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In this dissertation, we elucidate a close connection between the theory of Evaluation

Aggregation, and a subfield of universal algebra, that was recently applied to investigate

constraint satisfaction problems. Our connection yields a full classification of non-

binary evaluations into possibility and impossibility domains both under the idempotent

and the supportive conditions. Prior to the current result E. Dokow and R. Holzman

nearly classified non-binary evaluations in the supportive case, by combinatorial means.

The algebraic approach gives us new insights to the easier binary case as well, which

had been fully classified by the above authors. We give a classification theorem for

the majoritarian aggregator and show how Sen’s well known theorem follows from it.

Our algebraic view lets us put forth a suggestion about a strengthening of the non-

dictatorship criterion, that helps us avoid “outliers” like the affine subspace. Finally,

we give upper bounds on the complexity of deciding if a domain is impossible or not

(to our best knowledge no finite time bounds were given earlier).
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Chapter 1

Introduction

1.1 Social choice theory

“Social choice theory or social choice is a theoretical framework for analysis of combining

individual opinions, preferences, interests, or welfares to reach a collective decision or

social welfare in some sense”[Sen08]. When talking about collective decision, one’s first

instinctive idea is the majority rule. When the number of possible outcomes is two, for

example in a poll to select someone from only two candidates, the majority rule works

well. (Except when the number of voters is even and a tie occurs, if this happens we have

to make an arbitrary choice.) Condorcet’s jury theorem [Con85], although perhaps way

too simplified, provides a theoretical basis for this case. Let n be the number of voters

and each voter has an independent probability p > 1/2 to make a correct decision, then

the probability that the group decision is correct increases to 1 as n grows to infinity.

May’s theorem states that “simple majority voting is the only anonymous, neutral, and

positively responsive social choice function between two alternatives” [May52].

However, when the number possible of outcomes becomes larger, the plurality value

has little meaning, except when a majority of voters agree that some single outcome

prevails. There are different possible ways to get around this problem. An avenue,

suggested by Nicolas de Condorcet (1743 - 1794), known as Condorcet method, is to

associate with each possible opinion a binary vector, and aggregate the components

separately with the majority function, thus reducing the problem to the yes-no case.

For this to be meaningful, each component must be an important aspect of the opinion.

But there is another, more problematic aspect: when we put the aggregated coordinates

together, the string should encode a valid opinion.
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Condorcet’s paradox. Condorcet in [Con85] considered aggregating preference

lists of three elements. In this problem each voter casts a vote on a linear order of

three candidates, A, B, C (for instance A < B < C), and the society has to aggregate

these linear orders into a single linear order. Condorcet has suggested to write down

any linear order as a list of three yes-no opinions: opinions on the issues if A < B,

B < C and if C < A. An order now uniquely corresponds to a triplet in X = {0, 1}3 \

{(0, 0, 0), (1, 1, 1)}. For instance, A < B < C corresponds to (1, 1, 0), because A < B,

B < C hold, but C < A does not. Condorcet then showed that in the case of three voters

his component-wise aggregation scheme does not work. We will denote by MAJ3(x, y, z)

the function that outputs one if there are at least two 1s in the input, and otherwise

outputs zero. In Condorcet’s example, when aggregating three voters’ opinion with the

majority function, we arrive at a nonsensical aggregate:

A < B? B < C? C < A?

Opinion 1. A < B < C 1 1 0 ∈ X

Opinion 2. B < C < A 0 1 1 ∈ X

Opinion 3. C < A < B 1 0 1 ∈ X

↓ ↓ ↓

MAJ3 MAJ3 MAJ3

↓ ↓ ↓

No corresponding order 1 1 1 6∈ X

Remark 1. Let the number of voters n be odd. Let G(n, 3) denote the probability

that the output of the group decision under majority MAJn (similarly defined) is ra-

tional, i.e. in X, while each voter uniformly randomly selects an element in X. Then

limn→∞G(n, 3) = 3
4 + 3

2π arcsin(1
3) ≈ 0.91226 which is known as Guilbaud’s formula

(see [Kal02]).

Arrow’s impossibility theorem. Trying to resolve Condorcet’s paradox, but

keeping the idea of decomposing opinions into a sequence of attributes, Kenneth J. Ar-

row has started to look for aggregators other than the majority function. When the ith
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component is aggregated by fi, he only requested that each fi satisfy the Idempotency

and Non-dictatorship conditions (see Section 1.2 for details). (Arrow’s original formu-

lation was slightly different, but equivalent to what we use). MAJ3 clearly satisfies

these conditions, but many other functions also do. Arrow has famously shown, that

even with his relaxed conditions opinions on preference lists cannot be aggregated for

any number of voters greater than two.

Discursive dilemma. The next step was to look at domains other than preference

lists. Consider the following example [SX15]: When amateur astronomer Ali Leo tuned

into his favorite radio channel, he was lucky. Three experts were on, passionately

discussing the possibility of life on the fourth largest moon of Jupiter, Europa. What

Ali gathered from the experts were the following:

There is a layer of liquid

water in Europa

If there is water in liquid form

in Europa then the moon har-

bors life

Europa harbors life

Expert 1 Definitely Definitely Definitely

Expert 2 Definitely There is no such conclusion Definitely not

Expert 3 Definitely not Definitely Definitely not

When trying to get a conclusion based on the opinions of the experts, Ali instinc-

tively used the majority rule. He has arrived at: I. There is a layer of liquid water in

Europa; II. If there is water in liquid form in Europa then the moon harbors life; III.

Europa definitely does not harbor life. He immediately noticed the logical contradic-

tion in this summary and feverishly started to search for a similar contradiction in the

individual experts’ opinion. To his greatest surprise there was none.

Judgment aggregation. The above paradox is known as the Discursive dilemma,

which was first investigated at depth by philosopher Philip Pettit [Pet01]. It is a

more general version of the so-called Doctrinal paradox, due to Kornhauser and Sager

[KS86], which in turn had an impressive history going back to Vacca [Vac21], and even

to Poisson [Poi37]. The Discursive dilemma belongs to the larger topic of Judgment
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aggregation [Lis12]. The setting in Judgment aggregation assumes k Boolean variables

y1, . . . , yk and m Boolean predicates ϕ1(~y), . . . , ϕm(~y) where ~y = (y1, . . . , yk). Each

voter has to take a vote on all predicates whether they are true or false. An example

of a vote is

(¬ϕ1(~y), ϕ2(~y), . . . ,¬ϕm(~y))

with the natural restriction that the conjunction ¬ϕ1(~y) ∧ ϕ2(~y) ∧ . . . ∧ ¬ϕm(~y) of the

components of the vote does not yield the identically false predicate.

Consider the previous Discursive dilemma for example: there are two Boolean vari-

ables y1 and y2 where:

y1: There is a layer of liquid water in Europa,

y2: Europa harbors life.

There are three predicates ϕ1, ϕ2 and ϕ3 where ϕ1 = y1, ϕ2 = y1 → y2 and ϕ3 = y2.

Now the set of all legal votes becomes {(·, ·, ·), (·,¬,¬), (¬,¬, ·), (¬,¬,¬)}.

Evaluation Aggregation. The elegant general combinatorial framework, which

serves as the framework of this dissertation, was laid down by E. Dokow and and R.

Holzman in [DH10a, DH10b]. We have named it “Evaluation Aggregation” after their

titles. In their two breakthrough results they make decisive advances towards classifying

impossibility domains, i.e. those X ⊆ Dm from which we cannot aggregate opinions.

In particular, they completely settle the binary case (when |D| = 2). (See Section 1.2

for more details.)

1.2 Settings and Definitions

Let J be a finite set of issues and D be a finite set of possible positions/opinions (like

‘yes’, ‘no’). Without loss of generality we assume that

J = [m] = {1, . . . ,m}.

An evaluation (v1, . . . , vm) ∈ Dm assigns a position in D to each j ∈ [m]. The binary

case, when D = {0, 1} has received special attention [Wil75, RF86, DH10a]. Our funda-

mental object is the domain X ⊆ Dm of feasible evaluations, these are the evaluations
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(i.e. opinion-combinations) that we allow for the voters to choose from.

Example 2. Assume that during a murder trial the members of the jury have to

vote on two issues: 1. the suspect had a knife; 2. the suspect was the murderer;

with taking a position either ‘yes’ or ‘no’ on each of the issues. Each member must

take a position on both issues, but the jury agrees that the position-combination (1:

no, 2: yes) cannot be valid, and should not be taken by any member. Thus X =

{(no,no), (yes,no), (yes,yes)}.

Example 3. Judgment aggregation fits this framework, withD = {negated, not negated}

and X = {(ε1, . . . , εm) |
∧m
j=1 εjϕj is not identically false}, where εj ∈ D for 1 ≤ j ≤

m.

Aggregators. When n members of a society take a position on all of the m issues,

and each member’s vote is from X, we get a profile vector

(x(1), . . . , x(n)) ∈ Xn.

Our goal is to design a function f : Xn → X that takes profile vectors into single

elements of X. Such functions are called aggregators. The aggregators we shall consider

must satisfy three conditions that come directly from Arrow’s famous conditions, that

he has come up with while studying the special case of preference list aggregation.

Before we describe them we remark that

x(i) = (x
(i)
1 , . . . , x(i)

m ) ∈ Dm for i = 1, · · · , n,

are vectors themselves: x
(i)
j is the ith voter position on the jth issue. Thus the profile

is a vector of vectors. The output of f is a vector in Dm, representing the aggregated

positions on the m issues. The latter vector must also belong to X.

The first and key condition is that each issue ought to be aggregated independently

from the others (also called point-wise aggregation or Issue by Issue Aggregation):
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Issue-by-Issue Aggregation (IIA): There are functions fj : Dn → D (1 ≤ j ≤ m)

such that for every (x(1), . . . , x(n)) ∈ Xn:

f(x(1), . . . , x(n)) =
(
f1

(
x

(1)
1 , . . . , x

(n)
1

)
, . . . , fm

(
x(1)
m , . . . , x(n)

m

))
There is a nice way to visualize the IIA property via the picture

x
(1)
1 · · · x

(1)
m ∈ X

...

x
(n)
1 · · · x

(n)
m ∈ X

↓f1 · · · ↓fm

x1 · · · xm ∈ X

Above we aggregate column j (where j ∈ [m] is an issue) by function fj . The

condition that f takes Xn to X is equivalent to saying, that if each row belongs to

X then so does the aggregated row. The component aggregate functions should work

in unison to accomplish this, so the IIA condition is not easy to satisfy. We have

adopted the term “Issue by Issue Aggregation” coined by E. Dokow and R. Holzman

[DH10a, DH10b], which is in this generalized context more fitting than the commonly

used “Independence of Irrelevant Alternatives” expression, with the benefit that the

acronym remains the same.

Uniqueness of the IIA decomposition. The representation of f : Xn → X as

(f1, . . . , fm) is clearly not unique for instance when D contains any element that does

not occur as a constituent in any x ∈ X. In order to avoid non-uniqueness of the fjs

we define

Dj = prjX = {uj | (u1, . . . , um) ∈ X}.

We call Dj the effective set of values associated with the jth component. If we define fj

on Dn
j instead of Dn, it is easy to see that fj becomes unique. Throughout the paper

we shall assume this.

In the sequel we will also call IIA aggregator(s) as aggregator(s) for simplification

since we will not look at non-IIA aggregators in this dissertation. Next we describe the

two other conditions (besides IIA) Arrow has imposed on an aggregator f : Xn → X.
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Idempotency (or Unanimity): f(x, . . . , x) = x for every x ∈ X.

Lemma 4. An IIA aggregator f = (f1, . . . , fm) is idempotent if and only if every fj is

idempotent in the universal algebraic sense, i.e.

∀ 1 ≤ j ≤ m ∀ u ∈ Dj : fj(u, . . . , u) = u

Non-dictatorship: Aggregator f : Xn → X is a dictatorship if there is a 1 ≤ k ≤ n

such that for every (x(1), . . . , x(n)) ∈ Xn we have f(x(1), . . . , x(n)) = x(k). Other-

wise the Non-dictatorship condition holds for f .

Lemma 5. An IIA aggregator f = (f1, . . . , fm) is a dictatorship if and only if there is

a 1 ≤ k ≤ m such that each fj is a projection on the kth coordinate in the universal

algebraic sense:

∀ 1 ≤ j ≤ m ∀ u1, . . . , un ∈ Dj : fj(u1, . . . , un) = uk

Definition 6 (Impossibility/Possibility domains). We call an X ⊆ Dm a possibil-

ity domain (after Arrow) with respect to the IIA + Idempotency + Non-dictatorship

conditions if for some n ≥ 2 an aggregator for X exists that satisfies the conditions.

Otherwise X is an impossibility domain.

In this dissertation we completely characterize impossibility domains with respect

to the IIA + Idempotency + Non-dictatorship and also for the case when Idempotency

is replaced with

Supportiveness: f : Xn → X is supportive if for every x(1), . . . , x(n) ∈ Xn and every

1 ≤ j ≤ m we have that f(x(1), . . . , x(n))j ∈ {x(1)
j , . . . , x

(n)
j }.

Supportiveness implies Idempotency, but not vice versa.

Prior to our result a full characterization of all impossible binary domains (see Defi-

nition 7) was obtained under IIA + Idempotency + Non-dictatorship in [DH10a]. They

have extended their work to the non-binary case, but have obtained only a partial char-

acterization, and only under the IIA + Supportiveness + Non-dictatorship conditions.

To explain their results we need some definitions.
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Definition 7. We call X ⊆ Dm non-degenerate if |prjX| > 1 for every 1 ≤ j ≤

m. Since the issues where degeneration occurs can trivially be aggregated, in the

aggregation problem without loss of generality we can assume that X is non-degenerate.

We call X ⊆ Dm binary1 if |prjX| ≤ 2 for every 1 ≤ j ≤ m. Otherwise call it non-

binary.

Definition 8 (Affine Subspace). A subspace S is a subset of {0, 1}m (viewed as the

m-dimensional vector space over the 2-element field F2) closed under linear combination

λ~u+µ~v of its elements, where λ, µ ∈ {0, 1} and u, v ∈ S. An affine subspaceX ⊆ {0, 1}m

is then a subspace S shifted by some fixed vector ~w ∈ {0, 1}m, i.e. X = ~w+S = {~w+~s |

s ∈ S}.

Note that there is a similar way to define affine subspace for larger fields other than

F2. However, we only need the above definition for binary evaluations.

Definition 9 (Blockedness graph and MIPE). The blockedness graph for domain X ⊆

{0, 1}m is the following directed graph on the vertex set V = [m] × {0, 1}: There is a

directed edge from (k, σ) ∈ V to (`, ρ) ∈ V where k 6= ` if and only if there are: (i.) a

subset S ⊆ [m] such that k, ` ∈ S and (ii.) a (partial-) evaluation u : S → {0, 1} with

uk = σ and u` = ¬ρ such that there is no extension of u to any full evaluation x in X,

but if we flip any bit of u then the resulting partial evaluation extends to some element

of X. The above partial assignment u is called a MIPE (minimally infeasible partial

evaluation).

Definition 10 (Total blockedness). Domain X ⊆ {0, 1}m has the total blockedness

condition if and only if the blockedness graph is strongly connected.

A result leading to [DH10a] was that of Nehring and Puppe [NP02]. They have

obtained a complete classification of binary (see Definition 7) impossibility domains X,

when a monotonicity condition is added to the usual conditions. An aggregate function

1Note that sometimes by abuse of notation we also call a relation or an aggregator of arity 2 binary,
but this should happen only when it is clear from the context.
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is said to be monotone2 if for every issue j in any situation the aggregate position on

issue j does not change if a voter decides to switch his/her position on the jth issue to

the current aggregate position.

Theorem 11 (Nehring and Puppe [NP02]). A non-degenerate X ⊆ {0, 1}m is an im-

possibility domain with respect to IIA + Idempotency + Monotonicity + Non-dictatorship

if and only if X is totally blocked.

The complete characterization of binary evaluations without the monotonicity con-

dition was finally given by E. Dokow and R. Holzman:

Theorem 12 (E. Dokow, R. Holzman [DH10a]). Let X ⊆ {0, 1}m, non degener-

ate. Then X is an impossibility domain with respect to IIA + Idempotency + Non-

dictatorship if and only if X is totally blocked and is not an affine subspace.

E. Dokow and R. Holzman have also made significant progress for non-binary do-

mains [DH10b]. We will need the following generalization of total blockedness for

non-binary predicates:

Definition 13. Total blockedness for non-binary X is defined in [DH10b]. X is totally

blocked if and only if the following directed graph on the vertex set V = {σσ′j =

(j, σ, σ′)| (j ∈ [m]) ∧ (σ, σ′ ∈ prjX) ∧ (σ 6= σ′)} is strongly connected. There is an

edge from σσ′k to ρρ′` where k 6= ` if and only if there are B1 ∈ pr1X, . . . , Bm ∈ prmX,

such that each |Bj | = 2, Bk = {σ, σ′} and B` = {ρ, ρ′}, and if XB denotes the relation

X ∩
∏m
j=1Bj , then when XB is viewed as a binary relation (by identifying each Bi with

{0, 1}), (k, σ) is connected with (`, ρ) in the blockedness graph of XB (see Definition 9

for the definition of blockedness graphs for binary domains).

