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The objective of the thesis consists of: (1) analyzing potential uncertainties of the 

simultaneous integration model of scheduling and control of an isothermal multiproduct 

continuous flow stirred tank reactor (CSTR), (2) implementing scenario based method 

to minimize the influence brought by the incorporation of the uncertainties, (3) 

investigating other promising methods of uncertainty treatments and value the 

corresponding feasibility. In order to fulfill those goals, this work includes: (1) 

conducting sensitivity analysis on potential parameters of the integration model, and 

summarizing the effects brought by the incorporation of uncertainties, (2) applying 

scenario based method to the integration model to minimize the affect caused by the 
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introduction of the uncertainties, and evaluating the results, (3) comparing the 

advantages and disadvantages of other promising uncertainty treatments and predicting 

the possible developing direction.  
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Chapter 1 Introduction  

With the rapid development of the process system engineering, chemical process 

simulation has gathered the attention of both scientists and engineers. Simulation has 

become an indispensable process before conducting experiments in reality. Scheduling 

optimization, process control optimization, and uncertainty treatments are among the 

most popular topics associated with process system engineering.  

Acting as a decision making method, scheduling has become a crucial process in most 

of the industrial production, such as chemical industry, petroleum industry, 

pharmaceutical industry. The main task of the scheduling problem is to obtain the 

optimal production arrangement with limited resources. For example, in a chemical 

industry process, the optimal production arrangement must be calculated accurately to 

make sure that the raw materials, reaction equipment, ancillary utilities and other 

related resources are not exhausted while achieving the optimal economic goal.1 Many 

scientists and engineers have been working on this topic to develop and solving 

scheduling model more accurately and easily.2, 3 

As another crucial tool, process control plays a crucial role in many manufacturing 

industries, including chemical engineering. Process control has two major goals: taking 

advantages of real time manipulation of specific variables to avoid system disturbances, 

and ensuring the production meets the corresponding requirements and constraints. 
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Additionally, process control can also introduce economic or economic-related criteria 

into determination of the current target values for selected variables.4 

Under the influence of the globalization, manufacturing industry has to face more 

challenges to survive the harsh competition. Besides the traditional pressure such as 

lowering the production cost and increasing productivity, manufacturing industry also 

has to face an unprecedented challenge ï a rapidly changing market.5 In order to reduce 

operational cost and make production more flexible to keep up with the profitability, 

the demand of integration of the production scheduling and system control has become 

more and more badly.6  

Sharing the same economic goal, maximizing profit rate or minimizing cost, it is 

reasonable to predict that the integration of scheduling and control can bring a more 

promising economic benefit. Furthermore, the formulations of scheduling and control 

models interacts, which could make the integration process become seamless. Even 

though the formulations are not same to each other, through mathematical processes, 

such as discretization, we could bridge those two optimization problems and realize the 

integration. Unfortunately, production scheduling problem and process control problem 

have been treated distinctively for quite some time. Trials on integration of these two 

optimization problems are quite recent.7 

Another major concern of simulation is the disturbances brought by uncertainties. It is 

hardly to have no numerical error during the actual process, such as preparing constant 
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concentration reactants or obtaining exact value of variables. Besides, in many works, 

researchers prefer to assume relatively stable parameters as constants. The original 

intention is to keep the briefness of the model without losing the accuracy. However, 

scientists have proven that this assumption is not tenable. The outcome of the model 

may change dramatically when incorporating those tiny uncertainties into the 

optimization problem.8      

In this work, we focused on the robustness of the integration model of scheduling and 

control of an isothermal multiproduct CSTR when incorporating the uncertain 

parameters used to be treated as constants. By introducing uncertain kinetic parameter 

ὑ and the initial concentration of the reactant ὅ  into the dynamic part of the 

integration model, we analyzed the influence of the optimal solution and applied a 

scenario based method of uncertainty treatment to minimize the influence. Also, we 

presented and evaluated several promising methods of uncertainty treatment to be 

applied to the system in the future. 
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Chapter 2 Integration Model of Scheduling and Control 

2.1 Integration of Scheduling and Control 

Scheduling models and control models used to be solved individually. However, the 

simple combination of respective optimal solutions of scheduling model and process 

control model is not capable of obtaining the optimal solution of the whole process 

model. To obtain the genuine optimal solution, we should integrate scheduling and 

process control into one model, and solve for the overall optimal solution. In order to 

integrate the scheduling model and control model, we chose the profit rate as the 

objective functions of both models. By combining the objective functions, we obtained 

the integration model of scheduling and control.  

