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The objective of the thesis consists of: (1) analyzing potential uncertainties of the 

simultaneous integration model of scheduling and control of an isothermal multiproduct 

continuous flow stirred tank reactor (CSTR), (2) implementing scenario based method 

to minimize the influence brought by the incorporation of the uncertainties, (3) 

investigating other promising methods of uncertainty treatments and value the 

corresponding feasibility. In order to fulfill those goals, this work includes: (1) 

conducting sensitivity analysis on potential parameters of the integration model, and 

summarizing the effects brought by the incorporation of uncertainties, (2) applying 

scenario based method to the integration model to minimize the affect caused by the 
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introduction of the uncertainties, and evaluating the results, (3) comparing the 

advantages and disadvantages of other promising uncertainty treatments and predicting 

the possible developing direction.  
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Chapter 1 Introduction 

With the rapid development of the process system engineering, chemical process 

simulation has gathered the attention of both scientists and engineers. Simulation has 

become an indispensable process before conducting experiments in reality. Scheduling 

optimization, process control optimization, and uncertainty treatments are among the 

most popular topics associated with process system engineering.  

Acting as a decision making method, scheduling has become a crucial process in most 

of the industrial production, such as chemical industry, petroleum industry, 

pharmaceutical industry. The main task of the scheduling problem is to obtain the 

optimal production arrangement with limited resources. For example, in a chemical 

industry process, the optimal production arrangement must be calculated accurately to 

make sure that the raw materials, reaction equipment, ancillary utilities and other 

related resources are not exhausted while achieving the optimal economic goal.1 Many 

scientists and engineers have been working on this topic to develop and solving 

scheduling model more accurately and easily.2, 3 

As another crucial tool, process control plays a crucial role in many manufacturing 

industries, including chemical engineering. Process control has two major goals: taking 

advantages of real time manipulation of specific variables to avoid system disturbances, 

and ensuring the production meets the corresponding requirements and constraints. 
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Additionally, process control can also introduce economic or economic-related criteria 

into determination of the current target values for selected variables.4 

Under the influence of the globalization, manufacturing industry has to face more 

challenges to survive the harsh competition. Besides the traditional pressure such as 

lowering the production cost and increasing productivity, manufacturing industry also 

has to face an unprecedented challenge – a rapidly changing market.5 In order to reduce 

operational cost and make production more flexible to keep up with the profitability, 

the demand of integration of the production scheduling and system control has become 

more and more badly.6  

Sharing the same economic goal, maximizing profit rate or minimizing cost, it is 

reasonable to predict that the integration of scheduling and control can bring a more 

promising economic benefit. Furthermore, the formulations of scheduling and control 

models interacts, which could make the integration process become seamless. Even 

though the formulations are not same to each other, through mathematical processes, 

such as discretization, we could bridge those two optimization problems and realize the 

integration. Unfortunately, production scheduling problem and process control problem 

have been treated distinctively for quite some time. Trials on integration of these two 

optimization problems are quite recent.7 

Another major concern of simulation is the disturbances brought by uncertainties. It is 

hardly to have no numerical error during the actual process, such as preparing constant 
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concentration reactants or obtaining exact value of variables. Besides, in many works, 

researchers prefer to assume relatively stable parameters as constants. The original 

intention is to keep the briefness of the model without losing the accuracy. However, 

scientists have proven that this assumption is not tenable. The outcome of the model 

may change dramatically when incorporating those tiny uncertainties into the 

optimization problem.8      

In this work, we focused on the robustness of the integration model of scheduling and 

control of an isothermal multiproduct CSTR when incorporating the uncertain 

parameters used to be treated as constants. By introducing uncertain kinetic parameter 

𝐾  and the initial concentration of the reactant 𝐶0  into the dynamic part of the 

integration model, we analyzed the influence of the optimal solution and applied a 

scenario based method of uncertainty treatment to minimize the influence. Also, we 

presented and evaluated several promising methods of uncertainty treatment to be 

applied to the system in the future. 
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Chapter 2 Integration Model of Scheduling and Control 

2.1 Integration of Scheduling and Control 

Scheduling models and control models used to be solved individually. However, the 

simple combination of respective optimal solutions of scheduling model and process 

control model is not capable of obtaining the optimal solution of the whole process 

model. To obtain the genuine optimal solution, we should integrate scheduling and 

process control into one model, and solve for the overall optimal solution. In order to 

integrate the scheduling model and control model, we chose the profit rate as the 

objective functions of both models. By combining the objective functions, we obtained 

the integration model of scheduling and control.  

We assume that there is no revenue obtained during the transition between steady states. 

Therefore, in order to maximize the profit rate, we should reduce the length of transition 

periods. Generally, process control problems are formulated into a dynamic 

optimization problem, such as a Mix-Integer Dynamic Optimization (MIDO) problem 

in this work. Besides, it should be mentioned that the steady state operation data of the 

integration model is obtained by solving the open loop integration.9 

In this work, we conducted research on a simultaneous integration model of scheduling 

and control on an isothermal multiproduct CSTR.10 The scheduling part of the model 

was formulated into a Mix-Integer Non-Linear Liner Programming (MINLP) problem. 

In order to integrate to the scheduling part, the process control part was discretized into 
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an MINLP problem from a Mix-Integer Dynamic Optimization (MIDO) problem by 

applying the Runge–Kutta Forth-Order Method.  

2.2 Integration Model of a Isothermal Multiproduct CSTR 

2.2.1 Objective Function  

Shown in 2.1, the objective function to be maximized Φ stands for the total profit rate, 

which is calculated by subtracting the total cost rate of inventory Φ2 and total cost rate 

of raw material Φ3 from the total revenue rate Φ1.  

Expressed in 2.2, the total revenue rate Φ1 is obtained by summing the revenue rate 

of each product, which is calculated by multiplying the price of the product 𝐶𝑖
𝑝
 by the 

corresponding depletion rate of the products 
𝑊𝑖
𝑇𝑐
⁄ .  

The total inventory cost rate Φ2, shown as 2.3, is gained from summing the inventory 

cost of products. The inventory cost of product 𝑖 is calculated by timing inventory cost 

rate of product 𝑖 by the respective inventory accumulation rate. From the beginning to 

the end of the steady state period, the product accumulation rate can be expressed by 

the production rate 𝐺𝑖  subtracting the depletion rate 
𝑊𝑖
𝑇𝑐
⁄ . The accumulation rate 

reaches the highest value while the production time reaches the end of the production 

period Θ𝑖. After Θ𝑖 until the end of production cycle, the accumulation rate decreases 

because the pure deletion of the product with a rate of 
𝑊𝑖
𝑇𝑐
⁄ . The total rate of the 
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inventory cost can be obtained by the inventory cost rate 𝐶𝑖
𝑠 timing the time related 

stocking amount 
1

2
𝑇𝑐 (𝐺𝑖 −

𝑊𝑖

𝑇𝑐
)Θ𝑖. 

According to the different periods of production, the rate of total raw materials cost rate 

Φ3 is obtained from summing all the raw material cost rate. Raw material cost rate can 

be segregated into two parts. The first part is the transition period. Within transition 

period, the rate of raw material cost is calculated by multiplying the unit cost of raw 

material 𝐶𝑟  by the summation of raw material cost of all the transition elements 

∑ ∑ ℎ𝑘𝜃𝑘
𝑡(𝑢𝑘𝑒

1 + 𝑢𝑘𝑒
2 + 𝑢𝑘𝑒

3 +⋯+ 𝑢𝑘𝑒
𝑚 )𝑁𝑒

𝑒=1
𝑁𝑠
𝑘=1 . The second part includes all the raw 

material cost of steady state periods. During steady states, the rate of raw material cost 

is obtained by timing 𝐶𝑟 by the summation of the raw materials cost of all the steady 

state elements within the production cycle ∑ 𝑝𝑘(𝑢𝑘
1
+ 𝑢𝑘

2
+ 𝑢𝑘

3
+⋯+ 𝑢𝑘

𝑚
)

𝑁𝑠
𝑘=1 . The 

expression of the rate of total raw material cost is shown in 2.4. 

