δT0 c0(1)(X) + δT1 c1(1)(X)

]
, (3.9)

where γ0 and δ = (δT0 , δ
T
1 ) are unknown coefficients, and c0(1)(X) or c1(1) is the vector of

nonconstant variables in c0(X) or c1(X) respectively. Redefine π̃(X) = πaug2(X; γ̃0, δ̃, γ̂)

with (γ̃0, δ̃) the MLE of (γ0, δ) for model (3.9), and redefine h̃(X) = h̃1(X) with

ṽt(X) = π̃(X)cTt (X) for t = 0, 1. Then Eq. (3.7) in conjunction with the score equation

for model (3.8) leads to calibration equations

Ẽ

{
(1− T )π̃(X)

1− ω(X; λ̃0)
c0(X)

}
= Ẽ{π̃(X)c0(X)} = Ẽ{Tc0(X)}, (3.10)

Ẽ

{
T π̃(X)

ω(X; λ̃1)
c1(X)

}
= Ẽ{π̃(X)c1(X)} = Ẽ{Tc1(X)}. (3.11)

By the discussion after (3.5), the resulting estimators ν̃treg2 and ν̃tlik2 are doubly robust

and locally nonparametric efficient in the case where

Condition R: m̂t(X) is a linear combination of ct(X) for t = 0, 1.

This condition is satisfied when ct(X) contains all variables in gt(X) including 1, and

Ψ(·) is the identity link in the OR model (2.3).

In the rest of this section, we provide comparisons between our calibrated regression

and likelihood methods and several related methods for estimating ATT. The estimators

of ν0 in Qin & Zhang (2008) and Graham et al. (2015) are in the form

1

n1

n∑
i=1

(1− Ti)π̂(Xi)

wi
Yi,
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where {wi > 0 : Ti = 0, i = 1, . . . , n} are derived such that, similarly to (3.10)–(3.11),

n∑
i=1

(1− Ti)π̂(Xi)

wi
c0(Xi) =

n∑
i=1

π̂(Xi)c0(Xi).

Qin & Zhang (2008) studied asymptotic behavior of their estimator under a correctly

specified PS model, but did not investigate local efficiency or double robustness and

hence did not address the question of how c0(X) should be specified to gain efficiency

or robustness over non-augmented IPW estimators. For our current setting, Graham

et al. (2015) showed that their estimator is locally semiparametric efficient with respect

to PS model (2.5) under condition R, and doubly robust under

Condition R+: condition R holds, PS model (2.5) is logistic regression, and

c0(X) = c1(X) = f(X).

These results can be related to our results as follows.

First, similarly as discussed after Proposition 3.6, the semiparametric efficiency

bound V t
SP with respect to model (2.5) coincides with the nonparametric efficiency

bound V t
NP when model (2.5) is logistic regression and {T − π(X)}{mt(X) − νt} is

a linear combination of {T − π(X)}f(X). Therefore, under Condition R+, the esti-

mator of Graham et al. (2015) is doubly robust and locally nonparametric as well as

semiparamtric efficient. Second, if Condition R+ holds, then Condition L holds and

hence π̃(X) reduces to π̂(X). In this case, our estimators ν̃treg and ν̃tlik, while using

π̂(X) directly, are not only doubly robust and locally nonparametric efficient, but also

intrinsically efficient among the class of estimator (3.4) with π̃(X) the same as π̂(X).

The estimator of Graham et al. (2015) can be shown to be asymptotically equivalent,

to the first order, to some estimator in class (3.4) under a correctly specified PS model

(2.5). Therefore, under Condition R+, our estimators are proved to be asymptotically

at least as efficient as the estimator of Graham et al. (2015) when the PS model (2.5)

is correctly specified but the OR model (2.3) is misspecified. Finally, our work han-

dles the general case where PS model (2.5) is non-logistic regression, and leads to both

AIPW estimators that are doubly robust and locally nonparametric efficient, but also

improved estimators that further achieve intrinsic efficiency.
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If PS model (2.5) is logistic regression, then the methods of Hainmueller (2012) and

Imai & Ratkovic (2014) seem to use the same estimator of ν0,

ν̂0
HIR =

1

n1

n∑
i=1

(1− Ti)r(Xi; γ̆)Yi =

∑n
i=1(1− Ti)r(Xi; γ̆)Yi∑n
i=1(1− Ti)r(Xi; γ̆)

,

where r(X; γ) = π(X; γ)/{1− π(X; γ)} = exp{γTf(X)} and γ̆ is determined from the

balancing equation similar to Eq. (3.10)–(3.11),

n∑
i=1

(1− Ti)r(Xi; γ)f(Xi) =
n∑
i=1

Tif(Xi). (3.12)

Eq. (3.12) differs from balancing equations used for ATE estimation in Imai & Ratkovic

(2014). The two expressions of ν̂0
HIR follow from the fact that

∑n
i=1(1−Ti)r(Xi; γ) = n1

by Eq. (3.12) with f(X) including a constant. That is, ν̂0
HIR can be seen as standard

IPW estimators: ν̂0
HIR = ν̂0

IPW(π̆) = ν̂0
IPW,ratio(π̆), where π̆(X) = π(X; γ̆) is substituted

for π̂(X) = π(X; γ̂) with the MLE γ̂. Under Condition L, the estimator ν̂0
HIR can

be shown to be doubly robust and locally nonparametric efficient (Zhao & Percival,

2015). However, ν̂0
HIR is not intrinsically efficient and hence, similarly to the estimator

of Graham et al. (2015), not as efficient as our estimators ν̃0
reg and ν̃0

lik when the PS

model (2.5) is correctly specified but the OR model (2.3) is misspecified.

3.5 Simulation studies

We conducted two simulation studies to compare the proposed and existing estimators.

We present in Section (3.9) the results under the simulation settings of Kang & Schafer

(2007) and McCaffrey et al. (2007). Here we present the results under the simulation

settings of Qin & Zhang (2008) and Graham et al. (2015).

The simulation setting of Qin & Zhang (2008) is originally designed in the context

of difference-in-differences estimation, but can be equivalently recast for estimation of

ATT as shown in Graham et al. (2015). Specifically, suppose that the covariate vector,

X = (X1, X2), is generated as
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X1 ∼ N(0, 1), X2|X1 ∼ N(1 + 0.6X1, 1).

The true propensity score is generated as a logistic regression function

π(X) = P (T = 1|X) = expit(γ∗0 + γ∗1X1 + γ∗2X2),

where (γ∗1 , γ
∗
2 , γ
∗
3) = (1.0, 0.1, 0.1), (1.0, 0.2, 0.2), or (1.0, 0.5, 0.5), corresponding to in-

creasing selection bias into treatment. The potential outcomes (Y 1, Y 0) are generated

(regardless of T for exogenity) as

Y 1|X,T ∼ N{m1(X), X2
2}, Y 0|X,T ∼ N{m0(X), X2

2},

where m0(X) and m1(X) are set in two possible ways:

(i) LIN-OR: m1(X) = 2 + 2X1 + 2X2, m0(X) = 2X1 + 2X2,

(ii) QUA-OR: m1(X) = 2 + 2X2
1 + 3X2

2 −X2, m0(X) = 2X2
1 + 3X2

2 −X2.

It is easily shown that the true value of ATT is always 2, because the regression functions

m0(X) and m1(X) are parallel to each other.

For estimation of ATT, consider an outcome regression model (2.3) with the iden-

tity link Ψ(·) and the regressor vector g0(X) = g1(X) = (1, X1, X2)T or (1, X2
1 , X

2
2 )T,

corresponding to a linear or quadratic OR model. Under the LIN-OR setting, the linear

or quadratic OR model is, respectively, correctly specified or misspecified. Under the

QUA-OR setting, both of the OR models are misspecified, but the quadratic OR model

is misspecified to a lesser degree. Similarly, consider a propensity score model (2.5) with

the logistic link Π(·) and the regressor vector f(X) = (1, X1, X2)T or (1, X2
1 , X

2
2 )T, cor-

responding to a logistic linear or quadratic PS model, which is, respectively, correctly

specified or misspecified.

We implemented the following estimators of ATT:

• (OR) µ̂1
OR − µ̂1

OR;

• (IPW.r) µ̂1
NP − µ̂0

IPW,ratio(π̂);
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• (AIPW) µ̂1
NP − µ̂0

NP(π̂, m̂0);

• (LIK) µ̃1
lik − µ̃0

lik, (LIK2) µ̃1
lik2 − µ̃0

lik2;

• (HIR) µ̂1
NP − µ̂0

IPW(π̆), (AIPW.HIR) µ̂1
NP − µ̂0

NP(π̆, m̂0).

Table 3.2: Qin–Zhang simulation results with (γ∗1 , γ
∗
2 , γ
∗
3) = (1.0, 0.2, 0.2)

Models OR IPW.r AIPW LIK LIK2 HIR AIPW.HIR EL AST

Data generated under LIN-OR setting

linear PS, 0.0120 0.0147 0.0125 0.0118 0.0120 0.0123 0.0123 0.0031 -0.0065
linear OR (0.0175) (0.0358) (0.0201) (0.0209) (0.0208) (0.0200) (0.0200) (0.0275) (0.0261)

linear PS, 0.7170 0.0147 0.0139 0.0168 0.0132 0.0123 0.0122 -0.0009 -0.0039
quadratic OR (0.0767) (0.0358) (0.0500) (0.0221) (0.0225) (0.0200) (0.0431) (0.0306) (0.0371)

quadratic PS, 0.0120 0.6655 0.0106 0.0125 0.0105 0.7501 0.0114 · · · · · ·
linear OR (0.0175) (0.0878) (0.0269) (0.0212) (0.0221) (0.0756) (0.0244) · · · · · ·

quadratic PS, 0.7170 0.6655 0.7644 0.7023 0.7120 0.7501 0.7501 · · · · · ·
quadratic OR (0.0767) (0.0878) (0.0828) (0.0746) (0.0746) (0.0756) (0.0756) · · · · · ·

Data generated under QUA-OR setting

linear PS, 0.7028 0.0414 0.0500 0.0471 0.0522 0.0553 0.0553 0.0477 0.0787
linear OR (0.4176) (0.6407) (0.5201) (0.0796) (0.0946) (0.3683) (0.3683) (0.1227) (0.3620)

linear PS, -0.1473 0.0414 0.0142 0.0120 0.0138 0.0553 0.0144 0.0028 0.0078
quadratic OR (0.0238) (0.6407) (0.0216) (0.0224) (0.0221) (0.3683) (0.0223) (0.0309) (0.0218)

quadratic PS, 0.7028 -0.4155 -0.6468 0.0549 0.1256 -0.1554 -0.4657 · · · · · ·
linear OR (0.4176) (0.6381) (0.6286) (0.0485) (0.1044) (0.0249) (0.1021) · · · · · ·

quadratic PS, -0.1473 -0.4155 -0.1599 -0.1465 -0.1493 -0.1554 -0.1554 · · · · · ·
quadratic OR (0.0238) (0.6381) (0.0263) (0.0272) (0.0258) (0.0249) (0.0249) · · · · · ·

Note: In the upper rows are the Monte Carlo biases (= means−2), and in the brackets are the corresponding
Monte Carlo variances. EL: Qin & Zhang (2008) and AST: Graham et al. (2015).

Table 3.2 and Figures 3.1-3.2 present the results for these estimators, from 1000

Monte Carlo samples of size n = 1000, under the PS setting with moderate selection

bias, (γ∗1 , γ
∗
2 , γ
∗
3) = (1.0, 0.2, 0.2). In addition, results are reproduced under the same

setting for two estimators in Qin & Zhang (2008) and Graham et al. (2015). See Section

(3.9) for the results under the other two PS settings.

The following remarks can be drawn on the comparisons of various estimators. First,

the OR estimator is approximately unbiased only when the OR model used is correctly

specified (i.e., linear OR model under LIN-OR setting).

Second, the IPW.ratio estimators are approximately unbiased only when the PS

model used is correctly specified (i.e., linear PS model), but they have large variances
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with noticeably outlying values.

Third, the HIR estimator is approximately unbiased when the PS model is correctly

specified, but becomes biased when the PS model is misspecified and even when the

OR model is correctly specified (for example, quadratic PS model and linear OR model

under LIN-OR setting). The HIR estimator is not doubly robust, because Condition L

is not satisfied in this situation.

Fourth, the four estimators, AIPW, LIK, LIK2, and AIPW.HIR are doubly robust:

they are approximately unbiased when either the PS model is correctly specified (i.e.,

linear PS model) or the OR model is correctly specified (i.e., linear OR model under

LIN-OR setting). In accordance with local efficiency, these estimators have similar

variances to each other when both the PS and OR models are correctly specified. But

LIK and LIK2 have smaller variances, sometimes substantially so, than AIPW and

AIPW.HIR estimators when the PS model is correctly specified but the OR model is

misspecified. For example, for linear PS model and linear OR model under QUA-OR

setting, the variance of LIK is smaller than that of AIPW by a factor of 0.52/0.08 = 6.5

and that of AIPW.HIR by a factor of 0.37/0.08 ≈ 4.6. Such differences are supported

by our theoretical results on intrinsic efficiency.

Fifth, in contrast with AIPW and AIPW.HIR, the LIK estimator appears to be

approximately unbiased when the quadratic PS model and linear OR model are used

under the QUA-OR setting (hence both PS and OR models are misspecified). This

behavior is not indicated by general theory, but can be explained by the fact that even

though the PS model (2.5) is misspecified, the augmented PS model (3.2) happens to be

correctly specified in this case: {m̂0(X), m̂1(X)} provide exactly the correct regressors

(X1, X2) up to linear transformation.

Finally, we compare our likelihood estimators with the estimators in Qin & Zhang

(2008) and Graham et al. (2015) when the PS model is correctly specified (i.e., linear

PS model). Results for a misspecified PS model were not available in these previous

simulation studies. Similarly as in the comparisons with AIPW and AIPW.HIR, our

likelihood estimators have smaller variances than those in Qin & Zhang and Graham

et al. when the PS model is correctly specified but the OR model is misspecified. For
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Figure 3.1: Boxplots of estimates minus the truth under LIN-OR setting with (γ∗1 , γ
∗
2 , γ

∗
3 ) =

(1.0, 0.2, 0.2). All values are censored within the range of y-axis, and the number of values that
lie outside the range are indicated next to the lower and upper limits of y-axis.
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(1.0, 0.2, 0.2)
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example, for linear PS model and linear OR model under QUA-OR setting, the variance

of LIK is smaller than that of Qin & Zhang by a factor of 0.12/0.08 = 1.5 and that

of Graham et al. by a factor of 0.36/0.08 = 4.5. Another interesting observation is

that when the OR model is also correctly specified or approximately so, our likelihood

estimators and Graham et al. have similar variances, but smaller than that of Qin

& Zhang estimator, indicating a lack of local efficiency for the latter estimator. For

example, the factor of efficiency gain is .031/0.022 ≈ 1.4 for linear PS model and

quadratic OR model under the QUA-OR setting.

3.6 Analysis of LaLonde data

NSW (“National Supported Work Demonstration”) is a randomized job training pro-

gram implemented in 1970s to provide work experience for individuals who had eco-

nomic and social disadvantages. The randomized experiment provides benchmark esti-

mates of average treatment effects. To study econometric methods for program evalu-

ation with non-experimental data, LaLonde (1986) constructed an observational study

by replacing the data from the experimental control group with survey data from either

Current Population Survey (CPS) or the Panel Study of Income Dynamics (PSID). The

question of interest is how well the experimental benchmark estimates of average treat-

ment effects can be recovered by econometric methods when applied to such composite

observational studies. LaLonde (1986) showed that many commonly used methods

failed to replicate the experimental results.

Analysis of LaLonde’s composite data has since been extensively discussed in the

evaluation and causal inference literature. Dehejia & Wahba (1999, 2002) obtained

effect estimates that have low biases from the experimental benchmark, while applying

propensity score matching methods to a particular subsample of LaLonde’s original

data. Smith & Todd (2005a) raised the criticism that the propensity score matching

estimates are highly sensitive to both the analysis sample used and the specification

of propensity score models. They calculated direct estimates of the bias by applying

matching to the experimental control group and a non-experimental comparison group

(either CPS or PSID), whereas LaLonde and Dehejia & Wahba calculated the bias by
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applying matching to the experimental treatment group and a non-experimental com-

parison group and then comparing the resulting estimate to the experimental bench-

mark. See Diamond & Sekhon (2013), Hainmueller (2012), and Imai & Ratkovic (2014),

among others, for more recent analyses.

We investigate the performances of the proposed and existing estimators for ana-

lyzing LaLonde’s original composite data. Specifically, we apply various estimators of

ATT as listed in Section 3.5 in the following analyses:

• Analysis (i): NSW experimental treatment group is combined with either CPS or

PSID non-experimental comparison group for effect estimation or, equivalently,

for bias estimation by subtracting the experimental benchmark from all effect

estimates;

• Analysis (ii): NSW experimental control group is combined with either CPS or

PSID non-experimental comparison group for bias estimation.

For each application, we consider two possible PS models and two possible OR models,

as specified in Table 3.3. The quadratic PS model differs, only by a few terms, from

the PS model obtained in an iterative model-building approach by Dehejia & Wahba

(2002) for analyzing NSW+CPS or NSW+PSID composite data.

For propensity score estimation, we use either the experimental treatment group in

(i) or experimental control group in (ii) as treated observations (T = 1) and the non-

experimental comparison group as untreated observations (T = 0). This strategy is in

line with LaLonde (1986) and Dehejia & Wahba (1999, 2002), but differs from Smith &

Todd (2005a) and Imai & Ratkovic (2014). In the latter articles, both the experimental

treatment and control groups are used as treated observations (T = 1) when estimating

propensity scores, but then either the experimental treatment or control group is used

in, respectively, effect or bias estimation. This scheme does not mimic the practical

situation of econometric analysis where a single dataset is used, and may not even be

desirable as discussed in Dehejia (2005b).

