
ANALYZING AND MODELING GROUPS

BY JINYUN YAN

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

S. Muthukrishnan

and approved by

New Brunswick, New Jersey

October, 2015

ABSTRACT OF THE DISSERTATION

Analyzing and Modeling Groups

by Jinyun Yan

Dissertation Director: S. Muthukrishnan

A group is a collection of humans. Members within a group often share certain char-

acteristics, interests and preferences, along with their individual differences. Such col-

lections of members lead to interesting collective behavior. In this work, we analyze

and model the behavior of groups when part of three real-world applications: group

recommendation, personalized search and reference group identification.

Group recommendation is a variation of the classical problem of recommending

items, but where the client is a group rather than an individual. We are interested in

the setting where individuals, part of the same group or not, interact regularly with

the recommender system. There are two challenges in group recommendation in this

setting: 1) historical information about member and group is often missing; 2) members’

presence when they ask for a recommendation may be different at different times. We

formulate this problem as a group multi-armed bandit problem and design policies for

two types of group feedback. We develop a demo system to collect member and group

feedback on recommendations to group events and observe the existence of member

influence when the group wants to reach consensus.

Personalized search results rely heavily on individuals’ search and click history.

However, a large portion of queries submitted by users each day is new. It is hard to

improve search relevance on these queries. We analyzed queries and clicks at group

ii

level and observed that individuals’ click preferences align well with groups’ prefer-

ences. With this in mind, we propose cohort models that model each user through

groups of users who are similar in one or more dimensions, and facilitate personalized

search through cohort’s search intent and click preference. Experiments show that co-

hort models can achieve significant improvement on search relevance, particularly when

personal historical data is insufficient.

A good way to assess a person is to look at her reference group. A person is

considered to be equal or near equal to people in her reference group. We study the

problem of finding a group of comparable people for any given researcher, so that

we can better represent and understand the researcher in query. To do so, we build

researchers’ research trajectory with year, publication and venue. Then, we use a

trajectory matching algorithm to determine how similar they are and identify relevant

candidates. Our algorithm can be easily modified to find more senior researchers whose

early stage of their career is comparable to a given junior researcher. We also provide

a map-reduce version of our matching algorithm to make it scale well with data.

iii

Acknowledgements

I am immensely fortunate to be advised by Professor S. Muthukrishnan. He is one of

the smallest and most hard working people I know. His reasoning, thoughts and broad

knowledge have profound impact on my research and on my life. By working with him,

I learned the beauty of asking questions, formulating problems and expressing ideas.

He encouraged me to purse what I want to do and has been very supportive during my

Ph.D.. This thesis would not have been possible without him.

I am very grateful to work with Graham Cormode. His expertise and in-depth

guidance helped me a lot. He is a turn-to person whenever I have questions. He gave

me many unselfish help and valuable suggestions. I would thank Professor Tomasz

Immielinski, who guided me through my first research step. Special thanks to Professor

Badri Nath for serving on my committee and for his valuable feedback on my work.

I have spent memorable summers at Technicolor Labs, Microsoft Research and Bing.

More than two of thirds of the thesis got done during these internships. Thank Stratis

Ioanndis, Jose’ Bento, Ryen White, Wei Chu for great insights and mentoring. In

addition, I am very thankful to members of MassDAL, all fellow students in the CS

department of Rutgers and colleagues during internships. I benefited a lot from working

with and learning from these smart people.

The last but not the least, I thank my husband Qi, my parents, younger brother

and my parents-in-law for their enduring love and support.

iv

Dedication

To my daughter Anna Chen.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Recommendation Targeting to Groups 1

1.2. Enhance Personalized Search by Groups 4

1.3. Identify Reference Group for Researchers 5

2. Recommendation to Groups . 7

2.1. MAB Background and Problem Formulation 8

2.1.1. Multi-armed Bandits Background 8

2.1.2. Group-MAB Formulation . 9

2.1.3. A Naive Approach and Its Regret Bound 11

2.2. Two Settings of Reward Process . 12

2.2.1. Receiving Individual Rewards . 13

2.2.2. Receiving Group Reward . 14

2.3. Related Work . 22

2.3.1. Group Recommendation . 22

2.3.2. Stochastic Contextual Bandits 24

2.4. Proofs . 27

2.4.1. Proof for Theorem 1 . 27

vi

2.4.2. Proof for Theorem 3 . 30

2.5. Numerical Results . 35

2.5.1. Group-UCB . 35

2.5.2. Contextual ε-Greedy . 38

2.6. A Group Recommender Demo System 39

2.6.1. System Overview . 41

2.6.2. Recommendation Model . 42

2.6.3. User Study and Model Evaluation 46

2.7. Conclusion . 47

3. Cohort Modeling for Enhanced Personalized Search 48

3.1. Introduction . 48

3.1.1. Background and Related Work 48

3.1.2. Contributions . 51

3.2. Cohort Modeling . 52

3.3. Empirical Datasets . 58

3.3.1. All Queries . 58

3.3.2. New Queries in User Search History 59

3.3.3. Popularity of Queries . 60

3.3.4. Query Entropy . 60

3.3.5. Acronym Queries . 61

3.4. Experiment Results and Findings . 62

3.4.1. Ranking Models and Evaluation Metrics 62

3.4.2. Research Questions and Findings 64

3.5. Learned Cohort Models . 69

3.5.1. Clustering Method . 70

3.5.2. Evaluating Clustered Cohorts . 71

3.5.3. Preference Analysis . 73

3.6. Discussion and Conclusion . 74

vii

4. Comparable Groups . 77

4.1. Introduction . 77

4.2. Problem Setting . 79

4.3. Data and Analysis . 80

4.3.1. Exploratory Data Analysis . 80

4.4. Algorithms to Comparable Researchers 83

4.4.1. On Venue Score . 85

4.4.2. On Topic Similarity . 88

4.4.3. On Prefix Matching . 90

4.4.4. On Parallel Computation . 91

4.5. Conclusions and Future Work . 92

5. Summary and Future Directions . 95

References . 97

viii

List of Tables

2.1. Member information in the group . 36

2.2. Prediction performance on test set, prediction threshold = 0.5 46

3.1. Data sets for cohort modeling experiments, All dates from 2013. 59

3.2. Gains in MAP and MRR over baseline(± SEM). 65

3.3. Gains in MAP and MRR over baseline for acronym queries(± SEM). . . 69

3.4. Gains in MAP and MRR over baseline for acronym queries(± SEM). . . 72

4.1. Dataset statistics . 80

4.2. Sequence example of a researcher . 83

4.3. An optimal sequence matching . 87

4.4. Case study of edit distance . 88

4.5. Case Study of Topic Edit Distance . 94

ix

List of Figures

2.1. (a) Random groups up to 10 users. (b) Average slope of the regret with

regard to group size. 36

2.2. (a)Regrets for groups of people with same zip code. (b)Regrets for equal

weight vector and influence weight vector. 37

2.3. (a) Distributions of scaling coefficients for households of size 2 and 3. (b)

Distributions of convergence times for households of size 2 and 3. . . . 38

2.4. Scatter plot showing correlation between scaling coefficients and conver-

gence times. 39

2.5. (a) Regret over T when xt is from i.i.d. (b) Regret over T when xt is not

from i.i.d. 40

2.6. Group decision making framework . 40

2.7. Create event and recommendation for the group 42

2.8. Voting and other members’ decisions . 43

2.9. Information stored by the system . 44

3.1. Gains in MRR over baseline for each cohort type for new and old queries

from each user (±SEM) . 66

3.2. Gains in MRR over baseline for each cohort type for difference in the

popularity of the query(±SEM) . 67

3.3. Gains in MRR over baseline for each cohort type for different query

entropy bins(±SEM) . 68

3.4. Gains in MRR over the baseline for clustered cohorts versus predefined

cohorts for different k for a selected query set(±SEM). 71

3.5. Average DiffTop weight for each cohort (±SEM). 75

4.1. Tables and data schemas . 79

x

4.2. Start and end years. 81

4.3. Research period length. 81

4.4. Burst speed and half speed . 83

4.5. Correlations with #publications . 84

4.6. Correlations with h-index and g-index 86

xi

1

Chapter 1

Introduction

Evolutionary theory suggests humans evolved to function in groups for survival. People

consciously form, join or leave groups, for instance, families and unions. They also

belong to multiple groups by traits, demographics, or interests. Members in the group

often exhibit common characteristics, shared interests and similar preferences, as well

as their individual differences. Such mixture leads to interesting and complex collective

behavior.

With the bloom of internet, social networking sites and mobile apps, in addition to

current trend of moving offline activities to online, tons of data are generated. There

is extensive research on mining such data to understand individuals, in turn to provide

good personalized services. However, groups are less explored. In this work, we focus on

analyzing and modeling groups in three real-world problems: recommendation targeting

to groups, personalized search enhanced by groups and identification of reference groups

for researchers through scholarly data.

1.1 Recommendation Targeting to Groups

Recommender systems have become an important research topic. There are many prac-

tical applications equipped with recommendation to help users to deal with information

overload and get personalized experiences. Examples include recommending products

at Amazon [51] and movies at MovieLens [57] and Netflix [12]. The recommendation

problem is commonly reduced to rating prediction problem that estimates ratings for

items that the user has not seen nor rated. Once we obtain the estimated ratings, we

can recommend items with highest ratings to the user.

Formally, the recommendation problem can be formulated as follows: let U be the

2

set of all users, and I be the set of items, let f be the utility function f : U ∗ I → R

that measures the relevance of the item i ∈ I to the user u ∈ U . Then for each user

u, we can recommend the item that maximizes the utility: i∗ = arg maxi∈I f(u, i) The

utility of an item is usually represented by the rating, which is in certain range, e.g.

[1, 5], and indicates the user’s satisfaction to the item. Each user u can associate with

a profile which can include demographic features or interests. Similarly, items can also

associate with a set of characteristics.

However, in many real-life cases, recommendations are consumed by groups of users

rather than individuals, for instance, watching movies with family, dining out with

friends and team building with colleagues. In fact, seldom is a person alone in many

of their daily activities. We are interested in the recommendation problem that targets

groups. Let G be the set of all groups, the utility function f : G∗ I → R then measures

the relevance of the item i to the group g ∈ G. Existing work on group recommendation

focuses on the definition of the utility function, then reduces the problem to traditional

recommendation to individuals. Examples of the group utility function include taking

averaging, minimum or maximum over members’ utility functions.

Yet there are many challenges for group recommendation. Firstly, groups are dy-

namic. Even for persistent groups, e.g. families, that recurrently attend certain group

activities, it is hard to guarantee every member will participate in each event. The

recommendation algorithm should be flexible in order to handle the challenge of dy-

namic presence of members. Secondly, information about the group and members can

be missing. There could be new groups joining the system and new users joining a

group. While individuals’ and groups’ preferences are crucial to make customized rec-

ommendation, it is extremely expensive to collect them. The recommender system then

often learns preferences through historical behaviors, more precisely, previous ratings to

items. When encountering new groups or new users in the group, which is named as cold

start problem, the algorithm needs to be capable to generate good recommendations

and learn preferences quickly.

To address above challenges, we approach the group recommendation problem as a

variation of multi-armed bandits (MAB) problem. MAB [62] is a sequential decision

3

problem with the exploration and exploitation tradeoff, that balances the decision be-

tween staying with the option which gave the highest payoff in the past and exploring

new options that might give higher payoffs in the future. Formally, let A be the set of

K arms, which payoffs are from underlying distributions. The learner does not have

any prior knowledge about the payoffs. It plays an arm a ∈ A at each time t, and

receives the payoff at. The objective is to maximize the expected payoffs over T plays.

There are many policies for the MAB problem, such as ε-greedy [83], and UCB [6], that

work well in practice and have theoretic guarantees. This makes MAB a good fit to

solve cold start problem in recommendation [47].

In our setting, each arm has underlying distribution of payoffs for groups, rather than

a single user. At each time t, a group gt shows up and the learner picks an arm to the

group. The learn then receives the feedback (payoff) to the selected arm by the group.

We consider two types of feedback process: 1) each present member gives feedback; 2)

the group gives a single group feedback. For the first type, a metric is desired to transfer

individual feedback to group feedback. For the second type, individual preference needs

to be learned to effectively handle dynamic presence of members. We design policies

for each type of feedback and prove that they are efficient in terms of computational

time and space.

In traditional recommender systems targeting to individuals, the post-recommendation

feedback can be collected on the individual level, from explicit ratings to implicit ratings

derived from clicks or page views etc.. However, the post-recommendation feedback is

harder to collect on the group level. Usually the group needs a group decision making

process to finalize the option out of recommended items. The final decision reflects

the group feedback to the item, and members’ opinions in the decision making process

reflects individual feedback conditioned on the group. We design a demo system that

records and facilitates group consensus on recommended items. The system allows users

to organize group events. It generates recommendations to groups and provides voting

and chatting functionalities to members to reach consensus. A user study is conducted

through the demo for lunch dining out events among colleagues in a research lab. We

observed member influence during decision making process. Based on this, we propose

4

an influence cascade model to predict the pairwise influence, which is in turn used to

improve the estimation of individuals’ decision on recommended items for group events.

1.2 Enhance Personalized Search by Groups

Personalization of search results has been investigated in detail in domains such as

Web search and beyond [70, 74, 78]. The ability to tailor search results to a particular

individual enables a wealth of opportunity to better satisfy their particular information

needs. Personalization models are typically learned from observed short- and long-term

search behavior (such as queries and result clicks), which is either used directly [79]

or is converted into a different representation (e.g., a set of topical categories) to build

more general models and improve personalization coverage [15, 70]. Despite the value of

personalization, one drawback is that it requires sufficient user information to perform

effectively; users must be willing to share their search history and the search engine

must attain sufficient information on user interests to build accurate profiles. Even

short-term personalization depends on the long-term behavior for the first query in the

session when no other behavior has been observed [15].

It is known that users frequently submit the same query to find the information they

have searched previously. Teevan et al. [77] found that approximately 33% of query

instances in their case study were an exact repeat of a query submitted by the same

user at a previous time. For such re-finding queries, the results clicked by individual

users in their search history provide a strong signal to identify the correct result for

each user when that query is repeated [79]. The remaining 67% queries are new, and

it can be challenging to improve their search quality via personalization given limited

history.

One way in which these issues can be addressed is by finding cohorts of searchers

who share one of more attributes with the current searcher. Attributes that could

be used to form cohorts include location, topical interest, and domain preferences, all

easily accessible to search engines via users’ long-term search histories. Given a user,

we can leverage the search behavior of other members of their cohort(s) to enhance

5

personalization by providing signals if sufficient information is unavailable or as an

additional signal to build richer personalization models if they already exist. Cohorts

have been used effectively in applications such as collaborative filtering (CF) [30], where

groups of similar users (based on factors such as liking the same item [19]) can yield

relevant recommendations. Cohorts have also shown some limited utility in retrieval

settings. Groupization has shown promise in laboratory settings [80], task models to

find those engaged in similar tasks have yielded strong results [88], and there have even

been attempts to use CF more directly in search result ranking [71]. However, there

has been no detailed study of applying cohort models to enhance Web-scale search

personalization. We address that shortcoming in this work.

We propose the construction and application of user cohorts to enhance web search

personalization. Our initial method creates pre-defined cohorts on three types: topic,

location, and top level domain preference (e.g., .gov, .edu). Rather than limiting to

these pre-defined sets, we also propose clustering methods capable of learning the co-

horts and dynamically assigning users to one or more clusters. We demonstrate through

extensive experimentation with search engine log data that our cohort modeling meth-

ods can yield significant relevance improvements over a production ranker that already

included personalization targeting the current searcher. We show that these gains are

even larger when we target particular queries (e.g., those with high ambiguity) and

particular users (e.g., those with no query-relevant history).

1.3 Identify Reference Group for Researchers

For those few scientists who win Nobel prizes or Turing awards, their standing in

their research community is unquestionable. For the rest of us, it is more complex

to understand where we stand and who we are alike. One common approach is to

compare people. Movie stars, CEOs, authors, and singers, are all compared on a

number of dimensions. It is common to hear a new artist being introduced in terms of

other artists that they are similar to or have been influenced by. In academia, it is also

common to look for comparable researchers. Recommendation letters and tenure cases

usually suggest other researchers who are comparable to the individual in question. In

6

discussing whether someone is suitable to collaborate with, we might ask who they are

similar to in their research work. These comparisons can have significant influence by

indicating that researchers compare favorably to others, and by providing a starting

point for detailed discussions of the individual’s strengths and weaknesses.

We study this problem of finding the comparable group for researchers, aiming

to help researchers understand themselves. It is challenging since there is no simple

strategy that allows a similar researcher to be found. Natural first attempts, such as

looking at co-authors, or scouring the author’s preferred publication venues (conferences

or journals), either fail to find good candidates, or swamp us with too many possibilities.

In this work, we are particularly interested in comparing any pair of two researchers

given their research output, as embodied by their publications over years. There are

several challenges to address here. Firstly, we need suitable data and metrics. The com-

parison may be based on the research impact, teaching performance, funding raised or

students advised. For some of these, we lack the data to support automatic comparison.

Secondly, the whole career of a researcher may last several decades. During this career,

she/he may be productive all the time, may take time off for a while, or switch research

interests and topics. It can be difficult to find a perfect match for the whole career, and

we may wish to focus on periods of greatest activity or influence.

To solve this problem, we propose a trajectory matching algorithm that compares

a pair of researchers by matching their research trajectories. The trajectory is defined

in three dimensions: topic, quality and time. Topic is reflected through researchers’

publications and quality is measured through venue ranks. In addition to match full

career path, we introduce prefix matching, to find senior researchers that are comparable

at their early career stage. We apply the algorithm on scholarly data extracted from

DBLP and arXiv. Empirical results show that our algorithm can identify relevant

comparable groups. To make the algorithm scale well with the large data, we provide

a map-reduce version of the algorithm which is further improved by grouping authors.

7

Chapter 2

Recommendation to Groups

Traditional recommender systems have focused on finding relevant items for a single

user. However there is an increasing need to recommend items to groups of people.

For instance, families may share accounts for e-commerce or movie streaming services;

colleagues may dine out for lunch on almost every weekday. The problem of generating

relevant items to a group of users is called group recommendation.

To date, research in group recommendation has followed two main approaches. One

is aggregating results of recommendations to each member in the group [50], the other

is aggregating members’ preference to group preference then applying traditional rec-

ommendation techniques on the merged pseudo-user [52]. Both approaches requires

sufficient data of individual and group historical behavior. When new groups join the

system and new user joins the group, they fail to produce relevant recommendation.

We address two challenges in group recommendation: cold start and dynamic pres-

ence of members. More specifically, the system does not have any prior knowledge

about the group nor members in the group, and members in the group can have dy-

namic presence in each group event. We utilize Multi-armed Bandits (MAB) framework

and propose the group variant MAB. Unlike traditional MAB with a single player, our

setting has a group of players with dynamic presence at each session. The learner picks

an arm at each session to the group then receives the group payoff to the picked arm.

More relevant the arm is to the group, higher payoffs the learner receives. We aim at

designing policies to maximize the payoff from the group in sequential plays.

We consider two types of feedback: 1) each present member gives individual feed-

back; 2) the group gives a single aggregated feedback. We design Group-UCB and

ε-Greedy policies for corresponding reward setting. We prove that our policies deviate

8

from the maximum expected cumulative payoff by at most O(log T). The rest of the

chapter is structured as follows. Section 2.1 introduces the background of MAB and

the problem formulation of group recommendation. Section 2.2 describes the two types

of feedback, corresponding policies we designed and the main results for each policy.

Section 2.3 lists related work to group recommendation and MAB. Section 2.4 has the

proofs of two main results in Section 2.2. Section 2.5 presents the simulation of our two

settings and their numeric results. In Section 2.6, we show a consensus-oriented group

recommender demo system, and discuss the data collected from the user study through

the demo system. Section 2.7 concludes the chapter.

2.1 MAB Background and Problem Formulation

In this section, we introduce the background of traditional Multi-armed bandit and the

formulation of group-MAB. We also discuss a simple extension of traditional MAB to

groups.

2.1.1 Multi-armed Bandits Background

A MAB algorithm is a learner who plays in sequential sessions the following game with

a user u. At time t the learner has to pick an option to suggest to the user. The

options are called arms and belong to a set A with K elements. The arm selected by

the learner at time t is at ∈ A. When the user receives that arm, she returns a reward

rat which comes from an underlying stochastic satisfaction model that user has for the

arm at. This model is unknown to the learner. We define θu,a = E[ru,a]. The learner

has to improve its arm-selection policy based on the new observation (at, rat) and all

previous observations which it keeps in memory. Feedback from unpicked arms is not

observed. In the process, the total satisfaction achieved is defined as ∑T
t=1 rat . This is

called reward.

The optimal expected rewards for the user is defined as E[∑T
t=1 ra∗] where a∗ is the

arm with maximum expected reward. The goal is to design a policy of arm picking

in order to maximize the expected total rewards. Equivalently, we can design a policy

9

to minimize the regret, R(T), which is defined as the deviation in the reward from

choosing the optimal arm, formally:

R(T) =
T∑
t=1

θa∗ −
T∑
t=1

θat . (2.1)

In the context of recommendation, we may view items to recommend as arms. The

reward can be interpreted as a rating score given to the suggested item. This rating

can be measured indirectly as click through rate or conversion rate depending on the

definition of reward. The goal is to maximize these quantities in expectation. The

bandit algorithm can learn user’s preference quickly without any prior information and

thus is a good fit to solve the cold-start problem that arises in recommender systems.