Φ = Φ1 − (Φ2 +Φ3)  2.1 

Φ1 = ∑
𝐶𝑖
𝑝
𝑊𝑖

𝑇𝑐

𝑁𝑝
𝑖=1

 2.2 

Φ2 = ∑
1

2
𝐶𝑖
𝑠Θ𝑖 (𝐺𝑖 −

𝑊𝑖

𝑇𝑐
)

𝑁𝑝
𝑖=1

 2.3 

Φ3 =
1

𝑇𝑐
[∑ ∑ 𝐶𝑟ℎ𝑘𝜃𝑘

𝑡(𝑢𝑘𝑒
1 + 𝑢𝑘𝑒

2 + 𝑢𝑘𝑒
3 +⋯+ 𝑢𝑘𝑒

𝑚 )𝑁𝑒
𝑒=1

𝑁𝑠
𝑘=1  2.4 

+∑ 𝐶𝑟𝑝𝑘(𝑢𝑘
1
+ 𝑢𝑘

2
+ 𝑢𝑘

3
+⋯+ 𝑢𝑘

𝑚
)]

𝑁𝑠

𝑘=1
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2.2.2 Assignment Constraints 

Assignment constraints, inheriting from scheduling, play a major role in the 

determination of optimal production schedule. In this work, we one production cycle 

has five slots. As expressed in 2.5 and 2.6, we assume that each slot can only be 

assigned to produce one product, and each product can only be produced once during 

one production cycle. 𝑦𝑖𝑘, a binary variable indicating the product allocation, obtains 

1 if and only if product 𝑖 is produced in slot 𝑘, otherwise it equals to 0. Shown in 2.8,  

𝑦′𝑖𝑘 is an auxiliary variable corresponding to 𝑦𝑖𝑘. As shown in 2.9 and 2.10, 𝑧𝑖𝑝𝑘 is 

a binary variable indicating the assignment of the transition periods, which obtains 1 

while the transition from producing product 𝑖 to producing product 𝑝 takes place in 

slot 𝑘, otherwise it obtains 0. 

∑ 𝑦𝑖𝑘 = 1,   ∀𝑖
𝑁𝑠
𝑘=1  2.5 

∑ 𝑦𝑖𝑘 = 1,   ∀𝑘
𝑁𝑝
𝑖=1

 2.6 

𝑦′𝑖𝑘 = 𝑦𝑖,𝑘−1,   ∀𝑖, 𝑘 ≠ 1  2.7 

𝑦′𝑖1 = 𝑦𝑖,𝑁𝑠 ,   ∀𝑖  2.8 

𝑧𝑖𝑝𝑘 ≥ 𝑦
′
𝑖𝑘
+ 𝑦𝑝𝑘 − 1,   ∀𝑖, 𝑝, 𝑘  2.9 

𝑧𝑖𝑝𝑘 ≤ 𝑦′𝑖𝑘,   ∀𝑖, 𝑝, 𝑘  2.10 
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2.2.3 Demand Constraints 

Originating from the scheduling, demand constraints regulate the minimum amount of 

products that meets the market demand. As showed in 2.11, the production rate 𝐺𝑖 is 

obtained by multiplying the flow rate of the CSTR 𝐹0 , by the conversion of the 

corresponding product (1 − 𝑋𝑖). Shown as 2.12, with 𝐺𝑖 and Θ𝑖, we can calculate the 

actual minimum amount of each product 𝑊𝑖. As to 2.13, shows that the production 

amount of each product should at least meets its market demand, which are obtained by 

timing the demand rate 𝐷𝑖 by cycle time 𝑇𝑐. 

𝐺𝑖 = 𝐹
0(1 − 𝑋𝑖),   ∀𝑖  2.11 

𝑊𝑖 = 𝐺𝑖Θ𝑖 ,   ∀𝑖  2.12 

𝑊𝑖 ≥ 𝐷𝑖𝑇𝑐,   ∀𝑖  2.13 

2.2.4 Time Constraints 

As typical scheduling problem constraints, time constraints define the process limit of 

each product and the continuity of the system from the view of time. As shown in 2.14, 

𝜃𝑖𝑘, the processing time of product 𝑖 in slot 𝑘  should not exceed the maximum time 

limit 𝜃𝑚𝑎𝑥. With 𝜃𝑖𝑘, we can get the processing time of product 𝑖, Θ𝑖, as shown in 

2.15 and process time at slot 𝑘, 𝑝𝑘, as shown in 2.16. 𝜃𝑘
𝑡 , the transition time from 

product 𝑖 to product 𝑝 in slot 𝑘, is calculated by timing the estimation time value of 

transition 𝑡𝑝𝑖
𝑡  by the binary variable 𝑧𝑖𝑝𝑘, which is shown in 2.17. In 2.18, the ending 
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time of the slot 𝑘, 𝑡𝑘
𝑒, is obtained by adding the processing time 𝑝𝑘 and transition 

time 𝜃𝑘
𝑡  to the starting time of the slot 𝑘, 𝑡𝑘

𝑠 . In equation 2.19, we set the initial value 

of production time 𝑡1
𝑠 to be 0. As shown in 2.20, in order to keep the continuity of the 

integration model, the starting time of slot 𝑘 𝑡𝑘
𝑠  should equal to the ending time of the 

previous slot 𝑡𝑘−1
𝑒 . Additionally, the ending time of each slot should not beyond the 

cycle time 𝑇𝑐, which is shown in 2.21. 

𝜃𝑖𝑘 ≤ 𝜃
𝑚𝑎𝑥𝑦𝑖𝑘,    ∀𝑖, 𝑘  2.14 

Θ𝑖 = ∑ 𝜃𝑖𝑘,   ∀𝑖
𝑁𝑠
𝑘=1  2.15 

𝑝𝑘 = ∑ 𝜃𝑖𝑘,   ∀𝑘
𝑁𝑝
𝑖=1

 2.16 

𝜃𝑘
𝑡 = ∑ ∑ 𝑡𝑝𝑖

𝑡𝑁𝑝
𝑝=1 𝑧𝑖𝑝𝑘,   ∀𝑘

𝑁𝑝
𝑖=1

 2.17 

𝑡𝑘
𝑒 = 𝑡𝑘

𝑠 + 𝑝𝑘 + 𝜃𝑘
𝑡  2.18 

𝑡1
𝑠 = 0  2.19 

𝑡𝑘
𝑠 = 𝑡𝑘−1

𝑒 ,   ∀𝑘 ≠ 1  2.20 

𝑡𝑘
𝑒 ≤ 𝑇𝑐 ,   ∀𝑘  2.21 

2.2.5 Dynamic Model and Discretization 

In this work, we focus on an isothermal multiproduct CSTR, which produces five 

products, A to E, within one production cycle. The dynamic equation of the reaction is 

shown in the expression 2.23. Based on the dynamic equation, we take the 
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concentration of the reactant in the system as the state variable 𝑥, and the feeding rate 

of the CSTR as the manipulated variable 𝑢.  

The products are classified by the concentration of the reactant product. The main 

reaction in the CSTR is a simple irreversible reaction, which was expressed in 2.22. In 

the industry, the time scale of the CSTR varies from minute to days. The time scale is 

determined by several parameters of the system, such as the flow rate of the CSTR, the 

volume of the CSTR and the reaction rate of the reaction. For most bio-reactors, the 

reaction rate affects the time scale more, because the reaction rate of bio-process is 

much slower compared to the chemical process. Therefore, the time scale of 

fermentation CSTR is always counted by hour or day. Another important application of 

CSTR is the polymerization process, whose reaction rate is much higher than the bio-

reaction, which indicates the flow rate and volume of the reactor are more important. 

