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ABSTRACT OF THE DISSERTATION

Valid Inequalities for Mixed-integer Linear Programming

Problems

by Emre Yamangil

Dissertation Director: Endre Boros

In this work we focus on various cutting-plane methods for Mixed-integer Linear Pro-

gramming (MILP) problems. It is well-known that MILP is a fundamental hard problem

and many famous combinatorial optimization problems can be modeled using MILP for-

mulations. It is also well-known that MILP formulations are very useful in many real

life applications.

Our first, rather theoretical, contribution is a new family of superadditive valid

inequalities that are obtained from value functions of special surrogate optimization

problems. Superadditive functions hold particular interest in MILP as they are funda-

mental in building integer programming duality, and all “deepest valid inequalities” are

known to arise from superadditive functions. We propose a new family of superaddi-

tive functions that generate inequalities that are at least as strong as Chvatal-Gomory

(CG-) inequalities. A special subfamily provides a new characterization of CG-cuts.

Value functions of optimization problems are known to be super additive. We look at

special surrogate optimization problems, and measure their complexity in terms of the

number of integer variables in them. It turns out that the lowest possible nontrivial

complexity class here includes all CG-cuts, and provides some stronger ones, as well.

Our next contribution is a practically efficient, polynomial time method to produce
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“deepest” cuts form multiple simplex rows for the so called corner polyhedra. These

inequalities have been receiving considerable attention lately. We provide a polynomial

time column-generation algorithm to obtain such inequalities, based on an arbitrary

(fixed) number of rows of the simplex tableau. We provide numerical evidence that

these inequalities improve the CPLEX integrality gap at the root node on a well-known

set of MILP instances, MIPLIB.

In the last chapter, we consider a particular MILP instance, Optimal Resilient Dis-

tribution Grid Design Problem (ORDGDP). This is a problem of critical importance

to infrastructure security and recently attracted a lot of attention from various gov-

ernment agencies (e.g. Presidential Policy Directive of Critical Infrastructure Security

2013). We formulate this problem as a MILP and propose various efficient solution

methods blending together well-known decomposition ideas to overcome the numerical

intractability encountered using commercial MILP software such as CPLEX.
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Chapter 1

Introduction

Mixed-integer Linear Programming (MILP) algorithms are a well-known method to

solve many combinatorial optimization problems that are typically NP-complete. A few

popular examples are Traveling Salesman Problem ([78]), Vehicle Routing Problem ([5]),

Stable Set Problem ([7]), Satisfiability Problem ([19]), and many others. In these works,

authors describe the problem as a MILP instance, and exploit the two fundamental ideas

to solve a MILP: successive approximation of integral hull, i.e. generation of cutting

planes ([43]), and to branch into two subproblems on a fractional variable, i.e. branch

and bound ([62]). Even though Gomory’s work on mixed integer rounding cuts has

been one of the earlier methods in the literature that can be proved to be finite for pure

integer linear programs, branch and bound methods have ruled the early era without

much challenge. Until late 20th century cutting-planes application has been of rather

theoretical use. However recently, computational MILP started to see some promising

results in applying various cutting-planes (Gomory’s mixed integer rounding cuts in

particular [26]) as a way to achieve significant speed-ups to some of the benchmark

problems that would take CPU years with the conventional branch and bound technique

([85]). The goal of such an approach is to strengthen the Linear Programming (LP)

relaxation at various nodes of a branch and bound tree, and in particular the root node

([15]).

1.1 Motivation

MILP researchers of the past few decades focused on generating inequalities because

of the following: MILP is NP-hard ([57]) because of the integrality of its variables.
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Therefore a logical approach is to relax the complicating conditions and solve the prob-

lem, as the common practice in many relevant areas of Operations Research (Nonlinear

Programming [61], Benders Decomposition [102], Lagrangean Relaxation [50]). When

we relax these conditions (i.e. LP relaxation), we usually end up with an infeasible

solution. The infeasibility implies that there exists a separating hyperplane that sepa-

rates the set of feasible solutions, in the realm of integer programming, the integral hull

(the convex hull of the integer solutions within the feasible region), from the infeasible

solution. The ways to generate such inequalities wildly differ (Gomory cuts [43], Split

cuts [25], Intersection cuts [6], Lift-and-Project cuts [7], and many others). But the

core idea is always the same, valid inequalities.

Figure 1.1: An example of a valid inequality for the integer core of a polyhedron, which

we can use to strengthen the current formulation.

The key question is which one of these valid inequalities (see e.g. Figure 1.1) are

better than the others and will help with the general branch and bound process more,

as the goal is always the same, to decrease the size of the branch and bound tree as

much as possible. In this work we will provide algorithms on how to generate a “depest”

cut. Throughout this dissertation, we will use the polyhedron in Figure 1.1 to highlight
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various valid inequalities:

P =

x ∈ R2 :


−1 2

5 1

−2 −2

x ≤


6

21

−9




1.2 Contribution

In this work, we focus on various ways to generate such valid inequalities. In particular

Multi-row Simplex Cuts generation.

We first focus on super additive functions to generate valid inequalities for a general

MILP. We make connections between super additive valid inequalities and CG-closure

and characterize the CG-closure of a MILP in terms of a corresponding family of su-

peradditive functions. We also show that the discrete Farkas’ lemma of Lasserre is

equivalent with super additive duality for integer programming.

Second we propose polynomial time methods to generate multi-row simplex cuts.

Most famous inequalities used in state-of-the-art MILP solvers are usually cuts that are

derived from multiple rows of the simplex table. In this work, we investigate ways to

generate inequalities, that are as deep as possible, in the sense of a weighted sum of its

coefficients. We develop our methods using the well-known intersection cut theory of

Balas [6].

Finally we discuss an important problem in Power Distribution Resiliency. Mod-

ern society is critically dependent on the services provided by engineered infrastructure

networks. When natural disasters (e.g. Hurricane Sandy) occur, the ability of these

networks to provide service is often degraded because of physical damage to network

components. One of the most critical of these networks is the electrical distribution

grid, with medium voltage circuits often suffering the most severe damage. However,

well-placed upgrades to these distribution grids can greatly improve post-event net-

work performance. We formulate an optimal electrical distribution grid design problem

as a two-stage, stochastic mixed-integer program with damage scenarios from natural
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disasters modeled as a set of stochastic events. This is a problem of critical impor-

tance to energy community where optimization and AI researchers can make significant

contributions. AI has made many recent significant contributions to energy problems

[49, 88, 23, 40, 89, 52, 87, 97, 99]. We develop computationally efficient algorithms

for solving stochastic network design problems with discrete variables at each stage.

The algorithms are based on hybrid optimization methods similar to recent work that

combines Bender’s Decomposition with heuristic master solutions [86].
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Chapter 2

Preliminaries

In this chapter we survey some of the well-known and classical valid inequalities that

are widely employed by MILP software. For a deeper understanding, the reader may

refer to the book of Nemhauser and Wolsey [77] or the paper of Cornuéjols [27]. Here we

will provide some of the fundamentals of Gomory Mixed Integer cuts, Lift-and-Project

cuts, and Split cuts.

2.1 On Valid Inequalities

In this section we will focus on the fundamental theory of valid inequalities. Let P =

{x ∈ Rn : Ax ≤ b} be a non-empty polyhedron, where A ∈ Qm×n and b ∈ Qm are

rational matrices. Let PI = conv(P ∩ Zn) be the integral hull, in other words, the

convex hull of integral feasible vectors in P .

Definition 2.1.1. We call αTx ≤ β a valid inequality for S ⊂ Rn if αT x̄ ≤ β for all

x̄ ∈ S.

Now let us recall a key result from polyhedral theory:

Lemma 2.1.2 (Farkas’ Lemma). Given A ∈ Rm×n and b ∈ Rm, one and only one of

the following systems has a solution:

i ∃ x ∈ Rn s.t. Ax = b, x ≥ 0,

ii ∃ y ∈ Rm s.t. AT y ≤ 0 and bT y > 0.

Farkas’ Lemma readily implies that valid inequalities for a polyhedron P = {x ∈

Rn : Ax ≤ b} are linear consequences of the set of inequalities Ax ≤ b. In other words,

an inequality for P , αTx ≤ β is valid, if and only if there exists u ∈ Rm+ such that
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uTA ≥ αT and uT b ≤ β. This further implies that we can generate valid inequalities

using the following linear programming problem:

max αTw − β

s.t. uTA ≥ α

uT b ≤ β

u ≥ 0

(2.1)

where w ∈ Rn is a vector of weights for the coefficient of the valid inequality to be

generated (or a vector in Rn that we want to separate from the polyhedron).

Variations of the so-called cut generating Linear Programming Problem (2.1) ap-

peared many times in the literature [26] and we will also use similar methods to generate

valid inequalities for PI that is the integer hull of a polyhedron. Though Farkas’ Lemma

proves to be powerful for polyhedral sets, P , when we move to the realm of integrality,

this is quite a different story. First of all for many optimization problems, such as

the Traveling Salesman Problem, the polyhedral description of PI is known to be of

exponential size. Even for problems such as Maximum Weighted Matching, where we

know a polynomial time algorithm exists, the odd circuit constraints are exponential

in the size of the graph. Which means that it is not likely that we will find a polyhe-

dral description of the integral hull to characterize all valid inequalities for PI . Instead

researchers focused on generating valid inequalities using the integrality of variables in

various ways that we will recall in the following sections.

An important issue to note before we move on, is the dominance of valid inequalities:

Definition 2.1.3. Let α1Tx ≤ β1 and α2Tx ≤ β2 be two inequalities. We say α1Tx ≤

β1 dominates α2Tx ≤ β2 if α1
i ≥ α2

i ∀i and β1 ≤ β2 and at least one of these inequalities

satisfied as a strict inequality.

In this work we will apply the notion of dominance for the family of valid inequalities

of a polyhedron, in particular we shall seek the un-dominated valid inequalities.
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2.2 Gomory Mixed Integer Cuts

There are two well-known derivations of Gomory’s Mixed Integer Rounding cuts. In

this work we will follow Gomory’s derivation. Now let us consider the following mixed

integer set:

S = {(x, y) ∈ Zn+ × Rm+ :
n∑
j=1

ajxj +
m∑
j=1

djyj = b} (2.2)

Let us introduce fj = aj − bajc, gj = dj − bdjc and f0 = b − bbc. Then we can

rewrite (2.2) as follows:

S = {(x, y) ∈ Zn+ × Rm+ :
n∑
j=1

ajxj +
m∑
j=1

djyj = b}

= {(x, y) ∈ Zn+ × Rm+ :
∑

j:fj≤f0

(bajc+ fj)xj +
∑

j:fj>f0

(daje+ fj − 1)xj +
m∑
j=1

djyj = bbc+ f0}

= {(x, y) ∈ Zn+ × Rm+ :
∑

j:fj≤f0

fjxj +
∑

j:fj>f0

(fj − 1)xj +
m∑
j=1

djyj = k + f0}

where k = bbc −
∑

j:fj≤f0
bajcxj +

∑
j:fj>f0

dajexj ∈ Z for all x ∈ Zn+, therefore either

k ≤ −1 or k ≥ 0. Consequently, we can write

S = {(x, y) ∈ Zn+ × Rm+ :
∑

j:fj≤f0

fjxj +
∑

j:fj>f0

(fj − 1)xj +
m∑
j=1

djyj = k + f0}

⊆ {(x, y) ∈ Zn+ × Rm+ :
∑

j:fj≤f0

fjxj +
∑

j:fj>f0

(fj − 1)xj +
m∑
j=1

djyj ≤ −1 + f0}

∪ {(x, y) ∈ Zn+ × Rm+ :
∑

j:fj≤f0

fjxj +
∑

j:fj>f0

(fj − 1)xj +

m∑
j=1

djyj ≥ f0}

= {(x, y) ∈ Zn+ × Rm+ : −
∑

j:fj≤f0

fj
1− f0

xj +
∑

j:fj>f0

1− fj
1− f0

xj −
m∑
j=1

dj
1− f0

yj ≥ 1}

∪ {(x, y) ∈ Zn+ × Rm+ :
∑

j:fj≤f0

fj
f0
xj −

∑
j:fj>f0

1− fj
f0

xj +

m∑
j=1

dj
f0
yj ≥ 1}

⊆ {(x, y) ∈ Zn+ × Rm+ :
∑

j:fj≤f0

max{− fj
1− f0

,
fj
f0
}xj +

∑
j:fj>f0

max{1− fj
1− f0

,−1− fj
f0
}xj

+
m∑
j=1

max{− dj
1− f0

,
dj
f0
}yj ≥ 1}
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S ⊆ {(x, y) ∈ Zn+ × Rm+ :∑
j:fj≤f0

fj
f0
xj +

∑
j:fj>f0

1− fj
1− f0

xj −
m∑

j:dj≤0

dj
1− f0

yj +

m∑
j:dj>0

dj
f0
yj ≥ 1}. (2.3)

Last inequality is obviously valid for S and is known as the Gomory Mixed Integer

Rounding cut. To compute a Gomory cut, let us consider our polyhedron in standard

form:

P = {x ∈ Z2
+, y ∈ R3

+ :


−1 2 1 0 0

5 1 0 1 0

−2 −2 0 0 1


 x

y

 =


6

21

−9

}

= {x ∈ Z2
+, y ∈ R3

+ :


1 0 −0.0909 0.1818 0

0 1 0.4545 0.0909 0

0 0 0.7273 0.5455 1


 x

y

 =


3.2727

4.6364

6.8182

}
where the second representation is obtained using the Gaussian elimination operator

B−1 = [a1, a2, a5]−1. Now if we apply formula (2.3) to the first row and we obtain the

valid inequality shown in Figure 2.2:

Figure 2.1: A Gomory mixed integer rounding cut



9

2.3 Split Cuts

Split cuts were introduced by Cook, Kannan and Scrijver [25] and it follows the following

logic. Let us consider a polyhedron P = {x ∈ Rn : Ax ≤ b}, π ∈ Zn and π0 ∈ Z. It is

straightforward to see that:

PI ∩ Zn = P ∩ Zn

=
(
P ∩ Zn ∩ {x ∈ Rn : πTx ≤ π0}

)
∪
(
P ∩ Zn ∩ {x ∈ Rn : πTx ≥ π0 + 1}

)
⊆
(
P ∩ {x ∈ Rn : πTx ≤ π0}

)
∪
(
P ∩ {x ∈ Rn : πTx ≥ π0 + 1}

)
⊆ conv

((
P ∩ {x ∈ Rn : πTx ≤ π0}

)
∪
(
P ∩ {x ∈ Rn : πTx ≥ π0 + 1}

))
= PS

An inequality valid for PS is called a split cut. To compute a split cut let us first

consider the following set:

P = {x ∈ Z2
+, y ∈ R3

+ :


1 0 −0.0909 0.1818 0

0 1 0.4545 0.0909 0

0 0 0.7273 0.5455 1


 x

y

 =


3.2727

4.6364

6.8182

}
and the split:

πT

 x

y

 ≤ π0 or πT

 x

y

 ≥ π0 + 1

where πT = [1, 0] and π0 = 3. Derivation of Split cuts are based on the more general

theory of intersection cuts (see Balas [6]). We shall describe this method in detail in

Chapter 4. Here we provide some intuitive arguments for simplicity. The linear distance

of the current simplex solution to the split planes, can be computed as ε1 = πT x̄−π0 =

0.2727 and ε2 = π0+1−πT x̄ = 0.7273, respectively. Let γj denote the nonbasic columns

of simplex tableau (that only includes fractional rows that correspond to integral basic

variables) and x̄T = [3.2727, 4.6364] be the basic feasible solution we want to separate.