We also need to define a condition on a relation X, which is called 2-decomposability

in the universal algebra literature. We have adopted this term rather than the “not

multiply constrained” expression for the same concept in [DH10b].

2Note that this kind of monotonicity is different from the standard one (the greater the input, the
greater the output). Say, a < b < c and f(x, y) = min(x, y), except f(a, c) = f(c, a) = b. Then f is
monotone in the usual sense, but not in the sense of this definition. However, for functions defined on
{0, 1}n, these two notions of monotonicity coincide. We thank Andrei Bulatov for pointing out this.
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Definition 14. For an m-ary relation X on D and for 1 ≤ i < j ≤ m, let pri,jX =

{(ui, uj) | (u1, . . . , um) ∈ X}. A relation X is called 2-decomposable if, for any tuple

x = (x1, . . . , xn) ∈ Dm, we have x ∈ X if and only if (xi, xj) ∈ pri,jX for all 1 ≤ i <

j ≤ m. In a similar way we can also define k-decomposable for any k = 2, · · · ,m.

Remark 15. Coincidentally, in [DH10b] the “2-decomposable” expression also occurs,

but with a very different meaning.

Theorem 16 (E. Dokow, R. Holzman [DH10b]). Let X ⊆ Dm be non-degenerate and

non-binary (see Definition 7). If X is totally blocked and not 2-decomposable (see

Definition 14) then X is an impossibility domain with respect to IIA + Supportiveness

+ Non-dictatorship.

Theorem 17 (E. Dokow, R. Holzman [DH10b]). Let X ⊆ Dm. If X is non-degenerate

and not totally blocked then X is a possibility domain with respect to IIA + Support-

iveness + Non-dictatorship.

1.3 Main results

In spite of the impressive advances due to E. Dokow and R. Holzman, important ques-

tions have remained open:

1. Complete the characterization of the Supportive case, when |D| > 3. (In [DH10b]

the case |D| = 3 is resolved. See Theorem 3 in the paper.)

2. Settle the |D| > 2 case with the Idempotency condition.

We combine ideas from algebraic theory of constraint satisfaction problems (or more

originally from universal algebra) with results from [DH10b] to get a full characteriza-

tion of the non-binary case, with the IIA + Supportiveness + Non-dictatorship condi-

tions. We state here the theorem in a simplified form for better understanding. The

theorem that contains all the finer details is Theorem 80 in Section 4.1.

Theorem 18. Let X ⊆ Dm be non-degenerate. If X is totally blocked then X is an

impossibility domain with respect to IIA + Supportiveness + Non-dictatorship if and

only if there is no aggregator with at most three voters.
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Note that Theorem 18 is a generalization of Theorem 12 by E. Dokow and R.

Holzman. It holds for both binary and non-binary domains. For binary case, the Sup-

portiveness condition is equivalent to the Idempotency condition, while for non-binary

case, the former implies the latter. If we insist on the Idempotency condition instead

of the Supportiveness condition (question 2), we have the following characterization:

Theorem 19. Let X ⊆ Dm be non-degenerate and non-binary. If X is totally blocked

then X is an impossibility domain with respect to IIA + Idempotency + Non-dictatorship

if and only if there is no aggregator with at most |D| voters.

The proof of the theorem with additional details is in Section 4.2.

Although the case of binary evaluations is completely settled by E. Dokow and R.

Holzman, we revisit it in Chapter 3 and give a short proof, using results from universal

algebra. We get a slightly refined form of their theorem:

Although the case of binary evaluations was completely settled by E. Dokow and R.

Holzman, universal algebra gives a tad more refined form of their theorem (see Details

in Chapter 3):

Theorem 20. Let X ⊆ {0, 1}m be non-degenerate. Then X is an impossibility domain

with respect to IIA + Idempotency + Non-dictatorship if and only if X is totally blocked

and it is not an affine subspace. If X is not totally blocked then for all 1 ≤ j ≤ m one

of the following holds:

1. there is an f such that fj is the semi-lattice operation u ∨ v or u ∧ v,

2. there is an f such that fj is the majority operation (u ∨ v) ∧ (v ∨ w) ∧ (w ∨ u),

3. there is an f such that fj is the Mal’tsev operation u− v + w mod 2,

4. fj is a dictatorship for every f .

Gadgets. How do the above characterizations help when we want to give a concise

proof that a given X is an impossibility domain? It turns out that we can characterize

impossibility domains in a dual way, in terms of a set of gadgets. Our new characteriza-

tion, that provides witnesses to impossibility, has not been known earlier in the voting
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theory context. Gadgets (or conjunctive queries) are expressions used in reductions

between constraint satisfaction problems when we translate instances locally (term by

term). They are existentially quantified conjuncts of clauses, where each clause is a

relation. The relations in this interpretation are viewed as Boolean-valued functions on

not necessarily Boolean variables. The syntax of a gadget is:

R(~x) = ∃~y : S1(~x, ~y)∧. . .∧Sk(~x, ~y) (each Si in effect depends only on subsets of ~x, ~y)

Their purpose is to express new relations from a given set of relations.

A theorem of D. Geiger [Gei68] establishes a connection between the nonexistence

of aggregators for a set Γ of relations and the existence of Γ-gadgets (i.e. in which

all relations are from Γ or the ’=’ relation). This theorem serves as the backbone of

the algebraic theory of constraint satisfaction problems developed by P. Jeavons, A. A.

Bulatov, A. A. Krokhin, D. A. Cohen, M. Cooper, M. Gyssens [JCG97, Jea98, JCC98,

BJK05] and several other researchers.

Figure 1.1: The multi-sorted Not All Equal (NAE) gadget to express the multi-sorted
inequality relation between x1 (type 1) and x2 (type 3). This gadget is central in our
proof of Arrow’s theorem.

This is our starting point too. In universal algebra, (IIA) aggregators are called

polymorphisms. They differ from the aggregators in our introduction in that they are

single-sorted: f1 = f2 = . . . = fm. Multi-sorted polymorphisms, i.e. when the fjs

can be different, have also been studied in the algebraic literature [BJ03, Bul11]. When

dealing with multi-sorted polymorphisms, all relations and gadgets (gadgets also express

relations) must be multi-sorted as well. In the multi-sorted world first we must declare

a type for every variable. The typing of the variables serves the same purpose as in
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programming languages: when a function is called, the types of the called variables

must match with the types in the function declaration. In the same spirit, every multi-

sorted l-ary relation R we construct (or given to us) must come with a sequence of l

(not necessarily different) types. We may call this type declaration. The typing must

be consistent: the types of the variables involved in any occurrence of a relation in a

gadget must match with the type declaration.

Our multi-sorted version of Geiger’s theorem allows us to prove impossibility re-

sults simply by producing sets of appropriate gadgets. For illustration, we construct

the multi-sorted gadget that leads to the proof of Arrow’s theorem. In the algebraic

language Arrow’s theorem says that all idempotent aggregators of the multi-sorted NAE

relation are dictatorships. The multi-sorted NAE is a binary relation that has three ar-

guments: x with type 1, y with type 2 and z with type 3. NAE holds when the variables

are not all zero and not all one. In Section 2.5 we show that Arrow’s theorem follows if

we can create a multi-sorted gadget that expresses the relation x1 6= x2, where x1 and

x2 are binary variables of types 1 and 3, respectively. (Because NAE is symmetric this

also means that we can create the x1 6= x2 relation for arbitrary two different types.)

The basic building block for our gadget has to be the multi-sorted NAE relation, but

because of the Idempotency condition we can also use assignment giving relations, like

y = 1. Our gadget looks like (see also Fig. 1.1):

∃y1, y2 : NAE(x1, y1, x2) ∧NAE(x1, y2, x2) ∧ (y1 = 0) ∧ (y2 = 1) (1.1)

Any additional gadgets we need to build to prove Arrow’s theorem can be easily con-

structed from (1.1) (see Section 2.5).

In this dissertation we prove a multi-sorted version of Geiger’s theorem (see Section

2.3). This allows us to prove impossibility results simply by producing sets of gadgets.

If we want to prove that X ⊆
∏m
j Dj is an impossibility domain, we can construct

X+-gadgets for a certain “complete” set of (multi-sorted) relations. Here the ‘+’ in the

upper index refers to the permission to use assignment-giving relations (i.e. ‘x = a,’

where a ∈ Dj , for type j variables) in our gadgets in addition to X. In all cases X

must be viewed as a multi-sorted relation, all components (arguments) having different
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types. The Idempotency constraint is encoded in the ‘+’ of X+. Alternatively, the

Supportiveness condition in the gadget-reformulation translates to the permission of

using arbitrary unary relations in the gadgets. When we allow the latter, the gadget is

an Xf-gadget.

Theorem 21. For every D and m there is a fixed finite set P = P(D,m) of multi-

sorted relations such that X ⊆ Dm is an impossibility domain with respect to IIA +

Idempotency (Supportiveness) + Non-dictatorship if and only if we can express every

member of P with a gadget whose conjunct has only (appropriately multi-sorted) X+- (

Xf)-clauses. In addition, the number of auxiliary variables is upper bounded by some

explicit function φ(m, |D|) (single exponential in m).

The theorem in more details is restated in Theorem 60 and proved in section 2.4.

Our characterizations allow us to decide if X is an impossibility domain (both in

the Idempotent and in Supportive cases) in two different ways: either by checking

aggregators up to a certain number of arguments (Theorem 18 and Theorem 19), or by

checking gadgets up to a certain size (Theorem 21). If we do both searches in parallel,

we also find a short certificate (compared to the search time) for either the possibility

or the impossibility of X, depending on which holds.

One of the main applications of our gadget characterization is that we can prove

the impossibility of a domain X by merely presenting a few gadgets (rather than trying

to exclude a large set of aggregators). In some cases we can tailor the gadgets to the

specific problem, exploiting symmetries. A combined approach where we exclude most

aggregators by gadgets while the rest we treat directly is also possible. Using gadgets

we can show that the Pairwise Distinctness relation defined by

{(u1, . . . , um) ∈ Dm | uk 6= u` (1 ≤ k < ` ≤ m)}

is an impossibility domain when |D| > m if m = 2 and when |D| = m if m ≥ 3 with

respect to the IIA + Idempotency + Non-dictatorship conditions. In [DH10b] this is

proven only under the IIA + Supportiveness + Non-dictatorship conditions, and [FF11]

proves the above only when |D| = m and m ≥ 3.
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Besides impossibility theorems, another avenue in social choice theory is the op-

posite. If some domain is a possibility domain, we are interested in what kind of

aggregators such domain has. In particular, the majority aggregators have drawn great

attention. This is the so called domain restriction problem. In Chapter 6 we study this

traditional problem in social choice theory from an algebraic point of view.

The definitions of possibility (even with the Supportive restriction) is considered

too generous by some researchers, and several further restrictions were studied [Kal02].

E. Dokow and R. Holzman, for instance, question if linear subspaces of {0, 1}m should

really be considered possibility domains [DH10a]. In Chapter 7 we define a new aggre-

gator class that strengthens the notion of Non-dictatorship. Our new definition directly

comes from the algebraic theory and has many desirable properties.

The rest of the dissertation is organized as follows. In Section 1.4, we introduce the

algebraic theory of constraint satisfaction problems, which was originally developed to

attack the dichotomy conjecture but later found many other applications. In Chapter

2, we present one characterization of impossibility domains, that is by gadgets. Two

examples are also presented to illuminate this characterization: Arrow’s impossibility

theorem (Section 2.5) and Pairwise Distinctness (Section 2.6). In Chapter 3 we re-

prove previously known results for characterization of binary domains by E. Dokow

and R. Holzman [DH10a] in a short way using the new tools developed in Chapter 2.

In Chapter 4, we show another characterization of impossibility domains, that is by

aggregators, for both the Supportiveness case and the Idempotency case. After these

two characterizations are discussed, in Chapter 5, we show how to convert these char-

acterizations to algorithms of determining if a domain is an impossibility domain or

not. We also give upper bounds on the complexity of deciding if a domain is impossible

or not (to our best knowledge no finite time bounds were given earlier). In Chapter

6, we study the domain restriction problem and give a classification theorem for the

majoritarian aggregators and show how Sen’s well known theorem follows from it. Last

in Chapter 7, using our algebraic view we put forth a suggestion about a strengthening

of the Non-dictatorship criterion, that helps us avoid “outliers” like the affine subspace.
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1.4 Algebraic theory of Constraint Satisfaction Problems

It has to mention that the presentation of this dissertation still works well without

referring any detailed definitions of constraint satisfaction problems (CSPs) and what

is really relevant is universal algebra (see [Ros86, Qua95, JQ95, LP96, Csa05, FV09]),

however, we still present universal algebra by means of its application to CSPs. Univer-

sal algebra applies to both CSPs and voting theory (as elucidated in this dissertation).

Sometimes (but not always) terms in one area transform directly to the other. The

following table lists some examples of similarities between these two different areas.

CSP(multi-sorted) Voting Theory

Constraint relation Domain

Multi-sorted polymorphism IIA aggregator

Assignment-giving relation Idempotency condition

Projection Dictatorship

NP-hard Impossibility domain

Tractable Possibility domain

List constraints/conservative Supportiveness condition

Definition 22 (CSP). Let D be a finite set. Call a subset R ⊆ Dr a relation, where

r ≥ 1 is the arity. Let Γ be a set of relations (possibly infinite) over D, an instance Φ

of a constraint satisfaction problem (CSP) CSP(Γ) contains two parts:

1. V = {x1, · · · , xn} a set of n variables,

2. {(xi,1, · · · , xi,ki), Ri)|i = 1, · · · ,m} a set of m constraints where each Ri ∈ Γ has

arity ki and xi,j ∈ V .

The question is to determine if there is a map ϕ : V → D such that for each i = 1, · · · ,m,

(ϕ(xi,1), · · · , ϕ(xi,ki)) ∈ Ri. Call ϕ a solution to Φ if there is such.

Remark 23. The constraint satisfaction problem can aslo be defined as homomorphism

between relational structures, which turns out to be equivalent to Definition 22. In
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particular, if constraint relation is a graph H, we call this CSP as H-coloring problem.

For example, the k-coloring problem can be viewed as when H = Kk.

Definition 24 (CSP as Homomorphism). Call (D;R1, R2, · · · ) a relational structure

over D if D is a finite set and each Ri is a relation over D, i.e. there is some ki such

that Ri ⊆ Dki , and (k1, k2, · · · ) is called signature of the relational structure. Two

relational structures are similar if they have the same signature. A homomorphism

between two similar relational structures (D;R1, R2, · · · ) and (D′;R′1, R
′
2, · · · ) is de-

fined as a map ϕ : D → D′ such that for each i and for each (r1, r2, · · · , rki) ∈ Ri,

(ϕ(r1), ϕ(r2), · · · , ϕ(rki)) ∈ R′ki .

Let Γ be a set of relations (possibly infinitely many) over D. Let V = {x1, · · · , xn}

be a set of n variables. An instance Φ of a constraint satisfaction problem (CSP)

CSP(Γ) is defined as to determine if there is a homomorphism between two similar

relational structures (V ;V1, · · · , Vm) and (D;R1, · · · , Rm) where Vi = {(xi,1, · · · , xi,ki)}

and Ri ∈ Γ. If there is such, call it a solution to CSP(Φ).

Example 25. The following table lists some CSPs that mostly appear in computer

science literature.

CSP Name Domain Constraint relation(s)

2-COLORING {0, 1} {(0, 1), (1, 0)}

2-SAT {0, 1} {0, 1}2 \ {(0, 0)}, {0, 1}2 \ {(0, 1)}, {0, 1}2 \ {(1, 1)}

3-LIN {0, 1} x1 + x2 + x3 ≡ 0 mod 2, x1 + x2 + x3 ≡ 1 mod 2

HORN SAT {0, 1} ∀k : x1 ∨ x2 ∨ · · · ∨ xk, x̄1 ∨ x2 ∨ · · · ∨ xk

DUAL-HORN SAT {0, 1} ∀k : x̄1 ∨ x̄2 ∨ · · · ∨ x̄k, x1 ∨ x̄2 ∨ · · · ∨ x̄k

NOT-ALL-EQUAL SAT {0, 1} {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}

3-SAT {0, 1} x ∨ y ∨ z, x ∨ y ∨ z̄, x ∨ ȳ ∨ z̄, x̄ ∨ ȳ ∨ z̄

3-COLORING {0, 1, 2} {0, 1, 2}2 \ {(0, 0), (1, 1), (2, 2)}

Example 26 (Sudoku). The following is a typical Sudoku to be solved.
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5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

In general, Sudoku can be written as a CSP. Let D = {1, 2, · · · , 9} be the domain.

Let D 6= ⊆ D2 be a relation defined as D 6= = {(x, y) ∈ D2|x 6= y}. Thus Sudoku

can be viewed as a 9-coloring problem with singleton constraints, i.e. some vertices

are assigned with predefined colors. The variable set for a Sudoku instance contains

xi,j : 1 ≤ i, j ≤ 9. Besides those singleton constraints for each particular Sudoku, the

common constraints for all Sudoku contain xi,j 6= xk,l where (i, j) 6= (k, l) if (1) i = k

(row constraints); (2) j = l (column constraints); (3) b i−1
3 c = bk−1

3 c and b j−1
3 c = b l−1

3 c

(inner square constraints).