The corresponding time scale is mostly counted by minute to hour. In our case, we 

assume the reaction in the CSTR is a simple irreversible chemical reaction, and obtain 

the corresponding time scale as hour. Accordingly, the volume of the CSTR 𝑉 is set 

to be 5000 litter. Then we obtain the equation of state as shown in equation 2.24. It 

should be mentioned that the values of the steady state operation parameters are 

obtained by solving the open loop model. Those values are listed in Table 2.1. 
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Table 2.1 Value of Input Data of the Integration Model 

Product 
Q 

(L/hour) 

CR 

(mol/L) 

Demand 

Rate 

(kg/hour) 

Product 

Price 

($/kg) 

Inventory 

Cost ($/kg) 

A 10 0.0967 3 200 1 

B 100 0.2 8 150 1.5 

C 400 0.3032 10 130 1.8 

D 1000 0.393 10 125 2 

E 2500 0.5 10 120 1.7 

To integrate with the scheduling part, we implement the Runge–Kutta Forth-Order 

Method to discretize the dynamic model from an MIDO problem into an MINLP 

problem. We set the parameter 𝑒 as the index of the transition period elements. Shown 

in 3.30, the scale step length between the elements ℎ𝑘 is obtained from the number of 

the elements during the each transition period 𝑁𝑒. The actual transition time of slot k 

𝜃𝑘
𝑡  is obtainted from the scheduling part of the model. Therefore, the actual step length 

of the transition period of slot k can be expressed as ℎ𝑘𝜃𝑘
𝑡 . In this study, we obtain 60 

elements during each transition period. The discretization of the model is expressed in 

equations from 2.25 to 2.30. 

The kinetic parameter 𝐾 and initial concentration of the reactant 𝐶0 are retreated as 

a constant parameter originally. In this work, in order to make the integration model 

closer to the realistic process, we introduce uncertain 𝐾 and 𝐶0 to the integration 

model and implement uncertainty treatment to minimize the influence brought by the 

incorporation of uncertainties.  

3𝑅
     𝑘      
→    𝑃  2.22 
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𝑑𝐶𝑅

𝑑𝑡
=
𝑄

𝑉
(𝐶0 − 𝐶𝑅) − 𝐾𝐶𝑅

3  2.23 

𝑥̇𝑘𝑒
𝑛 =

𝑢𝑘𝑒
𝑚

𝑉
(𝐶0 − 𝑥𝑘𝑒

𝑛 ) − 𝐾𝑥𝑘𝑒
𝑛 3 , ∀𝑛, 𝑘, 𝑒  2.24 

𝐾1𝑘𝑒
𝑛 = 𝑥̇𝑘𝑒

𝑛  2.25 

𝐾2𝑘𝑒
𝑛 =

𝑢𝑘𝑒
𝑚

𝑉
(𝐶0 − (𝑥𝑘𝑒

𝑛 + 0.5ℎ𝑘𝜃𝑘
𝑡𝐾1𝑘𝑒

𝑛 )) − 𝐾(𝑥𝑘𝑒
𝑛 +

                0.5ℎ𝑘𝜃𝑘
𝑡𝐾1𝑘𝑒

𝑛 )
3
 , ∀𝑛, 𝑘, 𝑒                          2.26 

𝐾3𝑘𝑒
𝑛 =

𝑢𝑘𝑒
𝑚

𝑉
(𝐶0 − (𝑥𝑘𝑒

𝑛 + 0.5ℎ𝑘𝜃𝑘
𝑡𝐾2𝑘𝑒

𝑛 )) − 𝐾(𝑥𝑘𝑒
𝑛 +

                0.5ℎ𝑘𝜃𝑘
𝑡𝐾2𝑘𝑒

𝑛 )
3
 , ∀𝑛, 𝑘, 𝑒                          2.27 

𝐾4𝑘𝑒
𝑛 =

𝑢𝑘𝑒
𝑚

𝑉
(𝐶0 − (𝑥𝑘𝑒

𝑛 + 0.5ℎ𝑘𝜃𝑘
𝑡𝐾3𝑘𝑒

𝑛 )) − 𝐾(𝑥𝑘𝑒
𝑛 +

                0.5ℎ𝑘𝜃𝑘
𝑡𝐾3𝑘𝑒

𝑛 )
3
 , ∀𝑛, 𝑘, 𝑒                                                          2.28 

𝑥𝑘,𝑒+1
𝑛 = 𝑥𝑘𝑒

𝑛 +
1

6
ℎ𝑘(𝐾1𝑘𝑒

𝑛 + 2𝐾2𝑘𝑒
𝑛 + 2𝐾3𝑘𝑒

𝑛 + 𝐾4𝑘𝑒
𝑛 )  2.29 

ℎ𝑘 =
1

𝑁𝑒
 2.30 

2.2.6 Initial Condition and System Continuity  

Shown in 2.31 and 2.34, the values of state variable and manipulated variable at the 

very beginning of the production cycle equal to the values of corresponding variables 

by the end of last production cycle. As to the system continuity, the integration model 

should also hold the consistency in state variable 𝑥𝑘,𝑒
𝑛  besides the time constraint we 

mentioned before. To keep continuity, we must make sure the value of 𝑥𝑘,𝑒
𝑛  at the 

beginning of each slot matches its value by the end of the former slot, which are shown 
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in 2.32 and 2.35. Expressed in 2.33 and 2.36, the desired state variable 𝑥̅𝑘
𝑛 and desired 

manipulated variable 𝑢̅𝑘
𝑚 obtain the values of corresponding steady state values.  

Besides, as shown in 2.37 to 2.39, to maintain continuity of the system, the values of 

state variables by the end of the transition match those values at the beginning of the 

steady state periods. We also set 𝑥𝑘,𝑒=1
𝑛 , the state value of the first transition element 

of the first slot, the value of the initial state variable 𝑥𝑖𝑛,𝑘+1
𝑛 . 

𝑥𝑖𝑛,1
𝑛 = ∑ 𝑥𝑠𝑠,𝑖

𝑛 𝑦𝑖,𝑁𝑠 ,   ∀𝑛
𝑁𝑝
𝑖=1

 2.31 

𝑥𝑖𝑛,𝑘
𝑛 = ∑ 𝑥𝑠𝑠,𝑖

𝑛 𝑦𝑖,𝑘−1,   ∀𝑛
𝑁𝑝
𝑖=1

, 𝑘 ≠ 1  2.32 

𝑥̅𝑘
𝑛 = ∑ 𝑥𝑠𝑠,𝑖

𝑛 𝑦𝑖,k,   ∀𝑛, 𝑘
𝑁𝑝
𝑖=1

 2.33 

𝑢𝑖𝑛,1
𝑚 = ∑ 𝑢𝑠𝑠,𝑖

𝑚 𝑦𝑖,𝑁𝑠 ,   ∀𝑚
𝑁𝑝
𝑖=1

 2.34 

𝑢𝑖𝑛,𝑘
𝑚 = ∑ 𝑢𝑠𝑠

𝑚𝑦𝑖,𝑘−1,   ∀
𝑁𝑝
𝑖=1

𝑚, 𝑘 ≠ 1  2.35 

𝑢̅𝑘
𝑚 = ∑ 𝑢𝑠𝑠

𝑚𝑦𝑖,k,   ∀
𝑁𝑝
𝑖=1

𝑚, 𝑘  2.36 

𝑥𝑘,𝑒=1
𝑛 = 𝑥𝑖𝑛,𝑘

𝑛  2.37 

𝑥𝑘,𝑁𝑒
𝑛 = 𝑥𝑖𝑛,𝑘+1

𝑛 ,   ∀𝑘 ≠ 𝑁𝑠  2.38 

𝑥𝑘,𝑁𝑒
𝑛 = 𝑥𝑖𝑛,1

𝑛 ,   ∀𝑘 = 𝑁𝑠  2.39 

2.2.7 Lower and Upper Bounds of the State and Manipulated Variables 

In constraints 2.40 and 2.41, we set lower bounds and upper bounds to the 𝑥𝑘𝑒
𝑛  and 

𝑢𝑘𝑒
𝑚  respectively.. 
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𝑥𝑚𝑖𝑛
𝑛 ≤ 𝑥𝑘𝑒

𝑛 ≤ 𝑥𝑚𝑎𝑥
𝑛 ,   ∀𝑛, 𝑘, 𝑒  2.40 

𝑢𝑚𝑖𝑛
𝑚 ≤ 𝑢𝑘𝑒

𝑚 ≤ 𝑢𝑚𝑎𝑥
𝑚 ,   ∀𝑛, 𝑘, 𝑒  2.41 
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Chapter 3 Influence Brought by the Incorporation of 

Uncertainties 

Works have been done to study the influence brought by the uncertainties and minimize 

it. However, majority of those works deal with the uncertainties in scheduling model or 

process control model. Few works focused on the uncertainty treatments of integration 

model of scheduling and control. The purpose of this work is to study the influence 

brought by the uncertainties of the integration model and to apply appropriate 

uncertainties treatment to minimize the influence. In this chapter, we incorporate the 

uncertain parameters which used to be treated as constant and analyze the 

corresponding influence brought by those uncertainties.  

