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ABSTRACT OF THE DISSERTATION

CHARACTERIZATION OF TOPOLOGICAL

INSULATORS AND SEMICONDUCTORS

By MARYAM TAHERINEJAD

Dissertation Director:

Professor David Vanderbilt

The theoretical prediction and experimental observation of topological insulators (TIs) and

semiconductors in recent years have opened the floodgates to many interesting physical

phenomena and potential technological applications. A major part of this work is devoted to

characterization of topological insulators and semiconductors. We argue that various kinds

of TIs can be insightfully characterized by an inspection of the charge centers of the hybrid

Wannier functions, defined as the orbitals obtained by carrying out a Wannier transform

on the Bloch functions in one dimension while leaving them Bloch-like in the other two.

From this procedure, one can obtain the Wannier charge centers (WCCs) and plot them

in the two-dimensional projected Brillouin zone. We show that these WCC sheets contain

the same kind of topological information as is carried in the surface energy bands, with

the crucial advantage that the topological properties of the bulk can be deduced from bulk

calculations alone. The distinct topological behaviors of these WCC sheets in trivial, Chern,

weak, strong, crystalline TIs, and in Weyl semimetal, are first illustrated by calculating them

for simple tight-binding models. We then present the results of first-principles calculations
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of the WCC sheets in the trivial insulator Sb2Se3, the weak TI KHgSb, and the strong TI

Bi2Se3, confirming the ability of this approach to distinguish between different topological

behaviors in an advantageous way.

We also study the adiabatic pumping of the Chern-Simons axion (CSA) coupling along a

parametric loop characterized by a non-zero second Chern number C(2) from the viewpoint

of the hybrid Wannier representation. We derive a new formula for the CSA coupling,

expressing it as an integral involving Berry curvatures and potentials defined on the WCC

sheets. We show that a loop characterized by a non-zero C(2) requires a series of sheet-

touching events at which 2π quanta of Berry curvature are passed from sheet to sheet, in

such a way that e2/h units of CSA coupling are pumped by a lattice vector by the end of

the cycle. We illustrate these behaviors via explicit calculations on a model tight-binding

Hamiltonian and discuss their implications.

Finally, we study the Bloch-type domain walls in rhombohedral BaTiO3. Ferroelectric

domain walls (FDWs) are usually considered to be of Ising type, but there have been

suggestions in recent years that Bloch-type FDWs are also possible in some cases, e.g., in

the rhombohedral phase of BaTiO3. The mechanically compatible and electrically neutral

FDWs in rhombohedral BaTiO3 are of 71◦, 109◦, and 180◦ type. We have investigated these

FDWs based both on first-principles calculations and on a Ginzburg-Landau-Devonshire

(GLD) model. The results from both approaches confirm the Ising nature of the 71◦ FDW

and the Bloch nature of the 180◦ FDW, and predict both Ising-type and Bloch-type FDWs

are possible for the 109◦ case. In view of the relatively small rhombohedral strain in BaTiO3,

the results can be explained reasonably well by regarding a Bloch FDW as composed of

a pair of smaller-angle Ising FDWs, and by comparing the sum of the energies of these

constituents with an Ising-type solution. A reduction by 40% in the parameters describing

the gradient term in the GLD model brings it into better agreement with the first-principles

results for detailed properties such as the energies and widths of the FDWs.
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Chapter 1

Introduction

The theoretical prediction and experimental observation of TIs and semiconductors in recent

years have opened the floodgates to many interesting physical phenomena and potential

technological applications. Among many interesting characteristics, these classes of material

have unique transport properties which are protected against disorder and impurity by the

non-trivial topology of their ground state wave function.

Many different phases of matter with non-trivial topology have been predicted and clas-

sified since the work of Thouless et al. [9] explaining the topological nature of the integer

quantum Hall effect; however, for many of these phases a material realization still remains

to be found. Moreover, the small bulk energy gap in the current topological insulators

makes them not practical for many applications in room temperature. Therefore, study of

materials or configurations which can realize the predicted topological phases and enhance

their properties for technological applications is very important. A major theme of this dis-

sertation is development of a universal framework which can be the basis for understanding

and efficient computational studies of topological properties of materials.

TIs are gapped in the bulk, like trivial insulators, but they are required to have robust

metallic states on the edge (2D) or surface (3D). These unique surface states provide the

strongest experimentally accessible signature of insulators with non-trivial topology. How-

ever, for reasons of both computational efficiency and theoretical clarity, it is preferable

to be able to calculate and understand the topological phases of materials purely from

bulk calculations. The method introduced in this work relies on the use of hybrid Wannier

functions, which are localized in one direction and periodic in the remaining directions.
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The charge centers of these hybrid Wannier functions can be plotted as sheets over two-

dimensional projected Brillouin zone and contain the same kind of topological information

as is carried in the surface energy bands. This method is not limited to crystals with special

symmetries and has the advantage of being computationally efficient.

In Chapter 2, I introduce the basic ideas and methods used in rest of this dissertation.

Different representations of crystalline materials, such as Bloch and Wannier functions, are

introduced in this chapter, as well as two methods of doing electronic structure calcula-

tions: the tight-binding approximation and density functional theory. Geometrical phases

in matter, such as Berry potential and Berry curvature, are also reviewed in this chapter.

The bulk-boundary correspondence between the surface energy bands and WCC spec-

trum is established in Chapter 3, and it is shown that the Wannier spectrum contain the

same kind of topological information as is carried in the surface energy bands, with the

crucial advantage that the topological properties of the bulk can be deduced from bulk

calculations alone.

In Chapter 4, the distinct topological behaviour of WCC is illustrated for various 3D

topological insulating and semiconducting phases using tight-binding models. Then the

results of first-principles calculations of the WCC sheets in materials of various topological

classes are presented, confirming the ability of this approach to distinguish between different

topological behaviors in an advantageous way.

In Chapter 5, we generalize the method to an adiabatic loop in four-dimensional para-

metric space. One of the main results of this work is presented in this chapter, where a new

formula for the Chern-Simons axion coupling in the hybrid Wannier function representation

is derived in terms of a Berry curvature dipole term and a non-topological term.

The subject studied in Chapter 6 is ferroelectric domain walls in BaTiO3. This material

is a trivial insulator, but in a similar way to the WCC spectrum calculations, we study

the evolution of polarization vector across each domain wall by calculating the polarization

components in layers normal to the wall.
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Chapter 2

Representations of Crystalline Solids

Crystalline solids are composed of mutually interacting electrons and nuclei. The exact

description of these systems requires considering the full dynamics of all particles. However,

the big difference in masses of electrons and nuclei makes it possible to ignore the influence of

nuclear motions on electrons and separate the description of their motions. The occasional

break down of this assumption leads to interesting phenomena like superconductivity, but

many physical properties of real materials can be described by considering electrons in a

rigid, infinite, periodic lattice. An immediate consequence of this assumption is that the

electron wave functions follow the symmetries of the lattice. After making the single-particle

approximation (see Sec. 2.1), the lattice translational symmetry leads to Bloch’s theorem

which states the wave function of electrons in a lattice consists of a free wave and a lattice-

periodic part. In presence of defects, impurities, or external fields this theorem is not valid

any more, but the complete set of Bloch functions provide a natural basis in which the

electron wave function can be expanded.

An alternative representation, which has proven to be convenient for many purposes,

is the set of localised Wannier functions (WFs) which are related to the Bloch functions

by a unitary transformation. The WFs play an important role in the modern theory of

polarization and topological classifications of insulators, which are the subject of Chapters 3,

4, and 5. They also provide an insight into the nature of chemical bonding, and have been

broadly used to construct model Hamiltonians for different systems. For many practical

purposes the physical properties of the material can be described by considering a smaller

set of orbital functions. This method, which is known as the tight-binding approximation,
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is explained in Sec. 2.5 after a review of Bloch and Wannier representations in Sections 2.3

and 2.4. A brief review of density functional theory, which is the basis of a very successful

computational method for studying the ground state properties of materials, is given in

Sec. 2.2.

2.1 The One-electron Approximation

The total non-relativistic Hamiltonian for a system of mutually interacting electrons and

nuclei includes the kinetic energy of all particles and Coulomb terms describing electron-

electron, nucleus-nucleus, and electron-nucleus interactions. Considering the large difference

between the electron and nuclear masses, the first step to simplify this problem is ignoring

the vibrations of nuclei. In this simple but drastic approximation, the nuclear positions

become classical variables and we can sum their effect on the electrons dynamics in an

effective periodic potential Vnucl. Then the many-electron wave function of N electrons

in the presence of nuclei in fixed positions is described by an effective Hamiltonian which

includes the kinetic energy of electrons plus the potential energy due to the nuclei

HeffΨ(r1σ1, r2σ2, ..., rNσN ) = EΨ(r1σ1, r2σ2, ..., rNσN ), (2.1)

where riσi are the position and spin of i-th electron, and Heff can be written as

Heff =

N∑
i

[ p2
i

2m
+ Vnucl(ri)

]
+

1

2

N∑
i 6=j

e2

rij
. (2.2)

Here pi and ri are the electron momenta and coordinates, and e and m denote the electron

charge and mass. The last term on the right hand side of Eq. 2.2 describes the electron-

electron Coulomb interactions, with the exclusion of the self-interaction terms i = j.

A pioneering approach to solve this problems is Hartree-Fock theory, where the total

N -electron ground-state wave function is represented by an antisymmetrized product of N
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one-electron wave functions ψi(riσi)

Ψ(r1σ1, r2σ2, ..., rNσN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1σ1) ψ1(r2σ2) · · · ψ1(rNσN )

ψ2(r1σ1) ψ2(r2σ2) · · · ψ2(rNσN )

...
...

...
...

ψN (r1σ1) ψN (r2σ2) · · · ψN (rNσN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3)

Now the original many-body problem can be replaced by a set of single particle eigenvalue

problems

Hψi(r) = εiψi(r). (2.4)

The effect of the electron spin is reflected in the antisymmetric property of the many-

electron wavefunction, and although the one-electron wave functions carry a spin index, we

can drop this index for the rest of this chapter. The spin index needs to be restored when

spin-orbit interaction is present.

In the mean field approximation it is assumed that each electron moves in the effective

field generated by the Coulomb potential of all the other N − 1 electrons. Then the single

electron Hamiltonian can be written as

H =
p2

2m
+ Veff(r). (2.5)

where the effective potential Veff is calculated from the electron charge density given by

one-electron wave functions, and is determined in a self-consistent way.

2.2 Density Functional Theory

In 1964 Hohenberg and Kohn[2] proved that the properties of the many-electron system can

be uniquely determined from the one-body electron density

n(r) = N

∫
Ψ∗(rσ1, r2σ2, ..., rNσN )Ψ(r1σ1, r2σ2, ..., rNσN )dr2...drN , (2.6)
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obtained from the many-body ground state Ψ. This is the basis of density functional theory

(DFT), which provides an approximate way to study the ground-state properties of many-

electron systems by constructing a one-electron problem with an effective potential.

Consider a system of N electrons, described by the Hamiltonian in Eq. 2.1. For conve-

nience let us write this Hamiltonian in terms of an internal part Hint which includes the

kinetic energy of the electrons plus electron-electron Coulomb interactions, and an external

part Vext which includes the electronic-nuclear interactions

Hint = T + Vee =
N∑
i

p2
i

2m
+

1

2

N∑
i 6=j

e2

rij
(2.7)

Vext =

N∑
i

vext(ri), (2.8)

where vext(r) ≡ Vnucl(r). The first Hohenberg-Kohn theorem states that there is a one-

to-one correspondence between the external potential vext and the ground state electron

density n(r), where Hint is taken as fixed. In other words there exists a functional that

links n(r) and vext

n = F [vext]. (2.9)

The second Hohenberg-Kohn theorem ensures that there exists a unique energy functional

E(HK)[n(r), vext] that is minimal at the exact ground-state density, and its minimum gives

the exact ground-state energy of the many-electron system

E(HK)[n(r), vext] = T [n(r)] + Vee[n(r)] +

∫
vext(r)n(r)dr. (2.10)

The functional F [n(r)] = T [n(r)] + Vee[n(r)] is universal and does not depend on vext;

however, the exact form of the functional F [n(r)] is not known and it must be approximated.

An iterative solution scheme introduced by Kohn and Sham [3] has been widely used to

construct a good approximate mean-field solution using DFT. This approach is based on
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finding a noninteracting many-body system with the same ground state as the interacting

one.

The ground state of the noninteracting systems is described via Eq. 2.3 as Slater de-

terminant of single-particle orbitals ψi. Then the ground state electron density is given

by

n(r) =
∑
i

|ψi(r)|2, (2.11)

where the sum is over occupied orbitals. Now the energy functional in Eq. 2.10 can be

written as

E[n(r)] = − h2

2m

∑
i

〈ψi|∇2|ψi〉+

∫ ∫
n(r)n(r′)

|r− r′|
drdr′

+

∫
vext(r)n(r)dr + EXC[n], (2.12)

in terms of noninteracting orbitals, where the effect of interactions is captured in exchange-

correlation functional EXC[n]. Minimizing this energy functional with respect to ψi leads

to the Kohn-Sham equations for the single particle orbitals

[
− h2

2m
∇+ Veff

]
ψi = εiψi, (2.13)

where

Veff =

∫
n(r′)

|r− r′|
dr′ + vext(r) + VXC. (2.14)

The one-particle potential

VXC =
δEXC

δn(r)
(2.15)

is the variational functional derivative of exchange-correlation functional. Kohn and Sham

showed that if the exact exchange-correlation functional EXC is known and if the one-particle

potential VXC can be computed, then an iterative self consistent solution of Eq. 2.13 would

yield the exact ground state and total energy [3]. However, since the exact EXC is not
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known different approximation to the exchange-correlation functional have been developed

for practical calculations.

In Chapter 4 we employ this approach to study topological properties of different band

insulators. Strong electron-electron correlations do not play a significant role in the prop-

erties of the materials we studied and the exchange-correlation functional works reasonably

well for these types of materials.

2.3 Bloch Band Theory

The one-electron wave functions ψ(r) must transform under the symmetries of the crystal,

which in general include rotational (both proper and improper) and translational elements.

The translation symmetry subgroup is Abelian, which means its irreducible representations

are one-dimensional. This leads to the Bloch theorem, which is a fundamental result in the

theory of solids.

Let T (Ri) denote a lattice translation operator. The Hamiltonian H that describes the

one-electron wave functions must commute with this operator,

[H,T (Ri)] = 0. (2.16)

The translation operators also commute with each other

[T (Ri), T (Rj)] = 0, (2.17)

which means the one-electron wave functions ψ(r) must be simultaneous eigenfunctions of

the Hamiltonian and of all the lattice translations. The norm of wave function will be

unchanged by lattice translation

|ψ(r + Ri)| = |ψ(r)|, (2.18)
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thus

T (Ri)ψ(r) = ψ(r + Ri) = λiψ(r) (2.19)

where λi = exp(iθi) is a complex number of modulus unity. The phase θi is real and can

be determined by considering two translation operators, say T (Ri) and T (Rj) acting in

succession. The result will be a single translation T (Ri + Rj), which means θi is linearly

related to the displacement Ri. The eigenvalue λi is unity for a translation of zero length,

therefore

θi = k ·Ri. (2.20)

The wave vector k is the same for all lattice translation operations and characterizes the

wave function of an electron in a crystal. Using these results, Bloch’s theorem can be

expressed as

ψ(k, r + Ri) = exp(ik ·Ri)ψ(k, r). (2.21)

Let ai denote the lattice vectors which define the unit cell in the periodic crystal. Any

lattice translation vector can be expressed in terms of these lattice basis vectors

Rn =
d∑
i=1

niai, (2.22)

where d is the dimensions of the lattice and ni are integers. The Fourier transform of any

wave function defined over the periodic lattice is represented in reciprocal space, which is

the counterpart of the crystalline lattice in momentum space. The reciprocal lattice basis

vectors bi are defines as

ai · bj = 2πδij , (2.23)

and the reciprocal lattice unit cell defined by these basis vectors is called Brillouin zone
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(BZ). Any reciprocal lattice vector K can be expressed in terms of these basis vectors

K =

d∑
i=1

mibi, (2.24)

where mi are integers. We adopt the convention that the domain of k is restricted to the

first BZ, since for any reciprocal lattice vector K

ψ(k, r) = ψ(k + K, r). (2.25)

There can be more than one wave function for any given wave vector k. These different

solutions are labeled by index n and satisfy the eigenvalue equation

Hψn(k, r) = En(k)ψn(k, r). (2.26)

The function En(k) is referred to as the energy band function and the wave function ψn(k, r),

labelled by a crystal momentum k and a band index n, is called a Bloch function.

The electron wave function can also be described by the function un(k, r) defined by the

relation

ψn(k, r) = exp(ik · r)un(k, r). (2.27)

From Bloch’s theorem

ψn(k, r + Ri) = exp[ik · (r + Ri)]un(k, r + Ri)

= exp(ik ·Ri)[exp(ik · r)un(k, r + Ri), (2.28)

which shows the function un(k, r), known as cell-periodic Bloch function, must be unchanged

by any lattice translation

un(k, r + Ri) = un(k, r). (2.29)
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It is easy to show that the Bloch functions form an orthogonal complete set,

∫
ψ∗n(k, r)ψm(q, r)dr =

(2π)3

V
δnmδ(k− q), (2.30)

where V is the real-space primitive cell volume. In the presence of impurities, defects or

external fields the assumption of a perfect periodic lattice is not valid. However, the set of

Bloch functions defined in the perfect crystal is a natural basis to expand the wave function

of an electron.

