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ABSTRACT OF THE THESIS

Tensile Behavior and Mechanical Anisotropy of Branched

Cerebral Vasculature within Gray Matter

By MENGDI XING

Thesis Director:

Professor Assimina A. Pelegri

With increasing effort to prevent, diagnose, and treat traumatic brain injury (TBI), a large

amount of research has been dedicated to the investigation of axon-containing white

matter for the study of TBI onset and progression, as well as the elastographic techniques

used for diagnoses. However, the mechanical response of gray matter with embedded

vasculature has not been thoroughly studied. The cerebral vessels play a vital role not

only in the mechanical stiffening of the structure of the brain but also in supplying it with

the oxygen and nutrients. By incorporating a multiscale approach to the finite element

(FE) models, it is possible to determine the transfer of loads from macroscale to
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microscale and study the progression of traumatic injury in the brain. In the present thesis,

an FE representative volume element (RVE) model of the gray matter is developed that

incorporates a branching tree structure composed of arteries. Both the gray matter and the

vasculature are represented with hyperelastic material models aiming at capturing the

complex response of the biological materials under large strains. The RVE model of the

composite material results in anisotropy stemming from not only the different material

properties, but also attributed to the complex microstructure. Tensile stretches are applied

to illustrate the stiffening effect of the vasculature as well as to determine the anisotropic

material properties. The response of the whole volume is monitored under various

external loadings. In this thesis, a general Fung-type constitutive model is adopted, which

is one of the most widely used types of anisotropic material to describe the response

behavior of the composites. By implementing a scriptable geometry generation

routine, different vasculature geometries are investigated to elucidate the effect of the

vascular geometry on the response of the gray matter RVE. By integrating an accurate

geometry of the underlying vasculature, and the micromechanical response of the

composite material consisting of the gray matter and the vasculature, the study of

potential mechanisms of injury and the development of a micro architecture based RVE

used in TBI multiscale simulations becomes feasible.
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Chapter 1
Introduction

1.1 Background and Motivation

1.1.1 Traumatic Brain Injury

Traumatic brain injury (TBI) attracts attention throughout the world. As revealed from

demographic studies, TBI is among one of most deadly diseases threatening human life.

According to Centers for Disease Control and Prevention (CDC) [1], “An estimated 1.7

million people sustain a TBI annually, among who 52,000 die, 275,000 are hospitalized,

and 1.365 million, nearly 80%, are treated and released from an emergency department.

Also, TBI is a contributing factor to a third (30.5%) of all injury-related deaths in the

United States.” Understanding the fundamental damage mechanism and developing

viable methods for prevention is the ultimate goal for researchers in biomechanics and

biomedical engineering. Although there is a long way to go, there have been major

advances in the field. For instance, axonal injury in white matter, which is considered to

be a primary cause for dysfunction following TBI, has been explored in different

approaches [2]–[5]. However, gray matter with vasculature has been explored much less

[6], [7]. The cerebral vasculature plays a vital role in supplying oxygen and nutrients to

various brain cells. The percentage of cerebral oxygen consumption in white matter is 6%
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while the percentage of cerebral oxygen consumption in gray matter is up to 94%. Few

studies have focused on investigating the concussion mechanisms in gray matter with

vasculature [3]. To this end, mechanical responses of quasi-static processes occurring

during brain trauma should be thoroughly investigated in order to develop diagnostic and

predictive tools applicable to neuropathology and neurosurgery [2] as well as in

designing protective equipment for military and recreational purposes.

1.1.2 Motivation

While TBI attracts attention world-wide and countless studies have been dedicated to

explore its injury mechanism, efforts for investigating cerebral vasculature embedded in

gray matter is insufficient. Most of these studies focus on the mechanical response of a

composite material model consisting of cerebral vasculature and gray matter under

dynamic impact. The present study is aiming to fill the gaps by simulating the stretch

stress-strain behavior of the composite material model for quasi-static loading. Accurate

material characterization will result in improved diagnostic tools and predictive

techniques, so it is important that the material properties are determined appropriately for

the simulation.
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1.2 Research Goal

1.2.1 Representative Volume Element Model

One of the assumptions made in this study is the composite brain structure can be

homogenized, thus considering it as homogeneous medium with properties reflecting

those of its composite structure. This guarantees that the macroscale model can be

repeatedly divided into infinitesimal elements. This pseudo-homogeneous effect allows

the micromechanics to be reliable at a multiscale level. A representative volume element

(RVE) model is incorporated, which contains the properties of the composite material

dictated by its microstructure.