Before turning to our results, we provide some remarks to explain how the rela-

tive performances of estimators will be assessed from such empirical results. First,
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as discussed in Dehejia (2005a) in response to Smith & Todd (2005a), applications of

propensity score methods should involve searching for a propensity score model that

leads to balance of covariates between treatment groups. The approach suggested in

Rosenbaum & Rubin (1984) and Dehejia & Wahba (1999, 2002) is conceptually useful

but leaves open the issue of how PS models can actually be built to achieve covari-

ate balance. Alternatively, simple PS models such as in Table 3.3 may often be used

in applied research. Second, Smith & Todd (2005b) presented additional analyses in

response to Dehejia (2005a) to argue that the low-bias matching estimates in Dehejia

& Wahba (1999, 2002) are sensitive not only in regard to the sample and propensity

score specification as shown in Smith & Todd (2005a), but also, among other factors, to

whether the propensity score and subsequently the bias are estimated using the experi-

mental treatment or control group, as in Analyses (i) and (ii) described above. Third, a

criterion typically used in previous analyses of LaLonde data is that the bias estimates

should be close to 0 for a good method. But the true bias can be 0 only when the

exogeneity assumption (A1) holds on the composite sample, i.e., potential outcomes

are influenced by the measured covariates in the experimental sample in the same way

as in the comparison sample (CPS or PSID). Nevertheless, the difference between the

two bias estimates from Analyses (i) and (ii), as examined in Smith & Todd (2005b),

can be shown to be 0 (up to random variation) even when the exogeneity assumption

(A1) fails on the composite sample. See ”Violation of the exogeneity assumption” in

Appendix for details. By all the preceding considerations, we will assess the relative

performances of estimators mainly in terms of how close the two bias estimates from

Analyses (i) and (ii) are to each other, depending on PS and OR models used.

Table 3.4 and Figure 3.3 present the results from Analyses (i) and (ii) for various

estimators as listed in Section 3.5, based on 500 bootstrap samples of the NSW+PSID

composite data. See Section (3.9) for the results on the NSW+CPS composite data,

where the relative performances of estimators are more similar to each other than on

the NSW+PSID composite data.

Among all estimators studied, the IPW.ratio estimator yields point estimates of

effect closest to the experimental benchmark $886 and estimates of bias closest to 0 from
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Table 3.3: PS and OR models for LaLonde data

Name Regressors f(X) in PS model or g(X) in OR model

Linear (1, age, school, black, hisp,married, nodegr, re74, re75, u74, u75)
Quadratic (1, age, school, black, hisp,married, nodegr, re74, re75, u74, u75, age2, school2, re742, re752)

Note: The variables are defined as in Table 2 of Dehejia & Wahba (2002). The PS model is T |X ∼
f(X) with logistic link. The OR model is Y |(T = t,X) ∼ t+ g(X) with identity link.

Table 3.4: Bootstrap results from Analyses (i) and (ii) on NSW+PSID composite data

OR IPW.ratio AIPW LIK2 HIR AIPW.HIR

Linear PS, Linear OR Treatment Effect -1690 901 1109 555 475 475
(650) (781) (852) (616) (598) (598)

Evaluation Bias -2941 -6 337 -211 -118 -118
(636) (764) (815) (523) (496) (496)

Difference 1251 907 772 765 594 594
(590) (669) (757) (563) (549) (549)

Linear PS, Quadratic OR Treatment Effect -1577 901 613 378 475 441
(803) (781) (729) (613) (598) (601)

Evaluation Bias -2674 -6 -7 -365 -118 -177
(807) (764) (653) (529) (496) (501)

Difference 1096 907 620 743 594 618
(610) (669) (641) (560) (549) (553)

Quadratic PS, Linear OR Treatment Effect -1690 901 1216 573 393 477
(650) (799) (896) (623) (606) (601)

Evaluation Bias -2941 -9 451 -236 -254 -142
(636) (791) (862) (537) (505) (498)

Difference 1251 910 765 809 647 618
(590) (685) (804) (560) (556) (547)

Quadratic PS, Quadratic OR Treatment Effect -1577 901 571 332 393 393
(803) (799) (742) (618) (606) (606)

Evaluation Bias -2674 -9 -27 -429 -254 -254
(807) (791) (666) (531) (505) (505)

Difference 1096 910 598 761 647 647
(610) (685) (651) (560) (556) (556)

Note: In the upper rows are the bootstrap means, and in the brackets are the corresponding bootstrap standard
errors. Treatment Effect is obtained from Analysis (i), and Evaluation Bias from Analysis (ii). The difference
is to be compared with the experimental benchmark $886 with standard error $488. To tackle numerical non-
convergence when computing estimates during bootstrapping, the following procedure is used. We performed
Principle Component Analysis to the regressors from the composite data, NSW (treatment+control) + PSID,
and dropped principle components whose sample variances are less than (0.3)2 of the component with the largest
sample variance. Then we resampled the entire composite dataset and conducted Analyses (i) and (ii) on each
bootstrap sample.
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Figure 3.3: Bootstrap boxplots of differences of bias estimates from Analyses (i) and (ii) on
NSW+PSID composite data. All values are censored within the range of y-axis, with number
of values laying outside indicated next to the lower and upper limits of y-axis.

Analyses (i) and (ii), using either the linear or quadratic PS model. But the bootstrap

variances for IPW.ratio are among the highest for all estimators studied. Although

such point estimates of effect are much closer to the experimental benchmark than

various previously obtained estimates on LaLonde NSW+PSID data (e.g., Diamond &

Sekhon 2013; Imai & Ratkovic 2014), these results may not present real evidence for

any advantage of IPW.ratio for reasons discussed above.

In terms of how close the difference between effect and bias estimates is to the

experimental benchmark (i.e., how close the two bias estimates are close to each other)

from Analyses (i) and (ii), the estimators IPW.ratio, AIPW, and LIK2 yield the most

accurate point estimates among all estimators studied, regardless of PS and OR models

used. But the bootstrap variances for LIK2 are much smaller than those of IPW.rato

and AIPW. As explained above, these results present strong evidence for the advantage

of the proposed estimator LIK2.
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3.7 Conclusion

We study the problem of estimating ATTs from observational data and make the fol-

lowing contributions. In spite of non-ancillarity of the propensity score, we show how

efficient influence functions from semiparametric theory can be harnessed to derive

AIPW estimators that are locally efficient and doubly robust. Furthermore, we de-

velop calibrated regression and likelihood estimators that achieve desirable properties

in efficiency and boundedness beyond local efficiency and double robustness. From

two simulation studies and reanalysis of LaLonde (1986) data, the proposed methods

perform overall the best compared with various existing methods.

The ideas developed in this article can be extended in various directions. For ex-

ample, it is interesting to consider marginal and nested structural models for ATTs in

subpopulations, i.e., E(Y 1−Y 0|T = 1, V ) with some selected covariates V , and develop

calibrated regression and likelihood estimators. Moreover, as seen from Graham et al.

(2015), estimation of ATT can be put in a broader class of data combination problems.

The methods developed here can be extended in that direction.

3.8 Appendix

Throughout, we make the following assumptions regarding the estimators α̂t for OR

model (2.3), γ̂ for PS model (2.5), and (γ̃, δ̃) for augmented PS model (3.2), allowing

for possible model misspecification (e.g., White 1982).

(C1) Assume that α̂t converges to a constant α∗t such that α̂t − α∗t = Op(n
−1/2) for

t = 0, 1. Write m∗t (X) = mt(X;α∗t ). If model (2.3) is correctly specified, then

m∗t (X) = mt(X). In general, m∗t (X) and mt(X) may differ from each other.

(C2) Assume that γ̂ converges to a constant γ∗ such that

γ̂ − γ∗ = V −1 Ẽ {sγ∗(T,X)}+ op(n
−1/2),

where E{sγ∗(T,X)} = 0, and the matrix V = −E{∂sγ(T,X)/∂γT}|γ=γ∗ is non-

singular. Write π∗(X) = π(X; γ∗). If model (2.5) is correctly specified, then
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π∗(X) = π(X) and V = var{sγ∗(T,X)}. In general, π∗(X) and π(X) may differ

from each other.

(C3) For augmented PS model (3.2), define

s†(T,X; γ, δ, α) = {T − πaug(X; γ, δ, α)}{fT(X),m0(X;α0),m1(X;α1)}T.

Assume that (γ̃, δ̃) converges to a constant (γ†, δ∗) such that

 γ̃ − γ†

δ̃ − δ∗

 = V †
−1
Ẽ
{
s†(T,X; γ†, δ∗, α̂)

}
+ op(n

−1/2),

where E{s†(T,X; γ†, δ∗, α∗)} = 0, and the matrix V † = −E{∂s†(T,X; γ, δ, α∗)/

∂(γT, δT)}|(γ,δ)=(γ†,δ∗) is nonsingular. Write π†(X) = πaug(X; γ†, δ∗, α∗). If model

(2.5) is correctly specified, then (γ†, δ∗) = (γ∗, 0), π†(X) = π(X), V † = var{s†(T,X; γ∗, 0,

α∗)}, and the asymptotic expansion for (γ̃, δ̃) reduces to

 γ̃ − γ∗

δ̃

 = V †
−1
Ẽ
{
s†(γ∗,0)(T,X)

}
+ op(n

−1/2),

where s†(γ∗,0)(T,X) = s†(T,X; γ∗, 0, α∗).

In addition, we assume that the following regularity conditions hold (e.g., Robins

et al. 1994, Appendix B).

(C4) E{(Y t)2} <∞ and E{m∗t 2(X)} <∞ for t = 0, 1.

(C5) There exists ε > 0 such that π∗(x) ≤ 1− ε and π†(x) ≤ 1− ε for all x.

(C6) There exists a neighborhoodN1,t of α∗t such that E{supαt∈N1,t
‖∂mt(X;αt)/∂αt‖2}

<∞ for t = 0, 1, where ‖A‖ = (
∑

ij A
2
ij)

1/2 for any matrix with element Aij .

(C7) There exists a neighborhood N2 of γ∗ such that E{supγ∈N2
‖∂π(X; γ)/∂γ‖2} <∞

and E{supγ∈N2
‖∂2π(X; γ)/∂γ∂γT‖2} <∞.
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(C8) There exists a neighborhood N3 of (γ∗, δ∗, α∗) such that E{supθ∈N3
‖∂πaug(X; θ)/

∂θ‖2} <∞ and E{supθ∈N3
‖∂2πaug(X; θ)/∂θ∂θT‖2} <∞, with θ = (γT, δT, αT)T.

We provide the following lemma on asymptotic expansions of AIPW estimators.

Lemma 3.9 Assume that E{h2(X)} <∞. If the PS model (2.5) is correctly specified,

then the following results hold.

(i) ν̂0(π̂, h) admits the asymptotic expansion,

ν̂0(π̂, h)− ν0 = q−1Ẽ
(
φ0
h(Y, T,X)− Tν0 −Π{φ0

h(Y, T,X)|sγ∗(T,X)}

+ Π [{T − π(X)}m0(X)|sγ∗(T,X)]
)

+ op(n
−1/2),

where φ0
h(Y, T,X) = [(1−T )/{1−π(X)}]π(X)Y − [(1−T )/{1−π(X)}−1]h(X).

(ii) Define ν̂1(π̂, h) = Ẽ[TY − {T − π̂(X)}h(X)]/Ẽ(T ). Then ν̂1(π̂, h) admits the

asymptotic expansion,

ν̂1(π̂, h)− ν1

=q−1Ẽ
(
φ1
h(Y, T,X)− Tν1 + Π [{T − π(X)}h(X)|sγ∗(T,X)]

)
+ op(n

−1/2),

=q−1Ẽ
(
φ1
h(Y, T,X)− Tν1 −Π{φ1

h(Y, T,X)|sγ∗(T,X)}

+ Π [{T − π(X)}m1(X)|sγ∗(T,X)]
)

+ op(n
−1/2),

where φ1
h(Y, T,X) = TY − {T − π(X)}h(X).

Proof of Lemma 4.5. By direct calculation and Slutsky theorem, we have

ν̂0(π̂, h)− ν0 = q−1Ẽ

[
1− T

1− π̂(X)
π̂(X)Y −

{
1− T

1− π̂(X)
− 1

}
h(X)− Tν0

]
+ op(n

−1/2).
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By a Taylor expansion for γ̂ about γ∗ and direct calculation, we have

Ẽ

[
1− T

1− π̂(X)
π(X)Y −

{
1− T

1− π̂(X)
− 1

}
h(X)

]
=Ẽ

[
1− T

1− π(X)
π(X)Y −

{
1− T

1− π(X)
− 1

}
h(X)

]
+ E

[
1− T

{1− π(X)}2
∂π(X; γ∗)

∂γ
{π(X)Y − h(X)}

]
(γ̂ − γ∗) + op(n

−1/2)

=Ẽ
(
φ0
h(Y, T,X)−Π{φ0

h(Y, T,X)|sγ∗(T,X)}
)

+ op(n
−1/2).

By similar arguments, we have

Ẽ

[
1− T

1− π̂(X)
{π̂(X)− π(X)}Y

]
=E

[
1− T

1− π(X)

∂π(X; γ∗)

∂γ
Y

]
(γ̂ − γ∗) + op(n

−1/2)

=Ẽ
(

Π [{T − π(X)}m0(X)|sγ∗(T,X)]
)

+ op(n
−1/2).

Combining the preceding three expansions gives the desired expansion for ν̂0(π̂, h).

Similarly, the expansion for ν̂1(π̂, h) can be shown. 2

Proofs of Propositions 3.2 & 3.4

First, we show the local nonparametric efficiency of ν̂0
NP(π̂, m̂0). If both model (2.3) for

t = 0 and model (2.5) are correctly specified, then by Slutsky theorem,

ν̂0
NP(π̂, m̂0) = Ẽ

[
1− T

1− π̂(X)
π̂(X)Y −

{
1− T

1− π̂(X)
− 1

}
m0(X)

]/
Ẽ(T ) + op(n

−1/2).

The leading term can be reexpressed as

Ẽ

[
1− T

1− π̂(X)
π̂(X){Y −m0(X)}+ Tm0(X)

]/
Ẽ(T )

and, by Slutsky theorem, approximated by

Ẽ

[
1− T

1− π(X)
π(X){Y −m0(X)}+ Tm0(X)

]/
Ẽ(T ) + op(n

−1/2),
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which gives the desired result. Alternatively, the result follows from Lemma 4.5(i) with

h(X) = m0(X) and the fact that φ0
m0

(Y, T,X) = φ0
πm0

(Y, T,X) + {T − π(X)}m0(X)

and hence Π{φ0
m0

(Y, T,X)|sγ∗(T,X)} = Π[{T − π(X)}m0(X)|sγ∗(T,X)}.

Second, we show the double robustness of ν̂0
NP(π̂, m̂0). If PS model (2.5) is correctly

specified, then Ẽ([(1−T )/{1−π̂(X)}−1]m̂0(X)) = Ẽ([(1−T )/{1−π(X)}−1]m∗0(X))+

Op(n
−1/2) = Op(n

−1/2) and hence

ν̂0
NP(π̂, m̂0) = Ẽ

{
1− T

1− π̂(X)
π̂(X)Y

}/
Ẽ(T ) +Op(n

−1/2) = ν0 +Op(n
−1/2).

On the other hand, ν̂0
NP(π̂, m̂0) can be reexpressed as

ν̂0
NP(π̂, m̂0) = Ẽ

[
1− T

1− π̂(X)
π̂(X){Y − m̂0(X)}+ Tm̂0(X)

]/
Ẽ(T ).

If OR model (2.3) for t = 0 is correctly specified, then Ẽ([(1−T )/{1− π̂(X)}]π̂(X){Y −

m̂0(X)}) = Ẽ([(1−T )/{1−π∗(X)}]π∗(X){Y −m0(X)})+Op(n
−1/2) = Op(n

−1/2) and

hence

ν̂0
NP(π̂, m̂0) = Ẽ {Tm̂0(X)}

/
Ẽ(T ) = ν0 +Op(n

−1/2).

Third, we show the local semiparametric efficiency of ν̂0
SP(π̂, m̂0). If both model

(2.3) for t = 0 and model (2.5) are correctly specified, then

ν̂0
SP(π̂, m̂0)− ν0

=q−1Ẽ

[
1− T

1− π̂(X)
π̂(X)Y −

{
1− T

1− π̂(X)
− 1

}
π̂(X)m0(X)− π̂(X)ν0

]
+ op(n

−1/2)

=q−1Ẽ

[
1− T

1− π̂(X)
π̂(X)(Y − ν0)−

{
1− T

1− π̂(X)
− 1

}
π(X){m0(X)− ν0}

]
+ op(n

−1/2).
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by direct calculation and Slutsky theorem. Applying, to the above, Lemma 4.5(i) with

Y replaced by Y − ν0 and h(X) = π(X){m0(X)− ν0} yields

ν̂0
SP(π̂, m̂0)− ν0 = q−1Ẽ

(
φ0
h(Y − ν0, T,X)−Π{φ0

h(Y − ν0, T,X)|sγ∗(T,X)}

+ Π
[
{T − π(X)}{m0(X)− ν0}|sγ∗(T,X)

] )
+ op(n

−1/2),

The desired results follows because φ0
h(Y − ν0, T,X) = τ0(π, πm0)− π(X)ν0 by direct

calculation, and the variable φ0
h(Y − ν0, T,X) is uncorrelated with the score sγ∗(T,X)

and hence Π{φ0
h(Y − ν0, T,X)|sγ∗(T,X)} = 0.