Then we can calculate the magnitude of intersection points by αj = − ε1
πT γj

if πTγj < 0,

otherwise by αj = ε2
πT γj

, for all nonbasic indices j (let us note that all valid inequalities
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can be written as a nonnegative summation of nonbasic variables that is greater than

or equal to a nonnegative real, this will be discussed on Chapter 4). Which gives rise

to 0.125y1 + 0.667y2 ≥ 1 or equivalently 3.2083x1 + 0.9167x2 ≤ 13.75. This inequality

is depicted on Figure 2.3:

Figure 2.2: A split cut

Split cuts play an important role in today’s mixed integer programming software

(crooked cross split cuts in particular [29], or t-branch split cuts in general [69]). In

general they are a special case of intersection cuts, where explicit formulas can be

derived given a split. Though it is well-known that the separation over the split closure

is in general NP-complete [17].

2.4 Lift-and-Project Cuts

For now let us consider a polyhedron P = {x ∈ Rn : Ax ≤ b} and its binary hull

PB = conv (P ∩ Bn). Lift-and-Project is mainly an idea to find an intermediate set, M ,

between P and PB (akin to CG-closure) by first representing P on higher dimensional

space where it is strengthened by introducing more constraints (that are not necessarily
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linear) and by exploiting binary feasibility, tigthen the higher dimensional formulation

formulation. Finally we project the lifted set to Rn to get a new approximation of PB.

Inequalities that fall between M and P are called Lift-and-Project cuts.

The most famous schemes to Lift-and-Project a polyhedral set is Sherali and Adams

[98], Lovasz and Schrijver [71] and Balas, Ceria and Cornuejols [7]. Here we will provide

the derivation of Balas, Ceria and Cornuejols family. However the other two families of

Lift-and-Project methods follow similar lines and differ by the monomial multiplication

of constraints.

First we strengthen the formulation by introducing nonlinearities:

Mk = {x ∈ Rn+ : xk(Ax− b) ≤ 0, (1− xk)(Ax− b) ≤ 0}

Let us note that Mk ⊆ P (by summing up xk(Ax− b) ≤ 0 and (1−xk)(Ax− b) ≤ 0

we get Ax− b ≤ 0). And let us further note that PB ⊆Mk because all x ∈ PB implies

xB ∈ Mk trivially. Considering binary variables, we know that xk = x2
k, for all j. Let

us introduce new variables yj = xkxj , for all j. Furthermore let Ak be the matrix A

with the kth column, ak, omitted.

M ′k = {x ∈ Rn+, y ∈ Rn−1
+ : Aky + (ak − b)xk ≤ 0, Ax− b−Aky + (b− ak)xk ≤ 0}

Let M ′k = {x ∈ Rn+, y ∈ Rn−1
+ : Âx+ B̂y ≤ b̂}. Considering M ′k is now linear in both

x and y we can project it to x-space by using the null space of B̂T , i.e.:

M ′′k = {x ∈ Rn+ : uT Âx ≤ uT b̂,∀uT B̂ = 0, u ≥ 0}

M ′′k is called the lift-and-project closure of P and all of its defining inequalities are

called lift-and-project cuts. Now to demonstrate a lift-and-project cut, let us consider

the following polyhedron:

A =

 5 8

4 3

 , b =

 10

6


One can verify that:
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M ′1 = {x ∈ R2
+, y ∈ R+ :

 10 8

6 3

 x1

x2

+

 −8

−3

 y ≤
 10

6


 −5 0

−2 0

 x1

x2

+

 8

3

 y ≤
 0

0

}
and uT = [0, 0.7273, 0.2727, 0] falls into the null space of B̂T = [−8,−3, 8, 3]. There-

fore generating the following valid inequality (3x1 + 2.1818x2 ≤ 4.3636):

Figure 2.3: A lift-and-project cut
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Chapter 3

On Superadditive Functions and Valid Inequalities

This chapter overviews some of the fundamental literature on value functions and their

importance in superadditive duality of integer programming. We present a new rep-

resentation of Chvátal-Gomory family of inequalities using linear programming tools.

We further provide an elementary proof for the equivalence of discrete Farkas’ Lemme

presented in Lasserre [63] and superadditive duality.

3.1 Background

In this section we will recall important properties of IP. First of all let us define a

superadditive function which plays central role in IP duality.

Definition 3.1.1. A function F : Rm → R is called superadditive if

1. F (x) + F (y) ≤ F (x+ y) for all x, y ∈ Rm,

2. F (x) ≤ F (y) if x ≤ y,

3. F (0) ≤ 0.

Superadditive functions in optimization context was first considered by Gilmore and

Gomory [41]. Their results were later extended to the more general group problem by

the work of Gomory [46]. Let us consider the polyhedron P (A, b) := max{x : Ax ≤

b, x ≥ 0} and the integer set QI(A, b) = P (A, b) ∩ Zn. Let A = [a1, . . . , an] denote the

columns of A. An interesting observation is that any superadditive function generates

a valid inequality for QI(A, b):

Lemma 3.1.2. If F is superadditive, then
∑n

i=1 F (aj)xj ≤ F (b) is valid for QI(A, b).
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Proof.
∑n

i=1 F (aj)xj ≤
∑n

i=1 F (ajxj) ≤ F (
∑n

i=1 ajxj) ≤ F (b) as wanted. First in-

equality follows because x ∈ QI(A, b) ⊂ Zn. Second inequality is a consequence of

the first superadditive property and last inequality is because of the monotonicity of a

superadditive function.

Therefore a natural question to ask is which superadditive functions in particular

hold interest to generate stronger valid inequalities for QI(A, b). This function is called

the value function of QI(A, b) ([50]):

Fc(b) = max{cTx : x ∈ QI(A, b)} (3.1)

and have been studied extensively by the integer programming community, in particular

the duality (Jeroslow [53], Johnson [56], Gomory [104] and many others).

Claim 3.1.3. Fc(b) is superadditive.

Proof. First of all, Fc(b1) + Fc(b2) = cTx1 + cTx2 = cT (x1 + x2) ≤ Fc(b1 + b2), where

the final inequality follows as A(x1 +x2) ≤ b1 + b2. Secondly, Fc(b1) ≤ Fc(b2) whenever

b1 ≤ b2 by construction.

An important thing to note is that given a valid inequality for QI(A, b), α
Tx ≤ β,

we can use the value function of QI(A, b) to generate another valid inequality that is

at least as strong as αTx ≤ β:

Lemma 3.1.4. If αTx ≤ β is a valid inequality for QI(A, b), then we have

αTx ≤
n∑
j=1

Fα(aj)xj ≤ Fα(b) ≤ β (3.2)

Proof. Considering ej (the unit vector where jth component is 1, 0 otherwise) is fea-

sible with respect to the optimization problem in Fα(aj), we know that Fα(aj) ≥ cj .

Second inequality and the final inequality follows by the first and second properties of

a superadditive function, respectively.

Corollary 3.1.5. All tightest valid inequalities arise from superadditive functions.
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Now let us introduce a family of superadditive functions FA,c = {F is superadditive :

F (aj) ≥ cj ,∀j} for a rational matrix A and a rational vector c. Then we have the fol-

lowing ([56]):

Theorem 3.1.6 (Weak superadditive duality). For every F ∈ FA,c and x ∈ QI(A, b)

we have:

cTx ≤ F (b) (3.3)

Theorem 3.1.7 (Strong superadditive duality). For every c ∈ Rn, A ∈ Rm×n and

b ∈ Rm, we have:

max
x∈QI(A,b)

cTx = min
F∈FA,c

F (b) (3.4)

The above result is known as Superadditive Duality for Integer Programming (Schri-

jver, [96]). Though very little is known about how to compute an optimal superaddi-

tive function F ∈ FA,c that satisfies (3.4) ([60]), it is well-known that a combination

of Chvatal-Gomory inequalities can be used to compute one [77]. Now let us define a

superadditive function that gives rise to Chvatal-Gomory inequalities and has intimate

ties to LP duality by a simple modification:

Definition 3.1.8. F ′u(b) = buT bc, where u ∈ Rm+ , is called as the Chvatal-Gomory

function.

It is an easy exercise to prove that F ′u is a superadditive function for u ≥ 0. Therefore

it generates a valid inequality that is known as the Chvátal-Gomory inequality, honoring

the two seminal papers of Chvátal’s [22] and Gomory’s [44]:

n∑
j=1

buTajcxj ≤ buT bc (3.5)

It should be noted that if we remove the floor operation above, we get a linear conse-

quence of P (A, b), let FLP represent this function. Now let F ′ = {F ′u is a CG function }

and FLP = {FLPu is a linear consequence of P (A, b)}. Then we have the following:

Corollary 3.1.9. For every c ∈ Rn, A ∈ Rm×n and b ∈ Rm, we have:

max
x∈QI(A,b)

cTx = min
F∈FA,c

F (b) ≤ min
F ′u∈F ′

F ′u(b) ≤ min
FLPu ∈FLP

FLPu (b) = max
x∈P (A,b)

cTx (3.6)
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Proof. First equality follows from IP duality. First inequality is because CG-inequalities

are a restricted family of superadditive functions. Second inequality is because of the

removal of rounding operation, and final equality is known as the LP duality.

The feasible region of the minimization problem in the middle is called the Chvátal

closure of P (A, b) (i.e. highlighted region in Figure 3.1), and Chvátal showed that

finitely many closure operations need to be performed to get PI , the integral hull ([22]).

This is a way to compute an optimal superadditive function that satisfies 3.4. In the

following section we will explicitly define this family as a collection of results from LP

literature with finitely many integer variables.

Figure 3.1: CG closure

3.2 A new family of Superadditive Inequalities

We consider the polytope P = {x ∈ Rn+|Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm. Let

PI = conv(P ∩ Zn) denote the integral hull of P .

Let F : Rm → R be a superadditive (SA) function. Then, recalling Lemma 3.1.2:

n∑
j=1

F (aj)xj ≤ F (b) (3.7)

is valid for PI .
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Let Q ∈ Rm×N , Γ ∈ RN , d ∈ Rm and I ⊆ {1, . . . , N} where N ∈ Z+. Then the

function

FQ,Γ,I(d) =


max ΓT y

s.t. Qy ≤ d

yi ∈ Z ∀i ∈ I

 . (3.8)

is a SA function (The value function of a Mixed Integer Program is SA, [54]).

Theorem 3.2.1. Every FQ,Γ,∅-inequality is satisfied by all points of P .

Proof. By linear programming duality FQ,Γ,∅(d) = max{ΓT y|Qy ≤ d} = min{zTd|zTQ =

ΓT , z ≥ 0}. Choose u = z∗ the optimal solution of the problem min{zT b|zTQ = ΓT , z ≥

0}. Therefore by feasibility of u we have min{zTaj |zTQ = ΓT , z ≥ 0} = FQ,Γ,∅(aj) ≤

uTaj , ∀j = 1, . . . , n and FQ,Γ,∅(b) = uT b.

3.3 Superadditive Closure

Let F(k, `) be the family of superadditive functions FQ,Γ,I obtained from Γ ∈ R`,

Q ∈ Rm×` and I ⊆ {1, . . . , `} such that |I| ≤ k. Then F(k, `)-closure is the polytope

formed by the inequalities of type (3.7) for all F ∈ F(k, `).

Theorem 3.3.1. Let Γ ∈ RN , Q ∈ Rm×N and I ⊆ {1, . . . , n}. If αj = FQ,Γ,I(aj), j =

1, . . . , n and v∗ = min{uT b|uTA ≥ αT , u ≥ 0}, then the continuous relaxation of

max{ΓT z|Qz ≤ b, zi ∈ Z, i ∈ I} has optimum objective value of at least v∗.

