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John Kolassa

The bivariate confidence region of two parameters of interest conditioning on one
nuisance parameter is evaluated to the error of O,( %) using Laplace’s
approximation. A joint matching prior in the Bayesian framework is developed
using Laplace’s approximation to establish a mathematical equivalence such that
the posterior quartiles coincide with the confidence region defined as in a frequency
approach. Quadratic saddlepoint approximation is developed to evaluate bivariate
conditional and unconditional tail probability to the error of O,(+) using
saddlepoint approximation. The quadratic saddlepoint approximation is extended

to three dimension to evaluate trivariate unconditional tail probability.
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Part [

INTRODUCTION OF HIGHER ORDER METHODS FOR
EVALUATING TAIL PROBABILITY AND BIVARIATE

CONFIDENCE REGION



Higher-order statistical inference in terms of p-values, defined as the tail prob-
ability of a test statistic, and confidence regions for multi-parameters, are developed
using approximation methods, for cases in which tail probability and confidence region
do not have closed forms. Tail areas considered in the thesis are intersections of half-
spaces. We apply Laplace’s approximation method to evaluate bivariate confidence
region of two parameters of interest with one nuisance parameter as presented in Part
IT, and saddlepoint approximation method to evaluate higher oder tail probability as
described in Part III.

Laplace’s method is a mathematical technique to evaluate integrals in the form
of [ ecf@d@ with C' being a constant. By expanding f(z) at point zo where f(x)
reaches its global maximum using Taylor’s Theorem, the integral can be approximated
by a Gaussian integral. In Part II, I use Laplace’s approximation method to develop a
prior distribution in the Bayesian framework to establish a mathematical equivalence
such that the posterior quartiles coincide with the confidence limit points defined as
in a frequency approach, i.e., Pr((61,62) < (h1(S, ), ha(S,a))|(61,02,03)) = o when
(h1(S, @), ho(S, «v)) are the joint bivariate quantiles of the posterior distribution at
level of a. A prior distribution that satisfies this mathematical equivalence is called a
matching prior. More details regarding the concepts of matching prior are provided
in Chapter 2.1.

Saddlepoint approximations are derived by inverting the cumulant generat-
ing function Kr(§) = log(E[exp(gT)]) giving the probability density in terms of the
cumulant generating function. More details are provided in Chapter 4.1 as a back-
ground introduction of various saddlepoint approximation methods. In Part III, we
develop an approach using saddlepoint approximation to express the higher order tail
probability approximation in the forms of normal density functions and normal dis-
tribution functions, based on a transformation of variables such that the integrand of

the saddlepoint approximation expression can be expressed as a exponential function



of linear and quadratic terms of the integrated variables.



Part 11

BIVARIATE CONFIDENCE REGION USING LAPLACE’S

APPROXIMATION



1. BACKGROUND ON LAPLACE’S APPROXIMATION

One of the approaches to remove the effect of nuisance parameter is to perform
conditional inference using the adjusted profile likelihood (Kolassa, 2004), this method
and other approaches involved with direct derivation of the conditional probability
density function may be complicated in many circumstances. The approach presented
here involves a matching prior using Bayesian probability inference (Welch and Peers,
1963, and Peers, 1965) to obtain an equivalent conditional probability without direct
derivation of the conditional density. Laplace’s method is used when developing the
matching prior. The research is focused on the problem of two parameters of interest
with one nuisance parameter.

To evaluate an univariate integral in the form of [ e“f @ dz, with C being
constant, one may expand f(z) using Taylor’s Theorem as f(z) = f(zq) + f(z0) (z —
zo) + 1 f(z0) (z — 20)® + O((x — w0)?), where f(z) has a global maximum at zo
and the second derivative f(xo)" < 0. The first derivative of f(z) vanishes at o,
and f(z) can be approximated to the quadratic order as f(z) &~ f(zo) + 3 f(zo)" (z —
79)%. Therefore, [ e“/(®*)dz can be approximated by e©f(@0) [ 3Cf (@) (2=20)” 2 where
/ e3C1@0)" (2=20)” Iy with f(z0)" < 0is asimple Gaussian integral. Similarly, Laplace’s
approximation can be implemented to evaluate multivariate integral in the form of

i ecf@)dap with z being a vector.



2. METHODOLOGY

2.1 Matching Prior

There exists a formal mathematical equivalence between Bayesian solutions
(posterior probability conditioning on the sample) and confidence theory solutions
(confidence point conditioning on the parameter) by finding a proper prior distribu-
tion in the framework of single parameter of interest and none or multiple nuisance
parameters. Welch and Peers (1963) developed the matching prior for a single param-
eter of interest with no nuisance parameters, and Peers (1965) extended the single
parameter problem to multiple parameter problem with one parameter of interest and
all others being nuisance parameters. We will use a similar approach to extend single
parameter of interest in presence of other parameters to two parameters of interest
in presence of one nuisance parameter. Peers (1965) provided a joint prior w(t) such

that the quantile h(S, «) of the posterior distribution satisfying

S 1 p(S w(t)dt

TT-TeEownd @ (2.1)

also satisfies Pr(6; < h(S,a))|f) = «, where 6, is the parameter of interest, and ¢
is the vector of all parameters. Write p(S,t) = exp(L(S,t)), w(t) = exp((t)), where
L(S,t) is the log likelihood function and 1 (t) is the log prior density function. Define

a monotonic function of 6,

I(S01) [ [ [ exp(L(S,t)+ip(t))dt .
r(S,0,) = I(S,Ql) = T T en@SHte)dt (2.2)



hence VS, Pr(6; < h(S,a))|0) = Pr(r(S,6,) < r(S,h(S,a))|d), and note that
r(S,h(S,a)) = a implies Pr(r(S,01) < a|f) = o. Write (S, 60,) = N(2(S5,6,)), using
Laplace’s approximation, where N (x) is the standard normal integral

(27T)7% I eXp(_ ?)du. Then Pr(r(S,0:) < a|f) = a becomes
Pr(N(z(S,60,)) < alf) = a.

Therefore the problem reduces to finding a function (t) such that z(.9, 6;) follows the
standard normal distribution in repeated sampling (Peers, 1965). Use the moment
generating function E(exp(tz)), and set the coefficient of the linear term of ¢ equal
to 0 such that E(exp(tz)) is the moment generating function of a standard normal
distribution. The differential equation of 1 with respect to @ is therefore obtained,
and by solving the differential equation, we can find function of ¢ and hence the
matching prior.

Addressing the problem of two parameters of interest (6;,62) with one nui-
sance parameter 3, we will extend the approach from single parameter of interest
to two parameters of interest by letting the two coefficients of the linear terms of
t = (t1,t3)" of the bivariate moment generating function E(exp(t z)) equal to 0 such
that E(exp(t z)) is the moment generating function of a bivariate normal distribution
of z = (21, 2;)"; therefore a system of two differential equations of ¢ with respect to
0 will be obtained, and the joint matching prior can be found by solving the two
differential equations.

Extend formula (13) in Peers (1965) to obtain

1(S,60) = [ [ ... [exp (L(S,T) + 5 32, (i — T)(t; — Tj) G
Ykt = Tt — T (b — T g + ©(T) (2.3)
+ 30t — T) 2 + Op(nh))dt,




where T} is the unique maximum likelihood estimator of 6;, and

2
(S 917 92 fel fHQ feXp ( S T + Zz] 1 23(t E)(t] - 7})88;1(5%?)
+% Zi,j,k:lg,:;(ti - Ti)@j - TJ)(tk - Tk)w + \I’(T) (2'4)

OT,0T; 0Ty,
v (T
2.i(ti = Th) a:(F)

p(n_1>)dt1dt2dt3.
Following the notation used in Peers (1965), define

—1_92%L
oT; 0T}’

Vij = —N

v = the (z ]) element of (UU) 1,
3
2

- 3L
Vijk =N 2 5Tom,0Ty
wp = nz(t; — T,)(v") 72, (2.5)

= %(9 — T (v~ 3 Jfori=1,2,
w; =072 (v1)3 5k wy = (v )30y,

Wik = (v”vj]vkk)w ™

Define Q(u) to be the exponent in (2.3). Then

=__ Z WiUUj + — Z Wi Ui Ui UL - Z wiu; + O( 71)

zyk

Apply formula (19) in Peers (1965)

_3 1 . Q(u)
T(S, 01) _ (m) ,2§Hwij”2;f fmfeQ(y) du (26)
@m)~2||lwyll2 [ .. e Td

to the problem of two parameters of interest with one nuisance parameter, to obtain

r(S,01,00) o< (2m) 3wyl [ [T [T exp (= § 3051105 wijuit

(2.7)
+% Zi,j,k:1,2,3 WijkUiUjUE + Z?:l w;U; + Op(n_l))duldwdug.

To write (2.7) in terms of bivariate normal integrals, first expand the integrand using



Taylor’s expansion except for the u? terms in the exponent(details are given in Section
2.3). The expansion of (2.7) can be expressed as the summation of the first three
moments of a truncated multinormal distribution truncated by the upper bounds
(1, x2) < (00,00). Tallis (1961) provides explicit expressions for the first and second
moment, and no results for higher-order moments are available in the literature; In

the following section, we will derive an explicit expression for the third moment.

2.2  Third Moment of a Truncated Multinormal Distribution

An explicit formula for the third moment of a truncated multinormal distri-

bution is given in the following theorem.

Theorem 2.1. Suppose x follows a truncated multinormal distribution with the trun-
cation by the lower bounds —oco < as < 00, then the third moment of truncated

multinormal distribution

0P4(R 0P4(R 0P4(R B3Py (R
QB(XiX;X) = (piy T + py ol 4y, 220l 4 S24lh )

t=0
=30 (pijow + pirpi + pipi + (1 + @) papjipr) 9(a) Pa_1 (Ars; Ry)

2.8
+30 pu >t (Pi1(prg = prapu)ar + (pjg — prapiy) (pux(ar + plag)+ (2:8)
qu(aq + qual)))ﬁﬁ(al, Qq; qu)@d—z(Aés; qu) + Zle Pil Zq;,él(qu - qusz)

: Zr¢l7q(prk - ﬁrl‘qplk — qu.lqu)qb(ala aqa Ay, plqr)(I)de(AE%; qur)a

where a« = Pr(Wy > ay, Wy > ag, -+ , Wy > aq), Ws(s =1,--- ,d) has the standard

normal distribution with correlation matriz R = (p;;),

d

—lx/ ’1w
®y(R) = (2m)"2|R|"2 @ I By, @ [ denotes the d-dimensional integral,

Ay, AL Ala

qs? “irsy

and (’s are defined in the proof.

Proof. Tallis (1961) showed that the moment generating function of a truncated multi-
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normal distribution can be written as
am(t) = eT®4(R),

where T = %llet, bs = a; — &, £ = RL, a and ®,(R) are specified in the theorem.

Then the third moment is

*m(t)
aE(XiX;Xi) = Q5,08 0t | 1=0°
and
3m(t)
- 82 Ta‘bd( )
aatkat]‘ati - 3tkat ( ®d(R) te )
_ 9 (9%T Ta@d(R) el 9%4(R) T 9?®4(R) 2.9
- atk(atjatl ®q(R) + at; oty + oty +e at;ot; ) (2.9)
3% T 9394(R)
= o0t y(R) +e Dty ot;0t;
| 0% T 9%4(R) I 92¢T 0®4(R) 92¢T 0®4(R)
dt;0t; Oty dtRot; Ot L0ty Ot
+8eT 02 9°®4(R) + 9eT 62(1)d(R) + 9eT 9%®,4(R)
ot; 0tpot, | 0t; Otpot; | Oty ot;of;
Since
deT _ T d _
Tlimo =€ Yo piltl|t:Q =0,
T
82 T
51 | 4—o = Pij» and
93T

otpot;0t; <8t;€8t Zl pirti + % 8t sz +3 8tk pm)|t =0 =

therefore, (2.9) can be simplified as

0%4(R 004(R Joks 23%4(R
OCE(Xz'Xij) = (Pz’j alj:i ) + ik adtg ) + Prj 8dt( ) + atkaigat)i)

t:o (2.10)

Denote ¢q4(zs; R) as the probability density function of standard d-dimensional multi-
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normal distribution with correlation coefficient matrix R = (p;;), we have

Ga(@s, T = bi; R) = ¢(bi)Pa—1(ys; Ri), s # 1,

Ga(xs, 1 = b, x4 = by R) = ¢a(by, by; pig) Pa—2(2s; Rig), s # 1, q,
where

Ys = (x5 — pabt)//1 — P2,

zs = (15 — Barqbt — Bsq.lbq)/(\/?pzl\/ L—p2.0);

Bsi.q and [sq; are the partial regression coefficients of X on X, and X; respectively,
Psq. 1 the partial correlation coefficient between X and X, for fixed X;, and R;, Ry,
are the correlation coefficient matrices without x;, x; and x,,respectively.

Write cumulative distribution function ®4(R) as the integral of probability

density function ¢g4

Oy(R) =D [ pa(wy; R)ds,

and

@0 [ pa(s, by R)das = ¢(b1)Pa—1(Bis; Ri), s # 1,

@2 [ Ga(wa, b, by R)dws = d2(bi, by; pig)Paa(Blyi Rig), s # 1,q,

(d-3) fboo Ga(s, b, by, by R)dxs = ¢3(bi, by, by; prgr) Pa—z(Bl; Rigr), s # 1,q, 7,

where

Bis = (bs — pisb) /v/1 — p? and
Btlls = (bs - ﬂsl.qbl - /Bsq-lbq)/( V 1- pgl \/ 1— qu.l)-
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Therefore

WuB) — 57 pd(b) a1 (Bus; Ry),

0?2 0¢(b o Bis;R
St = 32 o (%5 0 (B R)) + 6(by) 2yt

= pupubid(b) a1 (Bis; Ry)+
> Pit Zq;sz(ﬂjq — P1aP1j)02(bs bys pig) Pa—2(Byg; Rig))

D304(R) b (b)) Pg—1(Bis; Rr)
B, 0t;0t; 8t = 1 Papji dt, +

D2 (b1,bg;p1g)Pa—2(Bl ;R )
> P Zq;éz(ﬂjq = PigPj) - qatk e

In the first term of the third differentiation of ®4(R),

3bz¢(bz)¢g;c1(Bls;Rz Bbl (b(bl)q)d 1<Bls7 Rl) 1y 9¢( bl)q}d@t;(Bls i)

= pu® (b)) Pa—1(Bis; Ri) + puebi (b)) Pa—1(Bis; Ry)
+ Zq;ﬁl O (b, b; plq)q)d%(Bés; Rig)(Prq — Prapux)-

In the second term of the third differentiation of ®4(R),

-3V Ry "D
0¢(by;bgipig) 2 =
It L = ¢(bi, bg; pig)

since
1 —1
0—5b' Ry 7D
Oty

Oty

= (pner’ + pareq ) Ry "o = pu (b + py) + par(by + p'%by)

and
0P4_o(Bls;Rig .
¢2(bl7 bq; qu) - étk ta) = Zr;ﬁl q(prk - Brl.qplk - qu.lqu)ng(bla bq> brv plqr)
q)d 3(Brs’ qu"’)
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therefore,

grfgkq;ij(-gt)i = L (14 8 papipud(b)®a1(Bis; Ry)
+ Z?l:l Pil Zq#l (pjl(pkq - plqplk)bl + (qu - plqplj)(Plk(bl + plqbq) + qu(bq + plqbl)))
O(br, by; pig)Pa—2(Blg; Rig)

d
+ D i Pil Zq;ﬂ(qu — PiaPi;)
' Zmél,q(prk - Brl.qplk - Bfrq.lqu)d)(bh bqa br; plqr)q)d—?)(B?l%; qur)'

Substitute the first and third derivatives of ®4(R) with respect to ¢ into (2.9) and

take t = 0, we obtain (2.8). O

Corollary 2.1. The third moment of truncated multinormal distribution truncated

by the upper bounds —oo < xg < 00 is given by

XS0 (pijpa + pipji + prjpi + (14 23) pupjow) (1) Na-1 (Ass; Ry)

=3 it gt (Pit(prg — prapi) iy + (pig — prgpig) (pu (1 + p )+ (2.11)
par(Tq + p'120))) (1, 243 prg) Naa (Al Rig) + 01 pit 3yt — Prapis)
: Z#l,q(Prk - Brl.qplk - 5rq.lqu)¢(xl7 xq7 Ly plqr)Ndf?;(Ag%; qur)]
flx/ —1g
where Ny(R) = (27)~2|R|~% @) 5 e f “dxs, D [ denotes the d-dimensional in-

tegral, R is the correlation matriz, p;; is the (i, j) elements of the correlation matriz,

Ajs, AL, and Al are defined in Theorem 2.1.