2.1.2 Group-MAB Formulation

We now formulate group recommendation as a group-MAB problem.

Group Representation

Let G be a group of d = |G| users, whose members recurrently come together for group

events. At any given time t, St ⊂ G is the set of users that are together. At time t, each

user u has associated a presence-weight xu,t. The vector xt = {xu,t}u takes values in

a finite set X ⊂ Rd
+ and models user’s presence as well as relative influence on overall

group satisfaction. Just like in traditional MAB, at every time t, each user, which is

a member in the group, gives a reward ru,a of a suggested arm a to the learner. The

rewards are random according to a model unknown to the learner. The expected value

of the reward is θu,a = E[ru,a] ∈ R+. Without loss of generality, we normalize θu,a and

ru,a such that they belong to (0, 1]. We denote θa = {θa,u}u and ra = {ra,u}u.

The group reward is then an aggregation of the members’ satisfaction/rewards.

There are multiple ways to aggregate members’ rewards according to social choice the-

ory [29], such as average strategy, plurality voting, borda count, least misery, most

pleasure and so on. We adopt a weighted average strategy, which computes group re-

ward as a linear function of rewards from members. In particular, rxt = ∑
u∈St

xu,tru,at ,

10

where xu,t ∈ R+ is a non-negative weight value.

In general, the vector xt of users’ weights at the time t takes values in a finite set

X ⊂ R
d
+ and satisfies two conditions. First, absent users have zero weight, i.e., if

u /∈ St then xu,t = 0. Second, M1 = supx∈X ‖x‖1 < ∞, thus, weights are bounded.

Under this notation, the expected group reward is given by the inner product x†tθat =∑
u∈G xu,tθu,at .

This model of a group reward is fairly general. Consider, for example,

xu,t =


wu∑

v∈St
wv
, if u ∈ St

0, o.w.
(2.2)

where wu are positive for all u ∈ G. If wu = 1 for all u ∈ G, the group reward becomes

a simple average over the rewards of users present at the t-th session. Alternatively,

a highly influential individual u, whose reward greatly affects group satisfaction, can

be modeled with a big weight wu. Note that, in this case, the set of possible weight

vectors X is finite and contains 2d elements and M1 = supx∈X ‖x‖1 = 1.

Problem Definition

The learner plays in T sequential sessions t = 1, 2, 3, . . . , T . In each session, it observes

the group xt, and picks an arm at for the group based on information learned from past

sessions. The group gives back either a single group reward rxt or a vector of individual

rewards rxt = {ru,at}u. It will be clear from the context which definition of rxt we are

using. The tuple (xt, at, rxt) is then used in later sessions to improve the arm-selection

policy. Let at ∈ A be the arm selected by the policy at the t-th session. We call the

sequence {at}Tt=1 the policy.

Our goal is to design an adaptive policy to maximize group rewards over time.

Note that the group is dynamic. Given the group represented by a vector x ∈ X ,

an optimal arm a∗x is the one that maximizes the expected group rewards, i.e., a∗x =

arg maxa∈A x†θa.

11

Given a policy {at}Tt=1, we define its regret after T sessions to be

R(T) =
T∑
t=1

x†tθa∗xt
−

T∑
t=1

x†tθat (2.3)

where a∗xt
is the optimal arm for xt. As in the classic multi-armed bandit problem, the

regret is the difference between expected rewards of an optimal policy and the policy

{a(t)}Tt=1. In contrast to the classic setup, the optimal arm may change with each

session, as it depends on the weight vector xt.

Note that, under the above assumption, the learner observes the weight vector xt,

and then makes its selection at. For example, in the case of weights given by (2.2), the

learner has access to the relative weights wu as well as the composition of the group of

present users St. On the other hand, the reward of users at time t is revealed only after

the arm is suggested to the group, and thus can only be used in future arm selections.

2.1.3 A Naive Approach and Its Regret Bound

There is an immediate, but inefficient, approach to reducing the multi-armed bandit

problem with groups that we have proposed to the classic setup. This amounts to

treating every session at which a weight vector x ∈ X appears separately from all

other sessions. In particular, consider all the sessions t for which xt = x, for x ∈ X .

Conditioned on the arm a displayed, the group reward is independent of rewards at

previous sessions. Thus, the subgroup x can be treated as an individual player, and the

optimal arm for this player can be found using e.g., the UCB policy by Auer et al. [8].

Interestingly, applying this naïve method yields logarithmic regret. In particular,

the following holds.

Lemma 1. Let RA(T) be the regret of a (possibly random) policy A for the classic multi-

armed bandit problem. Then, applying A at times {t : xt = x}, where x ∈ X , yields a

regret R(T) = ∑
x∈X RA(n(x)), where n(x) is the number of times that xt = x ∈ X up

to and including time T . Moreover, there exists a sequence {at}Tt=1 such that the regret

satisfies

2dRA(bT/2dc) ≤ R(T) ≤ 2dRA(bT/2dc+ 1).

12

where d is the size of the group.

Proof. The regret can be written as

R(T) =
∑
x∈X

E[
T∑
t=1
1(xt = x)(x†θa∗x −

T∑
t=1

x†θat)]

=
∑
x∈X

RA(n(x))

Let xt be the average weight vector defined in (2.2) with wu = 1, for all u ∈ G. Then,

let St ⊂ G be periodic, with period 2d, taking all possible values in the power set of G

in some predefined order. Then, n(x) is either bT/2dc or bT/2dc + 1, and the lemma

follows.

Thus, given a policy A with logarithmic regret RA(t) (as in [8]), the naïve approach

also yields logarithmic regret; nevertheless, the leading constant of the regret will be

the number of distinct subgroups, which can be of the order of 2d, i.e., exponential on

the group capacity. This is clearly unsatisfactory. Intuitively, treating different groups

separately hinders learning: rewards given by a user during her participation in one

subgroup St are ignored when she participates in a different group.

Given that logarithmic regret is tenable, our goal is thus to produce a policy with

a regret bound whose leading constant is small. If the sequence of sessions is |St| = 1

for all t, i.e., all users appear alone, no policy can do better than the naïve policy, as

rewards across subgroups are independent. For this case, the leading constant of the

regret is Ω(d); this follows from Lemma 1.

2.2 Two Settings of Reward Process

At each session, the learner picks an arm then receives rewards from the current group to

the selected arm. There are two types of reward processes. The first type is that every

present member gives their rewards to the learner, thus rxt is a vector. For example, in

Meetup 1, groups can organize offline events and members can submit explicit ratings to

1www.meetup.com

www.meetup.com

13

events they participated. The second type is that the learner receives a group reward,

and rxt is a scalar. Such reward is often recognized as implicit ratings and derived from

group behaviors. For example, group purchasing in Groupon 2 or LivingSocial 3, group

checkin in Whrrl 4 , group listening in Last.fm 5 can be considered as positive rewards.

Next, we will discuss policies designed for each of these two reward processes and

their regret bounds.

2.2.1 Receiving Individual Rewards

Group-UCB Algorithm

Algorithm 1 Group-UCB
nu ← 0; nu,a ← 0; θ̂u,a ← 0
for t = 1 to T do
Observe present users St and the weight vector xt
for a=1 to K do
for u =1 to d do
if nu,a = 0 then pu,a ←∞
else pu,a ← θ̂u,a +

√
2 lnnu
nu,a

end for
pa ←

∑
u xu,t ∗ pu,a

end for
choose arm a← arg max a pa (break ties arbitrarily)
observe reward ru from each user u ∈ St, then update:
nu,a ← nu,a + 1 for all u ∈ St
nu ← nu + 1 for all u ∈ St
θ̂u,a ← θ̂u,a · (nu,a−1)

nu,a
+ ru · 1

nu,a

end for

In Algorithm 1, we propose the policy Group-UCB for the setting when we receive

each present member’s reward after each recommendation. The learner maintains the

estimates of the quantities θu,a, for all u ∈ G and a ∈ A. The reward ru,a of user u to

the arm a is estimated from the empirical average: θ̂u,a(s) = 1
s

∑s
τ=1 ru,a(τ). Moreover,

the learner keeps track of how many times a user has participated and how many times

2www.groupon.com
3www.livingsocial.com
4www.whrrl.com
5www.lastfm.com

www.groupon.com
www.livingsocial.com
www.whrrl.com
www.lastfm.com

14

a particular arm has been chosen. Formally, let 1(E) be the characteristic function of

an event E (1 if E is true and zero otherwise). The learner keeps track of the number

of times a user u shows up and an arm a is suggested at that time:

nu,a(T) =
T∑
t=1
1(xu,t > 0 and at = a),

as well as the number of times the user u has been present up to session T :

nu(T) =
T∑
t=1
1(xu,t > 0).

Using the above quantities, the learner selects an arm as follows. At the t-th session,

the learner first observes the present composition of group St and the associated weight

vector xt. The arm selected is given by

at = arg max
a∈A

∑
u∈G

xu,t

(
θ̂u,a+

√
2 lnnu
nu,a

)
. (2.4)

Then the subgroup provides the learner with individual rewards, which are then used

to update the estimates θ̂u,a for the arm a = at and for users u ∈ St.

Regret Bound for Group-UCB

The regret under Group-UCB can be bounded according to the following theorem. Its

proof will be presented in Section 2.4.

Theorem 1. Given x ∈ X , denote by Bx ⊂ A the set of suboptimal arms under x, i.e.,

Bx = {a ∈ A : x†θa∗x > x†θa} Moreover, let ∆a
min = infx∈X :a∈Bx x

†θa∗x − x
†θa. Then,

R(T) ≤∑a∈A
8M3

1 d
(∆a

min)2 lnT + 4KdM1 for Group-UCB.

The proof for Theorem 1 is given in 2.4.1.

2.2.2 Receiving Group Reward

We now discuss the scenario when a single group reward is observed, that means rxt is

a scalar. We treat the group as the contextual variable and turn to contextual MAB

15

setting. The weight vector xt of the subgroup St is the observed stochastic contextual

variable to the learner. We prove our main result (Theorem 3) in the stochastic setting

where xt are drawn i.i.d. from an unknown multivariate probability distribution D. In

addition, we require that the set of contexts is finite i.e., |X | <∞. We define Σmin > 0

to be the smallest non-zero eigenvalue of the covariance matrix Σ ≡ E{x1x
†
1}.

After observing a context xt and selecting an arm at, the learner receives a reward

rat,xt which is drawn from a distribution pat,xt independently of all past contexts, actions

and payoffs. We assume that the expected payoff is a linear function of the context. In

other words,

rat,xt = x†tθa + εa,t (2.5)

where {εa,t}a∈A,t≥1 are a set of independent random variables with zero mean and

{θa}a∈A are unknown parameters in Rd. Note that, w.l.o.g, we can assume that Q =

maxa∈A ‖θa‖2 ≤ 1. This is because if Q > 1 , as payoffs are linear, we can divide

all payoffs by Q; the resulting payoff is still a linear model, and our results stated

below apply. A sub-gaussian random variable Z has the property that E{eγZ} ≤ eγ2L2

where L is a constant. In particular, sub-gaussianity implies E{Z} = 0. We make the

following technical assumption.

Assumption 1. The random variables {εa,t}a∈A,t≥1 are sub-gaussian random variables

with constant L > 0.

Given a context x, the optimal arm is a∗x = arg maxa∈A x†θa. The expected cu-

mulative regret the learner experiences over T steps is defined by 2.3. The objective

is to design a policy that achieves as low expected cumulative regret as possible, and

also has low computational complexity. We define ∆max ≡ maxa,b∈A ||θa − θb||2, and

∆min ≡ infx∈X ,a:x†θa<x†θa∗x
x†(θa∗x − θa) > 0. Observe that, by the finiteness of X and

A, the defined infimum is attained (i.e., it is a minimum) and is indeed positive.

When there exists a gap between optimal and suboptimal rewards, several algo-

rithms have been proposed that achieve O(log T) regret after T time steps. However,

proposed methods either have a computation complexity per iteration that scales lin-

early with T or achieve regrets that grow linearly with the number of contexts |X |. We

16

propose an ε-greedy type of algorithm that solves both limitations. In particular, when

contexts are variables in Rd, we prove that our algorithm has a constant computation

complexity per iteration of O(poly(d)) and can achieve a regret of O(poly(d) log T) even

when |X | = Ω(2d). In addition, unlike previous algorithms, its space complexity scales

like O(Kd2) and does not grow with T .

Contextual ε-Greedy Algorithm

We now present a simple and efficient on-line algorithm that, under the above assump-

tions, has expected logarithmic regret. Specifically, its computational complexity, at

each time instant, is O(Kd3) and the expected memory requirement scales like O(Kd2).

As far as we know, our analysis is the first to show that a simple and efficient algorithm

for the problem of linearly parametrized bandits can, under reward separation and i.i.d.

contexts, achieve logarithmic expected cumulative regret that simultaneously can scale

like polylog(|X |) for natural scenarios.

Before we present our algorithm in full detail, let us give some intuition about

it. Part of the job of the learner is to estimate the unknown parameters θa based on

past actions, contexts and rewards. We denote the estimate of θa at time t by θ̂a. If

θa ≈ θ̂a then, given an observed context, the learner will more accurately know which

arm to play to incur small regret. The estimates θ̂a can be constructed based on a

history of past rewards, contexts and arms played. Since observing a reward r for arm

a under context x does not give information about the magnitude of θa along directions

orthogonal to x, it is important that, for each arm, rewards are observed and recorded

for a rich class of contexts. This gives rise to the following challenge: If the learner tries

to build this history while trying to minimize the regret, the distribution of contexts

observed when playing a certain arm a will be biased and potentially not rich enough.

We address this challenge using the following idea which also appears in the epoch-

Greedy algorithm of [44]. We partition time slots into exploration and exploitation

epochs. In exploration epochs, the learner plays arms uniformly at random, indepen-

dently of the context, and records the observed rewards. This guarantees that in the

history of past events, each arm has been played along with a sufficiently rich set of

17

contexts. In exploitation epochs, the learner makes use of the history of events stored

during exploration to estimate the parameters θa and determine which arm to play

given a current context. The rewards observed during exploitation are not recorded.

More specifically, when exploiting, the learner performs two operations. In the first

operation, for each arm a ∈ A, an estimate θ̂a of θa is constructed from a simple `2-

regularized regression, as in [6] and [20]. In the second operation, the learner plays the

arm a that maximizes x†t θ̂a. Crucially, in the first operation, only information collected

during exploration epochs is used. In particular, let Ta,t−1 be the set of exploration

epochs up to and including time t − 1 (i.e., the times that the learner played an arm

a uniformly at random (u.a.r.)). Moreover, for any T ⊂ N, denote by rT ∈ Rn the

vector of observed rewards for all time instances t ∈ T , and XT ∈ Rn×d is a matrix of

T rows, each containing one of the observed contexts at time t ∈ T . Then, at time t

the estimator θ̂a is the solution of the following convex optimization problem.

min
θ∈Rd

1
2n‖rT −XT θ‖

2
2 + λn

2 ‖θ‖
2
2. (2.6)

where T = Ta,t−1, n = |Ta,t−1|, λn = 1/
√
n. In other words, the estimator θ̂a is

a (regularized) estimate of θa, based only on observations made during exploration

epochs. Note that the solution to (2.6) is given by θ̂a =
(
λnI + 1

nX
†
TXT

)−1 1
nX
†
T rT .

An important design choice is the above process selection of the time slots at which

the algorithm explores, rather than exploits. Following the ideas of [73], we select

the exploration epochs so that they occur approximately Θ(log t) times after t slots.

This guarantees that, at each time step, there is enough information in our history of

past events to determine the parameters accurately while only incurring in a regret of

O(log t). There are several ways of achieving this; our algorithm explores at each time

step with probability Θ(t−1).

The above steps are summarized in pseudocode by Algorithm 2. Because there

are K arms and for each arm (xt, ra,t) ∈ Rd+1, the expected memory required by the

algorithm scales like O(Kd2). In addition, both the matrix X†TXT and the vector

X†T rT can be computed in an online fashion in O(d2) time: X†TXT ← X†TXT + xtx
†
t

18

Algorithm 2 Contextual ε -greedy
For all a ∈ A, set Aa ← 0d×d ;na ← 0; ba ← 0d
for t = 1 to p do
a← 1 + (t mod K); Play arm a

na ← na + 1; ba ← ba + rtxt; Aa ← Aa + xtx
†
t

end for
for t = p+ 1 to T do
e← Bernoulli(p/t)
if e = 1 then
a← Uniform(1/K) ; Play arm a

na ← na + 1; ba ← ba + rtxt; Aa ← Aa + xtx
†
t

else
for a ∈ A do
Get θ̂a as the solution to the linear system:

(
λnaI + 1

na
Aa
)
θ̂a = 1

na
ba

end for
Play arm at = arg maxa∈A x†t θ̂a

end if
end for

and X†T rT ← X†T rT + rtxt. Finally, the estimate of θ̂a requires solving a linear system

(see Algorithm 2), which can be done in O(d3) time. Note that the algorithm contains

a scaling parameter p, which is specified in 2.2.2.

Regret Bounds for Contextual ε-Greedy

The above analysis of the algorithm can be summarized in following theorems.

Theorem 2. Algorithm 2 has computational complexity of O(Kd3) per iteration and

its expected space complexity scales like O(Kd2).

We now state our theorem that shows that Algorithm 2 achieves R(T) = O(log T).

Theorem 3. Under Assumptions 1, the expected cumulative regret of algorithm 2 sat-

isfies,

R(T) ≤ p∆max
√
d+ 14∆max

√
dKeQ/4 + p∆max

√
d log T.

for any

p ≥ CKL′2

(∆′min)2(Σ′min)2 . (2.7)

19

Above, C is a universal constant, ∆′min = min{1,∆min}, Σ′min = min{1,Σmin} and

L′ = max{1, L}.

The proof for Theorem 3 is given in 2.4.2. In Theorem 3, the bound on the regret

depends on p - small p is preferred - and hence it is important to understand how the

right hand side (r.h.s.) of (2.7) might scale when K and d grow. In below example,

we show that, for a concrete distribution of contexts and choice of expected rewards

θa, and assuming (2.7) holds, p = O(K3d5) 6 . There is nothing special about the

concrete details of how contexts and θa’s are chosen and, although not included here, for

many other distributions, one also obtains p = O(poly(d)). We can certainly construct

pathological cases where, for example, p grows exponentially with d. However, we do

not find these intuitive.

Example of Scaling of p with d and K

Assume that contexts are obtained by normalizing a d-dimensional vector with i.i.d.

entries as Bernoulli random variables with parameter w. Assume in addition that every

θa is obtained i.i.d. from the following prior distribution: every entry of θa is drawn

i.i.d. from a uniform distribution and then θa is normalized. Finally, assume that the

payoffs are given by ra,t = x†tΘa, where Θa ∈ Rd are random variables that fluctuate

around θa = E{Θa} with each entry fluctuating by at most F .

Under these assumptions the following is true:

• Σmin = Ω(d−1). In fact, the same result holds asymptotically independently of

w = w(d) if, for example, we assume that on average groups are roughly of the

same size, M , with w = M/d;

• L = O(
√
d). This holds because εa,t = ra,t − E{ra,t} = x†t(Θa − θa) are bounded

random variables with zero mean and ‖x†t(Θa − θa)}‖∞ = O(
√
d).

• ∆min = Ω(1/(Kd
√
w) with high-probability (for large K and d). This can be

seen as follows, if ∆min = x†(θa − θb) for some x, a and b, then it must be true

6This bound holds with probability converging to 1 as K and d get large

20

that θa and θb differ in a component for which x is non-zero. The minimum

difference between components among all pairs of θa and θb is lower bounded by

Ω(1/(K
√
d)) with high probability (for large K and d). Taking into account that

each entry of x is O(1/
√
dw) with high-probability, the bound on ∆min follows.

If we want to apply Theorem 3 then (2.7) must hold and hence putting all the above

calculations together we conclude that p = O(K3d5) with high probability for large K

and p.

Computing p in Practice

If we have knowledge of an a priori distribution for the contexts, for the expected payoffs

and for the variance of the rewards then we can quickly compute the value of Σmin, L

and a typical value for ∆min. An example of this was done above. There, the values

were presented only in order notation but exact values are not hard to obtain for that

and other distributions. Since a suitable p only needs to be larger then the r.h.s. of

(2.7), by introducing an appropriate multiplicative constant, we can produce a p that

satisfied (2.7) with high probability.

If we have no knowledge of any model for the contexts or expected payoffs, it is still

possible to find p by estimating ∆min, Σmin and L from data gathered while running

Algorithm 2. Notice again that, since all that is required for our theorem to hold is

that p is greater then a certain function of these quantities, an exact estimation is not

necessary. This is important because, for example, accurately estimating Σmin is hard

when matrix E{x1x
†
1} has a large condition number.

Not being too concerned about accuracy, Σmin can be estimated from E{x1x
†
1},

which can be estimated from the sequence of observed xt. ∆min can be estimated from

Algorithm 2 by keeping track of the smallest difference observed until time t between

maxb x†θ̂b and the second largest value of the function being maximized. Finally, the

constant L can be estimated from the variance of the observed rewards for the same

(or similar) contexts. Together, these estimations do not incur in any significant loss

in computational performance of our algorithm.