Proof. Take the optimum solution vj of FQ,Γ,I(aj) for all j = 1, . . . , n. Let’s relax

max{ΓT z|Qz ≤ b, zi ∈ Z, i ∈ I} and take its dual min{yT b|yTQ = ΓT , y ≥ 0}. Using vj ,

yTaj ≥ yTQvj = ΓT vj = αj , ∀j = 1, . . . , n implies uTA ≥ αT , namely the constraints

of min{uT b|uTA ≥ αT , u ≥ 0}. Considering yTQ = ΓT can only imply more restrictions

on the feasible region and the integrality gap, objective value is at least v∗.

For a given A ∈ Rm×n and u ≥ 0 s.t. u 6= 0 and uTA ∈ Zn, we define the following

matrix,
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Q(A, u) =

[
1

uT1
1, a1 −

(uTA)1

uT1
1, . . . , an −

(uTA)n
uT1

1

]
and the family of such matrices,

Q(A) =
{
Q(A, u)|u ≥ 0, u 6= 0, uTA ∈ Zn

}
Let us define the very restricted family of superadditive functions fA := {FQ,Γ,{0}|

Q ∈ Q(A)} where ΓT =
[

1 0 . . . 0

]
. Obviously F(1, n+ 1) ⊇ fA.

Theorem 3.3.2. fA-closure is exactly the same as the CG-closure.

Proof. We first show fA-closure is at least as strong as the CG-closure. Let uTAx ≤

buT bc be an arbitrary CG-cut, where u ∈ Rm+ . To majorize the CG-cut by an f -cut,

where f ∈ fA, we must have

v` =



max y`0

s.t.
1

uT1
y`0 +

n∑
j=1

(aij −
(uTA)j
uT1

)y`j ≤ ai`, ∀i

y`0 ∈ Z


≥ (uTA)` (3.9)

for all ` = 1, . . . , n, and

v0 =



max y0
0

s.t.
1

uT1
y0

0 +

n∑
j=1

(aij −
(uTA)j
uT1

)y0
j ≤ bi, ∀i

y0
0 ∈ Z


≤ buT bc (3.10)

Clearly problem set (3.9) has feasible solutions y`0 = (uTA)`, y
`
` = 1 and y`j =

0, ∀j 6= `, which shows the required inequality is attained in (3.9) for all ` = 1, . . . , n.

Let us consider the dual of problem (3.10)’s LP relaxation.

min bT z

s.t.
1

uT1
1T z = 1

(aj −
(uTA)j
uT1

1)T z = 0, j = 1, . . . , n

z ≥ 0

(3.11)
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Now let us consider the second set of constraints of (3.11). First set of constraints

imply 1
uT 1

1T z = 1. Therefore zTaj − (uTaj)(
1

uT 1
1T z) = zTaj −uTaj = 0 implies z = u

is a feasible solution. Therefore v0 ≤ uT b < buT bc+ 1. Which proves the first claim.

Second, we prove a CG-cut is at least as strong as an f -cut, where f ∈ fA. We

prove v` ≤ (uTA)`, ` = 1, . . . , n

v` = max{ΓT z`|Q(A, u)z` ≤ a`, z`0 ∈ Z}

≤ max{ΓT z`|Q(A, u)z` ≤ a`}

= min{aT` y`|
1

uT1
1T y` = 1, aTj y

` − (uTA)j
uT1

1T y` = 0, ∀j, y ≥ 0}

= min{aT` y`|
1

uT1
1T y` = 1, aTj y

` − (uTA)j = 0,∀j, y ≥ 0} = (uTA)`

We note that FQ,Γ,{0}(b) ≥ bFQ,Γ,∅(b)c because of the structure of objective function.

Combining this with Theorem 3.3.1, implies v0 ≥ buT bc which concludes the proof.

Theorem 3.3.2 implies that F(1, n+1)-closure is at least as strong as the CG-closure.

Next we show that F(1, n+ 1)-closure involves inequalities stronger than any CG-cut.

First of all, let us note that F(1, n) ⊆ F(1, n + 1), as we can have dummy columns

extending Q. We provide an instance to prove this claim. Let us consider the following

polytope,

A =


−1 2

5 1

−2 −2

 , b =


6

21

−9


Let us consider the following Q and Γ matrices,

Q =


−3 4

4 2

−4 −4

 , Γ =

 1

1

 , I = {1}

We calculate FQ,Γ,I(a1) = 1.5, FQ,Γ,I(a2) = 0.5 and FQ,Γ,I(b) = 6.75. Therefore we

find the valid inequality

6x1 + 2x2 ≤ 27 (3.12)
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Claim 3.3.3. (3.12) is stronger than any CG-cut.

Proof. To majorize (3.12) by a CG-cut, we need a u ≥ 0 s.t. uTA ≥ (6, 2) and uT b <

28. To test this question we solve the linear programming problem min{uT b|uTA ≥

(6, 2), u ≥ 0} = 28.9091, hence such a u vector does not exist.

Corollary 3.3.4. F(1, n+ 1)-closure is stronger than the CG-closure.

Figure 3.2: SA cut falling into CG closure
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3.4 Superadditive closure of a mixed-integer program

In this section, we extend the superadditive closure into mixed-integer programs with

equality constraints. First we remember classical theorem from valid inequalities:

Theorem 3.4.1. Let T = {x ∈ Zn+, y ∈ Rp+ :
∑

j∈I hjxj +
∑

j∈J gjyj = b}, where

hj , gj , b ∈ R for all j. The inequality (also known as the Mixed Integer Gomory (MIG)

cut) ∑
j∈I

Fα(hj)xj +
∑
j∈J−

F̄α(gj)yj ≤ Fα(b)

is valid for T , where J − = {j ∈ J : gj < 0}, 0 < α < 1 and

Fα(d) = bdc+
(fd − α)+

1− α

F̄α(d) = lim
λ→0+

Fα(λd)

λ
=

d

1− α

To derive the superadditive closure of a mixed-integer program let us consider the

polyhedron P = {x ∈ Rn+|Ax = b}, where A = (aj |j ∈ I). Also we modify FQ,Γ,K(d)

for a set of equality constraints over non-negative variables as follows:

F ′Q,Γ,K(d) =


max ΓT y

s.t. Qy = d

yi ∈ Z ∀i ∈ K

 . (3.13)

Corollary 3.4.2. F ′Q(A,u),Γ,{0}(u
Td) = buTdc and F ′Q(A,u),Γ,∅(u

Td) = uTd for u ∈ Rm,

where d ∈ {aj |j = 1, . . . , n} ∪ {b} and ΓT =
[

1 0 . . . 0

]
.

Say x̄ ∈ P be an extreme point and B one it its corresponding basis. Therefore if

we let uT = eTi B
−1, uTAx = uT b is the ith row of simplex table at this basic feasible

solution.

Corollary 3.4.3. Let I ⊆ [n] be the indices of integer variables and J = [n] \ I. The

following inequality∑
j∈I

(F ′Q(A,u),Γ,{0}(u
Taj) +

(F ′Q(A,u),Γ,∅(u
Taj)− F ′Q(A,u),Γ,{0}(u

Taj)− α)+

1− α
)xj

+
∑
j∈J−

F ′Q(A,u),Γ,∅(u
Taj)

1− α
xj ≤ F ′Q(A,u),Γ,{0}(u

T b)
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is a valid inequality for 0 < α < 1 and ΓT =
[

1 0 . . . 0

]
.

3.5 The Equivalence of SA Duality and Discrete Farkas’ Lemma

[63] explicitly describes a discrete variant of the Farkas’ lemma by using the counting

techniques based on generating functions as described by Brion and Vergne. [65] de-

scribes the defining inequalities of the integral hull using the discrete Farkas’ lemma

proposed in [63]. They reduce the integer programming problem into a set of equalities

which equivalently represents the conditions of discrete Farkas’ lemma. Using the ex-

tremal elements of this polyhedron, they describe the minimal valid inequalities, namely

the facets, of the integral hull. They also provide an intuitive, constructional proof of

discrete Farkas’ lemma found in [65]. [64] links the Farkas’ lemma, superadditive du-

ality and integral hull of an integer program and does a quick overview of the duality

relation proposed by Lasserre. We can see the motivation of Lasserre’s work, where

Jeroslow [54] states:

. . . by simply writing down the subadditivity relations (plus complementar-

ity relations, if one wishes), and viewing the symbol F (v) (for each element

v of the group) as a variable in a linear system, one obtains a linear inequal-

ity system whose extreme points are facets of the group problem: this is

surprising!

when he refers to the pioneering work of Gomory [45].

Given an integer programming problem, max{cTx|Ax = b, x ∈ Zn+}, Discrete Farkas’

Lemma defined by [63] corresponding to this problem can be stated as follows:

max

n∑
j=1

∑
0≤p≤b∗

cjq
j
p

s.t.

n∑
j=1

(
qjr−aj |r ≥ aj

)
−

n∑
j=1

qjr =


1, if r = 0

−1, if r = b

0, otherwise

, 0 ≤ r ≤ b∗

qjp ≥ 0, 0 ≤ p ≤ b∗, j = 1, . . . , n

(3.14)
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If we take the dual of problem (3.14):

min γ(b) −γ(0)

s.t. γ(α+ aj) −γ(α) ≥ cj 0 ≤ α+ aj ≤ b, j = 1, . . . , n

Let π(α) := γ(α)− γ(0), 0 ≤ α ≤ b. Then we can rewrite the dual problem as follows:

min π(b)

s.t. π(α+ aj)− π(α) ≥ cj 0 ≤ α+ aj ≤ b, j = 1, . . . , n

Let D :=
∏n
j=1{0, 1, . . . , bj} and fπ(d) = inf

v∈D
{π(v+d)−π(v)}. [63] proves the following

problem is equivalent to the dual of integer programming problem:

min fπ(b)

s.t. fπ(aj) ≥ cj , j = 1, . . . , n
(3.15)

We will show the superadditive functions in problem (3.15) contains the superaddi-

tive functions that strengthen a valid inequality for PI . In turn proving it is the set of

defining superadditive functions for the SA dual problem.

Theorem 3.5.1. Let P = {x|Ax ≤ b, x ≥ 0} and PI = conv(P ∩Zn) 6= ∅ and αTx ≤ β

be valid for PI . Let

π(v) =


max{αTx|Ax ≤ v, x ∈ Zn+} if v ∈ D

∞ otherwise

and fπ(d) = inf
v∈D
{π(v + d)− π(v)} is as defined above. Then we have fπ(aj) ≥ αj , j =

1, . . . , n and fπ(b) ≤ β.

Proof. Let v ∈ D. We have π(v) = αTx∗ for some x∗ ∈ Zn+. If v + aj /∈ D then we are

done as π(v+d)−π(v) =∞. Else v+aj ≤ b implies A(x∗+ej) = Ax∗+aj ≤ v+aj ≤ b.

Therefore x∗ + ej is a feasible solution for problem π(v + aj), implying π(v + aj) ≥

αT (x∗+ ej) = π(v) +αj . Hence we have π(v+aj)−π(v) ≥ αj , ∀v ∈ D, or equivalently

fπ(aj) ≥ αj . Also we have fπ(b) = π(b)−π(0) = π(b) = max{αTx|Ax ≤ b, x ∈ Zn+} ≤ β

as αTx ≤ β is valid for PI . Furthermore we note αTx ≤
∑n

j=1 fπ(aj)xj ≤ fπ(b) = αT x̄

for some x̄ ∈ Q. Therefore
∑n

j=1 fπ(aj)xj ≤ fπ(b) is tight.
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Now we show that if we disregard the integrality in the definition of π(v), then we

get linear consequences of P . Let

π̄(v) =


max{αTx|Ax ≤ v, x ≥ 0} if v ∈ D

∞ otherwise

or equivalently

π̄(v) =


min{vT y|AT y ≥ α, y ≥ 0} if v ∈ D

∞ otherwise

Theorem 3.5.2. The inequality
∑n

j=1 fπ̄(aj)xj ≤ fπ̄(b) is a linear consequence of P .

Proof. Let y∗ be optimal with respect to π̄(v+d) and ȳ be optimal with respect to π̄(v)

fπ̄(d) = inf
v∈D
{π̄(v + d)− π̄(v)}

= inf
v∈D


min (v + d)T y

s.t. AT y ≥ α

y ≥ 0

−

min vT y

s.t. AT y ≥ α

y ≥ 0


≥ inf

v∈D

{
(v + d)T y∗ − vT y∗

}

= inf
v∈D

{
dT y∗

}
≥ inf

v∈D


min dT y

s.t. AT y ≥ α

y ≥ 0

 =

min dT y

s.t. AT y ≥ α

y ≥ 0

=

max αTx

s.t. Ax ≤ d

x ≥ 0
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On the other hand we have,

fπ̄(d) = inf
v∈D
{π̄(v + d)− π̄(v)}

= inf
v∈D


min (v + d)T y

s.t. AT y ≥ α

y ≥ 0

−

min vT y

s.t. AT y ≥ α

y ≥ 0


≤ inf

v∈D

{
(v + d)T ȳ − vT ȳ

}

= inf
v∈D

{
dT ȳ

}
=

min dT y

s.t. AT y ≥ α

y ≥ 0

=

max αTx

s.t. Ax ≤ d

x ≥ 0

where second to last equality is not very straightforward. But essentially we are trying

to minimize the linear form dT ȳ where ȳ is coming from the linear program π̄(v), which

is equivalent linear program following the expression. Therefore we have

αj ≤ fπ̄(aj) =

max αTx

s.t. Ax ≤ aj

x ≥ 0

as ej is a feasible solution to the above problem. Now let zj be optimal to the problem

max{αTx|Ax ≤ aj , x ≥ 0}. Therefore we have Azj ≤ aj and zj ≥ 0. Let x ∈ P

and z(x) =
∑n

j=1 z
jxj ≥ 0. Note that z(x) ∈ P with this selection as Az(x) =∑n

j=1(Azj)xj ≤
∑n

j=1 ajxj = Ax ≤ b. Let z̄ be optimal to max{αTx|Ax ≤ b, x ≥ 0} =

fπ̄(b). Then the inequality

n∑
j=1

fπ̄(aj)xj =
n∑
j=1

αT zjxj = αT z(x) ≤ αT z̄ = fπ̄(b)

is valid for P , completes the proof.
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Chapter 4

Deepest Valid Inequalities

In this chapter we will focus on valid inequality generation for arbitrary MILP instances.