We assume that there is no revenue obtained during the transition between steady states. 

Therefore, in order to maximize the profit rate, we should reduce the length of transition 

periods. Generally, process control problems are formulated into a dynamic 

optimization problem, such as a Mix-Integer Dynamic Optimization (MIDO) problem 

in this work. Besides, it should be mentioned that the steady state operation data of the 

integration model is obtained by solving the open loop integration.9 

In this work, we conducted research on a simultaneous integration model of scheduling 

and control on an isothermal multiproduct CSTR.10 The scheduling part of the model 

was formulated into a Mix-Integer Non-Linear Liner Programming (MINLP) problem. 

In order to integrate to the scheduling part, the process control part was discretized into 
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an MINLP problem from a Mix-Integer Dynamic Optimization (MIDO) problem by 

applying the RungeïKutta Forth-Order Method.  

2.2 Integration Model of a Isothermal Multiproduct CSTR  

2.2.1 Objective Function  

Shown in 2.1, the objective function to be maximized ɮ stands for the total profit rate, 

which is calculated by subtracting the total cost rate of inventory ɮ  and total cost rate 

of raw material ɮ  from the total revenue rate ɮ .  

Expressed in 2.2, the total revenue rate ɮ  is obtained by summing the revenue rate 

of each product, which is calculated by multiplying the price of the product ὅ  by the 

corresponding depletion rate of the products 
ὡ
Ὕ.  

The total inventory cost rate ɮ , shown as 2.3, is gained from summing the inventory 

cost of products. The inventory cost of product Ὥ is calculated by timing inventory cost 

rate of product Ὥ by the respective inventory accumulation rate. From the beginning to 

the end of the steady state period, the product accumulation rate can be expressed by 

the production rate Ὃ subtracting the depletion rate 
ὡ
Ὕ. The accumulation rate 

reaches the highest value while the production time reaches the end of the production 

period ɡ. After ɡ until the end of production cycle, the accumulation rate decreases 

because the pure deletion of the product with a rate of 
ὡ
Ὕ. The total rate of the 
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inventory cost can be obtained by the inventory cost rate ὅ timing the time related 

stocking amount Ὕ Ὃ ɡ. 

According to the different periods of production, the rate of total raw materials cost rate 

ɮ  is obtained from summing all the raw material cost rate. Raw material cost rate can 

be segregated into two parts. The first part is the transition period. Within transition 

period, the rate of raw material cost is calculated by multiplying the unit cost of raw 

material ὅ  by the summation of raw material cost of all the transition elements 

В В Ὤ— ό ό ό Ễ ό . The second part includes all the raw 

material cost of steady state periods. During steady states, the rate of raw material cost 

is obtained by timing ὅ  by the summation of the raw materials cost of all the steady 

state elements within the production cycle В ὴ ό ό ό Ễ ό . The 

expression of the rate of total raw material cost is shown in 2.4. 

ɮ ɮ ɮ ɮ  ςȢρ 

ɮ В  ςȢς 

ɮ В ὅɡ Ὃ  ςȢσ 

ɮ В В ὅὬ— ό ό ό Ễ ό  ςȢτ 

ὅὴ ό ό ό Ễ ό  
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2.2.2 Assignment Constraints 

Assignment constraints, inheriting from scheduling, play a major role in the 

determination of optimal production schedule. In this work, we one production cycle 

has five slots. As expressed in 2.5 and 2.6, we assume that each slot can only be 

assigned to produce one product, and each product can only be produced once during 

one production cycle. ώ , a binary variable indicating the product allocation, obtains 

1 if and only if product Ὥ is produced in slot Ὧ, otherwise it equals to 0. Shown in 2.8,  

ώᴂ is an auxiliary variable corresponding to ώ . As shown in 2.9 and 2.10, ᾀ  is 

a binary variable indicating the assignment of the transition periods, which obtains 1 

while the transition from producing product Ὥ to producing product ὴ takes place in 

slot Ὧ, otherwise it obtains 0. 