21

Adversarial Setting

In the stochastic setting, the richness of the subset of Rd spanned by the observed

contexts is related to the skewness of the distribution D. The fact that the bound in

Theorem 3 depends on Σmin and that the regret increases as this value becomes smaller

indicates that our approach does not yield a O(log T) regret for the adversarial setting,

where an adversary choses the contexts and can, for example, generate {xt} from a

sequence of stochastic processes with decreasing Σmin(t).

In particular, the main difficulty in using a linear regression, and the reason why

our result depends on Σmin, is related to the dependency of our estimation of x†tθa on
1

|Ta,t−1|X
†
Ta,t−1

XTa,t−1 . It is not hard to show that the error in approximating x†tθa with

x†t θ̂a is proportional to √
x†t

(
λnI + 1

n
X†TXT

)−2
xt. (2.8)

This implies that, even if a given context has been observed relatively often in the past,

the algorithm can “forget” it because of the mean over contexts that is being used to

produce estimates of x†tθa (the mean shows up in (2.8) as 1
nX
†
TXT).

The effect of this phenomenon on the performance of Algorithm 2 can be readily seen

in the following pathological example. Assume that X = {(1, 1), (1, 0)} ⊂ R2. Assume

that the contexts arrive in the following way: (1, 1) appears with probability 1/z and

(1, 0) appears with probability 1 − 1/z. The correlation matrix for this stochastic

process is {(1, 1/z), (1/z, 1/z)} and its minimum eigenvalue scales like O(1/z). Hence,

the regret scales as O(z2 log T). If I is allowed to slowly grow with t, we expect that

our algorithm will not be able to guarantee a logarithmic regret (assuming that our

upper bound is tight). In other words, although (1, 1) might have appeared a sufficient

number of times for us to be able to predict the expected reward for this context,

Algorithm 2 performs poorly since the mean (2.8) will be ‘saturated’ with the context

(1, 0) and forget about (1, 1).

One solution for this problem is to ignore some past contexts when building an esti-

mate for x†tθa, by including in the mean (2.8) past contexts that are closer in direction

to the current context xt. Having this in mind, and building on the ideas of [6], we

22

Algorithm 3 Contextual UCB
for t = 1 to p do
a← 1 + (t mod K); Play arm a; Ta,t ← Ta,t−1 ∪ {t}

end for
for t = p+ 1 to T do
for a ∈ A do
ca,t ← min

T ⊂Ta,t−1

log t
|T |

x†t

(
λnI + 1

n
X†TXT

)−2
xt

T ∗ ← subset of Ta,t−1 that achieves the minimum; n← |T ∗|
Get θ̂a as the solution to the linear system:

(
λnI + 1

nX
†
TXT

)
θ̂a =

(
1
nX
†
T rT

)
end for
Play arm at = arg maxa x†t θ̂a +√ca,t; Set Ta,t ← Ta,t−1 ∪ {t}

end for

propose the UCB-type Algorithm 3.

It is straightforward to notice that this algorithm can not be implemented in an

efficient way. In particular, the search for T ∗ ⊂ Ta,t−1 has a computational complexity

exponential in t. The challenge is to find an efficient way of approximating T ∗ efficiently.

This can be done by either reducing the size of Ta,t−1 – the history from which one wants

to extract Ta,t−1 – by not storing all events in memory (for example, if we can guarantee

that |Ta,t| = O(log t) then the complexity of the above algorithm at time step t is O(t)),

or by finding an efficient algorithm of approximating the minimization over the Ta,t−1

(or both). It remains an open problem to find such an approximation scheme and to

prove that it achieves O(log T) regret for a setting more general than the i.i.d. contexts

considered in this paper.

2.3 Related Work

2.3.1 Group Recommendation

Prior work on group recommendation has been inspired by many different applica-

tions serving groups. Examples include recommending TV programs [52], sightseeing

tours [49, 43], museum visit [37], restaurants [53], music listening in the gym [40] and so

on. Past research on group recommendation has focused on identifying an “objective”

function to model group satisfaction. The authors in [52] examined strategies inspired

by social choice theory [29], such as “the Average”, “the Average without Misery” and

23

“the Least Misery” and so on. Overall, “the average” is most often adopted strategy.

The authors in [68] proposed the semantic of group recommendation which is a

combination of item relevance and the disagreement among members. Items with large

relevance score and small disagreement are preferred. There are two main approaches

of utilizing traditional recommendation techniques for group recommendation. One

is aggregating individual’s results [50], and the other is aggregating user profiles to a

group profile, then applying recommendation to this pseudo-user [67].

To the best of our knowledge, no prior work addresses the issues of group rec-

ommendation we address, which are cold start problem and the dynamics of member

presence of a group over time. We adopted the multi-arm bandit approach to address

these issues. The theory of multi-arm bandits is extensive, with myriad versions stud-

ied from many arms, to delays, dependence among the arms, and so on.7 Still, our

variation, with users appearing in multiple, different groups over time, seems new, as

is our algorithm and its analysis.

Our problem formulation of group MAB is closely related to so-called linear or con-

textual bandits [7, 26, 48, 45], which have recently been applied to personalized rec-

ommendation [48] (though aimed at individual users and not groups). In contextual

bandits, the reward of an arm can be expressed as an inner product of an observable

context vector and a set of latent variables. This is the case for the “group rating” we

define here: the “weight vectors” x(t) introduced in our model serve the role of context,

while individual ratings correspond to latent variables.

Our Group-UCB policy departs from contextual bandits by having access not only

to the final group rating, but also to individual rating of users, which are latent and not

observed in the standard contextual bandit model. This in turn, allows us to obtain

better bound in the regret (which is typically not logarithmic for contextual bandits).

Our MAB setting when receiving group reward is contextual bandits with stochastic

context. In next section, we will discuss related work to this setting in detail.

7 A recent tutorial is at http://techtalks.tv/talks/54451/.

http://techtalks.tv/talks/54451/

24

2.3.2 Stochastic Contextual Bandits

Langford and Zhang [44] propose an algorithm called epoch-Greedy for general contex-

tual bandits. Their algorithm achieves an O(log T) regret in the number of time steps T

in the stochastic setting, in which contexts are sampled from an unknown distribution in

an i.i.d. fashion. Unfortunately, the proposed algorithm and subsequent improvements

[27] have high computational complexity. Selecting an arm at time step t requires mak-

ing a number of calls to a so-called optimization oracle that grows polynomially in T .

In addition, the cost of an implementation of this optimization oracle can grow linearly

in |X | in the worst case; this is prohibitive in many interesting cases, including the case

where |X | is exponential in the dimension of the context. In addition, both algorithms

proposed in [44] and [27] require keeping a history of observed contexts and arms chosen

at every time instant. Hence, their space complexity grows linearly in T .

In the paper [44], it assumes that the context x ∈ X is sampled from a probability

distribution p(x) and that, given an arm a ∈ A, and conditioned on the context x,

rewards r are sampled from a probability distribution pa(r | x). A significant challenge

in their setup is that, though contexts x are sampled independently, they are not

independent conditioned on the arm played: an arm will tend to be selected more often

in contexts in which it performs well. Hence, learning the distributions {pa(r | x)}a∈A

from such samples is difficult. The epoch-Greedy algorithm [44] deals with this by

separating the exploration and exploitation phase, effectively selecting an arm uniformly

at random at certain time slots (the exploration “epochs”), and using samples collected

only during these epochs to estimate the payoff of each arm in the remaining time slots

(for exploitation).

We show that the challenges above can be addressed when rewards are linear. In the

above contextual bandit set up, this means that X is a subset of Rd, and the expected

reward of an arm a ∈ A is an unknown linear function of the context x, i.e., it has the

form x†θa, for some unknown vector θa. Our algorithm is inspired by the work of [5] on

the ε-greedy algorithm and the use of linear regression to estimate the parameters θa.

The main technical innovation is the use of matrix concentration bounds to control the

25

error of the estimates of θa in the stochastic setting. We believe that this is a powerful

realization and may ultimately help us analyze richer classes of payoff functions.

Our algorithm uses the same separation in “epochs” as in [44]. The paper establishes

an O(T 2/3(ln |X |)1/3) bound on the regret for epoch-Greedy in their stochastic setting.

They further improve this to O(log T) when a lower bound on the gap between optimal

and suboptimal arms in each context exists, i.e., under arm separation. Unfortunately,

the price of the generality of the framework in [44] is the high computational complexity

when selecting an arm during an exploitation phase. In a recent improvement [27], this

computation requires a poly(T) number of calls to an optimization oracle.

Most importantly, even in the linear case we study here, there is no clear way to

implement this oracle in sub-exponential time in d, the dimension of the context. As

Dudik et al. [27] point out, the optimization oracle solves a so-called cost-sensitive

classification problem. In the particular case of linear bandits, the oracle thus reduces

to finding the “least-costly” linear classifier. This is hard, even in the case of only

two arms: finding the linear classifier with the minimal number of errors is NP-hard

[39], and remains NP hard even if an approximate solution is required [11]. As such, a

different approach is warranted under linear rewards.

Contextual bandits with linear rewards is a special case of the classic linear bandit

setup [6, 20, 47, 63]. In this setup, the arms themselves are represented as vectors, i.e.,

A ⊂ Rd, and, in addition, the set A can change from one time slot to the next. The

expected payoff of an arm a with vector xa is given by x†aθ, for some unknown vector

θ ∈ Rd, common among all arms.

There are several different variants of the above linear model. Auer [6], Li et al. [47],

and Chu et al. [20] study this problem in the adversarial setting, assuming a finite

number of arms |A|. In the adversarial setting, contexts are not sampled i.i.d. from

a distribution but can be an arbitrary sequence, for example, chosen by an adversary

that has knowledge of the algorithm and its state variables. Both algorithms studied,

LinRel and LinUCB, are similar to ours in that they use an upper confidence bound and

both estimate the unknown parameters for the linear model using a least-square-error

type method. In addition, both methods apply some sort of regularization. LinRel

26

does it by truncating the eigenvalues of a certain matrix and LinUCB by using ridge

regression. In the adversarial setting, and with no arm separation, the regret bounds

obtained of the form O(
√
Tpolylog(T)).

Dani et al. [24], Rusmevichientong and Tsitsiklis [63], and Abbasi-Yadkori et al. [1]

study contextual linear bandits in the stochastic setting, in the case where A is a

fixed but possibly uncountable bounded subset of Rd. Dani et al. [24] obtain regret

bounds of O(
√
T) for an infinite number of arms; under arm separation, by introducing

a gap constant ∆, their bound is O(d2(log T)3). Rusmevichientong and Tsitsiklis [63]

also study the regret under arm separation and obtain a O(log(T)) bound that depends

exponentially on d. Finally, Abbasi-Yadkori et al. [1] obtain a O(poly(d) log2(T)) bound

under arm separation.

Our problem can be expressed as a special case of the linear bandits setup by taking

θ = [θ1; . . . ; θK] ∈ RKd, where K = |A|, and, given context x, associating the i-th arm

with an appropriate vector of the form xai = [0 . . . x . . . 0]. As such, all of the bounds

described [6, 47, 20, 24, 63, 1] can be applied to our setup. However, in our setting,

arms are uncorrelated; the above algorithms do not exploit this fact. Our algorithm

indeed exploits this to obtain a logarithmic regret, while also scaling well in terms of

the dimension d.

Several papers study contextual linear bandits under different notions of regret. For

example, Dani et al. [23] define regret based on the worst sequence of loss vectors. In

our setup, this corresponds to the rewards coming from an arbitrary temporal sequence

and not from adding noise to x†θa, resembling the ‘worst-case’ regret definition of [9].

Abernethy et al. [2] assume a notion of regret with respect to a best choice fixed in time

that the player can make from a fixed set of choices. However, in our case, the best

choice changes with time t via the current context. This different setup yields worse

bounds than the ones we seek: for both stochastic and adversarial setting the regret is

O(
√
Tpolylog(T)).

Recent studies on multi-class prediction using bandits [41, 33, 22] have some con-

nections to our work. In this setting, every context x has an associated label y that a

learner tries to predict using a linear classifier of the type ŷ = arg maxa x†θa. Among

27

algorithms proposed, the closest to ours is by Crammer and Gentile [22], which uses

an estimator for {θa} that is related to LinUCB, LinRel and our algorithm. However,

the multi-class prediction problem differs in many ways from our setting. To learn the

vectors θa, the learner receives a one-bit feedback indicating whether the label predicted

is correct (i.e., the arm was maximal) or not. In contrast, in our setting, the learner

directly observes x†θa, possibly perturbed by noise, without learning if it is maximal.

Finally, bandit algorithms relying on experts such as EXP4 [10] and EXP4.P [16]

can also be applied to our setting. These algorithms require a set of policies (experts)

against which the regret is measured. Regret bounds grow as logC N , where N is the

number of experts and C a constant. The trivial reduction of our problem to EXP4(.P)

assigns an expert to each possible context-to-arm mapping. The 2d contexts in our case

lead to K2d experts, an undesirable exponential growth of regret in d; a better choice

of experts is a new problem in itself.

2.4 Proofs

2.4.1 Proof for Theorem 1

There are several important observations regarding Theorem 1. To begin with, the

bound holds for arbitrary sequences xt ∈ X : irrespectively of which subsets of users

show up, and how the ratings of these users are weighted, the regret will be logarithmic

and the bound applies. Compared to the bound of the regret of UCB for the classic ban-

dit problem appearing in [8], Theorem 1 differs by a multiplicative factor of dM3
1 /∆a

min.

The constant M1 is a bound on the sum of weights of all users. For practical purpose,

this ought to be small; for example, when the group rating is a weighted average as

in (2.2), M1 = 1. Moreover, the constant ∆a
min captures the gap in expected group

rewards between optimal and suboptimal arms. Note that, since X is finite, ∆a
min are

bounded away from zero, for all a ∈ A. Similar quantities also appear in the bound of

[8], but not in quadratic form. Intuitively, the smaller such gaps are, the more trials

the policy needs to differentiate an optimal arm from suboptimal arms; this indeed

manifests in the bound through the quantity ∆a
min.

28

Recall that Bx = {a ∈ A : x†θa∗x > x†θa}, and ∆a
min = infx∈X :a∈Bx x

†θa∗x − x
†θa.

Let {at}Tt=1 be the sequence of arms selected by the Group-UCB policy at sessions

t = 1, . . . , T. The regret R(T) over the sequence {at}Tt=1 can be written as

R(T) = E
[T∑
t=1

∑
a∈A

1(a ∈ Bxt , at = a)(x†tθa∗xt
− x†tθa)

]

Since θu,a ∈ [0, 1] for all u, a and ‖x‖1 ≤ M1 for all x ∈ X , we have that for a ∈ Bx,∑
u xu[θu,a∗x−θu,a] =

∣∣∑
u xu[θu,a∗x−θu,a]

∣∣ ≤M1 where the positivity of the l.h.s. follows

by the sub-optimality of a. We thus have

R(T) ≤M1
∑
a∈A

E[za(T)] (2.9)

where za(T) = ∑T
i=1 1(a ∈ Bxt , at = a) is the number of times the arm a was played

and was suboptimal. We thus focus on bounding E[za(T)]. Fix an arm a ∈ A, and

denote by Ξ(t) the event {a ∈ Bxt , a(t) = a} and by E(t) the event

E(t) :=
{∑
v∈G

xv,t[θ̂v,a∗xt
(t) + c(nv(t), nv,a∗xt

(t))] ≤
∑
v

xv,t[θ̂v,a(t) + c(nv(t), nv,a(t))]
}

where c(t, s) =
√

ln t/s, and θ̂v,a(t) is the estimation of θv,a up to time t, more ac-

curately, up to nv,a(t) the number of times rv,a obtained. Then Ξ(t) ⊆ E(t), as

at = a implies that the arm a had a higher UCB pa than the optimal one. Hence

za(T) = ∑T
t=1 1 (Ξ(t) ∩ E(t)) . Observe that E(t) implies that at least one of the fol-

lowing three events must be true:

E1(t) :=
∑
v

xv,t[θ̂v,a(t)− c(nv(t), nv,a(t))] ≥
∑
v

xv,tθv,a

E2(t) :=
∑
v

xv,t[θ̂v,a∗xt
(t) + c(nv(t), nv,a∗xt

(t))] ≤
∑
v

xv(t)θu,a∗xt

E3(t) :=
∑
v

xv,t(θv,a∗xt
− θv,a) < 2

∑
v

xv,tc(nv(t), nv,a(t))

Therefore

1(Ξ ∩ E)≤
[
1(E1 ∩ Ξ)+1(E2 ∩ Ξ)+1(E3 ∩ Ξ)

]
(2.10)

29

Let’s consider E3(t) first. Define l = 8M2
1

(∆a
min)2 lnT . Then 1(E3(t) ∩ Ξ(t)) is 1

(
E3(t) ∩

Ξ(t) ∩ (∃w ∈ St : nw,a(t) ≤ l)
)

+ 1
(
E3(t) ∩ Ξ(t) ∩ (∀w ∈ Stnw,a(t) > l)

)
. Note that∑T

t=1 1
(
Ξ(t) ∩ (∃w ∈ St : nw,a(t) ≤ l)

)
≤ dl. To see this, we observe that L(t) =∑

w:nw,a(t)≤l l − nw,a(t) decreases by at least one at t for which a(t) = a and ∃w ∈

St s.t. nw,a(t) ≤ l. Hence, it becomes zero after at most dl such events. On the other

hand, 1(E3(t) ∩ (∀w ∈ St nw,a(t) > l)) = 0. This is because

∑
v

xv(t)
(
θv,a∗xt

− θv,a
)
− 2

∑
v

xv,tc(nv(t), nv,a(t))

≥ ∆a
min − 2

∑
v

xv,tc(nv(t), nv,a(t)) because a ∈ Bxt

> ∆a
min − 2

∑
v

xv,t

√
2 lnnv(t)

l
because nv,a(t) > l

= ∆a
min − 2

∑
v

xv,t

√
2(∆a

min)2 lnnv(t)
8M2

1 lnT ≥ 0

Hence, ∑T
t=1 1(E3(t) ∩ Ξ(t)) ≤ dl. Moreover, 1(E1(t)) is bounded above by

∑
v:xv,t>0

1

(
xv,t[θ̂v,a(t)− c(nv(t), nv,a(t))] ≥ xv(t)θu,a

)

≤
∑

v:xv,t>0

nv(t)∑
s=1

1
(
θ̂v,a(s)− c(nv(t), s) ≥ θu,a

)

By the Chernoff-Hoeffding bound,

P(θ̂v,a(s)− c(nv(t), s) ≥ θu,a) ≤ e−4 lnnv(t) ≤ n−4
v (t)

Thus, ∑T
t=1 P(E1(t)) ≤ ∑T

t=1
∑
v:xv,t>0

∑nv(t)
s=1 n−4

v (t) ≤ 2d. One can similarly bound∑T
t=1 P(E2(t)). Thus, (2.9), (2.10) imply

R(T) ≤M1
∑
a∈A

(dl + 4d) =
∑
a

8M3
1d

(∆a
min)2 lnT + 4KdM1.

which concludes the proof.

30

2.4.2 Proof for Theorem 3

The general structure of the proof of our main result follows that of [5]. The main

technical innovation is the realization that, in the setting when the contexts are drawn

i.i.d. from some distribution, a standard matrix concentration bound allows us to treat

λnI+n−1(X†TXT) in Algorithm 2 as a deterministic positive-definite symmetric matrix,

even as λn → 0.

Let ET denote the time instances for t > p and until time T in which the algorithm

took an exploitation decision. Recall that, by Cauchy-Schwarz inequality, x†t(θa∗xt
−

θa) ≤ ‖xt‖1‖(θa∗xt
− θa)‖∞ ≤

√
d‖xt‖2‖(θa∗xt

− θa)‖∞ ≤
√
d∆max. In addition, recall

that ∑T
t=2 1/t ≤ log T . For R(T) the cumulative regret until time T , we can write

R(T) = E
[T∑
t=1

x†t(θa∗xt
− θa)

]
≤ p∆max

√
d+ ∆max

√
dE
[T∑
t=p+1

1{x†tθa < x†tθa∗xt
}
]

≤ p∆max
√
d+ ∆max

√
dE[|ET |] + ∆max

√
dE
[∑
t∈ET

1{x†tθa < x†tθa∗xt
}
]

≤ p∆max
√
d+ p∆max

√
d log T + ∆max

√
dE
[∑
t∈ET

1{x†tθa < x†tθa∗xt
}
]

≤ p∆max
√
d+ p∆max

√
d log T + ∆max

√
dE
[∑
t∈ET

∑
a∈A

1{x†t θ̂a > x†t θ̂a∗xt
}
]
.

In the last line we used the fact that when exploiting, if we do not exploit the optimal

arm a∗xt
, then it must be the case that the estimated reward for some arm a, x†t θ̂a, must

exceed that of the optimal arm, x†t θ̂a∗xt
, for the current context xt.

We can continue the chain of inequalities and write,

R(T) ≤ p∆max
√
d+ p∆max

√
d log T + ∆max

√
dK

T∑
t=1

P{x†t θ̂a > x†t θ̂a∗xt
}.