Our method will be based on generating valid inequalities for the corner polyhedron

[45] using the intersection cut theory of Balas [6]. The efficiency of these inequali-

ties will be demonstrated on a well-known problem set, MIPLIB, and we will prove

some fundamental properties of these inequalities, in particular the polynomial time

implementation.

4.1 Background

MILP literature studied multiple ways of generating a valid inequality from a given

simplex table. The most well-known inequalities (i.e. Gomory mixed integer rounding

cuts) are generated using a single row of the simplex table and have been the focus

of state-of-the-art commercial MILP solvers. Though the theory was known for quite

sometime, until recently, multi-row cut generation didn’t receive a lot of attention in

the literature.

Pioneering theoretical work on multi-row simplex cuts has been made by [6] as

early as ’71. Given a fractional vector f ∈ Rm and a lattice-free convex set, S ⊂

Rm, around f such that f ∈ int(S), then a valid inequality for the simplex tableau

can be calculated using the gauge function of S. While this result has not received

computational attention early on, there have been renewed interest in cut generation

considering multiple rows of the simplex tableau recently ([4]). Where the authors

show that if two rows of the simplex tableau are taken into account, facet-definining

inequalities for convex hull of mixed-integer set are intersection cuts in R2. [16] later

generalized this result on higher dimensional spaces in Rm. The NP-completeness of
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separation for split cuts has been settled by [17]. Even though these authors provide

invaluable examples where such cuts are helpful, the scope of their computational study

have been only illustrational.

The first thorough computational study has been made by [35], where he considered

multi row cuts that are the consequences of symmetric lattice-free convex sets with

respect to the current simplex solution. He developes a heuristic scheme to mass-

generate such inequalities at the root node of a branch and bound tree and provides very

promising computational results by considering up to 15 rows of the simplex tableau

simultaneously. More recently [9] and [33] also tackled the same question on 2-rows,

where they consider heuristically defined lattice-free convex sets for mass generation

of valid inequalities. Later [28] showed such cuts can strengthen the bounds obtained

by Gomory’s mixed integer rounding cuts based on single rows. A more sophisticated

method has been proposed by [70] where the authors propose how to generate a best

lattice-free convex set on R2. They compare single row non-lifted intersection cuts,

with their 2-row counterparts and show promising results in terms of information that

multiple rows carry. Even though these results are encouraging, they are essentially

computed from relaxations of simplex tableau. [37] develop a scheme for strengthening

these inequalities by using the non-negativity information on basic variables.

A deepest intersection cut, in the sense that it minimizes a general p-norm of its

coefficients, was proposed in a semi-infinite programming context by [10]. Which has

been used within the computational analysis of [70]. They also provide an oracle for the

2-row separation of this problem. Now, we focus on how to generalize these ideas. We

show that if we consider a fixed number of simplex tableau rows, there exists an intuitive

poly-time separation routine to solve the problem of finding a deepest intersection cut,

in the sense that it minimizes a weighted sum of its coefficients.

4.2 Basic Definitions and Notation

Let us consider an integer programming problem and its set of feasible solutions
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PI = conv {x ∈ Zn | Ax = b, x ≥ 0} (4.1)

where A ∈ Qm×n, and b ∈ Qm. Let B be a basis of A that correspond to a basic feasible

solution of the linear programming relaxation. Then we can rewrite PI as follows

PI = conv


 xB

xN

 ∈ Zn
∣∣∣∣∣∣ xB = B−1b−B−1NxN

xB ≥ 0, xN ≥ 0

 . (4.2)

Next, we relax the nonnegativity of basic variables and the integrality of nonbasic

variables, and obtain the so called continuous relaxation of corner polyhedron (for sake

of simplicity we will call this the corner polyhedron), introduced by [45]:

PC = conv


 xB

xN

 ∈ Zm × Rn−m
∣∣∣∣∣∣ xB = B−1b−B−1NxN ,

xN ≥ 0


To simplify notation, let k = n−m. Let us reserve x = xB for the basic variables, denote

by s = xN the nonbasic ones, and introduce f = B−1b and (−B−1N) = [r1, r2, ..., rk]

to get

PC = conv


 x

s

 ∈ Zm × Rk
∣∣∣∣∣∣ x = f +

k∑
i=1

risi, s ≥ 0

 (4.3)

Assuming that f is not (yet) integral, we are interested in valid inequalities that separate

the fractional corner f from PC . Since variables x depend in a unique and linear way

on the nonbasic variables, according to the system of equations in (4.3), it is enough to

consider inequalities involving only s. An inequality of the form

k∑
j=1

αjsj ≥ β

is called a valid inequality for the corner polyhedron if it is satisfied by all solutions to

(4.3). We will be only interested in valid inequalities, which are violated by f . The

following useful lemma claims that we do not loose generality by assuming β > 0 and

αj ≥ 0 for all j = 1, ..., k.

Lemma 4.2.1 ([4]). Every non-trivial valid inequality for (4.3), that is tight at some

(x̄, s̄) ∈ PI can be written in the form

k∑
j=1

αjsj ≥ 1 (4.4)
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for some αj ≥ 0, j = 1, . . . , k.

An inequality of the form (4.4) is dominated if there exists another valid inequality∑k
j=1 α

′
jsj ≥ 1 for PC such that α′j ≤ αj for all j = 1, . . . , k, with strict inequality for

some indices.

4.3 Intersection Cuts

[6] introduced the intersection cut for the corner polyhedron (4.3). Let, PLP denote the

LP relaxation of PI where we further drop the integrality restrictions of basic variables.

By using Minkowski-Weyl decomposition of a polyhedron, PLP can be decomposed into

f + C, where C is the polyhedral cone generated by rational rays ri, i = 1, . . . , k. Let

us now consider a closed convex set S ⊂ Rm such that it contains the basic solution

f ∈ int(S) in its interior, but does not contain any point from Zm in its interior. To

such a closed convex set we associate the following function

ΦS(r) := inf{t > 0 | f +
r

t
∈ S}, (4.5)

for r ∈ Rm. Note that since f is in the interior of S, we have ΦS(r) finite for all r ∈ Rm.

Furthermore, ΦS(r) = 0 only if f + λr ∈ S for all λ ≥ 0. It was shown in [6] that

k∑
j=1

ΦS(rj)sj ≥ 1 (4.6)

is a valid inequality for (4.3) that cuts off the vertex (f, 0) ∈ PC if S is lattice-free. [24]

have shown that the converse holds true, too.

Theorem 4.3.1 ([24]). If PC 6= ∅, then every valid inequality for it is an intersection

cut of the form (4.6), corresponding to a lattice-free convex set S.

4.4 Maximal Lattice-Free Convex Sets

Let us next recall the following characterization of maximal lattice-free convex sets in

finite dimensional spaces:
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Theorem 4.4.1 ([72]). Let V be a rational affine subspace of Rn containing an integral

point. A set S ⊂ V is a maximal lattice-free convex set of V if and only if S is a

polyhedron of the form S = P +L where P is a polyhedron, L is a rational linear space,

dim(S) = dim(P ) + dim(L) = dim(V ), S does not contain any integral point in its

interior and there is an integral point in the relative interior of each facet of S.

Let us now return to our corner polyhedron PC and denote by W the linear space

spanned by the vectors {r1, . . . , rk}. As we recalled above, every maximal lattice-

free convex set in f + W give rise to a valid linear inequality for PC . Let S be a

maximal lattice-free convex set in f + W containing f in its interior. By Theorem

4.4.1, S is a polyhedron, and since f ∈ int(S), there exists a finite integer ` and vectors

a1, . . . , a` ∈ Rm such that

S = {x ∈ Rm | aTi (x− f) ≤ 1, i = 1, ..., `}.

The following claim is easy to see (c.f. [9]):

Lemma 4.4.2. For all r ∈ Rm we have

ΦS(r) = max
i=1,...,`

aTi r. (4.7)

Then (4.7) readily implies that ΦS is subadditive and positively homogenous. These

properties then provide a short proof for the fact that (4.6) is a valid inequality for PC .

Namely, we can write for (x, s) ∈ PC , x ∈ Zm that

k∑
j=1

ΦS(rj)sj =

k∑
j=1

ΦS(rjsj) ≥ ΦS(

k∑
j=1

rjsj) = ΦS(x− f) ≥ 1

First equality follows because of positive homogeneity, second inequality follows by

subadditivity, the third equality follows by (4.3), while the final inequality follows from

(4.7) because S is a lattice-free convex set.

An important fact is to note that ` is not only finite, but also bounded by 2m:

Theorem 4.4.3 ([11], [94] and [95]). Let A ∈ Q`×m, b ∈ Q` and Q(A, b) = {x ∈ Rm :

Ax ≤ b}. If Q(A, b) ∩ Zm = ∅ and non of the inequalities describing Q(A, b) can be

dropped without changing the description of the polyhedron, then ` ≤ 2m.
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Corollary 4.4.4. Let S = {x ∈ Rm : Ax ≤ b} be a rational maximal lattice-free convex

set with a minimal description, in other words, without redundant inequalities. Then S

involves at most 2m inequalities.

Proof. We will prove the claim in three steps. First of all, by Theorem 4.4.1, there

exists at least one lattice point in the relative interior of every facet of S. Furthermore,

if we delete only one of the defining inequalities of S, say the ith one, there exists at

least one integer point, x(i), which is in the interior of the polyhedron defined by the

rest of the inequalities. Consequently, there exists ε > 0 such that x(i) satisfies strictly

all inequalities Ax ≤ b − ε1 except the ith one, which it violates, for all indices i. Let

us consider S′ = {x ∈ R|Ax ≤ b− ε1}. Note that S′ ∩Zm = ∅, but if we delete any one

of the defining inequalities of S′, then the rest of the inequalities has an integer feasible

solution. Therefore, by Bell and Scarf’s Theorem 4.4.3, S does not have more than 2m

inequalities.

4.5 Cutting off a Fractional Vertex

With the definitions and properties we recalled in the previous sections, we can now

prove Theorem 4.3.1 in an important special case. Let us assume that we consider an

integer programming problem of the form

max cTx

Ax ≤ b

x ∈ Zn

Let P = {x ∈ Rn|Ax ≤ b} be the set of feasible solutions in the continuous relaxation,

and let f ∈ P be a non-integral vertex of P . Let us denote by Bx ≤ d the subset of

inequalities, which are tight at f . Assuming A is of full column rank, and that there

are no redundant inequalities, B is an n×n invertible matrix. Therefore the particular

corner polyhedron we are considering is of the form

PC = {(x, s) ∈ Zn × Rn | x = f + (−B−1)s, s ≥ 0} (4.8)
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where s denotes the slack variables added to the system Bx ≤ d.

Let us denote by Bi ∈ Rn the ith row of B, and by rj ∈ Rn the jth column of

−B−1. Thus, e.g., we have Birj = −1 if i = j and = 0 otherwise.

Let us now consider a minimal valid inequality αT s ≥ 1 for PC . We know by Lemma

4.2.1 that all minimal valid inequalities are of this form, for some α ≥ 0.

We shall prove that there exists a maximal lattice free set S, such that the cor-

responding intersection cut (4.6) is equivalent with αT s ≥ 1 (for a more comprehen-

sive result the reader should consult [9]). Note that in this case we have −B−1s =

x − f = x − B−1d, and hence the above inequality can be written also as αT s =

αT (−B)(−B−1s) = (−αTB)(x− f) ≥ 1.

Theorem 4.5.1. Assume that aT0 (x − B−1d) ≥ 1 is a facet defining inequality of the

corner polyhedron and that B−1d /∈ Zn. Then, there exists a lattice-free convex set S

such that (4.7) is equivalent to aT (x−B−1d) ≥ 1.

Proof. Let Ŝ = {x ∈ Rn | Bx ≤ d, aT0 (x − B−1d) ≤ 1}. Since aT0 (x − B−1d) ≥ 1 is a

valid inequality for (4.8), the set Ŝ is a lattice-free convex set. We note that the relative

interior of any facet of Ŝ other than F = {x ∈ Ŝ | aT0 (x−B−1d) = 1} is not containing

any integral point. Therefore we can rotate any facet F ′ = {x ∈ Ŝ | wTx = u} of Ŝ

along the face F ∩ F ′ such that we keep B−1d inside the resulting new polyhedron,

until we hit an integral point x′ ∈ Zn. Let F ′′ ⊃ F ∩ F ′ be the obtained hyperplane.

We replace the halfspace corresponding to F ′ with the one defined by F ′′. Repeating

this with all the facets that do not contain integral points we can arrive to a maximal

lattice-free convex set S ⊃ Ŝ. Note that if B−1d /∈ Zn we have B−1d ∈ int(S). Figure

4.1 demonstrates this construction in detail.

Let us write the obtained maximal lattice free set as S = {x ∈ Rn | aTi (x−B−1d) ≤

1, i = 0, . . . , `} for some a1, . . . , a` obtained in this process. It is then easy to verify

that we have

ΦS(rj) = max
i=0,...,`

aTi (rj) = aT0 rj .