3.1 Influence Brought by the Incorporation of Uncertain Kinetic 

Parameter 𝑲 

It is common that the values of some parameters in the dynamic models are obtained 

from theoretical calculation, experimental measurement, or a combination of those two 

methods. However, the implementation of those methods can hardly avoid bringing in 

errors, which can be considered as uncertainties of the dynamic model. As one of the 

most important parameters of the dynamic model, the kinetic parameter 𝐾 is obtained 

by both experimental measurement and theoretical calculation. In this part, in order to 

know the influence that uncertain 𝐾 brings to the deterministic integration model, we 

incorporate it into the model as the only uncertainty. 
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Programming the integration model of scheduling and control in GAMS and solving it 

with SBB solver, we observe that the deterministic integration model has a feasible 

region of kinetic parameter 𝐾, which is shown in expression 3.1. We observe that when 

the value of 𝐾 falls below its lower bound, the corresponding reaction rate is too low 

to achieve high conversion, even with the lowest value of the flow rate. This 

phenomenon causes the system cannot reach the high conversion requirement of 

specific product, such as product A. Comparatively, when the value of 𝐾 exceeds its 

upper bound, the relative reaction rate is too high to obtain low conversion, even though 

the flow rate reaches its highest value, the system fails to meet the low conversion 

requirement of some products, such as E. In those two scenarios, the integration model 

will fail to obtain the optimal solution because the demand constraints are violated. 

𝐾 ∈ [1.935,   2.438] 𝐿2/𝑚𝑜𝑙2ℎ  3.1 

3.1.1 Influence on Optimal Production Sequence 

By inputting different values of 𝐾 within that region, we obtain the corresponding 

optimal solutions. From many values of kinetic parameter we input into the integration 

model, we choose the special values of 𝐾 and corresponding optimal production order, 

and listed them in that Table 3.1 as follows. We divide the whole region into five periods, 

based on the production sequence we get from the integration model, within each slot, 

the production order will be stable. During the trial, there are two production sequences, 

D-C-B-A-E and D-E-C-B-A. We also discover that those two production orders are 
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favored in turns. From Figure 3.1 to 3.5, we obtain sample values of 𝐾 in each period 

and plot the figure of state and manipulated variables, which can demonstrate the 

phenomena more intuitively. 

Table 3.1 Influence on Objective Function and Production Sequence 

Periods K 1st Slot 2nd Slot 3rd Slot 4th Slot 5th Slot 

1 

1.935 

D C B A E 

1.94 

2 

1.95 

D E C B A 

1.97 

3 

1.98 

D C B A E 

2 

4 

2.05 

D E C B A 

2.051 

5 

2.1 

D C B A E 

2.438 

 

Figure 3.1 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while 𝐾 = 1.935 𝐿2/𝑚𝑜𝑙2ℎ, Period 1 
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Figure 3.2 State Variable (Red) and Manipulated Variable (Blue) vs. Time, 

while 𝐾 = 1.950 𝐿2/𝑚𝑜𝑙2ℎ, Period 2 

Figure 3.3 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while 𝐾 = 1.980 𝐿2/𝑚𝑜𝑙2ℎ, Period 3 

Figure 3.4 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while 𝐾 = 2.050 𝐿2/𝑚𝑜𝑙2ℎ, Period 4. 
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Figure 3.5 State Variable (Red) and Manipulated Variable (Blue) vs. Time, 

while 𝐾 = 2.100 𝐿2/𝑚𝑜𝑙2ℎ, Period 5 

3.1.2 Influence on Optimal Solutions 

Solving deterministic integration models with different values of kinetic parameter 𝐾, 

we obtain the optimal solutions. The core index of the optimal solution consists of three 

parts: an optimal production sequence, optimal profit rate and corresponding time index. 

Acting as a significant index of profit rate change and process time change, the variation 

of the production rate plays an important role in the sensitivity analysis. As plotted in 

Figure 3.6, we observe that with the increment value of kinetic parameter 𝐾 , the 

production rate of product A, B, C and D decrease gradually. It is obvious that the 

production amount of E decreases gradually until 𝐾 = 2.051 𝐿2/𝑚𝑜𝑙2ℎ , and then the 

production rate of E starts to increase dramatically. By 𝐾 reaching the highest value, 

the corresponding value of production rate of E increase nearly 20 times as 𝐾 =

2.051 𝐿2/𝑚𝑜𝑙2ℎ . The booming of the E production is a combined result of 𝐾 
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increment and highest value of desired manipulated variable. This would be analyzed 

more detailed later in this chapter. 

Figure 3.6 Influence on Production Rate under Uncertain K 

The objective function of the integration model is the value of total profit rate, in other 

words, the purpose of the integration model is to maximize the total profit rate. We have 

the figure of profit rate of each product and the total profit rate in Figure 3.7. While the 

value of 𝐾 is increasing, the trend of the profit rate change is increasing. We observe 

that profit rate of A, B and C increase gradually with the increment of 𝐾 . 

Comparatively, the change trend of product D and E is affected by both increment of 

𝐾 and the change of production sequence. The dramatic increment of profit rate of E 

starts when 𝐾 = 2.051 𝐿2/𝑚𝑜𝑙2ℎ. Both increment value of 𝐾 and its highest value 

of desired manipulated variable caused the profit rate of E increase much faster than 
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the other products. The dramatic increment of profit rate increment of E resulted in its 

booming of production we mentioned before. 

 Figure 3.7 Influence on Profit Rate under Uncertain K 

Another crucial index of this chemical process is the time variables. In this part, we 

focus on the slot time, the summation of transition time and production time, of each 

product and the corresponding cycle time, which are plotted in Figure 3.8. Combining 

the information of desired manipulated variables in Table 2.1 and the figures in Figure 

3.8, it is easy to observe that the higher concentration of the reaction product and lower 

desired manipulated variable value the product need, the longer slot time the process 

need. For example, with concentration of reaction product 0.9033 𝑚𝑜𝑙/𝐿  and a 

desired feeding rate of 10 𝐿/ℎ, the production of A consists of more than half of the 

cycle time. With the increment of 𝐾, the slot times of product A and B, and cycle time 
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decrease gradually. The slot time change of C and D are decreasing while the value of 

𝐾 is increasing, but it is obvious that the change of slot time of Product C and D are 

also affected by the production sequence. As to product E, the slot time of E decrease 

until 𝐾  exceeds 2.051 𝐿2/𝑚𝑜𝑙2ℎ , then it turns into dramatic increment. The 

abnormal behavior of slot time of E is mostly resulted by the highest value of desired 

manipulated variable. 

Figure 3.8 Influence on Slot Time and Cycle Time under Uncertain K 

3.2 Influence brought by the Incorporation of Uncertain Initial 

Concentration of Reactant 𝑪𝟎 

In the deterministic integration model, the initial concentration of the reactant 𝐶0 is 

assumed to be constant. However, in actual industrial situations, 𝐶0 of the production 

cycle can hardly be assured. For example, even though the process is capable of 
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injecting reactant mixture into the CSTR with relatively stable concentration, tiny 

difference between the actual value and the desired value can hardly be avoided. Those 

tiny uncertainty will affect the optimal solution of the whole process. In order to make 

the integration model closer to the reality, we should simulate this phenomenon by 

incorporating the possible uncertainty brought by 𝐶0. 