Multi-sorted CSPs (MCSP) differ from usual CSPs in that each variable in

V has a type. Each type b has a designated set Db in which variables of that type

range. We denote the type of variable x by type(x). Without loss of generality we may

assume that the set of permissible types is [t] where t is a fixed positive integer. The

corresponding ranges are D1, . . . , Dt. Let X ⊆
∏m
j=1Dτj where τj ∈ [t] for 1 ≤ j ≤ m.

We denote X with (X, τ), where τ = (τ1, . . . , τm), to indicate that it is multi-sorted and

to indicate the types of its components. A typical choice in our assignment aggregation

setting is t = m, Di = priX and the typing of X is (X, (1, . . . ,m)).

Multi-sorted CSPs are defined analogously to usual CSPs, except that all their

variables are typed and their constraints are multi-sorted, using the same fixed type set

[t]. The variable set V is V1∪̇ · · · ∪̇Vt, where Vb is the set of variables of type b for every
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1 ≤ b ≤ t. An (X, τ)-constraint X(xσ1 , . . . , xσm) is an X-constraint with the additional

requirement that type(xσj ) = τj for 1 ≤ j ≤ m.

Remark 27. Single sorted (i.e. commonplace) CSPs can be viewed as multi-sorted

ones, where t = 1. Thus multi-sorted CSPs are more general. Multi-sorted CSPs can

be emulated with single-sorted ones on the expense of increasing the alphabet size and

introducing type-constraints, and in Section 2.3 we shall exploit this.

Gadget. An important theme in computer science is to determine the complexity

of CSP(Γ) for given set of constraint relations Γ. For example, it is well known that

2-SAT, 2-COLORING, 3-LIN, HORN SAT, and DUAL-HORN SAT are all in P, and

NOT-ALL-EQUAL SAT, 3-SAT, 3-COLORING are all NP-complete. An important

notion in determining the complexity of CSP is gadget.

Definition 28 (gadgets, single-sorted). A relation R ⊆ Dm gadget reduces to a set

{X1, . . . , Xl} of relations on D if

R(x1, . . . , xm) = ∃ y1, . . . , ym′ : R1(z1,1, . . . , z1,m1) ∧ . . . ∧Rt(zt,1, . . . , zt,mt)

where each Ri is one of X1, . . . , Xl or the equality relation x = y. Furthermore

zi,j ∈ {x1, . . . , xm, y1, . . . , ym′}.

Variables {x1, . . . , xm} are called x-variables and variables {y1, . . . , ym′} are called aux-

iliary variables. The number of auxiliary variables m′ is defined as the size of gadget

R. Let Γ,Γ′ be two sets of relations. Say Γ gadget reduces to Γ′ if for every relation

R ∈ Γ, R gadget reduces to Γ′.

We rely on the following lemma with gadgets to reduce from one problem to another.

Lemma 29. Let Γ,Γ′ be two sets of relations. If Γ gadget reduces to Γ′, then if CSP(Γ)

is NP-complete, then CSP(Γ′) is NP-complete, if CSP(Γ′) is in P, then CSP(Γ) is also

in P.

Example 30. We give here a gadget reduction from 3-SAT to 1-in-3 SAT, thus give a

proof of NP-hardness of CSP({(1, 0, 0), (0, 1, 0), (0, 0, 1)}). Denote by

T = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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First we can create the following gadget:

x̄ ∨ y ∨ z̄ = ∃a, b, c, d : T (x, a, b) ∧ T (y, b, c) ∧ T (z, c, d).

Also we can create the following inequality gadget:

(x 6= y) = ∃a, b, c, d, e : T (x, y, a) ∧ T (a, b, c) ∧ T (b, d, e) ∧ (d = e).

Once we have these two gadgets, we can create the four constraint relations for 3-SAT.

For example:

x ∨ y ∨ z = ∃a, b : (ā ∨ y ∨ b̄) ∧ (a 6= x) ∧ (b 6= y).

Remark 31. There are different names for gadgets in literature. For example, in logic,

they are often called primitive positive formula (pp-formula), a first order formula using

existential quantifiers and conjunction only [BKJ01]. It is shown that a gadget R can

also be created from Γ by taking permutation, extension, projection and intersection

[Jea98], or Cartesian product, equality selection and projection [JCC98].

There is a voluminous literature on the satisfiability of CSPs and classification

theorems constitute a significant part of this. Thomas J. Schaefer in his celebrated

theorem of 1978 has classified the complexity of all binary CSPs (i.e. when |D| = 2):

Theorem 32 (Schaefer [Sch78]). Let D = {0, 1} and X1, . . . , Xl be relations of arity

m1, . . . ,ml on D. Then CSP(X1, . . . , Xl) is in polynomial time if:

1. (0, . . . , 0︸ ︷︷ ︸
mi

) ∈ Xi for all 1 ≤ i ≤ l;

2. (1, . . . , 1︸ ︷︷ ︸
mi

) ∈ Xi for all 1 ≤ i ≤ l;

3. Xi is a 2CNF for every 1 ≤ i ≤ l;

4. Xi is a Horn formula for every 1 ≤ i ≤ l;

5. Xi is a dual-Horn formula for every 1 ≤ i ≤ l;

6. Xi is the solution space of a linear system over GF(2) for every 1 ≤ i ≤ l.

Otherwise CSP(X1, . . . , Xl) is NP hard.
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When H denotes a undirected graph, Pavol Hell and Jaroslav Nesetril in 1990

showed that CSP(H) is NP-complete if and only if H is non-bipartite, otherwise it is in

P [HN90]. The famous dichotomy conjecture by Tomás Feder and Moshe Y. Vardi says

that for any finite |D| ≥ 2, for any relational structure Γ on D, CSP(H) is either P or

NP-complete [FV93, FV98]. The algebraic theory of constraint satisfaction problems

was developed in a sequence of papers by P. Jeavons, A. A. Bulatov, A. A. Krokhin, D.

A. Cohen, M. Cooper, M. Gyssens [JCG97, Jea98, JCC98, BJK05]. A lot of progress

has been made using the algebraic tools to attack this conjecture [Bul06, Bul11, BK09].

It has also found numerous other applications [BD03, ABI+09, BK12].

For multi-sorted CSPs, we can define an analogue of gadget and reduction to typed-

gadget and typed-reduction.

Definition 33 (gadgets, multi-sorted). A multi-sorted relation (R, τ), where R ⊆ Dk

and τ = (τ1, . . . , τk) ∈ [t]k, multi-sorted gadget-reduces to a set (X1, τ
1), . . . , (Xl, τ

l) of

multi-sorted relations on D if there is a multi-sorted gadget expression

R(x1, . . . , xk) = ∃ y1, . . . , yk′ : R1(z1,1, . . . , z1,k1) ∧ . . . ∧Rp(zp,1, . . . , zp,kp)

where each Ri is one of (X1, τ
1), . . . , (Xl, τ

l) or the multi-sorted equality relation (x =

y,(a,a)) (meaning type(x) = type(y) = a) for some a ∈ [t]. It is important that we do

not allow the free occurrence of the relation (x = y, (a, b)), where a 6= b.

In the algebraic theory of CSPs voting functions are called polymorphisms. They

are very extensively studied and classified according to their algebraic properties. First

we define polymorphisms in the single-sorted case.

Definition 34 (polymorphism). Let X ⊆ Dm be a relation. A function g : Dn → D

is called a polymorphism of X if the tuple (g, . . . , g︸ ︷︷ ︸
m

) is an IIA aggregator for relation

X, i.e. it takes Xn into X. A function g : Dn → D is a polymorphism with respect to

a set Γ of relations on D if it is a polymorphism for each relation in Γ. The set of all

polymorphisms with respect to Γ is denoted by Pol(Γ).

Example 35 (Polymorphism examples). Let g : Dn → D be an operation on D of

arity n, (i.e. whose variables and output are D-valued), call it a D-function.
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1. g is idempotent if for any d ∈ D, g(d, · · · , d) = d.

2. g is conservative (or supportive) if for any d1, · · · , dn ∈ D, g(d1, · · · , dn) ∈

{d1, · · · , dn}.

3. g is essentially unary if there exists some k, 1 ≤ k ≤ n, and some φ : D → D,

such that for any d1, · · · , dn ∈ D, g(d1, · · · , dn) = φ(dk). In particular, if φ is an

identical map, i.e. φ(d) = d for any d ∈ D, then g is said to be a projection.

4. if n = 3, g is said to be a majority operation if for any d1, d2 ∈ D we have

g(d1, d2, d2) = g(d2, d1, d2) = g(d2, d2, d1) = d1.

5. if n = 3, g is said to be an affine operation if for any d1, d2, d3 ∈ D we have

g(d1, d2, d3) = d1 − d2 + d3 where D is viewed as an Abelian group.

6. if for any d1, d2 ∈ D,

g(d1, · · · , d1︸ ︷︷ ︸
n−1

, d2) = g(d1, · · · , d1︸ ︷︷ ︸
n−2

, d2, d1) = · · · = g(d2, d1, · · · , d1︸ ︷︷ ︸
n−1

),

then g is said to be a weak near unanimity (WNU) operation. In particular, if

g(d1, · · · , d1︸ ︷︷ ︸
n−1

, d2) = g(d1, · · · , d1︸ ︷︷ ︸
n−2

, d2, d1) = · · · = g(d2, d1, · · · , d1︸ ︷︷ ︸
n−1

) = d1,

then g is said to be a near unanimity (NU) operation.

In the type-less case we are forced to aggregate each issue with the same function,

while multi-sorted CSPs give us the freedom to aggregate differently on different types.

These are the polymorphisms we need to deal with in our evaluation aggregation setting.

Definition 36 (multi-sorted polymorphism). Fix t and Db for 1 ≤ b ≤ t. Let (X, τ)

be a multi-sorted relation with X ⊆
∏m
j=1Dτj where τ = (τ1, . . . , τm) ∈ [t]m. Fix

n ≥ 1. A collection fb : Dn
b → Db (1 ≤ b ≤ t) of functions is said to be a multi-sorted

polymorphism of (X, τ) if the tuple (fτ1 , . . . , fτm) is an IIA aggregator for relation X,

i.e. it takes Xn into X. More generally, a collection fb : Dn
b → Db (1 ≤ b ≤ t) of

functions is a multi-sorted polymorphism with respect to a set {(X1, τ
1), . . . , (Xl, τ

l)}

of multi-sorted relations (each relation is over the same fixed set [t] of types) if {fb}b∈[t]

is a multi-sorted polymorphism for each relation.
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Definition 37 (MPol). The set of all multi-sorted polymorphisms for {(X1, τ
1), . . . , (Xl, τ

l)}

is denoted by MPol((X1, τ
1), . . . , (Xl, τ

l)).

We are now going to state some invariance and composition properties, which are

to a large extent responsible for the power of the algebraic approach. For simplicity we

state them in the single-sorted setting, indicating whenever a statement has a natural

extension to the multi-sorted case.

Lemma 38 (Gadgets preserve polymorphisms). If R gadget-reduces to {X1, . . . , Xl}

and f ∈ Pol(X1, . . . , Xl) then f ∈ Pol(R). The statement generalizes to multi-sorted

gadgets and multi-sorted polymorphisms.

Proof. Assume that R ⊆ Dm. Since R gadget-reduces to {X1, . . . , Xl} by Definition 28

we have

R(x1, . . . , xm) = ∃ y1, . . . , ym′ : R1(z1,1, . . . , z1,m1) ∧ . . . ∧Rt(zt,1, . . . , zt,mt)

where each Ri is one of X1, . . . , Xl or the equality relation x = y. Furthermore

zi,j ∈ {x1, . . . , xm, y1, . . . , ym′}.

Since f ∈ Pol(X1, . . . , Xl), thus f keeps R1, · · · , Rt. Assume that the arity of f is k.

For any k vectors x(1), · · · , x(k) in R, we need to show that

f(x(1), · · · , x(k)) ∈ R.

That is, by Definition 28, we need to find some certificate y1, . . . , ym′ for f(x(1), · · · , x(k)).

For each single x(i) = (x
(i)
1 , · · · , x(i)

m ) ∈ R, there is a certificate (y
(i)
1 , · · · , y(i)

m′). Thus it

can be verified that (by Definition 28)

(f(y
(1)
1 , · · · , y(k)

1 ), · · · , f(y
(1)
m′ , · · · , y

(k)
m′ ))

is the required certificate.

An obvious consequence of Lemma 38 is that Pol(X1, . . . , Xl) and Pol(X1, . . . , Xl, R)

are the same. The algebraic approach also fully exploits the following composition

properties:
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Lemma 39 (Gadgets compose). If R gadget reduces to {X1, . . . , Xl} and S gadget re-

duces to {X1, . . . , Xl, R} then S also gadget reduces to {X1, . . . , Xl}. Analogous state-

ment holds for multi-sorted gadget reductions.

Definition 40. For a set Γ of relations let us define the closure of Γ with respect to

gadget creation:

〈Γ〉 = {R | R gadget reduces to Γ}

The gadget composition lemma implies that 〈〈Γ〉〉 = 〈Γ〉.

Lemma 41 (Polymorphisms compose). Let f, g1, . . . , gn ∈ Pol(Γ), where f : Dn → D

(i.e. f has n variables) and gi : Dni → D. Then the
∑n

i=1 ni -argument composed

function f(g1, . . . , gn) is in Pol(Γ). Analogous statement holds for multi-sorted poly-

morphisms: from a single n -variate multi-sorted polymorphism and from n arbitrary

multi-sorted polymorphisms in MPol(Γ), where Γ is a set of multi-sorted relations, we

get a new multi-sorted polymorphism, also in MPol(Γ), where we compose the compo-

nent functions for each type b ∈ [t] separately.

In the above lemma we could have allowed g1, . . . , gn to share variables or even

to have allowed repetition of the same variable inside any of the gis. Note that the

following lemma (Lemma 42) is a straightforward consequence of Lemma 41: compose

with dictatorships (projections).

Lemma 42 (Identification of variables). Let f ∈ Pol(Γ), where f : Dn → D, and 1 ≤

i 6= i′ ≤ n. Then the function f ′ : Dn−1 → D where we identify the ith and i′th variables

of f is also in Pol(Γ). Analogous statement holds for multi-sorted polymorphisms, where

we can identify any two variables of the same type.

Let us call a function of the type f : Dn → D (i.e. whose variables and output

are D-valued) a D-function. A class of D-functions is called a clone if it contains all

projections (dictatorships) and is closed under function composition and identification

of variables.

For a set F of D-functions let us define the closure:

[F ] = the smallest clone that contains F



25

Note that [F ] could have been defined from “inside,” i.e. as the set of functions

that one can generate from F and the projections by compositions and identification

of the variables. Either ways it follows that [[F ]] = [F ]. We also remark that because

of the composition theorem for polymorphisms and because projections are always

polymorphisms that Pol(Γ) is a clone.

The algebraic theory of constraint satisfaction problems was developed in a sequence

of papers by P. Jeavons, A. A. Bulatov, A. A. Krokhin, D. A. Cohen, M. Cooper, M.

Gyssens [JCG97, Jea98, JCC98, BJK05]. The theory builds on a connection between

relations on D and polymorphisms that aggregate them. For a (possibly infinite) set F

of D-functions let us define

Inv(F) = {X ⊆ Dm for some positive integer m | F ⊆ Pol(X)}

Thus Inv(F) is the set of those relations that are kept by all elements of F .

Theorem 43 (D. Geiger [Gei68]). Fix D, and let Γ,Γ′ be (possibly infinite) sets of

relations on D and let F ,F ′ be (possibly infinite) sets of D-functions. Then

1. Inv(Pol(Γ)) = 〈Γ〉

2. Pol(Inv(F)) = [F ]

3. Γ ⊆ Γ′ =⇒ Pol(Γ′) ⊆ Pol(Γ)

4. F ⊆ F ′ =⇒ Inv(F ′) ⊆ Inv(F)

Definition 44 (Algebra). An algebra is a tuple A = (A, t0, t1, · · · ) where A is a

nonempty set (called universe) and each ti : Aki → A, is an operation on A with

arity ki ≥ 0.

Definition 45 (Homomorphism between similar algebras). Two algebras A, B are

similar if (they have the same number of operations and corresponding operations have

the same arities.) A mapping f : A → B is a homomorphism between two similar

algebras A, B if for all t0, t1, · · · and for all a1, a2, · · · , aki ∈ A,

tBi (f(a1), f(a2), · · · , f(aki)) = f(tAi (a1, a2, · · · , aki)).
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A bijective homomorphism is called an isomorphism.

Definition 46 (Subalgebra). A set B ⊆ A is a subuniverse of an algebra A if for all

i = 0, 1, · · · , ti(B, · · · , B︸ ︷︷ ︸
ki

) ⊆ B. For a nonempty subuniverse B of an algebra A, the

algebra B = (B, t0|Bk0 , t1|Bk1 , · · · ) is called a subalgebra of A. A term function of an

algebra is any function that can be obtained as a composition using the operations of

the algebra together with all the projections. A set C ⊆ A generates a subuniverse B

in an algebra A if B is the smallest subuniverse containing C.

Definition 47 (Direct product, Subdirect product). Given two similar algebras A, B

of the same type, a direct product A × B of A and B is the algebra with universe

A × B, and operations are computed coordinatewise. The product of algebras Ai,

i ∈ I, is defined in a similar manner for any set I. A subdirect product of A and B is a

subalgebra C of A ×B such that the projections of C to A and B are full. For a set

H, an H-power AH of an algebra A has universe AH (the set of mappings from H to

A), and the operations are again computed coordinatewise.