This is because the half line f + λrj , λ ≥ 0 intersects the boundary of S within the

facet F , for indices j = 1, .., n. Thus, the corresponding intersection cut (4.3) can be
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written as
n∑
j=1

(aT0 rj)sj ≥ 1.

By using the facts that s = d−Bx, and [r1, ..., rn] = −B−1 we can further rewrite the

above as

aT0 (−B−1)(d−Bx) ≥ 1

which is the same as

aT0 (x−B−1d) ≥ 1

as claimed.

ri

rj

f

PLPC

S

Figure 4.1: Lattice-free convex set construction

4.6 Deepest Cuts

Let us now turn back to a general corner polyhedron (4.3). In this section we consider

the problem of generating a lattice-free convex set S such that a weighted sum of the

coefficient of the corresponding intersection cut (4.6) is as small as possible. Let w ∈ Rk+

represent the weights. We can state our problem as follows:

min

k∑
j=1

wjΦS(rj)

s.t. S ⊂ Rm is lattice-free, and

f ∈ int(S),

(4.9)
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which we can write equivalently, by applying the following steps:

1. introduce additional variables λj , j = 1, ..., k,

2. use the definition (4.7) of ΦS , and represent S as a polyhedral set in terms of an

unknown matrix A ∈ R`×m (where we can choose ` = 2m by Corollary 4.4.4),

3. eliminate inf and represent lattice-freeness with infinitely many constraints, one

for each lattice point.

Thus we get

min

k∑
j=1

wjλj

s.t. Arj − λj1 ≤ 0 j = 1, . . . , k,

max
i=1,...,`

(A(x− f))i ≥ 1 ∀ x ∈ Zm,

A ∈ R`×m,

λj ≥ 0 j = 1, . . . , k.

(4.10)

Note that problem (4.10) is a semi-infinite mixed-integer disjunctive programming prob-

lem, in `m+ k variables, which are the coefficients of matrix A and λj , j = 1, ..., k.

Let us remark here that to generate useful cuts for an integer programming problem

we do not need to use all rows of the simplex tableaux. In fact current practice is to

use only one or two rows, corresponding to some fractional components of the basic

solution. Hence we can assume that p (where p << m) fractional rows of the simplex

table will be taken into consideration (e.g., p = 1 for relaxed Gomory cuts or p = 2 for

split cuts, triangle cuts, etc.).

Even though after the fixed dimensional representation of the problem (4.10), it still

is a tough problem to solve using the general approach of disjunctive programming.

Instead we solve the following equivalent problem:
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min
k∑
j=1

wjλj

s.t. RTax − Iλ ≤ 0 ∀ x ∈ Z

aTx (x− f) ≥ 1 ∀ x ∈ Z

ax ∈ Rp ∀ x ∈ Z

λj ≥ 0 j = 1, . . . , k

(4.11)

Problem (4.11) is an infinite programming problem as opposed to the semi-infinite

nature of problem (4.10). Though we will show that it is much easier to solve compared

to problem (4.10). First, we will prove the relationship between these two problems.

Theorem 4.6.1. Problem (4.11) and problem (4.10) share the same optimum objective

value.

Proof. Let Ā ∈ R`×p be an optimal solution to (4.10). Let π = [πx ∈ {1, . . . , `} : x ∈ Z]

be a vector s.t. āTπx(x− f) ≥ 1, ∀x ∈ Z. Let A′ ∈ RZ×p be such that a′x = āπx , ∀x ∈ Z,

then A′ is feasible to problem (4.11). Considering the solution to problem (4.11) is

a lattice-free convex set (not necessarily maximal), there exists a maximal-lattice free

convex set that has at most 2p facets.

A common approach to solve semi-infinite (and infinite) optimization problems is to

apply cutting-plane or column-generation. Initially we use a finite set X ⊆ Zp (around

f) and solve the restricted problem

min

k∑
j=1

wjλj

s.t. RTax − Iλ ≤ 0 ∀ x ∈ X

aTx (x− f) ≥ 1 ∀ x ∈ X

ax ∈ Rp ∀ x ∈ X

λj ≥ 0 j = 1, . . . , k

(4.12)

After we solve (4.12) and get an optimal matrix A, we try to extend X by solving the

following integer programming problem in variables x ∈ Zp and ε:
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max ε

s.t. Ax +ε1 ≤ 1 +Af

x ∈ Zp

ε ≥ 0.

(4.13)

If the optimal value ε̄ to (4.13) is greater than 0, then the optimal x̄ in the solution is

an integral vector satisfying A(x̄ − f) < 1. In this case we extend X ← X ∪ {x̄} and

resolve problem (4.12). Otherwise we stop, since we have a solution to (4.11). This

method is outlined at Algorithm 1.

Algorithm 1: Lattice point generation method

input: f ∈ Rm+ , R ∈ Rm×k;

1 Let X ⊂ Zm be the m-dimensional boolean cube around f ;

2 while true do

3 Solve (4.12) for X;

4 Let Ā be the optimal solution;

5 Solve (4.13) for Ā;

6 Let (ε̄, x̄) be the optimal solution;

7 if ε̄ = 0 then

8 return Ā;

9 else

10 X ← X ∪ x̄;

Problem (4.11) boasts a number of adventages over problem (4.10). First of all, it

is a pure linear programming problem in p|X|+ k variables.

Secondly, from an implementation point of view, to solve (4.10), at every new gen-

erated lattice point, we have to add k(` + 1) + 1 new constraints and `(`p + 1) new

variables (` of which are integer). We note that ` = 2p to consider all possible lattice-

free convex sets on Rp. However, when we add a new lattice point to (4.12), we create

only k + 1 new constraints and p new linear variables. Thus by Theorem 4.6.1, we can

solve problem (4.10) by solving (4.12) and (4.13) repeatedly. As our computational

experiments in the following sections show a very small number of calls to (4.13) are
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needed in practice.

4.7 Computational Improvements

In this section we discuss implementation details on how to solve (4.12) and the impor-

tant issue of how to choose the weights wj , j = 1, . . . , k in (4.12). Let
∑k

j=1 αjsj ≥ 1

be a valid inequality for the relaxed simplex table, PLP , and assume that αj > 0

for all j for simplicity. The lattice-free convex set associated with this inequality is

Lα = conv{f +
rj
αj

: j = 1, . . . , k} ([4]). By using Corollary 4.4.4 and assuming Lα is a

maximal lattice-free convex set, it has at most 2p facets. Therefore we can heuristically

say at most 2p columns are actively carrying information (that are corresponding to

the vertices of Lα). By using this fact, we reduce the number of columns selected to

2p, or a similar fixed value, q, which is a small multiple of 2p. We again note that p is

the number of fractional simplex rows to be selected.

Now we need to make a justified decision on how to choose the most important q

nonbasic columns of the simplex table. Let us return to problem (4.12). We say that

two vectors, ri and rj are within each other’s neighborhood if

rTi rj ≥ (1− ε)‖ri‖‖rj‖

where ε > 0 is a small constant. We can eliminate rj by summing ‖rj‖/‖ri‖ to the

objective coefficient of λi without changing the description of the problem. However,

for numerical stability, we only add ‖rj‖. The following algorithm implements this

detail:
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Algorithm 2: Compute objective weights

input: A set nonbasic columns r1, . . . , rk, and their priorities w0
1, . . . , w

0
k, and an

ε;

1 for j = 1, . . . , k do

2 wj ← ‖rj‖w0
j ;

3 for j = 1, . . . , k do

4 for i = j + 1, . . . , k do

5 if rTi rj ≥ (1− ε)‖ri‖‖rj‖ then

6 wi ← wi + ‖rj‖w0
j ;

7 wj ← wj + ‖ri‖w0
i ;

8 return w;

Algorithm 2 sums the magnitude of all neighboring columns in one direction. A

heuristic justification can be that if we have many columns in one direction, we want

their coefficients in the valid inequality as small as possible. Then we sort the resulting

objective vector, and choose the first q distinct columns (distinct in the sense that they

are not within each other’s neighborhood), where q is also a fixed value. This gives

us a heuristically well chosen description of the actual problem (knowing that q > 2p),

which completely fixes all dimensions.

Lemma 4.7.1. Assuming that the nonbasic columns columns are normalized and a

fixed number of, p, rows of the simplex tableau have been chosen, we need at most M
εp−1

columns to approximate problem (4.11), where M is a fixed constant.

Proof. The assumption of normalization implies that the nonbasic columns span the

p−ball. The volume and surface area of a p−ball of R radius are Vp(R) = πp/2

Γ( p2 +1)
Rp

and Sp−1(R) = pπp/2

Γ( p2 +1)
Rp−1, respectively (where Γ is the gamma function). Therefore

we are diving the surface area of p−unit ball to volumes of (p− 1)−ball of radius ε:

pπp/2

Γ( p2 +1)
π(p−1)/2

Γ( p−1
2

+1)
εp−1

=
pπ1/2

εp−1

Γ
(p

2 + 1
)

Γ
(p

2 + 1
2

) ≤ M

εp−1
.

where last inequality follows from the fact that p is fixed. Therefore there exists a fixed
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M ≥ pπ1/2 Γ( p2 +1)
Γ( p2 + 1

2)
depending on only p.

Let us note that, since integer programming in a fixed number of variables can be

solved in polynomial time (see [1, 67]), we can claim

Corollary 4.7.2. Problem (4.13) can be solved in polynomial time when p is a fixed

constant by [1, 67]. Therefore, problem (4.12) can be solved in polynomial time by [48].

Let us further add that in practice we can start in X with the 2p integer points we

can obtain from f by rounding up and/or down its coordinates. Practical results show

that in most cases the above method terminates just with a few calls to problem (4.13):

Remark 4.7.3. On our test bed we computed a total of 10529, 10528, 10522 and 10506,

2,3,4 and 5 row cuts respectively. The mean numbers of lattice points generated were

1.3116, 4.6967, 9.3581 and 15.7244, respectively for problem (4.12) (while standard

deviations were 1.3907, 3.8544, 7.2367 and 10.9894).

4.7.1 A motivating example

As an illustration we consider the small integer program from [77] depicted in Figure

4.7.1. We can observe that there is a 2-row simplex inequality that cuts into the

CG-closure, and in fact is a facet of the integer hull (the only facet missing from the

CG-closure.)
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Figure 4.2: MVI cut

4.8 Numerical Results

We coded all our algorithms in C/C++ environment using g++ compiler with -O3

option and ran the experiment on a i7 2920xm @2.5GHz computer with 16GB 1600mhz

memory installed. We use CPLEX v12.6 x64 for optimization purposes and coded our

method as a cut-callback using CPLEX C API. We only apply cut-callback at the

root node ([35, 70]). It is called right after CPLEX computes the root LP relaxation

and before CPLEX generates any cutting planes for the root node. We also turn on

CPLEX cut filter to make sure numerically stable and efficient cuts are generated.

After our cut-callback, CPLEX applies well-known cutting planes such as Gomory

mixed integer cuts, zero-half cuts, flow covers, knapsack covers, lift-and-project cuts,

mixed integer rounding cuts and many others from the literature. It can also generate

more inequalities as consequences of our inequalities that went through CPLEX filter.

We further note that, we turn off CPLEX presolve to have easy access to the simplex

tableau at the root node (this is easily justified as presolve doesn’t have any implications

on cut generation).
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The much celebrated approach in valid inequality computation is to test cut gen-

eration against instances in the well-known problem database MIPLIB ([35, 70, 9]).

Our testbed includes famous instances from MIPLIB 3 ([14]) and MIPLIB 2003 ([3]) as

given in Table 4.2. Our main indicator of cut quality is the percentage integrality gap

closed at the root node:

GC =
ZCUTS − ZLP
ZIP − ZLP

× 100

where ZCUTS , ZLP and ZIP represents objective value of the strengthened root relax-

ation with cutting planes, root LP relaxation, and integer optimal solution, respectively.
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We summarize our implementation as follows: Given a simplex tableau, and integer

constants MAX ROWS and MAX CUTS, the number of rows to be taken into consid-

eration and the number of cutting planes to be calculated respectively, we generate a

random MAX ROWS combination of the fractional row indices of the simplex tableau.

Then we proceed into generating a cut from the selected rows of the simplex tableau.

We repeat the process MAX CUTS times. We also consider only the most fractional

MAX CONSIDERED rows of the simplex tableau. An interesting improvement of this

method would consider rows in a similar fashion to pseudo-cost branching. As numeri-

cal evidence shows maximum infeasible branching doesn’t seem to perform better than

randomization on average ([2]).
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Table 4.1: Omitted instances

Reason Instances

Large msc98-ip, atlanta-ip, ds, fast0507, nw04, rd-rplusc-21, stp3d, t1717

Solved at root mod010, 10teams, khb05250, p0548, p0282, gen, vpm1, egout,

p0033, mitre, disktom, manna81

Non-optimal liu, momentum3

No improvement pk1, markshare1, markshare2, air04, air05, swath, stein45, stein27, glass4

Not enough rows cap6000

IP = LP relax. noswot, enigma
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Figure 4.6: x-row lattice-points per cut

In this scnerio, we will compare bare CPLEX with CPLEX plus 2 to 5-row cuts,

considering addition of up to 200 multi-row simplex cuts while taking into acocunt up

to the most fractional 100 rows of simplex tableau considering upto 64 most impactful

columns using Algorithm 2. While we add cuts to CPLEX, we will use CPLEX C API

cut callback library.