Finally, we show the local semiparametric efficiency of ν̂1
SP(π̂, m̂1). If both model

(2.3) for t = 1 and model (2.5) are correctly specified, then

ν̂1
SP(π̂, m̂1)− ν1 = q−1Ẽ

[
TY − {T − π̂(X)}m1(X)− π̂(X)ν1

]
+ op(n

−1/2)

= q−1Ẽ
[
T (Y − ν1)− {T − π̂(X)}{m1(X)− ν1}

]
+ op(n

−1/2),

by direct calculation and Slutsky theorem. Applying, to the above, Lemma 4.5(ii) with

Y replaced by Y − ν1 and h(X) = m1(X)− ν1 yields

ν̂1
SP(π̂, m̂1)− ν1 = q−1Ẽ

(
φ1
h(Y − ν1, T,X)

+ Π
[
{T − π(X)}{m1(X)− ν1}|sγ∗(T,X)

] )
+ op(n

−1/2).

The desired result follows because φ1
h(Y −ν1, T,X) = TY −{T−π(X)}m1(X)−π(X)ν1

by direct calculation. 2

Proof of Proposition 3.6

First, it is straightforward to show that β̃t = β∗t +op(1), where β∗t = E−1(ξ∗t ζ
∗
t
T)E(ξ∗t η

∗
t )

and η∗t , ξ
∗
t , ζ∗t , and h∗(X) are defined as η̃t, ξ̃t, ζ̃t, and h̃(X) respectively but with π†(X)

and m∗t (X) in place of π̃(X) and m̂t(X) throughout.

Second, we show the local nonparametric efficiency and double robustness of ν̃treg. By

the discussion in Section 3.3.1, it suffices to show that if the OR model (2.3) for t = 0 or 1
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is correctly specified, then asymptotic expansion (3.5) holds for the corresponding t. By

construction, π̃(X)m̃0(X) is a linear combination of h̃(X)/π̃(X), that is, π̃(X)m̃0(X) =

cT0 h̃(X)/π̃(X) for some constant vector c0. Then π†(X)m∗0(X) = cT0h
∗(X)/π†(X) also

holds for the same vector c0. If model (2.3) for t = 0 holds, then m∗(x) = m0(X) and

hence π†(X)m0(X) = cT0h
∗(X)/π†(X). By direct calculation, we have

β∗0 = E−1

{
ξ∗0

1− T
1− π†(X)

h∗T(X)

π†(X)

}
E

{
ξ∗0

1− T
1− π†(X)

π†(X)m0(X)

}
= c0.

and hence asymptotic expansion (3.5) holds for t = 0. Similarly, because π̃(X)m̃1(X)

is a linear combination of h̃(X)/{1− π̃(X)}, it can be shown that if the OR model (2.3)

for t = 1 is correctly specified, then expansion (3.5) holds for t = 1.

Third, we show the intrinsic efficiency of ν̃0
reg among the class of estimators (3.4) for

t = 0, denoted by ν̃0(b0). By direct calculation and Slutsky theorem, we have

ν̃0(b0)− ν0 = q−1Ẽ(η̃0 − bT0 ξ̃0 − ν0T ) + op(n
−1/2)

= q−1Ẽ

[
η̃0 − bT0

{
1− T

1− π̃(X)
− 1

}
h∗(X)

π(X)
− ν0T

]
+ op(n

−1/2).

If PS model (2.5) is correctly specified, then applying, to the above, Lemma 4.5(i) with

π̂(X) replaced by π̃(X) and h(X) = bT0h
∗(X)/π(X) yields

ν̃0(b0)− ν0 = q−1Ẽ
(
η∗0 − bT0 ξ∗0 − π(X)ν0 −Π{η∗0 − bT0 ξ∗0 |s

†
(γ∗,0)(T,X)}

+ Π
[
{T − π(X)}{m0(X)− ν0}|s†(γ∗,0)(T,X)

] )
+ op(n

−1/2).

where φ0
h(Y, T,X) = η∗0 − bT0 ξ∗0 and Tν0 is decomposed as π(X)ν0 + {T − π(X)}ν0 =

π(X)ν0 +Π[{T −π(X)}ν0|s†(γ∗,0)(T,X)] because T −π(X) is contained in s†(γ∗,0)(T,X).

The first term inside Ẽ() above, η∗0 − π(X)ν0 − bT0 ξ∗0 − Π{η∗0 − bT0 ξ∗0 |s
†
(γ∗,0)(T,X)}, is

uncorrelated with the second term, Π[{T − π(X)}{m0(X) − ν0}|s†(γ∗,0)(T,X)], which

is independent of b0. Moreover, the first term can be expressed as η∗0 − π(X)ν0 − aT
0 ξ
∗
0

for some constant vector a0, because, by construction, each variable in s†(γ∗,0)(T,X) is

a linear combination of varibles in ξ∗0 . By combining these two facts, we see that the
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asymptotic variance of ν̃0(b0) is minimized when a0 is equal to

var−1(ξ∗0)cov
{
ξ∗0 , η

∗
0 − π(X)ν0

}
= E−1(ξ∗0ζ

∗
0
T)E(ξ∗0η

∗
0) = β∗0 .

But to make a0 equal to β∗0 , it suffices to set b0 = β∗0 , because η∗0−β∗0Tξ∗0 is uncorrelated

with s†(γ∗,0)(T,X) and hence Π{η∗0 − β∗0Tξ∗0 |s
†
(γ∗,0)(T,X)} = 0. If PS model (2.5) is cor-

rectly specified, then ν̃0
reg = ν̃0(β∗0) + op(n

−1/2). Therefore, ν̃0
reg is intrinsically efficient

among the class of estimators ν̃0(b0).

Finally, we show the intrinsic efficiency of ν̃1
reg among the class of estimators (3.4)

for t = 1, denoted by ν̃1(b1). By direct calculation and Slutsky theorem, we have

ν̃1(b1)− ν1 = q−1Ẽ(η̃1 − bT1 ξ̃1 − ν1T ) + op(n
−1/2)

= q−1Ẽ

[
η̃1 − bT1{T − π̃(X)} h∗(X)

π(X){1− π(X)}
− ν1T

]
+ op(n

−1/2).

If PS model (2.5) is correctly specified, then applying, to the above, Lemma 4.5(i) with

π̂(X) replaced by π̃(X) and h(X) = bT1h
∗(X)/[π(X){1− π(X)}] yields

ν̃1(b1)− ν1 = q−1Ẽ
(
η∗1 − bT1 ξ∗1 − π(X)ν1 −Π{η∗1 − bT1 ξ∗1 |s

†
(γ∗,0)(T,X)}

+ Π
[
{T − π(X)}{m1(X)− ν1}|s†(γ∗,0)(T,X)

] )
+ op(n

−1/2),

where φ1
h(Y, T,X) = η∗1− bT1 ξ∗1 . The intrinsic efficiency of ν̃0

reg can be similarly obtained

as above for the intrinsic efficiency of ν̃1
reg .

Derivation of empirical likelihood estimates

The empirical likelihood estimate of νt is ν̂tlik =
∑n

i=1 p̂iη̃t,i/
∑n

i=1 p̂iTi, where (p̂1, . . . , p̂n)

are obtained from the constrained maximization problem:

max
p1≥0,...,pn≥0

n∑
i=1

log pi

subject to
n∑
i=1

pi = 1 and
n∑
i=1

piξ̃1,i = 0.
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By standard calculation (Qin & Lawless 1994), we have

p̂i =
n−1

1 + λ̂Tξ̃1,i

,

where λ̂ is a maximizer of the function

`EL(λ) =
1

n

n∑
i=1

log
(

1 + λTξ̃1,i

)
.

Write π̃i = π̃(Xi), h̃i = h̃(Xi), and ωi = ω(Xi;λ) for i = 1, . . . , n. By direct calculation,

`EL(λ) can be reexpressed as

`EL(λ) =
1

n

n∑
i=1

log

{
1 + λT Ti − π̃i

π̃i(1− π̃i)
h̃i

}

=
1

n

n∑
i=1

{
Ti log

(
1 + λT h̃i

π̃i

)
+ (1− Ti) log

(
1− λT h̃i

1− π̃i

)}

=
1

n

n∑
i=1

{Ti logωi + (1− Ti) log(1− ωi)} −
1

n

n∑
i=1

{Ti log π̃i + (1− Ti) log(1− π̃i)} ,

which equals `(λ) up to an additive constant. Therefore, λ̂ is a maximizer of `(λ). The

desired expressions for ν̂1
lik and ν̂0

lik hold because, by direct calculation,

n∑
i=1

p̂iη̃1,i =
1

n

n∑
i=1

η̃1,i

1 + λ̂Tξ̃1,i

=
1

n

n∑
i=1

TiYi

1 + λ̂T h̃i
π̃i

=
1

n

n∑
i=1

Tiπ̃iYi
ω̂i

,

n∑
i=1

p̂iη̃0,i =
1

n

n∑
i=1

η̃0,i

1 + λ̂Tξ̃1,i

=
1

n

n∑
i=1

(1− Ti) π̃i
1−π̃iYi

1− λ̂T h̃i
1−π̃i

=
1

n

n∑
i=1

(1− Ti)π̃iYi
1− ω̂i

,

where ω̂i = ω(Xi; λ̂) for i = 1, . . . , n. 2

Proof of Proposition 3.8

We need only to show that if model (2.5) is correctly specified, then ν̃tlik is asymptotically

equivalent, to the first order, to ν̃treg for t = 0, 1. By direct calculation and Slutsky
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theorem, we have

ν̃0
lik − ν0 = q−1Ẽ

[
(1− T )π̃(X)Y

1− ω(X; λ̃0)
− Tν0

]
+ op(n

−1/2).

If model (2.5) is correctly specified, then

Ẽ

[
(1− T )π̃(X)Y

1− ω(X; λ̃0)

]
= Ẽ

[
(1− T )π̃(X)Y

1− ω(X; λ̂)

]
+ op(n

−1/2),

by a Taylor expansion for λ̃0 about λ̂ and the fact that Ẽ([(1 − T )/{1 − ω(X; λ̂)} −

1]π̃(X)) = op(n
−1/2), similarly as in the asymptotic expansion of the calibrated likeli-

hood estimator in Tan (2010). Moreover, if model (2.5) is correctly specified, then λ̂

converges to 0 in probability and

Ẽ

[
(1− T )π̃(X)Y

1− ω(X; λ̂)

]
= Ẽ

(
η̃0 − β∗0

Tξ̃0

)
+ op(n

−1/2).

by a Taylor expansion for λ̂ about 0, similarly as in the asymptotic expansion of the

non-calibrated likelihood estimator in Tan (2010). The desired result for ν̃0
lik then fol-

lows from the preceding expansions. Similarly, the result for ν̃1
lik can be shown. 2

Extension with non-logistic PS model

We discuss an extension of the regression and likelihood estimators ν̃treg and ν̃tlik when

the PS model (2.5) is non-logistic regression. Consider an augmented PS model

P (T = 1|X) = πaug(X; γ, γ0, δ, α̂)

= Π
{
γTf(X) + γ0ρ̂

−1(X) + δ0 ρ̂
−1(X)m̂0(X) + δ1 ρ̂

−1(X)m̂1(X)
}
,

where ρ̂(X) = ρ(X; γ̂) and ρ(X; γ) = Π′{γTf(X)}/[π(X; γ){1 − π(X; γ)}], which re-

duces to a constant 1 for logistic regression. Let (γ̃, γ̃0, δ̃) be the estimates of (γ, γ0, δ)

solving the estimating equations

Ẽ [{T − πaug(X; γ, γ0, δ, α̂)}{ρ̂(X)fT(X), 1, m̂0(X), m̂1(X)}T] = 0.
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Let π̃(X) = πaug(X; γ̃, γ̃0, δ̃, α̂), and define the estimators ν̃treg and ν̃tlik same as before,

except that h̃(X) is defined with

h̃2(X) = π̃(X){1− π̃(X)}{ρ̂(X)fT(X), m̂0(X)}T.

Then Propositions 4.3 and 4.4 can be shown to hold as before.

Particularly, to establish intrinsic efficiency, it can be shown that if PS model (2.5)

is correctly specified, then the estimates (γ̃, γ̃0, δ̃) are asymptotically equivalent to the

first order to the MLE of (γ, γ0, δ) from the following “model,”

P (T = 1|X) = π∗aug(X; γ, γ0, δ, α̂)

= Π
{
γTf(X) + γ0ρ

∗−1(X) + δ0 ρ
∗−1(X)m∗0(X) + δ1 ρ

∗−1(X)m∗1(X)
}
,

where ρ∗(X) = ρ(X; γ∗). That is, the random variation in ρ̂(X), m̂0(X), and m̂1(X)

does not affect the asymptotic behavior of (γ̃, γ̃0, δ̃) to the first order. The proofs of

Propositions 4.3 and 4.4 can be completed similarly as before.

Violation of the exogeneity assumption

We present large-sample limits for estimators of ATT when the exogeneity assumption

(A1) may be violated, i.e., T and Y 0 may not be conditionally independent given X.

Similar results are known for estimators of ATE under possible violation of exogeneity

assumptions (e.g., Robins 1999; Tan 2006). We mainly use these results to justify

how various estimators are compared in our analysis of LaLonde data in Section 3.6,

although the results can be broadly used.

Suppose that the exogeneity ssumption (A1) may be violated. The following results

can be shown by similar calculations as under Assumption (A1).

(i) If the OR model (2.3) is correctly specified for t = 0, then ν̂0
OR, ν̂0

NP(π̂, m̂0), ν̃0
reg,

and ν̃0
lik converge in probability as n → ∞ to E{Tm0(X)}/E(T ), which reduces

to E(Y 0|T = 1) when Assumption (A1) holds but not generally so. Moreover, if

the OR model (2.3) is correctly specified for t = 1, then ν̃1
reg and ν̃1

lik converge in
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probability as n→∞ to E(Y |T = 1).

(ii) If the PS model (2.5) is correctly specified, then ν̂0
IPW(π̂), ν̂0

NP(π̂, m̂0), ν̃0
reg, and

ν̃0
lik converge in probability as n→∞ to E{Tm0(X)}/E(T ).

In the context of LaLonde analysis, let T be the indicator for the NSW cohort, i.e.,

T = 1 for the NSW treatment group in Analysis (i) or NSW control group in Analysis

(ii) and T = 0 for the comparison group, and let D be the indicator for job training,

i.e., D = 1 for the NSW treatment group and D = 0 for the NSW control group and

the comparison group. Define Y 11 as the potential outcome that would be observed

if an individual was selected into NSW cohort and assigned to treatment, Y 01 as the

potential outcome that would be observed if an individual was selected into NSW cohort

and assigned to control, and Y 00 as the potential outcome that would be observed if an

individual was selected into the comparison cohort and hence no job training. It is not

necessary that Y 01 ≡ Y 00, which would rule out any placebo effect such that earnings

could be affected by merely participating in the NSW experiment. The exogeneity

assumption (A1), T ⊥ Y 00|X, means that the NSW and comparison cohorts would

have similar distributions of of earnings, at each covariate level x, if both placed in the

comparison cohort and not assigned to job training. This assumption is implicitly made

in all previous studies starting from LaLonde (1986), but can potentially be violated.

Because the NSW treatment and control groups are randomized, the difference

E(Y 11|T = 1)− E(Y 01|T = 1)

is the experimental benchmark. For Analysis (i) with NSW treatment group combined

with a comparison group, a valid ATT estimator should be close to E(Y 11|T = 1) −

E{Tm0(X)}/E(T ), and the corresponding bias be close to

E(Y 11|T = 1)− E{Tm0(X)}/E(T )− {E(Y 11|T = 1)− E(Y 01|T = 1)}

= E(Y 01|T = 1)− E{Tm0(X)}/E(T ),
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where m0(X) = E(Y 00|T = 0, X). For Analysis (ii) with NSW control group combined

with a comparison group, a valid ATT estimator should be close to

E(Y 01|T = 1)− E{Tm0(X)}/E(T ).

Therefore, the two bias estimates separately from Analyses (i) and (ii) should be close

to each other for a good method, even when the exogeneity assumption (A1) is violated.

This relationship forms the basis in our assessment of relative performances of various

estimators of ATT in Section 3.6.

3.9 Additional Simulation Results

3.9.1 Qin–Zhang Simulation

Table 3.5 and Figures 3.4-3.5 present the results from 1000 Monte Carlo samples of size

n = 1000, under the PS setting with small selection bias, (γ∗1 , γ
∗
2 , γ
∗
3) = (1.0, 0.1, 0.1).

Table 3.6 and Figures 3.6-3.7 present the results from 1000 Monte Carlo samples of size

n = 1000, under the PS setting with large selection bias, (γ∗1 , γ
∗
2 , γ
∗
3) = (1.0, 0.5, 0.5).