The above expression depends on the value of the estimators for time instances that

might or might not be exploitation times. For each arm, these are computed just like

in Algorithm 2, using the most recent history available. The above probability depends

on the randomness of xt and on the randomness of recorded history for each arm.

31

Since x†t(θa∗xt
− θa) ≥ ∆min we can write

P{x†t θ̂a > x†t θ̂a∗xt
} ≤ P

{
x†t θ̂a ≥ x

†
tθa + ∆min

2
}

+ P
{
x†t θ̂a∗xt

≤ x†tθa∗xt
− ∆min

2
}
.

We now bound each of these probabilities separately. Since their bound is the same,

we focus only on the first probability.

Substituting the definition of ra(t) = x†tθa+εa,t into the expression for θ̂a one readily

obtains,

(θ̂a − θa) =
(
λnI + 1

n
X†TXT

)−1
(

1
n

∑
τ∈T

xτ εa,τ − λnθa

)
.

We are using again the notation T = Ta,t−1 and n = |T |. From this expression, an

application of Cauchy-Schwarz’s inequality and the triangular inequality leads to,

|x†t(θ̂a − θa)| =
∣∣∣x†t (λnI + 1

n
X†TXT

)−1
(

1
n

∑
τ∈T

xτ εa,τ − λnθa

) ∣∣∣
≤

√
x†t

(
λnI + 1

n
X†TXT

)−2
xt

(∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ
∣∣∣+ λn|x†tθa|

)
.

We introduce the following notation

ca,t ≡

√
x†t

(
λnI + 1

n
X†TXT

)−2
xt. (2.11)

Note that, given a and t both n and T are well specified.

We can now write,

P
{
x†t θ̂a ≥ x

†
tθa + ∆min

2
}
≤ P

{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ
∣∣∣ ≥ ∆min

2ca,t
− λn|x†tθa|

}
≤ P

{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ
∣∣∣ ≥ ∆min

2ca,t
− λnQ

}
.

Since εa,τ are sub-gaussian random variables with sub-gaussian constant upper bounded

by L and since |x†txτ | ≤ 1, conditioned on xt, T and {xτ}τ∈T , each x†txτ εa,τ is a sub-

gaussian random variable and together they form a set of i.i.d. sub-gaussian random

32

variables. One can thus apply standard concentration inequality and obtain,

P
{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ
∣∣∣ ≥ ∆min

2ca,t
− λnQ

}
≤ E

[
2e
− n

2L2

(
∆min
2ca,t

−λnQ

)+2]
. (2.12)

where both n and ca,t are random quantities and z+ = z if z ≥ 0 and zero otherwise.

We now upper bound ca,t using the following fact about the eigenvalues of any two

real-symmetric matrices M1 and M2: λmax(M−1
1) = 1/λmin(M1) and λmin(M1 +M2) ≥

λmin(M1)− λmax(M2) = λmin(M1)− ‖M2‖.

ca,t ≤
(
λn + λ+

min(E{x†1x1})−
∥∥∥ 1
n
X†TXT − E[x†1x1]

∥∥∥+)−1
.

Both the eigenvalue and the norm above only need to be computed over the subspace

spanned by the vectors xt that occur with non-zero probability. We use the symbol +

to denote the restriction to this subspace. Now notice that ‖.‖+ ≤ ‖.‖ and, since we

defined Σmin ≡ mini:λi>0 λi(E[X1X
†
1]), we have that λ+

min(E[X1X
†
1]) ≥ Σmin. Using the

following definition, ∆Σn ≡ n−1X†TX
†
T − E[X1X

†
1], this leads to, ca,t ≤ (λn + Σmin −

‖∆Σn‖)−1 ≤ (Σmin − ‖∆Σn‖)−1.

We now need the following Lemma.

Lemma 2. Let {Xi}ni=1 be a sequence of i.i.d. random vectors of 2-norm bounded by

1. Define Σ̂ = 1
n

∑n
i=1XiX

†
i and Σ = E[X1X

†
1]. If ε ∈ (0, 1) then,

P(| Σ̂− Σ‖ > ε‖Σ‖) ≤ 2e−Cε2n,

where C < 1 is an absolute constant.

For a proof see [81] (Corollary 50).

We want to apply this lemma to produce a useful bound on the r.h.s. of (2.12).

First notice that, conditioning on n, the expression inside the expectation in (2.12)

depends through ca,t on n i.i.d. contexts that are distributed according to the original

33

distribution. Because of this, we can write,

P
{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ
∣∣∣ ≥ ∆min

2ca,t
− λnQ

}
≤ E

[
2e
− n

2L2

(
∆min
2ca,t

−λnQ

)+2]

≤
t∑

n=1

(
P{|Ta,t−1| = n} × E

[
2e
− n

2L2

(
∆min
2ca,t

−λnQ

)+2 ∣∣∣|Ta,t−1| = n
∣∣∣]).

Using the following algebraic relation: if z, w > 0 then (z − w)+2 ≥ z2 − 2zw, we

can now write,

E
[
e
− n

2L2

(
∆min
2ca,t

−λnQ

)+2 ∣∣∣|Ta,t−1| = n
]

≤ P{|∆Σn| > Σmin/2| |Ta,t−1| = n}+ e
− n

2L2

(
Σmin∆min

4 −λnQ

)+2

≤ P{|∆Σn| > Σmin/2| |Ta,t−1| = n}+ e
Q∆minΣmin

4L2 e−
n(∆min)2(Σmin)2

32L2

Using Lemma 2 we can continue the chain of inequalities,

E
[
e
− n

2L2

(
∆min
2ca,t

−λnQ

)+2 ∣∣∣|Ta,t−1| = n
∣∣∣] ≤ 2e−C(Σmin)2n/4 + e

Q∆minΣmin
4L2 e−

n(∆min)2(Σmin)2

32L2 .

Note that ||Σ|| ≤ 1 follows from our non-restrictive assumption that ‖xt‖2 ≤ 1 for all

xt. Before we proceed we need the following lemma:

Lemma 3. If nc = p
2k log t , then P{|Ta,t−1| < nc} ≤ t−

p
16K .

Proof. First notice that |Ta,t−1| = ∑t−1
i=1 zi where {zi}t−1

i=1 are independent Bernoulli

random variables with parameter p/(Ki). Remember that we can assume that i > p

since in the beginning of Algorithm 2 we play each arm p/K times.

Note that P(X > c) ≤ P(X + q > c) is always true for any r.v. X, c and q > 0. Now

34

write,

P(|Ta,t−1| < nc) = P
(
t−1∑
i=1

zi < nc

)
= P

(
t−1∑
i=1

(zi − p/(Ki)) < nc − (p/K)
t−1∑
i=1

1/i
)

≤ P
(
t−1∑
i=1

(−zi + p/i) > −nc + (p/K)
t−1∑
i=1

1/i
)

≤ P
(
t−1∑
i=1

(−zi + p/i) > (p/K) log t− nc
)
. (2.13)

Since ∑t−1
i=1 E[(zi − p/(Ki))2] = ∑t−1

i=p+1(1 − p/(Ki))(p/(Ki)) ≤ p
K log t, we have that

{−zi + p/i}t−1
i=1 are i.i.d. random variables with zero mean and sum of variances upper

bounded by (p/K) log t. Replacing nc = (p/2K) log t in (2.13) and applying Bernstein

inequality we get, P(|Ta,t−1| < nc) ≤ e
−

1
2 (p/(2K))2 log2 t

p
K

log t+ 1
3 (p/(2K)) log t ≤ t−

p
16K .

We can now write, by splitting the sum in n < nc and n ≥ nc

P
{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ
∣∣∣ ≥ ∆min

2ca,t
− λnQ

}

≤
t∑

n=1
P{|Ta,t−1| = n}E

{
2e
− n

2L2

(
∆min
2ca,t

−λnQ

)+2∣∣∣|Ta,t−1| = n
}

≤ P{|Ta,t−1| < nc}+ 4e−C(Σmin)2nc/4 + 2e
Q∆minΣmin

4L2 e−
nc(∆min)2(Σmin)2

32L2

≤ t−
p

16K + 4t−
Cp(Σmin)2

8K + 2e
Q∆minΣmin

4L2 t−
p(∆min)2(Σmin)2

64KL2 .

We want this quantity to be summable over t. Hence we require that,

p ≥ 128KL2

(∆min)2(Σmin)2 , p ≥
16K

C(Σmin)2 , p ≥32K. (2.14)

It is immediate to see that our proof also follows if ∆min, Σmin and L are replaced by

∆′min = min{1,∆min}, Σ′min = min{1,Σmin} and L′ = max{1, L} respectively. If this is

done, it is easy to see that conditions (2.14) are all satisfied by the p stated in Theorem

35

3. Since ∑∞t=1 1/t2 ≤ 2, gathering all terms together we have,

R(T) ≤ p∆max
√
d+ p∆max

√
d log T + ∆max

√
dK

(
4e

Q∆′minΣ′min
4L′2 + 10

)

≤ p∆max
√
d+ 14∆max

√
dKeQ/4 + p∆max

√
d log T.

2.5 Numerical Results

In Theorem 1 and Theorem 3, we showed that, Algorithm 1 and Algorithm 2 have an

expected regret of O(log T). We now illustrate this point by numerical simulations.

2.5.1 Group-UCB

We evaluated Group-UCB on two datasets, MovieLens [32] and MoviePilot [58].

MovieLens Dataset.TheMovieLens dataset consists of 1 000 209 ratings, given by

6 040 users to 3 883 movies. Ratings of a movie range from 1 to 5. Movies in the

dataset are labeled by genres, such as “Animation”, “Children’s”, etc. When we build

the user-movie matrix, where each row is a user, each column represents a movie, and

the cell is the rating from the user to the movie, there are around 96% cells for which

ratings are missing. We construct a low-rank approximation of the dataset, and subse-

quently use it to predict those missing ratings—i.e., perform matrix completion.

MoviePilot Dataset. The dataset comprises 4, 536, 891 ratings given by 171, 670

users over 23, 974 movies. In addition, the dataset includes household information about

a subset of the users. In particular, this subset is organized in 290 households with sizes

2, 3 and 4. Specifically, 272 households are formed by 2 users and 14 by 3 users, while

only 4 households have 4 users. As the MovieLens dataset, we again preprocess the

dataset to complete the user-movie rating matrix.

Simulation Setup and Evaluation. In the simulation, arms correspond to movie

genres, and rewards to ratings. The process is as follows. Given a group G, at each

session t, the subgroup St is selected uniformly at random from non-empty subset of G.

If the Group-UCB policy selects the genre a, a movie selected u.a.r. among movies in

the genre a is displayed to the present group. The reaction of a user is then the rating

36

(a) (b)

10
0

10
1

10
2

10
3

10
4

10
5

0

500

1000

1500

2000

T

R
e

g
re

t

1 user

2 users

3 users

4 users

5 users

6 users

7 users

8 users

9 users

10 users

2 4 6 8 10
150

200

250

300

350

400

450

d

R
e
g
re

t
S

lo
p
e

Figure 2.1. (a) Random groups up to 10 users. (b) Average slope of the regret with
regard to group size.

that she provided. If the rating is missing, the predicted rating is used.

We consider two types of groups: a) a group of randomly picked users; b) a group

of users who share location. For a), we randomly pick 10 users from the dataset, then

build 10 groups by adding one more user to a group each time. For b), we select 6

users with the same zip code, similarly build 6 groups by adding one more person to

form a new group each time. Profiles of members in this group are shown in Table 2.1.

We evaluate the performance by cumulative regret over time. Figure 2.1(a) shows the

regret for group a) and Figure 2.2(a) for group b). Both plots are in semi-log scale,

and show that regrets are indeed grow logarithmically. We compute the regret slope

as as the slope of the final portion of the curve. We take the average regret slope from

multiple samples of groups in varied sizes. Figure 2.1(b) shows the correlation between

the slope and the group size, and it is positive.

User ID Gender Age Occupation
1 Male 18-24 college/grad student
2 Male 18-24 programmer
3 Male 18-24 college/grad student
4 Female 25-34 sales/marketing
5 Female 18-24 other
6 Male 35-44 academic/educator

Table 2.1. Member information in the group

In above simulation, members in the group have equal weight on the reward. We

now investigate the scenario in which users have different influence in the group reward.

37

(a) (b)

10
0

10
1

10
2

10
3

10
4

10
5

0

500

1000

1500

2000

t

R
e

g
re

t

1 user

2 users

3 users

4 users

5 users

6 users

10
0

10
1

10
2

10
3

10
4

10
5

200

400

600

800

1000

1200

1400

1600

1800

2000

T

R
e

g
re

t

Equal Weight

Influence Weight

Figure 2.2. (a)Regrets for groups of people with same zip code. (b)Regrets for equal
weight vector and influence weight vector.

As it is not easy to determine the influence power of each member, we use an arbitrary

heuristic for experiment: 1) female gain 1 more weight unit; 2) children and elder

people add 1 more weight unit. Taking the 6-user group in Table 2.1 as an example,

the weight vector w is (1,1,1,3,2,3) before normalization. We then apply Group-UCB

on the group with this weight vector, with other settings not changed. Figure 2.2(b)

displays the regrets for Equal Weight and our heuristic Influence Weight, on semi-log

scale. We can see that regrets are logarithmic in time t for both groups, indicating that

our Group-UCB policy can take varying weight vector xt.

In contrast to MovieLens, MoviePilot contains no genre information of movies. For

this reason, we generated genres artificially by taking into account how well known dif-

ferent movies are. Note that a movie being well-known does not necessarily mean it has

been rated highly. Our notion of genre basically tries to distinguish mainstream movies

from movies only known to a more selective audience. The different genres were defined

as follows. First we computed an histogram of the frequency of viewings for movies.

Then we partitioned this histogram into different sections. E.g. its tail, its kink, etc...

The different sections corresponding a movie being watched by a number of users in

one of the following intervals: [500, 1 000), [1 000, 2 793), [2 793, 5 793), [5 793, 11 793)

and [11 793,∞). Finally, we associated different genres to each of these different inter-

vals. Our interest in using the MoviePilot data set is to identify whether interesting

phenomena occur as the results of using real group information. This could not be done

38

(a) (b)

100 200 300 400
0

50

Size 2 Household

C
o
u
n
t

120 140 160 180 200 220
0

1

2

3
Size 3 Household

Regret Slope

C
o
u
n
t

1000 2000 3000 4000 5000 6000 7000
0

50

100

Size 2 Household

1000 1500 2000 2500 3000 3500
0

2

4
Size 3 Household

Convergence Time

C
o
u
n
t

Figure 2.3. (a) Distributions of scaling coefficients for households of size 2 and 3.
(b) Distributions of convergence times for households of size 2 and 3.

with the MovieLens data set because no group information is given. Hence the reason

why we had to artificially form groups by grouping users with similar characteristics,

like zip code.

We computed the distribution of the regret slope for different household sizes and

also the distribution of the convergence times. The results are shown in Figure 2.3.

The distributions for size 3 households are not very informative because there are not

that many households of size 3 in the data set. However, looking at houses of size 2

one finds that both the values of the scaling coefficient and convergence time oscillate

quite a bit. In particular, the distribution of the convergence times seems to have

a long tail. This points to the fact that the behavior of Group-UCB is significantly

dependent on the actual expected rewards of each individual of the group for each

genre not only on the size of the group. From Figure 2.4 one also sees, not surprisingly,

that poorer performance (higher regret slope) seems to be positively correlated with

slower convergence times.

2.5.2 Contextual ε-Greedy

We here show the experimental results for Algorithm2, most importantly, exemplify how

violating the stochastic assumption might degrade its performance. Figure 2.5 (a) shows

the average cumulative regret (in semi-log scale) over 10 independent runs of Algorithm

2 for T = 105 and for the following setup. The context variables x ∈ R3 and at each

39

100 200 300 400

1000

2000

3000

4000

5000

6000

7000

Slope

C
o
n
v
e
rg

e
n
c
e
 T

im
e

Figure 2.4. Scatter plot showing correlation between scaling coefficients and
convergence times.

time step {xt}t≥1 are drawn i.i.d. in the following way: (a) set each entry of x to 1 or

0 independently with probability 1/2; (b) normalize x. We consider K = 6 arms with

corresponding parameters θa generated independently from a standard multivariate

gaussian distribution. Given a context x and an arm a, rewards were random and

independently generated from a uniform distribution U([0, 2x†θa]). As expected, the

regret is logarithmic. Figure 2.5 (a) shows a straight line at the end.

To understand the effect of the stochasticity of x on the regret, we consider the

following scenario: with every other parameter unchanged, let X = {x, x′}. At every

time step x = [1, 1, 1] appears with probability 1/z, and x′ = [1, 0, 1] appears with

probability 1 − (1/z). Figure 2.5 (b) shows the dependency of the expected regret on

the context distribution for z = 5, 10 and 100. One can see that an increase of z causes

a proportional increase in the regret.

2.6 A Group Recommender Demo System

In this section, we present our group recommender demo system, using dining out

with friends as the application. For classic recommender system for individuals, the

post-recommendation behavior is simple: users give ratings or zero-one feedback to

recommended items. It gets complicated for groups. Members may have different feed-

back towards the recommendation. Existing group recommender systems just present

results to each member in the group [21, 60], and assume members can discuss the

40

(a) (b)

10
0

10
1

10
2

10
3

10
4

10
5

0

1000

2000

3000

4000

5000

log scale of number of trials

a
c
c
u

m
u

la
ti
v
e

 r
e

g
re

t

0 2 4 6 8 10

x 10
4

0

100

200

300

400

500

600

700

800

900

number of trials

a
cc

u
m

u
la

tiv
e

 r
e

g
re

t

5 times

10 times

100 times

Figure 2.5. (a) Regret over T when xt is from i.i.d. (b) Regret over T when xt is not
from i.i.d.

results offline [54].

In the design of our demo system, we focus on facilitating group consensus to the

recommendation. It allows users organizing group events, provides recommendation

and helps the group to reach consensus. The group decision making process is shown in

Figure 2.6. Members can vote and chat for each options, or select new options. Mem-

bers’ votes are stored to learn their preferences, which are used in the recommendation

for future events.

Proposal

Vote for consensus

Modify the proposal

Stand aside

Y N

Announce the event Discuss

Figure 2.6. Group decision making framework

41

2.6.1 System Overview

The workflow of the system is as follows. A new user needs to sign up with a valid

email address. The system will send a validation email and let the user complete the

registration. The user then can login the system to see his/her profile page, where the

user can create a new event, view current events, and review past events.

The user who creates the event serves as the admin of the event. As in Figure 2.8(a),

the admin will provide the type of event, date and time, friends’ email addresses and

the location of the event. The system will automatically suggest 5 friends, based on the

co-event frequency with the admin. The group is then constituted by the admin and

friends he/she invited. Each member can also invite more people to the event in later

stage.

Based on the context provided by the admin, the system generates a recommenda-

tion list with 10 items tailored to this group as in Figure 2.8(b). The admin can select

one or more options from the recommended list, or through the search interface, or

manually type places. When choices are picked, the admin’s task of organizing event is

now finished. The system will send out an invitation email to members in the group,

who are attendees. The email contains the link for the event page as in Figure 2.8(c).

Attendees can vote options either positively or negatively on the event page as in

Figure 2.8(d). Each member’s feedback is revealed to the whole group. Attendees can

change their opinions based on others’ votes. Attendees can leave comments on the

event page, which are visible to the whole group. When the group reaches consensus

on the option, the admin can close the event. The system will send out emails with the

event summary including date, time, members, and the final place picked by the group.

There are two places the system pushes the recommended results to the group. One

is when the admin organizes the event as in Figure 2.8(b). The other scenario is when

attendees see the event page and decide to add more options.

42

Type of the event

Date and time

Invite friends by email

Rough location of the event

(a) Event Detail

Recommendations for this group

Options chose by the admin

Search for other options

Manual options

(b) Recommendation

Figure 2.7. Create event and recommendation for the group

2.6.2 Recommendation Model

In the system, each user is identified through their valid email address. The system has

a database which keeps track of user, item (which are restaurants in our application),

event, user-item vote in each event and derived friendship based on the co-presence of

attendees in events. Figure 2.9 shows the information the system stored.

43

Event detail

Options chosen by the admin

User feedback

Invite more friends by emails

Group discussion

Yelp url embedded

Average ratings Number of raters

Add more options by any member

(a) Voting

Members voting on each choice

(b) View Detail

Figure 2.8. Voting and other members’ decisions

Learn Member’s Preference

Formally, we denote by all users the set U where u ∈ U , items the set I where i ∈ I,

events the set E where e ∈ E . The vote for each item in an event by a user is binary

in yu,i = {0, 1}. Each item has features extracted from yelp page and is represented in

the feature vector xi. Each member’s preference on these features is denoted by θu. We

assume the vote of a user to an item is a function of user preference and item features:

44

User

<id, name, email,
registered-time>

Item

<id, name, address,
cuisine-type>

Event
<id, theme, admin, date-time,
location, created-time, status,
closed-time, final-option>

Event – User

<event-id, user-id>

Event - Item

<event-id, item-id>

Event - User - Item - vote

<event-id, user-id, item-id,
vote>

User – User (friendship)

<user-id, user-id, co-event>

Figure 2.9. Information stored by the system

yu,i = Φ(x†iθu). For users participated in enough historical events in the system, we

can apply broadly used techniques such as logistic regression to learn the parameter

θu. For new users or who lack of sufficient information, we can apply MAB algorithm

discussed in previous sections to quickly estimate θu.