We omit some instances from MIPLIB due to the following reasons provided at

Table 4.1. Here Large stands for standard form representation of the problem doesn’t

fit computer memory. Solved at root is for problems which closes the full gap at the

root node. Non-optimal used for problems which we don’t know the optimal IP value.

No improvement stands for neither CPLEX nor our method can improve on the LP

relaxation value. Not enough rows is used for problems with less than MAX ROWS

infeasible rows and finally IP = LP relax. means the IP value of the problem being

equal to the LP relaxation value, hence causing division by 0 for gap closed formula.

After this filter, 56 problems have been taken into consideration.
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Figure 4.7: Lattice-free convex sets from aflow30a.

Figure 4.8: Lattice-free convex sets from protfold.

Figure 4.9: Lattice-free convex sets from sp97ar.

Our results are summarized by Table 4.2. Here GC0, GC2, GC3, GC4 and GC5 rep-

resents the gap closed if we use CPLEX base, CPLEX plus 2 to 5-row cuts, respectively.

We observe that CPLEX plus 5-row cuts performs the best, while CPLEX plus 4-row
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cuts performs worse than CPLEX plus 3-row cuts. However we note that CPLEX cut

filter is ON during this experiment. Which can lead to unpredictable results such as

this. To verify that x+1-row cuts performs better than x-row cuts on average, we carry

out the experiment at Figure 4.4. Here we only measure the gap closed using x-row

cuts only. It can be observed that 2 to 5-row cuts closes approximately, 13.5, 14.6, 15.2

and 15.5 percent gap at the root node respectively. We can see increasing performance

with the increased information in this experiment, which falls inline with the notion of

x-row cuts have fixed shaped on the x+1-row space (splits).

We note that the zero baseline at Figures 4.3 represents CPLEX performance. Hence

positive value means increased closure of gap while negative value means hindering

CPLEX performance. As we observed similar numbers in Table 4.2, the addition of

x-row inequalities helps on a lot of instances, while not hurting CPLEX’s performance

(on average). We also provide various statistics like number of lattice points generated

and the mean cpu time per cut at Figures 4.5 and 4.6. In these figures we note that the

mean cpu time per cut is very acceptable and the number of lattice points generated is

usually a very small number, which provides justifiable memory requirements.

4.9 Conclusion

Generation of valid inequalities is a crucial component of MIP software that can sig-

nificantly improve the efficiency of the branch and bound procedure. Although the

theory of multi-row simplex cuts has been known for many decades, state-of-the-art

MIP software uses only single row cuts or variations of split inequalities.

In this study we provide a simple poly-time separation method to generate multi-row

simplex cuts for a general MIP while considering a fixed number of tableau rows. Our

computational experiment shows improvement over a standard problem set, MIPLIB 3

and 2003. We also observe that considering more rows of the simplex tableau improves

the quality of the multi-row cuts on average. We hope that our positive computational

experiment will encourage more and more researchers to discover compelling evidence

of information that is hidden in the multiple rows of the simplex tableau, which has



48

eluded the attention of industry for many decades.
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Chapter 5

Optimal Resilient Distribution Grid Design

Natural disasters such as earthquakes, hurricanes, and other extreme weather pose se-

rious risks to modern critical infrastructure including electrical distribution grids. At

the peak of Hurricane Sandy, 65% of New Jersey’s customers lost power [74]. Re-

cent U.S. government sources [36, 101] suggest that new methodologies for improving

system resilience to these events is necessary. Here, we focus on developing methods

for designing and upgrading distribution grids to better withstand and recover from

these threats that are inspired by techniques developed in the artificial intelligence and

operations research communities. Our approach minimizes the upgrade budget while

meeting a minimum standard of service by selecting from a set of potential upgrades,

e.g. adding redundant lines, adding distributed (microgrid) generation (i.e. wind, solar,

and combined heat and power), hardening existing components, etc.

We formulate our approach, i.e. Optimal Resilient Distribution Grid Design (OR-

DGDP), as a two-stage mixed-integer program. The first (investment) stage selects

from the set of potential upgrades to the network. The second (operations) stage eval-

uates the network performance benefit of the upgrades against a set of damage scenarios

sampled from a stochastic distribution. We first develop an exact solution method that

exploits decomposition across the sampled scenarios. We also develop a metaheuristic

that we call Scenario Based Variable Neighborhood Decomposition Search (SBVNDS)

that is a hybrid of Variable Neighborhood Search [66] and the exact method. We present

numerical evidence that our exact method is more efficient than out-of-the-box commer-

cial mixed-integer programming solvers, and that our heuristic achieves near-optimal

results in a fraction of the time required by exact methods.
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5.0.1 Background

Network design problems and their variations are generally NP-complete [100, 76, 55].

However, recent work by [12] demonstrates that AI-based methods can lead to substan-

tial improvement for realistic applications.

While the specific problem of designing resilient distribution systems is novel, a

number of related problems exist. The flow of electric power in tree-like distribution

networks is related to multi-commodity network flows making our problem similar to

the design of multi-commodity flow networks with stochastic link and edge failures

[93, 39]. However, the second stage of our formulation requires binary variables making

our problem considerably more difficult than typical second-stage flow problems. The

interdiction literature includes related max-min or min-max problems where the goal

is to operate or design a system to make it as resilient as possible to an adversary

who can damage up to k elements. Such models are similar to ours if a k is chosen

that bounds the worst-case disaster [21, 20, 92, 30]. Binary variables at all stages

make these models computationally challenging and solvable only for small k. Here,

we exploit the probabilistic nature of our adversary to increase the size of tractable

problems (eliminates a stage of binary variables).

In power engineering, papers have primarily focused on resilient system operation

[42, 68, 59] using controls such as line switching. The ORDGDP is a fundamental

generalization of the resilient operations problem because 1) this problem is embedded

in our second stage and 2) minimizing the number of switch actions [68] can be thought

of as a design problem for a single scenario. Finally, there is also a general power grid

expansion planning problem for stochastic events [51] that is a variant of the single

commodity flow problem, with the twist that flows are not directly controllable. Like

stochastic multi-commodity flow, the second-stage variables are not binary.

5.1 Problem Description
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Nomenclature

Parameters

N set of nodes (buses).

E set of edges (lines and transformers).

S set of disaster scenarios.

Ds set of edges that are inoperable during s ∈ S.

D′s set of edges that are inoperable even though they are hardened during disaster

s ∈ S.

cij cost to build a line between bus i and j. 0 if line already exists.

κij cost to build a switch on a line between bus i and j.

ψij cost to harden a line between bus i and j.

ζi,k cost of generation capacity on phase k at bus i.

αi cost to build a generation facility at node i.

Qijk line capacity between bus i and bus j on phase k.

Pij set of phases for the line between bus i and bus j.

Pi set of phases allowed to consume or inject at bus i.

βij parameter for controlling how much variation in flow between the phases is

allowed.

di,k demand for power at bus i for phase k.

Gi,k existing generation capacity on phase k at node i.

Zi,k maximum amount of generation capacity on phase k that can be built at node

i.

C the set of sets of nodes that includes a cycle.

λ fraction of critical load that must be served.

γ fraction of all load that must be served.

L set of buses whose load is critical.
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Variables

xij determines if line i, j is built.

τij determines if line i, j has a switch.

tij determines if line i, j is hardened.

zi,k determines the capacity for generation on phase k at node i.

ui determines the generation capacity built at node i.

xsij determines if line i, j is used during disaster s.

τ sij determines if switch i, j is used during disaster s.

tsij determines if line i, j is hardened during disaster s.

zsi,k determines the capacity for generation on phase k at bus i during disaster s.

usi indicates if the generation capacity is used at node i during disaster s.

gsi,k generation produced for bus i on phase k during disaster s.

lsi,k load delivered at bus i on phase k during disaster s.

ysij determines if the jth load at bus i is served or not during disaster s.

fsij,k flow between bus i and bus j on phase k during disaster s.

x̄sij determines if at least one edge between i and j is used during disaster s.

τ̄ sij determines if at least one switch between i and j is used during disaster s.

xsij,0 determines if there exists flow on line i, j from j to i, during disaster s.

xsij,1 determines if there exists flow on line i, j from i to j, during disaster s.

5.1.1 Distribution Grid Modeling

A distribution network is modeled as a graph with nodes N (buses) and edges E (power

lines and transformers). In the physical system, each edge is composed of one, two, or

three circuits or “phases” and the electrical loads at the nodes are connected to and

consume power from specific phases [38] (P). In many papers, multiple phases are

approximated as a single phase with a single edge flow. However, under the damaged

and stressed conditions considered in this work, the flows on the phases are often unbal-

anced, i.e. unequal, making it important to model all phases to accurately evaluate flow

constraints on each phase. The phase flows are not directly controllable, but are related
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to nodal voltages and power injections by non-convex, physics-based equations [38]. In-

corporation of these equations into the current formulation increases the complexity,

however, the structure of distribution networks enables a simplification.

The design of protection systems for the vast majority of distribution circuits is

based on the these circuits having a tree-like structure. Therefore, although distribution

grids are often designed to contain many possible loops, switches are used to ensure

that these grids are operated in a tree or forest topology. While, the switches introduce

binary variables that increase the complexity of the ORDGDP, a linearized version

of the electrical power flow equations (i.e. DC power flow) on the resulting trees is

equivalent to a commodity flow model. We use a multi-commodity flow model that

models each phase separately (Fig. 5.1).

The linearization of the power flow equations assumes uniform voltage magnitude

at all nodes and ignores reactive power flows. In practice, we expect these are reason-

able approximations because, prior to being upgraded, the distribution grid is already

feasible with respect to voltage and reactive power flows. By adding lines or distributed

power sources, we put loads closer to generation thereby reducing voltage variability

and reactive power flow and the potential for violating unmodeled constraints. In prin-

ciple, it is possible to construct solutions where this is not the case, but the solutions

to ORDGDP found by our algorithms has not resulted in these situations. However,

this is an important area of future work, and we are developing methods to eliminate

solutions that violate voltage or reactive power flow limits.

5.1.2 Damage Modeling

The ORDGDP is also defined by a set of scenarios, S. These scenarios are provided by

a user or are drawn from a probabilistic damage model (the case here). Each scenario

is defined by the lines of the network that are damaged and are inoperable. Many

networks consist of mix of line and pole types, i.e. overhead and underground lines. In

our model, this is reflected by different damage probabilities. For the purposes of this

paper, we assume a static (peak) demand profile for each scenario. However, we note

that multiple load patterns can be included by creating scenarios representing the same
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damage set with different demand profiles.

5.1.3 Upgrade Options

We focus on four user-definable design options in distribution networks: 1) Hardening

existing lines to lower the probability of damage, 2) Build new lines to add redundancy,

3) Build switches, to add operating flexibility, and 4) building distributed generation

(sources of power). While deregulation has split network operation from generation

ownership in transmission systems, in distribution systems (the focus here), this split

varies from locale to locale and is our motivation for including generation as a design

option. For example, Central Hudson has recently added generators for resilience and

reliability [18].
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Q(s) = {xs, τ s, ts, zs, us :

− xsij,0Qijk ≤ fsij,k ≤ xsij,1Qijk ∀ij ∈ E , k ∈ Pij (5.1)

xsij,0 + xsij,1 ≤ xsij ∀ij ∈ E (5.2)

(τ sij − 1)Qijk ≤ f sij,k ≤ (1− τ sij)Qijk ∀ij ∈ E , k ∈ Pij (5.3)∑
k∈Pij

fij,k

|Pij |
(1−βij)

≤ fsij,k′ ≤

∑
k∈Pij

fij,k

|Pij |
(1+βij)

∀ij ∈ E , k′ ∈ Pij (5.4)

xsij = tsij ≤


0 if ij ∈ D′s

1 else

∀ij ∈ Ds (5.5)

lsi,k =

ni∑
j=0

ysijdij ,k ∀i ∈ N , k ∈ Pi (5.6)

0 ≤ gsi,k ≤ zsi,k +Gi,k ∀i ∈ N , k ∈ Pi (5.7)

gsi,k − lsi,k −
∑
j∈N

f sij,k = 0 ∀i ∈ N , k ∈ Pi (5.8)

0 ≤ zsi,k ≤ Zi,kui ∀i ∈ N , k ∈ Pi (5.9)∑
ij∈E(C)

(xsij − τ sij) ≤ |V | − 1 ∀C ∈ C (5.10)

τ sij ≤ xsij ∀ij ∈ E (5.11)∑
i∈L,k∈Pi

lsi,k ≥ λ
∑

i∈L,k∈Pi

di,k (5.12)

∑
i∈N\L,k∈Pi

lsi,k ≥ γ
∑

i∈N\L,k∈Pi

di,k (5.13)

xs, ys, τ s, us, ts ∈ {0, 1}} (5.14)

Figure 5.1: Set of feasible distribution networks
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5.1.4 Optimization model

Given a disaster s ∈ S, Q(s) in Fig. 5.1 defines the set of feasible distribution networks.

The constraints of Q(s) involve a number of well-known constraints in the combina-

torial optimization literature, including knapsacks, multi commodity flows, and tree

constraints. In this model, Eq. 5.1 is a capacity constraint on phase flows. When

the line is not built the flow is forced to 0 by xs. Eq. 5.2 forces all phases to flow in

the same direction, an engineering constraint. Eq. 5.3 states that the flow on a line

is 0 when the switch is open. Eq. 5.4 limits the fractional flow imbalance between

the phases to a value smaller than βij . Imbalance between phases cannot be extreme

otherwise equipment may be damaged. Here, we use βij = 0.15 for transformers, and

1.0 otherwise. Eq. 5.5 removes components in the damage set from the network by

linking the two damage sets with the hardening variables. Eq. 5.6 requires that all or

none of the load at a bus is served. Once again, this an engineering limitation of most

networks. Eq. 5.7 limits the distributed generation output by the generation capacity.