14

Proof. Let as = —x4 for Theorem 2.1, then (2.8) becomes

aEX,X; X, =

S (pijors + pirpji + prgpin + (1 + 22) papjipr) () Pa1 (— Ar; Ry)

— S pa >t (Pi1(org = prapw)ze + (pjq = prapig) (o (1 + p194) + por (g + p1921)))
D21, Tg; i) Pa—a(—Al; Rig)

+ Yy P > o1(Pig = P1apij)

' Zr;él,q(prk - ﬁrl.qplk: - 6rq.lqu)¢($la Ly, Ty, plqr)q)d—ii(_Aiqs; qur)-
(2.12)

Note that the integrals fszs =@ [* of the normal density with mean 0 by

symmetry, hence (I)d_l(—Als; Rl) = Nd—l(Als; Rl), q)d_g(—Al J qu) = Nd_g(Al J qu),

qs? qs’

rSs? rSs?

Dy 3(—AY: Ry,) = Ng3(A%: Ry,.), where Ny(.) denotes the d-dimensional normal
integral (@) ff; ¢alus)dus.
And since z;x;jz; is an odd function, the integral of z;x;x) over the range of

—00 to 5 has the negative sign of the integral over —x 5 and oo, which gives (2.11). O

2.3 Differential Equations

A system of differential equations will be derived in this section using the
approach described in section 2. We will assume the parameters of 0y, 5, and 63
are orthogonal to each other, and that the log likelihood function L is bounded in
probability by n. The orthogonality of two parameters is defined as

( 0°L
06:00;

) =0,fori,j=1,2,3and i # j. (2.13)

2l

And as pointed out by Cox (1987), we can write 51— = E[aggale.] + \Z/% for i,j =
101 j 10U

1,2, 3,where [ = %L (the log likelihood per observation), and Z;; are random variables

of mean 0 and O,(1) as n — oco. Then by (2.13), %ZIT], is Op(\/iﬁ) for i # j and Op(1)

for i = j; hence w; is Op(n_%) for i # j and w;; is O,(1). Also note that w; and w;
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are O, (n"2).
To Op(n_%), we apply Taylor’s expansion for (2.7) for the linear, quadratic
(for ¢« # j), and cubic terms. Hence (2.7) becomes the integral with respect to a

multi-normal distribution with independent random variables as follows:

r(S,00,02) o< (2m) 3 |Jwyl|B [ [ [ e 3 Sl wid
(1+35 D i jik1,2,3 WighWillUk = D<o jes WigUithy + Z?:1 w;u;)
duydugdus (2.14)
=a(l+; D ijret 23 Wik B(Xi X5 Xe) = 30 cicies Wi E(X XG)
+ z?:1 le(Xz))

Tallis (1961) gives the first and second moment of the truncated multivariate normal

distribution truncated by lower bounds as

aB(X;) =30 pud(a) a1 (A Ry)
aB(XiX;) = pyo+ 22:1 PqiPajg®(q) Pa—1(Aqgs; Ry) (2.15)

+ 2521 (Pqi Zr7éq P(aq, ar; por)Pa—2(Als; Rer)(prj — ququ))-

Since x; is an odd function, the first moment of truncated multinormal distribution
truncated by the upper bounds will take the negative sign; on the other hand, the
second moment will remain the same sign since z;z; is a even function. Let d = 3,
x3 = 00, p;; = 0 when 7 # j, and use Tallis’s expression and Corollary 2.1 to obtain
the first three moments of the truncated multi-normal distribution truncated by the

upper bounds z; and x, as

aF(X;X3) =0, fori=1,2
(2.17)

CYE(X1X2) :P11P22¢($1,$2)N1(A53;R12)>



16

and

E(XlXQXg) — O,

B(X3) = 0,
B(X?X3) =  Ofori=1,2,
(2.18)
O‘E(ng) = _(3p12i + p?i(l + $z2>>¢(xl)N2<A187 Rl)vz = 17 27
aB(X?X;) = —[piupjjo(x;)No(Ajs, Ry) — @1, 22) p3ipj; N1 (Als; Rij)],

fori,j =1,2 and 7 # j.

Also by definition, Ay, = (;,00) for i = 1,2 and j # 4, and A’y = oo for i,j = 1,2
and 7 # j. Substitute (2.16), (2.17), (2.18), a = Na(x1,x9), Na(x;, 00) = N(z;) for

i =1,2 and Ny(oo; R;;) = 1 into (2.14) to obtain

r(S,01,02) = Na(z,m2) — 357 wiai(3p% + p%(1 + 22))d(:) N (x;)
—% Zl?:l,j?éi Wi (Piiﬂjj¢($j)N($i) — ¢(x1, 332),0@2@'/)3'3‘4”2') (2.19)

— 32 wipud(xi)N(x5) — wiapr1 pad(w1, 2).

Note that %ﬁﬂi’m) = ¢(x;)N(z;) for i,j = 1,2 and j # i, % = ¢(x1,T2).

Then (2.19) becomes

r(S,601,02) = No(w1,m9) — § Sory iy wisi(3p% + pi (1 + a2)) Fhzgmse)

1 2 . “aNQ(xl’xQ) 2 92N (z1,22)
—3 Zi:ld#i Wi (pzzp]]Tj - pmp]]l‘zw)
2 ON3(z1,22) 92Ny (z1,22)
- Zi:l W; Pii d; - w12p11p22w

(2.20)
= No(21 — win(3p3; + p3 (1 + 21)) — Swosipasprs — wipa,

T2 — %w222(3p§2 + p3a(1 + 23)) — %w112f011p22 — Wap2)

= N2(21, 22)
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where
(21,22) = ($1 - %w111(3/ﬁ1 + o5 (1 +a3)) - %w221p22pl1 — wip11, (2.21)
Ty — §Wa22(3pBy + PRy (1 + 23)) — wir2p11p22 — Wapaa).
Since p;; = wy;', (2.21) becomes
(Zl, ZQ) = (ZL’l — %w111<3w1_12 + w1_13(1 + Jf%)) — %UJ2211U2_21U}1_11 — wlwﬂl, (2 22)
Lo — %’wggg(?)w;; -+ U);;’(l + l’%)) — %wngwﬂlwg; — w2w521).
Define quantities analogous to the v’s by (Peers, 1965)
Yi=n 30,f0r2—12 ,d,
Yij = —n_lﬁ,for Z7] = 1727“' 7d7 (223)
yijkzn’%—aeaeag Jori, j,k=1,2,--- ,d.

As Peers (1965) pointed out the joint cumulant generating function of the y’s can be

written as

log E(ela¥attabbab tlabebabe) — ;lbt ty + Kaplap + 1 2 ( (g:" tatpte 4 Kajpetalve + Kabetabe)
(2.24)
where
= EB(= aeazle );
Kijk = E(agiaaT?fagk),
Kijj = E(a%li aa_glj)a (2.25)
ki = E(35; 55 20):

_ oL 9%
Kaljn = E( 0, aejaek)’

and [ denotes the log-likelihood function of a single observation. The x’s are in fact

the cumulants of y’s.
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Hence the joint MGF of the y’s about their means (Peers, 1953) is

Falb 3 a|b\
M(t1,tg, -+ ta,t11, trg, - -+ o tag) = e 2 taletHavtartn™2 (S5r=tattethajuctatie) +Op(n ")

(2.26)
Also employ the following expansions:
_1 _1 2
0= dgk = (84T, - )+
%Z]k( 0;) (T Qk)—6930 50 )’fOI‘izl’QJ... .d,
—1_°L 0°L 9L i
— aror, <ae a0, T > (T )W)for i,7=1,2,--- d,
_3 83 . 3 9L
n 28T1-8T8Tk = n 28939 90, Jore, j,k=1,2--- d.
(2.27)
Then from (2.5) we find
i\ = ii) L i .
zi= =y = ) Y ks ViV Y+ L () 0 gy
+A;(y®; a # b), for i=1,2,
Uii - y” + y” Zj,k:l,Z,S yjjykkyky”k, fOI' Z = 1, 2, 3,
Vijk = Yijk, for i, j, k =1,2,3,
(2.28)
where
' i)\ — 3 W j m diy— 1L
Ai(y™a#b) = =3, Y Y (Y") 2 = X sijtthim 39 Yuik YY" Y (y7) 2

1

+ Zw,k,j#i,l;ém %yiwywy” Y Yy Y (y) 2

contains all the terms of y* for a # b. Note that y;; is O,(n") but y;, yi; are Op(n*%),

and we will not consider terms beyond Op(n_%). Substitute (2.28), (2.5) into (2.22)
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to obtain

1 1 ..
(21,22) = (= 3(y")7 = 3(U™)? 205 hmi 05 Yivkyrny v

3 . 3 1
+%yl(yu)2 Z?Zl YY1y + %ym(yn)? + 59221922(911)2
—1 19y ab.
+n7z(y') g + A(y®a # ),
()7 5o + Al ) (2.29)

1 1 y
—y2(y*)? = 3(™)? 2 per 08 ViUkYony Y

3 y 3 1
+312(y*?)2 23:1 YooY + 2y222(4%2)2 + Sy112yM (%) 2

_1 1 ab.
+n72(y?)2 g + As(y™a £ D)),
The moment generating function of 2" = (2, 23) is then given symbolically by

i
tz

E(e ") = M(D4,Ds,...,D11,D1a...,Ds3)
-exp |:t1 ( U LR TURED S O
+%771(77H)% 22:1 77j7711j77jj + %77111(7711)% + %7]2217722(7711)% + ”_%(7711)%3_;/)1
Fa £ ) )+
t2( — ()2 = 512 3,y W2+ 3o (22)2 320 mmaa
512 (17%)7 + Fan™ (9°2)2 + n‘%(n”)%g—@ﬁ + A2(n®a # b))} ;

(2.30)
where D’s denote differentiations with respect to corresponding n’s. After performing
all the differentiations we replace n; by 0, 7% by £ and 1;;; by n~2ky. Since by the
assumption of orthogonality k% = 0 for a # b, then A;(k;a # b) = 0 for i = 1,2.

Use the identities of Bartlett (1953) as follows:

Kilj — g = 0,

Riljlk — Kiljk — Kjlki — Rkjij T Kijk = 0, (2.31)
8K‘k ..
Kiljk = Kijk = g, = 0,fori,j,k=1,2,...,d.
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And to O,(n"2), we have

D= exp{0 i (— tn R (RT3 Gas — R (RT) 2 G — (k)2 5)

J
+3t)}-

Ble (2.32)

Therefore, in order to have gl = (21, z9) following a standard bivariate normal distri-

bution, (@) is chosen to satisfy the following two partial differential equations:

3 1 19
5(511)28%111 ;HQZ(K11>28H9221 (lill)Q ;Zﬂl =0 ( 33)
3 1 19 ‘
g(ﬁ22) 5 8/69222 ;HH(,‘Q22) 5 8/{9112 (/122> 3 ;é =0

Note that k;; = 0 if i # j by orthogonality and k% = k' for i = 1,2. After some

simplification, (2.33) becomes

—10kK11 _ 8_7,[1 _ 0

2
3'%11 001 o001 (2 34)
2 ,.—10k22 oY 0 .

3

22 96, 00o

Hence we have

(01, 0) = %(log(ml) + log (k). (2.35)

Therefore the bivariate matching prior is a power product of fisher information of 6,

and 0y:
w(@l, 02) = 61”(91’92)
2 2 2
= (BE(—5)E(—52))°

2.4 Bivariate Confidence Region

The quantity (.S, 6, 0s) is now written as a bivariate normal integral N(z)
where ' = (21,2) follows a standard bivariate normal distribution; hence in or-

der to have Pr(r(S,61,62) < «|(b1,62,05)) = a we need to make Pr((z1,z2) <



21

(&1,&)[(01,62,05)) = « where (&, &) satisfies N(&)N(&2) = a. Substitute (2.35)

0 (2.22) and use the definitions in (2.5) we have

(z1,22) = (21— é(vll)%vln(él + 2?) — %Um(vll)%vml
—n~2 (v")2 % 2 (log(k11) + log(kas)),

To — %(022)%1)222(4 + Ig) — %UH(UQQ)%UHQ

(2.37)
—nH(0)} 3 (og () + log )

We first solve (2.37) for x; and note that z? = x? by correcting to Op(n_%).

€T; =

N

(2.38)

it %(v N2 (4 + 22) + %Ujj(ﬂii)%vjji +n73 (vi)3
7 35(lo

g(kii) +log(k;j)), for i,7 = 1,2 and i # j.

Substitute z; = n2 (h;(S, a) —T;)(v) "2 and z = & into (2.38), solve for h;(S, @), and
obtain the bivariate confidence region for the problem of two parameters of interest

and one nuisance parameter as the following:

(hi(S,a), ha(S,0)) = (Ti + (—25) 736 + L& +4)(- 25) 20k
l( 2L ) )1 3L
T3 aT? a T 0T3
+(-2 ) a%lé( (/‘611)+10g("0222)) 3 (2.39)
Ty + (-58) 26 + 58+ D(-55) 5%

_0%L )71 3L
oT? 0T»0T?

+a§%><
_,_(_gié) 1%%(10g(/€11) + log(k22)))

such that

Pr(91 < hl(S, CY), 92 < hQ(S, oz)\(@l, 62, 93)) = Q. (240)



3. RESULTS AND DISCUSSION

3.1 Univariate Case

Welch and Peers (1963) provided expression of the confidence point h(S, )

for the univariate case, which gives

h(S,a) = T—i—f(—%)*% + %(52 + 2)(%)(_%)_2

Olog(ka (T 2L\— _3
5P (=57 + Opfn73).

(3.1)

Welch and Peers did not conduct any simulation to verify their results. We conduct
the simulation for the univariate counterpart of Example 2 in Section 3.1.

Suppose we observe n independent univariate random variables y; following a
normal distribution of mean p and variance o2 for ¢ = 1,...,n. The parameters of
interest is o, the nuisance parameter is j. Therefore the bivariate confidence regions

h(S,a) at confidence level a for (0%, 03) is given using (3.1):

B(S,a) = (1+ £ + 26+ £€9)8, (3.2)

where S = 15" (y; — )% and o= £ 37" | y;; S and p are the MLEs for o2 and g,
respectively. Here £ satisfies N(§) = a.

The MC simulation is performed to confirm (3.2); 10,000 samples are generated
from a univariate random normal distribution N(8,20%), and each sample contains
100 data points. The simulation results presented in Table 3.1 shows that the approx-

imation obtained by Welch and Peers performs very well as the observed confidence
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levels are very close to the true values for n = 100.

Tab. 3.1: Simulation Result for Univariate Case for n = 100

True « Observed o
0.01 0.014
0.1 0.1094
0.5 0.5087

0.975 0.9706

MC simulations are also conducted for n = 30 and n = 10, the results are
presented in Table 3.2 and Table 3.3, respectively.

Tab. 3.2: Simulation Result for Univariate Case for n = 30

True o Observed «
0.01 0.0348
0.1 0.1159
0.5 0.4918

0.975 0.9636

Table 3.2 show that for a small sample size of 30 , Welch and Peers’s approx-
imation works very well as the observed confidence levels are very close to the true

confidence levels.

Tab. 3.3: Simulation Result for Univariate Case for n = 10

True « Observed o
0.01 0.1987
0.1 0.1762
0.5 0.4942
0.975 0.9472

Table 3.3 shows that the approximation obtained by Welch and Peers performs
well except for a = 0.01, the discrepancies are Op(%) with n = 10, i.e., bounded by

0.1 in probability.
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3.2 Bivariate Case

Two specific examples will be provided in this chapter to demonstrate the
application of (2.39) to obtain the bivariate confidence region at confidence level a.