2.4 Wannier Representation

The electronic ground state in periodic crystalline solids can alternatively be represented

by the set of localized orbitals or WFs, which are defined in relation to the Bloch functions

by a unitary transformation:

|Wn(R)〉 =
V

(2π)3

∫
BZ
dk eik·(r−R)|unk〉. (2.31)

Here R is a lattice vector and unk is a periodic Bloch function. For the rest of this document

we use this notation for the Bloch functions. It is easily shown that the set of WFs form

an orthogonal complete set, and although they are not eigenstates of the Hamiltonian, they

provide a valid description of the band subspace.

2.4.1 Gauge Freedom

The WFs are not unique, as there is a gauge freedom in the definition of Bloch functions

ψnk(r). The physical description of the system is intact under a k-dependent phase twist

|ũnk〉 = eiφn(k)|unk〉.
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Here φn(k) can be any real function that satisfies the periodic condition

φn(k + K) = φn(k) + K ·R, (2.32)

where K and R are reciprocal and real-space lattice vectors respectively, and K · R is a

integer multiple of 2π. In general, WFs corresponding to Bloch functions with different

choices of k-dependent phase φn(k) can have different shapes and spreads.

In the case of multiple occupied bands, there is also a more general U(N) gauge freedom

in choosing the N representatives of the occupied space at each k-point,

|ũnk〉 =
N∑
m=1

Umn(k)|umk〉. (2.33)

Here |umk〉 belong to a manifold of N occupied bands which are separated from any other

lower or upper bands, but may have degeneracies and crossings among themselves. The

presence of degeneracy among theseN occupied bands means that the immediate eigenstates

of H do not define a smooth gauge in Eq. 2.33, and will not produce well-localized WFs in

general. In this regard, choosing a unitary transformation U(N) that defines a set of Bloch

functions with a smooth gauge is important for constructing well-localized WFs. Ideally,

however, we would like to have a procedure to define maximally localized WFs.

2.4.2 Maximally Localized Wannier Functions

Various approaches have been developed to construct localized WFs by removing the non-

analyticities at the points of degeneracy in the BZ by symmetry considerations [4, 5], or

employing projection methods on the occupies subspace spanned by the Bloch orbitals [6, 7].

A very general approach was introduced by Marzari and Vanderbilt [8] by introducing the

localization functional

Ω =
∑
n

[〈Wn(0)|r2|Wn(0)〉 − 〈Wn(0)|r|Wn(0)〉2] =
∑
n

[〈r2〉 − r̄2]. (2.34)
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This functional measures the sum of quadratic spreads of the N WFs in the home unit

cell around their centers, and it is minimized with respect to the unitary transformation

Umn(k).

Matrix elements of the position operator between WFs can be written as

〈Wn(R)|r|Wm(0)〉 = i
V

(2π)3

∫
dkek·R〈unk|∇k|umk〉 (2.35)

and

〈Wn(R)|r2|Wm(0)〉 = i
V

(2π)3

∫
dkek·R〈unk|∇2

k|umk〉. (2.36)

The gradient of any smooth function f(k) can be expressed by finite differences as

∇f(k) =
∑
b

ωbb[f(k + b)− f(k)] +O(b2), (2.37)

where b is a vector connecting a k-point to one of its neighbors and ωb is a geometric

weighting factor that depends on the number nearest neighbor k-points and their geometry.

In a similar way,

|∇f(k)|2 =
∑
b

ωb[f(k + b)− f(k)]2. (2.38)

Now the only information needed to calculate the reciprocal space derivatives of Eqs. 2.37

and 2.38 is encoded in the overlap matrix elements

Mk,b
mn = 〈umk|un,k+b〉. (2.39)

Using these matrix elements the localization functional can be written as sum of a gauge-

invariant term ΩI and two gauge-dependent terms ΩOD and ΩD

ΩI =
1

Ncell

∑
k,b

ωb(N −
∑
mn

|Mk,b
mn |2), (2.40)



14

ΩOD =
1

Ncell

∑
k,b

ωb
∑
m 6=n
|Mk,b

mn |2, (2.41)

ΩD =
1

Ncell

∑
k,b

ωb
∑
n

(−Im lnMk,b
mn − b · r̄n), (2.42)

where Ncell is the number of real-space cells in the system, or equivalently number of k-

points in the BZ. From these, the change in Ω with respect to a small change in Umn(k)

can be calculated as a function of Mk,b
mn to minimize the localization functional. In 1D there

is a unique gauge that minimizes the spread functional of the WFs [8]. These maximally

localized WFs are eigenfunctions of the band-projected position operator PzP , where P =∑
nk |ψnk〉〈ψnk| is the projection operator onto the occupied bands. In 2D and 3D, on

the other hand, the WFs cannot be maximally localized in all directions simultaneously,

because the operators PxP , PyP , and PzP do not commute and it is not possible to

choose the WFs to be simultaneous eigenfunctions of all three. Instead, a compromise can

be achieved through an iterative procedure that localizes the WFs in all directions as much

as possible [8].

2.5 Tight-binding Approximation

In the tight-binding approximation the crystal states are expanded in terms of the atomic

orbitals of the composing atoms. Let φµi(r−R− tµ) indicate an atomic orbital in the unit

cell R, where tµ is the location of atom µ in home unit cell. Bloch-like basis functions can

be constructed as

χk
i (r) =

∑
R

eik·(R+tµ)φµi(r−R− tµ). (2.43)

The crystal wave function of energy band n is then expanded as

ψnk =
∑
i

Cnki χk
i . (2.44)
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From the eigenvalue Eq. 2.26 and the application of the variational principle we can calculate

the crystal eigenvalues and eigenfunctions from the determinental compatibility equation

‖ 〈χk
i |H|χk

j 〉 − E〈χk
i |χk

j 〉 ‖= 0. (2.45)

The matrix elements of the Hamiltonian

Hk
ij = 〈χk

i |H|χk
j 〉, (2.46)

can be evaluated numerically. However, the tight-binding method is frequently used in a

semi-empirical way in which the basis orbitals are considered to be orthonormal

〈φµi(r−R− tµ)|φνj(r−R′ − tν)〉 = δijδRR′δµν. (2.47)

In this basis Eq. 2.48 turns into

‖ 〈χk
i |H|χk

j 〉 − Eδij ‖= 0 (2.48)

which can be solved straightforwardly to find energy eigenvalues and eigenvectors. This

method will be used in Chapter 4 to describe various topological insulating and semicon-

ducting models.

2.6 Geometrical Phases in Matter

Until recently, the main approach for discovering and classifying distinctive phases of matter

was based on the underlying symmetries of the system as suggested by Landau. However,

new phases of matter have been realized in recent decades which cannot be classified by

their symmetries alone. This had led to a new classification criteria based on the topological

properties of the ground state wave function. The possible topological phases that can be
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realized in a material depend on its symmetries and dimensionality, but one needs to know

the topological invariants of the system for distinguishing individual topological classes

within each symmetry group.

In 2D insulators with broken time reversal symmetry an integer known as the first Chern

number C(1) specifies the topological class of the system. This topological invariant can

be expressed in terms of Berry connection Amn,i or Berry curvature Ωmn,ij of the periodic

Bloch functions defined as

Amn,i = i〈umk|∂iunk〉, (2.49)

and

Ωmn,ij = ∂aAmn,i − ∂bAmn,j − i[Ai, Aj ]mn

= i〈∂iumk|∂junk〉 − i〈∂jumk|∂iunk〉, (2.50)

where ∂i = ∂/∂ki refers to partial derivative with respect to the wave vector ki. The phase

evolution of the state |unk〉 over a closed loop C in the BZ is known as the Berry phase and

is given by

φn =

∮
C

An · dk, (2.51)

or equivalently

φn =

∮
S

Ωnn · dSc, (2.52)

where Sc is the area defined by the closed loop C. In general, integral of the Berry curvature

on a closed surface is guaranteed to be a 2π multiple of an integer. This integer is the first

Chern number, which we will denote by C for simplicity. The BZ for any 2D lattice-

periodical Hamiltonian is a closed surface, therefore

Cn =
1

2π

∮
BZ

Ωnn · dSc, (2.53)
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where Cn is the Chern number associated with band n. If the system has multiple occupied

bands then the sum of Chern numbers associated with occupied bands will be topologically

invariant. In other words, if the system is evolved adiabatically, as long as the insulating

gap of the insulator remains open the total Chern number associated with it remains intact.

An insulator with nonzero Chern number behaves like an integer quantum Hall system

but without any external magnetic field; such a system is called an quantum anomalous

Hall (QAH) or Chern insulator. Thouless et al. [9] showed that this topological invariant

determines the quantized Hall conductivity in a 2D insulators via

σxy = C
e2

h
. (2.54)

In a 3D insulator with broken time reversal symmetry, a Chern number can be calcu-

lated for each 2D projected BZ, e.g. kx-ky plane. Therefore, the topological phase of a

3D insulator is specified by a set of three Chern numbers in the absence of time reversal

symmetry.

In 2D time reversal invariant insulators the Chern number vanishes, but there is an

additional topological invariant with two possible values, ν = 0 or 1. An insulator with

ν = 1 is known as a 2D Z2 insulator or a quantum spin Hall insulator. In 3D, a set of

four Z2 invariants determines the topological phase of time reversal invariant insulators.

A Wannier representation is not possible in a Chern insulator, but Hybrid WFs which are

localized in only one direction are well defined in all dimensions and topological classes. We

introduce this representation in chapter 3 and show how topological properties of different

insulators can be visualized in this representation.
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Chapter 3

Topological Aspects of Wannier Charge Centers

Since the work of Thouless et al. [9] relating the Chern number to the integer quantum

Hall effect, there has been great interest in insulators with topologically non-trivial band

structures. In time-reversal invariant insulators, the first Chern number vanishes, but topo-

logically non-trivial band structures can still emerge in systems with strong spin-orbit cou-

pling [1, 10–12] or crystal point group symmetries [13]. These topological phases are clas-

sified by a series of Z2 invariants. In two dimensions, a single Z2 invariant distinguishes

a quantum spin Hall system from a trivial 2D insulator, while in three dimensions, a to-

tal of four Z2 invariants [ν0, ν1, ν2, ν3] are needed to classify the trivial, weak, and strong

topological phases which can emerge. The topologically non-trivial phases are gapped in

the bulk, like trivial insulators, but they are required to have robust metallic states on

the edge (2D) or surface (3D). These surface states provide the strongest experimentally

accessible signature of insulators with non-trivial topology [14–21]. However, for reasons of

both computational efficiency and theoretical clarity, it is preferable to be able to calculate

and understand the topological phases of insulators purely from bulk calculations.

There have been several previously proposed methods for calculating Z2 invariants. In

principle, it is possible to calculate them by integrating the Berry connection on half of the

Brillouin zone (BZ) [22], but this method requires fixing the gauge of the wavefunctions,

which is challenging in numerical calculations. In the special case of a centrosymmetric

crystal, the Z2 invariants can be calculated simply by considering the parity eigenvalues of

the occupied electronic states at the time-reversal-invariant (TRI) momenta. The concepts

discussed in this chapter are closely related to a recently developed method which is both
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general (not limited to crystals with special symmetries) and computationally efficient [23,

24]. This method relies on the use of hybrid WFs, which provide an alternative to the

Bloch representation of the occupied band subspace. By following the evolution of hybrid

WFs around a closed loop in the BZ, we can describe the adiabatic, unitary evolution of

the occupied Bloch bands. The partner switching of these Wannier charge centers (WCC)

around a closed loop, which describes a pumping of “time-reversal polarization,” has been

employed to calculate the Z2 invariants in TRI insulators [23–26].

In this Chapter, we focus on the topological properties of WCCs in 3D materials, which

are functions of momentum k in two dimensions and can be plotted as sheets over the 2D BZ.

Although a knowledge of the behavior of the WCCs on the TRI planes in the BZ is already

sufficient for determining the topological phase of the insulator, the more general behavior

of WCCs sheets in different topological phases, including the crystalline topological phase,

can provide new insights into the origin and properties of these phases. In addition, unlike

the surface states, the behavior of these sheets is independent of surface termination and

depends purely on the bulk wavefunctions, allowing for a simpler picture of many properties.

In Sec. 3.1 we define the WCC sheets and explain how to construct them. In Sec. 3.2 we

discuss the symmetry and topological properties of WCC sheets and establish the bulk-

boundary correspondence between the surface energy bands and bulk WCCs. In Sec. 3.3

we review the modern theory of polarization briefly and show the connection between WCCs

and the Berry phases of Bloch functions as they are carried around the BZ. We also explain

how electric polarization can be calculated in insulators with nontrivial topology.

3.1 Wannier Charge Centers

Insulators for which the occupied bands are characterized by a nonzero Chern number

are known as “Chern” or QAH insulators. In this case, it is well-known that there is a

topological obstruction to the construction of exponentially localized WFs [27, 28]. The

vanishing of the Chern number in TRI insulators guarantees the existence of localized
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WFs, but special care needs to be taken in choosing the gauge for Z2-odd insulators, as

the localized WFs can only be constructed in a gauge which does not let them come in

time-reversal pairs [29].

The fact that there is never a topological obstruction to the construction of WFs in 1D

suggests that a convenient strategy for higher dimensions may be to construct “hybrid WFs”

that are Wannier-like in 1D and Bloch-like in the remaining dimensions [8, 30]. Choosing

the ẑ direction for Wannierization in 3D, these take the form

|Wnlz(kx, ky)〉 =
1

2π

∫
dkze

ik·(r−lzcẑ)|un,k〉 (3.1)

where lz is a layer index and c is the lattice constant along ẑ. Since there is a unique

construction of maximally localized WFs in 1D, these are easily constructed at each (kx, ky),

regardless of whether the system is a normal insulator or a Chern, Z2, crystalline, or any

other kind of TI. The charge center of these hybrid WFs along the localized direction z̄n

is defined as the expectation value z̄n(kx, ky) = 〈Wn0|ẑ|Wn0〉 of the position operator ẑ

along this direction for the WF in the home unit cell R = 0. These WCCs, which are

eigenvalues of the PzP operator, have been useful in defining the polarization in 2D Chern

insulators [31], understanding polarization in 3D layered insulators [32], and calculating

the Z2 topological invariants in TRI insulators [23]. Their sum over occupied bands also

gives the “polarization structure” describing the Berry-phase contribution to the electeric

polarization as a function of k in the 2D BZ [33].

It is well known that the nontrivial topology of Chern, Z2, and crystalline TIs is reflected

in a corresponding nontrivial connectivity of the surface energy bands. While kz is clearly

no longer a good quantum number for a surface normal to ẑ, kx and ky are still conserved,

so that if surface states appear in the bulk energy gap, their energy dispersions εn(kx, ky)

are good functions of momenta in the surface BZ. In a similar way, the WCCs z̄n(kx, ky) can

be plotted over the same 2D BZ, where the Wannierized real-space direction plays a role
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analogous to the surface normal. Unlike the surface states εn(kx, ky), the WCCs z̄n(kx, ky)

depend only on bulk properties. However, they still carry the same kind of topological

information as is contained in the surface states, as will be explained in Sec. 3.2.

The WCCs can be obtained from a parallel-transport-based construction [8, 32] in a

straightforward way, as explained next.

3.1.1 Construction

A cell-periodic Bloch state |uk〉 belonging to an isolated band can be parallel transported

to |uk+b〉 by choosing the phase of the latter such that the overlap 〈uk|uk+b〉 is real and

positive, so that the change in the state is orthogonal to the state itself. If this is carried out

repeatedly for a k-point string extending along the kz direction by a reciprocal lattice vector

G‖ ẑ, then once the phase of the initial |uk0〉 is chosen, the phase of each subsequent state,

including the final |uk0+G〉, is determined by this parallel-transport procedure. The phase

of the last state on the string is then compared with the one |ũk0+G〉 obtained by applying

the periodic gauge condition |ψk0+G〉 = |ψk0〉, i.e., ũk0+G(r) = exp(−iG ·r)uk0(r), and the

phase mismatch U = 〈uk0+G|ũk0+G〉 is computed. For a k-point string at k⊥ in the 2D BZ,

this yields the Berry phase φ(k⊥) = −Im lnU(k⊥) and the WCC z̄(k⊥) = (c/2π)φ(k⊥),

where c is the lattice constant along ẑ. If the parallel-transported states themselves are

not needed, the same result can be obtained more straightforwardly by computing φ =

−Im ln
∏
〈uk|uk+b〉, where the product is carried out along the string and the phases are

chosen arbitrarily except for the periodic gauge condition that fixes the phase of the first

and last k-points in relation to each other.

In the multiband case, where n occupied bands are treated as a group regardless of

possible internal crossings or degeneracies, the corresponding “non-Abelian” Berry phases

φn can be determined by generalizing this procedure in terms of n × n matrix operations.

For each pair of neighboring points along the string, the matrix M
(k,k+b)
mn = 〈umk|un,k+b〉 is

computed and subjected to the singular value decomposition M = V ΣW †, where V and W
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are unitary and Σ is real and diagonal (typically, nearly unity). Again, the states at the end

point k0+G are predetermined by those at the start k0 by the periodic gauge condition. We

can then identify U (k,k+b) = VW † as the unitary rotation from k to k + b, and the global

unitary rotation matrix Λ(k⊥) =
∏
U (k,k+b) is constructed as the product of these along

the string. Being unitary, its eigenvalues λn are unimodular, and we can identify the non-

Abelian Berry phases (also known as Wilson loop eigenvalues) as φn(k⊥) = −Im lnλn(k⊥).