Learn Members’ Influence

The member’s preference is assumed to be independent to other members in the group.

However, in the group consensus making process, each member is aware of others’ votes

which can impact their own decisions. We propose an influence cascade model which

assumes the decision made by each member is affected by the individual’s preference

and other members’ influence.

Consider the scenario that a group G with |G| = d finite number of members tries

to reach consensus on the item i. Every individual provides his/her own feedback to

the item, which is represented by a binary value yu,i ∈ {0, 1}. Note that yu,i can

be multinomial variable such as “like”, “dislike” or “neutral”, and it can also be a

real number scaling from 1 to 5. We here deal with the binary case only. Let e =

(G, i, {yu,i}u∈G) be an event by the group G with the item i. The vote of each item

for the group depends on the number of positive votes. In other words, the average

45

strategy is used to determine the group preference of an item as yG,i = 1/|G|∑u∈G yu,i.

We use p(u|i) to denote the individual inherent preference on the item, p(v|u) be

the influence of the decision by the member v to the member u. We now model how

each individual votes given he/she is aware of existing decisions of others. The order

in which people vote can be arbitrary and depends on when they access the decision

process. Moreover, their vote can be influenced by the votes of other people voted

before them. Let U+
e (u) be users who give positive feedback in event e before user u

and U−e (u) be users who give negative feedback. The probability that the member u

will give positive feedback to the item depends on his own preference on the item and

other members’ feedback as in (2.15). Putting differently, a user u votes positively by

tossing |U+
e (u)|+ 1 independent 0− 1 coins and observing whether any of them return

1. The first coin is 1 with probability p(u|i), and others with probability p(v|u).

Pr(yu,i = 1) = 1− (1− p(u|i)) ∗
∏

v∈U+
e (u)

(1− p(v|u)) (2.15)

Given a set of events E, we can estimate the pairwise influence p(v|u) and indepen-

dent preference p(u|i) by maximizing the likelihood of all events which the user u has

participated.

L(E, u) =
∏

e:yu,i=1
Pr(yu,i = 1)

∏
e:yu,i=0

Pr(yu,i = 0) (2.16)

We change the variables and let 1− p(u|i) = qu,i , ru,i = Pr(yu,i = 1), bv,u = 1− p(v|u).

The problem becomes

Maximize
∏

e:yu,i=1
ru,i

∏
e:yu,i=0

∏
v∈U−e (u)

bv,uqu,i

subject to 0 ≤ ru,i ≤ 1; 0 ≤ qu,i ≤ 1 ∀i

0 ≤ bv,u ≤ 1∀v

ru,i +
∏

v∈U+
e (u)

bv,iqu,i ≤ 1 ∀e

46

Note the last constraint is an inequality rather than an equality. The objective

function will strictly increase when either increase ru,i or bv,i or qu,i, so the inequality

will always be a binding constraint at the solution. The objective function is a monomial

thus our problem is a geometric program which can be solved efficiently(see [59]).

The individual preference p(u|i) reflects the interests of the individual and does not

vary to a given event or a given group. We can estimate the individual preference from

external resources, or by selecting events that the individual is the first one to make

decision and using logistic regression on these events. Then qu,i = 1− p(u|i) is treated

as known constants when solving (2.16).

Once we learn p(u|i) and p(v|u) through the training data, we can predict the

individual’s vote on future event as y(u, i) = β ∗ p(u|i) + (1−β)
∑

v∈G
p(v|u)∗p(v|i)
|G| , where

β controls the impact of individual’s inherent preference and members’ influence.

2.6.3 User Study and Model Evaluation

We use an offline user study to measure the performance of our influence cascade model.

The main intuition is that if there is no pairwise influence on the decision, we can get

good prediction on the individual feedback only using individual preference. Otherwise,

our decision cascading model in (2.15) will achieve better prediction performance. We

sampled 277 group events organized through our system. In total 19 individuals are

involved and 79 items are chosen. Groups have size 2, 4 and 8. Every user participated

in 54 events on average. A few of members did not provide any feedback. We col-

lected 4398 valid votes at last. We split events chronologically into training(80%)and

testing set (20%). The baseline algorithm uses logistic regression to predict individual

preference, which is in turn used to predict individual’s vote.

baseline influence model
true positive rate 0.52 0.77
false positive rate 0.35 0.6

accuracy 0.65 0.7
AUC 0.61 0.85

Table 2.2. Prediction performance on test set, prediction threshold = 0.5

47

Table 2.2 shows that the influence cascade model has high true positive rate, better

accuracy and much better AUC on the test set. However, the false positive rate is also

higher. This is because our model focuses on positive votes only, and ignores the impact

of negative and missing votes from members. A future work is to model the influence

behind both positive and negative votes.

2.7 Conclusion

Our work has initiated a group MAB problem with a group of users, which is applicable

for many applications, particularly group recommendation. Our group MAB setting

addressed the challenges that prior information about the individual and the group

is missing, and the group is dynamic in terms of participated members at each time.

We considered two scenarios regarding the group feedback process: 1) receiving every

present member’s feedback; 2) receiving only single group feedback. We designed cor-

responding policies, and presented the theoretic proof for their regret bounds. We also

showed the effectiveness of our policies through numeric results.

We also designed a group recommender demo system which is consensus-focused.

It used group dining out as the application and facilitates group decision making to

recommendations. We conducted user study through system and collected data of

277 group events. We proposed a influence cascade model which takes in account

members’ influence when each member makes vote. Experiments showed that the

influence cascade model can effectively predict the individual’s votes to items.

48

Chapter 3

Cohort Modeling for Enhanced Personalized Search

Web search engines utilize behavioral signals to develop search experiences tailored to

individual users. To be effective, such personalization depends on access to sufficient

information about each user’s interests and intentions. For new users or queries, profile

information may be sparse or non-existent. To handle these cases, and perhaps also

improve personalization for the others, search engines can employ signals from those

similar to the current user along one or more dimensions, i.e., those in the same co-

hort. In this chapter we describe a characterization and evaluation of the use of such

cohort modeling to enhance search personalization. We experiment with three pre-

defined cohorts-topic, location, and top-level domain preference independently and in

combination, and also evaluate methods to learn cohorts dynamically. We show via

extensive experimentation with large-scale logs from a commercial search engine that

by leveraging cohort behavior we can attain significant relevance improvements when

combined with a production ranker that uses similar classes of personalization signal

but at the individual searcher level. Additional experiments show that our gains can be

extended when we dynamically learn cohorts and target classes of ambiguous or unseen

queries.

3.1 Introduction

3.1.1 Background and Related Work

There are three relevant areas of related work: (1) personalization of search engines

based on short- and long-term searcher interests, (2) collaborative filtering, and (3)

49

mining the search behavior of other users to complement and enhance search personal-

ization.

Large-scale behavioral data from search engines has been mined extensively to im-

prove result relevance in the aggregate across all users [3, 38]. Search preferences are

personal and research on personalizing retrieval [66, 78] has shown that implicitly col-

lected information such as browser history, query history, and desk-top information, can

be used to improve the relevance of search results for a particular individual. Short-term

behavior from within the current search session has been used for tasks such as result

ranking [39] or predicting future search interests [86, 87]. Teevan et al. [78] showed that

their personalization algorithm improved as more data was available about the current

user. Long-term behavior has been used for personalizing search by building longitudi-

nal models of user interests [70], including using the previous queries associated with

the pursuit of similar information needs [74]. Models can use different sources, ranging

from specific query-URL pairs which have high precision but low coverage [79] to more

general methods that use topical representations of user search interests [70].

When there is insufficient data about the current user, the search behavior of other

related users may be beneficial in modeling user interests and intentions. Teevan et al.

[80] explored the similarity of query selection, desktop information, and explicit rele-

vance judgments across a small group of work colleagues grouped along two dimensions:

(1) the longevity of their personal relationship, and (2) how explicitly the group was

formed. They found that some groupings provide insight into what members considered

relevant to queries related to the group focus, but that it can be challenging to identify

valuable groups implicitly. White et al. [88] address this issue by implicitly modeling

the search task of the user, finding others who have attempted a similar task, and using

their on-task behavior to enhance relevance. Although they used cohorts (location,

topic expertise, and search engine entry point) as part of their ranking experiments,

they observed limited gain in their experimental setting and how they chose to model

and integrate cohorts.

Collaborative filtering (CF) [30] can also be used to find people with similar interests

and leverage their activities and preferences to help the current user. The lack of

50

sufficient personal information (sometimes referred to as the “cold start” problem) has

been studied in research on CF and on recommender systems [64]. This research has

shown that a number of sources can be used to generate recommendations from others

in a given community, including agreement in item ratings [61] and social network

memberships [42].

There are three predefined cohorts that we focus on in our study: topical interests,

domain preferences, and geographic location. We now describe relevant related work in

each area, beginning with topical interest, some of which leverages CF to find similar

users.

Topic information can be used directly to improve search engine ranking [14].

Sugiyama et al. [71] addressed sparseness in user term weight profiles by applying CF

techniques to attain term weights based on those of users with similar profiles. Similar

approaches have used click-through data to personalize result rankings and backed-off

to the clicks of others [4, 72]. Almeida and Almeida [4] used Bayesian algorithms to

cluster users of an online bookstore into communities based on links clicked within the

site and found that the popularity of links within different communities could be used

to customize result rankings. Lee [46] proposed a system that uses data mining to

uncover patterns in users’ queries and browsing to generate recommendations for users

with similar queries. These techniques perform matching with other users based on in-

dividual queries or URLs, severely limiting coverage. Freyne and Smyth [19] addressed

this concern by connecting different communities based on the degree to which their

queries and result clicks overlap.

Alternative methods have been proposed that are query independent. Smyth [69]

suggested that click-through data from users in the same “search community” (e.g.,

a group of people who use a special interest Web portal or work together) could en-

hance search. He provided evidence for the existence of search communities by showing

that a group of co-workers had a higher query similarity threshold than general Web

users. Leong et al. [36] showed that searchers exhibited domain preferences, where

they favored particular sources when selecting results. White et al. [89] found that

domain experts preferred different top-level domains than novices, with more focus on

51

educational (.edu) and governmental (.gov) sites, whereas novices preferred commercial

(.com) sites.

Turning to location, Mei and Church [56] found that geographic location might

serve as a reasonable proxy for community, since they observed that grouping users

based on the IP address similarity could improve relevance. Cheng and Cantu-Paz [19]

developed models for personalized click prediction in online advertising that leveraged

demographic and location features to improve prediction accuracy. Bennett et al. [13]

showed the effectiveness of location-based personalization, whereby models of searcher

interests for particular locations can be learned and used in concert with the searcher’s

current location to improve relevance. White and Buscher [85] automatically identified

users with local expertise (knowledge of a specific city or town) from search log data,

and showed that the interests of these local users was both different and that there were

differences in the quality of the entities they visited (restaurants reserved in this case),

with locals selecting higher rated venues. Weber and Castillo [84] estimated searcher

demographics by joining search location with census data and demonstrated variations

in search behavior for different demographic groups.

3.1.2 Contributions

Our research extends previous work and makes the following research contributions:

• We generate pre-defined cohorts using information readily available to search

engines, specifically topic, location, and top-level domain preference.

• We show that modeling user interests within these cohorts can enhance state-

of-the-art search personalization methods, leading to significant gains in search

relevance.

• We show that there are particular sets of easily-identifiable queries (such as am-

biguous or new queries for a given user), for which our cohort modeling approach

can be particularly effective.

• We propose methods to dynamically learn cohorts rather than use pre-defined

sets, and demonstrates strong relevance gains.

52

3.2 Cohort Modeling

We now describe the construction of our cohort model, beginning with the nature of

the data, but also including features computed.

Upon submission of a query to a search engine, a list of search results is retrieved

and ranked for the user. The user examines the list and decides the next action on the

results: click or not click. Search engine logs capture much of this interaction. An entry

in the search log comprises a tuple 〈u, q, d, c, t〉, where u is a user from the universe of

users U , q is a query in the universe set of queries Q, and d is from the universe of

documents (search results) D, c is a binary value that 1 is a click and 0 otherwise, and

t is the timestamp. Such tuples can be created for each of the top-ranked search results

returned by the search engine.

The click-through rate (CTR) of a query-document pair 〈q, d〉 is the ratio of the

number of clicks on the document to the number of impressions in which that result

is shown for the search query. CTR is commonly used to measure the probability of a

click given a query-document pair, i.e., P (c = 1|d, q). Given this, plus the simplicity

and general applicability of CTR, it seems appropriate to focus on it for this first study

of cohort modeling. In our approach we focus on a subset of clicks suggesting that

searchers are satisfied with the particular search results that they have selected. We

refer to these as satisfied (SAT) clicks.

Definition 1 (SAT Clicks). As defined in [30], SAT clicks have an associated dwell

time of ≥ 30 seconds between search engine actions, or it is the last action in a search

session (assumed to be SAT).

Using SAT clicks rather than all clicks can provide a more accurate CTR signal since

accidental or misinformed clicks are excluded. Therefore, rather than simply counting

the number of clicks divided by the number of impressions, we can compute CTR as:

ctr(d, q) = SATClicks(d, q)
Impressions(d, q) (3.1)

Users may search for different information under the same query. This can also be

53

reflected in a CTR tailored to each searcher. We use an individual’s click-through rate

CTR(d, q, u) to estimate the degree of satisfaction of the user with a document given a

query:

ctr(d, q, u) = SATClicks(d, q, u)
Impressions(d, q, u) (3.2)

As mentioned earlier, we represent users by contextual features corresponding to

domain preference, location, and topic interests. We now describe each of the represen-

tations in turn.

Top-Level Domain: The domain name of a URL represents its networking context,

the administrative autonomy, and authority. A recent study showed that searchers

exhibit a preference for particular domains irrespective of relevance [36]. The number

of unique domain names across the broad range of information needs in our dataset is

intractable. We therefore elect to study top-level domain (TLD) first. TLD includes

generic domain extensions such as .com, .net, .org; sponsored extensions such as .mil,

.asia, .edu; and country code such as .us, .uk, .fr. Related work on domain expertise

in search revealed that there were differences in the TLDs selected depending on user

domain expertise level (experts preferred .edu and .gov, novices preferred .com) [89].

The TLD may therefore offer some insight into the subject matter expertise of the

searcher, which can be useful in performing richer personalization.

We limit our study on search logs collected in the United States geographic locale,

but we observe many clicks on URLs with other country code domain extensions. This

information could be used to estimate the native language of users or simply countries

with which they have an interest. There are many TLDs, and because many are fairly

new or visited infrequently (at least from search results), we do not observe many clicks

related to them.

We include all general and sponsored TLDs (23 in total), and also select 11 country

code TLDs which are registered in the first and second year of availability, since we

observe the number of Web pages and clicks of a TLD is related to its time in existence.

We then randomly sample 3% search logs during a two-month period and examine the

number of SAT clicks on selected TLDs. TLDs with less than 1000 SAT clicks, e.g.,

54

.arpa, .post, .tel, are excluded. We retained the remaining 31 popular TLDs and use

“othe” for all other cases. This set of TLDs is used to construct our cohorts.

Location: The location of a user may also reveal their search interests and in-

tentions [13]. We estimated the location of the user at query time using reverse IP

geocoding. Since a user may not be confined to a particular city, but will generally

remain within a state, we compute location preference for each user at the state level.

There are 51 U.S. state features. When we failed to identify the location of a user, we

categorize their location as “other”.

Topic: We utilize the Open Directory Project (ODP, dmoz.org), a human-generated

hierarchical taxonomy of Websites, as our topical ontology. This has been used exten-

sively in previous work on personalization to model search interests at a level beyond

queries and documents [15, 70]. Topics are assigned to URLs using the content-based

classifier described and evaluated in [14]. The user’s degree of interest in a topic is then

inferred from the number of clicks of URL results under that topic in her past click

history. ODP contains 15 top-level categories such as “Arts”, “Sports”, etc. To control

the size of the feature space, we focus on top-level categories only.

Given features explained above, we define a cohort as a group of users sharing a

contextual feature. The total number of selected features is 99. In other words, we

define 99 cohorts of users based on shared contextual features. A user can be a member

of multiple cohorts. We model cohort membership to indicate how likely a user is to

be a member. It is also used to measure how strongly to weight the user contribution

to the cohort when aggregating co-hort clicks.

We denote Cj as the j−th cohort of a particular type, CT as cohorts of top-level

domains, CL as cohorts of locations, and CO of ODP categories (topic). Since the

following calculations for each of the three cohort types are the same, we ignore the

superscript in the cohort notation for simplicity.

Definition 2 (Cohort Membership). The cohort membership vector for user u is de-

fined as a m-tuple W (u) = [w(u, 1), w(u, 2), . . . , w(u,m)], in which m is the number of

cohorts, and w(u,i) represents the degree of membership for the user in i-th cohort (say,

“California”). W(u) is normalized such that
∑
iw(u,Ci) = 1. The cohort membership

55

is drawn from a multinomial distribution of SAT clicks, and calculated as follows:

w(u,Cj) = SATClicks(u,Cj) + 1∑
i SATClicks(u,Ci) +K

(3.3)

Example 1: Suppose there are only three cohorts: California, Washington, and

Oregon, we observe three SAT clicks when the user is at California, one SAT click at

Washington, then the cohort membership is [0.57, 0.29, 0.14].

Definition 3 (Cohort CTR). Given a cohort type (e.g., Topic), the co-

hort CTR for a query and URL document 〈q, d〉 is a m-tuple c-ctr(d, q) =

[ctr(d, q, C1), ctr(d, q, C2), . . . , ctr(d, q, Cm)], in which m is the number of cohorts, and

ctr(d, q, Ci) is the probability that users in i−th cohort will click document d for the

query q. It is a weighted aggregation of individual CTR as follows:

ctr(d, q, Cj) =
∑
u SatClicks(d, q, u) ∗ w(u,Cj)∑

u Impressions(d, q, u) ∗ w(u,Cj)
(3.4)

Cohort CTR is used to measure the cohort preference on the document d given the

query q. It weights a user’s clicks by their cohort membership. Users who exhibit strong

preference to the cohort will contribute more in the cohort CTR, e.g., for a California

state cohort, a user residing in that state for a long duration will have a higher influence

factor than a user who only visits occasionally.

Example 2: Suppose there are only three cohorts: California, Washington and

Oregon, and two users a and b. The cohort membership vector for a is W (a)= [0.57,

0.29, 0.14], for b is W (b)= [0.1, 0.1, 0.8]. Given the query [osu], considering two search

results d1= “osu.ppy.sh”, and d2 = “oregonstate.edu”, the number of SAT clicks by user

a is S(a)= [5, 1] for d1 and d2 respectively, the number of SAT clicks by user b is S(b)

= [1, 5]. For simplicity, we assume the impression on each document for each user is

100. By equation (4), we can compute the cohort CTR for the result d1 as c-ctr(d1, q)

= [0.044, 0.039, 0.016], and c-ctr(d2, q) = [0.0159, 0.02, 0.044]. It demonstrates that

California cohort prefers the result d1, and Oregon cohort prefers d2, given the query

[osu]. Note that the global CTRs for both results are the same: ctr(d1, q) = ctr(d2, q)

56

= (5 + 1)/(100 + 100).

There are two intuitions behind our model. First, users in a cohort with shared

contextual features are likely to be coherent in search intents and click preference (an

assertion supported by some of our preliminary investigations is not reported here for

space reasons). Second, a common approach for handling the problem of insufficient

individual historical data is to leverage global CTR. However, global CTR treats clicks

from all users equally, and therefore has limited potential to help in personalization. Our

approach identifies and separates cohort clicks from global clicks. When estimating an

individual’s click preference, we can learn more from clicks by cohorts of similar users,

who have higher impact on the estimation, and are better aligned with the target user.

We show in our later experiments that cohort modeling can outperform global CTR.

CTR is one of the most informative metrics to measure search result quality. How-

ever, CTR estimates are sometimes noisy when observations are scarce. For example, if

we only observe one impression for a pair 〈d, q〉, and a single SAT click on the document

d, we will obtain ctr(d, q) = 1. This is an inaccurate estimate of the true click probabil-

ity caused by data sparseness. These instances are quite common in logs, especially for

tail queries that occur rarely. To handle this situation, we apply smoothing methods

to estimate CTR. We add a pseudo count that counts SAT clicks αN times during N

impressions. The smoothed CTR is computed as follows.

ˆctr(d, q) = SATClicks(d, q) + αN

Impressions(d, q) +N
(3.5)

After smoothing, extreme cases should have lower CTR than URLs with sufficient

SAT clicks and impressions, but higher than those with no SAT clicks. Based on

this expectation, we sample hundreds of instances and manually validate the output

to tune α and N . Following several experiments we set α = 0.001, and N = 1000.

When calculating cohort CTR for a given cohort Cj , we then smooth cohort CTR with

smoothed global CTR as follows:

ˆctr(d, q, Cj) = N ∗ ˆctr(d, q) +∑
u SATClicks(d, q, u) ∗ w(u,Cj)

N +∑
u Impressions(d, q) ∗ w(u,Cj)

(3.6)

57

We set N = 10 through similar manual validation. For un-observed or scarcely observed

〈d, q, Cj〉, the cohort CTR is aligned with a smoothed global CTR of 〈d, q〉.