The purpose of an RVE model is that its effective properties can represent the composite

material as a whole. In the present study, the RVE model contains the essentials of the

composite microstructure so that a reliable response of the whole material can be

acquired through the response of RVEs subjected to traction or loadings [3].

Owing to the limited number of samples and technical challenges, experiments in vivo or

even in vitro are difficult to perform. An alternative way is set up an RVE model.

Furnished with accurate material properties, an RVE model can predict the results

effectively and efficiently. The simulation accuracy largely depends on the accurate

material characterization and realistic depiction of the tissue microstructure.
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Building the structure of the human brain used to be regarded as unachievable due to the

technical difficulties associated with introducing an arterial tree into a 3-D mesh [6].

However, in the last decade, significant achievements have taken place in computational

biomechanics and biomedical studies. Investigations in the mechanical response and axial

mechanical properties of human cerebral blood vessels have been conducted [11], [12],

exploration of the tortuosity of intracerebral vasculature [13], [14] have been performed

and different material properties between gray and white matters have been determined

[15]. In the present thesis, an RVE model is combined with FE analysis. The RVE model

is generated at the microscale. Similar to how axons are investigated individually in white

matter, cerebral vessels are also analyzed individually in gray matter. By employing

RVEs, it is possible to generate the geometrically branched cerebral vasculature and

incorporate the vessels in a extracellular matrix.

1.2.2 Anisotropic Constitutive Equations

Most biomedical soft tissues display both high degrees anisotropic and nonlinear elastic

behavior. General hyperelastic material models can encompass the nonlinear elastic

behavior with large strain but are not able to deal with anisotropy.

To date, there are two dominant constitutive equations for hyperelastic anisotropic

incompressible material: the generalized Fung-type constitutive model (including fully
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anisotropic and orthotropic cases) and the model proposed by Holzapfel, Gasser, and

Ogden for arterial walls. The distinction between the two anisotropic models is that

Fung-type constitutive model is purely phenomenological, while the Holzapfel- Gasser-

Ogden model is micromechanically based. In the present study, the Fung-type

constitutive model is more suitable for the simulations.

1.3 Review of Relevant Previous Work

Models used in the earlier simulations were treated as isotropic for simplicity. However,

since vasculature is slim and oriented soft tubes, vessels could approximately determine

the properties of local gray matter. Even though several studies were conducted into

vasculature and gray matter, almost all of them studied the brain at a macroscopic level

and focused on dynamic loading [6], [7].

Dynamic studies such as Omori et al. (2000) [12] treated each component as a

viscoelastic material. Finite element models were built as half-circular plates representing

a parasagittal section. The section included the skull, dura, cerebrospinal fluid, pia mater

and brain tissue. The model was loaded with rotational impulses, simulating dynamic

response of brain tissue. In the study of Zhang et, al (2002) [6], only 2-D slice models

were generated including the skull, dura mater, cerebral spinal fluid, ventricles, brain and

pia mater. The two models differed in whether or not they contained the vessels so that
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the effect of vasculature could be predicted. The vessels were regarded as a linear elastic

material, while the neuronal and bony components were regarded as a linear viscoelastic

material. The loads were applied in the form of a rotational impulse. Another more

complicated study was conducted with more updated information [7], where the neuronal

components and the vasculature were treated as a viscoelastic material by using the

uniaxial exponential model suggested by Fung [17]. In that study, a 3-D finite element

head model was used for simulation. Both rotational and translational accelerations were

applied. Even though these studies were focused on the vasculature’s effect on the brain’s

mechanical response and considered elastic or viscoelastic material properties, today, it is

widely accepted that the brain tissue is more accurately represented by hyperelastic

materials models with regional anisotropy.