The WCCs are then just

z̄n(k⊥) =
c

2π
φn(k⊥) . (3.2)

As discussed in Ref. [8], this procedure gives the centers of the maximally-localized Wannier

functions in 1D algebraically, without the need for any iterative localization procedure; we

just repeat this procedure for each k⊥ to construct the WCC sheets.

3.2 Bulk-boundary Correspondence

A major theme of this chapter is to show how the WCC sheet structure z̄n(k⊥) shares

many qualitative features with the surface energy bandstructure εn(k⊥), a manifestation

of the bulk-boundary correspondence which relates the boundary modes to the topological

character of the bulk. The WCCs z̄n(k⊥) have the crucial advantage that they can be used

to deduce the topological properties of the bulk from bulk properties alone.

In this subsection we show that the WCC sheet structure obeys all of the symmetries

that are found in the surface energy bandstructure, and sometimes more. In particular,

when TR is present, the Kramers degeneracies found at the 2D time-reversal invariant

momenta (TRIM) in the surface energy band structure also necessarily appear in the WCC

sheet structure. We also demonstrate the bulk-boundary correspondence by sketching a

physical argument as to why the topological connectedness of the WCC sheets mirrors that

of the surface bandstructure, providing access to the topological indices in a similar way.
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3.2.1 Symmetry

To review, we consider a crystalline insulator with ẑ taken along a primitive reciprocal

lattice vector, and let k‖ and k⊥ denote the wavevectors parallel and perpendicular to ẑ re-

spectively. We then consider the surface bandstructure εn(k⊥) for a 1×1 (unreconstructed)

surface that has been cut normal to ẑ, where n labels energy eigenstates lying in the bulk

projected band gap. We also consider the WCC sheets z̄n(k⊥) constructed as detailed in

Sec. 3.1.1, where n labels the sheets with −c/2 ≤ z ≤ c/2 in one unit cell along z. In both

cases, k⊥ resides in the same 2D surface BZ (both functions have the same periodicity in

k⊥).

An element S = {G|τ} of the full space group S is composed of a generalized rotation G

(possibly improper, and possibly containing TR) followed by a possible fractional translation

τ (in non-symmorphic crystals), in addition to lattice translations; the full point group G

is composed of all of the G appearing in the space-group elements.

The symmetry of the WCC sheets is controlled by the reduced space group SW ⊆ S and

the corresponding point group GW ⊆ G defined by restricting the list of G’s to those that

map ẑ onto ±ẑ. For such operations, let G = KTzG⊥ where G⊥ is the in-plane rotation

(possibly improper), Tz is either the identity or the simple mirror Mz, and K is either the

identity or TR. Then a space-group element {G|τ} ∈ SW must transform a hybrid Wannier

function Wn(k⊥) into another hybrid Wannier function Wn′(±Gk⊥), with the Wannier

center transformed as

z̄n′(±G⊥k⊥) = Tz z̄n(k⊥) + τz , (3.3)

where the minus sign applies if G contains TR.

The symmetry of the surface bandstructure εn(k⊥), on the other hand, is associated with

the space group SS ⊆ SW with the additional constraints that its elements do not reverse

ẑ to −ẑ and and do not contain partial translations τz along ẑ. Then for any element
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G = KG⊥ in the corresponding point group GS we have that

εn(±G⊥k⊥) = εn(k⊥) (3.4)

where again the minus sign applies if TR is involved.

Since GS ⊆ GW, it follows from Eq. (3.3) that the WCC sheets also obey

z̄n(±G⊥k⊥) = z̄n(k⊥) (3.5)

for any G ∈ GS. Thus, the WCC sheets show at least as much symmetry as the surface

bandstructure. If the space group contains symmetry elements that reverse the z axis, then

there is an additional symmetry z̄n(±G⊥k⊥) = −z̄n(k⊥) associated with these elements, or

if it contains glide or screw operations along ẑ, then also z̄n(±G⊥k⊥) = z̄n(k⊥) + τz. These

additional WCC symmetries have no counterpart in the surface bandstructure.

Finally, we note that TR symmetry plays a similar role for the WCC sheets as for the

surface energy bandstructure. Specifically, for anyG ∈ GS, a Kramers degeneracy is enforced

whenever G⊥k⊥ = −k⊥ (modulo a reciprocal lattice vector), due to the antiunitary nature

of the TR operation. In particular, if TR by itself is a symmetry, then the WCC sheets

and the surface energy bands are guaranteed to touch and form Kramers pairs at all of the

TRIM. Additionally, if CZ2 ⊗ TR is a symmetry, then both the WCCs and surface energy

bands are Kramers degerate everywhere in the 2D BZ.

3.2.2 Topology

Just as the symmetries of the surface bandstructure are replicated in the WCC sheet struc-

ture, a similar principle applies to the topological properties. This will be amply illustrated

by the examples to follow, but we give here a sketch of a general argument that this should

be so.
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Figure 3.1: (a) Flow of Wannier charge centers along ẑ vs. ky for a 2D Chern insulator. (b)
Flow of surface energy bands vs. ky for a 2D Chern insulator. (c-d) Same, but for a 2D
Z2-odd (quantum spin Hall) insulator. Dashed lines are arbitrary reference positions in (a)
and (c), or Fermi energies in (b) and (d).

For simplicity, consider first a 2D Chern insulator lying in the y-z plane with one oc-

cupied band carrying a Chern number C = +1. Then the WCC z̄(ky) undergoes a shift

by c as ky is adiabatically carried from ky = 0 to ky = 2π/b (assuming a rectangular b× c

unit cell), as shown in Fig. 5.2(a). This means that one electron is adiabatically pumped

by cẑ during one cycle of ky around the 1D BZ. If the edge bandstructure remained gapped

throughout the cycle, this would lead to a contradiction, since by conservation of charge

one extra electron per surface unit cell would reside on the top edge at the end of the cycle.

However, the starting and ending point are physically identical, so the edge charge must be

the same. This paradox can only be avoided if there is a surface state that emerges from

the valence band, rises throught the gap, and disappears into the conduction band during

one cycle, as shown in Fig. 5.2(b). In this case, the sudden loss of one electron that occurs

when the surface band crosses the Fermi energy compensates for the gradual gain of one

electron from the pumping, restoring charge conservation. In other words, we conclude that

the edge bandstructure has a state crossing the gap if and only if the WCC structure has a

WCC that winds by one unit during the cycle.

More generally, for an insulator with N occupied bands, if
∑N

n z̄n/c winds by Chern
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integer C during the cycle, the number of up-crossing minus the number of down-crossing

surface bands in the edge bandstructure must equal C in order to satisfy charge conservation.

The argument also generalizes to 3D Chern insulators. If the WCC sheet structure is

computed in the ẑ direction, the Chern indices along x and y (that is, corresponding to

Berry curvatures Ωyz and −Ωxz) are evident in the z-windings of the WCC sheets as k⊥ is

cycled in the ky and kx directions respectively. In each case, a similar surface state crossing

necessarily must also occur in the surface bandstructure, following the arguments given

above.

Turning now to TR-invariant insulators, the Chern number always vanishes, being odd

under TR-symmetry, but the WCC structure and surface band structure still share their

topological properties. Recall that TR symmetry leads to double degeneracy in both the

the WCCs and the surface energy bands at TRI points in BZ. Here we show that the WCCs

connect the TRI points in the same manner as the energy bands do, and can be used in a

similar way to deduce the Z2 index of the system.

Consider the simple case of a 2D Z2 insulator in the y-z plane with two occupied bands.

The TR symmetry relates the WCCs and the surface energy bands in the second half of

the BZ to the ones in the first half by z(ky) = z(2π/b − ky) and ε(ky) = ε(2π/b − ky), as

illustrated in Figs. 5.2(c-d), so we only need to study their behavior in the first half [0, π/b].

In the absence of spin-mixing terms, the system decouples into two independent insulators

with equal and opposite Chern numbers for spin-up and spin-down electrons. If these are

±1, the system is Z2-odd. This implies both that the WCCs must switch partners as ky

evolves from 0 to π/c, as shown in Fig. 5.2(c), and that the surface energy bands zigzag, as

shown in Fig. 5.2(d). More precisely, an arbitrary horizontal line in Fig. 5.2(c) intersects

the WCC curves just once (or, in general, an odd number of times) in the half-BZ, as does

an arbitrary Fermi level for the surface energy bands in the half-BZ in Fig. 5.2(d). One

unit of up spin, relative to down spin, is pumped to the edge during this half-BZ evolution,

corresponding to the “TR polarization pumping” discussed by Fu and Kane [25]. For a
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Z2-even insulator, the number of crossings is, instead, an even integer (typically zero) for

both the WCCs and the surface energy bands.

In more realistic Z2 insulators, the spin-orbit interaction mixes up and down spins such

that the energy bands are no longer perfectly spin-polarized and a spin-Chern classification

of the system is no longer guaranteed. However, as long as the bulk energy gap remains

open as these spin-mixing terms are adiabatically turned on, neither the even/oddness of

the number of WCC crossings, nor the even/oddness of the number of surface energy band

crossings, can change. Therefore, it remains true that the Z2 index deduced from the WCC

evolution is the same as that deduced from the surface energy bands, i.e., they both contain

the same topological information.

The weak and strong topological indices of a 3D TR-invariant insulator can be deter-

mined from the 2D indices on the six TRI faces k̃j ={0, π} of the 3D BZ (where k̃x=kxa,

k̃y = kyb, k̃z = kzc), which are negative if the WCCs have a non-trivial connectedness on

that face and positive otherwise. Assigning an index ν(k̃i) to each of these faces, the four

Z2 invariants [ν0, ν1, ν2, ν3] that uniquely specify the topological phase of a TR-invariant

insulator can be determined from these ν(k̃i) as follows. The three νi ≡ ν(k̃i = π), which

are known as weak topological indexes, are determined from the WCC behavior on the

k̃i = π faces, while the strong topological index ν0 ≡ ν(k̃i = 0)ν(k̃i = π) is only negative if

the topological indices of opposing TRI faces are opposite, i.e., if the WCCs on the k̃i = 0

and k̃i = π faces have different behavior. The indices could similarly be deduced from the

behavior of the surface energy bands. For both the WCC and surface problems, we have

to choose a particular axis ẑ to define z̄ or as the surface normal, and in this case we are

only sensitive to four of the six TRI-face indices, defining whether WCCs (or surface states)

zigzag or not along the four edges of the quarter 2D BZ. This determines the strong index

ν0 and two of the three weak indices (ν1 and ν2); the procedure has to be repeated with a

different choice of axis to obtain the third weak index ν3.

In summary, we expect that the flow and connectedness of the WCC sheets and the
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surface energy bands should always show the same qualitative features. Not surprisingly,

similar considerations apply to the case of crystalline TIs as well. Numerous examples will

be presented in the next chapter which amply illustrate this bulk-boundary correspondence

between the WCC sheets and surface energy bands. In Chapter 5 we employ the WCC sheets

to illustrate the pumping of Chern-Simons Axion coupling in an adiabatic loop defined by

the second Chern number.

3.3 Berry Phase and Electric Polarization

The WCCs provide a local description of polarization as well as dielectric and polar re-

sponses in crystals. The electric dipole of molecular systems can be calculated straightfor-

wardly from the matrix elements of position operator between the occupied Hamiltonian

eigenstates ψi

d = −e
∑
i

〈ψi|r|ψi〉. (3.6)

This definition cannot be generalized to crystalline systems since the Hamiltonian eigen-

states in a periodic infinite system are extended over all space and the position matrix

elements are not well defined over such states. The modern theory of polarization ad-

dressed this issue by realizing that only the differences of polarization are experimentally

measurable. In this approach the differences of polarization are calculated between two

insulating stated that are connected by an adiabatic switching process

∆P = P(∆t)−P(0) =

∫ ∆t

0
dt j(t), (3.7)

where j(t) is the transient macroscopic current that flows through the insulating sample dur-

ing the adiabatic evolution. Independently, King-Smith and Vanderbilt [34], and Resta [35]

showed that P(∆t) and P(0) are in fact proportional to the single-point Berry phase of
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occupied states and the electronic contribution to electric polarization is given by

Pel = − e

(2π)3

∑
n

∫
BZ

dk〈unk|i∇k|unk〉, (3.8)

where unk are occupied periodic Bloch functions that are smooth functions of k.

The polarization finds an even simpler form in Wannier representation. Let us construct

WFs from smooth periodic functions unk. Then the WCCs in home unit cell are

rn = 〈Wn(0)|r|Wn(0)〉 = − V

(2π)3

∫
BZ

dk 〈unk|i∇k|unk〉. (3.9)

Now it is obvious that the polarization in Eq.3.8 is simply the sum of WCCs of occupied

bands

Pel = − e
V

∑
n

rn. (3.10)

In this basis, any physical change in the system, such as external fields or displacement of

atoms, which changes polarization results in a shift in the position of WCCs. It is important

to notice that the choice of home unit cell in Wannier representation is arbitrary. Moreover,

an arbitrary change of gauge can shift individual WCCs in an arbitrary way. However, the

sum of WCCs over occupied space remains invariant modulo a lattice vector R. Therefore

the polarization defined via Eq. 3.10 is only well defined modulo a quantum eR/V , which

is consistent with the fact only a change in polarization is physically meaningful.

3.3.1 Electric Polarization in Nontrivial Insulators

It is well known that the electric polarization is not well defined in metals. In a Chern

insulator with metallic edge states exponentially localized WFs cannot be constructed,

however the Berry phase formulation of polarization can still be generalized to insulators

with non-zero Chern number as Coh and Venderbilt showed [31]. In this case, spacial

care needs to be taken in calculating the integrated bulk current arising from an adiabatic
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evolution and Eq. 3.11 turns to

∆P[k0] = P[k0](∆t)−P[k0](0) =

∫ ∆t

0
dt j(t). (3.11)

Here [k0] indicates the reciprocal-space unit cell with origin at k0. This reciprocal-space

unit cell must be the same on both P[k0](∆t) and P[k0](0) terms.

A Z2-odd insulators without spin-mixing terms can be decoupled into two Chern insu-

lators with spin up and spin down. These decoupled Chern insulators are related to each

other by time-reversal symmetry, therefore localized WFs can only be constructed in a

gauge which does not allow them to come in time-reversal pairs. The time-reversal invari-

ance of Hamiltonian in this gauge might not be obvious but the WFs are still exponentially

localized and define the electric polarization via Eq. 3.10 [23].
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Chapter 4

Topological Insulating and Semiconducting Phases in 3D

In this Chapter, we study the properties of WCCs in different topological phases in 3D

using simple tight-binding (TB) models as well as realistic density-functional theory (DFT)

descriptions of known materials. In particular, we use a Haldane-like [36] TB model of

spinless electrons on a hexagonal lattice to study the properties of the WCC sheets in a

3D Chern insulator; the model of Fu, Kane, and Mele (FKM) [1] to study the WCCs of

trivial, weak, and strong topological phases; and the the tetragonal TB model of Fu [13] to

study a crystalline TI. The spinless 3D model of Delplace, Li, and Carpentier (DLC) [37] is

employed to study the WCC sheets properties in Weyl semimetals. These TB models are

described in Sec. 4.1. We then compute the behavior of the WCC sheets in the Z2-even

Sb2Se3, weak Z2-odd KHgSb, and strong Z2-odd Bi2Se3 insulators using first-principles

DFT calculations. These materials and their crystal structure are described in Sec. 4.2, and

the details of our computational approach are presented in Sec. 4.2.1.

4.1 Tight-binding Models

A TB model of a 2D Chern insulator was first introduced by Haldane on a honeycomb

lattice. [36] This spinless model is constructed by starting with real first and second-neighbor

hoppings, but the time-reversal symmetry is then broken by introducing local magnetic

fluxes in a pattern that respects the symmetry of the lattice and sums to zero in each unit

cell. This magnetic flux has the effect of multiplying the second-neighbor hoppings by a

unimodular phase factor λ = eiϕ. We then stack these 2D layers in the normal direction to
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make a 3D TB model of a Chern insulator:

H = t1
∑
l,<ij>

c†ilcjl + t2
∑

l,�ij�
λc†ilcjl

+t′1
∑
li

c†ilci,l+1 + t′2
∑
l,<ij>

c†ilcj,l+1 + H.c. (4.1)

Here l is the layer index, single and double brackets label first- and second-neighbor in-plane

pairs with hoppings t1 and t2 respectively, and t′1 and t′2 are (real) vertical and nearest-

diagonal interlayer hoppings respectively. The hoppings included explicitly in the second

term of Eq. (4.1) are those for clock-wise hoppings around the hexagon; counterclockwise

ones are accounted for by the Hermitian conjugation and have phases λ∗. With t1 = −1.0,

t′1 = −0.45, t2 = 0.15, t′2 = 0.015, and ϕ = 0.5π the occupied band has a Chern number of

one.

The FKM model [1] is a four-band TB model of s states on a diamond lattice in 3D

with a spin-orbit interaction, and takes the form

H = t
∑
<ij>

c†icj + i(8λso/a
2)
∑
�ij�

c†is · (d
1
ij × d2

ij)cj . (4.2)

Here the first and second terms describe spin-independent first-neighbor and spin-dependent

second-neighbor hoppings respectively; λso is the spin-orbit strength, and a is the cubic

lattice constant, which is set to one. The second-neighbor hopping between sites i and j

depends on spin and on the unit vectors d1,2
ij describing the two first-neighbor bonds that

make up the second-neighbor hop. For t = 1 and λso = 0.125, the model has a gap closure

at the high symmetry X point in the Brillouin zone.