Definition 48 (Congruence, Quotient algebra). An equivalence relation ∼ on A is

called a congruence of an algebra A if ∼ is a subalgebra of A × A. An equivalence

relation is a congruence if and only if it is the (kernel) of some homomorphism from

A. If ∼ is a congruence of A one can form the quotient algebra A/ ∼: the universe

of A/ ∼ is A/ ∼ and the operations are derived from the operations on A by taking

representatives of the congruence classes.

Definition 49 (Variety). A variety is a class of algebras of the same type closed

under forming subalgebras, products, and homomorphic images. The smallest variety

containing an algebra A is called the variety generated by A.

Definition 50 (Congruence lattice and type). For an algebra A, let Con(A) denote

the set of congruences of A. For any α, β ∈ Con(A), the intersection of α and β is in
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Con(A), denoted by α ∧ β. The smallest congruence relation contains both α and β is

also a congruence of A, denoted by α ∨ β. Then (Con(A),∧,∨) forms a lattice, called

the congruence lattice of A. It is naturally ordered under inclusion, denoted by ⊆. A

pair (α, β) in Con(A) is prime quotient if there is no γ ∈ Con(A) such that α ⊆ γ ⊆ β.

In 1988, Hobby and McKenzie [HM88] developed a theory, tame congruence theory,

to “study a local structure of universal algebras through certain properties of prime

quotients of the congruence lattice.” There are five types of prime quotient for any

congruence lattice of algebra A. 1. Unary type, 2. affine type, 3. Boolean type, 4.

lattice type, 5. semilattice type. The typeset of a variety is the union of typesets of its

finite members.

1.5 Algebraic theory of CSPs and PCP theory

We show the connection developed in [KS09] between algebraic theory of CSPs and

PCP theory in this section, in order to introduce the background for Chapter 7, in

particular for Theorem 106.

Definition 51. Let D be a finite set. For two functions f, g : Dn → D, the distance

between f and g is defined as

dist(f, g) = Px∼Dn [f(x) 6= g(x)]

where x is uniformly randomly chosen from Dn. Let F be a class of functions of arity

n, F ⊆ {f : Dn → D}. The distance between F and function g : Dn → D is defined as:

dist(g, F ) = min
f∈F

dist(f, g).

In PCP (probabilistically checkable proof) theory, we are interested in testing whether

a function f : Dn → D is in class F , or f is ε-far from F (defined as ∀g ∈ F,Px∼Dn(f(x) 6=

g(x)) > ε). Linear test and long code test are two important examples.

Functions used in the linear test:

{f : Dn → D|f is linear over GF(|D|)}
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assume |D| is a prime power.

Functions used in the long code test:

{f : Dn → D|∃k, ∀x1, · · · , xn ∈ D, f(x1, · · · , xn) = xk}.

For fixed class F , given a function f as input, the goal is to test whether f belongs

to F or it is far from F , using a small number of black box queries to f .

1. If f ∈ F , the tester needs to accept with probability 1.

2. If the tester accepts f with probability at least ε, then there exists some δ that f

is δ-close to F .

We use linear test (on D = {0, 1}) as an example to illustrate the connection (see

[KS09] for more details).

Example 52 (Linear test). In linear test we are interested in testing if f : {0, 1}n →

{0, 1} is a linear function or not, i.e. there is some S ⊆ {1, · · · , n} such that

f(x1, · · · , xn) =
∑
i∈S

xi.

The algorithm goes as following [BLR90]: for uniformly randomly chosen x, y ∈ {0, 1}n

test if f(x⊕ y) = f(x)⊕ f(y).

Condition 1. says that if f is linear then the tester needs to accept with probability

1. This is equivalent to saying that f is a polymorphism (see Definition 34) for relation

R = {(x, y, z)|x+ y + z = 0 mod 2}

over {0, 1}. The following picture depicts the above claim in a more intuitive way. Note

that the last row:

(f(x), f(y), f(x⊕ y)) ∈ R

is equivalent to f(x⊕ y) = f(x)⊕ f(y).
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x y x⊕ y

0 1 1 ∈ R

1 0 1 ∈ R
...

...
...

0 0 0 ∈ R

f(x) f(y) f(x⊕ y) ∈ R

Condition 2. is equivalent to saying that for some randomly chosen (x(1), · · · , x(n)) ∈

Rn, if probability that f(x(1), · · · , x(n)) ∈ R is at least ε then there exist some δ and

some linear function that is δ-close to f . Theorem 53 ensures that Condition 2. is

validated.

Theorem 53 (Linear test, [BLR90]). Let f : {0, 1}n → {0, 1}. If there exists some

ε > 1
2 such that

Px,y∼{0,1}n [f(x⊕ y) = f(x)⊕ f(y)] ≥ ε

then f is ε close to some linear function.
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Chapter 2

Gadgets characterize impossibility

The Galois connection of Geiger sends the message that the more gadgets we can create

from a set of relations (or from a single relation), the smaller set of aggregators this set

of relations has. An impossibility domain X does not have any non-trivial aggregator,

therefore X is expected to generate all relations.1 Of course, what excites us more is

the converse. If we can write all relations as gadgets made from X and some simple

relations then X must be an impossibility domain. This chapter makes the above line

of ideas precise. The details involve:

1. We will need a multi-sorted version of Geiger’s theorem since the polymorphisms

we deal with are multi-sorted.

2. We need to understand the role of the Idempotency (Supportiveness) conditions.

3. We want to find a minimal (for algorithmic reasons, but also for convenience)

gadget set that already implies the impossibility of X.

2.1 The Idempotency and Supportiveness conditions

The Idempotency and Supportiveness conditions correspond to adding extra relations to

our base set of relations from which we build the gadgets that prove the impossibility

of X. Our base set is originally {X}. For the Idempotency condition we add all

Assignment-giving relations on D and for the Supportiveness condition we add all Unary

relations on D (see definitions below). This comes from Geiger duality: when the

aggregator is required to satisfy extra conditions, the set F of good aggregators is

1To be strict, we should say X+ or Xf instead of X. See Definition 54 and 55 for details.
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smaller, so Inv(F) is larger, therefore it has to contain other generators than X. The

details are as follows.

Definition 54 (Unary relations, Xf, Γf). A unary relation on D is a nonempty subset

D′ of D. If X is a relation on D, then Xf denotes the set of relations that consists of

X and all the unary relations on D. If Γ is a set of relations on D, then Γf is the set of

relations that besides the elements of Γ also contains all unary relations on D. In the

multi-sorted case, we add the unary relations for all types i.e. all (D′, τ), where D′ is

any unary relation on Dτ and τ is any element of [t].

Definition 55 (Assignment-giving relations, X+, Γ+). There are special unary rela-

tions, called assignment-giving-relations, of the form x = v, where v is some element

of D. Expressed as a set, x = v is simply {v}. The binary (D = {0, 1}) assignment

giving relations are x = 0 and x = 1. If X is a relation on D then we will denote

with X+ the set of relations that includes X and all assignment giving relations on D.

Similarly, if Γ is a set of relations on D then Γ+ denotes the set of all relations that

we obtain from Γ by adding all assignment giving relations on D to it. Multi-sorted

assignment-giving relations are unary relations of the form (x = v, (a)), where v ∈ Da.

If X is a multi-sorted relation, then X+ is the set of relations that includes X and

all assignment giving relations for the type set [t], {Db}b∈[t] on which X is defined.

Similarly we can define Γ+ for a set of multi-sorted relations Γ.

Lemma 56. A function g : Dn → D is idempotent if and only if it aggregates all

assignment giving relations on D. A function g : Dn → D is supportive if and only if it

aggregates all unary relations on D. The above generalizes to the multi-sorted case: Fix

positive integer n. A multi-sorted function g = (g1, . . . , gt), where gb : Dn
b → Db is an

aggregator for type b, is idempotent, if it aggregates all assignment giving relations for

all types. A multi-sorted function g = (g1, . . . , gt), where gb : Dn
b → Db is an aggregator

for type b, is supportive, if it aggregates all unary relations for all types.

We omit the simple proof of this statement. Assume now that we have a multi-

sorted relation X = (X, τ) and we would like to describe the set F of all idempotent

multi-sorted polymorphisms for X. By Lemma 56, Inv(F), besides X, has to include
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all assignment giving relations on D, and this condition is also sufficient. Similar thing

holds in the supportive case with “assignment giving” replaced with “unary”. Therefore

F is characterized as the largest set of functions whose Inv contains X+ (or Xf in the

case of Supportiveness condition).

2.2 Characterization of Impossibility Domains in terms of gadgets

Let F be any family of multi-sorted functions for some fixed type set [t]. The “Non-

dictatorship” condition for F i.e. that F contains at least one non-dictator function,

turns out to be equivalent (see next two sections) to that at least one of the members

of a certain prescribed finite set of relations is not present in Inv(F). In particular,

if F = MPol(X+) (or MPol(Xf)), our multi-sorted Geiger’s theorem will give that as

long as X is an impossibility domain with respect to the Idempotency (Supportiveness)

conditions, we must be able to generate the elements of the above crucial set of relations

from X+ (Xf, respectively) as gadgets. As a first step to this, in the next section we

will prove the following:

Lemma 57. Domain X ⊆ Dm is an impossibility domain with respect to IIA + Idem-

potency (Supportiveness) + Non-dictatorship if and only if all multi-sorted relations can

be generated as multi-sorted X+ (Xf) -gadgets. Here t = m, Dj = prjX for 1 ≤ j ≤ m

and the typing of X is (X, (1, . . . ,m)).

The set of all (multi-sorted) relations is however infinitely large! Luckily, we can

select a finite subset (actually, in many different ways) that generate all relations, and

it is sufficient to consider only those.

Definition 58 (The Non-Binary OR relation). We define the multi-sorted relation Ru,vk,`

which is unsatisfied only when x = u and y = v simultaneously hold (x has type k and

v has type `). In formula:

Ru,vk,` (x, y) = (¬(x = u ∧ y = v), (k, `)).
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Definition 59 (The multi-sorted Not-All-Equal relation). The multi-sorted NAE re-

lation on types a, b, c is defined as

NAEa,b,c = ({(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}, (a, b, c)).

We are now ready to state our characterization of impossibility domains X, which

we shall prove in the subsequent two sections from the multi-sorted Geiger’s theorem.

Theorem 60. Let X ⊆ Dm be non-degenerate. Let t = m and τ = (1, . . . ,m), and

the effective set of values (see Section 1.2) for type j is Dj = prjX. Then X is an im-

possibility domain with respect to IIA + Idempotency + Non-dictatorship if and only if

there are (X, τ)+-gadgets expressing Ru,vk,` for every 1 ≤ k, ` ≤ m; u ∈ prkX, v ∈ pr`X.

Furthermore, if |Dj | = 2 for some 1 ≤ j ≤ m, we also need to add the multi-sorted NAE

gadget on types (j, j, j). The analogous statement, when we replace “Idempotency” with

“Supportiveness”, requires to replace (X, τ)+ with (X, τ)f.

2.3 A multi-sorted version of Geiger’s theorem

In the proof of Theorem 60 we will need a multi-sorted version of Geiger’s theorem.

The goal of this section is to extend Geiger’s theorem to the multi-sorted setting. For

what follows we fix a type set [t]. For a set Γ of multi-sorted relations (with all types

from [t]) we define:

〈Γ〉M = {(R, τ) | (R, τ) multi-sorted gadget reduces to Γ}

Here ‘M ’ in 〈Γ〉M means “multi-sorted”. We will omit the subscript when this is clear

from the context. The notion MPol was defined in Definition 37. The notion MInv is

defined analogously to Inv in the multi-sorted setting. If F is a (possibly infinite) set

of multi-sorted D-functions (i.e. set of f : Dn → D) then MInv(F) is the set of all

multi-sorted relations that are kept by all elements of F .

Now we can state our multi-sorted Geiger theorem:

Theorem 61. Fix [t] and {Db}b∈[t], and let Γ,Γ′ be (possibly infinite) sets of multi-

sorted relations and let F ,F ′ be (possibly infinite) sets of multi-sorted aggregators. Then
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1. MInv(MPol(Γ)) = 〈Γ〉

2. Γ ⊆ Γ′ =⇒ MPol(Γ′) ⊆ MPol(Γ)

3. F ⊆ F ′ =⇒ MInv(F ′) ⊆ MInv(F)

Proof. In order to make the translation of our multi-sorted version to the single-sorted

Geiger theorem (Theorem 43) we first define

D = D1∪̇D2∪̇ · · · ∪̇Dt

where Db is the range for type b. If originally the Dbs are not disjoint, we make

them disjoint without the loss of generality. A non-empty multi-sorted relation X ⊆

Dτ1 × · · · × Dτm can be now interpreted as the single-sorted relation XD ⊆ Dm. We

remark that viewing them as sets, X and XD are exactly the same. The index D in XD

is only a reminder that we view XD as a single sorted relation over domain D, while

we view X as (X, τ). Since the Dbs are disjoint, from any such XD 6= ∅ we can recover

the types of every coordinate (the components of a single element of XD already give

this information). If Γ is a set of multi-sorted relations over a fixed type-set [t], let ΓD

be the set of those XDs that X ∈ Γ.

For b ∈ [t] we introduce the unary relation Tb on D (in the single sorted world):

Tb(u) ←→ u ∈ Db

In other words, Tb(u) expresses that “u has type b in the multi-sorted world.” For the

set {T1, . . . , Tt} of relations we introduce the notation Θ.

Definition 62. Let ∆ be any set of relations on D such that Θ ⊆ ∆. Then for any

polymorphism f : Dn → D of ∆ and any b ∈ [t] we can define fb : Dn
b → Db as

fb(x) = f(x) on Dn
b .

Note. We know that f on Dn
b takes value from Db since it is an aggregator of

Tb ∈ ∆.

We have now:



35

Lemma 63. Let Γ be any set of multi-sorted relations over a fixed type-set [t] and with

the notations as before. Then the following are equivalent:

1. (f1, . . . , ft) is a multi-sorted polymorphism for Γ;

2. the sequence f1, . . . , ft arises, as in Definition 62, from some polymorphism f of

∆ = ΓD ∪Θ.

We do not prove this easy lemma. Returning to the proof of Theorem 61, the only

challenge is to prove 1. since 2. and 3. are obvious. It is also follows from known

composition lemmas (polymorphisms compose, as do gadgets) that

MInv(MPol(Γ)) ⊇ 〈Γ〉

We have to show the containment in the other direction. Theorem 43 gives that

Inv(Pol(ΓD ∪Θ)) = 〈ΓD ∪Θ〉D

Here the subscript in 〈·〉D refers to that gadget generation is taken in the single

sorted world. Our proof scheme is to relate 〈Γ〉 to 〈ΓD ∪ Θ〉D and MInv(MPol(Γ))

to Inv(Pol(ΓD ∪Θ)).

Which non-empty relations can we generate from ΓD∪Θ, i.e. what are the elements

of 〈ΓD ∪Θ〉? A gadget with this set of generators is of the form

R(x1, . . . , xk) = ∃ y1, . . . , yk′ : R1(z1,1, . . . , z1,k1) ∧ . . . ∧Rp(zp,1, . . . , zp,kp) (2.1)

where each Ri is either from ΓD or from Θ or the = relation.

Definition 64. We say that (an x- or y-) variable z in (2.1) has type b if whenever the

conjunct holds for an assignment (without the existential quantifier), z has a value in

Db. In different words, adding Tb(z) to the conjunction would not eliminate any of the

satisfying assignments of the conjunct.

Since a ΓD ∪ Θ gadget (recall, this is a single-sorted gadget) has variables only

over D, there is no a priori type restriction (other than the entire D) on any variable.
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Nevertheless, if a variable z is involved in a relation SD, where S is a relation from Γ,

then S gives a type b to that variable: SD never holds if z 6∈ Db, so we might as well

restrict z to Db. Assume now that there is a variable z′ such that the right hand side

of (2.1) contains the relation z = z′ with an already restricted z. Then z′ must also be

from Db. Of course, a chain of such equations also enforces a type on the variable in

the end of the chain. Finally, any relation Tb(z) enforces a type b on z. In summary,

we can assign type b to variable z if

1. Tb(z) occurs in the gadget;

2. z occurs in a constraint from ΓD with type b;

3. There is a chain of equality relations that starts form any variable restricted to

type b (by 1. or 2.) that leads to z.

We note that a variable cannot have two different (i.e. contradicting) types defined this

way. Any contradiction in types would make R unsatisfiable (i.e. the empty relation).

Therefore R is equivalent to a direct product of a “typed part” and an “untyped part”:

R = Rtyped × (w1,1 = · · · = w1,s1)× · · · × (wl,1 = · · · = wl,sl)︸ ︷︷ ︸
untyped part

The wi,js are variables and the untyped (or typed) part might not be there. Point 1.-3.

also give that Rtyped is a syntactically recognizable part of R that arises by deleting

some variables and terms from the right hand side. Although Rtyped is a ΓD-gadget

(recall that ΓD is an untyped set of relations constructed from the typed set of relations,

Γ), because of its syntax we can also read it as a (typed) Γ-gadget, and in addition with

the exact same semantics (meaning that Rtyped as a set is the exact same set as when we

read the formula as a Γ-gadget). So Rtyped [viewed as a multi-sorted relation] ∈ 〈Γ〉.