Eq. 5.8 ensures flow balance at the nodes for all phases. Eq. 5.9 caps the generation

capacity installed at the nodes. Eq. 5.10 eliminates network cycles, forcing a tree or

forest topology. Eq. 5.11 states a switch is used only if the line exists. Eq. 5.12 ensures

a minimum fraction λ of critical load is served. Here, we generally require λ = 0.98.

Eq. 5.13 ensures that a minimum fraction of load is served. Here, γ = 0.5. Eqs. 5.12

and 5.13 are the resilience criteria that must be met by Q(s) and are similar to the

n− k − ε criteria of [20]. Eq. 5.14 states which variables are discrete.

One of the more difficult constraints in this formulation is Eq. 5.10 due to possible

combinatorics. There are different ways to implement cycle constraints, and we use the

formulation in Fig. 5.2.
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∑
ij∈E(C)

(x̄sij − τ̄ sij) ≤ |V | − 1 ∀C ∈ C (5.15)

xsij ≤ x̄sij ∀ij ∈ E (5.16)

τ sij ≥ xsij + τ̄ sij − 1 ∀ij ∈ E (5.17)

Figure 5.2: Cycle constraints

While the multi-graph structure introduces a large number of cycles, there is a rela-

tively small number of cycles when the multi-edges are reduced to one edge. Thus, we

introduce binary variables (linear number) for the edges of the corresponding single-

edge graph and enumerate the possible cycles in that graph (Eq. 5.15). Then, Eqs 5.16

and 5.17 are used to pass information between artificial cycle variables and the actual

line and switch variables.

For each s ∈ S, Q(s) determines the set of feasible distribution networks. There

are some redundant variables in this formulation that improve the separability of the

problem. The ORDGDP is the minimum cost design that falls in the intersection of all

the Q(s) (Fig. 5.3).
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min
∑
ij∈E

cijxij +
∑
ij∈E

κijτij +
∑
ij∈E

ψijtij

+
∑
i∈N

αiui +
∑

i∈N ,k∈Pi

ζi,kzi,k (5.18)

s.t.

xsij ≤ xij ∀ij ∈ E , s ∈ S (5.19)

τ sij ≤ τij ∀ij ∈ E , s ∈ S (5.20)

tsij ≤ tij ∀ij ∈ E , s ∈ S (5.21)

zsi,k ≤ zi,k ∀i ∈ N , k ∈ Pi, s ∈ S (5.22)

usi ≤ ui ∀i ∈ N , s ∈ S (5.23)

zi,k ≤Mi,kui ∀i ∈ N , k ∈ Pi (5.24)

(xs, τ s, ts, zs, us) ∈ Q(s) ∀s ∈ S (5.25)

x, τ, t, u ∈ {0, 1} (5.26)

Figure 5.3: Optimal Resilient Distribution Grid Design

Eq. 5.18 minimizes the cost of building lines and switches, hardening lines, and build-

ing facilities and generation. For notational simplicity, existing lines, switches, and

generation are included as variables in the objective with 0 cost, however in practice

these enter the formulation as constants. Eqs. 5.19 through 5.24 tie the first stage

(construction) decisions with second stage variables (Q(s)). Eq. 5.25 states that the

mixed-integer vector (xs, τ s, ts, zs, us) constitutes a feasible distribution network for

scenario s.

5.1.5 Generalizations

Without loss of generality, the formulation in Fig. 5.3 assumes the xsij variables are

treated as constants if the lines exist and are not in Ds. Furthermore, Fig. 5.3 also

assumes that hardened lines and new lines are built with switches. This is reflective

of current industry practices and arises from the observation that switch costs are
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negligible when compared with the cost of the line itself. However, this assumption can

be eliminated by modifying constraints 5.19 and 5.21 as follows:

xsij = xij ∀ij /∈ Ds

xsij ≤ xij ∀ij ∈ Ds

tsij = tij ∀ij /∈ D′s

tsij ≤ tij ∀ij ∈ D′s

(5.27)

Finally, for notational simplicity, the formulation of Fig. 5.3 also assumes ij /∈

Ds, ij ∈ D′s never occurs. However, if necessary this assumption can be relaxed by

introducing auxiliary variables and additional constraints.

5.1.6 Linearized Distribution Flow

Although 3-phase AC power flow has a complicated form, we can use a simplification

of it that is well-known to be accurate for distribution networks ([73]), namely the

Distribution Flow of Baran and Wu ([8]). The derivation of these equations can be

done in the following way. Let us consider Ohm’s Law:

Vj = Vi − zijIij

here Vj is complex vector of voltage of bus j, zij is the complex impedance matrix,

and Iij is the complex vector of current on line ij. We multiply both sides by their

Hermitian transpose to get:

VjV
H
j = (Vi − zijIij)(Vi − zijIij)H

= ViV
H
i − ViIHij zHij − zijIijV H

i + zijIijI
H
ij zij

we do the simplifications: vj = VjV
H
j hermitian voltage matrix, Sij = ViI

H
ij complex

power flow matrix, lij = IijI
H
ij are the complex losses on line ij. By eliminating loss

terms, we get LinDistFlow:

vj = vi − (Sijz
H
ij + zijS

H
ij )

sj =
∑
i:i→j

Λij −
∑
k:j→k

Λjk
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where sj is the complex power injection of bus j, Sij = γΛij represents the complex

power flow matrix on line ij, Λij is a diagonal matrix of phase power flows,

γ =


1 α2 α

α 1 α2

α2 α 1

 ,

α = e−j2π/3 represents the 120 degrees rotation for phases. Let Λij = Pij + iQij be the

active and reactive power flow representation of the power flow.

Sijz
H
ij = γ(Pij + iQij)(rij + ixij)

H

= γ(Pij + iQij)(r
T
ij − ixTij)

= γ(Pijr
T
ij +Qijx

T
ij + i(Qijr

T
ij − PijxTij))

where

γPijr
T
ij =


1 α2 α

α 1 α2

α2 α 1



P aij

P bij

P cij



raaij rbaij rcaij

rabij rbbij rcbij

racij rbcij rccij



=


P aijr

aa
ij + P bijα

2rabij + P cijαr
ac
ij . . . . . .

. . . P aijαr
ba
ij + P bijr

bb
ij + P cijα

2rbcij . . .

. . . . . . P aijα
2rcaij + P bijαr

cb
ij + P cijr

cc
ij



=


P aijr

aa
ij + P bij r̄

ab
ij + P cijr

ac
ij . . . . . .

. . . P aijr
ba
ij + P bijr

bb
ij + P cij r̄

bc
ij . . .

. . . . . . P aij r̄
ca
ij + P bijr

cb
ij + P cijr

cc
ij


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where nondiagonal entries are omitted. If we put these equations together, we get

LinDistFlow in explicit form:

vaj = vai − 2(raaij P
a
ij + xaaij Q

a
ij + r̄abij P

b
ij + x̄abijQ

b
ij + racij P

c
ij + xacijQ

c
ij)

vbj = vbi − 2(rbaij P
a
ij + xbaijQ

a
ij + rbbijP

b
ij + xbbijQ

b
ij + r̄bcijP

c
ij + x̄bcijQ

c
ij)

vcj = vci − 2(r̄caij P
a
ij + x̄caijQ

a
ij + rcbijP

b
ij + xcbijQ

b
ij + rccijP

c
ij + xccijQ

c
ij)

plj =
∑
i:ij∈E

P lij −
∑

k:jk∈E
P ljk, ∀l ∈ {a, b, c}

qlj =
∑
i:ij∈E

Qlij −
∑

k:jk∈E
Qljk, ∀l ∈ {a, b, c}

0.95vlref ≤ vlj ≤ 1.05vlref , ∀l ∈ {a, b, c}

where

zij = rij + ixij

z̄ij = r̄ij + ix̄ij

zij = rij + ixij

z̄ij and zij are 2π/3 and 4π/3 rotated zij , respectively. We can include these equa-

tions in our model and represent the flow with its real and reactive components easily

that is a realistic approximation of a 3-phase AC power flow on radial networks.

5.1.7 Chance Constraints

In this chapter we will consider the probabilistic (chance) constrained variant of OR-

DGDP. Without loss of generality let us consider an optimization problem of the form:

min cTx

s.t. Ax = b

P (Tx ≥ ξ) ≥ p

x ≥ 0,

(5.28)

where ξ = (ξ1, . . . , ξr)
T is a random vector with finite support. Problem 5.28 is called a

chance constrained optimization problem and was first formulated and studied in [79],
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[80] and [81], for the case of a discrete ξ. A detailed overview of the problem can be

found in [82].

To solve (5.28) with discrete random variables, one usually needs to run either

a column generation or cutting plane algorithm over a set of support vectors of the

probability distribution, that are called p-level efficient point (pLEPs) (Figure 5.4).

The notion of a pLEP of a discrete distribution was introduced in [81], where a dual

method, for the solution of problem (5.28), was also proposed. Assuming the knowledge

of all pLEPs, a cutting plane method was proposed in [84]. First we have to enumerate

all pLEPs and then apply the cutting plane method that subsequently generates the

facets of the cunvex hull of the pLEPs. Not long after that a column generation method,

to generate tight lower and upper bounds was presented in [31], making the numerical

solvability of problem (5.28) more realistic, as the enumeration of all pLEPs frequently

led to intractability. The method was later extended to general convex programming

with probabilistic constraints by the same authors [32]. Problem (5.28) was reformu-

lated as a large scale mixed integer programming problem with knapsack constraints in

[90]. Using bounds on the probability of the union of events, new valid inequalities for

these mixed integer programming problems have been derived. A general framework to

use probability bounds for the solution of chance constrained stochastic programming

problem was presented in [83]. We also mention [103], where the algorithm in [31] was

further explained.
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Figure 5.4: pLEP’s on R3

Now let us return to the context of ORDGDP. For some networks, a very small

number of scenarios in S may drive the total cost in Eq. 5.18. In real-world applications,

the designer of the network may lower the total investment cost by accepting some risk

of not always satisfying the resiliency criteria. In these situations, we can relax Eqs.

5.12 and 5.13 to a set of chance constraints:

P



∑
i∈L,k∈Pi

lsi,k ≥ λ
∑

i∈L,k∈Pi

di,k(1− vs) ∀s ∈ S

∑
i∈N ,k∈Pi

lsi,k ≥ γ
∑

i∈N ,k∈Pi

di,k(1− vs) ∀s ∈ S

vs ≤ 0 ∀s ∈ S


≥ 1− ε (5.29)

Where vs, s ∈ S is a Bernoulli random variable, representing the probability that

scenario s won’t happen, or in other words, that we relax constraints (5.12) and (5.13)

(therefore will be disregarded). Assuming scenarios happen independently uniform at

random, (5.29) is equivalent to stating that these constraints are violated in ε|S| of the
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scenarios. Thus, we can restate these constraints as:∑
i∈L,k∈Pi

lsi,k ≥ λ
∑

i∈L,k∈Pi

di,k(1− vs) ∀s ∈ S

∑
i∈N ,k∈Pi

lsi,k ≥ γ
∑

i∈N ,k∈Pi

di,k(1− vs) ∀s ∈ S∑
s∈S

vs ≤ ε|S|

vs ∈ B ∀s ∈ S

(5.30)

It is important to note that this is a critical observation to solve this problem, as it is

well-known that chance constraints using discrete random variables is a very intractable

problem.

5.2 Algorithms

In this section we discuss the algorithms we developed for solving the ORDGDP. OR-

DGDP is a two-stage mixed integer programming (MIP) problem with a block diagonal

structure that includes coupling variables between the blocks. We developed an exact

algorithm that is vastly more efficient than a commercial state-of-the-art MIP solver.

We then used the exact algorithm to develop a hybrid with variable neighborhood

search that is competitive with the exact solver and is better than a heuristic used by

the industry.

5.2.1 Scenario-Based Decomposition (SBD)

Decomposition is often used for solving two-stage stochastic MIPs [102], and it can be

applied to ORDGDP after the following key observation:

Observation 5.2.1. The second stage variables do not appear in the objective func-

tion. Therefore any optimal first stage solution based on a subset of the second stage

subproblems that is feasible for the remaining scenarios, is an optimal solution for the

original problem.

Based on this observation, we can apply SBD to solve the ORDGDP. At high level,

Algorithm 3 solves problems with iteratively larger sets of scenarios until a solution



65

is obtained that is feasible for all scenarios. The algorithm takes as input the set of

disasters (scenarios) and an initial scenario to consider, S′. Line 2 solves ORDGDP on

S′, where P (S′) and σ∗ are used to denote the problem and solution respectively. Line 3

then evaluates σ∗ on the remaining scenarios in S \S′. The function l : P ′(s, σ∗)→ R+,

is an infeasibility measure that is 0 if the problem is feasible, positive otherwise. This

is implemented by maximizing the reliability constraints, i.e. total and critical demand

satisfied. It measures the gap between the delivered and the required demand (the right

hand side of the Eqs. 5.12 and 5.13). This function prices the current solution over

s ∈ S \S′. If all prices are 0, then the algorithm terminates with solution σ∗ (lines 4-5).

Otherwise, the algorithm adds the scenario with the worst infeasabilty measure to S′

(line 7).

We also tested other decomposition strategies such as Benders and Dantzig-Wolfe,

however, their performance was tempered by the ORDGDP structure. The ORDGDP

has MIP formulations at both stages of the problem and does not contain optimality

conditions in the second stage (only feasability conditions). These approaches rarely

out performed the commerical MIP solver.