By varying the relative strength of the nearest-neighbor bond in the [111] direction,

t111 = t(1 + α), the cubic symmetry is broken and the system can be switched between

trivial, weak and strong topological phases, as shown in Table 4.1. These insulating phases

are separated from each other by gap closures at α=−4, −2, 0, and 2. For α <−4 and

α>2, the t111 bond is stronger than the other bonds and the system can be adiabatically
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α [ν0; ν1ν2ν3] Topological phase

(−∞,−4) [+; + + +] Trivial insulator
(−4,−2) [−;−−−] Strong topological insulator
(−2, 0) [+; + +−] Weak topological insulator
(0, 2) [−; + +−] Strong topological insulator
(2,∞) [+; + + +] Trivial insulator

Table 4.1: Topological phase of the FKM model [1] as a function of parameter α specifying
the relative strength of the [111] bond according to t111 = t(1 + α).

transformed to a system of dimers, which is toplogically equivalent to a trivial atomic

insulator. For −2 < α < 0, on the other hand, the t111 bond is weaker than the others,

and the system can be considered as a collection of 2D spin-Hall layers stacked along the

[111] direction. Thus, the system is a weak TI in this range of α. For −4<α < −2 and

0 < α < 2, t111 is stronger than the other first-neighbor bonds, but not strong enough to

push the system into the topologically trivial phase. As a result, the 3D KM model is a

strong Z2 TI for these values of α.

For studying the WCC sheet behavior in a topological crystalline insulator, we adopted

the TB model of Fu [13], consisting of a tetragonal lattice with two inequivalent A and B

atoms stacked above one another, each carrying px and py orbitals, forming bilayers that

we index by n. The total system Hamiltonian can be written as

H =
∑
n

(
HA
n +HB

n +HAB
n

)
, (4.3)

where HA and HB are the contributions describing intralayer hoppings while HAB describes

interlayer ones. The former are given by

HX
n =

∑
ij

tX(ri − rj)
∑
α,β

c†Xα(ri, n)eijα e
ij
β cXβ(ri, n) (4.4)
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and the latter by

HAB
n =

∑
ij

t′(ri − rj)
∑
α,β

[
c†Aα(ri, n)cBα(ri, n) + H.c.

]
+ t′z

∑
i

∑
α

[
c†Aα(ri, n)cBα(ri, n1) + H.c.

]
. (4.5)

Here r = (x, y) labels the coordinate in the plane, X = {A,B} labels the sublattice, α and

β label the {px, py} orbitals, and eijα is cosine of the angle between the bond (ri − rj) and

orbital pα. We choose the nearest- and next-nearest-neighbor hopping amplitudes to be

tA1 = −tB1 = 1 and tA2 = −tB2 = 0.5 in HA and HB, and t′z = 2, t′1 = 2.5 and t′2 = 0.5 in

HAB.

Note that this TB model is spinless, as the spin-orbit coupling plays no role in the non-

trivial topology of crystalline TIs. Instead, the topological classification is based on certain

crystal point-group symmetries and TRI, leading to robust surface states on those surface

that respect the symmetries in question. In the tetragonal Fu model, these topological

surface states exist on the (001) surface, where the fourfold Cz4 rotational symmetry of the

crystal is preserved.

To study the properties of WCC sheets in a Weyl semimetal, we employed the spinless

TB model of DLC [37], consisting of layers of face-centered square lattice with sublattices

A and B. The on-site energies are ∆ and −∆ for the two sublattices. The nearest neighbor

hoppings between A and B sublattices are denoted by t, and the A-A and B-B next nearest

hoppings by t′. Moreover, a magnetic flux pattern is applied to the lattice in a way that

it preserves the C4h symmetry of the lattice and the total flux through each surface of the

unit cell is a quanta of the flux quantum φ0 = h/e. As a result each hopping term picks a

phase factor and the total the Hamiltonian of the system can be written as

H = ∆(
∑
i

c†AicAi −
∑
i

c†BicBi)

+ (t
∑
<ij>

eiφijc†AicBj + t′
∑

X,�ij�
eiφ

′
ijc†XicXj +H.c.). (4.6)
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where X = {A,B}. With ∆ = 2.0, t = 1, and t′ = 0.5, the 3D bulk bands are gapped except

at two Weyl points (kx, ky, kz) = (0, 0,±π
2

). These Weyl points are related by inversion

symmetry and have opposite helicities.

4.2 Material Systems

We carry out first-principles calculations of the WCC sheet structure for Sb2Se3, KHgSb,

and Bi2Se3 as prototypical realizations of trivial, weak, and strong topological phases, re-

spectively. Bi2Se3 has a rhombohedral layered structure with space group D5
3d(R3̄m). It

consists of quintuple layers (QLs) formed by stacking Se and Bi triangular-lattice planes in

the order Se-Bi-Se-Bi-Se, with two identical Bi atoms, two identical Se atoms and a third Se

atom at the center. These QLs have strong internal covalent bonding, but the interaction

between QLs is much weaker, being largely of van der Waals type. The states near the

Fermi energy come from the

Bi 6p and Se 4p orbitals. The strong SOC leads to a band inversion at the Γ point and

makes this material a strong Z2 insulator with a band gap of 0.3 eV [16, 38]. Sb2Se3 shares

the same rhombohedral layered structure as Bi2Se3, but the weaker SOC in this material

leaves it in a topological trivial phase.

KHgSb consists of layers of HgSb in a honeycomb lattice, with hexagonal layers of

K atoms stuffed between them. In a single layer of KHgSb, the valence bands near the

Fermi energy are composed of the Hg 6s and Sb 5s and 5p states, while the K 4s band

is considerably higher in energy. The strong SOC in the honeycomb HgSb layer leads to

a band inversion at the Γ point in the 2D BZ and makes an isolated KHgSb layer a 2D

TI. These 2D TI layers can be stacked along the z direction to form a 3D lattice, but the

inter-layer coupling is very weak and there is little dispersion along the Γ-Z direction. These

honeycomb layers can either be stacked in an AA sequence to make a “single-layer” form,

or in an ABAB sequence to make a “double-layer” form, where B is rotated by 60◦ with

respect to A. In the latter structure, which is experimentally observed, the primitive cell
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contains two honeycomb layers. Thus, two band inversions occur and cancel each other

out at Γ, and the same happens at Z, making the compound a trivial insulator [39, 40].

In the hypothetical single-layered structure, which is proposed as an example of a weak

TI [40], there is only one honeycomb layer in the primitive cell, and a single band inversion

happens at Γ and another at Z. Thus single-layered KHgSb can be viewed as a stack of

weakly coupled 2D TIs and belongs to the weak Z2-odd topological class. Here, we focus

on single-layered KHgSb, and we compare its WCC sheets to the weak topological phase of

the FKM TB model in Sec. 4.6.

4.2.1 Computational Methods

Our first-principles calculations of WCC sheets are based on DFT calculations using the

PBE exchange-correlation functional [41] performed with the Quantum Espresso pack-

age [42]. We use fully-relativistic optimized norm-conserving pseudopotentials from the

Opium package, with the semicore Bi 5d, Sb 4d, Hg 5d, and K 3s3p states included in

the valence. The self-consistent calculations are carried out for the experimental structures

using a 10 × 10 × 10 Monkhorst-Pack [43] k-mesh. The plane-wave energy cutoff is set to

70 Ry.

In principle one could include all occupied bands in the WCC construction. However,

taking Bi2Se3 as an example, the occupied Bi 5d semicore states and the shallow Bi 6s

and Se 4s bands have an obvious atomic character and remain well separated from the

active valence p bands, so they are clearly trivial and do not need to be included in the

topological analysis. Therefore, we concentrate on constructing WCC sheets only for the

remaining upper valence bands. As these are the lowest 18 of the 30 bands of Bi 6p

and Se 4p character, we do this by constructing a Wannier representation in this 30-band

space using the Wannier90 package [44] to generate an ab initio TB Hamiltonian from the

DFT calculation. The frozen window in which the first-principles band structure is exactly

reproduced extends from 2 eV below to 2 eV above the Fermi level EF . From the outer
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energy window, which extends to 20 eV above EF , 80 Bloch bands are used to produce

30 WFs for the Bi, Sb, and Se p bands in Bi2Se3 and Sb2Se3. The orbital positions and

hopping parameters between them are then used to construct the effective tight-binding

Hamiltonians. Similarly, for KHgSb we carry out the Wannier construction for the ten

Bloch bands of K 4s, Hg 6s and Sb 5p character, of which the bottom six are the highest

valence states. The outer window is chosen at 14 eV above EF for KHgSb, with ten WFs

constructed from 20 Bloch bands.

We have implemented the calculation of the WCC sheets into Version 1.6.2 of the open-

source PythTB tight-binding code package [45]. The Wannierized Hamiltonians are im-

ported into the PythTB code to calculate the WCC sheets using the parallel-transport

approach explained in Sec. 3.1.1.

4.3 Results

In this section, we present the WCC sheets for the different topological phases we have

studied. For the 3D Chern insulator in Sec. 4.4, the WCC sheets are plotted over the entire

2D BZ, while for the TR-invariant systems of Secs. 4.5-4.7 the sheets are plotted over one

quarter of the BZ, i.e., between the TRI momenta [0, 0], [0, π], [π, π], and [π, 0].

The axis of highest rotational symmetry in each TB model or material system is chosen

as the z axis. This axis in the FKM model is along the bond with altered strength (t111); the

model has a 3-fold symmetry around this axis, which when combined with TR-symmetry

results in a 6-fold rotational symmetry in the 2D BZ. In Sb2Se3 and Bi2Se3 the z axis is

normal to the quintuple layers, which is the axis of 3-fold symmetry. In KHgSb the z-axis

is chosen normal to the honeycomb HgSb layers, and in the Fu tetragonal TB model it is

along the tetragonal axis.

The WCC sheets are computed along both z and y and plotted versus (kx, ky) and

(kx, kz) respectively. (Henceforth we shall not be careful about the distinction between kx

and k̃x = kxa, etc.; the meaning should be clear from the context.) Plotting the WCC sheets
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along these two perpendicular directions is especially important to reveal the topological

behavior in the 3D Chern, weak Z2, and topological crystalline phases, where, as we shall

see, the topology of the WCC sheets may look trivial in one direction but topological in

another.

The WCC sheets for the TR-broken Chern insulator phase are discussed next. WCC

sheets for the TR-invariant trivial, weak, and strong Z2 phases are discussed in Secs. 4.5-4.7,

using the FKM model and its material system analogues in each phase. The WCC sheets

for the crystalline topological phase are discussed in Sec. 4.8.

In this Chapter, study the WCC sheets in trivial, Chern, weak topological, strong topo-

logical, and crystalline topological insulators (TIs) using tight-binding models and first-

principles calculations. For the 3D Chern insulator in Sec. 4.4, the WCC sheets are plotted

over the entire 2D BZ, while for the TR-invariant systems of Secs. 4.5-4.7 the sheets are

plotted over one quarter of the BZ, i.e., between the TRI momenta [0, 0], [0, π], [π, π], and

[π, 0].

The axis of highest rotational symmetry in each TB model or material system is chosen

as the z axis. This axis in the FKM model is along the bond with altered strength (t111); the

model has a 3-fold symmetry around this axis, which when combined with TR-symmetry

results in a 6-fold rotational symmetry in the 2D BZ. In Sb2Se3 and Bi2Se3 the z axis is

normal to the quintuple layers, which is the axis of 3-fold symmetry. In KHgSb the z-axis

is chosen normal to the honeycomb HgSb layers, and in the Fu tetragonal TB model it is

along the tetragonal axis.

The WCC sheets are computed along both z and y and plotted versus (kx, ky) and

(kx, kz) respectively. (Henceforth we shall not be careful about the distinction between kx

and k̃x = kxa, etc.; the meaning should be clear from the context.) Plotting the WCC sheets

along these two perpendicular directions is especially important to reveal the topological

behavior in the 3D Chern, weak Z2, and topological crystalline phases, where, as we shall

see, the topology of the WCC sheets may look trivial in one direction but topological in
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another.

The WCC sheets for the TR-broken Chern insulator phase are discussed next. WCC

sheets for the TR-invariant trivial, weak, and strong Z2 phases are discussed in Secs. 4.5-4.7,

using the FKM model and its material system analogues in each phase. The WCC sheets

for the crystalline topological phase are discussed in Sec. 4.8.

4.4 TR-broken Chern insulator

We first consider the TB model for a TR-broken Chern insulator phase that was introduced

in Sec. 4.1. It is composed of 2D Chern layers stacked along the z direction with weak

interlayer coupling, so we do not expect an (001) slab of the 3D model to show any topo-

logical surface states. This is confirmed in the surface projected bandstructure plotted in

Fig. 4.1(a), where the shaded region indicates the region of bulk energy bands. No surface

states are visible in this case, consistent with the trivial topology for this orientation. By

the same token, the WCC sheets computed along the z direction from the single occupied

band remain localized in the vicinity of the z positions of the layers, with no topological

evolution along kx or ky. This is shown in Fig. 4.1(b-c), where the WCC sheets are plotted

around the boundary, and throughout the interior, of the 2D projected BZ respectively.

In contrast, any slab of the 3D system that cuts through the 2D Chern layers will reveal

the topological nature of the 3D crystal by displaying a surface energy band traversing

the bulk gap on each surface, as shown in Fig. 4.1(d) for a (010) slab. The corresponding

ȳ(kx, kz) WCC sheets are shown in Figs. 4.1(e-f). While these WCCs do not vary strongly

along kz, they wind by one unit as they evolve along kx, pumping one electron per unit cell

from the (01̄0) to the (010) surface. The pumped charge is restored on each surface as the

surface bands cross the Fermi level in the bulk energy gap.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.1: Surface energy bands and WCC sheets for the TR-broken Chern insulator
model. (a-c) Surface normal and WCCs along ẑ vs. (kx, ky). (d-f) Surface normal and
WCCs along ŷ vs. (kx, kz). Surface states for a 24-layer slab in (a) and (d); WCCs around
2D BZ boundary in (b) and (e); WCCs in 2D BZ in (c) and (f). Dashed and solid surface
states in (d) reside on the top and bottom of the (010) slab respectively. The WCC sheets
and surface bands wind by one unit in the ky-kz plane, but not in the kx-ky plane.
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(e)

(f)

Figure 4.2: Surface energy bands (15-layer slab) and WCC sheets for the TR-invariant
FKM model in the trivial phase (α = 2.5). (a-c) Surface normal and WCCs along ẑ vs.
(kx, ky). (d-f) Surface normal and WCCs along ŷ vs. (kx, kz). The WCC sheets and surface
bands show a trivial behavior in all directions.
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4.5 TR-invariant trivial insulator

In general, the broken translational symmetry at the surface of a band insulator allows for

the existence of surface states in the bulk band gap. In a topologically trivial insulator, these

surface states, if present, are prone to localization by disorder and can be removed from the

gap by an adiabatic transformation of the Hamiltonian. An example of such unprotected

surface states can be seen in Fig. 4.2(a), which shows the surface states on the (001) surface

of the FKM model in its trivial insulating phase. The surface bands are doubly degenerate

at the TRI momenta as required by Kramer’s theorem, but nothing protects them from

being adiabatically pushed to the valence or conduction band. (The model also happens

to have a particle-hole symmetry which is responsible for the mirror symmetry along the

energy axis, but we do not consider this as an imposed symmetry here.) The surface energy

bands on the (010) surface, Fig. 4.2(d), show the same trivial behavior, indicating that this

is a topologically trivial insulator.

The trivial topology of this material is equally evident from the WCC sheets, plotted

along ẑ and ŷ in Figs. 4.2(b-c) and (e-f) respectively. The WCC sheets are plotted around

the boundary of a quadrant of the 2D projected BZ in Figs. 4.2(b) and (e), and throughout

its interior in Figs. 4.2(c) and (f). Here there are two WCC sheets per unit cell (vertical

axis) because there are two occupied energy bands in the four-band model, but the band

pairs remain well separated from their periodic images above and below. The WCC sheets

touch at the TRI points at the corners of the quarter BZ, as required by Kramers’ theorem,

but these Kramers pairs are connected in all directions in a topologically trivial way. As

a result, the topological index is νµ = +1 on all six TRI faces, signalling a fully trivial

topological phase.

A similar trivial behavior is seen in the first-principles WCCs computed for Sb2Se3 as

shown in Fig. 4.3. The 18 WCC sheets in the quintuple layer come mainly from the Sb 5p

and Se 4p orbitals. While having substantial Sb 5p character, they are nevertheless centered
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(a) (b)

Figure 4.3: First-principles WCC sheets along ẑ for topologically trivial Sb2Se3, plotted
on (a) the boundary and (b) the interior of the 2D quarter BZ. The WCCs show trivial
behavior as expected.

on the anion Se sites located at z ' −0.3c, 0, and 0.3c in the figure. While the gap between

WCC sheets associated with neighboring quintuple layers, centered at 0.5c in Fig. 4.3(a),

is not obviously larger than the other gaps, it nevertheless remains open across the entire

2D BZ. The WCC sheets plotted along the x and y directions (not shown) display a similar

trivial behavior. Thus, we can conclude that this is a fully trivial insulator, without having

to carry out any surface-state calculation.