В ώ ρȟ   ᶅὭ  ςȢυ 

В ώ ρȟ   ᶅὯ  ςȢφ 

ώᴂ ώȟ ȟ   ᶅὭȟὯ ρ  ςȢχ 

ώᴂ ώȟȟ   ᶅὭ  ςȢψ 

ᾀ ώ ώ ρȟ   ᶅὭȟὴȟὯ  ςȢω 

ᾀ ώᴂȟ   ᶅὭȟὴȟὯ  ςȢρπ 
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2.2.3 Demand Constraints 

Originating from the scheduling, demand constraints regulate the minimum amount of 

products that meets the market demand. As showed in 2.11, the production rate Ὃ is 

obtained by multiplying the flow rate of the CSTR Ὂ , by the conversion of the 

corresponding product ρ ὢ . Shown as 2.12, with Ὃ and ɡ, we can calculate the 

actual minimum amount of each product ὡ . As to 2.13, shows that the production 

amount of each product should at least meets its market demand, which are obtained by 

timing the demand rate Ὀ by cycle time Ὕ. 

Ὃ Ὂ ρ ὢ ȟ   ᶅὭ  ςȢρρ 

ὡ Ὃɡȟ   ᶅὭ  ςȢρς 

ὡ ὈὝȟ   ᶅὭ  ςȢρσ 

2.2.4 Time Constraints 

As typical scheduling problem constraints, time constraints define the process limit of 

each product and the continuity of the system from the view of time. As shown in 2.14, 

— , the processing time of product Ὥ in slot Ὧ  should not exceed the maximum time 

limit — . With — , we can get the processing time of product Ὥ, ɡ, as shown in 

2.15 and process time at slot Ὧ, ὴ, as shown in 2.16. —, the transition time from 

product Ὥ to product ὴ in slot Ὧ, is calculated by timing the estimation time value of 

transition ὸ  by the binary variable ᾀ , which is shown in 2.17. In 2.18, the ending 
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time of the slot Ὧ, ὸ, is obtained by adding the processing time ὴ and transition 

time — to the starting time of the slot Ὧ, ὸ. In equation 2.19, we set the initial value 

of production time ὸ to be 0. As shown in 2.20, in order to keep the continuity of the 

integration model, the starting time of slot Ὧ ὸ should equal to the ending time of the 

previous slot ὸ . Additionally, the ending time of each slot should not beyond the 

cycle time Ὕ, which is shown in 2.21. 

— — ώȟ    ᶅὭȟὯ  ςȢρτ 

ɡ В —ȟ   ᶅὭ  ςȢρυ 

ὴ В —ȟ   ᶅὯ  ςȢρφ 

— В В ὸ ᾀ ȟ   ᶅὯ  ςȢρχ 

ὸ ὸ ὴ —  ςȢρψ 

ὸ π  ςȢρω 

ὸ ὸ ȟ   ᶅὯ ρ  ςȢςπ 

ὸ Ὕȟ   ᶅὯ  ςȢςρ 

2.2.5 Dynamic Model and Discretization 

In this work, we focus on an isothermal multiproduct CSTR, which produces five 

products, A to E, within one production cycle. The dynamic equation of the reaction is 

shown in the expression 2.23. Based on the dynamic equation, we take the 
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concentration of the reactant in the system as the state variable ὼ, and the feeding rate 

of the CSTR as the manipulated variable ό.  

The products are classified by the concentration of the reactant product. The main 

reaction in the CSTR is a simple irreversible reaction, which was expressed in 2.22. In 

the industry, the time scale of the CSTR varies from minute to days. The time scale is 

determined by several parameters of the system, such as the flow rate of the CSTR, the 

volume of the CSTR and the reaction rate of the reaction. For most bio-reactors, the 

reaction rate affects the time scale more, because the reaction rate of bio-process is 

much slower compared to the chemical process. Therefore, the time scale of 

fermentation CSTR is always counted by hour or day. Another important application of 

CSTR is the polymerization process, whose reaction rate is much higher than the bio-

reaction, which indicates the flow rate and volume of the reactor are more important. 