For a user, the click probability on a URL document can be estimated from the

click history of similar people. Given the cohort model, we now derive cohort features,

which infer individual click probability under her cohort membership.

Definition 4 (Cohort Features). Consider a user u with cohort membership W (u),

and the cohort CTR for a query document pair c-ctr(d, q), we derive cohort features

Z(d, q, u) as an m-tuple: [z(d, q, u, C1), z(d, q, u, C2), . . . , z(d, q, u, Cm)], where m is the

number of cohorts, and z(d, q, u, Cj) is the click probability in the j-th cohort. The

probability is computed as follows:

z(d, q, u, Cj) = w(u,Cj) ∗ ˆctr(d, q, Cj) (3.7)

Example 3: Following the setting in Example 2, that c-ctr(d1, q) =

[0.044, 0.039, 0.016], given a new user with W (c) = [0.56, 0.22, 0.22], the cohort fea-

tures for document d1, query q which is [osu] and the user c, is z(d1, q, c) =

[0.02464, 0.00858, 0.00352].

When a user submits a query q, we estimate their click preference on a document

d depending on their cohort membership w(u,Cj) and the cohort click probability

ˆctr(d, q, Cj). The weight of cohort membership controls how much we can infer about

this user’s click behavior based on a cohort’s click behavior. If a user belongs to the

California cohort with a weight of 0.9 and the Washington cohort with a weight of 0.1,

the estimation of their click probability therefore relies mainly on the cohort California,

and only slightly on the cohort Washington. We create cohort features for each 〈d, q, u〉

tuple, and let the ranking algorithm decide the ranking of URL candidates based on

these cohort signals.

58

3.3 Empirical Datasets

To evaluate the effectiveness of our cohort model for enhancing personalization, we

apply it to extend the personalization model of a commercial search engine. The ex-

isting personalization approach already uses a number of short- and long-term topical,

location, and domain preference features, similar to those proposed in the academic

literature, e.g., [13, 15, 70, 79, 87] so serves as a strong baseline for our experiments.

Note that the baseline approach is built upon a standard search engine that retrieves

the most relevant documents via querying. We evaluate our methods retrospectively

using logs containing search behavior and the original result ranking. The dataset used

in our study is sourced from the log of a popular Web search engine. We mined over two

months of logs and extracted events comprising tuples of: query, an ordered list of the

top-10 search results returned by the engine, and searcher clicks on those results. The

order of the URLs for a query was produced by the personalized production ranker from

the search engine. We re-rank results using this enhanced model. This methodology

allows us to estimate the effectiveness of our cohort modeling approach.

3.3.1 All Queries

Cohort features, which are based on click history, are good indicators of document

relevance for given queries. However, the volume of URL documents is huge, and a

large amount of documents are not clicked or shown to many users. Although we

incorporated smoothing technique to overcome such sparsity we found in practice, con-

structing features at a higher level further alleviates the challenge. For instance, we

can replace URL documents in our cohort models by URL domains and re-rank us-

ing the same personalization approach. Specifically, the symbol d is used to repre-

sent a URL domain rather than a URL document. A domain is part of a URL, e.g.,

URL=http://www.cnn.com/politics, domain=cnn.com.

As stated above, we use the production ranker from the search engine as the baseline

for comparison. We then train a new model, with cohort features added. Logs in a two-

month period (March 31 2013 to May 28 2013) are used to build cohort membership

59

vectors and cohort CTRs. We name this time segment as the profiling period. Cohort

features are then built for 〈u, q, d〉 tuples in logs from the following week (May 29 2013

to June 4 2013), which is then divided into training, validation and testing periods. The

first three days were used for training, the next two days were used for validation, and

the last two days were used for testing. The performance is evaluated by re-ranking

top results returned from the baseline ranker. This method has been used successfully

in prior personalization studies [13, 70].

Table 3.1 presents the statistics on the datasets used, including the number of

search queries (impressions), the number of distinct queries, the number of distinct

URL domains, and the numbers of users in our dataset. Besides the comparison on

all queries, we also classified queries into various segments to facilitate a more detailed

analysis of the performance of our cohort modeling methods.

Table 3.1. Data sets for cohort modeling experiments, All dates from 2013.

Data Cohort Profiling Training and Validation Testing
Date range 03/31 - 05/28 05/29 - 06/02 06/03 - 06/04

#impressions 1,016,333,942 11,615,957 5,352,460
#distinct queries 248,419,356 4,096,337 2,192,327
#distinct domains 25,704,086 3,116,209 2,087,303

#users 23,378,476 1,144,715 739,281

3.3.2 New Queries in User Search History

Previous studies have shown that although searchers frequently submit repeated queries

for re-finding purposes, there are also a large fraction of user queries that are new [65,

77]. A new query from a particular user means by definition that user has not submitted

it previously (at least not in an observable period such as the two months used for

profile building). Given their frequency, new queries are a particular subset where

search engines could offer significant benefit, but since there is no user history it is not

clear what support they can offer on an individual level. This means that they must

resort to global models of all users’ on-query behavior. These are queries where cohort

modeling may offer particular assistance.

Definition 5 (New Query). In our experiment, for each user, queries that are shown

60

in the testing period but not in the profiling, training and validation periods are defined

as new queries. In contrast, queries that appear in all periods are defined as old queries.

In our analysis, we identify new queries for each user and separate them from old

queries to evaluate the re-ranking performance of cohort models. To simplify the de-

termination of new queries, we focus on exact match of queries on training and testing

periods. The derivation and application of more sophisticated matching methods (e.g.,

semantically-equivalent queries), is a separate research problem and is reserved for fu-

ture work. Some pre-processing is applied, including converting queries to lowercase,

removing additional whitespace, and deleting punctuation while preserving n-grams for

terms joined by punctuation (e.g., asp.net).

3.3.3 Popularity of Queries

Our cohort model leverages group click preferences to estimate individual click pref-

erences. For a user who submitted a query, we identified a cohort of other users who

are similar. However, if only a small number of users in the group submitted the same

query, the prediction of cohort preference for the query will be biased and not repre-

sentative of the full cohort. As part of our re-ranking experiments, we wanted to better

understand the impact of query popularity on re-ranking performance when cohorts

were utilized.

Definition 6 (New Query). The popularity of a query is determined by the number

of distinct users who submitted it during the profiling period, which is denoted by Nu.

Search has a long tail effect that many tail queries are submitted only one or two times,

by a small number of users. Cumulatively, there are a large number of such queries. We

divided queries into two datasets: (1) popular: Nu ≥ 10, and (2) unpopular: Nu < 10,

Approximately 30% of distinct queries are popular by our definition.

3.3.4 Query Entropy

As mentioned earlier, some queries have almost uniform click preference among all

users, for example, [facebook] or [amazon] have high CTR their associated sites. For

61

these cases, individual, cohort, and global preferences are consistent. Thus the cohort

model has limited potential to improve retrieval performance. We measure the diversity

of clicks among users for each query by computing the query entropy as follows:

H(q) = −
∑
d

ˆctr(d, q)∑
d

ˆctr(d, q)
log

ˆctr(d, q)∑
d

ˆctr(d, q)
(3.8)

where ˆctr(d, q) is defined at Equation (5).

We focus on top five URL domains returned as search results ordered by global CTR.

Note that we take the natural logarithm. As a result, the maximum entropy value is

log(5) = 1.6, and the minimum is zero. If clicks of all users led to the same destination,

the value of the entropy will be zero, indicating the query has the smallest variation in

click behavior. A high value of entropy indicates the query has large variations.

Click entropy has been used in many studies to evaluate the complexity of queries,

e.g., [42]. However, by assuming same search results are shown to all users who sub-

mitted the same query, its implementation in those studies only considers the number

of clicks and ignores the impression counts. Our data comprises logs of a search engine

equipped with personalization. Consequently, URL documents have unequal chance

of being shown. Therefore we take advantage of CTR and consider both clicks and

impressions.

To examine how the performance of our cohort model relates to the level of query

entropy, we separate queries into three subsets: low entropy, medium entropy and

high entropy. The corresponding entropy ranges are [0, 0.2), [0.2, 1.2), and [1.2, 1.6).

The motivation is that for queries with small entropy on global CTR, it is less likely

that cohort click preference differs from global click preference. For queries with large

entropy, global clicks are diverse, thus we expect that cohorts can differentiate clicks,

and therefore offer better personalized search results.

3.3.5 Acronym Queries

Many acronyms are ambiguous and associate with more than one meanings. For ex-

ample the intent behind [msg] may differ depending on the user location, e.g., users in

62

New York City may be more likely to mean Madison Square Garden, whereas the likely

intent elsewhere in the United States could be monosodium glutamate. As such, search

engine performance can be improved on acronym queries via personalization that con-

siders the location of the searcher as part of the ranking process [70]. To understand the

effect of acronym queries on the performance of our models, we used a set of acronyms

defined in previous work [75]. From these data, we selected 432,564 acronyms which

had a length of 2, 3 and 4 characters. The average number of meanings per acronym

was 2.91. We then intersected these with the two-day logs used for testing, resulting in

around 11,000 distinct query matches.

3.4 Experiment Results and Findings

We now describe our experimental results. As mentioned earlier, our baseline is the

current production ranker in the commercial search engine, which leverages the global

relevance of query and URL document, and personalized features including those in-

volving topical, location, and resource preferences. Our cohort model integrates cohort

features that are highly similar to those in the baseline. Comparing the models lets us

estimate changes in personalization effectiveness attributable to the cohort modeling.

3.4.1 Ranking Models and Evaluation Metrics

Using the described dataset, we train a ranking model Lambda-MART learning algo-

rithm [90] for re-ranking the top ten results of the query. LambdaMART is an extension

of LambdaRank [17] which is based on boosted decision trees. It has been shown to be

one of the best algorithms for learning to rank. Indeed, an ensemble model in which

LambdaMART rankers were the key component won Track 1 of the 2010 Yahoo! Learn-

ing to Rank Challenge [18]. Our cohort features are insensitive to ranking algorithm,

thus any reasonable learning-to-rank algorithm should also observe relevance gains as

we do. We trained four ranking models using three types of predefined cohort features

introduced earlier, specifically:

• A model with ODP cohorts only (ODP);

63

• A model with top-level domain cohorts only (TLD);

• A model with location cohorts only (Location), and;

• A model with all three cohorts, concatenated together (ALL).

We also build cohort models dynamically by clustering users based on contextual fea-

tures. In next section, we describe the cohort clustering methods and experiment with

varying the number of clusters (cohorts), denoted as k.

As described earlier, we collected two months of search logs to construct user profiles,

and the next one week of logs for training, validation, and test. Evaluating personal-

ization at scale is challenging; since users can have different intentions for the same

query, therefore using third-party relevance labels may be insufficient. To address this

concern, we exploit user clicks to obtain personalized relevance judgments for each

query-document pair returned for a query. Clicks can be classified into various types by

the dwelling time on landing page. If the dwell time is too short, the searcher may be

dissatisfied with the search result. In this study, we label URLs with SAT Click (defined

earlier) by the user positively, and other URLs negatively. This method for generate

click-based judgments has been used in prior personalization studies [15, 70, 88].

We measure the quality of re-ranking using mean reciprocal rank (MRR) and mean

average precision (MAP). In both cases, the mean is the average across all impressions,

including those where the ranking does not change as a result of the treatment. MAP

considers cases where there are multiple SAT clicks (better for informational queries);

MRR is focusing only on the rank of the first SAT click. MAP is the mean of the

average precision scores for each query,

MAP = 1
N

∑n
i=1 Precision(i)Rel(i)∑n

i=1Rel(i)
(3.9)

where n is the number of URLs in the impression, ranging from 1 to 10. Rel(i) is

an indicator function returning 1 if the URL in the rank i is relevant, otherwise 0.

Precision(i) is the precision at cut-off i in the ranked list.

64

MRR targets the rank of the first relevant document in the result list. It is the

average of the reciprocal ranks over all queries,

MRR = 1
N

∑
q

1
rank(q) (3.10)

where rank(q) is the rank position of the first URL document that received satisfied

click for the query q.

Due to proprietary concerns, we do not report absolute values but only relative

changes of the cohort model against the baseline: ∆MRR = 100 ∗ (MRR(cohort) −

MRR(base)) and ∆MAP = 100 ∗ (MAP (cohort)−MAP (base)).

3.4.2 Research Questions and Findings

To understand the effect of cohorts in personalized search, we answer the following

questions in the remainder of the chapter:

• Can our method enhance the baseline generally, for all queries?

• Can we identify particular classes of queries that benefit from our cohort modeling,

and to what extent

• Can we improve the relevance further by learning cohorts (rather than the pre-

defined cohorts defined earlier)? (Section 3.5)

We now present the results of our analysis on all queries and on each of the query

subsets described in the previous section.

All Queries

We begin with the first question: in general, can cohort models improve the retrieval

performance when used in addition to existing personalization method(s)? This helps

us understand the overall impact of the cohort modeling on search engine performance.

Table 3.2 reports the MAP/MRR gains of our model versus the baseline (the production

ranker) along with the standard error of the mean (SEM). The findings presented in the

table show our cohort model significantly outperforms the baseline (with paired t-tests).

65

Results that received SAT clicks by users are promoted by the cohort by the ranking

(as can be seen with the low re-ranked@1 percentage in Table 3.2). All types of cohorts

are informative. In particular, TLD yields the largest gain, perhaps because it captures

differences in expertise of interests (e.g., people selecting en.wikipedia.org rather than

a commercial domain). Location cohorts may have achieved the lowest gain because

firstly, the baseline already covered the individual location preference; secondly we use

state to represent location and it can mask important intra-state movement. A finer

grained representation of location may be required, but we also need to consider how

best to do that in a scalable manner while ensuring that there are sufficient numbers

of users in each cohort. Note that although these changes may appear small, they are

averaged across all queries, including many that are unchanged.

Table 3.2. Gains in MAP and MRR over baseline(± SEM).

Cohort ReRank@1 ∆MAP ± SEM ∆ MRR ± SEM
ODP 0.91% 0.0181 ± 0.0013 0.0187 ± 0.00142
TLD 0.96% 0.0224±0.00140 0.0229±0.00144

Location 0.90% 0.0111±0.00138 0.0113±0.00141
ALL 0.98% 0.0193±0.00140 0.0211±0.00145

A trend that we see in Table 3.2 that is mirrored in all of our experimental findings

is that ALL performs as well or less well than the other models. This model re-ranks

slightly more results (Table 3.2), meaning that its application is less focused. Also,

the presence of multiple cohorts may make the ALL cohort signal noisier. Given the

promising gains observed across all queries, we now turn our attention to the various

query subsets that were introduced earlier in the paper. In the remainder of this section

we present results on each of those subsets defined in Section 3.3. Since the performance

of both of the MRR and MAP metrics is similar, we focused on a single metric (MRR)

for the remainder of this section.

New Queries

In our dataset, the average ratio of distinct new queries of all queries is about 70% per

user, consistent with previous work [71]. It indicates that users submit a large portion

of new queries that are not recorded by the search engine previously (at least not in

66

the past two months, which may be all the engine has access to for a user at query

time given profile size limitations at scale). Thus personalization based solely on an

individual history is insufficient.

Our cohort model utilizes search and click history of similar users to alleviate the

challenge of insufficient data. We split the testing data into two subsets composed of old

queries and new queries for each user respectively. Figure 3.1 shows the performance

difference over the baseline for each type of cohorts. In this figure and others in this

section, the value of zero denotes the original performance of the baseline. The figure

shows that indeed our model works well on new queries that haven’t been seen previously

from a given user. We observe statistically significant gains across all predefined cohorts

(all p < 0.001). When queries are repeated, the baseline with individual search history

may work well, and adding cohort features had little or even slightly negative effect by

introducing noise (as is evidenced by the blue bars and negative MRR changes). It is

also interesting to observe that the ODP (topic) cohort performed best for new queries.

One possible explanation for this finding is that queries without an exact match that

appear in the users’ history are most likely to be informational, and therefore benefit

most from users with similar topical interests.

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

new old new old new old new old

ODP TLD Location ALL

M
R

R
 G

ai
n

Figure 3.1. Gains in MRR over baseline for each cohort type for new and old queries
from each user (±SEM)

67

Query Popularity

We are also interested in the effect of query popularity on the performance of the

cohort modeling, in order to understand how sensitive our model to the size of cohorts.

Figure 3.2 shows MRR gains on the popular and unpopular query sets, as described

earlier. The performance gain on popular set is much larger than that in unpopular set.

Again all differences are significant given the extent of the gains and large sample sizes

(p < 0.001). The results match our expectation. When a query is searched by many

users, we can distinguish cohort preference accurately. However, if a query is searched

by only few people, the estimation is less accurate.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

<10 >=10 <10 >=10 <10 >=10 <10 >=10

ODP TLD Location ALL

M
R

R
 G

ai
n

Figure 3.2. Gains in MRR over baseline for each cohort type for difference in the
popularity of the query(±SEM)

Query Entropy

We conjectured that since a large entropy implies diverse clicks on URLs, separating and

assigning weights on clicks by cohorts can help identify an individual’s preference more

accurately. Therefore we expect queries with large entropy will obtain large benefit

from the cohort model. Figure 3.3 presents the MRR gain over the baseline for the

three query entropy bins: low, medium, and high.

The results shown in the figure confirm our intuition regarding where personalization

68

-0.10

-0.05

0.00

0.05

0.10

0.15

Low Mid High Low Mid High Low Mid High Low Mid High

ODP TLD Location ALL

M
R

R
 G

ai
n

Figure 3.3. Gains in MRR over baseline for each cohort type for different query
entropy bins(±SEM)

enhancements might help. On all types of cohorts, the query set with low entropy re-

ceived smallest gain over the baseline. Queries with medium and high entropy obtained

larger performance increases (all statistically significant, p < 0.001). This suggests that

one strategy to realize strong gains from the cohorts may be to bypass low entropy

queries and only apply cohort models on queries with medium or higher entropy. As

observed in other analyses in this section, we also observe that the Location cohorts

achieved the smallest gain, and even resulted in a loss for low entropy queries. This may

be related to the use of state level cohort features, which may be too coarse grained to

capture individual click preferences. More work is required to determine how best to

represent and apply location information for cohort modeling.

Acronym Queries

As mentioned earlier, acronym queries such as [acl], [atm], etc. are a specific set of

ambiguous queries where personalization may help [70]. We examine the effectiveness

of our cohort modeling methods on the subset of acronym queries described earlier.

Table 3.3 shows the MAP and MRR gains over the baseline for this query set (all

69

significant at p < 0.001). The results clearly demonstrate extremely strong gains in

performance for the subset of acronym queries for each of the cohort types studied.

Although this may only be a relatively small query set, it is encouraging to see the

significant gains in acronym queries. It is clear from the findings presented in the

section so far that there are a broad range of different query classes for which the cohort

modeling performs well. However, the performance of the ALL model was generally

slightly lower than the other models. There may be a better way to combining the

cohorts and the next section we describe an approach to learn cohorts dynamically.

Table 3.3. Gains in MAP and MRR over baseline for acronym queries(± SEM).

Cohort ∆ MAP ± SEM ∆ MRR ± SEM
ODP 0.1566 ±0.0562 0.1622 ±0.0568
TLD 0.1585 ±0.0568 0.1519 ±0.0578

Location 0.1450 ±0.0535 0.1552 ±0.0544
ALL 0.1212 ±0.0544 0.1265 ±0.0553

3.5 Learned Cohort Models

The results in the previous section show that our cohort modeling techniques using

pre-defined features can more accurately estimate users’ individual click preferences (as

represented via increased SAT clicks) than our competitive baseline. A challenge of this

approach is the tradeoff between the number of cohorts and the prediction power of

cohorts on individuals. One can define more fine-grained cohorts, for instance, including

second or even lower levels of ODP, and changing locations from state to city or ZIP-

code level. However, more cohorts result in fewer users in one cohort and less reliable

CTR estimation. To overcome this tradeoff, we propose an alternative that generates

cohorts automatically via clustering. The objective is to construct homogeneous clusters

(cohorts) given a large number of features.

70

3.5.1 Clustering Method

In this section, we discuss how we learn cohorts automatically using k-means clustering.

Each user is represented by a vector of contextual features xu ∈ Rd, which is concate-

nated from the three sets of pre-defined cohort features on topic, location and top level

domain. The dimension of the feature vector is 99 in our setting. The objective is

to assign users into cohorts. A map-reduce implementation of k-means algorithm is

applied to cluster users into k clusters (cohorts). We then define two implementations

of customized cohort membership vector.

Definition 7 (Learned Membership, Hard). Given learned k-cohorts, a user’s cohort

membership vector is defined as a k-tuple W (u) = [w(u, 1), w(u, 2), . . . , w(u, k)]. The

membership to the i − th cohort depends on whether the user is assigned to the i − th

cluster, that is w(u, i) = 1 if the user is in the i− th cluster, otherwise w(u, i) = 0.