4.6 TR-invariant weak topological insulator

The FKM model with −2 ≤ α ≤ 0 is a weak Z2-odd insulator, as illustrated by our results

for α = −1 in Fig. 4.4. In this case, the crystal can be thought of as a series of 2D spin-Hall

insulators stacked along the z direction, i.e., the direction of the weakest bond. Thus, a

slab of the model cut normal to this direction shows no robust surface states in the bulk

energy gap, as shown in Fig. 4.4(a), and the WCC sheets along this direction pair up as

they do in a trivial insulator, as can be seen in Figs. 4.4(b-c).

On the other hand, a slab of a weak Z2-odd insulator cut through the 2D spin-Hall

sheets should host an even number of Dirac cones on each surface. These surface states

are shown for an (010) slab of the same FKM model in Fig. 4.4(d), where the Dirac cones

are visible at (kx, kz) = (0, 0) and (0, π). These surface bands have a gap-crossing Z2-odd
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.4: Surface energy bands (15-layer slab) and WCC sheets for the TR-invariant
FKM model in the weak topological phase (α=−1). (a-c) Surface normal and WCCs along
ẑ vs. (kx, ky). (d-f) Surface normal and WCCs along ŷ vs. (kx, kz). Only the (kx, ky) TRI
faces at kz=0 and kz=π are Z2-odd.
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(a)

(b)

(c)

(d)

Figure 4.5: First-principles WCC sheets for the weak TI KHgSb. (a-b) Along ẑ. (c-d)
Along ŷ. Only the (kx, ky) TRI faces at kz=0 and kz=π are Z2-odd.

behavior vs. kx but not vs. kz, suggesting that the (kx, ky) TRI faces of the 3D BZ are

Z2-odd at kz=0 and π, while those on the (ky, kz) faces are Z2-even at kx=0 and π. This

is confirmed in Figs. 4.4(e-f), where the WCC sheets are seen to swap partners vs. kx but

not vs. kz.

The Z2 topological invariants νµ follow straightforwardly from the above considerations.

The invariants are +1 for the TRI faces at kx = 0 and π, +1 for the TRI faces at ky = 0

and π, and −1 for the TRI faces at kz = 0 and π. The conventional index set is then

[ν0; ν1ν2ν3] = [+; + + −], confirming that this is a weak TI (ν0 = +1) corresponding to

spin-Hall layers stacked along z (ν3 = −1).

We see the same kind of weak topological behavior in our first-principles calculations

of the WCC sheets for KHgSb shown in Fig. 4.5. As explained in Sec. 4.2, this material is

composed of honeycomb HgSb layers that behave as 2D spin-Hall insulators, stacked along

the z direction, and separated by hexagonal layers of K stuffing atoms. The pictures look
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more complicated because there are now six occupied bands per cell, and thus six WCCs

per lattice constant, and some of the artificial symmetries of the FKM model are now

absent. However, the topological behavior is similar to that of Fig. 4.4. The weak coupling

between the HgSb layers is reflected in the trivial behavior of the WCC sheets along the

(001) direction, Figs. 4.5(a-b), but plotting the WCCs in a direction cutting across the

honeycomb HgSb layers reveals the topological behavior, as seen in Figs. 4.5(c-d). These

WCC sheets change partners on the (kx, ky) TRI faces at both kz = 0 and π, indicating

ν3 = −1 and ν0 = +1, giving the same [+,+ + −] set of indices as for the FKM model in

its weak topological phase. These results are entirely consistent with the existence of Dirac

cones at the Γ and Z points in the surface bands of an (010) slab as shown in Ref. yan-prl12.

However, we again emphasize the convenience of our approach, in which only primitive-cell

bulk calculations are needed.

4.7 TR-invariant strong topological insulator

In contrast to weak TIs, the non-trivial behavior of the WCC sheets in strong Z2 insulators

should be evident no matter what direction is chosen to construct them; there would be

switching of partners for one of the TRI faces in any chosen direction. This behavior is

illustrated in Fig. 4.6, where the surface bands and WCC sheets are presented for the FKM

model in the strong Z2-odd phase at α = 1. Both the surface bands and the WCC sheets

swap partners in the (kx, ky) plane at kz =π, the (kx, kz) plane at ky = 0, and the (ky, kz)

plane at kx = 0, but not on the other three TRI faces. The set of topological indices is

therefore [ν0; ν1ν2ν3] = [−; + + −], and the system is a strong TI. This is also consistent

with the existence of an odd number of Dirac cones on any surface of a strong Z2 insulator,

as is evident in Figs. 4.6(a) and (d), where three Dirac cones are visible in each case.

We again confirm that our approach works in the first-principles context by presenting

the WCC sheets along the z direction (rhombohedral-axis) in the strong TI Bi2Se3, as shown

in Fig. 4.7. There are now 18 WCC sheets per cell; in most of the 2D projected BZ these
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.6: Surface energy bands (15-layer slab) and WCC sheets for the TR-invariant
FKM model in the strong topological phase (α=1). (a-c) Surface normal and WCCs along
ẑ vs. (kx, ky). (d-f) Surface normal and WCCs along ŷ vs. (kx, kz). The (kx, ky) TRI face
at kz=π, the (kx, kz) TRI face at ky=0, and the (ky, kz) TRI face at kx=0 are Z2-odd.
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(a) (b)

Figure 4.7: First-principles WCC sheets for the strong TI Bi2Se3, plotted on (a) the
boundary and (b) the interior of the 2D quarter BZ. The WCC sheets on parallel TRI faces
(e.g., at kx=0 and kx=π) show opposite topological behavior.

are clustered in groups of six, with each of the three clusters located close to the z position

of a layer of Se atoms within the QL. This is reasonable, as the Bi and Se atoms can be

regarded as cations and anions respectively, and it is natural to find the Wannier centers on

the anions. However, this behavior changes drastically near Γ, where two of the six WCC

sheets in each cluster split off and form a Dirac point at Γ, signaling the strong TI nature

of this material. Clearly this results from the band inversion near Γ in the 3D bulk BZ,

and is consistent with the existence of a single Dirac cone at Γ on the surface of Bi2Se3,

as has been amply demonstrated by angle-resolved photoemission and other experimental

probes [21]. We can again read off the topological indices by noting that the WCC sheets

swap partners in the (kx, ky) plane at kz = 0, the (kx, kz) plane at ky = 0, and the (ky, kz)

plane at kx=0, but not on the other three TRI faces, so that [ν0; ν1ν2ν3] = [−; + + +].

4.8 Crystalline topological insulator

In constrast to the systems studied above, Fu’s tetragonal model for a crystalline TI [13] is

spinless, because the non-trivial topology of a topological crystalline insulator has its roots

in the crystal symmetries rather than in TR symmetry and spin-orbit interaction. The TR

symmetry in this scalar model does not guarantee double degeneracy at the TRI momenta,

but its combination with the crystal C4 symmetry leads to a two-fold degeneracy of the
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Figure 4.8: Surface energy bands (24-layer slab) and WCC sheets for tight-binding model of
a crystalline TI. (a-c) Surface normal and WCCs along ẑ vs. (kx, ky). (d-f) Surface normal
and WCCs along ŷ vs. (kx, kz). Dashed and solid surface states in (a) reside on the top and
bottom of the (001) slab respectively. Quadratic band touching and cross-linking in panels
(a-c) signals the crystalline topological phase.
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surface energy bands at Γ = (0, 0) and at M = (π/a, π/a) for the (001) surface, where z is

chosen along the tetragonal axis. These surface bands can be seen in Fig. 4.8(a) for an (001)

slab of the model. The dashed and solid lines show the surface states on the two surfaces

of the slab. These bands traverse the energy gap in a zig-zag manner, and their protected

degeneracy at the M point guarantees a robust metallic (001) surface. This non-trivial

behavior is clearer when considering the behavior of the WCC sheets along the z direction,

plotted in Figs. 4.8(b-c). Over most of the 2D BZ, the z location of these sheets is midway

between the A and B atoms. The sheets touch two-by-two at Γ, but they open up and

switch partners on approaching the M point. Thus, the WCC undergo the same kind of

switching, and so reflect the same topological properties, as in the surface energy bands.

Even the quadratic dispersion of the surface bands around M is reflected in the WCCs.

The C4 symmetry is broken on any surface other than the (001) surface, which means

no robust surface states are expected on these other surfaces. Fig. 4.8(d) confirms this for

the case of an (010) slab of the model. The energy bands approach each other near a point

midway between (kx, kz) = (π, π) and (0, π), but they do not touch. The WCC sheets show

a similar behavior in Figs. 4.8(e-f), remaining trivial except along the segment at kz = π;

while there is a non-avoided crossing along this line, this appears to be an artifact of some

special symmetries of the model, and is not relevant to the discussion at hand.1 Thus, both

the surface bands and WCC sheets are consistent with the trivial topology of an (010) slab

of the model.

4.9 Weyl Semimetal

In Weyl semimetals the conduction and valence bands touch at points in the 3D BZ where

the dispersion relation is linear. The Nielsen-Ninomiya theorem indicates that Weyl points

must come in pair(s) [46]. In presence of inversion symmetry, the Weyl points happen

1The topological index for the path from (π, π) to (0, 0) (third and fourth panels) in Figs. 4.8(e) is even,
because a horizontal segment drawn at any chosen y crosses the sheets an even number of times along this
path; this is true regardless of whether the crossing is avoided or not.
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at opposite positions in the BZ and have opposite helicities. If time-reversal symmetry

is present, on the other hand, the Weyl points of opposite momenta must have the same

helicity. Thus, in a Weyl semimetal with both time-reversal and inversion symmetries at

least two Weyl pairs must be present.

In the DLC TB model the time-reversal symmetry is broken by magnetic flux, but the

flux pattern respects the inversion symmetry of the lattice. Therefore, there are only two

Weyl points at (kx, ky, kz) = (0, 0,±π
2

), and they have opposite helicities. These touching

points coincide when projected on the (001) surface. Consequently, the energy bands on

this surface are fully gapped. In contrast, on the (010) surface the two Weyl points are

projected to (kx, kz) = (0, π/2) and (kx, kz) = (0, 3π/2) in the 2D BZ where the valence

and conduction bands touch. As a result a Fermi arc appears on this surface connecting

the two projected Weyl points. In general, a Fermi arc exists on any surface which is not

perpendicular to the z axis.

The WCCs are not well defined at the degeneracy points, however they can be calculated

for the valence band at any other point in the 2D projected BZ. The WCC sheets along two

directions, parallel and perpendicular to ẑ, are plotted in Fig. 4.9. The WCC sheets along ẑ

direction are almost flat and well separated from each other, in agreement with the gapped

energy bands on the (001) surface. The WCC sheets calculated along ŷ, however, have the

topology of a Riemann surface with two nodes at (kx, kz) = (0, π/2) and (kx, kz) = (0, 3π/2).

These two nodes show clockwise and anticlockwise chiralities which is a consequence of the

Weyl points’ opposite helicities. While in insulating topological phases the WCC sheets

are double degenerate at high symmetry points where the protected surface energy band

touchings happen; in topological semmimetals the protected metallic nature of the nodes is

reflected in the absence of localized WCCs at these points.
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Figure 4.9: WCCs along ẑ vs. (kx, ky) and WCCs along ŷ vs. (kx, kz) for Weyl semimetal.

4.10 Summary

In this manuscript, we have explained how the hybrid Wannier charge centers, or WCC

sheets, can be calculated using a parallel-transport approach along a chosen direction in a

3D insulator and plotted versus the other k-space dimensions. We have shown that these

sheets contain the same topological information as the surface energy bands, and thus

provide an accessible means of deducing the topological invariants of the insulator from the

bulk properties alone. We also show that the linear dispersion of the surface energy bands

at Dirac points in Z2 TIs, and their quadratic behavior at the gap closure in topological

crystalline insulators, are replicated by the WCCs. Moreover, the symmetry group of the

WCCs in the 2D BZ include all the symmetry operators of the surface bands.

We have demonstrated the distinct behavior of the WCC sheets in trivial, Chern, weak,

strong, and crystalline TIs as well as Weyl semimetal using various tight-binding models. In

addition, we have used first-principles calculations to illustrate the calculation of the WCC

sheets in Z2-even Sb2Se3, weak Z2-odd KHgSb, and strong Z2-odd Bi2Se3, confirming the

conclusions from the tight-binding models.

Admittedly, the topological invariants of Chern, TR-invariant, and crystalline TIs can

be deduced in other ways. For example, for the TR-invariant case, parity eigenvalues can

be used if inversion symmetry is present; if not, a calculation of 1D Wannier centers on each

2D TRI face is sufficient [23, 24]. However, the WCC sheets provide a unifying description
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that works in all these cases, allows for a more intuitive comparison of different kinds of

TIs, and provides deeper insight into the origins of the non-trivial topology.

The evolution of the WCC sheets as the Hamiltonian is varied through a trivial-to-

topological phase transition, or carried adiabatically around a loop that pumps the Chern-

Simons axion coupling by a quantum,[47, 48] is studied in Chapter 5.
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Chapter 5

Adiabatic Pumping of Chern-Simons Axion Coupling

The discovery of topological insulators (TIs) and related classes of materials in recent years

has generated interest in the Chern-Simons axion (CSA) coupling, which makes an isotropic

contribution αCS to the magnetoelectric response tensor of the material. This coupling,

defined as

αij = (∂Pi/∂Bj)E = (∂Mj/∂Ei)B, (5.1)

where P (M) is the polarization (magnetization) and E (B) is the electric (magnetic) field,

is conventionally expressed in terms of a dimensionless parameter θ defined via

αCS
ij =

θe2

2πh
δij , (5.2)

where θ is determined by the band structure of the insulator via an integral over the Brillouin

zone (BZ) of a Chern-Simons 3-form according to

θ = − 1

4π

∫
d3k εijk Tr[Ai∂jAk − i

2

3
AiAjAk]. (5.3)

Here Anmi = i〈un|∂i|um〉 is the Berry connection (or non-Abelian gauge field) in Cartesian

direction i, where un(k) is the periodic part of the Bloch function of the n’th occupied

band, and the trace is over occupied bands.

In general, the linear magnetoelectric coupling tensor of a crystal αij can have nonzero

off-diagonal components as well as diagonal ones, depending on its magnetic point group.

This polarizability can be decomposed into an ionic and an electronic part, where each part
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has contributions from spin or orbital degrees of freedom. The ionic contribution describes

the lattice-mediated response of crystal to external electromagnetic fields, while the orbital

magnitoelectric polarizability measures the orbital response of material to external electro-

magnetic fields in frozen ion limit, and can be decomposed into an isotropic and a traceless

part

αorbij = α̃ij + αisoδij . (5.4)

The electromagnetic tensor α is odd under time-reversal and inversion symmetry as can

be seen from its definition in Eq. 5.1. As a result, in materials with either or both of

these symmetries α̃ vanishes. The isotropic part of the coupling on the other hand, has a

part generated by axionic fields in the material that can survive even in presence of these

symmetries.

The ground-state properties of a band insulator are invariant under any gauge transfor-

mation, that is, any unitary transformation Unn′(k) that mixes only the occupied bands.

It can be shown that an arbitrary gauge transformation either leaves the 3-form integral in

Eq. (5.3) unchanged or else shifts it by exactly 2π times an integer. Thus, θ is best regarded

as a phase angle that is only well-defined modulo 2π. As a consequence, the presence of

either time reversal (TR) or inversion (either of which flips the sign of θ) requires θ to be

quantized to an integer multiple of π, with an odd/even value corresponding to an odd/even

strong Z2 topological index of a TR-invariant 3D insulator.[47, 48] One way to understand

the ambiguity of θ modulo 2π, which corresponds to an ambiguity of αCS modulo e2/h, is

to realize that the magnetoelectric coupling is related to the surface anomalous Hall con-

ductivity (AHC) by σ = (θ/2π + C)e2/h. Thus the measurable magnetoelectric response

can be changed by a quantum if a layer with non-zero Chern number is attached to the

surface, changing the effective value of θ by 2π.

An interesting consequence of this 2π ambiguity is that if an insulator is allowed to

evolve adiabatically around a closed loop in the space of parameters determining the crystal
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Hamiltonian, with the gap remaining open, then the fact that the system returns to the

initial physical state means that θ must either return to its original value or change by

2πC(2), where C(2) is an integer known as a “second Chern number.” This possibility of

“pumping θ by 2π” has been discussed and demonstrated for some theoretical models,[47, 48]

but the characteristic behaviors of a system undergoing such an adiabatic loop have largely

remained unexplored.