Next we claim that

R ∈ MInv(MPol(Γ)) −→ RD ∈ Inv(Pol(ΓD ∪Θ)).

The left hand side reads that R is kept by all multi-sorted polymorphism (f1, ..., ft) ∈

MPol(Γ)). By Lemma 63 we have that f ∈ Pol(ΓD ∪ Θ) if and only if its component-

sequence (as in Definition 62) (f1, ..., ft) ∈ MPol(Γ). So RD is kept by all f ∈ Pol(ΓD ∪
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Θ), proving our claim.

By the single sorted Geiger theorem (applied to ΓD ∪ Θ) we have then that since

RD ∈ Inv(Pol(ΓD ∪Θ)), we also have that RD ∈ 〈ΓD ∪Θ〉. Two paragraphs earlier we

have seen, that then RD must be of the form Rtyped× (α1,1 = · · · = α1,s1)×· · ·× (αl,1 =

· · · = αl,sl). But since all component of RD are typed, only the typed part is there

(RD = Rtyped = R as sets). So R ∈ 〈Γ〉.

2.4 Special gadgets and their powers

In this section we make some observations about the power of special gadgets and also

finish proving Theorem 60. In the previous sections we have proven that the more

gadgets we can create from X+ or Xf the more restrictions must hold for MPol(X+)

and MPol(Xf) respectively. In particular, it is sufficient to create all gadgets required

by Theorem 60 in order to conclude that MPol(X+) and MPol(Xf) have only dicta-

torships. But even just a single gadget present in 〈X+〉 or 〈Xf〉 can have strong con-

sequences. For instance, if we can construct the equality gadget (x = y, (k, `)) between

two different types k and ` (with a common alphabet), any idempotent (or supportive,

if our gadgets use relations from 〈Xf〉) multi-sorted polymorphism (f1, . . . , ft) that

aggregates X must have the same k and ` components.

Once we start to create gadgets we can use them as “subroutines” to create even

more gadgets. The following lemma says that for any fixed 1 ≤ k, ` < t from Ru,vk,` ∈ 〈Γ〉

one can construct all multi-sorted binary relation with type (k, `) in 〈Γ〉.

Lemma 65. Let 1 ≤ k, ` ≤ t and (S, (k, `)) be any multi-sorted relation contained in

prkX × pr`X. Then (S, (k, `)) = ∧(u,v)6∈S R
u,v
k,` .

We omit the straightforward proof. Note that nothing stops us setting k = ` in the

lemma, in which case we get all binary relations (R ⊆ D2
k). What does the presence of

these relations in 〈Γ〉 say about the (multi-sorted) polymorphisms for Γ? They say a

lot. In fact, if Dk has size at least three, already the not-equal relation, (x 6= y, (k, k)),

alone excludes all idempotent (and so all supportive) polymorphisms other than the

dictatorships for that type:
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Lemma 66 (Not-equal gadget lemma). Assume that the multi-sorted non-equality re-

lation ((x 6= y), (k, k)) ⊆ 〈Γ〉. Then for every f = (f1, · · · , ft) ⊆ MPol(Γ) it must hold

that fk is a dictatorship on prkX.

The above lemma with Lemma 65 imply

Lemma 67. Assume that |prkX| ≥ 3 and the conditions of Theorem 60 hold, so we

can create all Ru,vk,` from (X, τ)+ (resp. from X, τ)f). Then the kth component of any

idempotent (supportive) aggregator f = (f1, · · · , ft) of X must be a dictatorship.

What if |prkX| = 2? Then the NAE gadget can be used to take care of the same

thing.

Lemma 68 (Not-all-equal gadget lemma). Assume that the multi-sorted not-all-equal

relation (|x, y, z| > 1 ∧ x, y, z ∈ prkX, (k, k, k)) gadget-reduces to a set Γ of multi-

sorted relations. Then for every f = (f1, · · · , ft) ∈ MPol(Γ) it must hold that fk is a

dictatorship on prkX.

Among the conditions of Theorem 60 one explicitly states that in the case when

|prkX| = 2 the (|x, y, z| > 1 ∧ x, y, z ∈ prkX, (k, k, k)) gadget can be constructed from

(X, τ)+ (resp. from X, τ)f) to make Lemma 68 applicable.

Putting Lemmas 67 and 68 together, we get that if the gadgets promised by Theorem

60 are present, then all components of every multi-sorted polymorphism (f1, . . . , fm)

are dictatorships on the respective prjXs (not necessarily to the same coordinate).

To finish the “if” part of Theorem 60 all we need to show is that these dictatorships

are controlled by the same index K (the dictator). Assume this is not the case, and let

k and ` be components such that fk is dictated by the Kth voter and f` is dictated by

voter L 6= K. Because X is non-degenerate (and so prkX and pr`X have size at least

two) and because of König’s theorem (or simply by basic combinatorics) there ought

to be u, v ∈ prkX and u′, v′ ∈ pr`X such that

1. u 6= v and u′ 6= v′;

2. There is an element U of X that takes u on k and u′ on `;
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3. There is an element V of X that takes v on k and v′ on `.

Let us now aggregate a set of votes, all from {U, V }, but the Kth vote is U and the

Lth vote is V . Then (f1, . . . , fm) aggregates this input to Z such that the kth issue

aggregates to u and the `th issue aggregates to v′. Notice now that Ru,v
′

k,` holds for

U and V , but not for Z, which is a contradiction, since every aggregator must keep

all gadgets constructible from X+ (Xf), in particular Ru,v
′

k,` . This concludes the “if”

(non-trivial) part of the proof of Theorem 60.

In the rest of the section we assume that for two types a, b ∈ [t] we have Da = Db

(equivalently, a 1-1 correspondence ‘=’ between Da, Db). We show that the ability to

construct the ‘=’ gadget between types a and b from a set Γ of (multi-sorted) relations

implies that for every polymorphism (f1, . . . , ft) of Γ we have fa = fb. This can be use-

ful, because the algebraic theory is developed mainly for single-sorted polymorphisms.

Lemma 69 (Equality gadget lemma). Let Γ be a set of multi-sorted relations with type

set [t]. Assume that for types a and b we have Da = Db, and that the multi-sorted

equality relation (x = y, (a, b)) gadget-reduces to Γ. Then for every f = (f1, · · · , ft) ∈

MPol(Γ) it must hold that fa is identical to fb.

Proof. We need to prove that for every u = (u1, . . . , un) ∈ Dn
a (= Dn

b ) it holds that

fa(u) = fb(u). Consider an arbitrary u ∈ Dn
a . f is a multi-sorted polymorphism of

(x = y, (a, b)). This follows from the facts that f = (f1, · · · , ft) is a polymorphism of

Γ and that (x = y, (a, b)) gadget-reduces to Γ. Therefore, since each line of the table

type a type b

u1 = u1

u2 = u2

...

un = un

fa(u) = fb(u)
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above the solid horizontal line satisfies the (x = y, (a, b)) relation, we can apply

polymorphism f for the two columns of the table. Now, as discussed, f must keep the

relation (x = y, (a, b)), so fa(u) = fb(u).

2.5 Example: Arrow’s Theorem

Let A = {A1, . . . , Ak} denote a set of k items and let Sk be the domain that corresponds

to the set of k! different linear orders on A in a way we describe below. Each voter

must vote for some linear order and the votes have to be aggregated into a single linear

order, the “choice of the society.”

Instead of thinking of a linear order as is (like A2 < A3 < A4 < A1) we rather

represent it as a sequence of
(
k
2

)
binary positions corresponding to questions of the

form

A1 < A2? , A1 < A3? , . . . , An−1 < An?

(see also Section 1.1). When ‘<’ is a linear order on A, the answers to these questions

(0 = no; 1 = yes) uniquely (and even redundantly) encodes ‘<’ in the form of a valid

evaluation. The set of all valid evaluations (these are binary vectors of length
(
n
2

)
) is

exactly the relation Sk ⊆ {0, 1}(
n
2). Arrow famously shows:

Theorem 70 (Arrow [Arr50]). When k ≥ 3, there is no aggregator f : Snk → Sk for

any n ≥ 2 that satisfies IIA + Idempotency + Non-dictatorship.

It is easy to see that the impossibility of S3 implies the impossibility of Sk for k ≥ 3.

Below we are going to prove Theorem 70 when k = 3, using our method of gadgets. In

the A1 < A2? A2 < A3? A3 < A1? basis (replacing ‘A1 < A3?’ with ‘A3 < A1?’ does

not change the problem) we have that:

S3 = {001, 010, 011, 100, 101, 110} = NAE (Not All Equal)

Since Arrow allows to aggregate different coordinates with different aggregators, we

view S3 as a multi-sorted relation with type-set [3]. We need to show that the only

polymorphisms of the multi-sorted relation set S+
3 are projections (dictatorships). In
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section 1.3 we have created a gadget for the relation (¬(x = y), (1, 3)). Let us denote

it by R13. By symmetry, S+
3 -gadgets also exist for R12 = (¬(x = y), (1, 2)) and R23 =

(¬(x = y), (2, 3)). Then the gadget

∃x2 : R12(x1, x2) ∧R23(x2, x3)

expresses (x1 = x3, (1, 3)) (see Fig. 2.1). We can similarly express any (xa = xb, (a, b))

for 1 ≤ a < b ≤ 3. Once we have generated these relations, by Lemma 69 we conclude

that every multi-sorted polymorphism of S+
3 must be a single sorted polymorphism

i.e. of the form (f1, f1, f1), and it is well known that all single-sorted idempotent

polymorphisms of NAE are dictatorships.

Figure 2.1: The gadget expressing x1 = x3.

2.6 Example: Pairwise distinctness

We continue to illustrate how one can use hand-made gadgets to prove impossibility

theorems for specific domains:

Theorem 71. Let D and m such that |D| > m when m = 2 or |D| = m when m ≥ 3.

Define

X = {(x1, . . . , xm) ∈ Dm | x1, . . . , xm are pairwise distinct }

Then X is an impossibility domain with respect to IIA + Idempotency + Non-dictatorship

conditions.

In [DH10b], this theorem is proven under the IIA + Supportiveness + Non-dictatorship

conditions. A special case of this theorem, i.e. when |D| = m ≥ 3, can be derived from

results in [FF11]. We give a gadget proof for it when m = 2 and |D| = 3, which is

in a sense the hardest setting of the parameters. In this case the relation X ⊆ [3]2
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is a binary relation of type (1, 2), and we have to show that MPol(X+) contains only

projections (dictatorships).

We remark that the problem in this case is essentially equivalent to showing that

three coloring of bipartite graphs is NP-hard as long as assignment giving constraints

are also allowed, i.e. we are allowed to specify that “vertex v has color c”. If we drop

the bipartite condition, then the problem is well-known to be NP hard. The bipartite

condition comes from the multi-sorted nature of the problem: relation X can connect

only type 1 variables with type 2 variables.

First we create a gadget for the relation (¬(x = y = 2), (1, 1)). Clearly, by symmetry,

then gadgets also exist for any (¬(x = y = a), (b, b)), where 1 ≤ a ≤ 3 and 1 ≤ b ≤ 2.

Figure 2.2: The inequality gadget

The gadget in Fig. 2.2 corresponds to the following formula:

R(x1, x2) = ∃y1, . . . , y6 : X(x1, y1) ∧X(x2, y3) ∧X(y2, y1) ∧X(y4, y3) ∧X(y6, y1) ∧

∧X(y6, y3) ∧X(y6, y5) ∧ (y2 = 3) ∧ (y4 = 1) ∧ (y5 = 2)

It is not hard to check that R implements the (¬(x = y = 2), (1, 1)) relation. Let us

now denote the relation (¬(x = y = a), (b, b)) by Rba (i.e. the relation Ra,ab,b defined in

Definition 58). Then Rb1(x, y)∧Rb2(x, y)∧Rb3(x, y) expresses the (x 6= y, (b, b)) relation.

Finally, the gadget

T (x1, x2) = ∃y1, y2 : (x1 6= y1) ∧ (x1 6= y2) ∧ (y1 6= y2) ∧X(y1, x2) ∧X(y2, x2)

expresses (x1 = x2, (1, 2)) (see Fig. 2.3). Once we have generated this relation, by

Lemma 69 we conclude that every multi-sorted polymorphism of X+ must be a single
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sorted polymorphism i.e. of the form (f0, f0). It is well known that the only idempotent

polymorphisms of the x 6= y (single-sorted) relation are the dictatorships.

Figure 2.3: The equality gadget
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Chapter 3

Binary evaluations

In this chapter we first translate the total blockedness condition to the algebraic lan-

guage, then using it revisit the case of binary evaluations, give an alternative proof to

the classification Theorem of E. Dokow, R. Holzman, and also indicate the proof of

Theorem 20.

3.1 Total blockedness and its consequences

Lemma 72. Let X ⊆ {0, 1}m be totally blocked (see Definition 10) and non-degenerate.

Let (X, τ) be any typing of the variables of X from a type-set [t], Da = {0, 1} for

1 ≤ a ≤ t. We also assume that all types are used. Then for all 1 ≤ a, b ≤ t:

(x = y, (a, b)) (multi-sorted) gadget-reduces to X+.

Proof. Recall that the total blockedness condition means that on the vertex set V =

[m]× {0, 1} we have a strongly connected graph defined as follows: There is a directed

edge from (k, ε) ∈ V to (`, ε′) ∈ V where k 6= ` if and only if there are: (i.) a subset

S ⊆ [m] such that k, ` ∈ S and (ii.) a (partial-)evaluation u : S → {0, 1} with uk = ε

and u` = 1− ε′ such that there is no extension of u to any full evaluation x in X, but

if we flip any bit of u then the resulting partial evaluation extends to some element of

X. Let us focus on a directed edge ((k, ε), (`, ε′)) as above, with S = {k, `, s1, . . . , sq}

(we fix this S for k, `, ε, ε′), and create the gadget

Ek,`,ε,ε′(xk, x`) = ∃ys1 , . . . , ysq , ~y : X(xk, x`, ys1 , . . . , ysq , ~y)∧(ys1 = us1)∧. . .∧(ysq = usq)

Here with some abuse of the notation we tried to indicate, via the indices, the variables’

positions in X. In particular, ~y collects the m − 2 − q variables of X that are not in
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S = {k, `, s1, . . . , sq}. We remark that the type of a variable is uniquely determined by

its position in X. Then we have

Ek,`,ε,ε′(ε, ε
′) = 1, Ek,`,ε,ε′(ε, 1− ε′) = 0, Ek,`,ε,ε′(1− ε, 1− ε′) = 1

All three equations follow from the fact that u : S → {0, 1} with uk = ε and u` = 1− ε′

was a minimally unsatisfying partial assignment, thus if we change the value of exactly

one of the uk, u`, the assignment becomes satisfying. Consider now a chain

((k0, ε0), (k1, ε1)), ((k1, ε1), (k2, ε2)), . . . , ((kt−1, εt−1), (kt, εt))

of edges in the blockedness graph, for which we have generated relations

Ek0,k1,ε0,ε1 , . . . , Ekt−1,kt,εt−1,εt

as above. Create the gadget

R(xk0 , xkt) = ∃yk1 , . . . , ykt−1 : Ek0,k1,ε0,ε1(xk0 , yk1) ∧ . . . ∧ Ekt−1,kt,εt−1,εt(ykt−1 , xkt)

It is easy to see that the typing is consistent. If we set xk0 = ε0 then inductively all

yki variables are forced to take εi, eventually forcing xkt = εt. On the other hand

R(1− ε0, 1− εt) = 1. To show this it is sufficient to set all yki variables to 1− εi in the

right hand side of the above formula. Since the blockedness graph is strongly connected,

for any a, b ∈ [t] with type(xk) = a, type(x`) = b for some 1 ≤ k, ` ≤ m and for any

εk, ε` ∈ {0, 1} we can build now gadget Ra,b,ε,ε′ that forces x` = ε` as long as xk = εk

and also permits the xk = 1− εk, x` = 1− ε` assignment, and a gadget R′a,b,1−ε,1−ε′ that

forces x` = 1−ε` as long as xk = 1−εk and also permits the xk = εk, x` = ε` assignment.

Then Ra,b,ε,ε′ ∧ R′a,b,1−ε,1−ε′ implements xk + εk = x` + ε` mod 2. In particular, by

choosing εk = ε` = 0 we have implemented the (x = y, (a, b)) relation.

Example 73. Let X = {000, 011, 101, 110} = {xyz ∈ {0, 1}3 | x+ y + z = 0 mod 2}.

We also assume that [t] = 3 and the ith coordinate has type i. Then the minimally

infeasible partial evaluations (MIPEs) are all those xyz ∈ {0, 1}3 for which x+y+z = 1

mod 2. Then the blockedness graph is the directed complete graph (i.e. directed edges
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are drawn both ways for every edge). For k = 1, ` = 2, εk = 0, ε` = 1 we can create

the gadget (based on S = {1, 2, 3}, u = 001):

E1,2,0,1(x1, x2) = ∃y : X(x1, x2, y) ∧ (y = 1)

This together with E1,2,1,0 created from S = {1, 2, 3}, u = 111 (accidentally, the two

gadgets turn out to be the same, so the conjunction remains E1,2,0,1(x1, x2)) gives the

(x 6= y, (1, 2)) relation, as one can check it directly.