In this part, we assume that 𝐶0  is the only uncertainty incorporated into the 

consideration. Programing in GAMS and solving the deterministic integration model 

by SBB solver, we observe that breadth of the region of 𝐶0 value is quite large. Even 

though the deterministic model is capable of obtaining optimal solutions while the value 

of 𝐶0 exceeds that region, the difference between the desired value of 𝐶0 and the 

actual value of 𝐶0 should not be that severe during the industrial situation. Therefore, 

we assume that the region of the possible value of 𝐶0 as follows. 

𝐶0 ∈ [0.920,   1.030]  𝑚𝑜𝑙/𝐿  3.2 

3.2.1 Influence on Optimal Production Sequence 

Solving the deterministic integration model with different values of 𝐶0, we obtain the 

optimal solutions. We pick the special values based on the production order of the 

corresponding optimal solution. As shown in the Table 3.2, we classify the whole range 

into 5 periods, based on the production sequence of the optimal solutions. While 𝐶0 is 

the only uncertainty of the integration model, we also observe the rapid change of the 
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optimal production sequence. The optimal production sequence could be classified into 

two categories: D-C-B-A-E and D-E-C-B-A.  

Table 3.2 Influence on Objective Function and Production Sequence 

Periods C0 1st Slot 2nd Slot 3rd Slot 4th Slot 5th Slot 

1 

0.92 

D C B A E 

0.96 

2 

0.97 

D E C B A 

0.99 

3 

0.999 

D C B A E 

1 

4 

1.01 

D E C B A 

1.025 

5 

1.026 

D C B A E 

1.03 

Figure 3.9 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while 𝐶0 = 0.92 𝑚𝑜𝑙/𝐿, Period 1 
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Figure 3.10 State Variable (Red) and Manipulated Variable (Blue) vs. Time, 

while 𝐶0 = 0.97 𝑚𝑜𝑙/𝐿, Period 2 

Figure 3.11 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while 𝐶0 = 1 .00𝑚𝑜𝑙/𝐿, Period 3 

Figure 3.12 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while 𝐶0 = 1.02 𝑚𝑜𝑙/𝐿, Period 4 
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Figure 3.13 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while 𝐶0 = 1.03 𝑚𝑜𝑙/𝐿, Period 5 

3.2.2 Influence on Optimal Solutions 

Solving deterministic integration models with different values of initial concentration 

of reactant 𝐶0, we obtain the optimal solutions. As mentioned in the last chapter, we 

still spread the analysis of influence on optimal solutions from three aspects: the optimal 

production sequence, optimal profit rate and corresponding time index.  

In the Figure 3.14, we plot the value of production amounts of each product with respect 

to different values of 𝐶0. While the value of 𝐶0 is decreasing, the production amount 

of product A, B, C and D decrease gradually. When 𝐶0 decreases, in order to obtain 

the highest profit rate, the integration model shrinks the production amount to minimize 

the inventory cost. The production amount of product E decrease gradually until the 

value of 𝐶0 reaches 0.969 𝑚𝑜𝑙/𝐿. While 𝐶0 exceeds 0.969 𝑚𝑜𝑙/𝐿 the production 
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amount of E start to increase dramatically. The reason why the production of E shows 

abnormal is combined, which we will analyze it later in this chapter. 

Figure 3.14 Influence on Production Amount under Uncertain 𝐶0  

As shown in Figure 3.15, we plot the profit rate of each product and the corresponding 

total profit rate of the system with respect to the different values of 𝐶0. The profit rate 

of A, B and C increase gradually while the value of 𝐶0 in decreasing. It is obvious that 

the production sequence affects the change of profit rate of C, D and E, especially for 

product D and E. Even though the profile of total profit rate shows a tendency of 

increasing with the decrement of 𝐶0, we also observe the influence brought by the 

change of production sequence. The dramatic increment of E production while the value 

of 𝐶0  is lower than 0.969 𝑚𝑜𝑙/𝐿  dues to the production sequence and its higher 

increment in profit rate compared to the other products. 
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Figure 3.15 Influence on Profit Rate under Uncertain 𝐶0 

The profile of slot time of each product and the corresponding cycle time are plotted in 

Figure 3.16. The slot time of product A , B and the cycle time decrease while the value 

of 𝐶0 is decreasing. The decrement of production amount leads to the decrement of 

slot time and cycle time. We also observe that the slot time of product C, D and E are 

affected by the change of the production sequence. The tendency of slot time change of 

C and D is still decreasing. As to slot time of product E, it decrease with the effect of 

change of production sequence, and turn into increasing when 𝐶0  is lower than 

0.969 𝑚𝑜𝑙/𝐿, which is caused by the dramatic increment of production amount of E. 
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Figure 3.16 Influence on Slot Time and Cycle Time under Uncertain 𝐶0 
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Chapter 4 Uncertainty Treatment 

In this part, we will take both uncertainties into consideration and apply a scenario 

based method of uncertainty treatment to minimize the influence brought by the 

uncertainties. In order to revise the integration model closer to reality, we need to face 

three main problems summarized from the former chapters: (1) The integration model 

should stabilize the production amount and cover the realistic inventory equipment 

constraints under the influence of uncertainties; (2) The production assignment of the 

process should be determined regardless of the influence brought by the incorporation 

of uncertainties; (3) The optimal solution of the integration model should be steady and 

capable of measuring the benefit of the process under the influence of possible 

uncertainties. 

4.1 Inventory Constraints 

The dramatic increment of production amount of E when 𝐾 obtained a high value or 

𝐶0 obtained a small value resulted in a dramatic increment of the profit rate. Apparently, 

it seems to be promising, however, it is hardly to achieve realistically because the model 

oversimplified the capability of inventory capacity in reality. In order to cover the 

realistic inventory capability in the integration model, we assume that there is an upper 

bound of the inventory capacity of each product, which is 2000 𝑘𝑔. 

(𝐺𝑖 −
𝑊𝑖
𝑇𝑐
⁄ )Θ𝑖 ≤ 2000  4.1 
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Figure 4.1 Inventory Constraints 

 

4.2 Incorporation of Both Uncertain 𝑲 and 𝑪𝟎  

In reality, the uncertainties coexist simultaneously. Therefore, instead of incorporating 

one uncertainty into the integration model, we should take both uncertain kinetic 

parameter 𝐾 and initial concentration of reactant 𝐶0  into the consideration at the 

same time. We determine the 𝐶0—𝐾 region of the integration model, in which we 

implement the uncertainty treatments. As the work we conducted in the chapter 3, we 

program the integration model with inventory constraints in GAMS and solve the model 

with SBB solver. We set the kinetic parameter and seek for the region of initial 

concentration of reactant. After repeating several times, we obtain the 𝐶0—𝐾 feasible 

region of the integration model which is shown in the Figure 4.2.  
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Figure 4.2 𝐶0 − 𝐾 Feasible Region of the Integration Model 

4.3 Scenario Based Method   

In chapter 3, we incorporated two uncertainties distinctively into the integration model 

to study the influence brought by each uncertainty. From the data we present, it is 

obvious that the integration model is quite sensitive to the uncertain kinetic parameter 

and the initial concentration of reactant. Under the influence of those uncertainties, the 

outcomes of integration model can hardly be regarded as stable, which prohibits the 

practical application of the integration of scheduling and control in reality. In this part, 

we apply a scenario based method to minimize the impact brought by the incorporation 

of the uncertainties. 
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4.3.1 Reformulation of the Integration Model 

By introducing a new index 𝑠 to the integration model, which indicates the scenarios 

that the integration model may obtain under the uncertainties, we reformulate the 

integration model to obtain a stable optimal production sequence and optimal solution. 