In Chapter 3 and 4, we showed that the hybrid Wannier representation can be a useful

and insightful tool for computing topological indices and inspecting the topological prop-

erties of 3D insulators.[49] In this approach, the occupied-state wavefunctions are trans-

formed into a maximally-localized Wannier representation in one chosen direction, while

remaining Bloch-like in the orthogonal directions. The resulting hybrid Wannier func-

tions (HWFs) inherit the topological character of the insulator, and plots of their Wannier

charge centers (WCCs) over the 2D BZ (“Wannier sheets”) were shown to provide a use-

ful means of visualizing the topological properties of insulators, allowing to discriminate

between normal, strong topological, weak topological, crystalline topological, and related

states.[23, 26, 49, 50]

With these motivations, we ask what happens if an adiabatic cycle that pumps θ by

2π is viewed from the point of view of the HWF representation. How do the WCC sheets

evolve? Is there a characteristic behavior that signals the presence of a non-trivial cycle (i.e.,

a non-zero second Chern number)? Answering in the affirmative, we show that quanta e2/h

of Berry curvature are passed from one WCC sheet to the next in a series of isolated band-

touching events, in such a way that one quantum of Berry curvature is pumped by an entire

lattice vector by the close of the cycle. We illustrate this amusing and instructive result via

numerical calculations on a 3D spinor tight-binding model and discuss its implications.
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5.1 CSA Coupling in Wannier Representation

For a 2D insulator the WCCs can be plotted as curves z̄n vs. k⊥ in a 1D projected BZ,[23, 24]

while for a 3D insulator they can be visualized as sheets plotted over the 2D projected

BZ. In the previous chapter we have shown that these WCC sheets provide an insightful

characterization of the topological character of the insulator in question, allowing one to see

how electrons are adiabatically pumped along ẑ as kx and ky are varied. For example, in a

2D Chern insulator the WCCs shift by one or more lattice constants along z as kx evolves

across the projected BZ, pumping units of charge along that direction. This extra charge is

removed from the edge as the edge band crosses the Fermi energy. Time reversal invariant

(TRI) insulators have zero Chern numbers but are characterized by Z2 topological indices

that are also reflected in the structure of WCC sheets. For example, a 3D TRI insulator

is characterized by one strong and three weak Z2 indices, which can be determined by

examining how the WCC sheets connect along TRI lines in the projected BZ for different

Wannierization directions.[49]

It is also of interest to consider the behavior of the WCC sheets as the crystal Hamilto-

nian is carried adiabatically around a loop defined by some cyclic parameter α correspond-

ing, e.g., to some combination of atomic displacements and/or external fields. A celebrated

result of Thouless[51] is that this results in quantized adiabatic charge transport, i.e., the

pumping of exactly one electron per unit cell by a lattice vector R during the cycle. Nor-

mally R = 0, but for example if R = cẑ this corresponds to the pumping of one electron

by one period along z during the cycle (a first Chern number of C = 1), i.e., a change in

electric polarization ∆Pz = −e/Acell with Acell being the projected unit cell area.

Let us see how this evolution occurs from the viewpoint of the HWF representation.

Intuitively, we expect each WCC sheet to drift along z with increasing α such that it

replaces the one above it, and is replaced by the one below it, at the end of the cycle. We
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begin by defining Berry potentials “living on the sheets” as

Ax,ln,l′m = 〈Wln|i∂x|Wl′m〉 , (5.5)

and

Ay,ln,l′m = 〈Wln|i∂y|Wl′m〉 . (5.6)

These are functions of (kx, ky) and also matrices in the space of sheet labels ln (the nth

sheet in cell l along z).

In general for any operator F which does not involve the z operator or kz derivatives,

we expect F to be periodic in the layer representation, i.e., 〈Wln|F |Wl′m〉 only depends on

l and l′ through l − l′. The corresponding Berry potentials in the Bloch representation are

then just

Ax,nm(k) =
∑
l

eikzlcAx,0n,lm(kx, ky) , (5.7)

Ay,nm(k) =
∑
l

eikzlcAy,0n,lm(kx, ky) , (5.8)

Az,nm(k) = z̄n(kx, ky) δnm . (5.9)

Note that Zln,l′m = 〈Wln|z|Wl′m〉 is not periodic and we have

Zln,l′m = Z0n,(l′−l)m + lc δll′δnm. (5.10)

To derive Eq. 5.9 we use the relation i∂z|unk〉 =
∑

l(z − lc)e−ikz(z−lc)|Wln〉 to write

Az,nm(k) =
1

N

∑
ll′

e−ikz(l′−l)c〈Wln|(z − l′c)|Wl′m〉. (5.11)

Setting l′′ = l′ − l and using Eq. 5.10 we find

Az,nm(k) =
1

N

∑
ll′′

e−ikzl
′′c〈W0n|(z − l′′c)|Wl′′m〉, (5.12)
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which is independent of l. We arrive at Eq. 5.9 by simply renaming l′′ → l, and considering

the fact that the operator z is diagonal in HWF representation

Zln,l′m = δll′δnm(lc+ zn). (5.13)

Plugging Eq.s 5.7-5.9 into the Berry-phase formula for the electronic contribution

Pj = −e(2π)−3
∑
n

∫
d3k Ajn(k), (5.14)

we find

Px =
−e

(2π)2c

∑
n

∫
d2k Ax,0n,0n(kx, ky) , (5.15)

Py =
−e

(2π)2c

∑
n

∫
d2k Ay,0n,0n(kx, ky) , (5.16)

Pz =
−e

(2π)2c

∑
n

∫
d2k z̄n(kx, ky) . (5.17)

For the case of a parametric loop that pumps electrons along z, the change

∆Pz = −e/Acell (5.18)

would occur via the gradual migration of the z̄(kx, ky) along the +ẑ direction, with a

relabelling of sheets required at the end of the loop.

Now we again consider an adiabatic cycle in a 3D insulator, but this time one that

results in the pumping of the CSA coupling, increasing θ by 2π times the second Chern

number C(2) defined earlier. This corresponds to a pumping of Berry curvature, instead

of electric charge, along z during the adiabatic cycle. For this purpose we define a Berry

curvature on the WCC sheets as

Ωxy,ln,l′m(kx, ky) = i〈∂xWln|∂yWl′m〉 − i〈∂yWln|∂xWl′m〉. (5.19)
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The relation to the Berry curvature in the Bloch representation is similar to that for A

Ωxy,nm(k) =
∑
l

eikzlcΩxy,0n,lm(kx, ky). (5.20)

The intrinsic AHC σyx of the crystal is just given by integrating the trace of Ωxy in the

Bloch representation over the 3D BZ, and this is easily shown to be equal to (e2/hc)
∑

nCn

where Cn is the Chern number of the nth sheet in the home unit cell, given by

Cn = (2π)−1

∫
d2kΩxy,0n,0n. (5.21)

We shall exclude quantum anomalous Hall insulators from our discussion here, so we can

assume that
∑

nCn = 0, but importantly the individual Cn can be nonzero.

We now address the central issue of this chapter, namely, how to represent the CSA cou-

pling θ in the HWF representation. Starting from Eq. (5.3), and using the cyclic properties

of the trace and the fact that Ai matrices are Hermitian, this can be written as

θ = θzΩ + θ∆xy (5.22)

where

θzΩ = − 1

2π

∫
d3kTr[AzΩxy] , (5.23)

θ∆xy = − 1

2π

∫
d3kTr[Ay∂zAx − iAz[Ax, Ay]] . (5.24)

To arrive at this formula we used the periodicity of the gauge to convert Az∂yAz into

−Az∂yAx etc. by integration by part.

Performing the kz integrals, these are expressed in the HWF representation as

θzΩ = −1

c

∫
d2k

∑
n

z̄n Ωxy,0n,0n , (5.25)
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θ∆xy =
i

c

∫
d2k

∑
lmn

(z̄lm − z̄0n)Ax,0n,lmAy,lm,0n , (5.26)

where z̄lm = lc+ z̄m. In deriving Eq. (5.26) we have used that

c

2π

∫
dkzTr[Ay∂zAx] =

∑
l

∑
nm

(ilc)Ax,0n,lmAy,lm,0n , (5.27)

c

2π

∫
dkzTr[AzAxAy] = −i

∑
l

∑
nm

z̄0nAx,0n,lmAy,lm,0n , (5.28)

and

c

2π

∫
dkzTr[AzAyAx] = −i

∑
l

∑
nm

z̄0nAy,0n,lmAx,lm,0n . (5.29)

Eqs. (5.22) and (5.25-5.26) constitute a major result of the present work. 1

Of primary concern to us here is the “Berry curvature dipole” term θzΩ in Eq. (5.25),

which describes the extent to which concentrations of positive and negative Berry curvature

on the WCC sheets, given by Ωxy,0n,0n(kx, ky), are displaced from one another along the ẑ

direction as given by z̄n(kx, ky). Note that θzΩ is shifted by −2πCn if the choice of WCC

sheets comprising the home unit cell is changed so as to shift some z̄n by c. The θzΩ term

is therefore the one that has the 2π ambiguity, and we shall see that it is responsible for

the pumping of CSA coupling. The second term θ∆xy, given by Eq. (5.26), is an intersheet

contribution in which the z-separation between sheets at (kx, ky) is coupled to the off-

diagonal (inter-sheet) matrix elements of the Berry potentials. There is no 2π ambiguity

associated with this term, and as we shall see, it typically remains small even when θ is

not. We regard it as a correction term that is needed for quantitative accuracy but is not

relevant to topological considerations.
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Figure 5.1: The adiabatic loop connecting the Z2-odd and Z2-even phase in FKM tight-
binding model.

5.2 Tight-binding Model

We now illustrate the concepts introduced above in the context of a simple tight-binding

model. Following Essin et al.,[48] we start with the Fu-Kane-Mele (FKM) model,[1] which

is a four-band model of s orbitals on a diamond lattice with spin-orbit interaction,

HFKM =
∑
<ij>

t(eij) c
†
icj + iλso

∑
�ij�

c†is · (d
1
ij × d2

ij)cj . (5.30)

The first term is a sum over first-neighbor hoppings, where eij is the bond vector, while

the second term involves second-neighbor hops in which vectors d1,2
ij describe the two first-

neighbor bonds that make up the second-neighbor hop. We take the cubic lattice constant

to be unity. In the original FKM model t(eij) = t0 independent of hopping direction, but

following Ref. essin-prl09 we take t(eij) = t0(3 + δ) for the bond along (111) and t0 for the

other three bonds. We set the first-neighbor and spin-dependent second-neighbor hoppings

to t0 = 1 and λso = 1 respectively, and assume two bands are occupied.

The strong topological and trivial phases are separated from each other by a band

touching at the Γ point when δ = 0. Again following Essin et al.[48] we add a staggered

Zeeman field h, and define an adiabatic loop parametrized by δ(α) = m cos(α) and h(α) =

m sin(α) where α runs from 0 to 2π, such that the system remains insulating on the loop

1Note that the integrands in Eqs. (5.25-5.26) are gauge-invariant in the Bloch directions, i.e., unchanged
under a phase twist exp(iϕn(kx, ky)).
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Figure 5.2: The two WCC sheets of the half-filled FKM model, and one set of periodic
images, at four stages α = (0, 3π/4, π, 5π/4) along the parametric cycle (clockwise from
upper left). Blue and red colors show positive and negative values of Berry curvature Ωz

on the sheets. The Chern numbers associated with the individual WCC sheets are shown
for those cases where sheets do not touch.

and θ is pumped by 2π. The HWF representation is constructed with ẑ along the (111)

direction.

5.3 WCC Sheets’ Evolution

The WCC sheets derived from the two occupied bands in the FKM model are shown in

Fig. 5.2, where one pair of sheets and one copy of their periodic images along ẑ are shown

for some points around the adiabatic loop.2 The evolution of the Wannier sheet positions

is plotted in Figs. 5.4(a-b) at the four TRI points, namely at the BZ center Γ and at the

three equivalent M points, e.g., (π, π).

For B = 0, the system has TR symmetry at α= 0 and π, where the system is Z2-even

and Z2-odd respectively, and where the WCC sheets pair up at the four TRI-points due

2We use the “periodic” convention on the Bloch function coefficients in the sense of Ref. dobardzic-arxiv
to insure that the Berry curvature respects the symmetry of the system.
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Figure 5.3: The WCCs at the (a) M -point and (b) Γ-point as they evolve around the
adiabatic loop. Blue and red colors show positive and negative values of Berry curvature
at these points.

to Kramers degeneracy.[49] In the normal phase at α = 0 this results in a pair of sheets

connected by Dirac points at all four TRI momenta, and each pair is well separated from

its neighbors along ẑ. As α increases, the Dirac crossings are gapped and the sheets begin

to separate. At the three M points the separation between the pair remains quite small,

and the same sheets touch again at α=π, as is obvious from Fig. 5.4(a). At the Γ point,

however, the sheets separate strongly and eventually reconnect with their neighbors from

the next unit cell along ẑ when α = π. The swapping of partners at an odd number of

the TRI points (here, only at Γ) is characteristic of the strong topological (Z2-odd) phase

at α=π. Note, however, that the WCC sheets, taken together, have no net displacement

along the ẑ direction, so no charge is pumped.

5.4 CSA Coupling Pump

Now we ask what happens to the CSA coupling θ during this cycle, and to do this we inspect

the Berry curvature Ωxy on the sheets. This is represented by the color-scale shading in

Figs. 5.2 and 5.3. Recall that the evolution of θ is expected to be reflected in the behavior



65

Figure 5.4: The CSA coupling θ(α), and the contributions of the topological term θzΩ and
the correction term θ∆xy, for the FKM model as it evolves around the adiabatic loop.

of the θxΩ term as given by Eq. (5.25). We immediately see that the behavior near the M

points is uninteresting; positive and negative Berry curvature contributions separate slightly

at first, but they then reverse and recross, and never give a large contribution to θzΩ.

Near Γ, however, the story is strikingly different. A negative (red) increment of Berry

curvature is transported along +ẑ while a positive (blue) contribution is carried along

−ẑ as α evolves from 0 to π. For small and positive α we intuitively expect that the

total Berry curvature near Γ in the top and bottom sheets (at z̄2 and z̄1) should be −π

and π respectively, characteristic of a weakly gapped Dirac point. Thus the contribution

to the Berry curvature dipole term θzΩ from the vicinity of Γ, which is approximately

π(z̄2(0, 0) − z̄1(0, 0))/c, grows gradually as α increases and the sheets get further apart at

Γ. As α → π the separation between the sheets at Γ approaches a full lattice constant c

and the contribution to θzΩ approaches π. This expectation is confirmed in Fig. 5.4, where

we plot the evolution of θ vs. α, and also its two individual contributions θzΩ and θ∆xy, as

computed from Eqs. (5.25-5.26). Compared to θzΩ, the non-topological θ∆xy term is almost

negligible everywhere around the adiabatic loop, with the possible exception of the vicinity

of the Z2-odd phase where it reverses suddenly, as a result of the WCC sheets from adjacent
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layers coming close to each other at the Γ-point.

As α passes through π there is a Dirac touching at Γ between sheet 2 in the home cell

and sheet 1 in the cell above, with a hand-off of −2π units of Berry curvature (or a Chern

number of −1) from the former to the latter, and with the concentration of Berry curvature

near Γ in band 2 switching from −π to π. A direct evaluation of Eq. (5.25) would show θzΩ

and θ dropping discontinuously by 2π as α crosses through π, but we make use of the gauge

freedom to apply a 2π shift of θ to impose physical continuity when drawing the curves in

Fig. 5.4.

Here we have illustrated the behavior of just one model system, and we have found that

the pumping of θ by 2π is accomplished by a series of touching events between WCC sheets,

such that one Chern number of Berry curvature is handed off to the neighboring sheet with

each touching. But it is now clear in retrospect that any cycle that pumps θ by 2π must

involve such a sequence of touching events. For, if these events did not occur, the CSA

coupling could not be passed along by a lattice vector during the cycle. Incidentally, this

observation also explains why a non-trivial θ pumping cycle is impossible in a system with

a single occupied band, since in this case the WCC sheets are always separated by cẑ and

can never touch.

5.5 Symmetries

In Chapter 3, we showed that the z̄n respect all the symmetries of the crystal in the (kx, ky)

plane, including time reversal symmetry. On the other hand, Ωxy,0n,0n(kx, ky) is an odd

function of (kx, ky) in the 2D BZ. Consequently, in a system with TR-symmetry the Berry

curvature dipole term usually vanishes since z̄n(kx, ky)Ωn(kx, ky) is odd under TR-symmetry

and its integral over the projected BZ should vanish. It can also be shown that θ∆xy vanishes

in this case, which would appear to imply that θ = 0 for both normal and strong Z2-odd TRI

insulators. However, there is a subtlety at the TRI-points where two WCC sheets touch. At

these points Ωxy,0n,0n(kx, ky) = −Ωxy,0m,0m(kx, ky), where n and m are the band indices for
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the two sheets which make up a pair in the home unit cell l = 0. Therefore the contribution

of berry curvature at a TRI-point to the CSA coupling is Ωxy,0n,0n(kx, ky)(z̄n(kx, ky) −

z̄m(kx, ky)). This expression vanishes at all the TRI-points in the Z2-even phase as can be

seen from Fig. 5.2, but in the strong Z2-odd phase the two sheets exchange partners at Γ

point and z̄n(0, 0)− z̄m(0, 0) = c which gives rise to the non-zero value of θzΩ at this phase.

When TR is broken, the value of θzΩ will depend on the choice of WCC sheets assigned

to the “home unit cell” (l = 0) if some sheets have non-zero Chern numbers Cn. That

is, a shift of sheet n by cẑ displaces 2πCn units of Berry curvature by the same distance,

changing the dipole term θzΩ by −2πCn. Thus, we see that our formalism is consistent with

the fact that θ is only well-defined modulo 2π, and we identify the dipole contribution θzΩ

as the “topological” term associated with this indeterminacy.

5.6 Perturbations

To make the model more generic, we also add a small uniform magnetic field B and a

staggered on-site energy ε to break the TR and inversion symmetries of the system, checking

that the loop in (δ, h) space remains insulating. 3 The full Hamiltonian is then

H(α) = HFKM(α) + h(α) ·
∑
i

ξi c
†
isci

+ B ·
∑
i

c†isci + ε
∑
i

ξi c
†
ici, (5.31)

where ξi = ±1 for i on sublattice A and B respectively, and h and B are along (111).

Because of the B and ε terms, the system is no longer exactly TRI at α = 0 and π, but

we can still think of these as being loosely identified with the Z2-even and Z2-odd states

respectively.