Suppose that we observe n independent random samples yq;,¢ = 1,...,n fol-
lowing a normal distribution with mean p and variance o?. We would like to find a
confidence region for (u, o?) jointly. The traditional approach from a frequentist point
of view may involve working on the joint density function of the sample mean and
sample variance. Although sample mean and variance are independently distributed
it is not clear if the confidence region may be a function of sample or variance or not,
not to mention the computational difficulties. However, if associated with each vy,
we also observe another random sample y,; which is independent of y;; and follows a
normal distribution of mean 0 and variance o3, (2.40) can be directly implemented.
In fact, it will be shown that we do not even need the additional observed ys; since it
is completely ancillary to (u,o?).

Let 01 = p,0, = 02,03 = o3, and let (0;,0,) are the parameters of interest
and 05 is the nuisance parameter. It’s easy to verify that (6, 0,,03) are orthogonal

parameters. The log of joint likelihood function of (6, 65, 05) based on the observed

(Y14, Yoi) is given as

n n " =012
L(61,65.65) = — log(2r) — 5 (log 0 +log ) — > % - y;3 (3.3)
] =1

=1 2 2
and the maximum likelihood estimator 17,75, and T3 for #;,0y and 03, respectively

are
o= Xy =1,
Ty= 530y — ) =5, (3.4)

~ n

T3 = %Z?ﬂ y%i = 3_2'
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Substitute (3.3) and (3.4) to (2.39), we have

(hi(S. ). ha(S.0)) = (7 + /5. 1+ &+ 26+ 2695, (35)

where &1, & satisfy N(&)N (&) = aand Pr(u < hy(S,a),0? < ho(S, a)|(p, 0%, 03)) =
a.
As shown in (3.5), the bivariate region does not involve ys; at all,i.e.,(3.5) holds

for all samples regardless of the nuisance parameter; hence
Pr(u < hi(S,a),01 < ho(S, a)|(p, 07)) = a. (3.6)

Monto Carlo (MC) simulation is conducted to confirm (3.5); 10,000 samples are gen-
erated from a random normal distribution of mean y = 4 and o = 20, and each
sample contains 100 data points. Then calculate the bivariate confidence region
(h1(S, @), hao(S, ) using (3.5) for each sample at confidence level o = 0.01,0.1,0.5,0.975
(& and & are chosen to be equal); hence for each true confidence level «, 10,000 ob-
served bivariate confidence region are generated. And the observed confidence level
is calculated by counting the percentage of (hy(S, ), ha(S, a)) > (i, 0?). The simula-
tion results show that the approximation obtained in Chapter 2 performs very well as
the observed confidence levels are very close to the true confidence levels for n = 100

as shown in Table 3.4.

Tab. 3.4: Simulation Result for Example One for n = 100

True o Observed «
0.01 0.0093
0.1 0.1063
0.5 0.5145

0.975 0.9718

MC simulations for n = 30 and n = 10 are also conducted for Example One

and the results are presented in Table 3.5 and Table 3.6, respectively.
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Tab. 3.5: Simulation Result for Example One for n = 30

True « Observed o
0.01 0.0103
0.1 0.1115
0.5 0.5118

0.975 0.9609

Tab. 3.6: Simulation Result for Example One for n = 10

True o Observed «
0.01 0.0176
0.1 0.1258
0.5 0.4970

0.975 0.9228

Table 3.5 and Table 3.6 show that even for a very small sample size of 30 or
10, the approximation works very well as the observed confidence levels are very close
to the true confidence levels.

Suppose we observe n independent bivariate random vectors (yi;,y2;) fol-

lowing a bivariate normal distribution of mean vector (u,pu) and variance matrix

o7 0
=" for i = 1,...,n. The parameters of interest are (0%,03), the nui-

0 o3
sance parameter is . It is easy to verify that (u,0?,03) are orthogonal parameters.
Therefore the bivariate confidence regions (hy (S, a), ha(S, @) at confidence level «

for (0%, 03) are given using (2.39):

(ha(5,0), ha(S,0) = ((1+ 35+ /26 + =EDSL

) (3.7)
(1+&+,/26+ £8)5),

where Sy = % Z?:l(yki —ﬂ)2 for k=1,2 and i = % Z:’L:l Zizl Ykis 5_17 527 and p are

n

the MLEs for 0%, 02,and pu, respectively. & and & satisfy N(&)N (&) = a.

Similar MC simulation is performed to confirm (3.7);10,000 samples are gen-
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erated from a bivariate random normal distribution

and each sample contains 100 data points. & and & are chosen to be the same. The
simulation results presented in Table 3.7 show that the approximation obtained in
Chapter 2 performs very well since the observed confidence levels are very close to
the true confidence levels for n = 100.

Tab. 3.7: Simulation Result for Example T'wo for n = 100

True « Observed o
0.01 0.0159
0.1 0.1317
0.5 0.5437

0.975 0.9765

MC simulations are also conducted for Example Two for n = 30 and n = 10,

the results are presented in Table 3.8 and Table 3.9.

Tab. 3.8: Simulation Result for Example Two for n = 30

True « Observed o
0.01 0.0370
0.1 0.1707
0.5 0.5713

0.975 0.9617

Table 3.8 show that for a small sample size of 30 , the approximation works

very well as the observed confidence levels are very close to the true confidence levels.
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Tab. 3.9: Simulation Result for Example Two for n = 10

True « Observed o
0.01 0.1178
0.1 0.2286
0.5 0.5695
0.975 0.9327

The observed confidence levels for n = 10 as shown in Table 3.9 are close to
the true values, but not as good as that for n = 100 or n = 30, the discrepancies are
OP(%) with n = 10, i.e., bounded by 0.1 in probability.

In addition, if the parameters of interest are (1, o?) and the nuisance parameter

is 0]2- for i # 7. At confidence level «, the bivariate region is given using (2.39):

(n(5,0), ha(8,0)) = (i+ &\ /78855, (1 - & +,/26 — £8)5) .

for i=1,2.

The approximation method developed in Chapter 2 applies under the assump-
tion that the three parameters are pairwise orthogonal. As the number of param-
eters increase, the assumption of orthogonality become a lot more difficult to hold.
Therefore, to extend the approach of matching prior to obtain a higher dimensional

confidence region may not be helpful.
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4. BACKGROUND ON SADDLEPOINT APPROXIMATION

METHOD

Consider the following data on 63 case-control pairs of women with endometrial
cancer presented by Stokes, Davis and Koch (1995). They evaluated the impact of
three risk factors, gall bladder disease, hypertension and nonestrogen drug use on the
occurrence of endometrial cancer. A logistic regression was used to model the proba-
bility of endometrial cancer 7;: m; = exp(fo+> 0, 0:Wi;)/(14+exp(Bo+ 320, 0:Wi)),
where Wy;, Ws;, and Ws; are indicators for gall bladder disease, hypertension and
nonestrogen drug use in individual j, respectively. The endometrial cancer data were
obtained from a case-control study, the predictor is the case-control status and the
responses are presence of the risk factors. The likelihood for these data is equivalent
to that of the logistic regression specified earlier, the response variable in the logistic
regression can be taken as unity and the predictor variables are the difference of the
risk factor between the case member and the control member of the matched pairs.
Table 4.1 presents the number of pairs with each configuration of differences of the
three risk factors. Let ij be the row vector containing the top three entries in column
j of Table 4.1, and let Z be the matrix whose rows are ij. Let T = ZT1, where 1 is
a column vector with entries that are all 1.

Tab. 4.1: Differences between cases and controls for endometrial cancer data

Gall bladder disease 1 1 1 0 0 0 O O O 1 1 1 1 1 1 1
Hypertension 1P 00111 0 O 1T 1 11 0O0O0T1T1
Nonestrogen druguse 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1
Number of pairs 1 11 2 6 14 10 12 4 3 1 1 4 1 1 1
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We test the null hypothesis that none of these potential risk factors increases
the risk of cancer (§ = 0) vs. the alternative hypothesis that at least one of these
potential risk factors actually increases the risk of cancer (6; > 0V j and 6; > 0
for some j). The test statistics is obtained by comparing the minimum p-value from
the three univariate one-sided conditional tests to its null distribution which is in the
form of the tail probability P(7; > t;). The endometrial cancer data is one of the
examples in practice that request the evaluation of conditional or unconditional tail
probability.

To derive an exact form of conditional or unconditional tail probability even
for a simple distribution often can be very difficult; hence many approximation tech-
niques are developed to evaluate the tail probability. Our research is based on one of
the approximation techniques, known as saddlepoint approximation, for evaluating
the multivariate tail probability for both conditional and unconditional case. The
advantage of the saddlepoint approximation technique is that, while the derivation is
often quite mathematically sophisticated, the calculation on the other hand requires
merely trivial manipulation of the output of a widely available model fitting algo-
rithm. We will provide some background of saddlepoint methods for tail probability
approximation in Section 1.1, discuss some existing approximations in Section 1.2,

and describe our proposed approximation and its difficulties in Section 1.3.

4.1 Concept of Saddlepoint Approximation

Mathematically, saddlepoint approximations are derived by inverting the cu-
mulant generating function Kr(§) = log(E [exp(flf)]) giving the density of probabil-
ity in terms of the cumulant generating function. £ denotes a column vector with

entries &1, -+ ,&;. When a d-dimensional random vector T' has a density fr(t), then

fr(t) = (2mi)=4 [' -+ [ exp(Kr () — £ t)dE. (4.1)
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The saddlepoint approximation for the density is obtained by choosing the

path of the integration to run through %’ , for %’ satisfying the saddlepoint equation

Kp(§) =t. (4.2)

Let E¢ [T'] represent the expectation taken with respect to fr(t, 3 ). An approx-
imation to any member of the family fr(t, f) yields an approximation to fr(t). The
member of the family that might be approximated most accurately is the  such that
(4.2) holds.

In practice, we are usually interested in the statistical inference about the
mean of independent and identically distributed random vectors Y, when 7" arises as
the sum of n independent and identically distributed summands Y. Then let ¢ = ¢/n.

Using the independence of the summands Y, Kr(§) = nKy(§). The saddle-

points are obtained by solving K (€) = £, giving the saddlepoint approximations for

the mean density

Fr(®) = () [E55 L [S pn(Ky (€) — € BdE. (4.3)

&1 —ioc0 Eq—100 >

Similarly, integrating through the saddlepoints gives the saddlepoint approxi-
mation for the conditional tail probability of the mean variables

P(Tl > t_la T 7Tm > t_m|Tm+1 = t_m-i-la T de = 7?d) = (27Ti)7d><
(4.4)

S S oxpln (K (€) — € DITTI 17 e/ Py o 1y (s ).

) £q—i00

The unconditional tail probability approximation is simply obtained by drop-
ping the denominator of (4.4) and increase the number of the product of &; to d.
Saddlepoint methods can be widely implemented for different distributions to

obtain a good approximation for the tail probability of a mean random vectors; besides
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that, saddlepoint approximation can also be applied to evaluate p-value, conditional
or unconditional power in the framework of hypothesis testing provided the cumulant
generating function of the test statistics exists, and especially when the sample size
is small, normal approximation is no longer valid, or the closed forms of p-value or

power do not exist.

4.2 Existing Approximations

Robinson (1982) provided a saddlepoint approximation for the univariate case

in the form of

P(T, > x,) = Qu(u) [ e7dV,(y)
= (2m07) "2 Qu(u) [, exp(—uy — (y — mn)?/207)dy
+@n(u) [, ed(Valy) — Gu(y))
= A + Ay,

(4.5)

where the leading term is @, (u) = ffooo e"WdF,(y) with F,, being the distribution func-
tion of Ty, Vi(z) = Qu(u) ™" [*_€e™dF,(y), Ai = Qu(u)exp(—pm, + p202/2)(1 —
O(uoy)), |Az] <2Qn(u) exp(—umn)Op(\/Lﬁ), my,(u) and o2 (u) are the mean and vari-
ance of V,,. u is chosen such that m,(u) = z,.

It is worth noting that the above approximation (4.5) applies only under the
condition

Ty > 0. (4.6)

Kolassa (2003) extended the saddlepoint approximation to the multivariate case in

form of

P(T > 1) = Q(t) + exp(n[K () — 32, &t,]) (1) /n, (4.7)
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and the leading term @(¢) is defined as

exp(n[K (§) — 3, &ty + 31 G KT (€)8r/2))

<[I(nK" (), 5,0,nK" (€)E. &) (4.8)

The quantities I are determined as the linear combinations of derivatives of
multivariate tail probability, and are given by Kolassa (2003), p278-279. The leading
terms for both (4.5) and (4.7) are such that the resulting approximation is not in
the form of a normal tail probability evaluated at some data-defined quantity, and
further more if we try to approximate P(X > z,) with z,, < 0 by doing P(X > xz,,) =
1—P(Y >y, for Y = =X and y,, = —x,, the result is valid but not of form that
extends by naively applying (4.5) and (4.7) when constraint (4.6) is omitted.

Wang (1990) provided a saddlepoint approximation for the bivariate case in
the form of the univariate and bivariate normal distribution and density functions.

Wang’s approximation will be reviewed in Section 5.

4.3 Proposed Approximation

As shown in Section 1.2, to avoid the leading terms that arise in (4.5) and
(4.7), the numerator of (4.4) can be expressed by the change of variables {{ — w}
suggested by Kolassa and Li (2010) as
(2mi) = [ [ exp(nlw'w/2 — &)

W1 —100 Wq—100

(4.9)
1 m
X [H;cn:ﬂwj_dj) + Zj:l Hk¢j(wj_°5j)] =7
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where w; and w; are defined as

(wj — @,)?/2 = min(Ky(y) — 7'ty =&, Vi < j)

(4.10)

so that the contribution of variables of integration corresponding to the unconditioned
components of T to the exponent in (4.4) is exactly quadratic, and w;(wy, -+ ,w;_1)
is defined to satisfy &;(w1, - ,w;j_1,w;) =0for j =1,--- ,m (Kolassa and Li (2010)).
Let G(w) = [T (w; — @, -+ w0 [T, &7 45¢ 5 note that G(0) = 1.
For any index j € 1,--- ,m, define
GU)(w) =

(4.11)
(G(wl,--- ,w]‘,O,"' ,O) —G(wl,--- ,wj_l,d)j,O,--- ,O))/(w]‘ —(I}j),

GO (w)
so that ———— is analytic.

gz (w5 —a35)

The quantities GV (w) are functions only of wy,- - - ,w;. When j = 1 the integral
factors into an integral involving the first component of w, and an integral involving
all other components. The integral involving with G can be evaluated using Wat-
son’s Lemma, since the integrands are analytic functions (Watson’s Lemma will be
described in Section 2.). The integrals of the other terms in the bracket of (4.9) are
very difficult to evaluate since the integrands are not analytic. We will develop a new

approximation technique for the first-term integral to the error of order O,(1/n) by

expanding the quantities in the numerator of the first term using

0 - ~ ksl *
Wi(wi) = > pej wid; " + > ki< wilwr — wi)a;” (w5), (4.12)
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where

a”;(“).]) = (wj(wla e 7wk707 o ) - wj(wh e ka—1707 e ))/wku
\ (4.13)
kil _ 0aj(wj)
aj (wj) - Ow;

for k,1 < j, and therefore obtain an approximation for the conditional and uncondi-
tional tail probability to the error of order O,(1/n).
Particularly, for the bivariate case, using the definition of (4.13) gives
ad(wy) = y(wy)/wr,
) = o) o i

1;1 . _u]g(w1) LaLJQ(wl)
Qg (wl) - w% + w; Owi ?

and using definition (4.10) gives

Wa(W1) = W2 — Sgn(é2)\/2((KY(’AY1, 0) —ft1) — (Ky(é,é) - 5151 - 5252)),
o1 = sen(3n)\/2((K (0,42) — 3na) — (Ky(61,6) — &ify — 1)), (4.15)
Wy = sgn(%2)v/2(Yatz — Ky (0,%2)),

where 47 and 4, are the saddlepoints when fixing & = 0 and & = 0, respectively.

The derivative of Wy(w;) with respect to w; evaluated at w; is given in Lemma 4.1.

Lemma 4.1.