Definition 8 (Learned Membership, Soft). Given learned k cohorts, a user’s cohort

membership vector is defined as a k-tuple W (u) = [w(u, 1), w(u, 2), . . . , w(u, k)]. The

membership to i− th cohort is determined by the minimum Euclidean distance between

the user and the centroid. Let the centroids learned by k-means be µ1, µ2, . . . , µK . Ide-

ally the Gaussian Mixture Model could achieve the goal with additional computational

overhead. In this large-scale study, we leverage the k-means results and assign cluster

membership as follows:

w(u,Cj) = p(Cj |xu) =
exp(−d(xu,µj)2

α2)∑K
i=1 exp(

−d(xu,µi)2

α2)
(3.11)

where d(xu, µj) is Euclidean distance between the user vector xu and the centroid µj,

and α is estimated from average distance between centroids. This is a simplified imple-

mentation of the Gaussian Mixture Model having identity covariance.

As to the hard membership assignment, each user has only one non-zero cohort

membership, which may be preferable on many clusters with large k. For users with di-

verse preferences, it is natural to allow multiple cluster membership for them. Therefore

soft membership may produce higher performance gain.

71

3.5.2 Evaluating Clustered Cohorts

We compare the performance of re-ranking by clustered cohorts against the model with

predefined ALL cohorts. We evaluate MRR change on a selected subset of queries. The

subset of queries is new queries with entropy larger or equal to 0.2. This is a query

subset on which we observed a large performance gain with predefined cohort model.

We experiment on learned cohorts using select probes of k ∈ 5, 10, 30, 50, 70, with soft

assignment of cohort membership, which is expected to be better. Figure 4 displays

the experimental results. Note that the baseline ranker (where MRR gain = 0) already

contained global CTR as a feature, which is equivalent to k = 1. We therefore do not

report performance at k = 1 in Figure 3.4.

0.0897

0.1173

0.0928

0.0688

0.0905

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 10 20 30 40 50 60 70 80

M
R

R
 G

ai
n

k

New, H(q) ≥ 0.2

Clustered Cohorts Predefined Cohorts

0.092	

Figure 3.4. Gains in MRR over the baseline for clustered cohorts versus predefined
cohorts for different k for a selected query set(±SEM).

The figure shows that we can observe the largest MRR gain by the clustered cohorts

model when k=10. The MRR gains are slightly larger than the model with predefined

cohorts in k = 30, 50, and slightly smaller in k = 5. The MRR gain decreases sharply

when k becomes too large, e.g., 70. We did not perform a full sweep of k given compu-

tational and time constraints, but the findings are still informative and the gains over

72

ALL at k=10 are significant.

We also evaluated the model on other subsets of queries and observed similar results:

largest gain is obtained in small k and largest k has smaller gain than the predefined

cohorts model. One possible explanation for this is that the user features are sparse

and that as k increases, the reliability of the cohort signal in each cluster degrades.

The fact that we can obtain strong performance by reducing the dimensionality of the

features from 99 to 10 is promising for large-scale deployment (as it means compact

user profiles). It also reveals the opportunity of profiling users with more subtle and

sparse features than projecting to a few principal dimensions, as was done with the

pre-defined cohorts.

As mentioned previously, we can employ hard or soft clustering, depending on

whether we want users to be in a single cohort only (hard) or appear in multiple

cohorts potentially with different weights (soft). The implications of this include the

nature of the profile that a search engine should store (e.g., a single cohort identifier

per user versus a set of cohort identifiers per user). In the analysis above, we employed

soft clustering. One concern we had regarding hard clustering is that it may lead to an

inaccurate CTR estimation for users who are not close to the cluster centroid. To better

understand the impact of this decision, we compare the performance of models with

cohorts by hard-clustering, soft-clustering and predefined features w.r.t. the baseline

as in other experiments thus far. Table 3.4 presents the findings of this analysis.

Table 3.4. Gains in MAP and MRR over baseline for acronym queries(± SEM).

Metric Hard Membership Soft Membership Predefined Cohorts
∆ MAP 0.0731±0.0158 0.1143±0.0170 0.0932±0.0172
∆ MRR 0.0737±0.0165 0.1173±0.0177 0.0905±0.0180

We can see from the table that cohorts created using hard membership achieved

the smallest performance gain, and are worse than those by predefined cohorts. Soft

performs significantly better than hard; other differences are not significant. The re-

sults suggest that finding weights to assign to each cohort is important for estimating

individual preferences. Users also have variations inside a cohort, and their preferences

cannot simply be generalized by one cohort.

73

3.5.3 Preference Analysis

Given that we have these different ways to identify cohorts, we were interested in un-

derstanding the relationship between existing search engine results and global/cohort

preference. To show that our performance improvement on personalization is not sim-

ply caused by gathering more features for the ranking algorithm, we conduct analysis

on search logs and investigate whether cohorts manifest unique preference, which is

directed by users in the cohort. For a query with many candidate results, global CTR

can offer a ranking of URL candidates. We refer to this here as global choice. In each

identified cohort, cohort CTR can yield a ranking as well, and we refer to this as co-

hort choice. We focus on the difference between global choice and cohort choice of the

top-ranked result.

Definition 9 (DiffTop). The DiffTop for a given query q is an m-tuple vector D(q)

= [diff(q, C1), diff(q, C2), . . . , diff(q, Cm)]. Each value is a binary value to indicate

whether a cohort has unique preference. We denote the top ranked URL domain d by

the cohort choice of j-th cohort as dCj , and by global choice as dG. If d(Cj) 6= dG, we

set diff(q, Cj) = 1, otherwise 0.

Among selected logs in profiling period, we choose queries with at least two distinct

URL domains clicked, and count how many are inconsistent in the cohort choice and

global choice. Our result shows 2% of distinct queries demonstrated unique preference

by at least one cohort. The ratio appears small, but considering the total number of

queries is extremely large, and the fact that we focus on clicks on domain level in the

top position only, it is still a strong signal on the potential of cohorts.

There are cases that the values of cohort CTR for the top and the second top URL

domains are very close, e.g., equally small. The top and the second top URL domains

have similar cohort preference. To address such subtle scenarios, we defined a weighted

DiffTop measure as follows.

Definition 10 (Weighted DiffTop). : The weighted DiffTop for query q is a m-tuple

w-D(q) = [w-diff(q, C1), w-diff(q, C2), . . . , w-diff(q, Cm)]. Each value measures the

degree of unique preference by the cohort. We define the decrease delta (∆) to measure

74

the difference in the click probability between the top and the second top URL domain.

∆(d1, d2, q, Cj) =
ˆctr(d1, q, Cj)− ˆctr(d2, q, Cj)

ˆctr(d1, q, Cj)
(3.12)

where d1 is the url domain in top position, and d2 the one is the second position. The

DiffTop is then weighted by ∆ as follows:

w-diff(q, Cj) = diff(q, Cj) ∗∆(d1, d2, q, Cj) (3.13)

If ∆ equals zero, the top candidate is less dominant in the cohort, thus makes the

DiffTop a weaker signal about unique preference for this cohort. To compare across

cohorts, we average weighted DiffTop across queries for each cohort as D(Cj) = ∑
q w-

diff(q, Cj)/diff(q, Cj). Such weight is then aggregated for a particular cohort type.

Taking ODP cohorts for example, D(CO) = ∑
j D(Cj)/m, where m is the number of

cohorts of type ODP. If the average value is large, it implies that members of the cohort

behave differently than non-members. We compare cohorts by ODP, TLD, Location

features, also include clustered cohorts with k = 10. Figure 3.5 shows the aggregated

weighted DiffTop value. At least two insights can be made. The first is that all cohorts

have high average DiffTop weights in general. This shows that our selected features are

useful in distinguishing cohort choice and global choice. The second is that ODP and

Clustered cohorts are more informative than TLD and Location, perhaps because they

are denser.

3.6 Discussion and Conclusion

We have proposed an approach for using cohorts of searchers similar along one or

more dimensions to enhance Web search personalization. To understand the value of

these cohorts we performed an extensive set of experiments with predefined cohorts

as well as cohorts dynamically learned from behavioral data, and for different query

sets, including acronyms and queries previously unseen from a given user. These are

scenarios where we would like to be able to employ personalization but often it does not

75

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ODP TLD Location Clustering
K=10

Av
g

D
iff

To
p

w
ei

gh
t

Figure 3.5. Average DiffTop weight for each cohort (±SEM).

succeed given insufficient data about the interests of individual users. The results of our

experiments have clearly demonstrated the value of cohorts, especially for ambiguous

and new queries from users, where our observed gains over a production ranker appear

to be most significant.

In our experiments, we used a competitive baseline a ranking algorithm that already

had personalization signals based on a number of personal and contextual features

for individual searchers. Despite such attention to representing the individual user’s

interests, the cohort-based models presented in this paper were still able to enhance

the strong personalization baseline and achieve significant gains. This is promising as

it suggests that we can learn how to integrate the cohort signals and make decisions

about when to use them in combination with individual signals when both are present,

or in isolation when only cohort signals are available. That said, further experiments

are necessary with other personalization models to assess the generalizability of our

findings to other settings.

The pre-defined cohorts have the disadvantage that they require system designers

to select important features manually in advance. Using unsupervised clustering we

circumvented this problem and learned cohorts dynamically. We are pleased that using

cluster-generated cohorts that outperformed the pre-defined cohorts. However, the

76

success of any clustering method is dependent on the features that are used. In this

paper we used a set of features associated with topical preference, location, and top-

level domain preference, but there are other viable alternatives (e.g., demographics,

social network cliques) and we need to explore their effectiveness in detail.

We have shown that that best performance from cohorts learned via k-means clus-

tering is attained when we set k=10. In a production search engine handling millions

of users and billions of queries, the amount of space that can be devoted to each user

is minimal. We have shown that for each user we would only have to store a small

amount of additional information about their cohorts in each user’s profile, e.g., a sin-

gle membership bit for each of the 10 cohorts.

Overall, it is clear that there is significant potential value from modeling cohorts

in search personalization. In future work we could develop more sophisticated cohort

representations which leverage other sources of data from beyond search (e.g., browsing

signals) and social network information depicting relationships between cohort members

(and cliques, group dynamics, etc.), and experiment with other clustering methods, such

as hierarchical clustering, which may yield richer and more homogenous clusters.

77

Chapter 4

Comparable Groups

The assessment of a researcher often involves examining researchers in her reference

group. There are many scenarios that require a group of comparable people for ref-

erence, including applying for funding, evaluation for tenure and searching for review

peers. This task is usually done manually. In this chapter, we study the problem of

finding a group of comparable researchers for any given researcher automatically.

4.1 Introduction

To compare a pair of researchers, we need metrics to assess their research impact. There

are limited number of existing metrics to evaluate research impact at the individual

level, for example, h-index [34] and g-index [28]. Such metrics are mainly based on

raw citation counts, i.e., the number of papers citing a given paper. It has several

limitations. Garfield [31] argued that citation counts are a function of many influencing

factors besides scientific quality, such as area of research, number of co-authors, the

language used in the paper, and so on. Citation behavior also varies across sub-fields.

In many cases few if any citations are recorded, even though the paper’s influence may

go beyond this measure of impact [55]. Moreover, citation counts evolve over time.

Papers published longer ago are more likely to cumulate higher counts than those

released more recently.

A researcher’s research interest may shift over time, as well as their research pro-

ductivity. Citation count fails to capture such change, thus it is not a reliable metric

to determine whether two researchers are similar and comparable. We seek for the

comparison that takes time into account. We then build a research trajectory com-

posed by the sequence of venue, paper and year for each researcher. The sequence is

78

ordered by year. Venues often have ranks to indicate its quality and reputation. Since

a venue contains a collection of papers, and the qualify of papers directly connect to

the quality of the venue, we thus use the rank of venue as the surrogate as the qualify

of the publication 1.

We then propose a trajectory matching algorithm to compare two researchers. The

distance between two researchers is calculated by allowing some mismatches, and count-

ing the number of deletion and insertion operations necessary to harmonize the two

sequences. We first consider the sequence of venue ranks, then add the research topics

which are learned from paper’s abstract and title. One interesting research question

is that whether we can find senior researchers who have similar trajectory in the early

stage as the junior researcher in a query. With simple modification of our matching

algorithm, we can find more senior researchers for any given junior researcher. This

results can be especially useful when trying to predict the trajectory of a researcher for

years to come.

In this work, we focus on the computer science domain and use data from online ser-

vices which index research work, specifically, DBLP2 and arXiv.org 3. Since researchers

in computer science often prefer conference publications, and the data available on the

web is also skewed to conferences, our work focus on conference papers only. Other dis-

ciplines may favor journals or other types of publications. Our approach apply equally

to these settings. As to the source of venue ranking, there are several services provide it,

e.g. Google Scholar Metrics4, Microsoft Academic 5and CORE6. Their ranking mecha-

nisms vary therefore the results are different. Sometimes many ranking results appear

surprising. How to obtain objective topic dependent venue ranks remains an interesting

and open research problem. To simplify the process and focus on the comparison al-

gorithms, we take advantage of CORE, which is an existing subject-dependent ranking

1alternate methods for assigning a quality to a paper can also be used.
2http://www.informatik.uni-trier.de/~ley/db/
3http://arxiv.org/
4http://scholar.google.com/intl/en/scholar/metrics.html
5http://academic.research.microsoft.com/
6http://core.edu.au/index.php/categories/conference%20rankings

http://www.informatik.uni-trier.de/~ley/db/
http://arxiv.org/
http://scholar.google.com/intl/en/scholar/metrics.html
http://academic.research.microsoft.com/
http://core.edu.au/index.php/categories/conference%20rankings

79

Figure 4.1. Tables and data schemas

that covers broadly known conferences.

In the rest of the chapter, we first show results of exploratory analysis over the

large-scale scholarly data that contain millions of researchers and publications. We

then describe our algorithm and demonstrate how to compare researchers and detect

comparable relations automatically for the first time. Moreover, we provide the map-

reduce version of our algorithm in order to handle the still-increasing amount of data.

Finally we discuss there are many interesting open problems for future work.

4.2 Problem Setting

Let A be the set of authors7, P be the set of papers, V be the set of publishing venues.

Each paper p ∈ P is associated with a set of authors a ∈ A. The paper is published

in a venue v ∈ V at the time t. We assume that for each venue v we have a score

which corresponds to the rating of the venue, where higher score implies higher rank

and quality. In database terms, our system contains three entity tables: author, paper,

venue, and two relation tables: author-paper, paper-venue (Figure 4.1). The problem

we are interested in is, given the database of researchers and their publications, for any

pair of researchers (ai, aj), to measure the extent to which they are comparable, under

various notions of similiarity.

7We use author and researcher interchangeably

80

Table 4.1. Dataset statistics

id dataset name #papers #authors
1 DBLP 2,764,012 1,018,698
2 ArnetMiner 1,572,278 309,978
3 Our Corpus 1,558,500 291, 312

4.3 Data and Analysis

Our empirical analysis is based on two datasets available on the web: bibliographical

information about computer science journals and proceedings from DBLP, and a ci-

tation network dataset from arnetMiner [76]. Both datasets collect scholarly data up

to January 2011. The venue name in the arnetMiner data is noisy, since the name

of a conference can appear in multiple forms, for example, full phrases of conference

name, abbreviations, and abbreviations plus volume numbers and so on. We found

abbreviations of conference names are used consistently in DBLP. Thus we extract the

abbreviation and combine other information to identify the venue for each paper. How-

ever, the data from arnetMiner contains rich information including title, abstract and

most importantly, year. We match data from both datasets by the paper name and

author names, then create a corpus with the joint data. Table 4.1 lists the statistics of

datasets, including the one we derived. We first analyze the data characteristics before

using it to answer our questions.

4.3.1 Exploratory Data Analysis

There are various phases to the career of a researcher. A graduate student may enter

industry and stop their research activity. A faculty member may spend months or years

away from their home topic during a sabbatical. A researcher may retire or switch to

a different area. There is no convenient way to learn about these phases from available

data. For simplicity, we define the time from the first publication to the last publication

as the research period.

Definition 11 (Research Period). Given a researcher a, and the year sequence asso-

ciated to publications T (a) = ta,1ta,2 . . . ta,n, the length of research period is defined as

81

1960 1970 1980 1990 2000 2010
year

0

1

2

3

4

5

6

n
u
m

b
e
r

o
f

a
u
th

o
rs

1e4
first paper
last paper

Figure 4.2. Start and end years.

0 10 20 30 40 50
number of years

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

n
u
m

b
e
r

o
f

a
u
th

o
rs

1e5

Figure 4.3. Research period length.

the time gap between the last and first publications: wa = ta,n − ta,1 + 1.

We extract first and last years of publications for each user, and compute the length

of research period. Figure 4.2 plots in each year, how many researchers published their

first and last paper. From 1990 to 2000, the number of authors starting their career

from the year steadily exceeds that of those who ended their research work. After the

year 2006, the relationship is reversed (likely due to “end effects” from using a snapshot

of data). Figure 4.3 shows the relation between number of authors and the number

of years in their research period. 61.4% of researchers published papers only in one

year (typical examples are students who published one paper and then graduated, and

researchers from other areas who published one paper in a CS venue). The number of

researchers whose research period is at least 10 years is 29, 671. These authors account

for 10% of all researchers but are connected to 52.6% of papers in our corpus.

We use two metrics to understand the career trajectory of each researcher: burst

speed and half year speed.

Definition 12 (Burst Speed). Given an author a, the burst speed is defined as the

number of years to reach her/his first bursty year. The bursty year is the year that with

largest productive score, which is calculated as

va(t) = |Pa(t)|
|Pa| −

1
wa

where wa is the length of research period for the author a, and Pa(t) is the set of papers

82

by the author a at the year t.

Definition 13 (Half-Speed). Given an author a, the half-speed is defined as the least

number of years she/he took to reach half of her/his total publications, which is calcu-

lated as:

ha = min
n
{n :

∑n

s=1 |Pa(ta,s)|
|Pa| ≥ 1

2} − 1

Using these concepts, we can ask the following questions:

• Given a year t, how many authors are in their bursty year?

• Given an author a, which year is his/her bursty year?

• What are the average half-speed and burst-speed?

We select researchers whose research period length is larger or equal to 10 years.

Among these researchers, the average number of publications is 13.8, average research

period length is 15.83, average productive score is 0.212, the average burst speed is

6.32, and the average half speed is 7.74. The result shows that authors reached half

of their publications quickly after their bursty year. Figure 4.4 shows the distribution

of burst speed and half speed. We observed that authors with zero half speed and

burst speed account for 9.5%, and 35% of all selected authors respectively. In addition,

many authors published most papers in their first year (recall, these are authors who

are active for over a ten year period).

We now show the correlation between the number of publications and the above

definitions: research period length, burst speed and half speed. For each author with a

research period of over ten years, we count the number of publications associated with

her/him, find the research period length, and compute the burst and half speed. Then

we take the average of research period length, burst and half speed, given a value x

of number of publications. Figure 4.5 tells that for authors who have x publications,

what are their average research period length, burst speed and half speed. We set a

threshold of 120 publications in the plot because there are too few points above the

threshold. The figure shows logarithmic-like behavior.

83

0 5 10 15 20 25 30 35 40 45
after #years

0

2000

4000

6000

8000

10000

12000

n
u
m

b
e
r

o
f

a
u
th

o
rs

burst speed
half speed

Figure 4.4. Burst speed and half speed

Table 4.2. Sequence example of a researcher

Time T(a) ta,1 ta,2 . . . ta,n
Papers P(a) pa,1 pa,2 . . . pa,n
Venues V(a) va,1 va,2 . . . va,n

4.4 Algorithms to Comparable Researchers

We now describe how we define measures to evaluate and compare researchers. As

mentioned above, we use venue ranking as a basis by which to evaluate a researcher.

During the research period, the author publishes papers year by year, thus forming a

sequence of publications, which are associated with various attributes (venue, title, ab-

stract etc.). Table 4.2 shows an example of sequences, where T (a) is the time sequence,

P (a) are publications and V (a) gives venues of publication. The unit of time sequence

is year, and publications and venues are ordered according to the time sequence.

We use an existing ranking8 of broadly known conferences across sub-fields in com-

puter science. This CORE ranking covers 1006 conferences, while DBLP lists 4000

unique conference names. The fraction of papers published in the ranked conferences

8http://www.cs.wm.edu/~srgian/tier-conf-final2007.html

http://www.cs.wm.edu/~srgian/tier-conf-final2007.html

84

0 20 40 60 80 100 120
number of publications

0

5

10

15

20

25

30

35

40

a
v
e
ra

g
e
 n

u
m

b
e
r

o
f

y
e
a
rs

research period length
burst speed
half speed

Figure 4.5. Correlations with #publications

is 44%. So while there is missing data, the coverage is still satisfying. Future work is

to obtain a ranking that covers more venues.

The CORE ranking breaks venues into five categories: {A+, A, B, C, L}, where

A+ is the best. We map these five categories to integer scores: {5, 4, 3, 2, 1}, in the way

that ‘A+’ matches ‘5’ to ‘L’ matches ‘1’. We consider two approaches to using venue

scores:

Definition 14 (Venue Score: Categorical). This approach treats the score as a categor-

ical variable, which takes values from the set {5, 4, 3, 2, 1}. There is no order between

two scores. The relationship between two venue scores are equal and non-equal.

Definition 15 (Venue Score: Ordinal). In this case, score is a ordinal variable, taking

values from the set {5, 4, 3, 2, 1}. The order of the venue score is determined by the

integer value of the score.

85

4.4.1 On Venue Score

A key question is whether the venue score is a suitable measure on which to rank

authors. We compare against two broadly accepted existing metrics: h-index and g-

index, and collect values of these two metrics for authors in our corpus. We define an

evaluation metric for researchers solely based on the venue score as follows.