4.3.1.1 Objective Function 

Taking the possible scenarios that kinetic parameter or initial concentration of reactant 

may obtain into the consideration, we revise the objective function which is shown in 

4.2. Φ𝜔, the new objective function indicates the weighted sum of total profit rate of 

possible scenarios. The weight associated with each scenario 𝑠 is represented as 𝜔𝑠 ∈

[0, 1]. In order to determine the values of 𝜔𝑠, we should know the distribution of the 

uncertainties we focusing on and the number of the possible scenarios taken into the 

consideration. In this study, we assume that both uncertainties are evenly distributed 

with the corresponding feasible region. Therefore, the values of the 𝜔𝑠 are calculated 

as shown in the expression 4.3. Φ(𝑠), obtained in equation 4.4, represents the total 

profit rate while the reaction system is under scenario 𝑠. In different scenarios, the 

manipulated variable 𝑢𝑘𝑒
𝑚 , production amount 𝑊𝑖, total processing time Θ𝑖, transition 

time 𝜃𝑘
𝑡 , process time at slot 𝑘 𝑝𝑘  and cycle time 𝑇𝑐  will obtain various values, 

therefore, total revenue rate Φ1, total inventory cost rate Φ2 and total raw material 

cost rate Φ3 also changes by different scenarios. Considering this phenomenon, we 
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obtain those parameters by scenario separately. The corresponding expressions are 

listed from equation 4.5 to 4.7. 

Φ𝜔 = ∑ 𝜔𝑠
𝑠
1 Φ(𝑠)   4.2 

𝜔𝑠 =
1

𝑠
 4.3 

Φ(𝑠) = Φ1
(𝑠) − (Φ2

(𝑠) +Φ3
(𝑠))  4.4 

Φ1
(𝑠) = ∑

𝐶𝑖
𝑝
𝑊𝑖

(𝑠)

𝑇𝑐
(𝑠)

𝑁𝑝
𝑖=1

 4.5 

Φ2
(𝑠) = ∑

1

2
𝐶𝑖
𝑠Θ𝑖

(𝑠) (𝐺𝑖 −
𝑊𝑖

(𝑠)

𝑇𝑐
(𝑠) )

𝑁𝑝
𝑖=1

 4.6 

Φ3
(𝑠) =

1

𝑇𝑐
(𝑠) [∑ ∑ 𝐶𝑟ℎ𝑘𝜃𝑘

𝑡(𝑠) (𝑢𝑘𝑒
1 (𝑠)

+ 𝑢𝑘𝑒
2 (𝑠)

+ 𝑢𝑘𝑒
3 (𝑠)

+⋯+
𝑁𝑒
𝑒=1

𝑁𝑠
𝑘=1

𝑢𝑘𝑒
𝑚 (𝑠)

) + ∑ 𝐶𝑟𝑝𝑘
(𝑠)(𝑢𝑘

1
+ 𝑢𝑘

2
+ 𝑢𝑘

3
+⋯+ 𝑢𝑘

𝑚
)]

𝑁𝑠
𝑘=1  4.7 

4.3.1.2 Assignment Constraints 

From the data we obtained from Chapter 3, the optimal production sequence shows 

sensitive to the value of the uncertain parameter 𝐾  and 𝐶0 . While applying the 

integration model to the industrial production, we should not allow the production 

sequence changing under the influence of the uncertainties. Therefore, in the new 

integration model, we set the assignment constraints independent of the scenarios of 

uncertainties. While solving the new optimization problem, the integration model will 

obtain the optimal production sequence maximizing the weighted sum of the total profit 

rate among all the possible scenarios. The formulations are shown from Equation 4.8 

to 4.13. 
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∑ 𝑦𝑖𝑘 = 1,   ∀𝑖
𝑁𝑠
𝑘=1  4.8 

∑ 𝑦𝑖𝑘 = 1,   ∀𝑘
𝑁𝑝
𝑖=1

 4.9 

𝑦′𝑖𝑘 = 𝑦𝑖,𝑘−1,   ∀𝑖, 𝑘 ≠ 1  4.10 

𝑦′𝑖1 = 𝑦𝑖,𝑁𝑠 ,   ∀𝑖  4.11 

𝑧𝑖𝑝𝑘 ≥ 𝑦
′
𝑖𝑘
+ 𝑦𝑝𝑘 − 1,   ∀𝑖, 𝑝, 𝑘  4.12 

𝑧𝑖𝑝𝑘 ≤ 𝑦′𝑖𝑘,   ∀𝑖, 𝑝, 𝑘  4.13 

4.3.1.3 Demand and Inventory Constraints 

Shown as 4.14, the production rate of the product 𝑖 is calculated from the flow rate 

𝐹0  and conversion 1 − 𝑋𝑖 . In expression 4.15, 𝑊𝑖 , the production amount of the 

product 𝑖 obtains different values in different scenarios, since the value of process time 

of the product 𝑖 ,Θ𝑖 is different by scenario. As the cycle time 𝑇𝑐 is also affected by 

the value of 𝐾 or 𝐶0, the constraint of demand is also different by scenario, which is 

listed in 4.16. Shown as expression 4.17, in order to prohibit the dramatic increment of 

any product, we incorporate the inventory equipment constraints into the integration 

model, the maximum amount of inventory is set to be 2000 𝑘𝑔. 

𝐺𝑖 = 𝐹
0(1 − 𝑋𝑖),   ∀𝑖  4.14 

𝑊𝑖
(𝑠) = 𝐺𝑖Θ𝑖

(𝑠),   ∀𝑖  4.15 

𝐷𝑖𝑇𝑐
(𝑠) ≤ 𝑊𝑖

(𝑠)
,   ∀𝑖  4.16 
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(𝐺𝑖 −
𝑊𝑖

(𝑠)

𝑇𝑐
(𝑠)⁄ )Θ𝑖

(𝑠) ≤ 2000 ,    ∀𝑖  4.17 

4.3.1.4 Time Constraints 

It is obvious that production related time indexes will be affected by the values of the 

kinetic parameter and the initial concentration of reactant in various scenarios. 

Therefore, we incorporate the scenarios into the process time 𝜃𝑖𝑘, production time of 

product 𝑖 Θ𝑖, production time of slot 𝑘 𝑝𝑘, transition time in slot 𝑘 𝜃𝑘
𝑡 , starting and 

ending time of slot 𝑘 𝑡𝑘
𝑠  and 𝑡𝑘

𝑒. The related formulations are shown from 4.18 to 4.25. 

𝜃𝑖𝑘
(𝑠) ≤ 𝜃𝑚𝑎𝑥𝑦𝑖𝑘,    ∀𝑖, 𝑘  4.18 

Θ𝑖
(𝑠) = ∑ 𝜃𝑖𝑘

(𝑠),   ∀𝑖
𝑁𝑠
𝑘=1  4.19 

𝑝𝑘
(𝑠) = ∑ 𝜃𝑖𝑘

(𝑠),   ∀𝑘
𝑁𝑝
𝑖=1

 4.20 

𝜃𝑘
𝑡(𝑠) = ∑ ∑ 𝑡𝑝𝑖

𝑡 (𝑠)𝑁𝑝
𝑝=1 𝑧𝑖𝑝𝑘,   ∀𝑘

𝑁𝑝
𝑖=1

 4.21 

𝑡𝑘
𝑒(𝑠) = 𝑡𝑘

𝑠(𝑠) + 𝑝𝑘
(𝑠) + 𝜃𝑘

𝑡(𝑠)  4.22 

𝑡1
𝑠(𝑠) = 0  4.23 

𝑡𝑘
𝑠(𝑠) = 𝑡𝑘−1

𝑒 (𝑠)
,   ∀𝑘 ≠ 1  4.24 

𝑡𝑘
𝑒(𝑠) ≤ 𝑇𝑐

(𝑠),   ∀𝑘  4.25 

4.3.1.5 Dynamic Model and Discretization 

It is in this part we incorporate the possible scenarios of kinetic parameter 𝐾 and initial 

concentration of reactant 𝐶0 into the dynamic part of the integration model. As shown 
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in expression 4.26, as a result of incorporation of the uncertainty scenarios, state 

variable 𝑥𝑘𝑒
𝑛  and manipulated variable 𝑢𝑘𝑒

𝑚  obtain different values in different 

uncertainty scenarios. Therefore, by following the Method of Runge–Kutta Forth-Order, 

the intermediate discretization parameters 𝐾1𝑘𝑒
𝑛 , 𝐾2𝑘𝑒

𝑛 , 𝐾3𝑘𝑒
𝑛  and 𝐾4𝑘𝑒

𝑛  are also 

different by scenario, which are reformulated in 4.27 to 4.31. Presented in 4.32, the 

length of the element ℎ𝑘 is not affected by scenarios, because we still obtain same 

number of the elements during each transition period. 