Lemma 74. Let X ⊆ {0, 1}m be totally blocked. Then every aggregator f = (f1, . . . , fm)

which is IIA + Idempotent satisfies the condition that all fj’s are identical.

Proof. Let t = m and view X as the multi-sorted relation (X, (1, 2, . . . ,m)). Then

(x = y, (k, `)) (1 ≤ k, ` ≤ m) gadget-reduces to X+ by Lemma 72. Since f is an

idempotent IIA aggregator of X we have that f ∈ MPol(X+). Combining the above

two things the statement then follows from Lemma 69.

We remark (although do not use it in the sequel) that total blockedness also gener-

ates all non-equal relations:

Lemma 75. Let X ⊆ {0, 1}m, totally blocked. and X has type (X, (1, . . . ,m)). Then

X (as a multi-sorted relations) generates all relations of the form (x 6= y, (a, b)), where

a, b ∈ [t].

3.2 A new proof of Theorem 12

We give a new proof of the interesting part of Theorem 12 (E. Dokow and R. Holzman,

[DH10a]), i.e. that when X is totally blocked, it is a possibility domain (with respect

to IIA+Idempotency+No Dictatorship) if and only if it is an affine subspace. The new

proof uses results from the algebraic theory of constraint satisfaction problems.

Lemma 74 gives that when X is totally blocked, all idempotent multi-sorted poly-

morphisms of X are single-sorted and we can use Schaefer’s theorem1, or more precisely

1Historically, it is a consequence of E. Post [Pos41]. We thank Andrei Bulatov for pointing out this.
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algebraic version of it (Hubie Chen [Che09]) to determine the types of functions in

Pol(X):

Theorem 76 (Schaefer, algebraic version). Let D = {0, 1} and Γ be a set (single-

sorted) relations on D. Then Γ+ either has one of the following four operations as a

polymorphism:

1. The binary AND operation ∧;

2. The binary OR operation ∨;

3. The ternary majority operation Maj3(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z);

4. The Mal’tsev operation u− v + w mod 2.

Otherwise Pol(Γ+) contains only projections (dictatorships).

Remark 77. For us this “deep” version of Schaefer’s theorem is more useful than The-

orem 32. The two versions are related as follows: The constant unary operations (which

are excluded because of the Idempotency condition) are polymorphisms of (0, · · · , 0) or

(1, · · · , 1) (or any relation that contains either of these). The AND and OR operations

are polymorphisms of the Horn and dual-Horn clauses, respectively. The Maj3 opera-

tion is a polymorphism of any 2CNF and the Mal’tsev operation is a polymorphism of

affine subspaces.

Theorem 76 gives that when X is totally blocked and X is not an impossibility

domain then one of the cases 1.-4. must hold. But [DH10a] proves more, it shows

that when X is totally blocked, only Case 4. and the default case (i.e. no non-trivial

polymorphisms) may occur. We provide a brief proof of this. We exclude Cases 1.-3.

(from Theorem 76) as follows:

Excluding 1. and 2: We show that if ∨ ∈ Pol(X), then in the blockedness graph,

no node of the form (k, 1) has a directed edge to any node of the form (`, 0), so the

blockedness graph cannot be strongly (or anyhow) connected. For this it is sufficient

to show that every MIPE has at most one variable set to 1. Suppose that xk = x` = 1
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is part of a MIPE with k 6= ` and the rest of MIPE evaluates to α. By the definition

we have assignments:

xk x` rest of MIPE rest

( 1 1 α any ) never ∈ X (since it is MIPE)

( 0 1 α some ) ∈ X (since it was MIPE)

( 1 0 α some ) ∈ X (since it was MIPE)

( 0 ∨ 1 1 ∨ 0 α some ) ∈ X (assgnm 2 ∨ assgnm 3)

Then the first and fourth lines of the table contradict to each other. An analogous

proof shows that when ∧ ∈ Pol(X) the blockedness graph is not strongly connected.

Excluding 3: Assume that X is totally blocked and Maj3 ∈ Pol(X). First we show:

Lemma 78. If Maj3 ∈ Pol(X) then every MIPE for X has length at most two.

Proof. Consider a MIPE S, which contrary to our assumption has at least three ele-

ments, x1, x2, x3. Assume that xi evaluates to ui for 1 ≤ i ≤ 3, while the rest of the

MIPE evaluates to α. Then the first and fifth lines of the following table together give

a contradiction:

Assume now that we have an edge from (k, ε) to (`, ε′) in the blockedness graph.

Since the MIPE creating this edge, by Lemma 78 has length two (cannot have length

one), we conclude that xk = ε forces x` = ε′. Consider any x ∈ X, by our assumption

the total blockedness graph is strongly connected so there is a path from (1, x1) to
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(1, 1−x1), which in the light of the above argument means that (1, x1) forces (1, 1−x1)

through a sequence of edges, which is an obvious contradiction. Thus X is empty.

Schaefer’s theorem now tells us that X must be either an impossibility domain or

an affine subspace (see Definition 8). So what about the case when X is not totally

blocked? Then we use the following deep theorem of A. Bulatov and P. Jeavons:

Theorem 79 (Bulatov and Jeavons [BJ03]). Let D = {0, 1} and Γ be a set of multi-

sorted relations on D with type set [t]. Then for every type j ∈ [t] either for every

~f = (f1, · · · , ft) ∈ MPol(Γ+) the jth component is a dictatorship or there is an ~f =

(f1, · · · , ft) ∈ MPol(Γ+) such that fj is one of

1. the semi-lattice operation u ∨ v or u ∧ v,

2. the majority operation (u ∨ v) ∧ (v ∨ w) ∧ (w ∨ u),

3. the Mal’tsev operation u− v + w mod 2.

From this Theorem 20 easily follows.
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Chapter 4

Non-binary evaluations

In this chapter we complete the classification theorem of E. Dokow and R. Holzman

[DH10b] for non-binary evaluations. We treat for both the Supportive case and the

Idempotent case (E. Dokow and R. Holzman have treated only the Supportive case).

4.1 Supportive non-binary evaluations

We restate here Theorem 18:

Theorem 80. Let X ⊆ Dm be non-degenerate and non-binary. If X is totally blocked

then X is an impossibility domain with respect to IIA + Supportiveness + Non-dictatorship

if and only if X does not have IIA + Supportiveness + Non-dictatorship aggregators of

arity 3.

Remark 81. The theorem is a classification in the sense that it gives us an algorithm

to determine if a given domain X is an impossibility domain with respect to IIA +

Supportiveness + Non-dictatorship or not: just check all potential aggregators with at

most three arguments (see Chapter 5 for details).

Proof. The ‘only if’ part is straightforward since if X is an impossibility domain with

respect to IIA + Supportiveness + Non-dictatorship then every supportive IIA aggre-

gator f = (f1, . . . , fm) of X is a dictatorship, not only for arity n ≤ 3. For the ‘if’ part

we need the following results of E. Dokow and R. Holzman. For completeness, we still

write down the sketched proof of Lemma 83 and 85.

Definition 82 (E. Dokow and R. Holzman [DH10b]). Let f = (f1, . . . , fm) be a sup-

portive IIA aggregator of arity n for X ⊆ Dm. For an issue j and an ordered pair
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of distinct positions u, v ∈ Dj we translate fj |{u,v} : {u, v}n → {u, v} to a function

W uv
j : {0, 1}n → {0, 1} under 0↔ v, 1↔ u. By abuse of notation, we denote the set

{S ⊆ [n] | fj(x1, · · · , xn) = u where xi = u if i ∈ S, xi = v if i /∈ S}

to be W uv
j as well.

Lemma 83 (E. Dokow and R. Holzman [DH10b], Propostion 1). If X is totally blocked,

then all W uv
j s are the same.

Proof. (of Lemma 83) In the blockedness graph GX formulated by X (see Definition

13), if there is an edge uu′k → vv′`, we show that W uu′
k ⊆W vv′

` . By contradiction assume

that there is a subset S ⊆ [n] which is in W uu′
k but not in W vv′

` . For the edge uu′k → vv′`

by Definition 13, there are B1, · · · , Bm such that |Bi| = 2, Bi ⊆ Di, i = 1, · · · ,m and

K ⊆ N and a MIPE (see Definition 9) x = (xi)i∈K ∈ XB = X ∩
∏m
i=1Bi. Since

x = (xi)i∈K is a MIPE, there exists y = (y1, · · · , ym) ∈ XB such that yk = u, y` = v

and yi = xi, i ∈ K \ {k, `}, and there exists z = (z1, · · · , zm) ∈ XB such that zk = u′,

z` = v′ and zi = xi, i ∈ K \ {k, `}, and there exists no w = (w1, · · · , wm) ∈ XB such

that wk = u, w` = v′ and wi = xi, i ∈ K \ {k, `}. We construct the following table.

xk x` rest of MIPE rest

S ( u v (xi)i∈K\{k,`} some ) ∈ X

N \ S ( u′ v′ (xi)i∈K\{k,`} some ) ∈ X

( u v′ (xi)i∈K\{k,`} some ) never ∈ X

In the table, the k-th column is aggregated as u since the assumption that S is in

W uu′
k . The `-th column is aggregated as v′ since the assumption that S is not in W vv′

k

and the aggregator is supportive. It is a contradiction that the last row in the table is

never in X.

Since X is totally blocked, by definition, we know that W uu′
k ⊆ W vv′

` holds for any

u, u′, v, v′, k, `, thus the conclusion in the lemma follows.
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Definition 84 (E. Dokow and R. Holzman [DH10b]). We call f 2-dictatorial if all

W uv
j s (j ∈ [m], u, v ∈ Dj) are dictatorships with respect to the same coordinate d.

Lemma 85 (E. Dokow and R. Holzman [DH10b], Proposition 5). If X is totally blocked

and f is 2-dictatorial then f is a dictatorship.

Proof. (of Lemma 85) Since f is 2-dictatorial, there exists some d ∈ [n] such that

for all j ∈ [m], u, v ∈ Dj , W
uv
j = {S ⊆ [n]|d ∈ S}. By contradiction assume f is

not a dictatorship, i.e. there exist some j ∈ N and x
(1)
j , · · · , x(n)

j ∈ Dj such that

f(x
(1)
j , · · · , x(n)

j ) 6= x
(d)
j . Denote the distinct elements in x

(1)
j , · · · , x(n)

j as w(1), · · · , w(q)

such that f(x
(1)
j , · · · , x(n)

j ) = w(1) and w(2) = x
(d)
j . Wlog assume that q is minimal

among all possible j ∈ N and x
(1)
j , · · · , x(n)

j ∈ Dj . Since f is 2-dictatorial, by Definition

84 we have q ≥ 3. Let S(h) = {i|w(h) = x
(i)
j }, where h = 1, · · · , q, be a partition of N .

For any k ∈ N and any y(1), · · · , y(q) ∈ Dk, denote fk(y
(1), · · · , y(q)) (by a slight abuse

of notation since originally fk has arity n) to be the value of fk on n elements where

positions in Sh have value y(h) for h = 1, · · · , q. We now claim that:

Claim 85.1 (E. Dokow and R. Holzman [DH10b], Lemma 4). Let a(h) = (a
(h)
1 , · · · , a(h)

m ) ∈

X, h = 3, · · · ,m be (q−2) fixed evaluations. If there is an edge uu′k → vv′` in the blocked-

ness graph GX formulated by X (see Definition 13) and fk(u, u
′, a

(3)
k , · · · , a(q)

k ) = u then

f`(v, v
′, a

(3)
` , · · · , a(q)

` ) = v.

Recall that there exists some j ∈ N such that w(1), · · · , w(q) ∈ Dj and fj(w
(1), · · · , w(q)) =

w(1). Choose (q−2) evaluations (y
(h)
1 , · · · , y(h)

m ) ∈ X, h = 3, · · · , q such that w(h) = y
(h)
j ,

h = 3, · · · , q. By repeatedly applying the above Claim 85.1 along a path in the blocked-

ness graph GX from w(1)w
(2)
j to w(1)w

(3)
j , since fj(w

(1), · · · , w(q)) = w(1), we have

fj(w
(1), w(3), w(3), · · · , w(q)) = w(1). By the minimality assumption of q, this contra-

dicts with fj(w
(1), w(3), w(3), · · · , w(q)) = w(3).

We still have to prove the above Claim.

Proof of Claim 85.1. Since there is an edge uu′k → vv′` in the blockedness graph GX ,

by Definition 13, there are B1, · · · , Bm such that |Bi| = 2, Bi ⊆ Di, i = 1, · · · ,m
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and K ⊆ N and a MIPE (see Definition 9) x = (xi)i∈K ∈ XB = X ∩
∏m
i=1Bi. Since

x = (xi)i∈K is a MIPE, there exists y = (y1, · · · , ym) ∈ XB such that yk = u, y` = v

and yi = xi, i ∈ K \ {k, `}, and there exists z = (z1, · · · , zm) ∈ XB such that zk = u′,

z` = v′ and zi = xi, i ∈ K \ {k, `}. Wlog assume that k = 1, ` = 2 and K = {1, · · · , r}.

Construct the following table:

1 2 3 · · · r r + 1 · · · m

S1 u v x3 · · · xr yr+1 · · · ym

S2 u′ v′ x3 · · · xr zr+1 · · · zm

S3 a3
1 a3

2 a3
3 · · · a3

r a3
r+1 · · · a3

m

...

Sq aq1 aq2 aq3 · · · aqr aqr+1 · · · aqm

u s2 x3 · · · xr sr+1 · · · sm

The first column is aggregated as u by the previous assumption in the statement

of the Claim. The i-th column is aggregated as xi for i = 3, · · · , r since there are

duplicated elements in each column. Assume that the rest columns are aggregated

as sj , j = 2, r + 1, · · · ,m. Then the conclusion follows from s2 = v. Assume by

contradiction that s2 6= v. Construct the following table:

1 2 3 · · · r r + 1 · · · m

S1 u s2 x3 · · · xr sr+1 · · · sm

S2 u′ v′ x3 · · · xr zr+1 · · · zm

S3 a3
1 a3

2 a3
3 · · · a3

r a3
r+1 · · · a3

m

...

Sq aq1 aq2 aq3 · · · aqr aqr+1 · · · aqm

u v′ x3 · · · xr tr+1 · · · tm

The first column is again aggregated as u by the assumption. The second column

is aggregated as v′ since s2 6= v but s2 ∈ {v′, a(3)
3 , · · · , a(3)

q } thus the second column in

the table contains duplicated elements, and the aggregator is supportive. But this is

a contradiction since the aggregated row in the table is not in X as x = (xi)i∈K is a
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MIPE, i.e. there exists no w = (w1, · · · , wm) ∈ XB such that wk = u, w` = v′ and

wi = xi, i ∈ K \ {k, `}.

Let us try to put the above two lemmas together! The total blockedness is a con-

dition in the theorem whose ‘if’ part we want to prove, so what is missing is that

under the theorem’s conditions the W uv
j s are not simply the same, but they are all

dictatorships. We rely on the following lemma which essentially uses similar idea as

proving Rosenberg’s Classification Theorem [Ros86] (see also [JQ95, Swi61, Csa05]) and

algebraic proof of Schaefer’s dichotomy theorem (see [Che09]).

Lemma 86. Let Γ be a set of multi-sorted relations over D with type set [t]. If Γ does

not have IIA + Supportiveness + Non-dictatorship aggregators of arity 3, then for any

f = (f1, · · · , ft) ∈ MPol(Γf), a ∈ [t], u, v ∈ Da with u 6= v the restriction fa|{u,v} is a

dictatorship.

Proof. (of Lemma 86.) Assume the contrary, namely that Γ does not have IIA +

Supportiveness + Non-dictatorship aggregators with n ≤ 3, but it has some aggregator

f = (f1, · · · , ft) ∈ MPol(Γf), such that there exist a ∈ [t] and u, v ∈ Da, u 6= v with

the property that fa|{u,v} is not a dictatorship, where n is the arity of f . Then n must

be at least 4. Let f be such a counter-example with minimal n. In particular, any

f ′ = f(x(1), . . . , x(i)︸︷︷︸
ith argument

, . . . , x(i)︸︷︷︸
i′th argument

. . . , x(n)), i.e. when we identify two inputs,

must be a two-dictatorship, because f ′ aggregates n− 1 inputs.

Denote fa|{u,v} by g, which is presumably not a dictatorship. We will arrive at a

contradiction by showing that g is a dictatorship, i.e. there exists one k ∈ [n] such that

for any x1, · · · , xn ∈ D′, g(x1, · · · , xn) = xk. Since any identification of the variables of

g arises by first identifying these variables in f , and then restricting the resulting type

= a component to the binary set {u, v}, we have, that any identification of variables

of g, must result in a dictatorship. If all of these identifications x(i) = x(i′) result in a

dictatorship that projects to coordinate i (as opposed to some coordinate i′′ 6∈ {i, i′}),
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we get a contradiction by setting {i, i′} first to {1, 2} then to {3, 4}:

u = f(u, u︸︷︷︸, v, v, . . .) = f(u, u, v, v︸︷︷︸, . . .) = v. (Used that n ≥ 4.)

Thus there exist two coordinates where identifying the corresponding variables will

result in a dictatorship function that projects to some other (i.e. not i, i′) coordinate.