@L _ KL (61,001 _ 1 _ (4 16)
Oy 191 @2(@1)=@2 \/ K{H(&1,62)— K12 (1,82) (K22 (61,62)) T K3 (61,62) '

Proof. Let subscript k represents component k of a vector, and superscript [ represents
the first derivative with respect to argument [ (for example, &, represents g%’j); let

K represents the first derivative of the cumulant function Ky (&, &) with respect to

0Ky (£1,€2)

26 ), and let K)if represents the second

argument 7 (for example, Ky represents

derivative with respect to argument i and j of the cumulant function Ky (for example,
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K}! represents Mgf(?’&)). By definition, @q(w;) satisfies &o(wy, w2(wr)) = 0, and
& (Wi, @a(wr)) + & (w1, Wa(w1))@y (wr) = 0. (4.17)
So
Wy (wr) = =& (wr, @a(w1)) /€3 (wr, Da(wn)). (4.18)
Differentiating
(= &) (w = 2)/2 = Ky(§) — "1~ (Ky(§) ~ £ D) (4.19)

with respect to wy on both sides gives (wy — wo) = (K& — £3)&3; hence

E2(@, o () = % (4.20)

Differentiating (4.19) with respect to w; on both sides gives (w; —@;) = (Ky —#1)&] +
(K2 — t,)&l, and evaluating at &(&) (the value of & minimizing the saddlepoint
equation as a function of &;) sets K2 —#, = 0 and gives (w; — &) = (KL (&1, &(6)) —

t1)&L. Differentiating again with respect to w; gives

(KU (60, Ea(61)) + K2 (60, Ea€0)ENEN)(EL + (Ih (61, &a(E) — F) DL = 1,

dw1

and evaluating at &y sets KL (€1,6(&)) — &y = 0, since &(&;) = &, then £1(&y) =

1 . . 1 N . . . .
\/Klyl(él,éz)+K§2(£1,éz)£§(él)' The derivative &(&1) can be obtained by differentiating

K2 —1, = 0 with respect to & which gives K2'(&1,& (&) + K2 (&1, &(&1))EMN (&) = 0,



then £1(&;) = —K2'(&;,&)/K2(€,,&,). Hence

& (@1, 0a(@n)) =

(w1—o1)—(Ky —t1)

&
|y

K%—EQ

— (KXI/(éLO)_El)g%

(@1)

K% (61,0)—t2

_KL(&,0)-h

1

K2 (61,0)—t2

K (€1 ,62)— K2 (€1,62) (K22 (&1,62)) L K3 (61,€2)
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(4.21)



5. APPROXIMATION FOR THE UNCONDITIONAL BIVARIATE

TAIL PROBABILITY

5.1 Methodology

In this section, we will evaluate the tail probability (4.9) to the error of O, (=)
for the bivariate case term by term, and we will compare our approximation to Wang’s
approximation in Section 5. The integral of the first term in (4.9) for the bivariate

case can be expressed as
W1+i00 pwatico
f fd)g—ioo eXP(n[
2 2

o wW14ico pwa+tioco wi+w; oA oA 1 dwidws 5 1
= Jdr—ioco f@gfioo exp(n[ 2 Wiy w2w2])wl(wzfa%w1*a§1w1(w1*@1)) (2mi)? ( ’ )

+Op(%):

2 2
witws A o~ 1 dwi dwa
2 wWiwi (.UQ(JJQ]) (w1 —w1)(wa—wa) (27i)2

w1 —100

where al = al(y) and al! = ay' (&n).

Split the fraction in RHS of (5.1) and cancel w; in the numerator and denom-

inator to obtain

f&)l—&-ioo f&}g-{—ioo exp(n[w?/2+w? /2—01w1 —D2w2]) dwy dws
w1—ioco Jwg—ioco wi (w2 —alwr) (2mi)?

(5.2)
+fw1+ioo f&)2+ioo exp(n[w%/2+w§/2—oﬁ1w1—Lﬁgwg])aél(wl—&q) dw1 dws

W9 —1i0c0 (w2—alwi)(we—adwi —allwy (w1—d1)) (2mi)? -

w1 —100

The integrand of the second integral of (5.2) contains a nonlinear term of w; in its
denominator, ai'w;(w; — &), which is the major obstacle for evaluating the integral
of (5.2). Our strategy is to replace the nonlinear term by ai'@;(w; — @) and show

that the error induced by the linear replacement is O,(%). The results are presented
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through Theorem 5.1 to Theorem 5.3. We evaluate the remaining integral without
the nonlinearity of w; in the denominator. The results are presented in Lemma 5.1,
Lemma 5.2, and Theorem 5.4.

The denominator in the second integral, (wy —aw:)(we —adw; —atw; (wy —@y))
is a product of two factors. The second factor in the product equals to the first factor
plus a quadratic term of wy. Expressing the denominator such that it is exactly equal

to a square requires finding a such that

(wy — adw)(wy — adwr — adtwi (w1 — &) = (wa — abwy — awy (wy — &))?,  (5:3)

where a is the root of the quadratic equation A(wy,@;)a?+ B(wy,ws)a+C(wy,ws) = 0
for A(wy, @) = wy (w1 —w1), B(wy,ws) = —(wa—adwi), and C'(wy, we) = ad! (we—adw),
so a = a(A, B,(C) is a function of (A, B,C). Reparameterize the second integral with

21 = w; and 23 = Wy — adw; — aw; (wy — @1), to give

fof)lJrioo f@2+ioo exp(nfw?/24+w3 /2—d1w1 —Dow2]) dun dws

w1 —i00 Jg—ioco w1 (we—alwi) (2mi)? (5 4)
+ féﬁ-ioo f22+i00 exp(n[L(z1,22)])a3' (z1—21) dzydzy
21—100 J2a3—ioc0 zg (2mi)2

where L(z1, 22) = 5(1+ (a3 4+ a21)?) (21 — 21)* + 3 (22 — 22)2 + (a3 + a1)(z1 — 21) (22 —
Z9) = 5(@F + 03) + Qu(z1, 22),and Qu(21, 22) = a(21 — 21)* (22 — 22) + a(ag + az1) (21 —
2)3 + %aQ(zl — 21)* containing cubic and higher terms of z; — 2; and 2z, — 2, with a
in the coefficients. We will show that dropping Q. (1, z2) will give an error of O,(1).
Observe that there is a 22 in the denominator of the second integral in (5.2), Kolassa

(2003) showed that | fj::;o %d22| is bounded by a finite constant independent of Zy;
we will show in Theorem 5.1 that | fj:t:j Z%dzg| is also bounded by a finite constant
2

independent of 25, and this conclusion will be used in Theorem 5.2 to show the error

Is Op(%) by dropping Qu(z1, 22)-
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Theorem 5.1.

| [50 Fdzl <235, s (5:5)

Proof. Make the change of variable zo = 25 + 1-& f to give

|f22+200 1d22| _ |f Zg y?/n dy|

Zp—ic0 23 (Z2+y2/n)2

_y*/n dy

S E R e (5.6)

— f 1 dy
o 254+y2%/n vn

_\/_foonz+y

Let a = (%)2 to give

Vi [T e =V |7 mraamre W
Vn|Za|+1
< \/_f oo y2 +a(f2\ZQ|+1)2 dy (57)
_ Vnlza|+1 .
=2V )y reivainne Y

the last equality in (5.7) is due to the symmetry of the integrand. Divide the range
of the integrand in (5.7) into intervals (k(v/n|Z2| + 1), (k 4+ 1)(v/n|22| + 1)] of equal

length /n|%| + 1 for &k = 0,1,---, the maximum of the integrand in each interval

V2|41

is R IWIEAESVEL hence the integral over each interval is bounded by the maximum

multiplied by the length of the interval y/n|2| +1, i.e, m <2z 72, therefore the entire

integral of (5.7) is bounded by Y37, . O

The contribution of @,(21, z2) which contains the cubic and higher order terms
of z; — 2, and z; — 2, to the integral (5.4) is O,(+£). The proof is presented in Theorem
5.2.

Theorem 5.2. Dropping Q.(z1, z2) from L(z1, z2) in the second integral of (5.2) gives
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an error of Op(%),z'.e.,

f21+ioo f22+ioo exp(n[L(z1,zg)})a%l(zlfél) dzidzy

21—ico J2a—ico 23 CZO (5.8)
21+ico piatioco exp(n[L*(z1,22)])all(z1—2 21dz
[ Jer R R (1 O4(R))

where L*(z1,29) = %(1 + (ad+a21)?) (21 — 21)* + %(22 —29)% + (ad +a21)(z1 — 21) (20 —

~

Proof. Note that L(zy,22) = L*(21,22) + Qu(21,22) and use Taylor expansion for
Qa(z1, z2) about (21, 22), since all the linear and quadratic terms vanished. The RHS

of (5.8) becomes

f21+i°0 f'f?‘”oo Ma; (Zl — 21) X

21—i00 JZa—ioco z%

(1+ ”lezmzl(zl - 21)1(22 — Z)" qm (%1, 22))6([5;3)22

_ ZTIZZO f;il? exp(n[L;‘%(zl,zz)])aél (2 — zl)c(lgjfff? + (5.9)
t1+i So+i L* (21, A
f;llfit;o f;;;;o s 25(21 e aél 2122,m21(21 - Zl>l(22 - 22)mqlm(217 )

(o~ 2%t

Make the change of variables z; = 2, + z\/iﬁ and 29 = Z9 + z\/iﬁ in (5.9). Note
that exp(—ng(wf + @3)) < 1, for the first term by Theorem 5.1 the Ly norm of
i,i.e | f;ztzo Zl dzs| is Op(y/n) which cancels out the factor of f contributed from
dzy, since z; — Zz; contributes a factor of f Hence the first term is O ( ) for the
second term, the factor of l contributed from (z; — 21)dz; cancels the leading n, and
(21 — 21)! (29 — 22)™ for [ > 2,m > 1 contributes a factor of \F’ and by Theorem 5.1

the second term is bounded by % O]

By reparameterizing RHS of (5.8) to the variables of {w;,ws}, Theorem 5.3
will show that replacing the nonlinearity of wy,a!w;(w; — @), in the denominator in

(5.2) by the linear term a3'@; (w; — @) will induce an error in the order of O,(1).
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Theorem 5.3.

f@l—i-ioo fwg—‘rzoo exp(n[w1/2+w /2—w1w1 —Waw2]) dwq dws

w1 —ioco JDg—ioco w1 (we—adwr) (274)2
i fwl-i-ioo fwg—i-zoo exp(n[w?/2+w? /2— wlwl—wgwﬂ)a%l(tﬂ —@1) dwdws
w1 —100 JWwa—100 (w2— a%wl)(wz a%w1 a2 wl(wl @1)) (27Ti) (5 10)
w1+ico fw2+zoo exp(n[w?/2+w3 /2—d1w1 —Daw2]) dur dws
— Jo1—ico Jan—ioco w1 (wz—alwr) (273)2
W1+ico pw@atico exp(nfw?/2+w3 /2—d wi— wzwg])aél (w1 —W1) dwiydws 1
+fw1 —i00 fwz 100 (w2—adwr)(wo—adwr —alldn (w1 —d1)) (2mi)2 ( +0 ( )>

Proof. Since by Theorem 5.2, the second integral of (5.2) can be written as

f21+ioo f22+ioo exp(n[%(1+(a%+a21)2)(z1—21)2—&-%(22—22)2+(a%+a21)(z1 —21)(z2—22)—%(d)f—i—oﬁz§)])
2

Z1—1i00 JZ9—i0c0o 25

at(z — zl)‘g;‘f)” (1+0,(

L))
(5.11)

Reparameterize (5.11) by 21 = w; and 20 = wy — asw; — aw(w; — @1) to give the
numerator of the integrand of (5.11) as exp(n|w?/2+w3/2 — 1w — Wows|)ad! (wy — 1)
and the denominator as (wy — ajw; — aw;(w; — @))% Since a = a(A, B, C) satisfies
(5.3) where A(wy,@;) = @1(w; — @) for this reparameterization, hence (wy — ajw; —

awi(wy — @1))? = (wo — adw; ) (wa — adwy — adtdy(wy — @y)). O

We will now evaluate RHS of (5.10) through reparameterization of {wy,ws}
such that the integrals of RHS of (5.10) can be expressed as bivariate normal survival
function or the products of normal density function and normal survival function.
Lemma 5.1 gives the expression for the first integral of RHS of (5.10), and Lemma

5.2 gives the expression for the second integral.

Lemma 5.1. Let ®y((t1,t2),Q) denotes the bivariate normal survival function of

mean vector O and variance-covariance matriz Q beyond point (t1,t3), the first integral

of RHS of (5.10) can be expressed as

fof)lJrioo fofngrioo exp(nfw?/24+w3 /2—d1w1 —Dow2]) dun dws
w1 —ico Jwo—ico w1 (we—alwi) (273)?2 (5 12)

= Do (W1 + adive, o), /n),
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where ¥ = | andc = /1+ (@)

1
as 1

Proof. Reparameterize the first integral of the RHS of (5.10) such that the denomi-

nator of the integrand is the product of two variables. Let {w; — uy,ws — a%wl — Us}

and ¢ = /1 + (ad)? to give

foleJrioo f&ngrioo exp(nfw?/24+w3 /2—d1w1 —Dow2]) duwr dws
w1 —ioco Jwo—ico w1 (we—alwi) (2mi)?2

U1 +ico fﬁg—i—ioo exp(n[cQu%/2+u%/2+a5u1uzfa%(ﬂnga%ﬂl)ul7a%ﬁ1uzfﬂ1u17a2u2]) duq dus
a1 —ico Jlg—ioco uULU2 (2mi)? -

(5.13)

Use the saddlepoint approximation of the normal tail probability of mean variables

(4.4) for d = 2, (5.13) is the bivariate normal survival function of mean (—a(ty +

2 1
. : : Gy NN
aliy), —aliy), variance-covariance matrix ¥ /n = /n evaluated at (g, 1s).
aj 1

Hence the first integral of the RHS of (5.10) is

ég((gQ’ELl —+ a%’&% ’&2 + a%ﬁl), Z/n) (5 14)

@2((@1 + G%Q)Q, (2)2), E/n)

Lemma 5.2. The second integral of RHS of (5.10) can be expressed as

fd)l—i-ioo fd)2+ioo exp(nfw? /24w3 /2—1w1 —Wawa])at (w1 —@1) dwy dws

w1 —i0o Jwa—ico (wg—a%wl)(wg a%wl a%lwl(wl @1)) (2mi)?2

11

2(‘*’ +@2—1 -1 1+61 0 <2 gl
= sgn(a, Wl)f mpe 2 Do (m\/ﬁ i) O 1+2¢+< 7 V/ilz)
aglgb(z—;\/ﬁfm)‘i)( %\/ﬁ%)],
(5.15)

1

2 — 2 ag S Ao Ao 1,
where 02 = 14+2¢ +63, 05 =63, ¢ = aw,§2 agl—wl,ul—wl,anduz—wg—a?wl.