In order to analyze different material models, Meaney (2003) [12] applied the structural

modeling and hyperelastic material behavior to white matter containing axons. This study

explained the hyperelastic formulations and compared the results using the

Mooney-Rivlin formulation, the generalized Ogden, and the Fung-type model to

conclude that the generalized Ogden and the Fung-type material models are more

reasonable.
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Chapter 2
Representative Volume Element Generation

2.1 Material Properties

Most studies have demonstrated that living tissues, especially tissues in central nervous

system, are generally found to be non-linear, hyperelastic and nearly

incompressible materials [9]. The constitutive behavior of a hyperelastic material is

defined by a total stress-strain relationship. On the other hand, hyperelastic materials are

in general almost incompressible and so is the characteristic of most brain tissues.

Previous studies generally only contain linear elastic elements for simplicity, which may

lose accuracy in fully demonstrating material behavior [6]. Hyperelastic materials are

defined by a unique expression of the potential strain energy [18]. They exhibit high

deformability and nonlinearity when subjected to loads or displacements [19]. Darijani et

al. (2010) [15] points out that the energy formulas are expressed in terms of polynomial,

power law or logarithmic expressions. The key to obtaining the appropriate model for the

brain tissues involves properly determining the energy model type and accurately

determined the material parameters for the particular region of investigation.

In this study, simulations will focus on the component material properties of the

composite gray matter in the brain, the arteries or veins and the surrounding neuronal



8

tissue matrix of gray matter which consists of neurons, neuropil, glial cells, etc.

2.1.1 Material Model for Neuronal Matrix

For gray matter, several types of constitutive models based on strain energy formulas

including Arruda-Boyce, Ogden, Yeoh and polynomial strain energy potentials have been

obtained [13]. According to Kaster et al.(2011) [9] , the Yeoh model and the polynomial

model suffer less mean errors since they contain more parameters and require less mean

number of iterations. Together with the fact that polynomial model was unstable when

applied with the data from [5], in this study, the Yeoh model [16] was chosen for its best

fit.

The typical Yeoh formula is:

3

0 1
1

( 3)ii
i

U C I


  (1)

The three necessary parameters for 10C , 20C , 30C are 185 Pa, 601 Pa, 0.01 Pa for gray

matter, respectively, where 1I is the first strain invariant. Particularly, 10C represents the

initial shear modulus, which softens at moderate strains due to the effect of the second

coefficient 20C and is followed by an upturn at large strains due to the positive third

coefficient 30C . Therefore, the Yeoh model often provides an accurate fit over a large
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strain range. Young’s modulus is also calculated for gray matter, which is 1195  157 Pa

[13].

The uniaxial stress-stretch curve of gray matter is plotted in Fig. 1.
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Fig. 1 Tensile behavior of gray matter

In order to better explain the results of the simulations, the slope of the stress–strain curve

and the tangent modulus are also determined and plotted.

https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
https://en.wikipedia.org/wiki/Tangent_modulus
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Fig. 2 Tangent modulus with stretch of gray matter

2.1.2. Material Models for Vasculature

Experiments conducted by Monson et al. (2003) [6] provide material data cerebral blood

vessels with different conditions including different sources and sizes, undergoing

quasi-static and dynamic loading [12], [21]. The results from the quasi-static experiments

are selected for the current study. Our study aims to provide a microscale approach to

simulate the mechanical influence from cerebral vessels in the gray matter under large

strain. Whether the soft tissues in the brain should be modeled as a fluid or as solid model

has been a controversial discussion over the last two decades. According to Donnelly et

al. (1997) [15], brain tissues return back to its original shape after deformation, which

supports the claim that brain tissue is better treated as solid. For simplicity, all cerebral

vasculature are modeled as solid elements because fluid effects in the vessels are not of

C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20150803093115/javascript:void(0);
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interest in the present study.