Adding a small staggered on-site energy, ε, breaks the inversion symmetry of the FKM

3There is a band closure along a 1D curve in the 4D parameter space (δ, h,B, ε), so we ensure that our
loop in (δ, h) for fixed B and ε encircles this curve.
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model but leaves the system TRI, thereby it doesn’t alter the simultaneous touching events

at Γ and M points when the system is at the α = 0 or π. Conversely, a small uniform

magnetic field B ensures that the TR-invariance of the system is broken everywhere along

the loop, so the WCC sheet do not need to have double-degeneracy at TRI points at α = 0

and π any more. However, when the system is evolving along a topological non-trivial

cycle which pumps the θ-coupling, the WCC sheets need to go under some touching events

along the loop. In the particular case of FKM model, the 3-fold rotational symmetry of the

system keeps the touching events at Γ point in place and they still happen at α = 0 and

π, but the touching events at the three M -points move slightly away from those points in

the projected BZ, and they happen at α = −ε and π+ ε, where ε is a very small parameter

depending on the TRI-breaking field B.

5.7 Slab Configuration

One can also consider the corresponding evolution of the Berry curvatures and Chern trans-

fers for finite slabs, where the bulk of the slab undergoes the same cyclic evolution. If the

surface Hamiltonian could be constantly readjusted so as to remain insulating, the net re-

sult at the end of the cycle would be to change the surface AHC by ±e2/h at the bottom

and top surfaces of the slab respectively. In the more common case that the surface returns

to its initial state at the end of the cycle, the AHC must return to itself too, so the slab is

topologically required to have a metallic surface phase over some interval of α. During this

α interval, the surface AHC changes continuously with changing filling in such a way as to

contribute ∓e2/h by the time the surface band is completely filled or depleted, removing

the extra Chern number pumped from the bulk. The existence of such surface states can

be an experimental signature characterizing any adiabatic loop with non-zero second Chern

number.
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5.8 Summary

In summary, we have demonstrated that the WCC sheets as defined in the HWF repre-

sentation, which had previously been shown to be useful for identifying and visualizing the

topological properties of non-trivial insulating phases, also provides an insightful charac-

terization of a non-trivial parametric loop characterized by a second Chern number. By

defining Berry connections and curvatures associated with the WCC sheets, we have derived

a new formula for the CSA axion coupling θ as a decomposition into a topological Berry

curvature dipole term and a non-topological correction term. In this kind of adiabatic cycle

it is not the charge, but the sheet Berry curvature, that is pumped during the cycle. In

our formulation the 2π ambiguity of θ is readily evident when some sheets have non-zero

Chern numbers, in which case a different assignment of sheets to the home unit cell can

shift θ by 2π, and the link to the surface anomalous Hall conductivity becomes more direct.

We also speculate that Eqs. (5.25-5.26) may provide a more efficient practical means of

computing θ than those used previously, since there is no need to establish a smooth gauge

in the 3D Brillouin zone. In any case, we believe that our extended development of the

HWF representation should prove broadly useful in characterizing the adiabatic evolution

of topological materials and their magnetoelectric properties.
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Chapter 6

Bloch-type Ferroelecteric Domain Walls in BaTiO3

Ferroelectrics find many industrial and commercial applications, such as in high-dielectric

constant capacitors, ferroelectric thin-film memories, piezoelectric transducers, nonlinear

optical devices, and switches. The performance of many kinds of ferroelectric devices is

affected by the ferroelectric domain structure and the properties of the domain boundaries.

For example, a recent experiment has shown that the observed dielectric permittivity of a

BaTiO3 single crystal in the rhombohedral phase varies depending on the domain structures

induced by pre-treatments at higher temperatures [52]. Such influences on the mechanical

and electrical properties of devices has motivated theoretical and experimental work directed

toward obtaining a better understanding of ferroelectric domain structures.

Ferroelectric domain walls (FDWs) are usually considered to be of Ising type, in which

P‖, the projection of the polarization vector onto the plane of the domain wall, simply

reverses itself by passing through zero along a high-symmetry path as one scans through

the domain wall. Ising FDWs tend to be favored because ferroelectrics are generally strongly

electrostrictive, so that a rotation of P‖ away from this high-symmetry path would entail a

significant elastic energy cost. In contrast, the spontaneous magnetostriction which couples

the magnetization and lattice strain in ferromagnetic materials is typically much weaker.

As a result, magnetic domain walls are usually much wider, on the order of microns, and

the magnetization vector can rotate away from the high-symmetry path. The domain wall

is denoted as a Bloch or Néel wall depending on whether this rotation occurs in a plane

parallel or normal to the domain wall, respectively.

In recent years, however, there have been some theoretical predictions of the presence of
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Figure 6.1: The directions of the symmetry-allowed spontaneous polarizations in rhombo-
hedral BaTiO3. Angles are relative to the reference direction labeled as 0◦.

Bloch and even Néel components in some ferroelectric materials and heterostructures [53–

55]. In particular, it has been predicted, in the framework of a phenomenological Ginzburg-

Landau-Devonshire (GLD) model, that the 180◦ FDWs in rhombohedral BaTiO3 should

be of Bloch type [56]. This work has motivated us to test whether this behavior is also

reproduced by first-principles density-functional calculations on BaTiO3.

Since the discovery of ferroelectricity in this material in 1945 [57], BaTiO3 has been

very widely studied and has emerged as a kind of prototypical ferroelectric compound.

It undergoes a sequence of phase transitions from a high-temperature paraelectric cubic

phase to ferroelectric tetragonal, orthorhombic, and finally rhombohedral phases as the

temperature is reduced. Here we are interested in the zero-temperature rhombohedral

phase, in which the spontaneous polarization prefers to lie in eight energetically equivalent

directions, as shown by the arrows in Fig. 6.1. The figure also shows the possible rotation

angles between the spontaneous polarization directions on the two sides of the domain

wall (relative to the arrow marked as ‘0’). In the low-temperature rhombohedral phase of

BaTiO3, the FDWs are therefore of three types: R71◦, R109◦, and R180◦. (The ‘R’ denotes

a FDW in the rhombohedral phase, following the notation of Ref. Marton.) Taking into

account the constraints of electrical neutrality and mechanical compatibility, the plane of
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the FDW is normal to the sum of the two polarization vectors for the R71◦ and R109◦

cases, while for the 180◦ case it can be either {2̄11} or {11̄0}.

In this chapter the R71◦, R109◦, and R180◦{11̄0} FDWs in BaTiO3 are investigated

using first-principles calculations in the context of density-functional theory and a GLD

model [56]. In Sec. 6.2 we describe the geometry of each of the FDWs to be studied. We

also review the first-principles and GLD model approaches which are used to study the

FDWs, and give the details of the methods used for the first-principles calculations. The

results from the first-principles calculations and their comparison to the GLD model are

then described in Sec. 6.3. In Sec. 6.4 we discuss the competition between Ising and Bloch

configurations in terms of energy considerations, and in Sec. 6.5 we briefly summarize and

discuss future prospects.

6.1 Domain wall and supercell geometries

The mechanically compatible and electrically neutral FDWs investigated in this chapter

are shown in the left column of Fig. 6.2, where the arrows indicate the orientation of the

polarization vectors P(−∞) and P(∞) on the two sides of the domain wall. In the right

column, the symmetry-adapted coordinate system (r, s, t) is shown for each of these walls.

The unit vector normal to the wall is denoted by s. The second unit vector r is chosen to

be parallel to P(∞)−P(−∞), the difference between the spontaneous polarizations on the

two sides of the wall; electrically neutrality implies that this is normal to s. The third basis

vector is defined as t = r× s.

For the application of the GLD continuum approach, atomistic details are not important,

and specific atomistic geometries do not have to be considered. This is obviously not the

case, however, for the first-principles calculations. These are set up by considering a super-

cell that is extended along the direction s normal to the wall, keeping minimal dimensions

in the orthogonal directions. Ideally we would prefer a supercell containing only a single

domain wall, but this is incompatible with periodic boundary conditions. Thus, we use
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Figure 6.2: The R71◦, R109◦ and R180◦{11̄0} FDWs in BaTiO3. The arrows in the figures
at left show the directions of the polarization vectors on the two sides of the FDW, while
those on the right depict the associated symmetry-adapted coordinate system (r, s, t).
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Figure 6.3: 10-atom rotated building block that is stacked along s to construct supercells
for studying R71◦ and R180◦{11̄0} FDWs, which lie normal to s.

supercells containing two equivalent FDWs, where we enforce this equivalence by imposing

a two-fold screw symmetry (two-fold rotation about s followed by a half superlattice-vector

translation along the stacking direction s). If these walls are well separated, their effect on

each other should be small and the physical properties of the walls should be unaffected.

We first construct a reference paraelectric supercell by identifying a minimal building

block having lattice vectors parallel to r, s and t, and repeating this block N times along the

stacking direction s. An example of such a building block, used for the R71◦ and R180◦{11̄0}

cases, is shown in Fig. 6.3, and an example of a supercell built from it is shown in Fig. 6.4.

An initial configuration for an Ising FDW is then chosen by shifting the coordinates of the

oxygen atoms along the P(−∞) direction in the first half of the supercell, and along P(∞)

in the second half. For the R71◦ and R109◦ cases this results in a configuration with a

mirror symmetry relating the −t and t directions, and since this symmetry is preserved

by the subsequent relaxation of atomic coordinates, the resulting relaxed configuration is

guaranteed to be of Ising type. To initialize a calculation on a Bloch FDW, we also add

oxygen displacement components along t in one FDW and along −t in the other (still

preserving the screw symmetry), so that effectively the displacement vector in the r-t plane

is rotated from the r to the t direction across the wall before pointing to -r on the other

side of the wall. In both the Ising and Bloch cases, the s component is left unchanged in

the initial configuration, although of course it may relax later.
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Figure 6.4: A supercell with four rotated 10-atom units stacked in the s direction. The
centers of the FDWs are shown by the orange planes.

We then relax the atomic coordinates until all of the forces fall below a chosen threshold.

While doing this, we constrain the two in-plane lattice vectors (i.e., in the plane of the FDW)

to remain fixed, consistent with the relaxed strain state of a single-domain rhombohedral

crystal. We do this because the physical system we are trying to model is an isolated

FDW between very thick domains, in which case the bulk elasticity dominates over the

interface and fixes the in-plane strain. We let the third (long) superlattice vector relax along

with the atomic coordinates during the minimization. Finally, the polarization profile is

calculated from the pattern of displacements and the calculated dynamical effective charges

as described in Sec. 6.2.1 below.

For all the investigated FDWs, we can always find an Ising-type FDW solution if we

impose an appropriate symmetry constraint. To test whether this solution is locally stable,

we add small symmetry-lowering atomic displacements, and check whether it relaxes back

to the Ising solution. We next try starting from a Bloch-type configuration, with substantial

distortions similar to those that would be present in well-defined domains of rhombohedral

phase. Again, if this structure relaxes back to the Ising one, then we conclude that no Bloch

FDW was found, and the Ising solution is stable. If we find instead that the calculation

converges to a Bloch-like solution, we compare its energy with that of the Ising solution (if

locally stable) to determine which is the global solution.

The R71◦ wall has its normal s in the [11̄0] direction, so that it lies parallel to the diagonal

plane in the primitive cell as shown in Fig. 6.2. Therefore, we consider the building block of
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Fig. 6.3, which is a 10-atom
√

2×
√

2× 1 cell obtained by rotating by 45◦ around the z axis

with respect to the parent cubic unit cell. In this rotated cell, the FDW lies in the (100)

plane. The simulation supercell is constructed by stacking these units in the s direction,

as shown in Fig. 6.4. The initial coordinates for the Ising R71◦ FDW simulation are then

obtained by shifting the oxygen atoms by about 0.1 Å along [101] in half the supercell, and

along [101̄] in the other half, in the rotated coordinate system.

The R109◦ FDW lies in the (100) plane, s = x̂, and a supercell can easily be made

by stacking the primitive 5-atom rhombohedral cells in this direction. The initial Ising

configuration is then set by displacing the oxygen atoms from the equilibrium positions

along the [111] direction on one side of the FDW, and along the [11̄1̄] direction on the other

side.

The R180◦{11̄0} wall is again parallel to the diagonal plane in the primitive cell, as

for the R71◦ domain wall. So in this case as well, a supercell is made by stacking the

rotated 10-atom units shown in Fig. 6.3 in the s direction. The initial configuration for the

R180◦{11̄0} Ising FDW is obtained by shifting the oxygen atoms from their equilibrium

positions along the [011] direction on one side of the FDW and along the opposite direction

on the other side, in the rotated coordinate system.

For the Ising R180◦{11̄0} case there is also the possibility of imposing a higher symmetry

by insisting that the FDW lie exactly in a Ba-Ti-O plane, or exactly in an O-O plane, which

can be accomplished by adopting an inversion center through one of the atoms lying in the

FDW. This is not possible for the R71◦ and R109◦ FDWs, since the presence of a global Ps

component makes the “front” and “back” sides of the FDW distinguishable and rules out

the presence of an inversion symmetry.
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6.2 Computational Approach

6.2.1 First-principles calculations

The calculations are done using the ABINIT implementation of density functional the-

ory [58] within the local-density approximation (LDA) using the Perdew-Zunger exchange-

correlation functional [59]. Ultrasoft pseudopotentials,[60] in which semicore s and p states

are included in the valence for Ba and Ti, were converted for use as projector augmented-

wave (PAW) potentials [61] using the USPP2ABINIT package. The plane wave cut-off and

the energy cut-off for the fine FFT grid are set to 25 Ha and 40 Ha respectively. The toler-

ance on the difference of forces in successive iterations in a self-consistent-field (SCF) cycle

is set to 5.0× 10−10 hartree/Bohr, which reached twice successively, causes one SCF cycle

to stop and ions to be moved. The structural optimizations are done using the Broyden-

Fletcher-Goldfarb-Shanno minimization [62–65].

The supercells employed for studying R71◦ and R180◦ FDWs are of dimensions
√

2Na×
√

2a × a, where a is the primitive lattice constant and N is the number of 10-atom units

stacked in the s-direction. Therefore, a 1× 4× 6 Monkhorst-Pack [66] k-mesh is chosen for

simulating these domain walls. The supercell for the R109◦ FDW is made by stacking the

5-atom primitive cells in one direction, so a 1× 6× 6 Monkhorst-Pack [66] k-mesh seems a

proper choice for simulating this FDW.

We also compute the dynamical effective charges [67] Z∗ in bulk paraelectric cubic

BaTiO3.1 The dynamical charge tensor Z∗iα,β of a given atom measures the dipole induced

along β by a displacement of atom i along α. In many oxides including BaTiO3, these

charges are quite different from the formal ionic charges. The Z∗ tensors are computed by

finite differences, i.e., by making small displacements and calculating the resulting change

in Berry-phase polarization [68].

1The dynamical effective charge tensors in the rhombohedral phase are anisotropic and depend on the
rhombohedral axis. We thus use the cubic tensors instead; we judge this to be a reasonable approximation
within the intended accuracy of our calculations.
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These dynamical charges are then used as an ingredient in an algorithm [53] by which we

map out the polarization profiles in FDW-containing supercells, as follows. The polarization

is only changing along the stacking direction and is constant in the planes normal to this

direction. So first the contribution from each layer to the dipole moment in direction α

arising from displacements of atoms j in direction β is calculated as

p(l)
α =

∑
β,j∈ l

Z∗jβ,α ujβ (6.1)

where l is a layer index. In the supercell used for studying the R109◦ FDW these are Ba-O

and Ti-O-O layers, while for the R71◦ and R180◦{11̄0} FDWs built from the rotated 10-

atom units l refers to Ba-Ti-O and O-O layers. If we break the supercell into smaller cells

centered on these layers, we can assign a local polarization to cell l by counting its own

contribution and half that of each neighbor, i.e.,

P (l)
α =

1

Ω

(
1

2
p(l−1)
α + p(l)

α +
1

2
p(l+1)
α

)
, (6.2)

where Ω is the volume of the cell.

6.2.2 The GLD model

We review the Ginzburg-Landau-Devonshire model used in Ref. Hlinka, which is again

used here to model the FDW properties and compare with the first-principles results. The

excess free energy F relative to the reference cubic paraelectric state is expressed in terms

of polarization and strain fields as

F [{Pi, Pi,j , ei,j}] =

∫
f(r) dr, (6.3)

where f is the GLD free-energy density which is taken to be a function of the polarization

components Pi, their spatial derivatives Pi,j = ∂Pi/∂xj , and strain components ei,j . In
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particular, f is expressed in terms of Landau, elastic, electrostriction, and gradient terms:

f = f
(e)
L {Pi}+ fc{eij}+ fq{Pi, eij}+ fG{Pi,j}. (6.4)

In Ref. Hlinka, explicit forms were given for each of the terms in this expression, parameter

values were estimated from the bulk single-crystal properties of BaTiO3, and the GLD

model was used to investigate domain-wall properties.

Here we are especially concerned with the gradient or Ginzburg terms in the free-energy

expansion, which take the form

fG =
1

2
G11(P 2

1,1 + P 2
2,2 + P 2

3,3)

+G1,2(P1,1P2,2 + P2,2P3,3 + P1,1P3,3)

+
1

2
G44

[
(P1,2 + P2,1)2 + (P2,3 + P3,2)2

+(P3,1 + P1,3)2
]
.