The corresponding time scale is mostly counted by minute to hour. In our case, we 

assume the reaction in the CSTR is a simple irreversible chemical reaction, and obtain 

the corresponding time scale as hour. Accordingly, the volume of the CSTR ὠ is set 

to be 5000 litter. Then we obtain the equation of state as shown in equation 2.24. It 

should be mentioned that the values of the steady state operation parameters are 

obtained by solving the open loop model. Those values are listed in Table 2.1. 
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Table 2.1 Value of Input Data of the Integration Model 

Product 
Q 

(L/hour)  

CR 

(mol/L)  

Demand 

Rate 

(kg/hour) 

Product 

Price 

($/kg) 

Inventory 

Cost ($/kg) 

A 10 0.0967 3 200 1 

B 100 0.2 8 150 1.5 

C 400 0.3032 10 130 1.8 

D 1000 0.393 10 125 2 

E 2500 0.5 10 120 1.7 

To integrate with the scheduling part, we implement the RungeïKutta Forth-Order 

Method to discretize the dynamic model from an MIDO problem into an MINLP 

problem. We set the parameter Ὡ as the index of the transition period elements. Shown 

in 3.30, the scale step length between the elements Ὤ is obtained from the number of 

the elements during the each transition period ὔ . The actual transition time of slot k 

— is obtainted from the scheduling part of the model. Therefore, the actual step length 

of the transition period of slot k can be expressed as Ὤ—. In this study, we obtain φπ 

elements during each transition period. The discretization of the model is expressed in 

equations from 2.25 to 2.30. 

The kinetic parameter ὑ and initial concentration of the reactant ὅ are retreated as 

a constant parameter originally. In this work, in order to make the integration model 

closer to the realistic process, we introduce uncertain ὑ and ὅ to the integration 

model and implement uncertainty treatment to minimize the influence brought by the 

incorporation of uncertainties.  

σὙ
           
ựựựὖ  ςȢςς 
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ὅ ὅ ὑὅ  ςȢςσ 

ὼ ὅ ὼ ὑὼ  ȟᶅὲȟὯȟὩ  ςȢςτ 

ὑ ὼ  ςȢςυ 

ὑ ὅ ὼ πȢυὬ—ὑ ὑὼ

                πȢυὬ—ὑ  ȟᶅὲȟὯȟὩ                          ςȢςφ 

ὑ ὅ ὼ πȢυὬ—ὑ ὑὼ

                πȢυὬ—ὑ  ȟᶅὲȟὯȟὩ                          ςȢςχ 

ὑ ὅ ὼ πȢυὬ—ὑ ὑὼ

                πȢυὬ—ὑ  ȟᶅὲȟὯȟὩ                                                          ςȢςψ 

ὼȟ ὼ Ὤ ὑ ςὑ ςὑ ὑ  ςȢςω 

Ὤ  ςȢσπ 

2.2.6 Initial Condition and System Continuity  

Shown in 2.31 and 2.34, the values of state variable and manipulated variable at the 

very beginning of the production cycle equal to the values of corresponding variables 

by the end of last production cycle. As to the system continuity, the integration model 

should also hold the consistency in state variable ὼȟ besides the time constraint we 

mentioned before. To keep continuity, we must make sure the value of ὼȟ at the 

beginning of each slot matches its value by the end of the former slot, which are shown 
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in 2.32 and 2.35. Expressed in 2.33 and 2.36, the desired state variable ὼӶ and desired 

manipulated variable ό  obtain the values of corresponding steady state values.  

Besides, as shown in 2.37 to 2.39, to maintain continuity of the system, the values of 

state variables by the end of the transition match those values at the beginning of the 

steady state periods. We also set ὼȟ , the state value of the first transition element 

of the first slot, the value of the initial state variable ὼ ȟ . 