In the reported literature [11], intracranial arteries, cortical veins as well as extra cranial

vessels have all demonstrated varying responses. As such, it is necessary to use different

material properties for arteries and veins. In previous simulations, vasculature was either

treated as linearly elastic or fitted to the uniaxial exponential model proposed by Fung

(1980) as non-linear elastic [13], while here it is assumed that intracranial vessels behave

as hyperelastic materials. Experiments conducted on brain vessels by Monson et al. (2003,

2005) [11], [12] in which tensile stretch test results were reported.

Cerebral vasculature, as with other brain tissues, have the characteristics of non-linear,

hyperelastic and nearly incompressible. Therefore, the next critical issue is to determine

the appropriate hyperelastic material model for the vessels, including Ogden, Yeoh,

polynomial, reduced polynomial and other formulations to choose from. The material

models must satisfy two conditions. The first condition is that the model accurately

represents the results obtained by Monson, or that the stress-strain curve of the chosen

material model should closely match the curve in Monson’s experimental data. The

second condition is that the constitutive model should satisfy the Drucker stability

postulates, which will be discussed later.

This study currently uses Abaqus 6.14 to conduct simulations. Generally, for a certain
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hyperelastic material model available in Abaqus, Abaqus can automatically determine

appropriate values of the coefficients using linear or nonlinear least-square fitting with

provided experimental test data. However, the quality of behavior of hyperelastic material

must be evaluated. Whether the strain energy potentials determined by Abaqus are

acceptable or not, depends on the correlation between the Abaqus predictions and the

experimental data.

To fully explain the procedure, stress-stretch curves of 1st-order polynomial

(Mooney-rivlin), 5th-order Reduced-polynomial, 1st-order reduced-polynomial, 3rd-

order reduced-polynomial (Yeoh), 1st-order Ogden and 3rd-order Ogden for arteries and

veins are plotted as follows by Abaqus:

Fig. 3 Hyperelastic material plots for fitting the experimental data of arteries.
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Fig. 4 Different hyperelastic material plots for fitting the experimental data of veins.

For the second material model condition, the Drucker stability postulate is a set of

mathematical criteria that restrict the possible nonlinear stress-strain relations that can be

satisfied by a solid material [19]. A material that does not satisfy these criteria is often

found to be unstable so that the application of a load to a material point can lead to

arbitrary deformations. Specifically, the Drucker stability postulate requires that the

change in the Kirchhoff stressdfollowing from an infinitesimal change in the

logarithmic strain d satisfies the inequality:

: 0d d   (2)

With the incompressibility assumption, the Kirchhoff stress is equal to the Cauchy stress:

  (3)

https://en.wikipedia.org/wiki/Cauchy_stress_tensor
https://en.wikipedia.org/wiki/Infinitesimal_strain_theory
https://en.wikipedia.org/wiki/Elastic_instability
https://en.wikipedia.org/wiki/Deformation_(mechanics)
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Thus:

: 0d d   (4)

Among those satisfying Drucker stability postulate, it is easy to see that the fifth-order

reduced-polynomial model best fits the experimental curve for arteries while the

third-order Yeoh model exhibits a better fit for veins as illustrated in Fig. 3 and Fig. 4.

The fifth-order reduced-polynomial model is expressed as:

5

0 1
1

( 3)ii
i

U C I


  (5)

where 10C , 20C , 30C , 40C , 50C are 0.05587 MPa, -0.744 MPa, 26.042 MPa, -65.850

MPa and 54.558 MPa, respectively.

The third-order Yeoh formula is

3

0 1
1

( 3)ii
i

U C I


  (6)

where 10 20 30, ,C C C are 26.2 kPa, 93.665 kPa and 1.8157 MPa, respectively.

Figures 5 and 6 depict the selected material models and the relevant experimental data.



15

Fig. 5 Comparison of stretch-stress curves of experimental data and simulation curve
obtained from the artery model.

Fig. 6 Comparison of stretch-stress curves of experimental data and simulation curve
obtained from the vein model.
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Fig. 7 Tangent modulus of veins.

2.3 Modeling Issues

2.3.1 Finite Element Model of Arteries

Considering the inherent difficulties in incorporating a realistic 3-D model of the cerebral

vessel branches into a whole head model, a microscale representative model is generated

to obtain the specific the local response in the brain.