Wlog assume that

g(x1, x1︸ ︷︷ ︸, x3, x4, · · · , xn) = x4

Then g(x1, x1, x1, x4, · · · , xn) = x4. We show that this implies g(x1, x2, x1, x4, · · · , xn) =

x4. If g|x3=x1 was a dictator xi other than x4, then setting x2 = x1 and letting x4 vary

we would get a contradiction. Similar reasoning gives that g(x1, x3, x3, x4, · · · , xn) = x4.

Thus whenever there is a duplication among the values of x1, x2, x3, the output of g

is always x4. But duplication always occurs since |D′| = 2, thus g is a dictatorship, a

contradiction.

We are now ready to prove the ‘if’ part of Theorem 80. Assume that when n ≤ 3

there are no other supportive aggregators for X than dictatorships (and the other

conditions: X is non-degenerate, totally blocked) also hold. Consider an aggregator f

for X with n ≥ 4. By Lemma 86, for any j ⊆ [m] and for any u, v ∈ Dj , u 6= v, we

have W uv
j is a dictatorship. By Lemma 83, since X is totally blocked, all W uv

j are the

same. Lemma 85 then implies that f is a dictatorship.

4.2 General idempotent non-binary evaluations

In this section we finish the proof of Theorem 19: a characterization for general Idem-

potency case instead of the Supportive case discussed in Section 4.1.

Lemma 87. For a given domain X ⊆ Dm, non-degenerate and non-binary, i.e. |D| =

d ≥ 3, and totally blocked, if X does not have any IIA + Idempotency + Non-dictatorship

aggregator of arity d, then X is an impossibility domain with respect to IIA + Idempo-

tency + Non-dictatorship.
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Proof. Assume by contradiction that X satisfies the condition of the lemma and X is a

possibility domain with respect to IIA + Idempotency + Non-dictatorship. Then there

is an idempotent IIA aggregator f = (f1, · · · , fm) which is not a dictatorship. By the

hypothesis of the lemma, f has arity n ≥ d+ 1. Assume that f is of minimal arity, i.e.

no idempotent non-dictatorial aggregator with smaller arity exists. We first show that

f is supportive, i.e.

∀ x(1), · · · , x(n) ∈ X ∀ 1 ≤ j ≤ m : fj(x
(1)
j , · · · , x(n)

j ) ∈ {x(1)
j , · · · , x(n)

j }.

We are done if we can show that for any fixed x(1), · · · , x(n) and j we have fj(x
(1)
j , · · · , x(n)

j ) ∈

{x(1)
j , · · · , x(n)

j }. We use the pigeon hole principle. Since n ≥ d+1, among x
(1)
j , · · · , x(n)

j

there must be at least two elements which are the same. For notational conveniences

they are x
(1)
j and x

(2)
j .

Remark 88. The collision does not happen at the same pair of indices for all inputs

and js, but this does not affect us, since we are setting the input fixed.

Since the collision is at indices 1 and 2, we are going to examine the aggregator of

n − 1 elements g that we get from f by identifying the first two inputs of f . Since g

is also an idempotent IIA aggregator of X, by our minimality assumption g must be a

dictatorship. Thus gj is also a dictatorship and therefore supportive. In particular,

u = gj(x
(2)
j , · · · , x(n)

j ) ∈ {x(2)
j , · · · , x(n)

j }.

But u is also the value that fj takes on x
(1)
j , x

(2)
j · · · , x

(n)
j (since by our assumption

x
(1)
j = x

(2)
j ). This concludes the proof of the fact that f if supportive.

Then, since we have found a non-dictatorial supportive aggregator for X (on some

number of inputs), by Theorem 80 there must also be a non-dictatorial supportive

aggregator on three inputs. Since supportive aggregators are also idempotent we get

into a contradiction with the Lemma’s assumption that the smallest non-dictatorial

idempotent aggregator is on more than |D| ≥ 3 inputs.

This lemma resolves the idempotent case, which was the remaining part of Theorem

19.
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Chapter 5

Algorithms to determine impossibility

In this chapter, we turn the previous characterization theorems (Theorem 60, 80, 19)

into algorithms. When we try to determine if X ⊆ Dm is an impossibility domain or

not with respect to IIA + Idempotency (or Supportiveness) + Non-dictatorship, we can

rely on two different types of characterization theorems: 1. by gadgets (Theorem 60)

and 2. by aggregators (Theorem 80 and 19). Both types lead to algorithmic solutions,

and we can use both of them as alternatives.

5.1 Algorithms from the characterization by gadgets

As we have seen in the previous sections, to determine if X is an impossibility domain

or not with respect to IIA + Idempotency + Non-dictatorship, according to Theorem

60, we need to check if all Ru,vk,` relations can be expressed as X+-gadgets (and whenever

|Dj | = 2, we also need to express the NAE relation on type j). The same theorem gives

that if we replace Idempotency with Supportiveness, we just replace X+ with Xf. The

task is therefore to solve the following type of problem:

Find Gadget: Given a set Γ of relations over D and a relation R over D determine

if there is a Γ-gadget for R. In the multi-sorted version the relations are over a type

set [t] with associated domains D1, . . . , Dt.

Theorem 89. There is an algorithm for the Find Gadget problem that in the multi-

sorted setting runs in time
∑

γ∈Γ

∏t
b=1 |Db||R|cb,γ+|Db||R|, where for any γ ∈ Γ and b ∈ [t]

the number of variables of type b in γ is denoted by cb,γ.

Proof. Let us call the number of auxiliary variables in a gadget its size. First we argue

about the single-sorted case, following arguments of Geiger [Gei68], Jeavons [Jea98] and
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Trevisan et. al. [TSSW96].

Lemma 90. If there is a Γ-gadget for R then there is also a Γ-gadget with size at

most |D||R|, with the additional property that its x-variables (see Definition 28) are

only involved in the ‘=’ relations.

Proof. Assume there is a Γ-gadget ∃y G(x, y) for R (G is a conjunct where all terms in

G are from Γ or the relation ‘=’, see Definition 28), where the number, |y|, of auxiliary

variables is ν. For any x ∈ R let y(x) ∈ Dν be any string of length ν such that

G(x, y(x)) = 1. Let 1 ≤ i, i′ ≤ ν. We say that i and i′ are equivalent if for every x ∈ R

we have y(x)i = y(x)i′ . To create the new gadget that expresses the same relation as

∃y G(x, y) but with at most |D||R| auxiliary variables we identify variables yi and yi′

whenever i and i′ are equivalent. Examining the equivalence classes we notice that each

class corresponds to a function φ : R→ D that for every x ∈ R tells the value of those

y-variables in y(x) that are members of the class. Thus the number of classes is at most

the number of such functions φ, i.e. at most |D||R|. For every class we introduce a

single variable that represents the entire class. The list of these newly created variables

form the new witness ỹ of length that equals the number of equivalence classes. The

terms in the newly constructed gadget correspond to the original terms in G. More

precisely, every term in the new gadget, G̃, comes from a term of the old one, but

instead of a variable in y we plug in its representative from ỹ. The identification of

the variables with their representatives might cause different terms in G becoming the

same term in G̃, and we keep only one copy of every term. We note that the x variables

remain unchanged under our transformation. It is easy to see that the new gadget still

accepts all elements of R (this is because for every x ∈ R the string y(x) is identically

represented by ỹ(x)). Furthermore, the new gadget is not going to accept any x 6∈ R.

To see this assume that G̃(x, ỹ) = 1. Define y ∈ Dν by giving the same value to the

variables in every equivalence class of variables as their representative receives in ỹ.

Then G(x, y) = 1, implying x ∈ R, a contradiction. Finally, we modify this gadget a

little bit so that the x-variables are only involved in the ‘=’ relations as follows. First

equate any variable xj with the ỹ-variable (using the ‘=’ relation) that corresponds to
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the φ : R→ D function that upon x ∈ X returns xj (if the class is not present we add

it). Then we always use this ỹ-variable instead of xj .

Lemma 91. In the multi-sorted setting, with type set [t] and ranges D1, . . . , Dt if there

is a Γ-gadget for multi-sorted relation R then there is also a Γ-gadget with total size at

most
∑t

b=1 |Db||R|. In fact, the number of variables of type b is at most |Db||R|. Again,

the x-variables are involved only in ‘=’ relations with an identical type of y variables.

Proof. The proof goes along the exact same lines as that of the single-sorted version.

The only difference is that we need to define the equivalence relation of the previous

proof for every type separately.

The above proof does not only give an upper bound on the size of the smallest

Γ-gadget for R, but also gives us a ỹ(x) for all x ∈ R. We can construct the ỹ variables

without knowing G (or any Γ-gadget for R) in advance as follows. Imagine a matrix,

whose columns correspond to the x-variables (altogether m of them) and whose rows

correspond to all assignments in R. We augment this |R|×m matrix with
∑t

b=1 |Db||R|

columns (all of length |R|) corresponding to all potential ỹ variables. In particular, for

type b we have |Db||R| columns that correspond to all functions φ : R → Db. Consider

terms (i.e. constraints) on the y-variables that express relations from Γ. We say that a

term T (ỹ) respects R if for every x ∈ R we have T (ỹ(x)) = 1.

Remark 92. Perhaps strangely, whether a term respects R has very little to do with

R itself. The rows of the matrix that describe the ỹ variables are labeled by R and

certain designated columns in the ỹ matrix are equated to the x variables – this is the

connection. However, if |R| = |R′| and all the types range in the same sets, then the Γ

gadgets expressing R and R′ respectively will only differ (as we will see) in how the x

variables are equated with the ỹ variables.

We define Gall, which is the conjunction of all terms T such that:

1. T ∈ Γ

2. T respects R
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We show that Gall together with the equations that equate the x and the corresponding

ỹ variables is a Γ-gadget of R as long as any Γ-gadget for R exists at all. Indeed, by

Lemma 91 if a Γ-gadget for R exists at all then a gadget G̃ must exist on the ỹ variables.

From the fact that among the terms Gall all terms of G̃ must occur, and the fact that

Gall itself must respect R (since all of its terms do) we are done.

The algorithm is now to cycle through all Γ terms and add the current term to

Gall if it respects R. If the gadget we constructed this way computes R then we

output ‘yes’. The other possibility is that the gadget we have constructed also accepts

assignments that do not belong to R. In this case we output ‘no’. The running time,

aside from a
∏t
b=1 |Db||Db|

|R|
factor (in worst case we have to solve a multi-sorted CSP

with
∑t

b=1 |Db||R| variables) is determined by the number of iterations of the main cycle

for every term in Γ. For every γ ∈ Γ the number of potential ways to plug in y variables

into γ is
∏t
b=1 |Db||R|cb,γ . Thus the Find Gadget problem in the multi-sorted setting

runs in time
∑

γ∈Γ

∏t
b=1 |Db||R|cb,γ+|Db||R| .

We use the following example to illustrate ideas in the above proof. For the multi-

sorted relation (R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, (1, 2, 3)), we want to determine if it

can be gadget reduced from multi-sorted NAE+ relations(see Definition 59). We create

the following matrix (in Fig. 5.1).

Figure 5.1: A matrix expressing auxiliary variables in gadget

It has |R| = 3 rows. The first three columns correspond to x-variables: x1, x2, x3.

The remaining 24 columns correspond to y-variables: yi, i = 1, 2, · · · , 24. In gadget
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∃y Gall(x, y), besides those NAE+ constraints, we also have ‘=’ constraints: x1 = y5,

x2 = y11 and x3 = y18. (As denoted in boldface in Fig. 5.1.) Actually (R, (1, 2, 3)) is in-

deed an NAE+ gadget since Gall contains at least: which already expresses (R, (1, 2, 3)).

As illustrated in Fig. 5.2, neither can (y5, y11, y18) have at least two 1s nor can it be

(0, 0, 0). By adding more constraints, since Gall respects R, thus R(x) = ∃y Gall(x, y).

Figure 5.2: A multi-sorted NAE+ gadget express (R, (1, 2, 3))

Now we can apply Theorem 89 and combine it with Theorem 60 to give an upper

bound of the running time to determine for a given domain X ⊆ Dm if it is an impos-

sibility domain or not with respect to IIA + Idempotency + Non-dictatorship, or IIA

+ Supportiveness + Non-dictatorship.

Theorem 93. For a given non-degenerate domain X ⊆ Dm, the running time to

determine if it is an impossibility domain or not with respect to IIA + Idempotency +

Non-dictatorship can be upper bounded by |D|O(m|D||D|2 ), and for IIA + Supportiveness

+ Non-dictatorship the running time can also be upper bounded by |D|O(m|D||D|2 ).

Proof. As in Theorem 60, let t = m and τ = (1, . . . ,m), and the possible values for

type j is Dj = prjX. Then X is an impossibility domain with respect to IIA +

Idempotency + Non-dictatorship if and only there are (X, τ)+-gadgets Ru,vk,` for every

1 ≤ k, ` ≤ m; u ∈ prkX, v ∈ pr`X. Furthermore, if |Dj | = 2 for some 1 ≤ j ≤ m,
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we also need to add the multi-sorted NAE gadget on types (j, j, j). By Theorem 89,

for each Ru,vk,` , the running time to determine if it is an (X, τ)+-gadget or not is upper

bounded by

∑
γ∈(X,τ)+

m∏
b=1

|Db||R
u,v
k,` |cb,γ+|Db|

|Ru,v
k,`
|

≤ (1 +
m∑
b=1

|Db|)
m∏
b=1

|Db||Dk|·|D`|+|Db|
|Dk|·|D`|

≤ |D|O(m|D||D|2 ).

If |Dj | = 2 in this case |R| = 6 = O(|D|2) thus it is still bounded by |D|O(m|D||D|2 ).

Thus the total running time to determine if X is an impossibility domain with respect to

IIA + Idempotency + Non-dictatorship is upper bounded by |D|O(m|D||D|2 ) ·m2 · |D|2 ≤

|D|O(m|D||D|2 ).

The analogous statement, when we replace “Idempotency” with “Supportiveness”,

requires to replace (X, τ)+ with (X, τ)f. In this case we need to replace |(X, τ)+| =

1 +
∑m

b=1 |Db| with |(X, τ)f| = 1 +
∑m

k=1(2|D|k − 1), but this does not change the main

term in the upper bound thus the running time is still bounded by |D|O(m|D||D|2 ).

5.2 Algorithms from the characterization by aggregators

Theorem 80 and 19 give us a complete classification for non-binary case by providing

an algorithm to determine if a domain X is impossible or not. Here is an algorithm to

determine a given non-degenerate and non-binary X ⊆ Dm whether it is impossible or

not with respect to IIA + Supportiveness + Non-dictatorship:

1. Check if X is totally blocked (see Definition 13). If X is not totally blocked, then

X is a possibility domain; otherwise

2. FOR each possible idempotent f = (f1, . . . , fm) where f : X3 → X, check if f

satisfies the IIA + Non-dictatorship criteria. If none satisfies them then X is an

impossibility domain, otherwise it is a possibility domain.
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Now we determine upper bound of time complexity for the above algorithm. The

running time is dominated by the number of possible fs in step 2. Since for each i, fi

is a function from D3
i to Di, the number of fs is upper bounded by |D||D|3 . Thus we

have proved:

Theorem 94. The running time of the algorithm to determine a given domain X ⊆ Dm

is an impossibility domain with respect to IIA + Supportiveness + Non-dictatorship is

upper bounded by O(|X|3 ·m · |D|m·|D|3).

Completely similarly we get the running time of the algorithm to determine a given

domain X ⊆ Dm is an impossibility domain with respect to IIA + Idempotency +

Non-dictatorship is upper bounded by O(|X||D| ·m · |D|m·|D||D|).



64

Chapter 6

Majority aggregators and algebraic results

The basic goal of this chapter is to characterize those domains X ⊆ Dm for which

majority is an IIA aggregator. We will first discuss some basic theory in universal

algebra on algebras with a majority polymorphism in Section 6.1. Then we will focus

on majority aggregator for binary evaluations and prove characterization theorems in

Section 6.2. We will then use these characterizations to show how one can deduce

results in domain restriction for the preference aggregation problem in Section 6.3.

6.1 Algebras with a majority polymorphism

Definition 95. Let D be a finite set, k ≥ 3. Then we define the function family MAJDk

as {f : Dk → D|f(u1, . . . , uk) = u if u occurs more than k/2 times in the input}. If

|D| = 2 we denote MAJDk with MAJk, and when k is odd, it is unique.

Call f : D3 → D a majority polymorphism, if for every x, y ∈ D, we have

f(x, x, y) = f(x, y, x) = f(y, x, x) = x,

i.e. f is chosen from the function family MAJD3 . Call algebra A = (D; f) a majority

algebra if f is a majority polymorphism. Another polymorphism similar to majority

is near unanimity (NU). Call f a k-NU operation if f : Dk → D satisfies: for every

x, y ∈ D, we have

f(x, · · · , x︸ ︷︷ ︸
k−1

, y) = f(x, · · · , x︸ ︷︷ ︸
k−2

, y, x) = · · · = f(y, x, · · · , x︸ ︷︷ ︸
k−1

) = x.

Note that 2-NU is the same as majority. In [JCC98], the following theorem is given.

Theorem 96 (P. Jeavons, D. Cohen and M. Cooper [JCC98]). For any set of relations

Γ, over a finite set D, and any k ≥ 2, the following conditions are equivalent:
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1. Every relation R in Γ is closed under a (k + 1)-NU f .