The relative performances of the estimators under study are similar to those under

the PS setting with large selection bias, (γ∗1 , γ
∗
2 , γ
∗
3) = (1.0, 0.2, 0.2). In particular,

efficiency gains of the calibrated likelihood estimators over the doubly robust estimators,

AIPW and AIPW.HIR, remain considerable across these settings, when the PS model

is correctly specified but the OR model is misspecified.
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Figure 3.4: Boxplots of estimates minus the truth under LIN-OR setting with (γ∗1 , γ
∗
2 , γ

∗
3 ) =

(1.0, 0.1, 0.1).

linear PS, linear OR
1 1 1

1

−2
−1

0
1

2

OR IPW.r AIPW LIK LIK2 HIR AIPW.HIR

linear PS, quadratic OR
1

1

−2
−1

0
1

2

OR IPW.r AIPW LIK LIK2 HIR AIPW.HIR

quadratic PS, linear OR
1

6 5

−2
−1

0
1

2

OR IPW.r AIPW LIK LIK2 HIR AIPW.HIR

quadratic PS, quadratic OR

6

−2
−1

0
1

2

OR IPW.r AIPW LIK LIK2 HIR AIPW.HIR

Figure 3.5: Boxplots of estimates minus the truth under QUA-OR setting with (γ∗1 , γ
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∗
3) =

(1.0, 0.1, 0.1).
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Table 3.5: Qin–Zhang simulation results with (γ∗1 , γ
∗
2 , γ
∗
3) = (1.0, 0.1, 0.1)

Models OR IPW.r AIPW LIK LIK2 HIR AIPW.HIR EL AST

Data generated under LIN-OR setting

linear PS, 0.0070 0.0076 0.0069 0.0062 0.0066 0.0069 0.0069 0.0038 -0.0004
linear OR (0.0147) (0.0200) (0.0153) (0.0157) (0.0156) (0.0153) (0.0153) (0.0204) (0.0154)

linear PS, 0.3551 0.0076 0.0032 0.0072 0.0040 0.0069 0.0032 0.0040 -0.0083
quadratic OR (0.0562) (0.0200) (0.0320) (0.0163) (0.0185) (0.0153) (0.0312) (0.0241) (0.0285)

quadratic PS, 0.0070 0.3488 0.0062 0.0072 0.0070 0.3687 0.0063 · · · · · ·
linear OR (0.0147) (0.0553) (0.0176) (0.0160) (0.0167) (0.0557) (0.0171) · · · · · ·

quadratic PS, 0.3551 0.3488 0.3721 0.3428 0.3516 0.3687 0.3687 · · · · · ·
quadratic OR (0.0562) (0.0553) (0.0576) (0.0544) (0.0541) (0.0557) (0.0557) · · · · · ·

Data generated under QUA-OR setting

linear PS, 0.2235 0.0275 0.0291 0.0233 0.0249 0.0302 0.0302 0.0347 0.0009
linear OR (0.3152) (0.4034) (0.3335) (0.0647) (0.0730) (0.2999) (0.2999) (0.1561) (0.3050)

linear PS, -0.0690 0.0275 0.0094 0.0071 0.0084 0.0302 0.0094 0.0029 -0.0011
quadratic OR (0.0190) (0.4034) (0.0173) (0.0162) (0.0170) (0.2999) (0.0178) (0.0226) (0.0168)

quadratic PS, 0.2235 -0.1398 -0.3619 0.0214 -0.0387 -0.0731 -0.3250 · · · · · ·
linear OR (0.3152) (0.1555) (0.1949) (0.0241) (0.0635) (0.0191) (0.0906) · · · · · ·

quadratic PS, -0.0690 -0.1398 -0.0742 -0.0672 -0.0698 -0.0731 -0.0731 · · · · · ·
quadratic OR (0.0190) (0.1555) (0.0193) (0.0198) (0.0195) (0.0191) (0.0191) · · · · · ·

Table 3.6: Qin–Zhang simulation results with (γ∗1 , γ
∗
2 , γ
∗
3) = (1.0, 0.5, 0.5)

Models OR IPW.r AIPW LIK LIK2 HIR AIPW.HIR EL AST

Data generated under LIN-OR setting

linear PS, 0.0089 0.0323 0.0107 0.0009 0.0030 0.0109 0.0109 0.0051 0.0024
linear OR (0.0280) (0.2078) (0.0608) (0.0733) (0.0698) (0.0547) (0.0547) (0.0900) (0.0537)

linear PS, 1.8926 0.0323 0.0471 0.0527 0.0665 0.0109 0.0294 -0.0089 0.0244
quadratic OR (0.1748) (0.2078) (0.2414) (0.0642) (0.0663) (0.0547) (0.0998) (0.1103) (0.1015)

quadratic PS, 0.0089 1.3964 0.0262 0.0026 0.0059 1.8722 0.0169 · · · · · ·
linear OR (0.0280) (0.9500) (0.3731) (0.0739) (0.0770) (0.1931) (0.0731) · · · · · ·

quadratic PS, 1.8926 1.3964 1.8918 1.8529 1.8459 1.8722 1.8722 · · · · · ·
quadratic OR (0.1748) (0.9500) (0.4227) (0.2195) (0.2220) (0.1931) (0.1931) · · · · · ·

Data generated under QUA-OR setting

linear PS, 3.2822 0.1296 0.1560 0.3212 0.3819 0.2428 0.2428 0.1969 0.1943
linear OR (0.9469) (3.0404) (3.7185) (0.4148) (0.5712) (0.9017) (0.9017) (0.2647) (0.7010)

linear PS, -0.4663 0.1296 0.0077 0.0091 0.0061 0.2428 0.0156 0.0075 0.0095
quadratic OR (0.0593) (3.0404) (0.0657) (0.0796) (0.0798) (0.9017) (0.0603) (0.1026) (0.0549)

quadratic PS, 3.2822 -1.9909 -1.9277 0.3801 0.9864 -0.4403 0.1483 · · · · · ·
linear OR (0.9469) (13.0100) (34.4996) (0.3366) (0.3682) (0.0742) (0.3204) · · · · · ·

quadratic PS, -0.4663 -1.9909 -0.4319 -0.4754 -0.4449 -0.4403 -0.4403 · · · · · ·
quadratic OR (0.0593) (13.0100) (0.1954) (0.0918) (0.0858) (0.0742) (0.0742) · · · · · ·
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Figure 3.6: Boxplots of estimates minus the truth under LIN-OR setting with (γ∗1 , γ
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2 , γ
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3 ) =

(1.0, 0.5, 0.5).
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3.9.2 Kang–Schafer Simulation

In addition to the simulation study with the design of Qin & Zhang (2008), we also

conducted a simulation study with the design of Kang & Schafer (2007) and a modified

design defined in McCaffrey et al. (2007).

In Kang & Schafer (2007), the data are generated as z = (z1, z2, z3, z4)T, y =

210 + 27.4z1 + 13.7z2 + 13.7z3 + 13.7z4 + ε, and T = 1{U 6 expit(−z1 + 0.5z2 −

0.25z3 − 0.1z4)}, where (z1, z2, z3, z4, ε, U) are mutually independent, (z1, z2, z3, z4, ε)

are marginally normally distributed with mean 0 and variance 1 and U is uniformly

distributed on (0, 1). Let x = (x1, x2, x3, x4)T, x1 = exp(0.5z1), x2 = z2/{1+exp(z1)}+

10, x3 = (0.04z1z3 + 0.6)3, and x4 = (z2 + z4 + 20)2.

Two OR models (2.3) are specified with the identity link Ψ(·) and the regressor

vector g0(z) = g1(z) = (1, z1, z2, z3, z4)T or (1, x1, x2, x3, x4)T, corresponding to a cor-

rectly specified or misspecified OR model (denoted by OR z or OR x). Similarly,

two PS models (2.5) are specified with the logistic link Π(·) and the regressor vector

f(z) = (1, z1, z2, z3, z4)T or (1, x1, x2, x3, x4)T, corresponding to a correctly specified or

misspecified PS model (denoted by PS z or PS x).

The modified design in McCaffrey et al. (2007) is defined the same as above, except

that an interaction term is added when generating the response, y = 210 + 27.4z1 +

13.7z2 +13.7z3 +13.7z4 +20z1z2 + ε. Three possible OR models (2.3) are specified with

the identity link Ψ(·) and the regressor vector g0(z) = g1(z) = (1, z1, z2, z3, z4, z1z2)T,

(1, z1, z2, z3, z4)T or (1, x1, x2, x3, x4)T, corresponding to a correctly specified, slightly

misspecified, or misspecified OR model (denoted by OR z2, OR z, or OR x). Two

possible PS models (2.5) are specified the same as above.

For these two designs, Table 3.7 and Figure 3.8-3.9 present the results for various

estimators from 5000 Monte Carlo sample with size n = 1000. The true value of ATT

is easily shown to be always 0.

The relative performances of the estimators under study are overall similar to those

found in the Qin–Zhang simulation study. A seemingly unexpected phenomenon, in

view of intrinsic efficiency of LIK, is that the HIR and AIPW.HIR estimators have
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smaller variances than LIK and LIK2 estimators in the Kang–Schafer design when

PS z and OR x models (which are correctly specified and misspecified respectively)

are used. But this difference can be explained as follows. In this case, because the

true m0(X) is a linear combination of f(X) used, the HIR estimator can be shown

to achieve the nonparametric efficiency bound by similar arguments as in the proof of

local nonparametric efficiency of ν̂0
NP(π̂, m̂0). This can also be seen numerically from

Monte Carlo standard errors. The estimator AIPW.HIR (which is doubly robust) has

a moderately inflated from that of HIR (which is non-doubly robust) and hence smaller

than those of LIK and LIK2. This phenomenon depends on the particular way in which

the Kang–Schafer design is defined; it does not occur in the McCaffrey-et-al design when

PS z and OR z or OR x models are used.

Table 3.7: Kang–Schafer and McCaffrey-et-al simulation results

Models OR IPW.ratio AIPW LIK LIK2 HIR AIPW.HIR

Kang–Schafer design

PS z, OR z -0.00021 -0.15529 0.00009 0.00038 0.00038 -0.00001 -0.00001
(0.07881) (2.29565) (0.08899) (0.09119) (0.09014) (0.08815) (0.08815)

PS x, OR z -0.00021 -7.19115 -0.00027 0.00019 -0.00015 -4.43418 -0.00035
(0.07881) (1.76502) (0.08423) (0.09345) (0.09431) (1.03883) (0.08538)

PS z OR x -9.94070 -0.15529 -0.28659 -0.34182 -0.41053 -0.00001 -0.25263
(1.53143) (2.29565) (2.51075) (0.98906) (1.19155) (0.08815) (0.78813)

PS x, OR x -9.94070 -7.19115 -6.15538 -4.80166 -5.60558 -4.43418 -4.43418
(1.53143) (1.76502) (1.70318) (1.54315) (1.56532) (1.03883) (1.03883)

McCaffrey-et-al design (with interaction)

PS z, OR z2 -0.00001 -0.25727 0.00018 0.00031 0.00030 -0.26256 1e-6
(0.08057) (3.74352) (0.08915) (0.09289) (0.09261) (1.90160) (0.08844)

PS x, OR z2 -0.00001 -5.36684 -0.00024 -0.00048 -0.00090 -2.68423 -0.00039
(0.08057) (2.74036) (0.08382) (0.09746) (0.09833) (1.69244) (0.08490)

PS z, OR z -6.45619 -0.25727 -0.16704 -0.29360 -0.41220 -0.26256 -0.26256
(1.92221) (3.74352) (3.44095) (1.43785) (1.94467) (1.90160) (1.90160)

PS x, OR z -6.45619 -5.36684 0.79425 -0.25981 0.81471 -2.68423 1.16681
(1.92221) (2.74036) (2.42957) (1.31109) (1.48044) (1.69244) (1.06564)

PS z, OR x -10.47822 -0.25727 -0.38755 -0.35741 -0.59751 -0.26256 -0.47727
(2.17768) (3.74352) (4.11415) (1.22501) (1.92895) (1.90160) (1.89506)

PS x, OR x -10.47822 -5.36684 -4.36236 -2.06547 -3.12139 -2.68423 -2.68423
(2.17768) (2.74036) (2.86418) (1.84705) (2.21782) (1.69244) (1.69244)

Note: In the upper rows are the Monte Carlo means, and in the brackets are the corresponding Monte Carlo
variances.
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Figure 3.8: Boxplots of estimates under the Kang–Schafer design. The values are censored
within the range of the y-axis, and the number of values that lie outside the range are indicated
next to the lower and upper limits of the y-axis.
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3.9.3 Lalonde Analysis

Table 3.8 and Figure 3.10 present the results from Analyses (i) and (ii) for various

estimators as listed in Section 3.5, based on 500 bootstrap samples of the NSW+CPS

composite data. There are much smaller differences between the performances of the

estimators than when the NSW+PSID composite data are analyzed. Another feature

worthy of note is that none of the estimators lead to effect estimates close to the

experimental benchmark $886 or bias estimates close to 0, even though the differences

between effect and bias estimates are all roughly close to $886.

Table 3.8: Bootstrap results from Analyses (i) and (ii) on NSW+CPS composite data

OR IPW.ratio AIPW LIK2 HIR AIPW.HIR

Linear PS, Linear OR Treatment Effect -800 -451 -308 -380 -503 -388
(475) (518) (526) (518) (520) (520)

Evaluation Bias -1709 -1336 -1333 -1364 -1414 -1413
(374) (414) (428) (420) (422) (422)

Difference 803 885 903 880 910 910
(527) (518) (532) (526) (531) (531)

Linear PS, Quadratic OR Treatment Effect -800 -451 -308 -380 -503 -388
(475) (518) (522) (516) (520) (517)

Evaluation Bias -1611 -1336 -1196 -1254 -1414 -1295
(379) (414) (436) (430) (422) (429)

Difference 811 885 888 874 910 907
(527) (518) (529) (523) (531) (529)

Quadratic PS, Linear OR Treatment Effect -906 -427 -421 -424 -465 -465
(475) (561) (561) (561) (557) (557)

Evaluation Bias -1709 -1207 -1335 -1297 -1383 -1383
(374) (529) (533) (514) (507) (507)

Difference 803 780 914 873 919 919
(527) (547) (544) (538) (532) (532)

Quadratic PS, Quadratic OR Treatment Effect -800 -427 -465 -438 -432 -465
(475) (561) (557) (563) (557) (557)

Evaluation Bias -1611 -1207 -1383 -1364 -1313 -1383
(379) (529) (507) (535) (514) (507)

Difference 811 780 919 926 881 919
(527) (547) (532) (543) (535) (532)

Note: In the upper rows are the bootstrap means, and in the brackets are the corresponding bootstrap standard
errors. Treatment Effect is obtained from Analysis (i), and Evaluation Bias from Analysis (ii). The difference
is to be compared with the experimental benchmark $886 with standard error $488. There was no issue of
non-convergence when computing estimates during bootstrapping, and hence Principle Component Analysis is
not needed.
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Figure 3.10: Bootstrap boxplots of differences of bias estimates from Analyses (i) and (ii) on
NSW+CPS composite data.
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Chapter 4

Improved Methods using Data Combination for Moment

Restriction Models

In this chapter, we develop improved methods using data combination for moment

restriction models. First, we examine semiparametric theory following Chen et al.

(2008), and then derive augmented inverse probability weighted (AIPW) estimators that

are locally efficient and doubly robust. Furthermore, we develop calibrated regression

and likelihood estimators which achieve double robustness, local efficiency and desirable

properties beyond.

Specifically, the proposed estimators are doubly robust, i.e., remain consistent as

long as either a propensity score (PS) model or an outcome regression (OR) model is

correct. The estimator proposed by Graham et al. (2015) is doubly robust only under

the assumption that PS model and OR model share the same vector of regressors. We

exploited the idea of augmenting the propensity score model with additional regressors

related to fitted values from the outcome regression model. Then double robustness

is obtained without the restrictive assumption in Graham et al. (2015). Second, the

proposed estimators are locally efficient, i.e., attain the nonparametric variance bound

when propensity score and outcome regression model are both correctly specified. And

they are intrinsically efficient in achieving greater efficiency than AIPW estimators

when the propensity score model is correctly specified but the outcome regression model

may be misspecified.

For illustration, we take the linear two-sample instrumental variable problem as an

example, and derive all the relevant estimators in details. Compared with the classical

Two-Sample Instrumental Variable (TSIV) estimator (Angrist & Krueger, 1992), our
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estimators could still generate consistent estimators when the two samples differ in dis-

tribution. The conventional Two-Sample Two-Stage Least Squares (TS2SLS) estimator

(Bjorklund & Jantti 1997) is only consistent when OR model is correctly specified, while

our estimator is doubly robust, i.e., also consistent as long as PS model is correctly spec-

ified even if OR model is misspecified. Moreover, our estimator is designed to achieve

greater efficiency than AIPW estimator which is doubly robust and locally efficient,

when PS model is correctly specified but the OR model may be misspecified. We

present a simulation study and an Economic application on a public housing project,

and provide numerical comparisons with existing methods.

4.1 Moment Restriction Models with Auxiliary Data

Let (x, z) be a random vector drawn from a population we want to investigate. But

x is missing from the primary data, the population we are interested. So we collect

auxiliary data which contains the measurements of (x, z), but this data may be drawn

from a different population. z is a common variable across the two samples, but it may

have different distributions in the two samples. In this chapter, let’s use the superscript

(1) to denote the primary data and superscript (0) to denote the auxiliary data.

We are interested in the estimation of parameters θ defined in terms of nonlinear

moment conditions

E(1)Φ(x, z; θ) = 0 (4.1)

where Φ(x, z; θ) are k × 1 vectors, and the unknown parameter θ of interest is also a

k×1 vector. And we refer to this case ”just-determined”. E(1) refers to the expectation

taken with respect to the population of the primary data. So the underlying difficulty

is x is missing in the primary data we are interested in.

Hahn (1998) and Chen et al. (2008) show that θ could be identified when (i) the

conditional distribution of x given z is the same across two samples, ie: F (1)(x|z) =

F (0)(x|z), (ii) for the common variable z, the support in primary data are contained

within the support in auxiliary data, which is an important assumption ensuring we
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could apply the relationship between x and z determined from auxiliary data on the

primary data without extrapolation.

If we merge the two samples, and add an indicator variable t. For the observations

in Data (1), the primary data, we have t = 1, otherwise t = 0. Then we construct a

merged sample with sample size n = n0 + n1.