Proof. Reparameterize the second integral of the RHS of (5.10) such that the de-

nominator of the integrand is the product of two variables. Let {w, — adw; —
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1
11 1 _ _a _ s
azter(wy — 1) — ug,we — aswy — us}, and let ¢ = a%livl’ © = e

L(ul, Ug) =

saut/2 + (14 261 + Z)ud/2 — (q1 + o3)urus — (1 4 ¢1)laus + 12wy to give

1 - —q2 711+ZOO ’122+’LOO exp nl U1 ,UQ Uus—u1) dud
sgn(ay' 1) rizze 3@Had-ad) [ [ (nL(uyu2)) (up —u1) duuy duy

U1 —i00 Jug—ico UL U2 (27i)2
1 1 L (@2 4@3—a3) [ [Urtico pha+ico exp(nL(ui,uz)) duyduy 5.16
= Sgn(a2 wl) 116 26 2 [fﬁl—ioo fﬁz—ioo uy (2mi)? ( )

ful—HOO fuz-l-loo exp(nL(u1,u2)) dulduz}
@1 —i00 Jhg—ioco U (273)?2

Reparameterize (5.16) such that 1) the term of product of u; and wup in L(ug,us)
vanishes in the numerator and 2)u; for i = 1,2 in the denominator is held unchanged,
so the bivariate integral can be expressed as the product of two univariate integrals.
Make change of variables for the first term in (5.16), let a = (¢; +¢2)/(1 + 25 + ¢3)

and {u; — vy, us — au; — vo} to give

~2

_nN2 ) A2
sgn(afhan) ke GF+5E-D
fful—‘rzoo exp(n[ (<2 2a(s1+62)+a? (14261 +52))v? —(a(1+s1) —s1)di2v1]) dvy v (5 17)
01 —100 U1 271 ’

f}bﬁoo exp(n[%(l + 261+ 63)v — (1 +61)ugvs]) 52

V2 —100 273"

Make change of variables for the second term in (5.16), let b = (¢ + ¢%)/s5 and

{uy — bug — vy, uy — vy} to give

sgn(ay' @) grigre 2 C1HeE ) x

ff”ﬂoo exp(n[icv} + Griiavy]) 22 x (5.18)

01 —100 271

fﬁﬁm exp(n[g (6263 —2b(s1 463 ) +14261+63)v3 — (141 —bs1)i2v2]) duy
U9 —100 vy 27"
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Hence (5.16), the second integral of RHS of (5.10), can be expressed as

11~ 1 —2(e2+e2—a3)
sgn(as wl)a%%%e 2 X
[fﬁl—f—ioo exp(n[3 (3 —2a(s1+¢3)+a® (14261 +63))vf —(a(l+<1) —s1)d2v1]) doy

01 —100 V1 271
S exp(nl3 (1 26+ g = (1+ )iaea]) 32 5.19)

fvvllj;o exp(n[3c3v + Grilavy]) 28 x

f@2+ioo exp(n[4 (b2c3 —2b(c1+53)+1+261 +62)vZ — (1461 —be1 )iava]) @}
U2 —100 .

[ V9 271

The univariate integrals in (5.19) with a denominator of u; or us can be expressed as a
standard normal survival function, and the univariate integrals without a denominator
can be expressed as the standard normal density function multiplied by a constant.

Write

ff)1 +ico exp(n[3(s3 —2a(s1+¢3)+a? (14261 43))vf —(a(l4<1)—s1)d2v1]) do;

01 —100 V1 21
> el (5.20)
D1 +i00 exp(n[20 v +pv1 —01v1]) dvy
- Jo1—ico v1 27’

where 0?2 = ¢2 — 2a(s; +62) + a*(1 4+ 21 +63) and p = 1 — (a(l + 1) — 1) to.

Use the saddlepoint approximation of the tail probability of the mean variables
(4.4) for d = 1. Expression (5.20) is the normal survival function evaluated at v, of
a normal distribution of mean u and variance o /n. Substitute a and convert to the

standard normal survival function to give

f’th +ico exp(n[3(s3 —2a(s1+¢3)+a? (14261 43))vf —(a(l4<1)—c1)d20v1]) do;

vljioo _ V1 271 (521)
- CI)( 1Jf§<11<22 \/ﬁfm)

Write
ff—iﬁo exp(n[3(1 4 26 + 3)v3 — (1 + G )lavs]) 32 (5.22)
= [ exp(n[3(1+ 26 + )vE + (B — (1 + 61)iin)vs — Dyva]) 22,
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Use the saddlepoint approximation of the mean density (4.3) for d = 1, (5.22) is %

times a density function evaluated at 05 of a normal distribution of mean 0 — (147 ) s

and variance (1 + 2¢; + 3)/n, convert to the standard normal density to give

Jiy i exp(nl3 (14 26+ )es = (14 1) iava]) 522 523
_ 1 1 1+¢1 '
= w01 A g Vi),
where o7 = (1 + 26 + ¢3)/n.
Let 05 = ¢2/n and use same arguments for the remaining two univariate

integrals in (5.19) to express (5.19) in the form of normal functions as

sgn(ay' @) orge 2 G119 oy _1¢(\/11++25ﬁ*/_“2)&’(v 1+§22<f+1g Viita) - (5.24)
—z ’
Lp(Ly/nitiy) D( §2§§€1 Vnis)).

Factor out \/n from o' and o, ! in the bracket in (5.24) and re-define 0? = 1+2¢, +¢2

and 02 = ¢2 to give

san(efin) afrzge RSB loT ol Rt b i vt -
_ 2_ 2 R :
Yo(s Vi) B (/I mdy).

[]

Lemma 5.1 and Lemma 5.2 give the expressions of the first and second integral
of RHS of (5.10) in the form of normal functions, respectively. Therefore, by (5.12)

and (5.15) we have the following theorem.

Theorem 5.4. To the error of Op(%), the first term of the bivariate tail probability
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(5.1) can be approximated by

(I)Q((djl + a%d)% (DQ)a Z/n) + Sgn(az Wl) fall ——73€ 2 5 (@F +@3—13) X

o7 O Vi) By 5 Vinta) — 03 08 V) By [ i)
(5.26)

where the quantity w1 and Wy are the square root of twice the unconditional log like-
lihood ratio statistics for testing the corresponding §; = 0,7 = 1,2, assuming that
& =0 forl < j, but without restriction on & forl > j, and 0? = 1426 +¢2, 02 = ¢3,

1
1 7 a3
(l2 - S o 1 2 A oA A o~ o 1~ o
alloy Sy = allon S = 1+ (a2) , U = W1, Uz = W2 Ao, =

1 =
a; 1

Proof. Since (5.12) equals to the first integral of RHS of (5.10) and (5.15) equals to
second integral of the RHS of (5.10), summing (5.12) and (5.15) gives (5.26). O

Note that @; = 0 is a singularity point for (5.26). Lemma 5.3 will show that

the singularity point is removable.

Lemma 5.3. @; = 0 is a removable singularity point for

f(@?l) = ﬁx

0710 ) B 15Ty V) — 0y 95k i) By )
(5.27)

Proof. Use Riemann’s theorem, it is to show limg, 0w, f(w1) = 0. Since by mean
value theorem limg, o ad'(ewy)@; = limg, ,o(ad(@1) — a(0)) = 0, it is equivalent to
show that lim,u1g, @1 f(w1) = 0. Write

f@) I © s

11, 11 -1 = e .
“uf (@) = az'n ayt (5" o) " b =i 14261 4¢3 5 V/ls) & m\/ﬁl@)
~ _ ~ = 2_ 2
_<a%1w1(72) 1¢(2_;\/ﬁu2)(1)< %\/ﬁuﬁ’

(5.28)

since 67 = (1+ 15 @ ) 5)si. The product of the density function and the survival function
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in the second term of (5.28)

SU vz [SE ST o ﬂ il )@ o ni
o Vniz)®(4 2 ﬁm)_(b(\/u(aé)ﬂfﬁ@( 1+(a%)2\/_2>’

and the limitation of the product of the density function and the survival function in

the first term

lim 11w1_>0¢(\/1i+2zil+§2\/_u2) ( 1+§22<11< \/_UQ)

lim 11w1—>o¢(\/ \/_U2) (\/W\/ﬁf@)?

hence the products in the two terms of (5.28) are equal as w; — 0. And

lim a%lwlal lim ailoy +2adadto; +¢2 = lim ¢ = hm a2 w109,
w1—0 a 1031—)() a%1@1—>0 a 101—=0

the two constant multiplier of the two terms in (5.28) are also equal at the singularity

point. Hence (5.28) goes to 0 at the singularity point of &, = 0. ]

The integrals of the second and third term in (4.9) to the error of O,(+) are
much easier to perform using Watson’s Lemma and presented in Theorem 5.5 and
5.6, respectively.

Watson’s Lemma states that if g(w) is analytic in a neighborhood of w = @
then i~ [217% exp(n(w — @)%/2)g(w)dw = S CW9*)(@)  Hence to the error

27r —i00 j=0 (2n)7 4!

of O,(4), f;_tz;o exp(n(w?/2 — dw))g(w) & = (\\?w)g( ).

Theorem 5.5. To the error of Op(%), the second term of the bivariate tail probability

(4.9) can be approximated by

LB (/1@ — Ba(60)))P/Mor ) (& — L )en@E? 2020, (5.29)

where w, and Wy are the square roots of twice the unconditional log likelihood ratio

statistics defined as in Theorem 5.4, and
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5 5 KIN(€1,E)KP(€1,6)— K12(£1,£2)K21(€1:£2)
1= K2(61.6)

Proof. Since

G (1,00 _ L___(Lda _ 1) (5.30)

wa—@a(w1)  wr—w2(w1) V&1 dw1 w1

is an analytic function at @w; and 0, by Watson’s Lemma

V1+i Do +i N N G (wy,0
f;ll_;;o fff_izo exp(nlw?/2 + w3 /2 — 0wy — wgwg])—m_éj(lwl)) d(‘g;ffgf —

oo [ exp(nlw} /2 + wd /2 — dnwn — Gaws]) i s (R - L)

w1 —ioco Jwa—ioco wo—wa(w1) V&1 dwi w1
dwidws __
X
<2+7”> 2 N 2 (5.31)
W2+100  p (w2 /2—Bow W1+1200 enlw 1w 1 1 d¢ 1 \dwi] dw
fd}g 100 € (w2/2-2 2)[fw1 —400 (Wi/2=6n 1)0.227(1)2((*)1) (Ed_wll - _>2_7rﬂ2_7ri
_ [Wa2tico en(w 2—Dowq) P(v/11) 1 1 w
— [t (w3 /2—Gown) /i [w_@(@l)(z__)quO (1)] L2
_ [w2tico nw2 QDow dws ¢(V/nw
- fw; 700 ( 2/2 ? 2) (.«)2—(1)12((2)1)2_7'('3 (\/\/% 1)(Z o 0%1) + Op(%)’
KM (61,62) KB (61.62) — K2 (&1.6) K (61752)
where 2 = & (§£ =& \/ Kl
Make the Change of variable u = wy — @y (wy) for (5.31) to give
n(@2(@1)2 /2—Qoda (& U+ic0  p(u?/2—du) 1 du ¢(V/nw
ri@n) mininlon) [IRL2 eni 2 Qe SR (5 = 30) + On(3) 5.32)
_ \/Lﬁ(i)(\/ﬁ(d)g _@2(@1))) (\/_Wl)(% . %)en(wz(wl) /2—G2d2 (W) +O ( )
O

Theorem 5.6. To the error of Op(%), the third term of the bivariate tail probability

(4.9) can be approximated by

SO e(viw) (5 - Z2), (5.33)

where wy and Wy are the square roots of twice the unconditional log likelihood ratio

statistics defined as in Theorem 5.4, Zo = 52\/K§2(0,£2) and & = £(0,9).

Proof. Write G (wy,wy) = G@(0,wy)+(G@ (w1, ws)—GP(0,w,)), where G (0, wy) =



o1

£2(0170&)%(0,@@) — w% The second term will integrate to the order of O,(+), hence

to the error of O,(1) and use Watson’s Lemma since G®(0,w,) is analytic at @, ,

integrating the first term G (0,w,) gives

L/‘(;Jl"riOO f®2+ioo G (0,w2) dwidws __

e €XP(n[w] /2 + w3 /2 — Grwy — Wat))

W1 —100 w1 (2mi)2
wa+i00 nw2 Qowa wo w1 +ioco nw% —wiwy) 1 dwy
[fw; 100 ( 2/2 )G (0 W2)Cém} [fd)l—ioo € (wi/2 )wll Céﬂ'lj| (534>
= =0(V/nw) G (0,02)@(v/nin),
where G0, ;) = Wlwz)jf; (0,09) — w% = % — w—z and & = &/(0,&,) is the root of
equation Ky (0,&) — &ty — (Ky (&1, &) —§ f) —w}/2=0. O

Combining Theorem 5.4, 5.5 and 5.6 gives the approximation to the tail prob-

ability of (4.9) to the error of O,(), the result is presented in the Theorem 5.7.

Theorem 5.7. To the error of Op(%), the bivariate tail probability (4.9) can be ap-

proximated by

A2 N2 52
Wity —i3) X

@2(((;}1 + aéd}?’d@)’ X/n) + Sgn(aélc‘}l)\fanap ezl
o= 5o .
lov <\/1-1-—22ﬁc2\/_uz) ( 14522<11c2 Vi) — 03 G/ 1) B %\/ﬁm)]
0 — SV (L Ly pn(@2(@01)?/2—@ed2 (@
O(V/n(@2 — @2(n)))o(v/nin) (5 — gy )en @2l /2@

Y
+ LB (V) o(vndn) (£ — L),
(5.35)

where the quantity w1 and Wy are the square root of twice the unconditional log like-
lihood ratio statistics for testing the corresponding §; = 0,7 = 1,2, assuming that

& =0 forl < j, but without restriction on & forl > j, o3 = 1+ 2¢ + <3, 03 = 63,

2 1
aj Nz - N ~ 1. S %
glza 7§2_a§ , ¢ = 1+(a2),ulzwl,uzsz—CLle,Z: ,
1
a; 1

Kll , K22 , K12 3 ’A K21 3 7A N ~ -~ & R
Zl 5 \/ 51 52 (51[(5222)(51751;)(51 DKy & 52)7 Z9 = 52 K}2/2(07 52); and 52 = 52(07602).

Proof. Omitted. O]
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5.2 Results and Conclusion

In the first example, we consider the bivariate random vector (Y7, Y2) = (X +
X2, X7 + X3), where (X, X5, X3) are identically independent distributed random
variables following exponential distribution with rate equal to 1 of density function
f(z) = e *. A Monto Carlo (MC) simulation of sample size 100000 was conducted
using R to evaluate the saddlepoint approximation (5.35) given in Section 2 for the
bivariate tail probability P (571 > 1, Y, > ty) when n = 5. The relative errors of the
approximation compared to the exact values for different values of (t1,t2) are plotted
as the contour lines in the following contour plot (Figure 5.1). Figure 5.1 shows
that in general the saddlepoint approximation given in (5.35) performs very well as
the relative errors are very small and stable, and the approximation is remarkably
good when (t1,t9) is in the rectangle of ((0,1.5),(0,1.5)) as the relative errors are

consistently near 0.
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15

t2
1.0

Figure 5.1: Relative errors of the bivariate saddlepoint approximation (5.35) compared to
the exact value in the continuous case.
(a) The maximum relative error is 0.31.

In the second example, we consider a discrete case that (X7, Xs, X3) are iden-
tically independent distributed unit lattice random variables following binomial dis-
tribution of the probability function P(X = z) = (;)px(l — p)N=% with N = 10
and p = 0.2 . Similarly, a Monto Carlo (MC) simulation of sample size 100000 was
conducted to evaluate the saddlepoint approximation for the bivariate tail proba-
bility P(Y; > t1,Ys > t3) for n = 5 where the bivariate random vector (Y7,Y3) =
(X1 4+ Xo, X7 + X3). The relative errors of the approximation compared to the ex-
act values are plotted for different values of (¢1,t2) as contour lines in Figure 5.2.
Figure 5.2 shows that in general the approximation performs very well and the best

performance of the approximation is observed for smaller (¢, ts) similarly to the con-
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tinuous case in the first example.

=0.25

—.05

t2
20 25
l

15

1.0

Figure 5.2: Relative errors of the bivariate saddlepoint approximation (5.35) compared to
the exact value in the unit lattice case.
(a) The maximum relative error is 0.22.

5.3 Comparison to Wang’s Approximation

Wang (1990) gave a saddlepoint approximation for the cumulative distribu-
tion function of the sample mean of n independent bivariate random vectors using
Lugannani and Rice’s saddlepoint formula and the standard bivariate normal distri-
bution function. Using our notation to express Wang’s approximation for the general

continuous case gives

P(T1 <t, Ty < t) = ®(vna1, vy, p1)
+ = ®(Vnin)o(vVn2)(: — 25)
+o=0(V/n2)o(Vn) (55 — ﬁ)

3

(5.36)

1 TN D Sy A U S 1 V(L 1
+ = exp{n[Ky (&1, &) — &t — &b} (g él\/m)(g 5a)
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where

w(&2) = sgn(E)y/ 2, (0) — hey (6],

he,(&1) = Ky (&1,&2) — &1ty for each fixed &,

£ is the minimizer of he, (&),

22 = —2(Ky(0,&) — &)

21 = w(0), (5.37)

b= 220

y = (2= by [(1+ )2,
pr = —b/(1+ 1),
and G =\ K2(6,6) — (K*2(61,6))/K1(61,6).