𝑥̇𝑘𝑒
𝑛 (𝑠) =

𝑢𝑘𝑒
𝑚 (𝑠)

𝑉
(𝐶0

(𝑠) − 𝑥𝑘𝑒
𝑛 (𝑠)) − 𝐾(𝑠)𝑥𝑘𝑒

𝑛 (𝑠)
3
 , ∀𝑛, 𝑘, 𝑒  4.26 

𝐾1𝑘𝑒
𝑛 (𝑠)

= 𝑥̇𝑘𝑒
𝑛 (𝑠)  4.27 

𝐾2𝑘𝑒
𝑛 (𝑠)

=
𝑢𝑘𝑒
𝑚 (𝑠)

𝑉
(𝐶0

(𝑠) − (𝑥𝑘𝑒
𝑛 (𝑠) + 0.5ℎ𝑘𝜃𝑘

𝑡(𝑠)𝐾1𝑘𝑒
𝑛 (𝑠)

)) −

𝐾(𝑠) (𝑥𝑘𝑒
𝑛 (𝑠) + 0.5ℎ𝑘𝜃𝑘

𝑡(𝑠)𝐾1𝑘𝑒
𝑛 (𝑠)

)
3
 , ∀𝑛, 𝑘, 𝑒        4.28                 

𝐾3𝑘𝑒
𝑛 (𝑠)

=
𝑢𝑘𝑒
𝑚 (𝑠)

𝑉
(𝐶0

(𝑠) − (𝑥𝑘𝑒
𝑛 (𝑠) + 0.5ℎ𝑘𝜃𝑘

𝑡(𝑠)𝐾2𝑘𝑒
𝑛 (𝑠)

)) −

𝐾(𝑠) (𝑥𝑘𝑒
𝑛 (𝑠) + 0.5ℎ𝑘𝜃𝑘

𝑡(𝑠)𝐾2𝑘𝑒
𝑛 (𝑠)

)
3
 , ∀𝑛, 𝑘, 𝑒         4.29                 

𝐾4𝑘𝑒
𝑛 (𝑠)

=
𝑢𝑘𝑒
𝑚 (𝑠)

𝑉
(𝐶0

(𝑠) − (𝑥𝑘𝑒
𝑛 (𝑠) + 0.5ℎ𝑘𝜃𝑘

𝑡(𝑠)𝐾3𝑘𝑒
𝑛 (𝑠)

)) −

𝐾(𝑠) (𝑥𝑘𝑒
𝑛 (𝑠) + 0.5ℎ𝑘𝜃𝑘

𝑡(𝑠)𝐾3𝑘𝑒
𝑛 (𝑠)

)
3
 , ∀𝑛, 𝑘, 𝑒        4.30    

𝑥𝑘,𝑒+1
𝑛 (𝑠)

= 𝑥𝑘𝑒
𝑛 (𝑠) +

1

6
ℎ𝑘 (𝐾1𝑘𝑒

𝑛 (𝑠)
+ 2𝐾2𝑘𝑒

𝑛 (𝑠)
+ 2𝐾3𝑘𝑒

𝑛 (𝑠)
+ 𝐾4𝑘𝑒

𝑛 (𝑠)
)    

4.31 

ℎ𝑘 =
1

𝑁𝑒
 4.32 
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4.3.1.6 Initial Condition and System Continuity 

Even though the values of state variables and manipulated variables vary in different 

scenarios, the desired state variables and manipulated variables stay still for they are 

calculated through solving an open-loop model. As listed from 4.33 to 4.38, the initial 

conditions and desired conditions are same to the original integration model. Shown in 

4.39, the first value of the transition element of slot 𝑘 is assigned. Shown in expression 

4.40 and 4.41, the continuity between transition and production is ensured. 

𝑥𝑖𝑛,1
𝑛 = ∑ 𝑥𝑠𝑠,𝑖

𝑛 𝑦𝑖,𝑁𝑠 ,   ∀𝑛
𝑁𝑝
𝑖=1

 4.33 

𝑥𝑖𝑛,𝑘
𝑛 = ∑ 𝑥𝑠𝑠,𝑖

𝑛 𝑦𝑖,𝑘−1,   ∀𝑛
𝑁𝑝
𝑖=1

, 𝑘 ≠ 1  4.34 

𝑥̅𝑘
𝑛 = ∑ 𝑥𝑠𝑠,𝑖

𝑛 𝑦𝑖,k,   ∀𝑛, 𝑘
𝑁𝑝
𝑖=1

 4.35 

𝑢𝑖𝑛,1
𝑚 = ∑ 𝑢𝑠𝑠,𝑖

𝑚 𝑦𝑖,𝑁𝑠 ,   ∀𝑚
𝑁𝑝
𝑖=1

 4.36 

𝑢𝑖𝑛,𝑘
𝑚 = ∑ 𝑢𝑠𝑠

𝑚𝑦𝑖,𝑘−1,   ∀
𝑁𝑝
𝑖=1

𝑚, 𝑘 ≠ 1  4.37 

𝑢̅𝑘
𝑚 = ∑ 𝑢𝑠𝑠

𝑚𝑦𝑖,k,   ∀
𝑁𝑝
𝑖=1

𝑚, 𝑘  4.38 

𝑥𝑘,𝑒=1
𝑛 (𝑠)

= 𝑥𝑖𝑛,𝑘
𝑛  4.39 

𝑥𝑘,𝑁𝑒
𝑛 (𝑠)

= 𝑥𝑖𝑛,𝑘+1
𝑛 ,   ∀𝑘 ≠ 𝑁𝑠  4.40 

𝑥𝑘,𝑁𝑒
𝑛 (𝑠)

= 𝑥𝑖𝑛,1
𝑛 (𝑠)

,   ∀𝑘 = 𝑁𝑠  4.41 
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4.3.1.7 Lower and Upper Bounds of the State and Manipulated Variables 

As the original integration model, the values of state and manipulated variables in all 

the scenarios should not exceed the corresponding feasible region.   

𝑥𝑚𝑖𝑛
𝑛 ≤ 𝑥𝑘𝑒

𝑛 (𝑠) ≤ 𝑥𝑚𝑎𝑥
𝑛 ,   ∀𝑛, 𝑘, 𝑒  4.42 

𝑢𝑚𝑖𝑛
𝑚 ≤ 𝑢𝑘𝑒

𝑚 (𝑠)
≤ 𝑢𝑚𝑎𝑥

𝑚 ,   ∀𝑛, 𝑘, 𝑒  4.43 

4.3.2 Obtaining Possible Scenarios 

In order to implement the scenarios based method to the integration model, we need to 

generate possible scenarios that can represent the 𝐶0—𝐾 region. As marked before, 

both uncertain 𝐾 and uncertain 𝐶0 are distributed evenly within the feasible region. 

Therefore, we generate the possible scenarios based on the 𝐶0—𝐾 region with an even 

distribution. As shown in Figure 4.3, the possible scenarios are chosen geometrically. 

Firstly, we plot the feasible region in Cartesian coordinates, whose vertical axis and 

horizontal axis are is value of 𝐶0 in 𝑚𝑜𝑙/𝐿 and value of 𝐾 in 𝐿2/𝑚𝑜𝑙2ℎ. The step 

length of 𝐾 and 𝐶0 are 0.100 𝐿2/𝑚𝑜𝑙2ℎ and 0.100 𝑚𝑜𝑙/𝐿. Secondly, based on the 

𝐶0—𝐾 region we plotted, generate the possible scenarios. We obtain the values of 

uncertain parameters at the center of the square as the representative values of the 

parameters of the corresponding scenario. If more than half area of the square is in the 

𝐶0—𝐾 region, we consider the corresponding scenario is a possible scenario of the 

system, otherwise, the scenario is classified infeasible. In this case, we choose 10 

possible scenarios, which indicate the 𝐶0 — 𝐾  region with evenly distribution. 
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Different scenarios can represent specific industrial situation that he reaction system 

may obtain.  