{
(ti, zi, (1− ti)xi)T

}n
i=1

The data (zi, xi, ti)
n
i=1 are now conceptualized as an i.i.d. sample from (z, x, t). We

have transformed the two-sample problem to one merged-sample framework. Eq. (4.1)

could be represented by

E
[
Φ(x, z; θ)

∣∣t = 1
]

= 0 (4.2)

Before we discuss the modeling approaches of this merged-sample problem, it is

helpful to emphasize the underlying assumptions.

The first assumption is what we mentioned in previous sections: F (1)(x|z) = F (0)(x|z).

And it is interesting to find out that this is actually equivalent to the well-known as-

sumption in causal model: “Unconfoundedness”.

x ⊥ t | z (4.3)

This conditional independence assumption has been widely used in Econometrics and

Statistics to achieve identification with missing data, for example Little & Rubin (2002),

Robins & Rotnitzky (1995), and Heckman et al. (1999).

The other assumption is called “overlap”:

0 ≤ P (t = 1|z) < 1 (4.4)

This assumption can also be stated in another way: the support of z in the auxiliary

data is at least as large as that in the primary data.
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4.1.1 Basic Approaches of Estimation

In addition to these two assumptions, we still need modeling assumptions to demon-

strate the relationship between t or x with the common variable z. Generally, there are

two modeling approaches.

The first one is to construct a regression model to capture the relationship between

the functions on the left-hand side of moment equation (4.2) and the common variables

z. Let’s call them outcome regression (OR) function, q0(z;α0), where α0 depends on

the value of θ.

q0(z;α0) = E
[
Φ(x, z; θ)

∣∣z] = Ψ{g0(z)α0} (4.5)

where Ψ(·) is an inverse link function, g0(z) is a k × p matrix of known function of z,

and α0 is a p× 1 vector of unknown parameters. Generally, maximum quasi-likelihood

estimate of α0 is solved through

∑
ti=0

{
g0(zi)

T
[
Φ(xi, zi; θ)− q0(zi;α0)

]}
= 0 (4.6)

On the other hand, we have another equation based on (4.2),

1

n1

n∑
i=1

tiq0(zi;α0) = 0 (4.7)

The estimators of θ and α0 could be solved based on (4.6) together with (4.7). Let’s

denote them as θ̂OR and α̂0, and we use q̂0(z) to represent q0(z; α̂0) based on (θ̂OR, α̂0)

for convenience. If model (4.5) is correctly specified, then θ̂OR is a consistent estimator.

The other approach is to build a regression model to predict the conditional proba-

bility that certain observation belongs to the primary sample given the common variable

z. Usually we call this probability propensity score (PS), whose essential role is em-

phasized by Rosenbaum & Rubin (1983), and it is denoted as π(z) in this chapter.

P (t = 1|z) = E(t|z) = π(z; γ) = Π{γTf(z)} (4.8)
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where Π(·) is an inverse link function. f(z) is a vector of known function including 1,

and γ is a vector of unknown parameters. The score function of γ is:

Sγ(t, z) =

[
t

π(z; γ)
− 1− t

1− π(z; γ)

]
∂π(z; γ)

∂γ

Usually, logistic regression is used to fit propensity score:

π(z; γ) =
exp[γTf(z)]

1 + exp[γTf(z)]
(4.9)

Let γ̂ be the maximum likelihood estimator (MLE) of γ that solves Ẽ [Sγ(t, z)] = 0,

which in logistic regression case reduces to

Ẽ
[
t− π(z; γ)

]
f(z) = 0 (4.10)

where Ẽ(·) denotes simple sample average of the whole merged sample, and we will use

this symbol representing the same idea in the rest of this chapter. And we use π̂(z)

instead of π(z; γ̂) for convenience.

We could simply obtain an estimation θ̂IPW using the estimated π̂(z) above through

Ẽ

{
1− t

1− π̂(z)
π̂(z)Φ(x, z; θ)

}
= 0 (4.11)

Generally, θ̂IPW is called Inverse Probability Weighted (IPW) estimator. Since the

fitted propensity score appears in the denominator, θ̂IPW can be very sensitive to the

specification of PS model (4.8). The estimator θ̂IPW is consistent only when PS model

(4.8) is correctly specified.

4.1.2 Semiparametric Efficiency Theory and AIPW Estimator

As discussed in Section 4.1.1, θ̂OR is consistent only when the OR model (4.5) is correctly

specified, and the consistency of θ̂IPW also depends on the correct specification of PS

model (4.8). Alternatively, we could try to use both PS (4.8) and OR (4.5) model, in

order to gain efficiency and robustness, similarly as in estimation of ATE and ATT.
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Chen et al. (2008) studied the semiparametric efficiency theory of data combina-

tion problem defined through general moment conditions. Based on their findings, we

present the semiparametric efficient influence function and the variance bound for our

problem defined as (4.1).

Proposition 4.1 gives the semiparametric influence functions and we also list the

semiparametric efficiency bounds for estimation of θ under three different settings in

Table 4.1.

Proposition 4.1 Let p = E(T ) and define

Γθ =
∂

∂θT
E [Φ(x, z; θ)|t = 1] (4.12)

q0(z) = E[Φ(x, z; θ)|z] (4.13)

F (t, x, z) =
1− t
p

π(z)

1− π(z)
[Φ(x, z; θ)− q0(z)] (4.14)

The efficient influence function for estimation of θ is as follows, depending on assump-

tions on the propensity score.

(i) The efficient influence function is

ϕNP(t, x, z) = −Γ−1
θ × FNP(t, x, z)

where

FNP(t, x, z) = F (t, x, z) +
tq0(z)

p

(ii) If the propensity score π(z) is known, then the efficient influence function is

ϕSP*(t, x, z) = −Γ−1
θ × FSP*(t, x, z)

where

FSP*(t, x, z) = F (t, x, z) +
π(z)q0(z)

p
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Table 4.1: Efficiency bounds for estimation of θ

Assumption Efficiency bound

Nonparametric model VNP = var{ϕNP(t, x, z)}
Parametric PS model VSP = var{ϕSP(t, x, z)}
Known π(z) VSP* = var{ϕSP*(t, x, z)}

(iii) If the propensity score π(z) is unknown but assumed to belong to a correctly spec-

ified parametric family π(z; γ), then the efficient influence function is

ϕSP(t, x, z) = −Γ−1
θ × FSP(t, x, z)

where

FSP(t, x, z) = FSP*(t, x, z) + Π

[{
t− π(z)

}q0(z)

p

∣∣∣Sγ(t, z)

]

where for two random vectors Z1 and Z2, Π(Z2|Z1) = cov(Z2, Z1)var−1(Z1)Z1, i.e., the

projection of Z2 onto Z1.

From the discussion in Chen et al. (2008) and Hahn (1998), the variance bounds in

Table 4.1 satisfy the order that VNP ≥ VSP ≥ VSP*, with strict inequalities in general.

This ordering of efficiency bounds agrees with the usual comparison that the efficiency

bound under a more restrictive model is no greater than under a less restrictive model.

We now derive two estimators of θ based on both outcome regression function q0(z)

and propensity score π(z), by directly taking the efficient influence functions in Proposi-

tion 4.1 as estimating functions, with the truth q0(z) and π(z) replaced by the estimated

function q̂0(z) and π̂(z). Proposition 4.2 shows that both estimators possess local effi-

ciency but of different types, and only one estimator is doubly robust. For clarity, the

semiparametric efficiency bound VNP under the nonparametric model is also called the

nonparametric efficiency bound, and the semiparametric efficiency bound VSP under the

nonparametric model is also called the semiparametric efficiency bound.

Proposition 4.2 Under suitable regularity conditions (see Appendix), the following

results hold.
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(i) Define an estimator of θ as the solution of the following equation

Ẽ

{
1− t

1− π̂(z)
π̂(z)

[
Φ(x, z; θ)− q̂0(z)

]
+ tq̂0(z)

}/
Ẽ(t) = 0 (4.15)

Let’s call the estimation θ̂NP.

Then θ̂NP is locally nonparametric efficient: it achieves the nonparametric effi-

ciency bound VNP when both model (4.5) and model (4.8) are correctly specified.

Moreover, θ̂NP is doubly robust: it remains consistent when either model (4.5) or

model (4.8) is correctly specified.

(ii) Define an estimator of θ as the solution of the following equation

Ẽ

{
1− t

1− π̂(z)
π̂(z)

[
Φ(x, z; θ)− q̂0(z)

]
+ π̂(z)q̂0(z)

}/
Ẽ(t) = 0 (4.16)

Let’s call the estimation θ̂SP.

Then θ̂SP is locally semiparametric efficient: it achieves the semiparametric effi-

ciency bound VSP when both model (4.5) and model (4.8) are correctly specified.

But θ̂SP is, generally, not doubly robust.

Actually, both θ̂NP and θ̂SP are in the form of AIPW estimators, since they could

be represented by the solution of the following equation with h(z) = q̂0(z) or h(z) =

π̂(z)q̂0(z) respectively.

Ẽ

{
1− t

1− π̂(z)
π̂(z)Φ(x, z; θ)−

[ 1− t
1− π̂(z)

− 1
]
h(z)

}/
Ẽ(t) = 0 (4.17)

Setting h(z) ≡ 0 leads to the IPW estimator θ̂IPW. According to local semiparametric

efficiency, θ̂SP achieves the minimum variance among all the regular estimators under

correctly specified parametric PS model, when both PS model and OR model are cor-

rectly specified. However, θ̂SP is not doubly robust, but θ̂NP is, and we will refer to θ̂NP

as the AIPW estimator in the later sections of this chapter.
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4.1.3 Improved Estimation

As discussed above, the two AIPW estimators θ̂NP and θ̂SP locally achieve different

efficiency bounds, and among them θ̂NP is doubly robust. In Section 4.1.3, we will in-

troduce certain estimators which are not only doubly robust and locally nonparametric

efficient, but also intrinsically efficient: as long as PS model (4.8) is correctly specified,

the estimator will attain the smallest asymptotic variance among a class of AIPW es-

timators but with π̂(z) replaced by another fitted propensity score called augmented

propensity score defined later in (4.18).

Regression Estimators

We derive regression estimators, similar to the regression estimator of ATE in Tan

(2006), but with an important new idea. Suppose we use logistic regression to fit the

propensity score model (4.8), now let’s consider an augmented logistic propensity score

model

P (t = 1|z) = πaug(z; γ, δ, α̂0)

= expit {γTf(z) + δTq̂0(z)} , (4.18)

where expit(c) = {1 + exp(−c)}−1, α̂0 are estimates of α0 based on Eqs. (4.6) and

(4.7), and δ are unknown coefficients for additional regressors q̂0(z) based on α̂0. Let

(γ̃, δ̃) be the MLE of (γ, δ) and π̃(z) = πaug(z; γ̃, δ̃, α̂0). An important consequence

of including the additional regressors is that, by Eq. (4.10), we have, in addition to

Ẽ[{t− π̃(z)}f(z)] = 0,

Ẽ
[
{t− π̃(z)}q̂0(z)

]
= 0 (4.19)

For the augmented PS model, there may be linear redundancy in the variables, {f(z),

q̂0(z)}, in which case the regressors need to be redefined accordingly.
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We define the regression estimator θ̃reg is the solution to

Ẽ[τ̃reg(θ)] = 0 (4.20)

with

τ̃reg(θ) = τ̃init(θ)− β̃T(θ)ξ̃ with β̃(θ) = Ẽ−1[ξ̃ζ̃T]Ẽ[ξ̃τ̃T
init(θ)]

where

τ̃init(θ) =
1− t

1− π̃(z)
π̃(z)Φ(x, z; θ)

ξ̃ =

(
1− t

1− π̃(z)
− 1

)
h̃(z)

π̃(z)

ζ̃ =
1− t

1− π̃(z)

h̃(z)

π̃(z)

and h̃(z) = {h̃T
1 (z), h̃T

2 (z)}T, where we assumed the variables in h̃(z) are linearly inde-

pendent.

h̃1(z) = π̃(z)ṽ0(z) ṽ0(z) = {π̃(z), π̃(z)q̂T0 (z)}T

h̃2(z) = π̃(z)(1− π̃(z)){fT(z), q̂T0 (z)}T

The different roles of the variables in h̃(z) can be explained as follows. The variables

π̃(z)q̂0(z) are included in ṽ0(z) to achieve double robustness, as discussed later through

Eq. (4.22). Moreover, the variables in h̃2(z) are included to formally achieve intrinsic

efficiency as described later in Proposition 4.3.

It is interesting to find out that ξ̃ has mean 0 when PS model is correct. So actually

here ξ̃ serves as auxiliary variables (in the terminology of survey sampling) or control

variates (in that of Monte Carlo integration). The effect of variance reduction using

regression estimators is seen from in the following results.

Proposition 4.3 The estimator θ̃reg, which solves Ẽ[τ̃reg(θ)] = 0, has the following

properties.
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(i) θ̃reg is locally nonparametric efficient: it achieves the nonparametric efficiency

bound, VNP, when both model (4.5) and model (4.8) are correctly specified.

(ii) θ̃reg is doubly robust: it remains consistent when either model (4.5) or model (4.8)

is correctly specified.

(iii) θ̃reg is intrinsically efficient: if model (4.8) is correctly specified, then it achieves

the lowest asymptotic variance among the class of estimators of θ that are solu-

tions to k estimating equations of the form

Ẽ
[
τ̃init(θ)− bTξ̃

]
= 0 (4.21)

where b is a dim(h)× k matrix.

Previously, we mentioned that π̃(z)q̂0(z) are included in ṽ0(z) to achieve double

robustness. Here, we would like to emphasize the importance of using the augmented

propensity score π̃(z), which makes this estimator still consistent under a correctly

specified OR model but a misspecified PS model. If the OR model (4.5) is correctly

specified, the estimating Eq. (4.20) is asymptotically equivalent to the first order of

Ẽ

{
1− t

1− π̃(z)
π̃(z)[Φ(x, z; θ)− q̂0(z)] + π̃(z)q̂0(z)

}
= 0 (4.22)

which has exactly the same form as Eq. (4.16) but with π̂(z) replaced by the augmented

propensity score π̃(z). This is because we carefully design h̃(z) so that π̃(z)q̂0(z) is a

linear combination of variables in h̃(z)/π̃(z). Let’s use θ̃SP to represent the solution to

(4.22). Note that because we use augmented PS model π̃(z), we have Eq. (4.18) holds,

then (4.22) will be identical to the equation

Ẽ

{
1− t

1− π̃(z)
π̃(z)[Φ(x, z; θ)− q̂0(z)] + tq̂0(z)

}
= 0 (4.23)

whose solution θ̃NP is doubly robust as θ̂NP based on π̂(z). Therefore, θ̃reg is consistent

when OR model (4.5) is correctly specified even when the PS model (4.8) is misspecified.

Also based on the asymptotic equivalence between θ̃reg and θ̃NP when OR model
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(4.5) is correctly specified, we know θ̃reg is locally nonparametric efficient, similarly

as θ̃NP. In fact, θ̃reg is generally not locally semiparametric efficient with respect to

PS model (4.8), but locally semiparametric efficient with respect to PS model (4.18)

in the following sense: θ̃reg achieves the semiparametric efficiency bounded calculated

under model (4.18), when both model (4.5) and model (4.8) are correctly specified.

When model (4.8) holds, the efficiency bound VSP under model (4.18) coincides with

the nonparametric efficiency bound VNP, because {t−π(z)}q0(z) is just one component

of the score function of model (4.18). On the other hand, θ̃reg with π̃(z) replaced by

π̂(z) throughout would be locally semiparametric efficient with respect to original PS

model (4.8), but generally not doubly robust, similarly as θ̂SP.

Following the approach of ATE estimation in Tan (2006), we did not apply β̂(θ) =

Ẽ[ξ̃ξ̃T]−1Ẽ[ξ̃τ̃init(θ)], the classical optimal choice of b for minimizing the asymptotic

variance of (4.21). Although the estimator θ̂reg, which solves the equation Ẽ[τ̃init(θ)−

β̂T(θ)ξ̃] = 0, is asymptotically equivalent to the first order to θ̃reg when the PS model is

correctly specified, it is generally inconsistent estimator of θ, when OR model is correctly

specified and PS model may be misspecified. Nevertheless, θ̃reg remains consistent in

this case, so it is a doubly robust estimator of θ.

Due to intrinsic efficiency, when PS model is correctly specified, θ̃reg is asymptoti-

cally at least as efficient as not only θ̃NP(= θ̃SP), but also θ̃IPW solved through Eq. (4.11)

with π̂(z) replaced by π̃(z). As discussed above, θ̃NP is the solution to Eq. (4.23) con-

structed by replacing π̂(z) in Eq. (4.15) by π̃(z), and θ̃NP remains locally nonparametric

efficient and doubly robust, and falls in the class of (4.21) since 1−t
1−π̃(z) π̃(z)q̂0(z)− tq̂0(z)

is a linear combination ( 1−t
1−π̃(z) − 1)π̃(z)q̂0(z) and (t − π̃(z))q̂0(z) and both of them

are components of ξ̃. The estimator θ̃IPW based on augmented propensity score π̃(z)

directly falls in the class (4.21) with b = 0.

Generally, we can not claim θ̃reg is intrinsically efficient within the class of estimators

(4.21) specified by π̂(z) instead of π̃(z). However, θ̃reg may still often achieve efficiency

gains over θ̂NP when PS model (4.8) model is correctly specified but OR model (4.5) is

misspecified, showed clearly in our simulation studies.