Vessels’ microstructure and composition have been introduced and analyzed in detail by

M. Zamir [24] – [26]. Zamir [24] provides adequate practical details including angle

branching, lengths and diameters so that it is easy to construct the vasculature with the

help of this data. The length and diameter ratios and the angle between the main and the

next two bifurcated vessels are determined by the parameter is the diameter ratio of
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the branched vessels as seen in Fig. 8. Owing to the inherent variability within biological

tissues,  has a range of [0, 1]. When  equals 1, the two bifurcated vessels are totally

symmetric. The smaller the, the larger the difference between the two vessels. The

branched model used in this study is kept constant at a value of = 0.8.

The is defined as

2

1

d
d

  (7)

Fig. 8 The basic variables at an arterial bifurcation. The lengths and diameters of three
vessel segments are denoted.

The vasculature branches with  equal to 1, 0.8, 0.6, 0.4, 0.2 are generated and displayed

in Fig. 9:
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Fig. 9 Basic vessels generated with  equals 1, 0.8, 0.6, 0.4, and 0.2, respectively.

The formulas are cited here for reference:

1 1
1 3 1/3

0 1

1
(1 )

d l
d l




  
 (8)

2 2
2 3 1/3

0 1 (1 )
d l
d l




  
 (9)

3 4/3 4

1 3 2/3

(1 ) 1cos
2(1 )
 


  




(10)

3 4/3 4

2 2 3 2/3

(1 ) 1cos
2 (1 )
 
 
  




(11)

Where subscript 0 represents the parent vessel and subscripts 1, 2 indicate the two

children vessels; d is used for diameter and l for vessels’ lengths.

As is noticed, among a unit vessel branch, 1 , 2 are calculated and applied in the
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plane B where bifurcated vessels lie in [24] , while the main vessel lies in another plane,

Plane A. The angle between planes A and B is  [25]. In most cases,  is less than 10

degrees.

Fig. 10 Angle between the plane with main vessel and the other plane with bifurcated
vessels.

VESSEL TYPE DIAMETER (mm)

Large Arteries 1.0 - 4.0

Small Arteries 0.2 - 1.0

Arterioles 0.01 - 0.20

Venules 0.01 - 0.20

Small Veins 0.2 - 1.0

Large Veins 1.0 - 5.0

The average diameter range for small arteries is 0.01-0.20 mm [27]. Here we set the

parent vessel’s diameter to be 0.09 mm and length to be 1.8 mm. As presented in Fig. 9,

with  changing from 1 to 0.2, five different microstructures are built in order to
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parametrically investigate the effect of vessel branching.

Figure 10 illustrates the different views of a vessel branch and the associated planes and

angles.

Fig. 11 3D views of vasculature branch.

The current study is a proof of concept that is expected to be furthered in the future with a

more advanced numerical model which can be generated using Lindemayer system [24],

a parallel rewriting system and a type of formal grammar that can be used to make strings,

a collection of production rules, since arteries have recursive nature and lead to

self-similarity.



21

This branched model has vessels with diameters ranging from 13.2 µm to 100 µm [28],

containing almost all the possible vessel diameters that can be used to represent real

vessels. Furthermore, it is noticed that blood vasculature segment length ranges from

32.206 m to 51.207 m [14]. For simplicity, all vessel segments are taken as straight

slim cylinders in the current study. Tortuosity of vessels is required to calculate real

distances between any two different branch points. The mean value for tortuosity is 1.2

[14], [29]. As a result, the range of vessel segment length used here is from 26.838 m to

46.673 m . In order to investigate random vasculature geometries, an elaborate scriptable

geometry generation routine is implemented. Moreover, the vasculature geometries also

benefit by elucidating the effect of the vascular geometry on the response of the gray

matter. The generation routine is written in Python which can be interpreted directly by

ABAQUS. The model branch is duplicated in order to fit in the positions of both arteries

and veins.

An advanced complex model is also built and demonstrated here.
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Fig. 12 A advanced numerical model for arteries using Abaqus.