ὼ ȟ В ὼ ȟώȟȟ   ᶅὲ  ςȢσρ 

ὼ ȟ В ὼ ȟώȟ ȟ   ᶅὲȟὯ ρ  ςȢσς 

ὼӶ В ὼ ȟώȟȟ   ᶅὲȟὯ  ςȢσσ 

ό ȟ В ό ȟώȟȟ   ᶅά  ςȢστ 

ό ȟ В ό ώȟ ȟ   ᶅάȟὯ ρ  ςȢσυ 

ό В ό ώȟȟ   ᶅάȟὯ  ςȢσφ 

ὼȟ ὼ ȟ  ςȢσχ 

ὼȟ ὼ ȟ ȟ   ᶅὯ ὔ  ςȢσψ 

ὼȟ ὼ ȟȟ   ᶅὯ ὔ  ςȢσω 

2.2.7 Lower and Upper Bounds of the State and Manipulated Variables 

In constraints 2.40 and 2.41, we set lower bounds and upper bounds to the ὼ  and 

ό  respectively.. 
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ὼ ὼ ὼ ȟ   ᶅὲȟὯȟὩ  ςȢτπ 

ό ό ό ȟ   ᶅὲȟὯȟὩ  ςȢτρ 
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Chapter 3 Influence Brought by the Incorporation  of 

Uncertainties 

Works have been done to study the influence brought by the uncertainties and minimize 

it. However, majority of those works deal with the uncertainties in scheduling model or 

process control model. Few works focused on the uncertainty treatments of integration 

model of scheduling and control. The purpose of this work is to study the influence 

brought by the uncertainties of the integration model and to apply appropriate 

uncertainties treatment to minimize the influence. In this chapter, we incorporate the 

uncertain parameters which used to be treated as constant and analyze the 

corresponding influence brought by those uncertainties.  

3.1 Influence Brought by the Incorporation of  Uncertain Kinetic 

Parameter ╚ 

It is common that the values of some parameters in the dynamic models are obtained 

from theoretical calculation, experimental measurement, or a combination of those two 

methods. However, the implementation of those methods can hardly avoid bringing in 

errors, which can be considered as uncertainties of the dynamic model. As one of the 

most important parameters of the dynamic model, the kinetic parameter ὑ is obtained 

by both experimental measurement and theoretical calculation. In this part, in order to 

know the influence that uncertain ὑ brings to the deterministic integration model, we 

incorporate it into the model as the only uncertainty. 
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Programming the integration model of scheduling and control in GAMS and solving it 

with SBB solver, we observe that the deterministic integration model has a feasible 

region of kinetic parameter ὑ, which is shown in expression 3.1. We observe that when 

the value of ὑ falls below its lower bound, the corresponding reaction rate is too low 

to achieve high conversion, even with the lowest value of the flow rate. This 

phenomenon causes the system cannot reach the high conversion requirement of 

specific product, such as product A. Comparatively, when the value of ὑ exceeds its 

upper bound, the relative reaction rate is too high to obtain low conversion, even though 

the flow rate reaches its highest value, the system fails to meet the low conversion 

requirement of some products, such as E. In those two scenarios, the integration model 

will fail to obtain the optimal solution because the demand constraints are violated. 

ὑᶰρȢωσυȟ  ςȢτσψ ὒȾάέὰὬ  σȢρ 

3.1.1 Influence on Optimal Production Sequence 

By inputting different values of ὑ within that region, we obtain the corresponding 

optimal solutions. From many values of kinetic parameter we input into the integration 

model, we choose the special values of ὑ and corresponding optimal production order, 

and listed them in that Table 3.1 as follows. We divide the whole region into five periods, 

based on the production sequence we get from the integration model, within each slot, 

the production order will be stable. During the trial, there are two production sequences, 

D-C-B-A-E and D-E-C-B-A. We also discover that those two production orders are 
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favored in turns. From Figure 3.1 to 3.5, we obtain sample values of ὑ in each period 

and plot the figure of state and manipulated variables, which can demonstrate the 

phenomena more intuitively. 

Table 3.1 Influence on Objective Function and Production Sequence 

Periods K 1st Slot 2nd Slot 3rd Slot 4th Slot 5th Slot 

1 

1.935 

D C B A E 

1.94 

2 

1.95 

D E C B A 

1.97 

3 

1.98 

D C B A E 

2 

4 

2.05 

D E C B A 

2.051 

5 

2.1 

D C B A E 

2.438 

 

Figure 3.1 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while ὑ ρȢωσυ ὒȾάέὰὬ, Period 1 
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Figure 3.2 State Variable (Red) and Manipulated Variable (Blue) vs. Time, 

while ὑ ρȢωυπ ὒȾάέὰὬ, Period 2 

Figure 3.3 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while ὑ ρȢωψπ ὒȾάέὰὬ, Period 3 

Figure 3.4 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while ὑ ςȢπυπ ὒȾάέὰὬ, Period 4. 
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Figure 3.5 State Variable (Red) and Manipulated Variable (Blue) vs. Time, 

while ὑ ςȢρππ ὒȾάέὰὬ, Period 5 

3.1.2 Influence on Optimal Solutions 

Solving deterministic integration models with different values of kinetic parameter ὑ, 

we obtain the optimal solutions. The core index of the optimal solution consists of three 

parts: an optimal production sequence, optimal profit rate and corresponding time index. 