Use the same bivariate random vector (Y7,Ys) = (X7 + X, X; + X3) as in Section
3 (example one), where (X7, Xo, X3) are identically independent distributed random
variables following exponential distribution with rate equal to 1 of density function
f(z) = e=®. Conduct the same Monto Carlo (MC) simulation of sample size 100000
to evaluate Wang’s approximation (5.36) for tail probability P(Y; > t;,Ys > t,) when
n =5 by doing 1 — (5.36). The relative errors of Wang’s approximation compared to
the exact values are plotted in Figure 5.3). Figure 5.3 shows that Wang’s approxi-
mation (5.36) results in much bigger relative errors compared to our approximation

(5.35) as shown in Figure 5.1 (Section 3).
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Figure 5.3: Relative errors of Wang’s bivariate approximation (5.35) compared to the exact
value in the continuous case.
(a) The maximum relative error is 2.18.



6. APPROXIMATION FOR THE CONDITIONAL BIVARIATE

TAIL PROBABILITY

6.1 Methodology

In this section, we will consider the approximation for the conditional bivariate

tail probability, defined as
P(Tl > Zl, Tg > gz’Tg = Eg) (61)

Kolassa and Li (2010) pointed out the multivariate conditional probability approxi-
mation is simply equal to the multivariate unconditional tail probability multiplied

by 1+ O,(+) and summarized in Theorem 6.1.
Theorem 6.1. To the error of Op(%), the conditional bivariate tail probability P(T} >

t1, Ty > t5|T5 = t3) can be approzimated by

W1+ico pl2+ico w%er% ~ ~ G(wi,w2) dw1dwo 6.2
f@rioo faﬂoo exp(n[=5= — Ww; — w2w2])(w1—051)(w2—052) (2mi)? (6.2)

where the quantity wy and wo are the square roots of twice the conditional log likelihood
ratio statistics for testing the corresponding §; = 0,7 = 1,2, assuming that § = 0 for

[ < j, but without restriction on & for 1 > j, and conditioning on Ty = ts.

Proof. Similarly as Kolassa and Li (2010) showed for the multivariate conditional



o8

case, the numerator of the conditional bivariate tail probability

. . . — WiW1 — Way — CZ’30“’3])

n f&)l—I—ioo fofzz-i-ioo fobg—f—ioo eXp<n[w%+w§+w§
2

(2m1)3 Jo1—ico Jwge—ico Jg—ico
G(w1,w2) d€3(w1,w2,ws3)
(w1—u1) (w2 —w2) duws |(W1=07W2:07W3=w3)dwldw?dw3 (6.3)
_ [witico rdntico witwd _ Glwiws)  dwidws
= Jay—ico fwrioo exp(n[=5 wiwy w2w2])(w1—d1)(w2—u52) (2mi)?

XJS?

where J3 = 5= ff_tz;o exp(n[%g — Waws])dws = fr,(t3)(1 + Op(+)). Hence by the

definition of the conditional probability J3 is canceled out from the numerator and

denominator, (6.2) is achieved. O

By Theorem 6.1, we can directly use Theorem 5.7 to approximate the condi-
tional bivariate tail probability except the only difference is that w; and wy are the

square root of twice the conditional log likelihood ratio statistics.

6.2 Results and Conclusion

In the first example, we consider the same bivariate continuous random vector
(Y1,Y2) as in Section 3 (example one), and let Y3 = X; be the third variable that
(Y1,Y3) is conditioned on. A Monto Carlo (MC) simulation was conducted to evaluate
the saddlepoint approximation for the conditional bivariate tail probability P(Y; >
t, Yy > t2|§73 = t3) for n = 5. The relative errors for different values of ¢3 are plotted
as the contour lines in Figure 6.1. Figure 6.1 shows that in general the approximation
performs well for different values of t3, and better performance is observed when t3 is

smaller.
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Figure 6.1: Relative errors of the bivariate saddlepoint approximation (5.35) of the condi-
tional tail probability compared to the exact value for the continuous case.

In the second example, we consider the same bivariate lattice random vector
(Y1,Y3) as in Section 3 (example two), and let Y3 = X; be the third variable that
(Y1, Y3) is conditioning on. A Monto Carlo (MC) simulation was conducted to evaluate
the saddlepoint approximation for the conditional bivariate tail probability P(Y; >
t, Yy > tQD_/g = t3) for n = 5. The relative errors for different values of ¢3 are plotted
as the contour lines in Figure 6.2. Figure 6.2 shows that the approximation performs

well for different values of 3.
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Figure 6.2: Relative errors of the bivariate saddlepoint approximation (5.35) of the condi-
tional tail probability compared to the exact value for the discrete case.
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7. APPROXIMATION FOR TRIVARIATE UNCONDITIONAL
TAIL PROBABILITY

In this chapter, we will extend the bivariate unconditional tail probability
approximation to three dimension with error of Op(%). The integral of the first term

in (4.9) for the trivariate case can be expressed as

W1+1i00 plo+ico p3+ico w%—&-w%—‘rwg ~ ~ ~

fdzl—ioo fwg—ioo fd}g—ioo exp(n[=—F— — L1wi — Wawp — Wsws))
1 dwi dwodws

(w1 —@1)(wa—w2(w1)) (w3—w3(w1,w2))  (2mi)3
_ pwitioco pw2+ico pws+ico w%+w§+w§ ~ ~ ~
= Jorive Jomioo fd}gfioo exp(n[=—; — 1wy — Wawy — Waws]) (7.1)
% 1 _ dwidwodws

wi[we—awi —adlw (w1 —d1)][ws—alwr—aiw: =i j=1,2 ag wi(w;—@;)] (2mi)3

1

+Op(ﬁ>7

where a} = a}%(@k,l) for 1 <i<k <3, ag = azj(@k,l) for 1 <14, <k <3, and
Wh—1 = (@1, -+, 0p—1)".

As in the bivariate case, the nonlinear terms appear in the denominators of
the integrand of (7.1) are the major obstacle for evaluating the integral. Theorem 7.1
will show that replacing a}'w; by ai'@; in the second denominator of the integrand
of (7.1), and replacing >, ;_, , af wi(w; — ;) by dij=12 a3 &i(wj — ;) in the third

denominator will induce an error of Op(%).
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Theorem 7.1.
W1+i00 pW2+ico pwW3—+ico w%+w§+w§ ~ ~ ~
fwrioo f@gfioo fd}gfioo exp(n[~—; — w1 — Wawy — W3ws))

1 dwidwodws
(2mi)3

w1 [we—alwi —adlw (w1 —d1)][ws—al3wr—aiw: =i =12 agjwi (wj—w;)]

N1 o e 2,2, 2 R . .
- :i:j ff:f;o fof:g exp(n[uﬁij — 1wy — Wawg — Waws)) (7.2)
a%l(wl—uﬁl)

1 ) 1
(w1(w2—a%w1) + (w2—adwr)(we—adwr —alldy (w1—d1)) wg,—a%wz—aéwl—zij:l 5 ay & (wj—&j)

X —d“%j;’f)g“?’ + Op(%).

Proof. We will prove the theorem by two steps. To save some notation, let B(wy,ws) =

1 all(wl—a)l) . .
i) (wzfa%wﬁ(w;fa%wlfaélcizl(w1fo§1))' Step 1: To show replacing

1

wi|wy — adwy — adlwy (wy — @1)]

by B(wi,ws), with the third denominator held unchanged, will induce an error of
Op(%). Step 2: Based on the result of step 1, to show replacing dij=12 af wiw; — &)
by D iicia a7 &;(w; —@;) in the third denominator of the integral with the replacement
of B(wy,ws) will induce an error of O,(1).

Write (7.1) as

W1tico pws+ico w%—&-w% N A 1
fwl—ioo f&zz—ioo exp(n[=5= — ww — WQWQ])(M—@I)(W—@Q(M))

|:f‘-’:’3+ioo exp(n[w§/2f®3w3]) M] dw1dws
2mi)? -

(7.3)

W3 —100 w3—w3(wi,w2) 2w

The inner integral with respect to ws is a function of (wy,ws). Let h(wy,ws) =

W3+ico exp(n[w?/2—d3ws)) dws

fwg_m s (o) 2oy, and for each fixed (wy,ws), reparameterize the inner inte-

gral with {ws — @3(w1,ws) — wj} to give

h(wl, CL)Q)

— 6&)3(&)1,&)2)2/2—(2)3&)3(&)1 ,wg) ffb;—’—zoo exp(n[&z:;(w17w2)2/2—(w3—£;3(w1 7‘*}2))"‘};]) dig (74)
W3 —100 wy 27

_ 6@3(0.21,0-22)2/27":’3&3(“1’W)Ci)(d):% — (,:)3(&)1,602))-
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Note that ®(ws — @3(wi,ws)) = O,(1) and substituting h(w,ws) to (7.3) gives

W1+i00 pwa+ioco w2 4w 42 ~ ~ n o~ 1
f@ll—ioo f@rioo eXp(n[_1 22 —% — 0w — Wawy — w3w3]> (w1 —@1) (w2—w2(w1)) (7 5)
xOp(l)%.

Since w3(wy,ws) satisfies &3(wi, wa, w3) = 0, and by definitions of (w; — @;)?/2 and

@2)2 for i =1,2,3

uﬁfwz — WiW1 — Wl — W3Ws
= (w1 — ©1)%/2 = 02 /2 4 (wo — W2)%/2 — W2/2 + (@5 — ©3)2/2 — W2 /2 (7.6)

= Ky (§,6,0) — &ty — &t

therefore (7.5) is equivalent to the bivariate case for which we have proved in Theorem

1 .
e — 7 by B(wy,ws) induces an error

5.3 in Section 2 that replacing

wi (w1 —w1)

of Op(%). Hence Step 1 is proved. To prove Step 2, let 7(wy,ws,ws) = w3 — a3wy —

1 7,] ~ ~ . . .
azwi — ;i a3 wi(w; — @;), and write the third denominator as

1
“’3*“%“2*@:1&“1*2@]':1,2 ag wi(w;—w;)
= 2 1 reYm— T - (7.7)
w3—a3w2—a3w1—ziyj as ;i (w; —w]-)—zi’j ag (wi—w;)(wj—w;y)
1 345 a5 (wi—w;) (w;—w;)

ws—ang—a};wl—zi,j aéjwi (wj—ay) r(r=>2, aéj (wi—@3) (wj—@5))
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Substituting (7.7) to (7.1), with the replacement of a3'@; gives

w% +w§ +w§

W1+i00 pwotico plL3+100 ~ ~ ~
fwl—ioo fc&g—ioo fag—ioo exp(n[=—; — Wiw) — Wawy — W3ws))
( 1 + alt(wi—d) ) 1 _
w1 (we—alwi) (wo—alwr)(w2—alwi—alldr (wi—d1)) w?,fagu.zzfaéwl72:1.’].:172 ag & (wj—w;)

% dwidwadws

(273)3
. (7.8)
W1+i00 pwatico pw3+i00 w%—&-w%-‘,—w% ~ ~ ~
oo Jomioe Sy —ime €XP(n[F5 — Wiy — Waty — Waws))
x 1 ay' (w1 —1) ) -
wi(wz—agwr) | (w2—azwi)(we—agwi—agior(wi—o1) ) r(r—%, o af (wi—@)(w;—@;))

X Zzy af%,j(wi — w;)(wj — @j)%'

To show the second integral of (7.8) is O, (%), we use the same arguments as in Section
2 by letting (r*)* = r(r — >, .aéj(wi — (f.)i)(wj — w;)), Theorem 5.1 shows that for all
fixed (wi,ws), the univariate integral of Gz as a function of ws is bounded by +/n.
And since

L L L 9 9. o R X X
ffj,ﬁo fj;j;o fuszzo eXp(”[—wﬁwgﬁw?’ — Wi — Waz — w3w3])

11 -
1 ay (w1 —w1) Wy 0.
X (w1(w2—a%w1) + (w2 —alwi)(we—atwi—adldn (w1— wl))) Zi,jzl,Z as (wl wl)(wj wj)

% dwi dwodws

(2mi)3
. A Al 2, 2 R R
= S explnfad /2 — ) 2] [ [ [ expn[ 5 — o — ]
X B(wi,w) Zi,j:l,2 aéj (wi — @) (wy — @) d{;;ff;ﬂ

= Loyl [P0 (O e p(n[UHE — Gnwy — Gowa]) B(wr, w)

T o (s — ) oy — ) ke,

(7.9)
the leading factor of \F from (7.9) cancels out /n contributed by the integral of

G ) Note that fwlltl;o f:f_tzo exp(n[@ — Wwy — QQWQ])B(wl,wg)d(‘;“f;’f is O,(1)

as shown in Section 2. Make the change of variables w; = @; + Z\j—% for j =1,2. The

two terms of wy; — wy,ws — Wy contribute a factor of %, hence the second integral of

(7.8) is bounded by % Step 2 is proved. O]
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We will now evaluate the integral of the RHS of (7.2). Splitting the third
denominator to two terms with the first term containing only linearity of w’s in the

denominator gives

1
""3*‘1%“"2*“%“’1*21',]':1,2 azsj‘:’i("-’j*":’j) (7 10)
_ 1 Zi,j:1,2 aéj‘:’i(“’j —Wj)
w3 —ajwz—azwi (w3—ajwz—agw1)(ws—ajwz—agwi—3; ;_ 5 ay @i (w;—@;))

To save some notation, let wi(wy,ws) = > i je1.2 03 Wi(wj — wj), and substitute

(7.10) to the RHS of (7.2) to give

24,024 ,,2
w7 w3 +w3

fwﬁioo f@ﬁm f&)ﬁiwex (R[5 — 1wy — awy — Waws))
w1—i00 JWwe—ioco JW3—ico p 2 11 2W2 3w3

( 1 + all(w1—&1) ) 1

wi(we—alwr) (w2—abw1) (w2 —agw1—a3' @1 (w1-01)) / wy—adws—alw —wi (wi,w2)
% dwidwadws

(2mi)3
_ pwitioo pw2tico pwz+ico w%+wg+w§ ~ ~ ~
= Jay—ico fwrioo fd}gfioo exp(n[=—5—* — Qw1 — Wawy — W3ws])
1 dwidwodws

X :
wi(w2—alwi)(ws—alwe—alwr)  (2mi)3

+f¢01+ioo f®2+ioo fngJrioo eXp(?’L[w%_’_wg—Hd‘%

G2 —ico 5 — WiW) — WaWa — C?J?)W:s])

w1 —100 "

W3 —100

(7.11)

W:J; (w1,w2) dw1dwodws
wi(w2—alwi)(ws—a3wr—aiwr)(ws—a3wa—aiw: —wg; (wiwe)) (2mi)3

— Wy — Walg — C93003])

w1 —100

fo:J1+iOO f®2+loo fd)3+ioo
g —100

S el

aél(wl —w1) dw1dwadws

X = = :
(w2—adwi) (w2 —alwi—adldr (w1—d1)) (ws—aZwe—alw)  (27i)3

N e St 2,22 R R R
Lo S o exp(n[ MR — Gy — Gy — Gaws))

w% —i—w% +w§
2

a%l (w1—1 )w;, (w1,w2)

(w2 faéwl ) (wzfa%uu faéldjl (w1 7@)1))(&)37&%&)2 7(1%0.:1 ) (wgfago.u faéwl 70.2;3 (w1,w2))
% dwidwadws
(2mi)3

We will evaluate the RHS of (7.11) term by term and the results are presented in

Lemma 7.1 to 7.4, respectively.
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Lemma 7.1.

fdzl—‘rioo f@g—i—ioo fw3+ioo (n[w%erngwg

3—ioo exp 3 — WiW1 — Waly — W3W3])

W1 —100

W —100

1 dwi dwodws
wi(w2—alwr)(ws—aiws—alwr) (2mi)3 (712)

= @3((A7"w)", %),

where ®3((A~T0)T, ¥) is the trivariate normal survival function beyond point (A~T@)"

of a trivariate normal distribution of mean 0 and variance ¥ = (ATA)~!, and

1 0 0
A=1 —a} 1 0 |- (7.13)

1 2

Proof. Reparameterize the integral of LHS of (7.12) such that the denominator of the
integrand is the product of three variables. Let z = (21, 20, 23)7, w = (w1, ws,w3)?.
Make the change of variables by letting {w; — 21, ws — adw; — 22, w3 — a§w2 — aéwl —
23}, or, in matrix form of z = Aw to give

JERe e B axp(n[L2T(ATA) 2 — (ATT0)2))

z ¥4 ¥4

1 dzidzadzs (714)

212223 (2mi)3

= 03((A7w)", 3,

where ¥ = (ATA)™!, AT = (A71)T, and @3((A~7w)", %) is the trivariate normal

survival function beyond point (A~T@)T of a trivariate normal distribution of mean

0 and variance X.. O
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Lemma 7.2.