Figure 4.3 Obtaining Possible Scenarios from the 𝐶0—𝐾 Region 
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Chapter 5 Results of Scenario Based Method within 𝑪𝟎—𝑲 

Feasible Region of Uncertainty 

In this work, we incorporate the uncertain kinetic parameter 𝐾 and uncertain initial 

concentration of reactant 𝐶0 into the integration model of scheduling and control of an 

isothermal multiproduct CSTR. By inserting different values of 𝐾  and 𝐶0 , the 

deterministic integration model shows its instability. In order to make the integration 

model more realistic and applicable, we introduce inventory equipment constraints and 

implement a scenario based method of uncertainty treatment of the integration model. 

In this chapter, we evaluate the performance of the revised integration model of 

scheduling and control by comparing the optimal production sequence and optimal 

solutions to the deterministic integration model with different values of 𝐾 and 𝐶0. 

Programing the revised integration model in GAMS and solving it by SBB solver, we 

obtain the optimal production sequence as D-B-C-E-A and its corresponding value of 

objective function is 61.57 $/ℎ. In order to compare the performance of the revised 

integration model, we run the corresponding deterministic integration model in each 

possible scenario the system might obtains. In order to compare the performance of the 

revised integration model, we list the total profits under each possible scenarios of the 

revised integration model and the corresponding optimal solution of the deterministic 

models in Table 5.1. 
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Table 5.1 Optimal Solutions of Revised Integration Model and the Corresponding 

Optimal Solutions of Deterministic Integration Models  

Index of 

Scenario 

K C0 

Total 

Profit Rate 

of Revised 

Integration 

Model 

Total 

Profit Rate 

of 

Scenarios 

of Revised 

Integration 

Model 

Corresponding 

Deterministic 

Total Profit 

Rate 

Optimal 

Production 

Order of 

Revised 

Integration 

Model 

Corresponding 

Deterministic 

Production 

Order 

1 1.850 0.950 

61.57 

-1117.78 -455.43 

D-B-C-E-A 

D-C-B-A-E 

2 1.950 0.950 -204.36 446.33 D-B-A-C-E 

3 2.050 0.950 221.89 736.26 D-C-E-B-A 

4 2.150 0.950 477.36 1267.49 D-C-A-B-E 

5 2.050 1.050 -741.06 -122.61 D-E-B-C-A 

6 2.150 1.050 169.34 804.64 D-E-B-C-A 

7 2.250 1.050 679.19 1407.86 D-E-B-C-A 

8 2.350 1.050 1134.23 1964.53 D-C-B-A-E 

9 2.250 1.150 -453.15 127.57 D-E-B-C-A 

10 2.350 1.150 450.07 1101.92 D-C-B-A-E 

Firstly, we compare the optimal production sequence of the revised integration model 

and those of corresponding deterministic models. The optimal production sequence of 

the revised integration model is shared by all the possible scenarios, aiming at achieving 

the highest economic benefits under the consideration of 10 possible scenarios. 

Comparatively, the optimal production sequence of deterministic integration models is 

targeted at obtaining the highest objective function under a consideration of only one 
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possible scenario. When the value of uncertainty changes, the operator of the process 

has to replace the value of the parameter and run the deterministic model again to obtain 

the production sequence, which is possibly different with the current one. The revised 

integration model can help the operators get rid of this situation. Within the possible 

scenarios, the operator only needs to input the possible values of uncertain parameters 

of possible scenarios once, and the revised integration model will come out a stable 

production sequence that can cover all those possible scenarios. As the value of 

objective function, we discuss is in the next paragraph. 

Secondly, we focus on the value of the objective function. It is known that the revised 

integration model is solved only once and its objective function is a weighed summation 

of optimal total profit rates under each possible scenarios with one optimal production 

sequence. In other words, the optimal total profit rates of possible scenarios of the 

revised integration model are related. Comparatively, the optimal solutions of the 

deterministic integration models are not connected. By comparing the total profit rate 

of revised integration model in different scenarios with the corresponding optimal profit 

rates of deterministic integration model, we observe that the values of total profit rate 

of deterministic integration model are always higher than the corresponding total profit 

rate of revised integration model. The reason for this phenomenon is the revised 

integration model only obtains one optimal production sequence, which may not be the 

optimal production sequence if solved in the corresponding deterministic integration 

model. From the analysis we have, we conclude that the value of objective function of 
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the revised integration model can provide a comprehensive prediction to evaluate the 

process under the uncertainties. 

However, the scenario based method also has some disadvantages. It is obvious that the 

optimal solution of the revised integration model is more precise when taking as many 

as possible scenarios into the consideration, but it is unrealistic to accomplish for two 

reasons. Firstly, we need to have a comprehensive knowledge to describe the 

uncertainties and obtain possible scenarios accurately, which could be quite difficult in 

reality. Secondly, even though we are able to obtain large amount of possible scenarios 

accurately and representatively, to obtain a robust optimal solution, the corresponding 

exponential increment of calculation complexity and CPU time will become a severe 

problem.  
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Chapter 6 Future Work 

We have implemented and evaluated the performance of the scenario based method to 

the integration model of an isothermal multiproduct CSTR, however, we also know its 

disadvantages. By analyzing the characteristics of the integration model, we might have 

other promising methods to incorporate the uncertainties into the integration model. 

In order to obtain an integration model of scheduling and control, we need to restructure 

those two distinctive models into same type of optimization formulation. In this study, 

we focus on an isothermal multiproduct CSTR. The main reaction of the process is an 

irreversible reaction. The scheduling problem is an MINLP problem and the 

corresponding process control model is an MIDO problem. In order to integrate an 

MINLP problem and an MIDO problem, we discretize the control model through 

Runge–Kutta Forth-Order Method. The MIDO problem is transferred into an MINLP 

problem based on the nonlinear behavior of the state equation. As the objective 

functions of scheduling model and the process control model are all related to the total 

profit rate, it would be much easier to integrate the scheduling model and control model. 

The integration model of scheduling and control is constructed into an MINLP problem, 

whose objective function is the total profit rate of the process.  

Introduced in the 1970’s, Robust Optimization has developed for over 40 years.12 As a 

special advantage of Robust Optimization, we can obtain a stable optimal solution 

under the influence of uncertainties without knowing much information about the 
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uncertainty, such as the distribution of the uncertainty.13 Therefore, it would be a great 

help for the operators when the information of uncertainties is unknown. Many works 

on Robust Optimization have been done recently, however, the Robust Optimization is 

implemented mostly to linear systems. Unfortunately, the dynamic equations of the vast 

majority of the actual reactions in reality are nonlinear. Some reactions are much more 

complicated than the nonlinear system we have in this study. Since Non-Liner Robust 

Optimization is extremely complex, some scientists have worked out some algorithms 

as compensates. As a very promising method, Discrete Robust Optimization is capable 

to obtain the optimal solution of a nonlinear optimization problem. 

In order to solve the nonlinear system we have in this work, we can discretize the 

nonlinear system into a discrete system and implement Discrete Robust Optimization 

to the discrete system to obtain a robust optimal solution immunized to the uncertainties. 

However, Discrete Robust Optimization also have challenges. One of the most 

challenging processes is that it is difficult to find suitable discretization method to the 

nonlinear system keeping the dynamic behavior of the original system, because we need 

to consider the influence brought by the changing value of some parameters in the 

ordinary differential equation or partial differential equations.14 Even though the 

mathematic process of this method would be much more complicated than scenario 

based method we applied in this work, Discrete Robust Optimization has a potential to 

output a robust optimal solution with very few information known, which is worthy to 

learn in the future.  
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