86

Likelihood Estimators

The regression estimator reduce the estimation variance by introducing the control vari-

ate ξ̃. However, a common feature of regression estimator θ̃reg and the IPW estimator

θ̂IPW is that they both have the inverse weights {1− π̃(z)}−1 or {1− π̂(z)}−1 based on

propensity score and augmented propensity score respectively. While the presence of

large propensity score (close to 1) among the observations in auxiliary data will often

lead to large variance in the estimation results.

In this section, we will derive the likelihood estimators of θ which is also doubly

robust, locally nonparametrically efficient and intrinsically efficient similarly to the

regression estimator θ̃reg. But this estimator will be less sensitive to large inverse

weights than the regression estimators and IPW estimators through introducing the

extended propensity score ω(z;λ) discussed in details below.

We need two steps to derive the likelihood estimators achieving all the desirable

properties. First, similar to the approach used in ATE estimation of Tan (2010) but

with the augmented PS model π̃(z), we could obtain a locally nonparametric efficient,

intrinsically efficient, but non-doubly robust estimator by applying the empirical likeli-

hood approach proposed by Owen (2001). Alternatively, the approach of nonparametric

likelihood in Tan (2006, 2010) could be applied, which would lead to same results.

Specifically, under this exact-identification case, our approach is to maximize the

log empirical likelihood
∑n

i=1 log pi subject to the constraints

n∑
i=1

pi =1 (4.24)

n∑
i=1

piξ̃i =0 (4.25)

where pi is a nonnegative weight assigned to (ti, xi, zi) for i = 1, ..., n.

By the calculation process in Qin & Lawless (1994), we get an estimation of pi.

p̂i =
n−1

1 + λ̂Tξ̃i
(4.26)
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where λ̂ is a maximizer of the function `EL(λ) = 1
n

∑n
i=1 log(1 + λTξi).

So finally we could solve for θ through Eq. (4.27) below.

n∑
i=1

p̂i

[
1− ti

1− π̃(zi)
π̃(zi)Φ(xi, zi; θ)

]
= 0 (4.27)

And we show in Appendix, after we substitute p̂i with (4.26), Eq. (4.27) could be

represented in another form:

1

n

n∑
i=1

[
1− ti

1− ω(zi; λ̂)
π̃(zi)Φ(xi, zi; θ)

]
= 0 (4.28)

where ω(z;λ) = π̃(z) + λTh̃(z) and λ̂ is a maximizer of the function

`(λ) = Ẽ
[
t logω(z;λ) + (1− t) log{1− ω(z;λ)}

]
,

subject to ω(zi;λ) > 0 if ti = 1 and ω(zi;λ) < 1 if ti = 0 for i = 1, . . . , n. Setting the

gradient of `(λ) to zero shows that λ̂ is a solution to

Ẽ

[
t− ω(z;λ)

ω(z;λ){1− ω(z;λ)}
h̃(z)

]
= 0. (4.29)

The solution to Eq. (4.28) can be shown to be intrinsically efficient among the class of

estimators (4.21) and locally nonparametric efficient, but generally not doubly robust.

Similar to the method in Tan (2010), we introduce the following modified likelihood

estimators, to achieve double robustness but without affecting the first-order asymptotic

behavior. Here we only need to calibrate the estimation based on the auxiliary data

part, since the measurements relevant to θ are only in the auxiliary data with the

indicator t = 0.

Partition h̃ as h̃ = (h̃T
1 , h̃

T
2 )T and accordingly λ as λ = (λT

1 , λ
T
2 )T. Define λ̃ =

(λ̃T
1 , λ̂

T
2 )T, where λ̂2 are obtained from λ̂, and λ̃1 is a maximizer of the function

κ(λ1) = Ẽ

[
(1− t) log{1− ω(z;λ1, λ̂2)} − log{1− ω(z; λ̂)}

π̃(z)
− λT

1 ṽ0(z)

]
,
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subject to ω(zi;λ1, λ̂2) < 1 if ti = 0 for i = 1, . . . , n. Setting the gradient of κ(λ1) to 0

shows that λ̃1 is a solution to

Ẽ

[{
1− t

1− ω(z;λ1, λ̂2)
− 1

}
ṽ0(z)

]
= 0. (4.30)

Then we could get another estimator θ̃lik by solving the equation below

Ẽ

{
(1− t)π̃(z)Φ(x, z; θ)

1− ω(z; λ̃)

}
= 0 (4.31)

The likelihood estimator θ̃lik has several desirable properties as follows.

Proposition 4.4 Under suitable regularity conditions (see Appendix), the estimator

θ̃lik for θ

(i) If model (4.8) is correctly specified, then θ̃lik is asymptotically equivalent, to the

first order, to θ̃reg. Hence θ̃lik is intrinsically efficient among the class (4.21) and

locally nonparametric efficient, similarly as θ̃reg in Proposition 4.3.

(ii) θ̃lik is doubly robust, similarly as θ̃reg in Proposition 4.3.

Again, the double robustness of θ̃lik is contributed by two factors. The first one is

Ẽ{(1 − t)π̃(z)q̂0(z)/[1 − ω(z; λ̃1, λ̂2)]} = Ẽ{π̃(z)q̂0(z)} by Eq. (4.30) with π̃(z)q̂0(z)

included in ṽ0(z), and the other important factor is application of augmented PS model,

which brings Ẽ{π̃(z)q̂0(z)} = Ẽ{tq̂0(z)} by Eq. (4.19). We also include π̃(z) inside ṽ0(z)

to obtain Ẽ{(1− t)π̃(z)/[1− ω(z; λ̃1, λ̂2)]} = Ẽ{π̃(z)} = Ẽ(t)

Also the intrinsic efficiency makes θ̃lik superior to the doubly robust AIPW estimator

θ̃NP, the solution to (4.23), because θ̃lik is asymptotically at least as efficient as θ̃NP as

long as PS model (4.8) is correctly specified.

4.2 Two-Sample data combination

Based on improved estimators discussed above under the moment restriction models

with auxiliary data, we could apply the same method to deal with more complicated
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cases introduced by Graham et al. (2015), where we have an additional variable y

which is observed in primary data as well as z. In other words, (y, z) are measured

from primary data, and (x, z) are measured from auxiliary data. The moment restriction

model could be represented in the form of two separate parts:

E(1)
[
Φ1(y, z; θ)− Φ0(x, z; θ)

]
= 0 (4.32)

where Φ1(·) is a function of y and z only, and Φ0 is a function of x and z only. Note that

θ is identifiable only when functions could be written in this separable form. Since we

could obtain the measurements of (y, z) under the population (1) directly from primary

data, we could easily estimate E(1)Φ1(y, z; θ) by the simple average of the functions

from primary data. The difficulty of this problem is to identify E(1)Φ0(x, z; θ).

A simple example of this case is the estimation of average treatment effect on the

treated (ATT). In our notation, y represents the potential outcome of an individual

under active treatment, while x denotes the opposite potential outcome in control

group, and z here refers to the pretreatment covariates (Hahn 1998). Moreover, we

are also given two samples; one random sample from the treatment group with the

measurements of (y, z), and the other is from the control group with (x, z) recorded.

For ATT estimation, the estimation of ν1 = E(1)(y) could be easily obtained by the

observation in the primary data, while the challenge is to estimate ν0 in the equation

E(1)[x− ν0] = 0

where ν0 is actually the θ we are interested in (4.1).

Another example would the two-sample instrumental variable problem, with the

purpose of investigating the causality of some variable on the outcome when regression

estimates don’t always provide a consistent estimation due to the possibility of endoge-

nous regressors. Suppose y is the response variable with a linear relationship with x

and zc0, where x is a scalar, and zc0 is a subvector of z = (z0, z
c
0). z0 is also a scalar,

and it is the instrumental variable of x and hence not in a direct relationship with the

response variable y. The vector z are common to the two samples. For the purpose
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of distinction, let’s refer to z(1) as the z in Data (1), and z(0) as the z in Data (0).

This set-up is first studied by Klevmarken (1982). In our notation, he considered (for

convenience, we assume all the variables have been centered without loss of generality,

so no intercept is needed):

y = β0x+ βTzc0 + ε (4.33)

The interest of problem is to estimate the marginal effect of x on y. He assumes

x is endogenous and all the common variables z are exogenous and that z contains

all exogenous variables. And the relationship between x and the exogenous common

variables are

x = ϑT(z0, z
cT
0 )T + ε (4.34)

This problem is revisited by Angrist & Krueger (1992) also assuming all the common

variables are exogenous.

There exist a common assumption for Klevmarken (1982) and Angrist & Krueger

(1992): the two independent samples are drawn from the same population with x

missing in the primary data and y missing in the auxiliary data. This drawback severely

limits the application of this estimator in real problems, and we will develop some

estimators to overcome this difficulty in this chapter.

Before developing our methods, let’s go through two most classic estimators: Two-

Sample Instrumental Variable (TSIV) (Angrist & Krueger, 1992) and Two-Sample Two-

Stage Least Squares (TS2SLS) (Bjorklund & Jantti, 1997) under the setting (4.33).

4.2.1 Existing Estimators

Angrist & Krueger (1992) showed that under certain conditions, consistent estimator

still exists if two samples are drawn from the same joint distribution. Y and Z
(1)
0 are

both n1×1 vectors representing the data drawn from Data (1), and X and Z
(0)
0 are n0×1

vectors representing the data coming from Data (0). This Two-Sample Instrumental



91

Variable (TSIV) estimator could be represented as follows.

β̂0

β̂


TSIV

=
(
Z(0)TX/n0, Z(1)TZc0

(1)/n1

)−1 (
Z(1)TY/n1

)
(4.35)

There is another estimator based on the idea of imputation, generally called Two-

Sample Two-Stage Least Squares (TS2SLS) ((Bjorklund & Jantti, 1997)). It actually

could be regarded as imputation estimator.

β̂0

β̂


TS2SLS

= (Ŵ (1)TŴ (1))−1Ŵ (1)TY (4.36)

where Ŵ (1) = (X̂(1), Zc0
(1)), X̂(1) = Z(1)(Z(0)TZ(0))−1Z(0)TX.

Inoue & Solon (2010) compared these two estimators, and illustrate the relations

and differences between them very well.

4.2.2 Another Representation

Based on the linear relationship of (4.33), we could construct the following estimating

equation to solve the parameter of interest, (β0, β), using the representation form like

(4.1).

E(1)
[
(y − β0x− βTzc0)z

]
= 0 (4.37)

where E(1) is the expectation taken with respect to the joint distribution of Data (1).

Actually (4.37) could be written in the following form:

E(1)(yz)− E(1)(zzcT0 )β − E(1)(xz)β0 = 0 (4.38)
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Then the parameters of interest could be explicitly represented by:

β0

β

 =
[
E(1)(xz), E(1)(zzcT0 )

]−1
E(1)(yz) (4.39)

Since the measurements of (y, z) could be directly obtained from Data (1), it is easy

to estimate E(1)(yz) and E(1)(zzcT0 ) through directly taking the sample average of the

measurements in the primary data. This simple average estimator is always consistent

estimation of E(1)(yz) and E(1)(zzcT0 ), and it is also locally efficient, achieving the

semiparametric variance bound without any knowledge of the propensity score, which

has been discussed in the semiparametric efficiency theory of ATT estimation in Chapter

3.

Then the difficulty of the problem is to estimate E(1)(xz), because x is missing

from primary data. Comparing (4.35) and (4.36) with the original estimating function

(4.39) shows that, in order to estimate E(1)(xz), TSIV approach only combines the

measurements of x from auxiliary data and the measurements of z from primary data,

which would be inconsistent if the distribution of x differ among the two samples.

On the other hand, the TS2SLS approach utilizes the imputation of x based on the

least square estimates from the auxiliary data. This estimator is consistent when the

imputation is consistent estimates of x, but its efficiency has not been studied. And

TS2SLS estimator can be shown to be consistent when the two samples have the same

distribution, even if the imputation regression model is misspecified.

In fact, the estimation of E(1)(xz) also falls into the general framework of (4.1),

where Φ(x, z; θ) = xz − θ under this notation. Therefore, let’s apply our method

discussed in Section 4.1 to this specific problem.
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4.3 Two-Sample Instrumental Variable

As discussed in Section 4.2.2, in order to solve β0 and β, we need to estimate three

conditional expectations.

µ1 = E(yz|t = 1) µ2 = E(zzcT0 |t = 1) µ3 = E(xz|t = 1) (4.40)

Following the general framework in Section 4.1, µ1 and µ3 are both k×1 vectors, where

k is the dimension of variable z. µ2 is a k × (k − 1) matrix, since z0 is a scalar.

Because E(yz|t = 1) = E(tyz)/E(t), E(zzcT0 |t = 1) = E(tzzcT0 )/E(t) and the

measurements of (y, z) are easily obtained from the primary data indicated by t = 1,

we could easily get the estimators of µ1 and µ2.

µ̂1 = Ẽ(tyz)/Ẽ(t) (4.41)

µ̂2 = Ẽ(tzzcT0 )/Ẽ(t)

Actually, from the semiparametric theory for ATT estimation in Chapter 3, we know

µ̂1 and µ̂2 are fully robust (always consistent) estimators of µ1 and µ2. Moreover,

they are locally nonparametric efficient, achieving the semiparametric variance bound

of estimating µ1 and µ2 under nonparametric model.

For the estimation of µ3 = E(xz|t = 1), we could fit this problem into the general

framework discussed in previous sections by defining Φ(x, z; θ) = xz − θ, where θ is a

unknown k × 1 parameter with the same dimension as z. And θ defined in the general

framework is just µ3 we would like to find out.

Following the general framework, we also define propensity score model and outcome

regression model in this special case. For PS model, let’s use logistic regression defined

exactly the same as the general approach (4.9). Plug Φ(x, z; θ) = xz − θ into the IPW

estimating equation (4.11) under the general framework, then we could obtain IPW

estimator of θ(µ3) based on the fitted propensity score π̂(z):

µ̂3,IPW = θ̂IPW = Ẽ

{
(1− t)π̂(z)xz

1− π̂(z)

}/
Ẽ

{
(1− t)π̂(z)

1− π̂(z)

}
, (4.42)
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which is consistent when propensity score model (4.9) is correctly specified.

Now let’s consider building an outcome regression model for estimating E[Φ(x, z; θ)|z]

in the case when Φ(x, z; θ) = xz − θ. Since E(xz|z) could be written as E(x|z)z, we

could first build a model for E(x|z).

m0(z) = E(x|z) = Ψ{αT
0g(z)} (4.43)

where Ψ(·) is an inverse link function, g(z) is a vector of known functions of z including

1, and α0 is a vector of unknown parameters. let α̂0 be the maximum quasi-likelihood

estimate of α0, and let m̂0(z) = m0(z; α̂0). Then the fitted OR model is q̂0(z) =

m̂0(z)z− θ. Substituting this representation into (4.7), we could obtain the estimation

of θ based on the OR model:

µ̂3,OR = θ̂OR = Ẽ
{
tzm̂0(z)

}/
Ẽ(t), (4.44)

which is consistent only when outcome regression model is correctly specified.

It is interesting to notice the similarity and difference between the OR estimators

here and the TS2SLS estimators (4.36). After plugging in µ̂1, µ̂2 and µ̂3,OR, we could

obtain the estimator of β0 and β based on (4.39). The estimates computed through this

OR approach appear very similar to the TS2SLS estimates, but with a subtle difference.

The TS2SLS estimator solves the problem through the estimating equation

E(1)

[y − β0m̂0(z)− βTzc0

]m̂0(z)

zc0

 = 0 (4.45)

While our OR approach solves another similar estimating equation

E(1)

[y − β0m̂0(z)− βTzc0

]z0

zc0

 = 0 (4.46)

Therefore, the two equations generally lead to different estimators of β0 and β. When

m̂0(z) is a linear combination of z = (z0, z
c
0), the two estimating equations above are
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equivalent to each other, and will lead to the same estimations of β0 and β.

Similarly, we could derive the doubly robust AIPW estimator θ̂NP defined through

Eq. (4.15) in Proposition 4.2. By plugging Φ(x, z; θ) = xz − θ and q̂0(z) = m̂0(z)z − θ

into Eq. (4.15), we easily get the AIPW estimator of θ(µ3) here:

µ̂3,AIPW = θ̂AIPW = Ẽ

{
1− t

1− π̂(z)
π̂(z)xz −

(
1− t

1− π̂(z)
− 1

)
m̂0(z)z

}/
Ẽ(t) (4.47)

4.3.1 Regression Estimator

Follow the setup in the general case, plug in Φ(x, z; θ) = xz− θ and q̂0(z) = m̂0(z)z− θ

into the general setup. Meanwhile, in order to make the variables in h̃(z) are linearly

independent, we could do some simplification here.