Algorithm 3: Scenario Based Decomposition

input: A set of disasters S and let S′ = S0;

1 while S \ S′ 6= ∅ do

2 σ∗ ← Solve P (S′);

3 I ←
〈
s1, s2 . . . s|S\S′|

〉
s ∈ S \ S′ : l(P ′(si, σ∗)) ≥ l(P ′(si+1, σ

∗));

4 if l(P ′(I(0), σ∗)) ≤ 0 then

5 return σ∗;

6 else

7 S′ ← S′ ∪ I(0);

8 return σ∗
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5.2.2 Greedy Algorithm

A computationally efficient way of generating feasible solutions to the ORDGDP relaxes

the coupling first stage variables and solves each scenario s ∈ S individually. The

solutions are combined by taking the maximum of each construction variable (X =

x ∪ τ ∪ t ∪ z ∪ u) over all scenarios (Algorithm 2). The switch construction cost is

determined by switches that are needed to reduce the network into a tree for every

scenario (line 4). Although the Greedy Algorithm is simple and fast, it rarely results in

an optimal investment decision. However, it is representative of the types of heuristics

used by the industry: see Reference [75] for a survey.

Algorithm 4: Greedy

input: A set of disasters S;

1 for s ∈ S do

2 σs ← Solve(P ′(s));

3 σ∗(x) = max{σs(x)|∀s ∈ S}, ∀x ∈ X ;

4 Update σ∗(xi) with switches to preserve feasibility;

5 return σ∗

5.2.3 Variable Neighborhood Search

To overcome the limitations of greedy heuristics like Algorithm 2, we developed an

approach based on Variable Neighborhood Decomposition (VNS) Search [66]. The

algorithm fixes a subset of first stage variables to their current value and searching

the remaining variables for a better solution. If all the first stage variables are fixed,

the problem decomposes into |S| separate problems that are easily solved and provide

heuristic justification for focusing on first stage variables. More formally, P (σ, J) de-

notes the problem with first stage variables, J ∈ X ,fixed to σ, i.e. xj = σ(xj), and PLP

is the LP relaxation of problem P .

Algorithm 3 describes the VNS procedure. Line 1 computes the solution to the LP

relaxation of the ORDGDP, (σLP ). Line 4 counts the number of variable assignments

that are different between the solution to LP relaxation (σLP ) and the best known
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solution σ∗ (σ(x) denotes the variable assignment of x in solution σ). Line 5 orders the

variables of X by the difference between their assignments in σ∗ and σLP . Heuristically,

those variables whose assignments are furthest from their LP assignment represent good

opportunities to improve σ∗. The algorithm updates the rate at which the neighborhood

size is increased (step) based on whether or not the algorithm is in a restart situation

(lines 8 and 11). If the algorithm is in a restart, the ordering of the variables is also

randomized (line 9). Line 13 computes the best solution in the neighborhood of σ where

the first k elements of J are fixed. If the resulting solution is better, then the algorithm

proceeds with a new σ∗ (lines 15-18)–f is used as shorthand for Eq. 5.18. Otherwise, the

size of the neighborhood is increased (lines 20-23). The iterations terminate when the

maximum number of restarts is reached (line 2), the maximum number of neighborhood

resizings is reached (line 12), or a time limit is reached. In this paper, maxRestarts =

10, maxIterations = 4, maxTime = 48 CPU hours, and d = 2.
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Algorithm 5: Variable Neighborhood Search

input: σ′, maxTime, maxRestarts and maxIterations;

1 Let σLP ← Solve(PLP ), σ∗ ← σ′, restart← false;

2 while t < maxTime and i < maxRestarts do

3 j ← 0;

4 n← |x ∈ X : |σ∗(x)− σLP (x)| 6= 0|;

5 J ←
〈
π1, π2 . . . π|J |

〉
∈ X : |σ∗(πi)− σLP (πi)| ≤ |σ∗(πi+1)− σLP (πi+1)|;

6 if restart then

7 i← i+ 1;

8 step← 4n
d , k = |X | − step;

9 shuffle(J)

10 else

11 step← n
d , k = |X | − step;

12 while t < maxTime and j ≤ maxIterations do

13 σ′ ← Solve(P (σ∗, J(1, . . . , k));

14 if f(σ′) < f(σ∗) then

15 σ∗ ← σ′;

16 i← 0;

17 restart← false;

18 j ← maxIterations;

19 else

20 j ← j + 1;

21 k = k − step
2 ;

22 if j > maxIterations then

23 restart← true;

24 return σ∗

In our experimentation, VNS outperformed other popular random walk heuristics,

such as Simulated Annealing (SA). We conjecture that this is because the ORDGDP
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does not appear to have a concise neighborhood structure, which is generally a prereq-

uisite for successful SA implementations. Here, we overcome this challenge by using a

mixed-integer program as a neighborhood oracle within the local search step of VNS.

A block diagram representation of Algorithm 5 is provided in Figure 5.5.

Compute σLP

Compute δ

flag
t < tmax

i < imax

STOP

Shuffle δ

get π

i + +

Sort δ

get π

j + +

Solve

P (σ̄, J(1, . . . , k))

σ′ optimum

j < jmax

t < tmax

f(σ′) < f(σ∗)j > jmax

σ̄ ← x′

flag ← false

i← 0

j ← 0

flag ← true

Yes

No

Yes

Yes

NoYes

No

No

No

Yes

Figure 5.5: VNS block diagram
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5.2.4 Scenario-based Variable Neighborhood Decomposition Search

(SBVNDS)

Given that we have a powerful exact method in Algorithm 1 as well as a VNS in Algo-

rithm 3, the natural algorithm hybridizes these approaches to get Algorithm, SBVNDS.

The algorithm proceeds exactly the same as Algorithm 1, except that the exact solver

for Solve(P (S′)) is replaced by VNS in line 2.

Algorithm 6: SBVNDS

input: A set of disasters S and let S′ = S0;

1 while S \ S′ 6= ∅ do

2 σ∗ ← Solve P (S′) using VNS;

3 I ←
〈
s1, s2 . . . s|S\S′|

〉
s ∈ S \ S′ : l(P ′(si, σ∗)) ≥ l(P ′(si+1, σ

∗));

4 if l(P ′(I(0), σ∗)) ≤ 0 then

5 return σ∗;

6 else

7 S′ ← S′ ∪ I(0);

8 return σ∗

5.3 Empirical Results

The algorithms were implemented using the CPLEX C++ API with Concert technology

as a 32 threaded application on Intel XEON 2.29 GHz processors. Since these are

planning problems, in principle, practitioners could utilize days of CPU time to produce

a plan. However, in order to produce a wide range of results, we limited the algorithms

to 48 hours of CPU time. Our problems are based on a modified version of the IEEE

34 bus systems [58] (see Fig. 5.6) that are representative of medium sized distribution

systems.
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(a) Urban (b) Rural

Figure 5.6: We generated two variations of the IEEE 34 bus problem. Each problem

contains three copies of the IEEE 34 system to mimic situations where there are three

normally independent distribution circuits that could support each other during extreme

events. These problems include 100 scenarios, 109 nodes, 118 possible generators, 204

loads, and 148 edges, resulting in problems with > 90k binary variables. The difference

between rural (a) and urban (b) is the distances between nodes (expansion costs and

line impedances). The cost of single and three phase underground lines is between

$40k and $1500k per mile [47] and we adopt the cost of $100k per mile and $500k per

mile, respectively. The cost of single and three phase switches is estimated to be $10k

and $15k, respectively [13]. Finally, the installed cost of natural gas-fired CHP in a

microgrid is estimated to be $1500k per MW [34].
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Scenarios for this paper are based on damage caused by ice storms, whose intensity

tends to be homogeneous on the scale of distribution systems [91]. Intensities are mod-

eled as damage rates per mile on power poles and are transformed into the probability

a power line segment of one mile length is damaged (a pole has failed). Empirically, we

find that 100 randomly created scenarios is sufficient to capture the salient features of

the distribution. Each scenario contains two sets of line failures, one for hardened lines

(D′s) and a second for lines that are not hardened (Ds).

(a) CPU time (b) Objective value

Figure 5.7: Sensitivity of the CPU time and objective value to changes in λ on the

Urban problem for SBD when hardened lines are not damageable.
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(a) # of Hardened (b) # of Scenarios

Figure 5.8: Sensitivity of the number of lines hardened and the number of scenarios

generated to changes in λ on the Urban problem for SBD when hardened lines are not

damageable. Due to short distances, the solution favors hardening many lines. The

required hardening is relatively insensitive to the amount of damage and λ. However,

there are spikes in problem difficulty at transitions in λ that require additional load

service.

Table 5.1 provides results when hardened lines are not damaged or are damaged at

rates of 1
100 or 1

10 of the unhardened rate. There are a number of important observations

in these tables. First, CPLEX by itself is computationally uncompetitive. Only when

the hardened lines are not damaged does CPLEX complete within the time limit. These

problems are “easier” because hardened lines are robust and relatively inexpensive,

enabling CPLEX to eliminate many solutions. The objective value for Greedy is always

worse than optimal. The exact method SBD is much more computationally efficient

than CPLEX and is able to solve many more problems to optimality indicating that

CPLEX is unable to recognize the scenario structure in the problems. However, SBD is

sensitive to which scenarios are included (function l), and if poor choices are made, it

begins to resemble CPLEX. However, the meta-heuristic SBVNDS is able to overcome

these limitations. It is much faster than SBD, and almost always achieves the optimal

solution. This indicates that heuristic methods based on combining powerful techniques

like VNS with strong exact algorithms are very good on this type of 2-stage mixed

integer programming problems. Figures 5.9 through 5.16 provides more statistics that

we will further analyze.
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First let’s take a closer look the the instances where a hardened asset has a failure

probability of one hundredth original failure probability of a line. Therefore hardened

assets are fairly likely to survive a disruption, however there is still non-negligible

probability that they may fail.
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(b) Objective value

Figure 5.9: 1
100 Urban Comparison
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Figure 5.10: 1
100 Urban SBVNDS solution
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(b) Objective value

Figure 5.11: 1
100 Rural Comparisons
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Figure 5.12: 1
100 Rural SBVNDS solution

We obserb that because hardened assets are likely to survive and hardening a line is

cheaper in comparison to introducing microgrid generation, we prefer hardening major

components of the network to keep the radial operations.

Next we take a look to the case of a hardened asset to be damaged with one tenth

the original probability of line being damaged, therefore there is significant probability

a line being damaged even though it might be hardened. These are the toughest

instances of our data set and even SBVNDS runs into CPU time limit among one of

these instances. However SBVNDS still provides a quality solution within reasonable

CPU time compared to SBD.
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(b) Objective value

Figure 5.13: 1
10 Urban Comparison
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Figure 5.14: 1
10 Urban SBVNDS solution
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(b) Objective value

Figure 5.15: 1
10 Rural Comparisons
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Figure 5.16: 1
10 Rural SBVNDS solution

We observe that the stronger the extreme event gets the more microgrid generation

is added to the graph in exchange for the hardening assets. This is understandable

considering as the probability that the hardened lines are damaged is increasing, the

probability that there will be islanded costumers. If any of these customers have a

critical demand, it is likely to be covered by a microgrid generation facility, as they are

separated from the substation.

5.3.1 Critical load constraint

Figures 5.17 and 5.18 show some results for rural and urban problems when the required

fraction of critical load served is varied. In general, peaks in CPU time correspond to

discrete jumps in the amount of load served as λ increases.
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(a) CPU time (b) Objective value

Figure 5.17: Sensitivity of the CPU time and objective value to changes in λ for SBD on

the Rural problem when hardened lines are not damageable. Because of long distances,

the solution favors adding generation and is sensitive to the amount of damage and λ.

(a) # of Hardened (b) # of Scenarios

Figure 5.18: Sensitivity of the number of hardened lines and the number of scenarios to

changes in λ for SBD on the Rural problem when hardened lines are not damageable.

5.3.2 Chance constraints

Fig. 5.19 and Fig. 5.20 shows results when the resiliency criteria are relaxed to the

chance constraints in Eq. 5.30 and ε is varied. Interestingly, CPU time is not impacted

too greatly by damage rates. Also, the solution is relatively insensitive to the choice of

ε as damage rates increase, indicating that an “easier” problem with small ε could be

used to approximate a solution to the harder problems.
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(a) CPU time (b) Objective value

Figure 5.19: These figures show how the CPU time and solution quality changes when

chance constraints (ε) is modified for the Rural network, when hardened lines are not

damageable. These plots are generated by SBD.

(a) # of Hardened (b) # of Scenarios

Figure 5.20: These figures show how the number of hardened lines and the number

of scenarios generated changes when chance constraints (ε) is modified for the Rural

network, when hardened lines are not damageable. These plots are generated by SBD.

5.4 Conclusions

We formulated, proposed and tested new algorithms to solve the ORDGDP. Our pri-

mary contribution is an algorithm that combines the benefits of an exact method based

on scenario decomposition with variable neighborhood search. This algorithm is shown

to scale well to problems that are difficult for exact methods, without sacrificing solution

quality. Future directions include:
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1. Using a more accurate model of the 3-phase AC power flow equations to better

exclude infeasible solutions, such as the DistFlow approximation of Baran and Wu

that is discussed in Section 5.1.6.

2. Scaling to entire city-sized distribution networks. We considered a feeder system

connected to a single substation in this paper. However, distribution grids in a city

can span multiple substations. In general, we expect city-sized networks can be

partitioned into subproblems to reduce complexity and is a topic of future work.

3. Including a variation of the restoration problem posed by [23].

4. Using various valid inequalities for ORDGDP, including the multi-row simplex in-

equalities of Chapter 4.
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[103] B. Vizvári. The integer programming background of a stochastic integer pro-
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