2.3.2 Numerical Model of Surrounding Matrix

In order to make the RVE as small as possible to represent a homogeneous material and

reduce computational demands, and to completely contain a vessel branch in it, the

maximum and minimum of coordinate points of the vessel branch were searched by

Python code and adopted as sizes of the matrix. We created a cuboid (x = 1717.73 m , y

= 3201.65 m , z = 209.72 m ) to represent the surrounding matrix of gray matter.

Therefore, the size of the cuboid is purposely limited while sufficient to include a

cerebral vasculature branch.

2.4 Assembly Issues

A significant problem in simulations of brain tissue is the boundary between two different

components. Pan et al. [30], [3] made efforts to discover how axons tie to white matter
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matrix and pointed out a method that could be advantageous to the current study. Since

the current study is a proof of concept, our focus is on the mechanical response and

intends to provide information about vasculature stiffening in brain tissues. For

simpilicity, we assume that the vasculature is directly and completely embedded in the

surrounding gray matter. Another assumption made here is that all vessels are fully tied to

the surrounding matrix. Further studies towards the interactions are scheduled to be

conducted in future work.

As for the most representative and basic case, one neuronal matrix only contains one

basis vessel branch. Since vessels are highly directional, they are placed parallel to an

edge of the matrix cuboid.

As stated above, the surrounding matrix is purposely built small which on the other hand,

gives rise to meet another requirement of volume fraction of vasculature. Generally, the

volume fraction of vasculature ranges from 1% to 4%. In RVE, here the volume fraction

of vasculature in the neuronal matrix is 1.9%.
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Fig. 13 Finite element model demonstrates the placement of vasculature in the matrix.

2.5 The Finite Element Mesh of the Model

Even though a realistic 3-D model of brain vasculature within gray matter is built in the

study, due to the wide range of diameters of vessels and technical complexity associated

with the architecture of the branches of the vessels, it is computationally expensive to

mesh the model. Moreover, the fewer elements in the model, the faster the FEA

calculation. However, the larger size of elements might harm the accuracy of calculations.

For instance, if a meshed element is larger than the diameter of a vessel, simulation

results would be very inaccurate. Therefore, vasculature are separated by size and proper

element seeds applied with sizes as large as possible.
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The hexahedral element shape is a recommended and generally used element in FEA.

In order to overcome the inherent complexity in the vasculature, in the current study, both

components are meshed with tetrahedrons, which are also widely used elements.

The model is meshed in ABAQUS and the RVE has a total of 47842 elements with 23385

nodes using linear tetrahedral elements of type C3D4H as shown in Fig. 14.

Fig. 14 The vasculature branch embedded within gray matter after meshing.
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Chapter 3
Numerical Simulations of Composite Model

3.1 Methods

In continuum mechanics, the large strain theory, or large deformation theory focuses on

deformations in which both rotations and strains are arbitrarily large, which invalidates

the assumptions inherent in general infinitesimal strain theories. This is generally the case

with elastomers, plastically-deforming materials, and other fluids and biological soft

tissues [29]–[31].

It is a common practice to use the quasi-static tensile tests to determine material

properties. In vitro experiments generally glue the specimens at the boundaries

(brain/platen interface) for testing brain tissue because of its fragile and tacky nature as

an alternative to clamping. In this thesis, the model is fixed 0x y zU U U   on x=0,

y=0 and z=0 plane in the simulations of x, y, and z direction, respectively.

This thesis conducts typical stretch simulations on biological soft tissue. Compared

with infinitesimal strain theory, strains applied are significantly larger. Kaster et al. (2011)

[8] indicates that for FE analysis, the maximum principle strain can reach as much as

70% in the region so as to be sufficient for probing the tissues’ properties. In the

measurement of hyperelastic properties of brain tissue, the strain was set to be 50% [9].

https://en.wikipedia.org/wiki/Continuum_mechanics
https://en.wikipedia.org/wiki/Deformation_(mechanics)
https://en.wikipedia.org/wiki/Elastomer
https://en.wikipedia.org/wiki/Plasticity_(physics)
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Soft_tissue
https://en.wikipedia.org/wiki/Soft_tissue
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In another material property determination applied to CNS white matter, the strain is as

much as 50%. Given biological diversity between white matter and gray matter together

with the material properties of vasculature, and the experimental data of arteries from

Monson for stretch ratio up to 1.42, in this thesis, the whole composite model is stretched

with stretch ratio to be 1.4 in x, y and z directions on the opposite face of fixed

boundaries planes respectively.