L o ) )
S [ [ exp(n[ RS — @yw) — aws — Bws))

w;;r (wl ?WQ) dwidwadws

N3
w1 (w2 —a%wl ) (wg—a%wQ —a§w1 ) (ws —a%wg —aéwl —w;’ (w1,w2)) (271)

_1

— i 12(% '+ abai’)e
(el AT e)a sy + @T AT, ) + £ 2-Bs(c"'S) + 17 AT )]
o1
_Zj:IQCLg]e ’
|:( TA2 C)(.U](I)y)( T22+CU A2 ,22) %ié ( TEQ“‘t A2 ,22)’ :|

(7.15)

+OP(%)7

where e; is the unit vector of the j™ element being 1 and all others being 0, ¢ =

(0,0, Zi,j:l,Q agj@i@ﬂT:

Al = —aé —CL% 1 ) (716)

1 11 12~ 2 _ 12~ 22
—a3 — Q3 W] — Az3"Wy  —az — az“w; —az‘wy 1

AQ - —a% 2 (717)

|
@
w
—

1 11n 12~ 2 _ 12+ 22 ~
—G3 — Q3 W) — a3°Wy —as — az°W; —azwy 1

and ¥y = (AT A)Y fori=1,2.

Proof. We will first show that replacing a;)j w1 by aéj w; in the numerator of the inte-

grand will induce an error of O,(L). The error after replacing a’@; by ag’w; is

W1+i00 pwatico plL3+i00 w%—&-w%—‘rw% N ~ ~
Jormie Jonioe Jo-ioo exP(n[=5 Wiw) — Waty — W3ws])
15 . .
Zj asj (w1—w1)(wj—@5) _ dwi dwadws
w1 (w2 —alwi)(ws—alwr—alwr)(w3—ajws—alwy = ii=1,2 ag & (wj—w;)) (2mi)3

(7.18)
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Using the same arguments as in Theorem 7.1, let (r*)* = r(r — >, . -af (wi — i) (w; —

@;)). By Theorem 5.1, for all fixed (wy,ws), the univariate integral of ; )2 as a

function of ws is bounded by +/n, which cancels out the factor \/Lﬁ contributed by

the 1ntegral f ico exp(n[wg/Q — @3&)3])%‘ Note that fwl-ﬁ;lozo f;f_tzo eXp(n[w%—é—w% .

1 dwi dwa
wi (we—adwy) (2mi)2

w1 —Waws)) = Op(1), and make the change of variables w; = @;+i %
for j = 1,2, the two terms of w; — @, w; —w; contribute a factor of %, hence (7.18) is
bounded by % Similarly the error of replacing a%j wy by a%j wy in the numerator of the
integrand will also induce an error of Op(%). We can then cancel out w; or wy — ajw;

(by letting wy = wy — ajw; + aiw; in the numerator) from the denominator; hence to

the order of O,(%), the RHS of (7.15) becomes

w1+ico pwa+tico pw3+ioco w%-{—w%—i—w% ~ ~ ~
fwl—ioo fd}g—ioo fof)g—ioo exp(n[=—F— — Gwi — Waws — Wyws])
1j 2j N
Zj:l,z(agj +a§a3j)(wj—wj) dw1 dwadws
(wg7a%w1)(w37a§w27aéw1)(w37a§w27aéw17w;(w1,w2)) (2mi)3
w1+ico ple+ico pl3z—+ioco w%—&-w%-‘rw% ~ ~ ~ 1
4 i it [ ep ([ by, — i~ Gys]) (719)
2j .
X Zj:l,z ‘13] (Wj _“Jj) dwy dwodws
w1 (wg—a%wg—a%wl)(wg—agwg—aéwl—w;(wl,wg)) (2mi)3
1
+OP<E)'

In order to express (7.19) in terms of normal functions, we need to further remove

w; — w; from the numerators. This can be done by defining a function S;(t1, %2, t3)

for j =1,2 as
) _ 1 1 2] —in$3 @2 pertioco pwatico rhz+ico
SJ (tl’t27t3) o n(a3 +aza ) 2 e W1 —100 f@z*ioo foﬁ)gf’ioo
exp(nf(wi—t1)?+(wa—t2)?+ (w3 —t3)? ]/2) dw1dwadws
(w2—a%wl)(wg—agwg—aéwl)(wg alwr—alw— wg(wl,wg)) (2m3)3 (7 20)
o 1.2 Iny? (@2—t2) [@rtico pwatioco rhgico
- ( +CL ) ! v fdzlfioo fd)gfioo fc&gfioo
w3 w3
eXP("[%*tlwrhwr’fs%]) dew dwodws

(w2 —a%wl ) (w3 —agwg —aéwl )(ws —a%wg —aéwl —w; (w1,w2)) (271)3

The first term of (7.19) 1S Zj 1.2 9t 9249 (tl,tg,ng)‘(tl’t%t?’):(@l,@%w?)).



Reparameterize (7.20) by letting z = Ajw + ¢ for j = 1,2 to give

—in@To—tTt+c " Sic+tT AT e

Si(tr, ta, ts) = —L (a3’ + aba)e * | A4

xcf)g(gTXh + tTAl_l, 21),
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(7.21)

where ¥ = (AT A;)7!. Let ¢; denotes the unit vector with the j element being 1

and all others being 0, the first term of (7.19) is

—in(cTSic+aT AT o)

- 2]’:1,2(%? + a%a?)e | Ar]x
[(eF AT )@ @Sy + T AT, ) + %%@3(;21 +tTATL S0 s

Similarly, the second term of (7.23) is

(€7 A7 )y @s(cT8g + T AT, 5) + LBy (7S, + 17 A" 5)s].

8t]‘

Lemma 7.3.

wW1+i00 pwatico pw3tioo w%—&-w%-‘rw% ~ ~ ~
fcﬁlfioo farioo ftl}gfioo exp(n[=—3 — Wy — Waty — W3ws))
aél(wl_‘«al) dw1 dwadws

X = = -
(we—adwr)(wa—adwr —aller (w1—d1))(ws—a2we—aiwi)  (2m5)3

1 T EeraT AT )

(A7 r @D + BTAT D) 4 L @(¢E 4 ¢7A7, D)lo],

where
1 0 0
A=1 —(ad+ad'@) 1 0 |,
—aj} —a3 1

and ¢ = (0,ai'@?,0)T.

(7.22)

(7.23)

(7.24)

(7.25)



Proof. Let
_ 1 11, -1py3% @2 w1+ico pw2Hico plz+ico
S(ty,ta, t3) = Rao € 2 ! @1 —ioco f@z_ioo fa3_ioo
exp(n[(w1—t1)*+(wa—t2)’+(ws—t3)%]/2) dwidwadws

(w2—adwi)(we—adwi —alldn (w1—@1))(ws—ajwe—alwr)  (27i)3

1 3 (.2 42 o1+ o 3+i
— _lalle—gnzizl(wi —t2) ffnfzoo ff'J2+,Z°° ffuzsﬂoo
n-2 w1—ioco Jga—ico Jdz—ico
w2 w2 4w?
exp(n[ L2758 —twy —tywy —tsws)) duwr dwodws

(w2 —a%wl ) (w2 —a%wl —a%ldjl (w1—@1)) (w3 —agwg —aéwl) (2mi)3

such that the RHS of (7.24) is 8%5(151,t2,t3)|(t1’t27t3):(@1@2@3).

Reparameterize (7.26) by letting z = Aw + ¢ for

1 0 0
A= —(CL% + a%lwl) 1 0 )
—a3} —a3 1

and ¢ = (0, a3'@?,0)" to give

—3n(@To—tTt+cTSe+tT A1)

S(ty,ta,t3) = —%aéle 2 P3(cTL +tTA7LY),

where X = (ATA)7L. Let e; = (1,0,0)7, the RHS of (7.24) is

11—z SereT AT )

(AT By (¢"E + 24T D) 4+ S5 Ba(¢"E + A7 D).
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(7.26)

(7.27)

(7.28)

(7.29)
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Lemma 7.4.

ff:)l—i_ioo f®2+ioo f;d::;o exp(n[—w%+°§+w§ — (2)1(4)1 — (2)2&)2 — (,:)3(,03])

W1 —100

W2 —100
ad! (w1 =1 )wi (wi,w2)

(w2 —a%wl ) (w2 —a%wl —a%loﬁl (w1—@1))(ws —a%wg —aéwl Y ws —a%wg —aéwl —wg (w1,w2))

dw1 dwadws
X 2mi)3

= Zj:l,Q(ailijwl + agjd)g)e

(el AT 1)@ @3(c 'Sy + 0T AT 5) + %%@S(C}Tzl +tTAT, )0]

7%n(clTElcl+tl;TAflc

14, (7.30)

—gnlez  Taca 0T Ay ez

)
| Ag|x

- Zj:1,2<a§jdjl + a?ﬁ@)e

[(@?Aglcg)@j‘i)z(chz2 + @TAz_l, Yo) + %%@3@;22 +tT A, 22)‘5{},

where e; is the unit vector of the i element being 1 and all others being 0, =

(0,0, Zi,j:1,2 a?‘sj@i@ﬂT; C2 = (0,a'@?, Zi,j:1,2 aéj@id)j)T;

—aj 1 0
Ay = —a:l,, —a% 11, (7.31)

1 11n 12~ 2 12+ 22 ~
—a3 — Q3 W] — G3"Wa —a5 — az°wW; — az“wy 1

—<CI,% + a%lcbl) 1 0

Ay —a3 —a? 1|, (7.32)

1_ 11 12 2 _ 12~ 22
—a3 — A3 W] — Az3"We  —az — az“w; —az“wy 1

and ¥; = (AZTAl)_l fori=1,2.
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11 -
Proof. Substitute ag w1=G1) — = - — — L togive
f S (wgfa%wl)(wgfa%wlfaélwl (w1—@1)) wgfa%wlfaélwl(wlfwl) wgfa%wl g
W1+ico pW2+ico W34ico w%—}—w%—&—w% ~ ~ ~
- f@l—ioo fd)g—ioo f&)g—ioo exp(n[~=—3 — Wiw1 — Wawy — W3ws])
15 2j N
« Z]'=1,2(a33“-’1+a33"-’2)(“’j —©y5) dwi dwadws
(wz—aéoﬂ)(w3—a%wz—aéwl)(wg—agwg—aéwl—w;;(w1,UJ2)) (2mi)?
N (7.33)
W1+ico pwatico pws+ico w%+w%+w§ ~ ~ ~
2 2 [ (= — o — )
15 A 2j .
> j—1,2(a’ d1+a3” Do) (w; —w;) dw1 dwadws
(w2—a%w1—a%luﬁl(wl—&11))(wg—a%wg—aéwﬂ(wg—a%wg—a%wl—wg(wl,wz)) (2mi)3
Let
) 1 15 ~ 25 ~ —lnz?’, o2 pwitico pwatico pw3zH4ioco
S](t17t27t3) - E<a3 Wi + a3 WQ)@ 2 =t w1 —100 f&)g—ioo fd}g—z’oo
exp(n[(w1—t1)*+(wa—t2)*+ (w3 —13)%]/2) dwi dwadws
(w2 —adw1)(ws—adwz —aiw: ) (ws—adwz —alwy —w;(wl,wg)) (2mi)3 (7 34)
_ 1,1~ 27 A -1, 237 (@2 —12) w1+ioco plg+ico pwz+ioo
- n(a3 w1 +(I3 w2>6 2 e f&;l—ioo ftf)g—ioo fd)g—ioo
2, 2., 2
exp(n[%—tlwl—twrwws}) dw1 dwodws
(0.)270,%&.71)(UJgfag(.UQ7&%0.)1)(0.7370%&)27(1%0.}17&];(0.)1,0.)2)) (2mi)3
: el
such that the first term of (7.33) is }_,_, , aTjS(th b2, 13) | (b1 st )= (1 @02.659) -
Reparameterize (7.34) by letting z = Ajw + ¢; for
—a} 1 0
Ay = —a} —a3 1], (7.35)
—a —a}ld) — aPPhy —al — aP’ —adoy 1

and ¢ = (0,0,37; 1, ay @w;)" to give
j ] -1 ATA*tTt+ TE +tTA71
Sj(tljt27t3) — %(aéjdjl +a§]d)2)e n(o:) w—t i C~1 IC~1 t 1 c~1)|A1’
(7.36)

X(i)3(Q1TE1 + 1T AT, %),

where 31 = (AT A;)7!. Let ¢; denotes the unit vector with the j element being 1
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and all others being 0, the first term of (7.33) is

. . _1 Ty +ATA*1
3 mral0fon + afan)e " T

_ _ (7.37)
(e AT 1)@ ®s(cy "8 + 0T AT E0) + %%%(@T& +tTATL S
Similarly, the second term of (7.33) is
. . (e TS e+ T AT e
=y a(ay’n + aF’ @ )e e ~2)|A2|>< (7.38)
[(??A;IQZ)wji)3(q2T22 + @TAQ_I, o) + %%(I)3<C~2T22 +tT A Ez)hﬂ )
where
—(CL% + (I%ld}l) 1 0
4y = Ll e o (Y
—al —ail@y — aPdy —ad —aPd; —afo, 1
C~2 = (O, a%l@%, Zi,j:LQ aéj(;)i@j)T and 22 = (AgAQ)_l. ]

Sum up the results of Lemma 7.1 to Lemma 7.4 to give Theorem 7.2.

Theorem 7.2. To the error of O,(%), the integral of the first term in (4.9) of the

saddlepoint approximation for the trivariate unconditional tail probability is

fﬁbl—’—ioo f‘;}2+ioo fai?’_tzo exp(n[—w%Jr“;%Wg — (.2)1(&)1 — (.:)2(.&)2 — 62)30.)3])

W1 —100

W2 —100

X

1 _ dwi dwodws
w1 w2 —alwi —altwi (w1 —d1))ws—alwa—alwy =i j=1,2 ay wi(wj—&;)] (2mi)3

®3((4y " @)7, o) (7.40)
_l’_

1
4 2 3
D ket Zj:l bije

[(eT A er); @s(c ™Sk + @TA;ZI, k) + %%CI)B(%TZk + 1T AT, Zk)|@]

n(ClcTEkCE-HE)TAI;lCZC)

| Ag|x

+OP(%)7
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— 11 _ R 27 ~ 1 1,27 _ 2j _

where b11 = —a5, b12 = O, bgj = Q3 W1 + Qs Wy — Ag” — AoQg™, bgj = —ayg, b4j =
2 lj ~ 2j ~ . . . -th .

ijl(a3 W1 + a5’ W) for j =1,2, e; is the unit vector of the j** element being 1 and

all others being 0, c1 = (0,a3'0F,0)", ca = c3 = (0,0,37, ., ai )T,

ca = (0,a5' 0%, 32, 1y 5 a5 @) T, & = (@1, @, @3)",

1 0 O
—al —a} 1
1 0 O
Av=1| —(ad+al'en) 1 0 |, (7.42)
—aj —a3 1
—a} 1 0
Ay = —a} —a? I (7.43)

Az = —ag —aj L (7.44)

1 11n 12 ~ ~ 2~
—Q3 — Q3 W) — 3°Wy  —a5 — Az"Wy — az-Wy 1

—(a} + allan) 1 0
A4 = —a% —CL% 1 ) (745)

—a} —aly —a?dy —ak —aPd) —a¥0, 1
and Xy = (AT Ap) ™ for k=0,--- 4.
Proof. Omitted. O]

Note that (&1, @) = (0,0) are the singularity points for (7.40) since | Ag| (w1, w2)

=0 at (w1,w2) = (0,0) for k > 2 such that the inverse of A; doesn’t exist. However,
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Lemma 7.5 will show that the singularity points are removable.