Generally, ṽ0(z) is defined as {π̃(z), π̃(z)q̂T0 (z)}T. After we plug in q̂0(z), ṽ0(z) =

{π̃(z), π̃(z)m̂0(z)zT − π̃(z)θT}T. Since θ is a constant, the representation of ṽ0(z) could

be simplified to ṽ0(z) = {π̃(z), π̃(z)m̂0(z)zT}T. Similarly, we could perform the same

simplification to the q̂0(z) in the augmented PS model, since f(z) already contains the

constant term. Hence ξ̃, ζ̃ and h̃(z) are redefined as following:

ξ̃ =

(
1− t

1− π̃(z)
− 1

)
h̃(z)

π̃(z)
ζ̃ =

1− t
1− π̃(z)

h̃(z)

π̃(z)
(4.48)

with h̃(z) = (h̃T1 (z), h̃T
2 (z))T, where

h̃1(z) = π̃(z)ṽ0(z) h̃2(z) = π̃(z)(1− π̃(z)){fT(z), m̂0(z)zT}T

On the other hand, now we have

τ̃init(θ) =
1− t

1− π̃(z)
π̃(z)[xz − θ]

When we plug all the representations in this specific case, the regression estimator θ̃reg
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could be denoted by

θ̃reg =
Ẽ(η̃)− β̃TẼ(ξ̃)

Ẽ(ρ̃)− κ̃TẼ(ξ̃)
(4.49)

where

η̃ =
1− t

1− π̃(z)
π̃(z)xz ρ̃ =

1− t
1− π̃(z)

π̃(z) (4.50)

β̃ = Ẽ−1[ξ̃ζ̃T]Ẽ[ξ̃η̃T] κ̃ = Ẽ−1[ξ̃ζ̃T]Ẽ[ξ̃ρ̃T] (4.51)

Furthermore, it is easy to see that κ̃ = (1, 0, 0, · · · )T, then the denominator of (4.49)

above is equivalent to Ẽ(t). So finally the regression estimate of θ is

θ̃reg = Ẽ
(
η̃ − β̃Tξ̃

)/
Ẽ(t) (4.52)

4.3.2 Likelihood Estimator

Similar to the regression estimator in this specific setup, let’s use the new simplified

version of the constraints.

h̃(z) = (h̃T
1 (z), h̃T

2 (z))T ṽ0(z) = {π̃(z), π̃(z)m̂0(z)zT}T

h̃1(z) = π̃(z)ṽ0(z) h̃2(z) = π̃(z)(1− π̃(z)){fT(z), m̂0(z)zT}T

Following the two steps in the general case, first solve λ̂ which maximizes

`(λ) = Ẽ
[
t logω(z;λ) + (1− t) log{1− ω(z;λ)}

]
,

where ω(z;λ) = π̃(z) + λTh̃(z).

Secondly, define λ̃ = (λ̃T
1 , λ̂

T
2 )T, where λ̂2 are obtained from λ̂, and λ̃1 is a maximizer

of the function

κ(λ1) = Ẽ

[
(1− t) log{1− ω(z;λ1, λ̂2)} − log{1− ω(z; λ̂)}

π̃(z)
− λT

1 ṽ0(z)

]
,
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subject to ω(zi;λ1, λ̂2) < 1 if ti = 0 for i = 1, . . . , n. Setting the gradient of κ(λ1) to 0

shows that λ̃1 is a solution to

Ẽ

[{
1− t

1− ω(z;λ1, λ̂2)
− 1

}
ṽ0(z)

]
= 0. (4.53)

After we obtain the calibrated extended propensity score ω(z; λ̃1, λ̂2), just plug in

Φ(x, z; θ) = xz − θ into Eq. (4.31), we could solve the doubly robust likelihood es-

timator of θ of this specific problem:

θ̃lik = Ẽ

{
1− t

1− ω(z; λ̃)
π̃(z)xz

}/
Ẽ

{
1− t

1− ω(z; λ̃)
π̃(z)

}
(4.54)

= Ẽ

{
1− t

1− ω(z; λ̃)
π̃(z)xz

}/
Ẽ(t) (4.55)

where the second equality holds because of Eq. (4.53) with π̃(z) included in ṽ0(z) and

Ẽ[t− π̃(z)] = 0 by the score equation of the propensity score in logistic regression form.

4.3.3 Estimation of β0

After obtaining doubly robust, locally nonparametric efficient and intrinsically efficient

estimator of θ = E(xz|t = 1) based on the likelihood estimation or regression estimation

talked above, we could easily solve the estimating equation to get the estimator of β0,

the causal effect of x on y.

β̃0

β̃

 =
[
θ̃, µ̂2

]−1
µ̂1 (4.56)

where µ̂1 and µ̂2 are the sample average defined in (4.41), and θ̃ could be θ̃reg or θ̃lik.

Since µ̂1 and µ̂2 are doubly robust and locally nonparametric efficient estimator of

E(1)(zzcT0 ) and E(1)(yz) separately, and θ̃reg or θ̃lik is also doubly robust and locally

nonparametric efficient estimator of E(1)(xz), we could conclude that our estimator β̃0

obtained from Eq. (4.56) is also doubly robust and locally nonparametric efficient.
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4.4 Simulation Studies

In order to assess the performance of our doubly robust likelihood estimator to solve

the two-sample combination problem, we design the following simulation set-up under

the two sample instrumental variable framework and compare with the some existing

classical estimators. In total, we have five random variables, (y, x, z0, z1, z2), where y is

the response variable, z0 is instrumental variable, and zc0 = (z1, z2) are other covariants

in the regression model. Our target is to find out the marginal effect of x on y. We

have two data sets, the primary dataset, Data (1), which contains (y, z0, z1, z2), and the

auxiliary dataset, Data (0), which is constituted of (x, z0, z1, z2). When we merge the

two data sets into one, we need one indicator variable t, and let t = 1 refers to Data

(1), and t = 0 refers to Data (0).

With the purpose to check the robustness of the estimators also recover the most

general practical situations, we assume the common variables (z0, z1, z2) have different

joint distribution across the two samples. We assume (z0, z1, z2) are mutually inde-

pendent, and they follow N(1, 1) marginally in Data (1), and are N(0, 1) marginally

distributed in Data (0). According to Qin (1998, 1999), based on the density ratio in

the two samples, we could easily derive the true underlying propensity score in this

setting

P (t = 1|z) = expit {−1.5− log 10 + z0 + z1 + z2} (4.57)

Let y = 0.5x− 0.4z1 + 0.5z2 +u, where u is the error. However, x and u are correlated,

so OLS estimator will be biased. Suppose x = z0 + 0.6z1 − 0.5z2 + v, where v is also

the error term. In addition, we assume

u
v

 ∼ N
0

0

 ,

 1 0.8

0.8 1


It is easy to see that the true marginal causal effect of x on y is 0.5 .

Let’s assume w0 = exp(−0.5z0) + 5, w1 = z1/{1 + 0.1 exp(z0)} + 10, and w2 =
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Figure 4.1: Scatterplots of y and x vs. misspecified variables in two samples

exp(0.4z2) + 3. We construct OR model with the identity link Ψ(·) based on g0(z) =

(1, z0, z1, z2) or g0(z) = (1, w0, w1, w2). Based on the true data setting, they correspond

to correct and misspecified OR model separately. Similarly, we build the PS model with

the logistic link Π(·) based on f(z) = (1, z0, z1, z2) or f(z) = (1, w0, w1, w2). Based on

the true propensity score (4.57), they correspond to correct and misspecified PS model

separately.

In general, Data (1) is the primary data set with limited sample size, while Data

(0) is the auxiliary data with enough data. Here we assume the sample size of Data (1)

is n1 = 500, and the sample size of Data (0) is n0 = 5000, ten times of the size of Data

(1). We show the scatterplots of response y and the misspecified variables (w0, w1, w2)

in Data (1) in the upper windows of Figure 4.1 and scatterplots of regressor x and

the misspecified variables (w0, w1, w2) in Data (0) in the lower windows of Figure 4.1.

According to the plots, it is reasonable for us to build linear OR model to predict condi-

tional mean of x and a linear regression model for the response y using the misspecified
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Table 4.2: Estimators of β0

TSIV TS2SLS OR IPW AIPW LIK

Estimator β̂0,TSIV β̂0,TS2SLS β̃0(θ̂OR) β̃0(θ̂IPW) β̃0(θ̂NP) β̃0(θ̃lik)

variables as the regressors.

We implement the following estimators of the coefficient β0 listed in Table 4.2.

β̃0(θ̂OR), β̃0(θ̂IPW.ratio), β̃0(θ̂NP) and β̃0(θ̃lik) are the solution of β0 to Eq. (4.56) by

replacing θ̃ into θ̂OR, θ̂IPW, θ̂NP and θ̃lik defined in Section 4.3, respectively.

Table 4.3 lists the bias and standard error of different estimators to solve two-sample

instrument variable problem under four model specification scenarios, based on 1000

Monte Carlo samples of size n = 5500 with n1 = 5000 and n0 = 500. Figure 4.2 shows

the boxplots of the gap between estimators and the true value from 1000 Monte Carlo

samples. The realizations of each estimator are censored within the range of the y-axis,

and the number of realizations that lie outside the range are marked next to the lower

limits and upper limits of the frame for each estimator.

The TSIV estimator β̂0,TSIV proposed by Angrist & Krueger (1992) doesn’t show

any difference under the four different scenarios since it doesn’t depend on PS model

or OR model. From the boxplots, we can see that β̂0,TSIV has dramatic bias in all the

scenarios which is not hard to explain since the common variables z in our setting have

different distribution between two samples. For TSIV estimator (Angrist & Krueger

1992) to be consistent, different samples need to be drawn from the same population.

As a method depending on OR model, both TS2SLS estimator β̂0,TS2SLS and OR

estimator β̃0(θ̂OR) are approximately unbiased when OR model is correctly specified.

By the discussion of comparing OR estimator and TS2SLS estimator based on (4.45)

and (4.46), we know these two will generate the same estimates when OR model is

correctly specified in our setting, which agrees with the numerical results in the table

and figure. There exist difference between β̂0,TS2SLS and β̃0(θ̂OR) when OR model is

misspecified, since m̂0 is no longer a linear combination of z, but w. Both of them

become biased when OR model is misspecified.



101

Table 4.3: Estimates (Bias and Standard Error) of β0

TSIV TS2SLS OR IPW AIPW LIK

Correct PS, Correct OR 0.18859 -0.00069 -0.00070 0.01129 -0.00007 -0.00087
(0.08008) (0.04393) (0.04393) (0.09537) (0.05701) (0.05195)

Correct PS, Misspecified OR 0.18859 0.19009 0.45474 0.01129 0.00752 0.01129
(0.08008) (0.07664) (0.09285) (0.09537) (0.09559) (0.06403)

Misspecified PS, Correct OR 0.18859 -0.00069 -0.00070 0.40183 -0.00107 -0.00105
(0.08008) (0.04393) (0.04393) (1.51650) (0.15194) (0.05230)

Misspecified PS, Misspecified OR 0.18859 0.19009 0.45474 0.40183 0.13473 0.06672
(0.08008) (0.07664) (0.09285) (1.51650) (1.43629) (0.06671)

We show the numerical results of different estimators under four scenarios where the outcome regression and/or
propensity score models are misspecified. Each cell gives the bias (upper) and standard error (lower) of the
point estimators. The simulation is based on 1000 Monte Carlo samples with size n = 5500 with n1 = 500 and
n0 = 5000.
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Figure 4.2: Boxplots of Estimators
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The IPW estimator β̃0(θ̂IPW) is consistent only when PS model is correctly spec-

ified, but it has relatively large variance no matter PS model is correctly specified or

misspecified.

Both AIPW estimator β̃0(θ̂NP) and LIK estimator β̃0(θ̃lik) are doubly robust and

locally efficient, which is also reflected in our simulation: they are approximately unbi-

ased when either PS model or OR model is correctly specified, and they have similar

standard error to each other when both PS model and OR model are correctly speci-

fied, since the two estimators both achieve the semiparametric efficiency bound under

nonparametric model assumption VNP when two models are correctly specified. It is

interesting to notice that when PS model is correctly specified but OR model is mis-

specified, our LIK estimator β̃0(θ̃lik) has smaller standard error than AIPW estimator

β̃0(θ̂NP), mainly because we use θ̃lik which is intrinsically efficient for calculating β̃0(θ̃lik).

Also even when both PS model and OR model are misspecified, our LIK estimator

β̃0(θ̃lik) performs the best among all with the smallest bias and standard error.

4.5 Re-assess the Outcome of Public Housing Projects

In order to improve the quality of housing and prospects of children in poor families,

the Federal Government provide substantial housing subsidies on the public housing

projects for the low-income families since 1937. However, with the increase of the

number of household assisted, the dissatisfaction to the public housing also grow rapidly,

largely in response to the rising cost of public housing and the high rates of crime,

unemployment and school failure among public housing residents. But actually there

is little evidence on the bad impact of public housing on the kids. Currie & Yelowitz

(2000) worked on this topic to investigate the true outcome of public housing project

on the living quality and children’s education attainment, by combining information

from several data sources.

They would like to find out the effect of public housing project on three outcomes

separately (y in our notation): two direct measures of housing quality (overcrowding

and density), as well as grade repetition, a measure of children’s educational attainment.
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For convenience and simplicity of comparison, we only take “overcrowdedness” as the

outcome y we are interested in our analysis. They define the family is overcrowded if

it has fewer than three living/bedrooms. That means if the family has less than three

living/bedrooms, y = 1, otherwise y = 0. In the linear model of overcrowdedness,

they include project participation as x, as well as additional exogenous explanatory

variables as zc0 such as household head’s gender, age, race, education, marital status

and the number of boys in the family and so on.

As an initial analysis, Currie & Yelowitz estimated ordinary least squares (OLS)

regression of the effects of project participation on the outcomes, based on the data from

1992 and 1993 waves of the Survey of Income and Program Participation (SIPP). The

OLS results show that living in a project house will bring poorer outcomes. However,

it is very likely that OLS estimate is biased by selection. All the families eligible for

registering the project are the household with income at or below 50% of the area

median, so they are selected to be disadvantaged. The inferior living quality and kid’s

weak study resources accompanied with the household in the project may only have

correlation with the public housing project, but not caused by it. And there may be

some relevant explanatory variables unobserved in the data or omitted from the model.

Therefore, instrumental variable methods are necessary in digging out the true causal

effect.

The instrumental variable z0 used by Currie & Yelowitz is the indicator variable

whether the household is arranged to a larger house in a project due to the sex com-

position of the children in the household. Based on the Department of Housing and

Urban Development (HUD)’s rules, boys and girls cannot be required to share one bed-

room except very young children. As a result, the family with two boys or two girls

will be entitled to a two-bedroom apartment, while the family with a boy and a girl

will be eligible for a three-bedroom apartment. In order to focus on the effects of sex

composition and abstract from any effects due to the number of children, they restrict

the analysis to families with exactly two children under 18 in the household. On the

other hands, in order for z0, sex composition/extra room, to be a valid instrument for

x, project participation, z0 should influence x, but have no direct effect on the outcome
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variable y, overcrowding, except through x. The benefit of extra room will be very

likely to attract family with a boy and a girl to participate the housing project. And

indeed in the first stage regression of TS2SLS approach Currie & Yelowitz (2000) used,

which will be described in details below, it is shown that adding an extra bedroom

increases the likelihood of project participation by 24%. On the other hand, Currie &

Yelowitz (2000) pointed out that there is little reason to expect sex composition will

affect overcrowding, at least in the way of their definition of overcrowding. Since they

define “overcrowdedness”, y = 1 if the family has less than two bedrooms. Then for y

changing from 1 to 0, family with two kids will seek two or more bedroom instead of

one bedroom. But kids of opposite sex would not play role in this change, since the

two kids still need to share the bedroom when there are only two bedrooms in total.

Therefore, sex composition/extra room is a valid instrument for studying the effect of

project participation on overcrowding.

However, the SIPP sample is too small to be reliable for using instrumental variables

methods, so Currie & Yelowitz used the two-sample two-stage least squares (TS2SLS)

approach on two different data sets: 1990 to 1995 waves of the March Current Pop-

ulation Survey (CPS) data with sample size n0 = 21718 and 1990 Census data with

sample size n1 = 279129.

The CPS data is the auxiliary data which contains the indicator variable x of housing

project participation, the instrumental variable z0 equal to one if the family has a boy

and a girl and equal to zero if they have two boys or two girls, as well as the exogenous

explanatory variables zc0 which relate to overcrowding, such as household head’s gender,

age, race, education, marital status and the number of boys in the family, etc (all listed

in Figure 4.3). As the primary data, the Census data is composed of the outcome y

indicating overcrowding and variables (z0, z
c
0) defined exactly the same as CPS data.

Figure 4.3 shows the error bar (one standard error) of sample means of all the

common variables (z0, z
c
0) among two samples, including the instrumental variable z0

“extra” and other exogenous variables zc0. The figures in the first two rows show all the

binary variables and one categorical variables (“boys”) in two samples denoted by (1)

and (0) separately. The binary variables contain the information of household head’s
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Figure 4.3: Distribution of sample average of all the common variables between two samples

The figures in the first two rows show the error bars (one standard error) of sample averages of binary variables
and categorical variable (boys) in two samples. The third line shows the error bars (one standard error) of
sample means of continuous variables across two samples. The p-values in the titles are p-values of two-sample
proportion test for binary variables, and are p-values of two-sample t-test for continuous variables (including
boys). In the bottom of each frame, label “(1)” denotes the 1990 Census data (primary data), and label “(0)”
represents the 1990-1995 waves of March Current Population Survey (CPS) data (auxiliary data). “extra” is the
instrumental variable z0 indicating whether the family is entitled to an extra room due to the sex composition
of the children in the household.

marriage status, gender, race, education (“hdmarr”,“hdfemale”,“hdblack”, etc.). In the

third row, we show the plots of all the continuous variables. The continuous variables

include “age of household head”(“hdage”) and its squared value, “the percentage of

households in projects or other subsidized housing”(“pctprj”) and so on. For binary

variables, we compute the p-value of two-sample proportion test to test whether two

samples have equal means. And for continuous variables (including boys), we compute

the p-value of two-sample t-test to test equal means. All the p-values are listed in the

title of Figure 4.3. Except ”hdblack”, ”hded16p” and ”pctlihtc”, all the variables have

significantly different means across two samples with α = 0.05. Therefore, the two

samples are actually drawn from different populations. According to this feature, we

know TSIV estimator proposed by Angrist & Krueger (1992) will be biased based on
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Figure 4.4: Distribution of fitted augmented propensity score

Table 4.4: Estimates of public housing project’s influence on family’s overcrowdedness

TSIV Currie & Yelowitz TS2SLS OR IPW AIPW LIK

-0.2345 -0.1595 -0.1595 -0.1595 -0.2640 -0.2574 -0.1865
(0.2487) (0.0624) (0.1014) (0.1014) (0.8679) (0.9880) (0.1895)

This table lists the different estimate of the causal effect of public housing project participation to family’s
overcrowdedness. Each cell gives the point estimate of the effect (upper) and standard error (lower) of the point
estimator. The standard error is obtained based on 200 bootstrap samples.

the discussion in the simulation example.