The simulations here work twofold. Firstly, the primary goal is to give a prediction about

the stiffening effect of cerebral vasculature on gray matter. In the mean time, the

simulation results collected from these simulations could serve as a set of input for

calculating parameters in Fung-type strain energy function.

3.2 Results

The von Mises stress contours of the composite model subjected to a stretch ratio of 1.4

in x, y and z direction are shown in Fig. 15, Fig. 16, Fig. 17, respectively. The contours

illustrate that the stress is highly localized around the vasculature branch.
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Fig. 15 Deformed FE model of the extracellular matrix and vasculature branch after
applying displacement in X-direction.

Fig. 16 Deformed FE model of the extracellular matrix and vasculature branch after
applying displacement in Y-direction.
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Fig. 17 Deformed FE model of the extracellular matrix and vasculature branch after
applying displacement in Z-direction.

In order to clearly determine the cerebral vessels’ stiffness effect, the results of tensile

simulations of the composite material model are plotted as the overall average uniaxial

stress-stretch curves in order to compare with the artery and gray matter in three

directions. Force and displacement data obtained from simulations in Abaqus are

converted to stress-stretch curves. Figures 18-20 illustrate the stress-stretch curves as well

as with stress-stretch behavior of arteries and gray matter in x, y, z direction, respectively.

Comparing the stress-stretch curves, the results predict that the arteries do largely stiffen

the whole composite material model.

In Fig. 21, stress-stretch curves from the simulations are plotted together in order to
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demonstrate the anisotropy of the composite material model. The graph indicates the

anisotropy of the composite material model. The stress differences between x, y

directions and z direction is not as significant as expected. The reason behind this is

likely that the volume fraction of arteries is quite small, only 1.9%. A parametric study

will be conducted in the future.

Fig. 18 Stress-stretch curves comparison in x-direction.
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Fig. 19 Stress-stretch curves comparison in y-direction.

Fig. 20 Stress-stretch curves comparison in stretch z-direction.
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Fig. 21 Stress-stretch curves comparison in three directions showing the anisotropy of the
composite model.



33

Chapter 4
Anisotropic Constitutive Equations

4.1 Generalized Fung-type Formulation without Shear

In this thesis, the whole RVE model contains two unique material models which is not

fully explored in previous studies [32]. Prange et al. (2000) [32] have demonstrated brain

tissue at different regions of the brain, in which the gray matter is shown to be the least

anisotropic. This study uses only the axial mechanical properties of vasculature while the

gray matter is considered as isotropic material. Therefore, this thesis is limited to tensile

behavior of the composite material.

The generalized Fung-type formula after eliminating shear is:

1 (e 1)
2

QU c  (12)

where U is the strain energy potential and Q is defined by

2 2 2
1 11 2 22 3 33 4 11 22 4 11 22 5 11 33 6 22 33Q b E b E b E b E E b E E b E E b E E       (13)

in which iiE is a component of the Green strain tensor, c is a positive stress-like

material parameter and ib , i = 1,...,6, are dimensionless material parameters [26].
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4.2 Material Parameter Estimation

4.2.1 Inverse FE Procedure

Inverse finite element procedure has been widely used in many studies to identify

material parameters of soft tissue [27], [29]. An inverse finite element analysis method is

developed for seeking the parameters in the anisotropic formula by combining uniaxial

simulations and FEA using the generated RVE model.

Federico et al. (2008) [26] pointed out that the simple fitting of the parameters of a

Fung-type formula to experimental stress-strain curves may cause undesirable effects on

the reliability of the algorithms used in FE simulations. In the current study, only tensile

simulations and normal strains are taken into consideration.

The significant differences in the results of four parameters obtained in the Monson et al.