2. Every relation R in 〈Γ〉 is k-decomposable (see Definition 14).

In [BP75], the following theorem is given which can be viewed as an abstract version

of Theorem 96.

Theorem 97 (K. Baker and A. Pixley [BP75]). For a variety V and integer k ≥ 2,

the following conditions are equivalent:

1. V has a (k + 1)-NU operation in each algebra of V.

2. In V if A is a subalgebra of a direct product P = C1 × C2 × · · · × Cm(m ≥ k),

then A can be uniquely determined from a knowledge of its k-fold projections.

3. In any algebra A ∈ V, if m congruences x ≡ ai mod θi, 1 ≤ i ≤ m, k ≤ m, are

solvable k at a time, then they are solvable simutaneously.

The following results are deep results from universal algebra.

Recall that a lattice L is distributive if a∨(b∧c) = (a∨b)∧(a∨c) for all a, b, c ∈ L (or

equivalently a∧ (b∨ c) = (a∧ b)∨ (a∧ c)). A variety V is called congruence distributive

if all the algebras in V have distributive congruence lattices.

Definition 98. A sequence t0, t1, · · · , ts of ternary operations on a set A is called a

Jónsson chain if for every a, b, c ∈ A

1. t0(a, b, c) = a,

2. ts(a, b, c) = c,

3. tr(a, b, a) = a for all r ≤ s,

4. tr(a, a, b) = tr+1(a, a, b) for all even r < s,

5. tr(a, b, b) = tr+1(a, b, b) for all odd r < s.

An algebra A = (A, t0, t1, · · · , ts), where t0, t1, · · · , ts is a Jónsson chain, will be called

a CD(s) algebra.
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Note that an algebra is in CD(1) if and only if it has size 1 and is in CD(2) if and

only if it has a majority term operation. The following theorem connects the existence

of Jónsson terms with the congruence distributivity of the algebras in a variety.

Theorem 99. An algebra A has a Jónsson chain of term functions if and only if the

variety generated by A is congruence distributive.

6.2 Majority aggregators for binary evaluations

One may ask the existence of majoritarian aggregators for an arbitrary domain X ⊆

{0, 1}m. We have an answer to that, which is taken off the shelve [BP75, JCC98] from

Theorem 96 and 97. Note that we consider only IIA aggregators with components all the

same, in other words we do not consider sorts here in this and subsequent section. We

leave IIA aggregators with different components chosen from MAJDk for future research.

Theorem 100. If X ⊆ {0, 1}m is 2-decomposable (see Definition 14) and k is odd, then

MAJk is an IIA aggregator for X. For an arbitrary D if X ⊆ Dm is not 2-decomposable

then MAJD3 is not an IIA aggregator for X.

In Section 6.3 we show how Theorem 100 specializes to Sen’s result when X ⊆ Sk.

From an early result of [BP75, JCC98] we have the following Theorem 101. It is also

an immediate consequence of E. Post [Pos41].

Theorem 101. If X ⊆ {0, 1}m is 2-decomposable (see Definition 14) then MAJ3 is

an IIA aggregator for X. If X ⊆ Dm is not 2-decomposable then MAJD3 is not an IIA

aggregator for X.

Proof. If a binary relation X ⊆ {0, 1}m is 2-decomposable we want to show that X is

closed under MAJ3, that is to say for any x(1), x(2), x(3) ∈ X we have MAJ3(x(1), x(2), x(3)) ∈

X. Let x = MAJ3(x(1), x(2), x(3)), if we can show that for any 1 ≤ i < j ≤ m,

(xi, xj) = pri,jx ∈ pri,jX then we are done. Here is the table how we obtain (xi, xj)

from MAJ3.



67

i j other positions

x(1) : x
(1)
i x

(1)
j some ∈ X

x(2) : x
(2)
i x

(2)
j some ∈ X

x(3) : x
(3)
i x

(3)
j some ∈ X

MAJ3(x(1), x(2), x(3)) : xi xj some

Since D = {0, 1} is binary, we know that there are at least two of x
(1)
i , x

(2)
i , x

(3)
i

which are equal to xi, and there are at least two of x
(1)
j , x

(2)
j , x

(3)
j which are equal to

xj , thus there is some 1 ≤ k ≤ 3 such that (x
(k)
i , x

(k)
j ) = (xi, xj). As a result we have

shown for any 1 ≤ i < j ≤ m, (xi, xj) = pri,jx ∈ pri,jX.

For arbitrary D and X ⊆ Dm, for a vector x = (x1, x2, · · · , xm), if for any 1 ≤ i <

j ≤ m, there exists an x′ ∈ X such that pri,jx = pri,jx
′, then we want to show that

x ∈ X provided that X is closed under a MAJD3 . We show this by induction. First

if m = 2, this definitely holds. Assume it is true for any relation of arity less than

m. Now for a relation X of arity m which is closed under a MAJD3 , define X[l] to be

X[l] = pr{1,2,··· ,m}\{l}R. For any 1 ≤ l ≤ m we know that X[l] is also closed under

MAJD3 , by the inductive hypothesis we have pr{1,2,··· ,m}\{l}x ∈ X[l], thus by definition

of X[l] there exists an x[l] ∈ X such that pr{1,2,··· ,m}\{l}x[l] = pr{1,2,··· ,m}\{l}x. Thus

x = MAJD3 (x[1], x[2], x[3]) ∈ X.

In order to obtain the characterization of Theorem 100 it is sufficient to show that

MAJD3 generates some MAJDk function for k ≥ 3 by composition (since polymorphisms

compose). Note that the following result (Lemma 102) is not ours. It is a folklore

result.

Lemma 102. The MAJD3 function generates some MAJDk function for any odd k ≥ 3.

Proof. Let us call the function to be built mk(x1, · · · , xk). We will define mk by building

a function with 3l inputs (for some l) and then identifying input gates within k random

groups with each other. (Thus it is going to be a probabilistic construction.) Note
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that composition and identification preserves polymorphisms. We build a 3-ary tree

of height l (where l is to be determined later) and label each leaf of the tree with a

randomly chosen variables from {x1, · · · , xk}. The intermediate and top nodes of the

tree are MAJD3 “gates.” We claim that if l is large enough then some random choice

(i.e. a random assignment of variables to leaf gates) will satisfy our condition. (Here we

just follow Erdős’s random method.) Let I ⊆ Dk be the set of inputs for which there

is a majority variable, i.e. a one that occurs greater than k/2 times. Fix such an input

x ∈ I with majority value u. Since the number of occurrences of u must be an integer,

if we randomly pick a component of x, the chance that it will be u is at least 0.5 + 1
2k .

We compute the probability that on x our tree outputs u. The probability that a gate

outputs u increases as we go up in the circuit. At the leaf gates this probability is (at

least) p = 0.5 + 1
2k . At the first level this probability is at least ϕ(p) = p3 + 3p2(1− p).

Because of symmetry we can iterate this getting ϕ(ϕ(p)), ϕ(ϕ(ϕ(p))), etc. as we go up.

It is easy to show that this sequence converges to one. Let l be large enough that the

lth iterate is at least 1− 1
2|I| . Then the probability that the top gate fails to output the

majority value for x is at most 1
2|I| , Since this holds for all x ∈ I, we have a positive

probability that our circuit works well for all x ∈ I. Thus a random circuit with the

desirable properties exists and we pick this for mk(x1, · · · , xk).

6.3 The domain restriction problem for the preference aggregation

problem

The preference aggregation problem is when each voter votes for some order on k

prescribed items (such as k candidates) and the task is to aggregate these votes in a

consistent manner. Let A denote the set of all items (|A| = k) and let Sk denote the set

of k! linear orders of these items. The issues we want the aggregator to keep invariant

are of the form A < B, where A,B ∈ A. For {A,B}, A 6= B the voter can choose

between two positions, A < B or B < A, which s/he implicitly does by voting for a

linear order of all items. In notation we pick one of the two positions, say A < B as the

default position, which we denote by 1, and we denote the other position (B < A) by 0.
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(This notation, which depends on the choice of the default position, has the (perhaps

confusing) advantage that, for instance, in the table below we do not have repeat our

argument twice by flipping ones and zeroes.) Every element of Sk (i.e. a linear order on

A) induces a position-vector of length
(
n
2

)
whose coordinates correspond to the (binary)

issues. This is how Sk can be viewed as a domain: Sk ⊆ {0, 1}(
k
2). As mentioned in

the introduction, aggregating preference lists with the majority function is not possible

for any length greater than two. Researchers have considered different approaches to

resolve the problem. There are two of these approaches that have received a huge

attention and have given rise to new research directions. We have already discussed

one such approach started by Arrow. In this section we discuss the other one.

For an impossibility domain X ⊆ Dm (in our setting here, X = Sk, D = {0, 1} and

m =
(
k
2

)
), it is natural to consider a subset Y ⊆ X such that aggregation function on

Y is possible relative to X, i.e. there is a non-dictatorial Idempotent function f such

that f : Y n → X. A significant effort has been spent on the case when X is Sk in

the preference aggregation problem and f is the majority function. While insisting on

aggregating with the majority function, we require that all voters pick their vote from

some carefully chosen subset Y of domain X, but the aggregate can be anywhere from

X. Black’s median voter theorem [Bla48] is an example for this. Black gives a subset of

the set Sk of all linearly ordered lists of k elements A1, . . . , Ak that can be successfully

aggregated with respect to the issues Ai < Aj . Black’s subset contains 2k−1 lists (out

of the k! possible). It can be shown that Black’s subset is not maximal in size of |Y |,

and it is still an interesting problem to estimate the maximum size of |Y | for arbitrary

large k.

After intermediate results in 1966 Amartya Sen in a breakthrough result has given

a beautiful characterization called triplewise value restriction [Sen66, SP69] of those

subsets Y of Sk that have majoritarian aggregator. A subset of Y ⊆ Sk satisfies the

triple-wise value restriction property if for every A,B,C ∈ A either A or B or C is either

never first or second or third in any element of y ∈ Y , restricted to {A,B,C}. In Lemma

103 and Lemma 104 we show how our Theorem 100 which addresses majoritarian
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aggregation for general domains specializes to (and so proves) Sen’s result. Although

in the above setting aggregate objects from Y can be anywhere in X, it can be shown

that if Y is maximal with this property, the majority function is an IIA aggregator for

Y i.e. the aggregate stays in Y . Sen’s result states that if Y ⊆ Sk has the triple-wise

value restriction property, the majority function aggregates Y in an IIA manner.

Lemma 103. Let Y ⊆ Sk. If Y is 2-decomposable, then Y satisfies the triple-wise

value restriction property.

Proof. By contradition assume that Y does not satisfy the triplewise value restriction

property. It is easy to see that then there are linear orders y1, y2, y3 ∈ Y and A,B,C ∈

A such that the position-vectors of these linear orders are described by the following

table:

A > B B > C C > A rest

y1 : 0 0 1 rest

y2 : 0 1 0 rest

y3 : 1 0 0 rest

Then since Y is 2-decomposable, y = MAJ3(y1, y2, y3) ∈ Y , where MAJ3 is applied

component-wise. But in y we have A < B,B < C,C < A, which contradicts to

Y ⊆ Sk.

Lemma 104. Let Y ⊆ Sk and assume that Y satisfies the triple-wise value restriction

property. Define Y ′ = {y | ∀1 ≤ i, j ≤
(
n
2

)
: pri,j y ∈ pri,j Y }. Then Y ′ satisfies the

following properties:

1. Y ′ is 2-decomposable,

2. Y ⊆ Y ′ ⊆ X,

3. Y ′ satisfies the triplewise value restriction property.

Proof. 1. Since pri,j Y
′ remains the same as pri,j Y for all 1 ≤ i, j ≤

(
n
2

)
, but every y

that is consistent with pri,j Y is now included, Y ′ is 2-decomposable.
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2. Y ⊆ Y ′ is trivial. To prove Y ′ ⊆ X it is sufficient to show that for any

A,B,C ∈ A, there is no (A > B,B > C,C > A) = (1, 1, 1) in Y ′ (it is well known

that every transitive tournament is consistent with some linear order so it is sufficient

to prove the lack of three-cycles). Assume the opposite. Then, by the definition of

Y ′ there must be a y1 ∈ Y consistent with A > B,B > C, a y2 ∈ Y consistent

with A > B,C > A and a y3 ∈ Y consistent with B > C,C > A. But then contrary

to our assumption y1, y2, y3 ∈ Y do not satisfy the triple-wise value restriction property,

3. By 1. and 2., and by the previous lemma.

To summarize the lemmas, we have proven that maximal subsets of Sk that satisfy

the triple-wise value restriction property are exactly the maximal 2-decomposable sub-

sets of Sk. Conversely, for a subset of Sk the triple-wise value restriction property holds

if and only if it is a subset of a 2-decomposable subset of Sk (since the the triple-wise

value restriction property is closed downwards).
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Chapter 7

Degrees of democracy

Although the Non-dictatorship condition represents a minimal criterion for democracy,

there are many functions that pass the Non-dictatorship test, but can barely be called

democratic. Consider for instance the Boolean function that takes the majority value

if the first voter votes zero, and takes the value one otherwise. Although this is not

dictatorship the first voter has an overwhelming way in the outcome. What voting

functions should we consider democratic? Scenarios taken from real life, such as the

American electoral system (iterated majority function), show that the majority vote is

not the only one that can be viewed as truly democratic. The answer is non-trivial.

Different criteria for democracy have been formulated such as Anonymity (invariant

under Sn) or Symmetricity, by Kalai [Kal02] (invariant under a transitive permutation

group acting on [n]), that are somewhere on the scale in between the majoritarian and

dictatorial voting schemes. In this dissertation we would like to introduce StrongDem,

with deep algebraic motivation.

StrongDem: Let f be an aggregator for X ⊆ Dm for n ≥ 2 voters that satisfies

the IIA condition, so it is of the form f = (f1, . . . , fm). We say that f is

StrongDem if for every 1 ≤ j ≤ m, 1 ≤ i ≤ n there are c1, . . . , cn ∈ D such

that fj(c1, . . . , ci−1, x, ci+1, . . . , cn) does not depend on x ∈ Dj . We further re-

quire that this property holds not only for Dj but when we replace Dj with any

D′j ⊆ Dj such that the operation f preserves (respects) D′j . (In the replacement

the independence from x must hold only when x is also from D′j .)

The majority function on three or more arguments is StrongDem: take any D′ ⊆ D

and set all votes except the vote of voter i on the jth issue to some (arbitrary) c ∈ D′.
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Then the outcome will be c no matter what position the ith voter takes. Since any

StrongDem aggregator is clearly Non-dictatorship, we have the containment:

Non-dictatorship ⊃ StrongDem ⊃ Majority voting

All containments are strict in the following strong sense: For any two of the above

conditions we can find X which is a possibility domain with respect to the larger class,

but an impossibility domain for the smaller (IIA + Idempotency are assumed). An

important example for an X which admits an f with the Non-dictatorship condition,

but has no StrongDem voting scheme is the affine subspace. Let D = {0, 1}, and

X = {(x1, x2, x3) ∈ D3 | x1 + x2 + x3 = 1 mod 2}. There is a non-dictatorial voting

scheme when n is odd: Let fj : (u1, . . . , un)→
∑n

i=1 ui mod 2 for 1 ≤ j ≤ 3. It is easy

to see that f = (f1, f2, f3) has the Non-dictatorship property. It can be shown that

this is the only non-dictatorial aggregator for X, and it is not StrongDem.

Majority, Anonymity, Symmetricity The scheme treats all voters exactly in the
same way

StrongDem When votes of all others are appropriately
fixed, a single voter cannot change the out-
come

Non-dictatorship There is not a single voter who exclusively
controls the outcome.

Figure 7.1: Conditions on democracy and their informal meaning

The StrongDem condition is equivalent to the aggregator falling into a well-researched

class of universal algebraic operations. This class contains operations with “no ability

to count”. In contrast, functions like the parity function that have the ability to count

are very input sensitive: their value changes even when the count changes only by one.

In a far-reaching part of the algebraic theory the “no ability to count” class of oper-

ations generate algebras that “avoid types 1 and 2” [HM88] congruences. This class

of algebras has been recently characterized in terms of the local consistency checking

algorithm, which was a breakthrough [BK09]. What makes the notion of StrongDem
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particularly attractive is that when viewing its minimalistic definition, it seems a nec-

essary condition for democracy, but it also has equivalent formulations, that are strong

enough to accept it as a sufficient condition.

Definition 105 (Strong resilience). Let D be a finite domain and µ be a probabil-

ity measure on D. The influence Infi,µ(f) of the i-th variable of f : Dn → D is

Pµn+1(f(x) 6= f(x′)), where x, x′ run through all random input pairs that differ only in

the i-th coordinate (µn+1 gives a natural measure on such pairs). The maximal influ-

ence max infµ(f) is maxi Infi,µ(f). A function f : Dn → D is strongly resilient if for

every measure µ on D: max infµ(fk)→ 0 when k →∞ where fk is defined recursively

by composition fk = f(fk−1, . . . , fk−1).

Theorem 106 (G. Kun and M. Szegedy [KS09]). The following are equivalent:

1. f is StrongDem.

2. There is a strongly resilient operation in [{f}].
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