Using the same data as Currie & Yelowitz (2000) for analysis on overcrowdedness,

we estimate the effect of project participation using the existing methods and our

proposed approach. For our likelihood estimator, we got an estimate of OR function

m̂0(z) using identity link with regressors g0(z) = (z0, z
cT
0 )T, and we also estimate a

augmented logistic PS model with regressors f(z) = (z0, z
cT
0 )T and the augmented part

m̂0(z)z. Figure 4.4 shows the distribution of estimated π̃(z) across the two samples.

Table 4.4 lists the estimates using different approaches defined exactly the same as

the ones in the simulation studies. In order to compare with the results obtained in

Currie & Yelowitz (2000), we also include the TS2SLS estimation but with the standard

errors obtained from bootstrap using 200 bootstrap samples.

We obtain exactly the same TS2SLS point estimator as Currie & Yelowitz (2000),

−0.1595, showing the households in public housing projects are less likely to be over-

crowded. But our bootstrap standard error is relatively larger than the result of Currie
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Figure 4.5: Estimates of 200 Bootstrap Samples

& Yelowitz (2000), where they claimed the standard error had been corrected to ac-

count for the fact that a predicted value of project participation is used in the OLS in

the second stage. Our bootstrap standard error of TS2SLS estimate makes the housing

project’s functioning in reducing family’s overcrowdedness slightly below 90% level of

confidence. And because of the same reasons stated in Section 4.3, OR estimate leads

to the same results as TS2SLS.

The TSIV, IPW and AIPW estimates all give quite large standard errors, which

make the point estimates lack of stability and confidence. Also being doubly robust and

locally efficient like the AIPW estimator, our LIK estimation generates much smaller

standard error than AIPW estimator. The point estimate of LIK is close to TS2SLS,

but is associated with a larger standard error such that the effect of housing project is

not statistically significant at 90% level. Currie & Yelowitz (2000) conclude that the

households in projects are less likely to suffer from overcrowded. Here the results from

our improved estimator (LIK) show that there exist less strong evidence than in Currie

& Yelowitz (2000), that public housing project could alleviate the overcrowdedness of

household.

4.6 Conclusion

Collecting and combining samples from different sources is a very frequent and conven-

tional approach used by economists. However, when we combine these samples, blind

assumption of same distribution across two samples are very likely to generate estimates
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lack of accuracy and efficiency. As a classical way to balance the discrepancy between

two samples, the weighted estimator based on various kinds of fitted propensity score

have huge variance.

In this chapter, we study estimation for moment restriction models with auxiliary

data and then a two-sample combination problem. By directly utilizing the efficient

influence function from semiparametric efficiency theory, we derive the AIPW estimator

that is doubly robust and locally efficient. Beyond that, we also propose regression

estimator and calibrated likelihood estimators that achieve greater efficiency than local

efficiency when the propensity score is correctly specified and also keep the double

robustness. Moreover, we apply this general framework to the specific two-sample

linear instrumental variable problem, and develop the estimators correspondingly. The

simulation study and the reanalysis of public housing project’s outcome, demonstrate

better performance of our proposed methods when compared to existing estimators.

4.7 Appendix

We provide the following lemma on asymptotic expansions of AIPW estimators.

Lemma 4.5 Assume that E{q2
0(z)} < ∞. If the PS model (4.8) is correctly specified,

then the following asymptotic expansion holds.

Ẽ

{
1− t

1− π̂(z)
π̂(z)[Φ(x, z; θ)− q0(z)]

}
= Ẽ

{
1− t

1− π(z)
π(z)[Φ(x, z; θ)− q0(z)]

}
+ op(n

−1/2)

Proof of Lemma 4.5.

Ẽ

{
1− t

1− π̂(z)
π̂(z)[Φ(x, z; θ)− q0(z)]

}
=Ẽ

{
1− t

1− π̂(z)
π(z)[Φ(x, z; θ)− q0(z)]

}
+ Ẽ

{
1− t

1− π̂(z)

[
π̂(z)− π(z)

][
Φ(x, z; θ)− q0(z)

]}
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When PS model (4.8) is correctly specified, the first term could be represented as

Ẽ

{
1− t

1− π̂(z)
π(z)[Φ(x, z; θ)− q0(z)]

}
=Ẽ

{
1− t

1− π(z)
π(z)[Φ(x, z; θ)− q0(z)]

}
+ E

{
1− t

[1− π(z)]2
∂π(z; γ)

∂γ
π(z)

[
Φ(x, z; θ)− q0(z)

]}
(γ̂ − γ) + op(n

−1/2)

=Ẽ

{
1− t

1− π(z)
π(z)[Φ(x, z; θ)− q0(z)]

}
+ op(n

−1/2)

The second term above disappear because the expectation equals to 0 due to E{Φ(x, z; θ)|z} =

q0(z). Similarly, the expectation term below also equals to 0

Ẽ

{
1− t

1− π̂(z)

[
π̂(z)− π(z)

][
Φ(x, z; θ)− q0(z)

]}
=E

{
1− t

1− π(z)

∂π(z; γ)

∂γ

[
Φ(x, z; θ)− q0(z)

]}
(γ̂ − γ) + op(n

−1/2)

=op(n
−1/2)

By combining these two terms, the asymptotic expansion in Lemma 4.5 holds. 2

Proofs of Propositions 4.2

First, let’s prove the local nonparametric efficiency of θ̂NP.

For convenience, we write π̂ = π̂(z), Φ(θ) = Φ(x, z; θ), q0 = q0(z). Suppose θ̂NP

converges to θ∗ such that θ̂NP−θ∗ = Op(n
−1/2). If OR model (4.5) is correctly specified,

and also by Slutsky Theorem, the estimating Eq. (4.15) is asymptotically equal to

1

p
Ẽ

{
1− t
1− π̂

π̂Φ(θ̂NP)

}
=

1

p
Ẽ

{[ 1− t
1− π̂

π̂ − t
]
q0

}
+ op(n

−1/2)

Furthermore, if PS model (4.8) is also correctly specified, the estimating equation (4.15)

is unbiased estimating equation, then θ∗ = θ0, the true parameter, and the we can

further expand the equation as

1

p
E

{
1− t
1− π̂

π̂
∂Φ(θ0)

∂θT

}
(θ̂NP−θ0) = −1

p

{
Ẽ
[ 1− t

1− π̂
π̂
[
Φ(θ0)− q0

]]
+ Ẽ(tq0)

}
+op(n

−1/2)
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And we know when PS model (4.8) is correctly specified, E
{

1−t
1−π̂ π̂

∂Φ(θ0)
∂θT

}
converges to

E
{

1−t
1−ππ

∂Φ(θ0)
∂θT

}
in probability, so based on Slutsky Theorem and Lemma 4.5, we have

θ̂NP − θ0 = −
{

∂

∂θT
E
[
Φ(θ0)|t = 1

]}−1{1

p
Ẽ
{ 1− t

1− π
π
[
Φ(θ0)− q0

]}
+

1

p
Ẽ(tq0)

}
+ op(n

−1/2)

Therefore, θ̂NP achieves the nonparametric variance bound VNP when both PS model

and OR model are correctly specified.

Second, we show the double robustness of θ̂NP. If PS model (4.8) is correctly spec-

ified,

Ẽ

[(
t− 1− t

1− π̂
π̂
)
q̂0

]
= Ẽ

[(
t− 1− t

1− π
π
)
q∗0

]
+Op(n

−1/2) = Op(n
−1/2)

so the estimating equation (4.15) could be represented as

Ẽ

{
1− t
1− π̂

π̂Φ(θ)

}/
Ẽ(t) +Op(n

−1/2) = 0

which makes θ̂NP consistent as θ̂IPW.

If OR model (4.5) is correctly specified,

Ẽ

{
1− t
1− π̂

π̂
[
Φ(θ)− q̂0

]}
= Ẽ

{
1− t

1− π∗
π∗
[
Φ(θ)− q0

]}
+Op(n

−1/2) = Op(n
−1/2)

so the estimating equation (4.15) could be represented as

Ẽ(tq̂0)
/
Ẽ(t) +Op(n

−1/2) = 0

which makes θ̂NP consistent as θ̂OR.

Third, let’s prove the local semiparametric efficiency of θ̂SP. Similarly, based on

correct specified OR model (4.5) and PS model (4.8), and using Slutsky Theorem,
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estimating equation (4.16) could be asymptotically written as

θ̂SP − θ0 = −
{

∂

∂θT
E
[
Φ(θ0)|t = 1

]}−1{1

p
Ẽ
{ 1− t

1− π
π
[
Φ(θ0)− q0

]}
+

1

p
Ẽ(π̂q0)

}
+ op(n

−1/2)

It is important to notice that

Ẽ(π̂q0) =Ẽ(πq0) + E

{
∂π(γ)

∂γT
q0

}
(γ̂ − γ) + op(n

−1/2)

=Ẽ(πq0) + Π
[
(t− π)q0|Sγ

]
+ op(n

−1/2)

Based on these two facts, θ̂SP achieves the semiparametric variance bound VSP when

both PS model and OR model are correctly specified. 2

Proof of Proposition 4.3

First, it is straightforward that β̃(θ) = β∗(θ)+op(1), where β∗(θ) = E−1[ξ∗ζ∗T]E[ξ∗τ∗init(θ)]

and τ∗init(θ), ξ
∗, ζ∗, and h∗(z) are defined as τ̃init(θ), ξ̃, ζ̃, and h̃(z) respectively but with

π†(z) and q∗0(z) in place of π̃(z) and q̂0(z) throughout.

Secondly, let’s prove the local nonparametric efficiency and double robustness of θ̃reg.

These two properties hold automatically if we could prove the asymptotic equivalence

in first order to Eq. (4.22). By design, π̃(z)q̂0(z) is a linear combination of variables in

h̃(z)/π̃(z), i.e., π̃(z)q̂0(z) = cT0 h̃(z)/π̃(z) for some constant c0. Then of course we have

π†(z)q∗0(z) = cT0h
∗(z)/π†(z). If OR model (4.5) is correctly specified, q∗0(z) = q0(z), and

then π†(z)q0(z) = cT0h
∗(z)/π†(z). Therefore, we have

β∗ = E−1

{
ξ∗

1− t
1− π†(z)

h∗T(z)

π†(z)

}
E

{
ξ∗

1− t
1− π†(z)

π†(z)q0(z)

}
= c0

Hence, the estimating equation (4.20) is asymptotically equivalent, to the first order, to

(4.22), which is equivalent to Eq. (3.1), due to the application of augmented PS model.

The solution θ̃NP to Eq. (3.1) could be proved to be doubly robust and locally non-

parametric efficient similar to the proof of θ̂NP in previous section. So θ̃reg is consistent



112

when OR model (4.5) is correctly specified, and it is locally nonparametric efficient.

On the other hand, if PS model (4.8) is correctly specified, Ẽ(ξ̃) could be regarded as

Op(n
−1/2), so θ̃reg is also consistent when only PS model (4.8) is correct. That is, θ̃reg

is doubly robust.

Third, let’s show the intrinsic efficiency of θ̃reg among the class of estimators which

are the solution to (4.21), and let’s denote them as θ̃(b). And assume α̂0 converges to

α∗0, (γ̃, δ̃) converges to (γ†, δ∗) and θ̃(b) converges to θ∗ for certain value of b. Similar to

the expansion in the proof of Proposition 4.2, by direct calculation and Slutsky theorem,

when PS model is correctly specified, actually θ̃(b) is an unbiased estimate, so θ∗ = θ0,

the true value, and (γ†, δ∗) = (γ∗, 0), π† = π, and we have

θ̃(b)− θ0 = −
{

∂

∂θT
E
[
Φ(θ0)|t = 1

]}−1{1

p
Ẽ
[ 1− t

1− π̃
π̃Φ(θ0)− bT

( 1− t
1− π̃

− 1
)h∗
π

]}
+ op(n

−1/2)

If PS model is correctly specified, we could expand the function above further with

applying Lemma 4.5 in Chapter 3 by replacing π̂ with π̃ and Y with Φ(θ0) and h =

bTh∗π, then we can get

θ̃(b)− θ0 =−
{

∂

∂θT
E
[
Φ(θ0)|t = 1

]}−1

{
1

p
Ẽ
[
τ∗init(θ0)− bTξ∗ −Π

{
τ∗init(θ0)− bTξ∗|S†(γ∗,0)

}
+ Π

{
(t− π)q0|S†(γ∗,0)

}]}
+ op(n

−1/2)

where τ∗init(θ0) = 1−t
1−ππΦ(θ0), ξ∗ = ( 1−t

1−π − 1)h
∗

π . { ∂
∂θT

E
[
Φ(θ0)|t = 1

]
}−1 is a constant,

and inside Ẽ(), τ∗init(θ0) − bTξ∗ − Π
{
τ∗init(θ0) − bTξ∗|S†(γ∗,0)

}
is uncorrelated with the

remaining term Π
{

(t − π)q0|S†(γ∗,0)

}
, which is independent of b. Moreover, the former

one can be expressed as τ∗init(θ0)− aTξ∗ for some constant vector a, since each variable

in S†(γ∗,0) is a linear combination of variables in ξ∗ by construction. By combining these

two facts, the asymptotic variance of θ̃(b) is minimized when a is equal to

var−1(ξ∗)cov {ξ∗, τ∗init(θ0)} = E−1(ξ∗ζ∗T)E(ξ∗τ∗init(θ0)) = β∗.

But to make a equal to β∗, it suffices to set b = β∗, because τ∗init(θ0) − β∗Tξ∗ is un-

correlated with S†(γ∗,0) and hence Π{τ∗init(θ0)− β∗Tξ∗|S†(γ∗,0)} = 0. If PS model (4.8) is
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correctly specified, then θ̃reg = θ̃(β∗)+op(n
−1/2). Therefore, θ̃reg is intrinsically efficient

among the class of estimators θ̃(b). 2

Derivation of empirical likelihood estimates

Similar to the derivation of empirical likelihood estimates of Appendix I in ATT pa-

per(Shu 2015), here we also have `EL(λ) could be reexpressed in another form based

on ξi = ti−π̃i
π̃i(1−π̃i) h̃i, Write π̃i = π̃(zi), h̃i = h̃(zi), and ωi = ω(zi;λ) = π̃i + λ̂Th̃i for

i = 1, . . . , n, then

`EL(λ) =
1

n

n∑
i=1

log

{
1 + λT ti − π̃i

π̃i(1− π̃i)
h̃i

}

=
1

n

n∑
i=1

{
ti log

(
1 + λT h̃i

π̃i

)
+ (1− ti) log

(
1− λT h̃i

1− π̃i

)}

=
1

n

n∑
i=1

{ti logωi + (1− ti) log(1− ωi)} −
1

n

n∑
i=1

{ti log π̃i + (1− ti) log(1− π̃i)} ,

That is l(λ) plus a constant term. Therefore, λ̂ is a maximizer of l(λ) = Ẽ[t logω(z;λ)+

(1− t) log{1− ω(z;λ)}].

And the left-handside of estimating equation (4.27) could be represented in a similar

form when we write Φi(θ) = Φ(xi, zi; θ):

n∑
i=1

p̂i

[
1− ti
1− π̃i

π̃iΦi(θ)

]
=

1

n

n∑
i=1

1− ti
1 + λ̂Tξ̃i

π̃i
1− π̃i

Φi(θ) =
1

n

n∑
i=1

1− ti
1− λ̂T h̃i

1−π̃i

π̃i
1− π̃i

Φi(θ)

=
1

n

n∑
i=1

(1− ti)
1− ω̂i

π̃iΦi(θ)

where ω̂i = ω(zi; λ̂) for i = 1, . . . , n, and so the final estimating equation is Eq. (4.28). 2

Proof of Proposition 4.4

We need only to show that if PS model (4.8) is correctly specified, then θ̃lik is asymptot-

ically equivalent, to the first order, to θ̃reg. We can prove it if the estimating equation

(4.31) is asymptotically equivalent to the first order, to Eq. (4.20).
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Similar to the asymptotic expansion of the calibrated likelihood estimator in Tan

(2010), if PS model (4.8) is correctly specified, the left-handside of Eq. (4.31) could be

written as

Ẽ

[
(1− t)π̃(z)Φ(x, z; θ)

1− ω(z; λ̃)

]
= Ẽ

[
(1− t)π̃(z)Φ(x, z; θ)

1− ω(z; λ̂)

]
+ op(n

−1/2),

by Taylor expansion for λ̃ about λ̂ and the fact that Ẽ([(1− t)/{1−ω(z; λ̂)}−1]π̃(z)) =

op(n
−1/2).

Moreover, just like the asymptotic expansion of the non-calibrated likelihood esti-

mator in Tan (2010), we could prove if PS model (4.8) is correctly specified, then λ̂

converges to 0 in probability and

Ẽ

[
(1− t)π̃(z)Φ(x, z; θ)

1− ω(z; λ̂)

]
= Ẽ

(
τ̃init(θ)− β∗T(θ)ξ̃

)
+ op(n

−1/2).

by a Taylor expansion for λ̂ about 0. Based on all the expansions above, θ̃lik attains

the desired properties. 2
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