(2009) [27] and Shafigh et al. (2013) [31] cannot be ignored. Monson began from

specimen preparation and conducted the mechanical testings and Shafigh adopted results

from Monson and fitted the experimental data to the same formula. Even though the same

experimental data are used, they determine diverse coefficient values which differed by

several orders of magnitude. Wilber et al. (2002) [28] examined the convexity properties

and strong ellipticity conditions for the soft-tissue models related to the classical

Fung-type constitutive model. They also indicated the mathematical features of those
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models which were shown by Holzapfel et al. (2000) [32] and Humphery et al. (2003)

[33] are not fully explored and analyzed. Therefore, there is no general theory or

method that could validate the obtained material models. More studies towards Fung-type

constitutive model are expected to be conducted.

Simulation data is fitted using nonlinear least-squares Levenberg – Marquardt algorithm

for the parameters of constitutive model. The coefficients were calculated with Matlab

Optimization Toolbox™. Simulation data is fitted to the seven parameters Fung-type

hyperelastic constitutive model. Table 1 records the best-fit material parameters.

4.2.2 Results

Table.1 Material Parameters for the Fung-type anisotropic model for composite model.

Parameters Tensile simulation in
x-direction

Tensile simulation in
y-direction

Tensile simulation in
z-direction

c 17382 18282 12276

b1 -40 615 6264

b2 109 289 2930

b3 65 838 1680

b4 110 -884 4635

b5 89 728 -7313

b6 48 716 -215
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Chapter 5
Conclusions and Future Work

5.1 Conclusions

The simulations on the quasi-static mechanical properties of vasculature within gray

matter at large strains demonstrate creative steps forward in the investigation of the

mechanism of the brain during traumatic injury. Even though brain tissues have been

measured in a broad range of testing methods and objectives, it is hard to compare the

results and conclusions since the experiments and simulations differ by species, locations,

unique material model types, and various range of strains and strain rates. The goal of this

thesis is to estimate an effective prediction of the mechanical response of only two brain

components, namely the vasculature and gray matter, in the same region.

Instead of using the Ogden model for gray matter which is often the case in previous

studies, the suggestions from Kaster et al. [7] is adopted to use the Yeoh model for gray

matter due to its accuracy, fewer parameters, and shorter computational time

requirements. Based on the analysis in the current study, the best fit model for arteries is

fifth order reduced-polynomial model.

The stress-stretch curves obtained from the tensile simulations in three directions

demonstrate that the vasculature stiffens the gray matter even at a very low volume
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fraction, i.e. 1.9%.

One of the most expected achievements of this study is that it provides a strain energy

potential for an anisotropic composite material model which can be incorporated in large

scale studies with less computational cost.

As is mentioned before, cerebral oxygen consumption by gray matter takes up 94% of the

whole brain, comparing it with only 4% used by white matter. That means small

disruptions or deficit in oxygen supply may cause irreversible damage to neurons in gray

matter. Results from this thesis suggest that the fine substructures of the vasculature in

brain should not be ignored in traumatic brain injury modeling.

5.2 Limitations and Future Work

This thesis focuses only on vasculature embedded in gray matter in microscopic level and

several assumptions are made in order to realize the simulations.

First, for the material property of vasculature, the whole vessel branch was treated as

isotropic solid material. Monson et al. (2008) [14] indicate that vessels’ mechanical

behavior vary from tensile stretch to circumferential stretch. With the help of more

information explored about vasculature containing fluid blood, an accurate model could

result in closer predictions. In addition, this thesis only captures the character of brain
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tissues’ hyperelastic material properties while it did not include their viscous property. A

more complex material model needs to be generated in the future.

Second, for the central nervous system, the interaction between two different components

is an important issue that needs to be analyzed. In fact, the interfacial contacts could

largely affect the whole composite model’s behavior. As a preliminary study, the vessels

and gray matter are assumed to be fully tied together.

Finally, building the model has inherent difficulties for vessels because of their

unpredictable and random development. One limitation is that only one vasculature

branch is included without taking the individual variation into consideration. The vessel

branch constructed in this thesis has one joint in and does not include the tortuosity of

vasculature for simplicity. In order to obtain more information to suffice the prevention

and cure of TBI, tortuosity should be included in future investigations.
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