Acting as a significant index of profit rate change and process time change, the variation 

of the production rate plays an important role in the sensitivity analysis. As plotted in 

Figure 3.6, we observe that with the increment value of kinetic parameter ὑ, the 

production rate of product A, B, C and D decrease gradually. It is obvious that the 

production amount of E decreases gradually until ὑ ςȢπυρ ὒȾάέὰὬ , and then the 

production rate of E starts to increase dramatically. By ὑ reaching the highest value, 

the corresponding value of production rate of E increase nearly 20 times as ὑ

ςȢπυρ ὒȾάέὰὬ. The booming of the E production is a combined result of ὑ 
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increment and highest value of desired manipulated variable. This would be analyzed 

more detailed later in this chapter. 

Figure 3.6 Influence on Production Rate under Uncertain K 

The objective function of the integration model is the value of total profit rate, in other 

words, the purpose of the integration model is to maximize the total profit rate. We have 

the figure of profit rate of each product and the total profit rate in Figure 3.7. While the 

value of ὑ is increasing, the trend of the profit rate change is increasing. We observe 

that profit rate of A, B and C increase gradually with the increment of ὑ. 

Comparatively, the change trend of product D and E is affected by both increment of 

ὑ and the change of production sequence. The dramatic increment of profit rate of E 

starts when ὑ ςȢπυρ ὒȾάέὰὬ. Both increment value of ὑ and its highest value 

of desired manipulated variable caused the profit rate of E increase much faster than 
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the other products. The dramatic increment of profit rate increment of E resulted in its 

booming of production we mentioned before. 

 Figure 3.7 Influence on Profit Rate under Uncertain K 

Another crucial index of this chemical process is the time variables. In this part, we 

focus on the slot time, the summation of transition time and production time, of each 

product and the corresponding cycle time, which are plotted in Figure 3.8. Combining 

the information of desired manipulated variables in Table 2.1 and the figures in Figure 

3.8, it is easy to observe that the higher concentration of the reaction product and lower 

desired manipulated variable value the product need, the longer slot time the process 

need. For example, with concentration of reaction product πȢωπσσ άέὰȾὒ and a 

desired feeding rate of ρπ ὒȾὬ, the production of A consists of more than half of the 

cycle time. With the increment of ὑ, the slot times of product A and B, and cycle time 
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decrease gradually. The slot time change of C and D are decreasing while the value of 

ὑ is increasing, but it is obvious that the change of slot time of Product C and D are 

also affected by the production sequence. As to product E, the slot time of E decrease 

until ὑ exceeds ςȢπυρ ὒȾάέὰὬ, then it turns into dramatic increment. The 

abnormal behavior of slot time of E is mostly resulted by the highest value of desired 

manipulated variable. 

Figure 3.8 Influence on Slot Time and Cycle Time under Uncertain K 

3.2 Influence brought by the Incorporation of Uncertain Initial 

Concentration of Reactant ╒  

In the deterministic integration model, the initial concentration of the reactant ὅ is 

assumed to be constant. However, in actual industrial situations, ὅ of the production 

cycle can hardly be assured. For example, even though the process is capable of 
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injecting reactant mixture into the CSTR with relatively stable concentration, tiny 

difference between the actual value and the desired value can hardly be avoided. Those 

tiny uncertainty will affect the optimal solution of the whole process. In order to make 

the integration model closer to the reality, we should simulate this phenomenon by 

incorporating the possible uncertainty brought by ὅ. 

In this part, we assume that ὅ  is the only uncertainty incorporated into the 

consideration. Programing in GAMS and solving the deterministic integration model 

by SBB solver, we observe that breadth of the region of ὅ value is quite large. Even 

though the deterministic model is capable of obtaining optimal solutions while the value 

of ὅ exceeds that region, the difference between the desired value of ὅ and the 

actual value of ὅ should not be that severe during the industrial situation. Therefore, 

we assume that the region of the possible value of ὅ as follows. 