Lemma 7.5. The singularity points of (w1,02) = (0,0) are removable for
o —In(cpTSpep+oT A e
PG, o) = ¢ 2" TR )

_ _ (7.46)
| Axl [(e] Ayt er)@;®s (e TS + 0T AL By) + - @ale S+ A i)l

for k > 2.

Proof. Use Riemann’s theorem, it is to show lim|4, |0 [A%|f(@1,@2) = 0. Substitute

Al = “fg‘;’“, where adj Ay denotes the adjoint of A, to give

ln(CﬁTszJvﬁﬂ.?TA;lCﬁ)

| Al f (@1, @) = |Agle ®
|[(e] (adj Ai)cr)j®s(cr" B + @ ALY ) + [ Arl g @s (e g + 17 A, D)o

(7.47)

Note that |A|(@1,@2) = cri1 + dpy for some constants ¢ and dy, then write A, ' =

ﬁ(r}, T2, T~3>T = m(r;ﬂ,rlf2,r;§3)T where 7p; denotes the it" row vector corre-

sponding to A,;l. Hence for k£ = 2, limg, 2,)—(0,0) @TAglc? = lim g, @2)—(0,0) @37’23qu =

a7 (alal+al+all) S ad w0, . . ~T p—1 _
W3 hm((;,l’(;,?)_“o,o) 23 202@12+d2&12 == = 0. Slmllarly, hm(@l’@)_)(ovo)cg Ak Cﬁ =0

for k£ > 2. Also, because

7%anTszk

lim(@hda)_,(op) (& =1 and both Ci)g(qkTZk + CE)TAI;I, Ek) and

203 "Sy + 1T ALY, 5k e are bounded, hence (7.47) — 0 as |Ay| — 0. O

As in Section 2, the integrals of the rest terms in (4.9) for the trivariate case
involving with GU)(w;,wsy,ws) can be evaluated using Watson’s Lemma, since the
integrands are analytic functions. Theorem 7.3 to 7.5 present the results of integrals
involving with GU) for j = 1,2, and 3, respectively. Let &y = @y(1) and @3 =

wg((j}h (1)2)

Theorem 7.3. To the error of Op(%), the integral of the trivariate tail probability of
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(4.9) involving with GV

@14ic0 pantico pwztico 3 9 N G (w1,0,0)
fwl—ioo f&)g—ioo fag_m exp(n ) (wj/2 - WJ‘WJ'»(wg—@(m)xi;—wg(wl,wz))

dw1 dwadws
X 2y

(7.48)

can be approximated by

L (/) B (/{0 — o), V(@ — ) (£ — L) DI /2 0 (7.49)

where Z; = él\/K}lfl(él,éQa &) — K261, 6, &) (K2 (61,60, 6)) T KE (61,6, &)

Proof. We will first show that replacing wy of w3(wy,ws) by ws in the numerator of
the integrand in the denominator of the integrand of (7.48) will induce an error of

Op(%). The error after replacing ws by W, is

o rotine i , A
fail—z'go fﬁ_iﬁo faf—izo exp(n Zj:1(%2‘/2 — Wjw;))

oron)—alor ) (7.50)
w3 (w1,w2) —w3(w1,w2 (1) dw dwadw

X o) (ot o oeBatrzay O (@i, 0, 0) S,

Use the same arguments as in Theorem 7.1. Let (r*)? = (w3 — dg(wl,wz))(w;g —

W3(wy,wq)). By Theorem 5.1, for all fixed (wy,ws), the univariate integral of =57 as

a function of ws is bounded by /n, which cancels out the factor \/iﬁ contributed by

the integral f a0 oxp(n [W3/2 — yws]) 228, Note that for all fixed w;,

100

W2 +100 2 o~
/ exp(n|ws /2 — Waws|) dws —0,(1),

29 —i00 Wy — (:)2((4)1) 271

and by Watson’s lemma,

w1+100 dw1
exp(nfw?/2 — djlwl])G( )(w1,0,0) = (\/_wl) (d)l, 0,0)
/al—ioo ! ori \/_

contributing a factor of f Make the change of variables wy = Wy + 1= \F The term
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W3 (w1, we) — w(w,We) = —(a3 + a3® + a3?)(wy — W) contribute another factor of \/iﬁ,

hence (7.50) is bounded by % Since

G (w1,0,0) 1 (L4 _ 1y (7.51)

(w2 —@2(w1))(w3—w3(w1,W2)) (w2 =02 (w1))(w3—@3(w1,W2))

is an analytic function at @w;. Hence by Watson’s Lemma

@1+ico pWatico [@d3+ico 3 N G (wy,0,0)
f ' f ’ fw33—ioo eXp(n Zj:l (('L}jQ/2 - w]w])) (wg—&)g(wl))(zg—ﬁg,(wl,L:JQ))

w1 —1i00

Wo—100

dwidwodws __
X o)

W1tico pwa+tico fw3+ioo 3 2 ~ 1
fwl—ioo fag—ioo fd);;—ioo exp(n )2 (wj/2 — @jw;)) (w2—G2(w1)) (w3 —@3 (W1,02))
(i& . l)dW1dw2dOJ3 _
& dw  wi/ (2m)3 T
f®2+i00 j‘@3+i00 enzg’:Q(wf/Q—d)jwj)[f‘;’l‘Hoo en(w%/Q—dzlwl) 1
Wa—ico Jwz—ico W1 —1i00 (w2 —&2(01))(wa—w3(w1,02))
(L& _ L)M]_dwzdws —
&1 dw w1/ 27t (27Ti)2 -
f®2+ioo f®3+ioo 6n2§:2(wf/2—ijj~)¢(\/ﬁ®1) 1 (L . L)dwzdm
wo—ioco Jwsz—ioco \/ﬁ (WQ*CDQ(O:)l))(Wg*(ZJS((;}l7(.02)) Z1 w1 (27Ti)2

+OP(%)7
(7.52)
where 2; = 51(37511(@1))—1 =

E KD (6,60, 6) — KP2(6,60. &) (KR (61, 6. &) KB (61, 60,6s).

Make the change of variable {wy — @2 (w1), ws — Ws(wWy,w2)} — {u, v} for (7.52) to give

el Z?ZQ(UU?-/?—@]'@]‘) fﬁ—l—ioo f@+i°° en(u2/2+v2/2—ﬁu—fw)i dudv_ ¢(v/ni1) (i . L)

G—ioco Ji—ioco wv (2m8)2 /n 21 w1
o) (7.53)
Y ~ - ~ - n 33 (02 /2—0i0; '
= Z= (/) Ba(v/ 1@y — @n), /(g — ) (& — Z)en B/
+0, ().
O

Theorem 7.4. To the error of Op(%), the integral of the trivariate tail probability
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(4.9) involving with G?

JEIe JE S exp(n 0 (w32 — ) o e dededen(7.54)

w1—to0 Jwg—ico Jwz—100 (wz—@3(w1,w2))  (2m5)3

can be approximated by

T2 0(V/nln)Ba (vl /(g — @3)) (£ — £ )en(@-ea9), (7.55)

where 2y = &/ K2(0,£2,0) and & = &(0,&,).

Proof. Write G® (w1, wy,0) = GP(0,w,,0) + (G® (w1, ws,0) — GP(0,w,,0)), where

G (0,ws,0) = 5000 L )%(0 wy) — LQ The second term will integrate to the order of

G2)(0,w2,0) b G2)(0,w2,0)
w3 —w3(w1,w2) w3 —w3(W1,ws

O,(2), further more replacing 7 will also induce an error of

O,( 1) since the error after the replacement is

w1+ioco  pl2+ico wW3+100 3 2 NNy (:)3(w17w2)—d)3(0f}1,u)2)
foﬁl—ioo fdjg—ioo fa;g—ioo eXp(n Zj=1 (w]'/2 ij]))wl(w;;—@s(wl,wz))(wii_@b}(@l7W2))

(7.56)
xG@(0, wy 0)%.
Use the same arguments as in Theorem 7.3. Let (r*)* = (w3 — @g(wl,uJQ))(w;z, -

W3(W1,ws)). By Theorem 5.1, for all fixed (wy,ws), the univariate integral of -z as a
function of ws is bounded by /n which cancels out the factor f contributed by the

integral fgf_;;o exp(n[w}/2—@sws]) L8, Note that fwlﬂoo xp(nlwi /21 doy O,(1),

w1 271

and by Watson’s lemma,

wo—+100 de
exp(nfw? /2 — Gow,])GH 2.0 = ——(v/nin)GP(0,04,0)
/wz—z‘oo 2 ori \/_

contributing a factor of f Make the change of variables wy; = w; + 1= \f The term
W (wr, we) — wg(Wr,w2) = —(a3 + a3' + a3')(wy; — 1) contribute another factor of \/iﬁ,

hence (7.56) is bounded by . Hence, to error O,(+), use Watson’s Lemma, since
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( . . ~ . .
% is analytic at @,. Integrating the first term G (0, wy,0) gives

o1 Syt w 3 N G (0w2,0)  dwidwodws
JEros Sy Sy exp(n 320y (w8 /2 = jy) i) o —

[f“:’SJFiOO en(w§/27w3w3) ( f‘”2+1°° en(w /2—@aw2) G@)(0,w2,0) dﬂ) dﬂ]

3 —ico Dy —ico w3 — 3 (on ,w2) 2mi ) 2mi
X [ [ eniet/2-nen) 1 don ] (7.57)
= TR0/ Mioa) GO0, 0 B/l ) [0 enef2mioes) o
= S 0(V/ns) G (0, Q) Ba(v/nin, /1@y — @) )en @5 -22),
where G)(0, s, 0) = 52(0172)%(0,&22) - w% = i — L and & = &/(0,@,) is the root
of equation Ky (0,&,0) — &ty — (Ky (&1, &, &) —§ f) —W¥)2—02/2=0. O

Theorem 7.5. To the error of Op(%), the integral of the trivariate tail probability

(4.9) involving with G

ffblﬁoo ffbﬂoo ffb:ﬂﬁoo exp(n Z?:l (wjz/2 . d)jwj)) G®) (WI’NWQ,LUS) dwldw;gw3 (7.58)

G1—ico Jan—ico Jag—ioo or@a—a(w1))  2m)
can be approximated by
Tro(Vnws) (5 — 22) W (@1, &), (7.59)
where 23 = £31/ K33(0,0,&5), & = £5(0,0,@3), and
W (@1, W) = Po((1 + adn, @), X/n) + sgn(adt wl)fall se~ 5 (@f+ei—ad)

lov (\/1}:;%\/_2@) ( 1;§<11< Vi) — o5 ¢(§1 Vi) D( 2gggl \/ﬁu22] |
7.60

defined as in Theorem 5.4.

Proof. Write

G(S) (wb w2, (")3) = G(S) (07 07 W3) + (G(S) (07 W2, CU3) - G(Q) (07 07 w3))

+(G(3) (wlu w2, (.U3) - G(g) (07 w2, (.Ug)),
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where G®)(0,0,ws3) = 53(0})%) jfj’; (0,0,ws3) — —-. The second and the third term will

integrate to the order of O,(%). Since G© )(0,0,w3) is analytic at ws. Hence by

Watson’s Lemma since , integrating the first term G (0,0, ws) gives

[Etioe [Latioe [UHO ob(n S (W2 — @jw))) G (0.0.05) _ dw dwyduos

w1 —100 Jwas—ioco Jwz—100 w1 (w2—w2(w1)) (27”)3

w1400 pw2+ioco 2 ~ o1 dw
[fallfioo fthQQ*iOO exp(n ijl(w2/2 - ijj)) w1(w2—1d)2(w1)) (21(2;?)22} <761)
% [fﬁiitio en(w§/27w3w3)G( )(O 0 W3)dw3}

= Lo(Vnis) GO (0,0,05) W (61, @),

where W(w;, W) = f:l_tf: f:f_t?oo exp(nwi;(zgﬁlﬁjw’” d{;”f;’f is the first term of the

bivariate tail probability which is given by Theorem 5.4,

1 d¢ 1 1 1
9(0,0,) = 5 (0,0,05) -~ =~ — L
O = e T T

and &3 = £5(0,0, ) is the root of equation Ky(0,0, &3) —&sts — (Ky (&1, &2, &) —§Ti) -
w2 —@2/2=0. O

Combining Theorem 7.2, 7.3, 7.4 and 7.5 gives the approximation to the trivari-
ate tail probability of (7.1) to the error of O,(2), which is presented in the Theorem
7.6.

Theorem 7.6. To the error of Op(%), the unconditional trivariate tail probability
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(7.1) can be approximated by

D3((Ag7 )", 20)
n

Zi:l 232‘:1 bije
(T A )y Ba(cr™ S + 0T ALY, T) + L2 By(c TS + 1T A, S]] (7:62)
+ (/) Do (/@2 — @2), /(s — @3)) (£ — L)en Zimalei/2-055)

+ (Vo) Bo (v, /(s — @3)) (£ — 2 )en(@-es)

+\/L5¢<\/ﬁdj3)(% — ) U1, @),

AT 4—1
—3nlerSrep+a T A er)

| Ag|x

where the quantity @i, Wy, and ws are the square roots of twice the unconditional log
likelihood ratio statistics for testing the corresponding § = 0,7 = 1,2,3, assuming
that & = 0 for 1 < j, but without restriction on & for | > j. The matrices Ay for

k=0,---.,4 are defined as in Theorem 7.2,

21 = él\/K}lfl(élvéQa 53) - K}lfz(éhéb 53)(K)2/2(€17§2753))_1}()2/1(51752753)7

Zy = 52\/K32/2(07€2>0), 23 = 53\/K§°’/3(0, 0,&), & = &(0,&), & = &(0,0,&3), and

U (W, we) is defined as in Theorem 5.1.

Proof. Applying Theorem 7.2, 7.3, 7.4 and 7.5 to each integral of (4.9) for the trivari-
ate case gives the approximation to the trivariate tail probability to the error of Op(%)

as (7.62). O

As shown in this chapter, one may use mathematical induction to extend the

quadratic saddlepoint approximation to any dimension.
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CONCLUSION
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Approximation methods play a critical role for obtaining higher order mul-
tivariate inference in terms of confidence region and tail probability. Statistical in-
ference based on confidence regions and tail probabilities are most frequently used
for statistical hypothesis testing and for estimation of sample size, power, or other
statistical quantities. Hence one would like to have the error of the approximation
bounded by a small constant, and the constant boundary of the error is expected
to have an inverse relationship with sample size; i.e., the error becomes smaller as
the number of subjects in the observed sample increases. The method of Laplace for
evaluating bivariate confidence regions, as described in Part II, and the method of
quadratic saddlepoint approximation for evaluating conditional or unconditional tail
probability, as described in Part III, both result in an error to the order of Op(%),
with n being the sample size. The precision of our approximations is significantly im-
proved compared to other approximations available in the literature of error Op(\/iﬁ).
When the sample size is small, applying our approximations will result in drawing a
more accurate conclusion for hypothesis testing and obtaining less biased estimation
of power determination or other statistical problems for higher order multivariate
inference.

The limitation of Laplace’s approximation to determine a matching prior for
obtaining the bivariate confidence region in Part II may begin with the assumption
of orthogonality of the parameters. The approach requires that all parameters, in-
cluding parameters of interest and nuisance parameters, are pairwisely orthogonal.
The orthogonality assumption may be held up to three parameters; however, become
extremely difficult to meet as the number of parameters exceeding three. Therefore,
it is not meaningful to extend this approach to dimensions of more than three.

In Part III, we expressed higher order conditional or unconditional tail proba-
bility in the forms of normal density functions and normal distribution functions us-

ing the quadratic saddlepoint approximation method. The approach can be extended
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to any dimension as shown in Chapter 4.4. However, the approximation results in
more complexity of involving substantially more terms to calculate as the dimen-
sion increases, which may be a limitation of the quadratic saddlepoint approximation
method for high dimension.

These theoretical limitations for both approximation methods have minimal
impact on the applications of these approximation methods. As described in the
beginning of this chapter, our approximations are developed to have smaller error and
in expression of only normal functions. These characteristics give the approximations
as presented in Part IT and Part III the benefit for obtaining higher order multivariate
inference assessed by confidence region and tail probability in terms of higher precision

and easier implementation.
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