(6.5)

As discussed in Ref. Hlinka, considerable caution was required in extracting the G co-

efficients from inelastic neutron scattering experiments, and the remaining uncertainties

are significant. The G tensor has an important effect on the widths and energies of the

FDWs, so that the uncertainties in the values of these coefficients is a limiting factor in

determining the properties of the FDWs. The original parameters of Ref. Marton describ-

ing the gradient terms are G11 = 51 × 10−11 Jm3C−2, G12 = −2 × 10−11 Jm3C−2, and

G44 = 2× 10−11 Jm3C−2.

In order to establish a better estimate of these coefficients, the GLD model is employed

below to recalculate the polarization profiles of R71◦, R109◦, and R180◦{11̄0} FDWs at

zero temperature using modified G coefficients, and the results are compared with first-

principles ones. In order to facilitate the comparisons, these GLD model calculations have

been performed on the identical geometries as in the first-principles calculations. That is,

we impose periodic boundary conditions corresponding to the size of the first-principles
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ZBa ZTi ZO ⊥ ZO ‖
Nominal ionic 2 4 −2 −2
Z∗ (Exp. [69]) 2.9 6.7 −2.4 −4.8
Z∗ (LDA ) 2.75 7.18 −1.86 −5.65

Table 6.1: The experimental and theoretical values of the dynamical effective charges of the
Ba, Ti and O atoms in BaTiO3 (in units of the charge quantum e).

supercells, impose the same two-fold screw symmetry as was used there, and specify the

strain state to be consistent with infinite domains.

6.2.3 Domain-wall width

In the case of a domain wall whose polarization profile can be fit to a hyperbolic tangent,

p(x) = p0 tanh(x/ξ), a common definition of the width is w = 2ξ. However, some of the

domain walls to be studied here have unusual polarization profiles that do not resemble a

single hyperbolic tangent at all. To accommodate such cases, we define w as the width of

the region within which |p(x)|/p0 < tanh(1) = 0.762. This definition has the advantages

of being globally reasonably and of reducing to the conventional definition above when

the FDW does resemble a hyperbolic tangent. We adopt this definition throughout the

remainder of this work.

6.3 Results

BaTiO3 has been studied extensively both experimentally and theoretically. Our first-

principles computed values of 3.95 Å for the lattice constant and 89.93◦ for the rhombohe-

dral angle can be compared with experimental values [70] of 4.00 Å and 89.87◦, respectively.

Our results are consistent with the experience that the LDA typically gives slightly under-

estimated values for the unit-cell volume and ferroelectric distortion [71].

We have also computed the values of the dynamical charge tensors for cubic paraelectric

BaTiO3, to be used as an ingredient in the algorithm for computing polarization profiles

as described in Sec. 6.2.1. The calculated values of Z∗ for Ba, Ti and O in BaTiO3 are
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Figure 6.5: Polarization profiles of Ising R71◦ FDWs in rhombohedral BaTiO3 as calculated
using (a-b) first-principles calculations, and (c-d) the GLD model. Panels (a) and (c):
parametric plots showing polarization values in the Pr–Pt plane. Crosses indicate local
energy minima associated with homogeneous rhombohedral domains. Panels (b) and (d):
polarization components as a function position s along the supercell direction (two supercells
containing four FDWs are shown for clarity).

compared to the experimental values as well as ionic charges in Table 6.1. The values of

ZO ‖ and ZO ⊥ refer to the Z∗ of the oxygen ion when it is displaced along the Ti-O

direction or perpendicular to it, respectively.

A Berry-phase calculation of the polarization [68] using the relaxed atomic positions

in rhombohedral BaTiO3 yields a value of 30µC/cm2. The polarization calculations using

the atomic displacements and the theoretical Z∗ values yields 31µC/cm2, which is slightly

underestimated compared to the experimental value [70] of 33.5µC/cm2 as expected. The

GLD model, on the other hand, yields a value of 38µC/cm2.

In the following subsections, we report the results of our supercell calculations for the

R71◦, R109◦, and R180◦{11̄0} ferroelectric domain walls.

6.3.1 The R71◦ domain wall

We have investigated the R71◦ FDW in rhombohedral BaTiO3 by carrying out first-principle

calculations on an 80-atom supercell made by stacking 10-atom rotated units as described

in Sec. 6.1. In this case we only found an Ising FDW; perturbing this by adding symmetry-

lowering components only led back to the Ising structure upon further relaxation. The

polarization profile computed from the relaxed Ising structure using Eq. (6.2) is displayed

in two ways in Fig. 6.5(a-b). The left panel, Fig. 6.5(a), shows the P
(l)
r and P

(l)
t values for

each layer l, while Fig. 6.5(b) shows plots of P
(l)
r , P

(l)
s and P

(l)
t as a function of position s
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Figure 6.6: Polarization profiles for Ising R109◦ FDWs in BaTiO3 using (a-b) first-principles
calculations and (c-d) the GLD model. Details are as in Fig. 6.5.

while scanning through a sequence of four domain walls (two entire supercells). As is clear

from this figure, the Pt component remains zero everywhere in the supercell, which clearly

indicates the Ising nature of this FDW. The Pr value reverses quite suddenly and attains

a value very close to its saturation bulk value deep inside each domain, indicating a rather

narrow FDW width. The Ps value is almost exactly constant; as we shall see, this is true of

all FDWs in this study, consistent with the expectation that inhomogeneities in Ps would

result in bound charge which in turn would involve an extra Coulomb energy cost.

The above results are in good qualitative agreement with those of the GLD model, but

the GLD domain-wall width of 0.58 nm is almost twice that of the first-principles prediction

of 0.33 nm. This suggests the need for a reduction of the zero-temperature values of the

gradient terms in the GLD model to bring it into better agreement with the first-principles

results. This reduction of the gradient terms will be even more important in the R180◦{11̄0}

case, to be discussed in Sec. 6.3.3. As explained there, we have chosen to reduce all three of

the gradient coefficients in Eq. (6.5) by 40% in order to arrive at an improved GLD model.

The results computed for the R71◦ FDW using this modified GLD model are presented

in Fig. 6.5(c-d) using the same plotting conventions as for the first-principles results in

Fig. 6.5(a-b). The FDW width is now 0.37 nm. Furthermore, the GLD domain-wall energy is

reduced from 5.0 to 3.2 mJ/m2, to be compared with the first-principles value of 3.8 mJ/m2.

While these numerical values should be interpreted reservedly in view of the uncertainties in

both theories, it is clear that the GLD theory is in better agreement with the first-principles

theory after the reduction of the strength of the gradient term.
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Figure 6.7: Polarization profiles for Bloch R109◦ FDWs in BaTiO3 using (a-b) first-
principles calculations and (c-d) the GLD model. Details are as in Fig. 6.5.

6.3.2 The R109◦ domain wall

According to the GLD model calculations of Marton et al. [56], both Ising and Bloch

solutions are possible for the R109◦ FDW in BaTiO3. Our first-principles results confirm

this picture.

Starting first with the Ising case, Fig. 6.6(a-b) shows the polarization profile for a 50-

atom supercell in which the atomic positions have been relaxed from an initial configuration

with two Ising-type R109◦ FDWs. The domain wall is again fairly narrow, though not quite

as narrow as in the R71◦ case. The energy and width of this Ising R109◦ FDW are calcu-

lated from first principles to be 0.36 nm and 11.1 mJ/m2, respectively. The corresponding

GLD results using the reduced gradient term, shown in Fig. 6.6(c-d), are clearly in good

qualitative agreement.

When the atomic positions are relaxed from an appropriately distorted initial configu-

ration, a Bloch-type solution for this wall is found. The first-principles polarization profiles

computed for the Bloch-type R109◦ FDW in a 50-atom supercell are shown in Fig. 6.7(a-b).

To a first approximation, this Bloch FDW can be regarded as a composition of two 71◦

FDWs in close proximity. In part for this reason, the Bloch-type FDW is clearly broader

than the Ising one. However, the energies of the Bloch and Ising solutions are found to be

almost identical, with the Ising one being only ∼2-3% lower in energy. If we extrapolate

to larger separations between FDWs we might expect the Bloch energy to fall more than

the Ising one, because of the larger FDW width in the Bloch case. This suggests that both



84

Figure 6.8: Polarization profiles for Ising R180◦{11̄0} FDWs in BaTiO3 using first-principles
calculations. Details are as in Fig. 6.5.

types of R109◦ FDWs have similar energies and that both might be found in rhombohedral

BaTiO3 crystals. The reason for existence of both Ising and Bloch solutions for the R109◦

FDW is discussed in Sec. 6.4. The modified GLD model again gives good qualitative and

semiquantitative agreement with the first-principles results for the case of the Bloch R109◦

FDW, as shown in Fig. 6.7(c-d).

6.3.3 The R180◦{11̄0} domain wall

A major result of the GLD study of Marton et al. [56], was the prediction that the lowest-

energy FDW for the R180◦{11̄0} case in BaTiO3 is of Bloch type, with an energy lying 10%

lower than that of its Ising counterpart. Verifying this result from first principles is com-

putationally more challenging than studying the R71◦ or R109◦ FDWs. The R180◦{11̄0}

FDW has the biggest rotational angle and is hence the widest of the three investigated

FDWs. Moreover, the Bloch-type FDWs are generally much broader than the Ising-type

ones. Preliminary first-principles calculations showed that supercells smaller than 80 atoms

are too small to accommodate two R180◦ FDWs; initial 60-atom Bloch-wall supercells re-

laxed to unreasonable configurations. We have therefore carried out our calculations on an

80-atom supercell. While the polarization does not quite have room to reach its saturation

value between neighboring FDWs, at least we obtain a stable solution that can reveal the

Ising or Bloch nature of this FDW.

As mentioned in the last paragraph of Sec. 6.1, it is possible to enforce an Ising-like

geometry in the R180◦{11̄0} case by imposing an initial inversion symmetry about an atom
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Figure 6.9: Polarization profiles for Bloch R180◦{11̄0} FDWs in BaTiO3 using (a-b) first-
principles calculations and (c-d) the GLD model. Details are as in Fig. 6.5.

in the center of the FDW and preserving this symmetry during relaxation. When we

apply our first-principles calculations including this symmetry constraint, we arrive at a

configuration like that shown in Fig. 6.8(a-b), which is Ising-like in the sense that Pr =

Pt = 0 in the center of the wall. However, Pt has substantial excursions away from zero,

with the polarization path following an S-like curve in (Pr, Pt) space, as can be seen clearly

in Fig. 6.8(a).

However, we find that if we do not impose this special symmetry, most initial conditions

relax to the Bloch configuration shown in Fig. 6.9(a-b). Even if we start from an Ising-

like configuration and break the symmetry only slightly, we find that the simulation will

eventually relax to the Bloch configuration. It is clear from Fig. 6.9(a-b) that both Pt and

Pr components are strongly non-zero, and the rotation of the polarization as one progresses

through the domain wall, which is the characteristic feature of a Bloch-type wall, is clearly

visible. It is also obvious that this Bloch FDW resembles an adjacent pair of 71◦ and 109◦

FDWs. We also find that this Bloch wall has a significantly lower energy than that of the

Ising-like wall of Fig. 6.8, supporting the conclusion that the Bloch solution is the global

minimum for the case of the R180◦{11̄0} FDW.

We have also carried out corresponding simulations of the Ising-like and Bloch configu-

rations of the R180◦{11̄0} FDW using the GLD model. If this is done using the full strength

of the gradient term under periodic boundary conditions, we find a stable Bloch solution

only when the centers of the domain walls can be at least 3.4 nm apart. This is equiva-

lent to using a supercell of 120 atoms in the first-principles calculations, and imposing the
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Wall width (nm) Wall energy (mJ/m2)
LDA GLD GLD-r LDA GLD GLD-r

Ising R71◦ 0.33 0.58 0.37 3.8 5.0 3.2
Ising R109◦ 0.36 0.54 0.34 11.1 10.6 6.8
Bloch R109◦ 1.01 1.10 0.72 11.2 10.2 6.2
Ising R180◦ 0.51 – 0.83 26.6 – 27.2
Bloch R180◦ 1.38 – 1.40 24.0 – 27.6

Table 6.2: Summary of computed energies and widths of R71◦, R109◦, and R180◦{11̄0}
FDWs in BaTiO3. LDA indicates first-principles results; GLD and GLD-r refer to the
Ginzburg-Landau-Devonshire model with original and reduced gradient term, respectively.

rhombohedral epitaxial strain does not change this result very much. On the other hand,

we find that if the gradient term is reduced by about 40%, then stable solutions become

possible under the same periodic boundary condition as in the 80-atom supercell. The po-

larization profiles calculated for the R180◦{11̄0} FDWs using the GLD model with reduced

gradient term, with the same domain-wall distance and elastic boundary conditions as in

the first-priciples calculations, are shown in Figs. 6.8(c-d) and 6.9(c-d) for the Ising-like and

Bloch cases respectively. The GLD results are clearly now in good qualitative agreement

with the first-principles calculations.

The computed energies and widths of all of the FDWs are collected and presented in

Table 6.2. It is evident that the first-principles and GLD results are in broad agreement. As

expected, the GLD model with reduced gradient term yields narrower walls and lower wall

energies, yielding improved agreement for the Ising R71◦ and R109◦ cases, but somewhat

overshooting for the Bloch R109◦ case.

For the R180◦ FDWs, the values given in Table 6.2 ought not be taken too seriously

because the repeat distance of the supercell is rather short compared to the FDW width.

In fact, we did not succeed in finding stable FDW solutions with the original GLD model.

The present 80-atom supercell is large enough to give stable solutions in both the LDA and

reduced-GLD calculations, but their properties are undoubtedly not yet converged with

supercell size. The FDW energy can be expected to fall with supercell size, so the energies

in Table 6.2 should be taken as upper bounds. The “crowding” of the Bloch R180◦ walls
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Figure 6.10: The path swept by the tip of the polarization vector while rotating from P1

to P3 when crossing through hypothetical Bloch-type FDWs for the R71◦, R109◦, and
R180◦{11̄0} geometries. For the R71◦ case the path (which rotates in a plane parallel to
the FDW) is shown in red to indicate that it is unfavorable.

appears to be more serious than for the Ising ones, which can explain why the reduced GLD

model predicts a slightly higher energy for the Bloch compared to the Ising FDW. When

the GLD calculations are repeated for larger FDW separations, they clearly predict that the

Bloch configuration is lower in energy [56]. The first-principles calculations already predict

the Bloch wall to be lower in energy for the 80-atom supercell, and this trend would only

be strengthened if we could afford to repeat the calculations at increasingly larger FDW

separations such that well-developed rhombohedral domains could form between domains.

6.4 Discussion

Among the three investigated FDWs, the polarization vector rotates by the smallest angle in

the R71◦ FDW, and by the biggest angle in the R180◦{11̄0} FDW, so it is not surprising that

the former has the smallest energy and the latter the biggest, as summarized in Table 6.2.

We can also propose a simple explanation for the fact that the first-principles calculations

and the GLD model results predict an Ising nature for the R71◦ FDW, a Bloch nature for

the R180◦{11̄0} FDW, and a very small energy difference between Ising and Bloch solutions

for the R109◦ FDW. The path the polarization vector would take in rotating from one side
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of the wall to the other in a Bloch-type solution is shown for each of these FDWs in Fig. 6.10.

In a hypothetical Bloch R71◦ FDW the polarization vector would pass close to the center

of one of the adjacent faces, which corresponds to a tetragonal polarization state and is not

energetically favorable in the rhombohedral phase.

On the other hand, the Bloch 109◦ FDW can be considered as a combination of two R71◦

FDWs. As can be seen from Table 6.2, the total energy of two Ising R71◦ FDWs is rather

close to the energy of one Ising 109◦ FDW, from both the LDA and GLD calculations. By

way of a caveat, we point out that such a comparison may be overly simplistic because the

Ising walls comprising the Bloch 109◦ FDW experience a foreign strain environment and do

not conform to the plane of mechanical compatibility of a true R71◦ FDW. Nevertheless,

the comparison does hint that we should not be surprised to find the Ising and Bloch

configurations to be competitive here. Finally, for the Bloch 180◦{11̄0} FDW, which can be

regarded as one R71◦ FDW plus one R109◦ FDW, the LDA calculations indicate that the

sum of the energies of these two walls is much lower than that of a single Ising 180◦ FDW.

The above caveat has perhaps even more force here, but again we can roughly understand

in these terms why the R180◦{11̄0} FDW can only adopt a Bloch form.

6.5 Summary

In conclusion, we have calculated the domain wall widths, energies, and polarization pro-

files for Ising and Bloch ferroelectric domain walls in the zero-temperature rhombohedral

phase of BaTiO3 using both first-principles and Ginzburg-Landau-Devonshire methods. The

first-principles results confirm the expectation that 180◦ domain walls are of Bloch type,

adopting a configuration resembling a pair of 109◦ and 71◦ walls in close proximity. For

the case of the 109◦ wall, Ising and Bloch configurations are competitive. The Ginzburg-

Landau-Devonshire results are brought into improved agreement with the first-principles

calculations if the coefficient of the gradient term is reduced by about 40%. In view of the

uncertainties in the original extraction procedure for the coefficients, it is not surprising
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that these parameters can be improved; indeed, it is encouraging that even the original

parameters gave qualitatively sound results.

While we have not extended our work to other rhombohedral ferroelectrics such as

KNbO3, we expect that these may show a similar pattern of behavior. When instabilities

other than ferroelectric ones are also present, the domain-wall behavior can become more

complicated, as for example with the octahedral rotations and magnetic ordering that play

a role in BiFeO3 [72]. However, we hope that the present work will serve as a useful

benchmark for domain walls in rhombohedral ferroelectrics generally, and will lead to an

improved understanding of ferroelectric domain dynamics and switching in these systems.
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