ὅᶰπȢωςπȟ  ρȢπσπ  άέὰȾὒ  σȢς 

3.2.1 Influence on Optimal Production Sequence 

Solving the deterministic integration model with different values of ὅ, we obtain the 

optimal solutions. We pick the special values based on the production order of the 

corresponding optimal solution. As shown in the Table 3.2, we classify the whole range 

into 5 periods, based on the production sequence of the optimal solutions. While ὅ is 

the only uncertainty of the integration model, we also observe the rapid change of the 
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optimal production sequence. The optimal production sequence could be classified into 

two categories: D-C-B-A-E and D-E-C-B-A.  

Table 3.2 Influence on Objective Function and Production Sequence 

Periods C0 1st Slot 2nd Slot 3rd Slot 4th Slot 5th Slot 

1 

0.92 

D C B A E 

0.96 

2 

0.97 

D E C B A 

0.99 

3 

0.999 

D C B A E 

1 

4 

1.01 

D E C B A 

1.025 

5 

1.026 

D C B A E 

1.03 

Figure 3.9 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while ὅ πȢως άέὰȾὒ, Period 1 
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Figure 3.10 State Variable (Red) and Manipulated Variable (Blue) vs. Time, 

while ὅ πȢωχ άέὰȾὒ, Period 2 

Figure 3.11 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while ὅ ρ ȢππάέὰȾὒ, Period 3 

Figure 3.12 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while ὅ ρȢπς άέὰȾὒ, Period 4 
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Figure 3.13 State Variable (Red) and Manipulated Variable (Blue) vs. Time,  

while ὅ ρȢπσ άέὰȾὒ, Period 5 

3.2.2 Influence on Optimal Solutions 

Solving deterministic integration models with different values of initial concentration 

of reactant ὅ, we obtain the optimal solutions. As mentioned in the last chapter, we 

still spread the analysis of influence on optimal solutions from three aspects: the optimal 

production sequence, optimal profit rate and corresponding time index.  

In the Figure 3.14, we plot the value of production amounts of each product with respect 

to different values of ὅ. While the value of ὅ is decreasing, the production amount 

of product A, B, C and D decrease gradually. When ὅ decreases, in order to obtain 

the highest profit rate, the integration model shrinks the production amount to minimize 

the inventory cost. The production amount of product E decrease gradually until the 

value of ὅ reaches πȢωφω άέὰȾὒ. While ὅ exceeds πȢωφω άέὰȾὒ the production 
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amount of E start to increase dramatically. The reason why the production of E shows 

abnormal is combined, which we will analyze it later in this chapter. 

Figure 3.14 Influence on Production Amount under Uncertain ὅ  

As shown in Figure 3.15, we plot the profit rate of each product and the corresponding 

total profit rate of the system with respect to the different values of ὅ. The profit rate 

of A, B and C increase gradually while the value of ὅ in decreasing. It is obvious that 

the production sequence affects the change of profit rate of C, D and E, especially for 

product D and E. Even though the profile of total profit rate shows a tendency of 

increasing with the decrement of ὅ, we also observe the influence brought by the 

change of production sequence. The dramatic increment of E production while the value 

of ὅ is lower than πȢωφω άέὰȾὒ dues to the production sequence and its higher 

increment in profit rate compared to the other products. 
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Figure 3.15 Influence on Profit Rate under Uncertain ὅ 

The profile of slot time of each product and the corresponding cycle time are plotted in 

Figure 3.16. The slot time of product A , B and the cycle time decrease while the value 

of ὅ is decreasing. The decrement of production amount leads to the decrement of 

slot time and cycle time. We also observe that the slot time of product C, D and E are 

affected by the change of the production sequence. The tendency of slot time change of 

C and D is still decreasing. As to slot time of product E, it decrease with the effect of 

change of production sequence, and turn into increasing when ὅ  is lower than 

πȢωφω άέὰȾὒ, which is caused by the dramatic increment of production amount of E. 
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Figure 3.16 Influence on Slot Time and Cycle Time under Uncertain ὅ 
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