Definition 16 (v-index). Given a researcher a, the v-index is the sum of the (ordinal)

venue scores of all publications by her/him.

v-index = ∑n
i=1va,i.

in which n is the number of publications by the author.

Among all users in our database, the minimum of v-index is 2, the maximum is 1229,

the mean is 53.12 and the median is 32. Large values on v-index only occur few times

in our corpus. We compute the distribution of v-index as a function of h-index and

g-index. Figure 4.6 shows the results. For clear visualization, we plot instances with

v-index less than or equal to 800, which covers most researchers. The x-axis lists each

value of v-index, and the y-axis shows the average value of h-index or g-index given the

x. We found for most cases, v-index has positive linear correlation with h-index and

g-index. Outliers appear at very large values in each index. We conclude that venue

score is an acceptable metric by which to evaluate a researcher’s research output.

Given a sequence of venue scores for each author V (a), we compute the distance

between two authors by matching the two sequences. This is computed with the well-

known Wagner-Fischer dynamic programing algorithm [82]. We discuss how to apply

the algorithm in our setting.

Given two sequences S = s1s2 . . . sn and R = r1r2 . . . rm over the alphabet Σ, the

86

0 100 200 300 400 500 600 700
v-index

0

50

100

150

200
sc

o
re

h-Index
g-Index

Figure 4.6. Correlations with h-index and g-index

matching score between a pair (si, rj), where si, rj ∈ Σ ∪ {−}, is as follows:

d(si, rj) =



0, if si = rj

1, if si 6= rj

1, if si = − or rj = −

The symbol “−” means a gap for insertion or deletion in the alignment. Dynamic

programming is used to compute the optimal alignment of two sequences.

D(i, j) = min



D(i− 1, j − 1) + d(si, rj) match or mismatch

D(i− 1, j) + d(si,−), insertion

D(i, j − 1) + d(−, rj), deletion

where D(i, 0) = i and D(0, j) = j. In the end, D(n,m) returns the minimum number

operations needed to match these two sequences. A direct application of the algorithm

87

Table 4.3. An optimal sequence matching
S = V (ai) 5 4 4 3 4
R = V (aj) 5 4 5 - 4

d 0 0 1 1 0

is to treat venue score as categorical variable. Table 4.3 shows an example of two

researchers’ sequences and their distance, where D(ai, aj) = 2.

It is likely that an author publishes more than one paper a year. Within a year, we

can either randomly order the papers, or apply an ordering of the venue scores to form

the sequence. A more sophisticated approach is considering sequences of sets rather

than points. Then the distance of two positions in two sequences can be computed by

the jaccard distance of sets. That is, d(si, rj) = 1 − |si ∩ rj |/|si ∪ rj |, where si is the

set of publications in i−th year in the sequence S, and rj is the set in j−th year in the

sequence R. For insertion and deletion operations, the empty set ∅ is used for the gap.

The resulting distance is used to define the comparable relation between researchers:

Definition 17 (Comparable Relation). Given a researcher a, and the distance between

a and other authors, we sort authors by the distance in ascending order. We say that

the top k authors are comparable to the given researcher a.

We experiment this approach on our corpus with authors whose research period is

larger than 10 years. We sort venue scores in descending order within a year, compose

a sequence of venue scores for each author, and compute the distance between each

pair following by our algorithm. With distances to every other researcher computed,

we determine comparable authors for any given researcher by above definition. Here

we set the threshold k to be 20. For brevity, we show results of two examples and their

comparable people in the Table 4.4. The first example is for the researcher “Judea

Pearl”, who mainly focuses on research in machine learning and artificial intelligence.

It is perhaps surprising that our approach returns many researchers in the same or

related research areas. On the other hand, for the researcher “Dimitris N. Metaxas”,

who works on compute vision, the results we returned contain researchers in various

topics, for example, “Kunle Olukotun” is a pioneer of multi-core processors. Among

all researchers, the average distance to their comparable authors is 16.51 ± 11.38, the

88

minimum is 11.12 and maximum is 268.13.

Table 4.4. Case study of edit distance
Researcher Top 20 Comparable Researchers Average

Dis-
tance

Judea Pearl Craig Boutilier, Surajit Chaudhuri, Manfred K. Warmuth, Satin-
der P. Singh, Yoram Singer, Michael J. Kearns, Eyal Kushilevitz,
Geoffrey E. Hinton, Silvio Micali, Avrim Blum, Shafi Goldwasser,
Robert E. Schapire, Piotr Indyk, Daniel S. Weld, Andrew W.
Moore, Stuart J. Russell, Jon M. Kleinberg, Jeffrey D. Ullman,
Eric Horvitz, Nick Koudas

16.2

Dimitris N.
Metaxas

Kunle Olukotun, Ken Kennedy, James R. Larus, Orna Grumberg,
Ji-Rong Wen, A. Prasad Sistla, William T. Freeman, Richard
Szeliski, Xiaolin Wu, Uzi Vishkin , Yiming Yang,Thomas G. Diet-
terich, Stefano Soatto, Dean M. Tullsen, Hwee Tou Ng, Christo-
pher D. Manning, Vijay V. Vazirani, John Riedl, Robert Morris,
E. Allen Emerson

21.25

4.4.2 On Topic Similarity

Although our corpus is focused on computer scientists, the computer science discipline

spans a range of topics from theoretical studies of algorithms to computing systems

in hardware and software. For real world applications, it is more common to compare

researchers who work on the same or similar areas. When the pool of candidates is

filtered before the evaluation and comparison, our method can be directly applied. If

such prior information is not available, we propose to learn topic interests of researchers

then compare them automatically. In other words, we can detect both similar and

comparable people simultaneously. Our main intuition is that the matching distance of

two points in two sequences can depend on both venue score and topic similarity.

We design a new distance metric to integrate both topic similarity and venue qual-

ity. Given two sequences S and R corresponding to authors aS and aR, the matching

between i-th point in S and j-th point in R is calculated as

d(si, rj) = |vi − vj + ε| · w(pi, pj)

where vi and pi are i-th venue score and paper for author aS ; vj and pj are the corre-

sponding venue score and paper for author aR (with venue score as an ordinal variable);

89

and ε is a small constant, discussed below. The topic distance w(pi, pj) depends on the

topic similarity of two papers pi and pj , and is computed as w(pi, pj) = 1− sim(pi, pj).

The value of topic similarity of two papers sim(pi, pj) is in [0,1]. If two papers are on

similar topics, the topic distance is small, otherwise it is big.

When venue scores vi, vj are the same, in the previous algorithm, the distance is

zero. However the topic distance might be large. We introduce the constant ε to include

the topic distance for points with same venue score. In our experiments, ε is set to be

0.1. Based on the above definition, we see if the topic distance is small and the venue

score distance is small, the distance between these two points is small.

The topic similarity between two papers is computed based on the content of papers.

In our corpus, we have the title for all papers, and abstracts for about a third of papers.

To discover topics for papers, we implement Latent Dirichlet Allocation (LDA) [35].

We treat the concatenation of title and abstract of a paper as a document. Topics are

derived from the whole corpus. We then obtain the topic distribution for each paper.

The main parameter is the number of topics. We experimented with 20, 50 and 100

topics, with manual validation on frequent words in each topic, and select the number

of topics which provides the best presentation of topics.

Given the topic distribution for each paper, we can compute the topic similarity

via cosine similarity, or Jensen-Shannon divergence, etc. We use cosine similarity in

our examples. With the new distance metric, the dynamic programming formula is

modified to the following.

D(i, j) = min



D(i− 1, j − 1) + d(si, rj) match or mismatch

D(i− 1, j) + v(si), insertion

D(i, j − 1) + v(rj), deletion

We present some examples of researchers from different topics in our results in Table 4.5.

In general, we found results for each researcher are closer in research topics. See, for

example, the output for “Dimitris N. Metaxas” in Tables 4.4 and 4.5. For “Judea

Pearl”, both edit distance and topic edit distance return comparable authors in similar

90

research topics. Recall that the topic distribution of each author is learned mostly from

their paper titles. We manually validated many examples, and compared the results by

simply utilizing the topic similarity between authors and by our approach. We found

that sequence matching combining topics from title and venue scores did a better job

in finding authors in similar research area. Taking “Richard M. Karp” for example, we

find that 16 of the 20 comparable researchers returned also have entries in Wikipedia, a

crude indication that they are similarly notable. Future work may more systematically

examine the performance of clustering similar authors by our distance metric.

There are a few notable bad examples: the comparable researchers for “Donald E.

Knuth” are only loosely related. Knuth’s paper titles are often short, and commonly

use generic computer science terms like “Algorithm”. Hence, topic inference on his

papers has poor performance, and the comparable authors are mainly determined on

venue score sequence matching. As our data contains only 30, 000 authors, many are

missing (along with their papers), limiting the set of potential comparable authors.

4.4.3 On Prefix Matching

Each year, many junior researchers begin their career. It is useful and interesting to

matching junior researchers to segments of senior researchers. With simple modification,

our algorithm can be used to compare a junior researcher to senior researchers in their

early career stage. This can be useful, for example, to committees considering the

future prospects of job candidates, and to junior researchers finding out whose career

trajectory they are following.

Formally, we are interested in the problem that, given a senior researcher and a

junior researcher characterized by S and R respectively. Instead of matching full se-

quence of S and R, we want to match R to every prefix of S. A prefix of the sequence

S with length n is denoted by S[1 : k] where 1 ≤ k ≤ n. The final distance is then the

minimal of matching distances with every prefix. If we store all intermediate steps of

the dynamic programming table, we can easily compute the distance of prefix matching.

Specifically, the vector D(:,m) stores the minimal distance from every prefix of S to R,

where m is the length of R. Consequently the minimal distance is no longer D(n,m)

91

but minD(:,m).

We sample authors with fewer than 100 papers within less than 20 years of research

period to test the prefix matching. Comparing to matching full sequence, there are

more senior researchers in the results by prefix matching.

4.4.4 On Parallel Computation

Our trajectory matching algorithm computes the matching distance between each pair

of researchers through their full publication records. Let N be the number of authors,

and L be the average length of trajectories. The computational complexity is O(N2L2).

This is quite expensive in terms of computational time particularly when N is big. For-

tunately, the computation can be done in parallel by Map-Reduce(MR) framework [25].

The MR version of trajectory matching algorithm is as follows. It requires two map

reduce phases to finish the job.

Algorithm 4 Map Reduce Version of Trajectory Matching
Phase 1: input document contains authors and their trajectory vector [ai, Ti]
map(String key, String value): // key: document name, value: document contents
for each pair 〈ai, aj〉 in value: do

Emit(〈ai, aj〉, 〈Ti, Tj〉);
end for
reduce(String key, Iterator values): //key: 〈ai, aj〉, values: 〈Ti, Tj〉
for 〈Ti, Tj〉 in values: do

dist = D(Ti, Tj);
Emit(ai, 〈aj : dist(ai, aj)〉);

end for
Phase 2: input is the output of reducer in previous phase.
map(String key, Text value): //Identity mapper
for v in value: do
Emit(key, v);

end for
reduce(String key, Iterator values): //key: ai, values: [aj : dist(ai, aj)]
results = [];
for v in values: do
results.append(v);

end for
sort(results) // by distance score.
Emit(key, results)

Note that in phase 1, the mapper generates N2 pairs which needs many reducers

92

and costs lots of network communication time. To further improve it and reduce the

number of author pairs emitted, one can put authors into groups. More specifically, we

divide N authors into K groups. We emit 〈ai, gk〉 as key, and 〈Ti, [aj : Tj]j∈gk
〉 as value

in the mapper of the first phase. In the following reducer, we compute the distance

between ai and all aj ∈ gk, emit ai as key and [aj : dist(ai, aj)] as value. In the second

phase, we take the output of the reducer of the first phase as the input and go through

an identity mapper, then reduce by the key ai and merge distance pairs from different

groups. By doing such grouping, we can sharply reduce the number of reducers needed

and therefore lower the cost of network communication.

4.5 Conclusions and Future Work

In this chapter, we address the novel problem of automatically finding comparable

researchers through large scholarly data. Unlike existing work, which evaluates re-

searchers mainly by citation counts, our methods consider the sequence of the quality

of publishing venues, which seems more appropriate for evaluating and comparing re-

search output. To allow automatic identification of comparable people in similar re-

search areas, we further propose a distance metric which combines the topic similarity

and venue quality. Our approach can be easily modified to match junior researches to

senior researcher at their beginning of research periods. We analyze the computation

time and provide a map-reduce version of the algorithm, which is further improved by

grouping authors.

Our analysis and experiment was conducted on large-scale scholarly datasets avail-

able on the web. The effectiveness of our methods are demonstrated by arbitrarily

picked examples. There are several problems open for future study.

• Data Collection: Lack of data may lead to less accurate results. Many challenges

exist in the data collection, e.g. reducing the language gap, knowledge extraction

from multiple data sources with different formats.

• Evaluation: There is currently no “ground truth” for our methods. We are devel-

oping a user interface to allow exploration of comparable people, and collect user

93

feedback on results.

• Comparable Network: With comparable relation established, we can define a com-

parable network, in which each node is a researcher, and edges connect comparable

nodes. The weight on the edge is related to the distance between two nodes. It

may be interesting to examine the structure of such network, and compare it with

co-authorship and citation networks.

94

Table 4.5. Case Study of Topic Edit Distance
Researcher Top 20 Comparable Researchers
Richard M. Karp David R. Karger, Ravi Kumar, Jeffrey D. Ullman, Avrim Blum, Joseph

Naor, Frank Thomson Leighton, Rajeev Motwani, Hari Balakrishnan,
Eric Horvitz, Mostafa H. Ammar, Rina Dechter, Prabhakar Raghavan,
Craig Boutilier, Rafail Ostrovsky, Raghu Ramakrishnan, Yossi Azar,
James F. Kurose, Josep Torrellas, Rakesh Agrawal, Andrew Y. Ng

Judea Pearl Craig Boutilier, Satinder P. Singh, Avrim Blum, Manfred K. Warmuth,
Michael J. Kearns, Piotr Indyk, Eyal Kushilevitz, Surajit Chaudhuri,
Yoram Singer, Robert E. Schapire, Jon M. Kleinberg, Shafi Goldwasser,
Robert Endre Tarjan, Geoffrey E. Hinton, Eric Horvitz, Milind Tambe,
Jeffrey S. Rosenschein, Silvio Micali, Daniel S. Weld, Nick Koudas

Hari Balakrishnan Ion Stoica, James F. Kurose, Baochun Li, Gustavo Alonso, Mostafa H.
Ammar, Eitan Altman, Robert Endre Tarjan, Surajit Chaudhuri, Jon
M. Kleinberg, Ness B. Shroff, Yossi Azar, Eli Upfal, Peter Steenkiste,
Joseph Naor, Sang Hyuk Son, Qian Zhang, Frank Thomson Leighton,
Randy H. Katz, Hagit Attiya, Wang-Chien Lee

Nancy Lynch Baruch Awerbuch, Scott Shenker, J. J. Garcia-Luna-Aceves, Sajal K.
Das, Roger Wattenhofer, Moni Naor, Hossam S. Hassanein, Rachid
Guerraoui, Amr El Abbadi, David E. Culler, Yishay Mansour, Christos
H. Papadimitriou, Klara Nahrstedt, Danny Dolev, Christos Faloutsos,
Deborah Estrin, Mostafa H. Ammar, Mario Gerla, Lionel M. Ni, Serge
Abiteboul

Dimitris N.
Metaxas

Andrew Blake, Trevor Darrell, Jitendra Malik, Jean Ponce, Narendra
Ahuja, Shaogang Gong, Dale Schuurmans, Stefano Soatto, Alan L.
Yuille, Pascal Fua, Aly A. Farag, Pedro Domingos, Shree K. Nayar,
Xilin Chen, Chris H. Q. Ding, Brendan J. Frey, Pietro Perona, Santosh
Vempala, Thomas G. Dietterich, Nassir Navab

Dan Boneh Amit Sahai, Ueli M. Maurer, Jacques Stern, Ronald L. Rivest, Ran
Canetti, Shafi Goldwasser, Stuart J. Russell, Abraham Silberschatz,
Matthew Andrews, George Varghese, Russell Impagliazzo, Cynthia
Dwork, David Heckerman, Hector J. Levesque, Eyal Kushilevitz, Michael
J. Kearns, Robert E. Schapire, Joe Kilian, Anoop Gupta, Tatsuaki
Okamoto

Donald E. Knuth Mark Roberts, H. Ramesh, Fady Alajaji, Hemant Kanakia, Mary E.
S. Loomis, Michael D. Grossberg, Antonio Piccolboni, Paul Milgram,
Andy Boucher, Paul Hart, Kazuo Sumita, Nicholas Carriero, Shiro Ikeda,
James M. Stichnoth, Michael Bedford Taylor, Kimiko Ryokai, Riccardo
Melen, Jatin Chhugani, Dianne P. O’Leary, Lal George

http://en.wikipedia.org/wiki/Richard_M._Karp
http://en.wikipedia.org/wiki/David_Karger
http://en.wikipedia.org/wiki/Jeffrey_Ullman
http://en.wikipedia.org/wiki/Avrim_Blum
http://en.wikipedia.org/wiki/Joseph_Seffi_Naor
http://en.wikipedia.org/wiki/Joseph_Seffi_Naor
http://en.wikipedia.org/wiki/F._T._Leighton
http://en.wikipedia.org/wiki/Rajeev_Motwani
http://en.wikipedia.org/wiki/Hari_Balakrishnan
http://en.wikipedia.org/wiki/Eric_Horvitz
http://en.wikipedia.org/wiki/Prabhakar_Raghavan
http://en.wikipedia.org/wiki/Rafail_Ostrovsky
http://en.wikipedia.org/wiki/Raghu_Ramakrishnan
http://en.wikipedia.org/wiki/James_Kurose
http://en.wikipedia.org/wiki/Josep_Torrellas
http://en.wikipedia.org/wiki/Rakesh_Agrawal_(computer_scientist)
http://en.wikipedia.org/wiki/Andrew_Ng

95

Chapter 5

Summary and Future Directions

In this thesis, we analyze and model groups in real world problems. The first problem

we look at is recommendation targeting groups rather than individuals. We address

two challenges: that group information is insufficient and that the presence of members

is dynamic, and propose a group multi-armed bandit framework to generate recommen-

dations in sequence. We show for the first time that our group variations of MAB have

logarithmic regret bounds, and are efficient in terms of computation time and memory

space requirements. We also design a demo system that allows a group to organize

events and reach consensus on which recommended item to accept. We conducted a

user study through our demo system, and observe the existence of member’s influence

on decision making. An influence cascade model is proposed to predict individual’s

decision. Results show that this influence model allows to improve the prediction of

individuals’ decisions, which can be used to make better recommendations.

The second problem we focus on is personalized search. We address the challenge

that each day users submit a large portion of new search queries that do not have suffi-

cient associated historical information in the system to allow good personalized results.

We propose a cohort modeling framework to predict individual’s search interest and

intent based on cohorts’ behavior. We examine three pre-defined cohorts, i.e. location,

domain and topic, and evaluate their effectiveness on enhancing search personaliza-

tion by applying cohort models both in isolation and in combination. We also analyze

the performance of our cohort models in a number of additional search scenarios (e.g.,

ambiguous or unseen queries), and show strong relevance gains. Finally we propose a

method to learn cohorts via clustering, removing the requirement that we use prede-

fined groups. We show that by doing this we can further enhance personalization over

96

using our pre-defined cohort modeling method.

The third problem is identifying which groups a given researcher better compares

against. We address the challenge that researchers often change research topics and

have varied productivity and impact over time, and propose a trajectory matching

framework to compare any pair of researchers. Each trajectory is defined in three

dimensions: publication, venue and time. Our algorithm can be easily modified to do

prefix matching to, for example, compare a junior researcher and a senior researcher.

We analyzed and experimented on large scholarly datasets available on the web, arXiv

and DBLP, and demonstrate the effectiveness of our method through examples. We

also discuss many open problems to study in the future.

This research on solving problems for groups using data has many natural extensions

and open problems. Regarding group recommendation, our model assumes arms (items)

are independent. One research problem to consider is how to model the scenario where

items are correlated. Beyond groups as context, location and time should also be

considered, due to the sharp increase in the use of mobile apps. As to cohort modeling,

it is interesting to examine whether it can be generalized and applied to applications

such as online ads. Regarding grouping comparable researchers, it is still a challenge

to design a time efficient algorithm to process large datasets.

The online world is a rich testbed for our research, particularly web media and

social networking sites. It is interesting to discover the different and evolving patterns

of groups, as well as the uniqueness, trustworthiness, influence and the hierarchy of

each group. Another set of questions is to consider richer types of groups and try to

automatically identify the different meaningful types of group that a user might belong

to. In this context, it might be useful to study sets of groups not limited to people but

extend to items such as location or semantically correlated words.

97

References

[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear
stochastic bandits. Advances in Neural Information Processing Systems, 2011.

[2] Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark:
An efficient algorithm for bandit linear optimization. In Proceedings of the 21st
Annual Conference on Learning Theory (COLT), volume 3, page 3, 2008.

[3] Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking
by incorporating user behavior information. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 19–26. ACM, 2006.

[4] Rodrigo B Almeida and Virgilio AF Almeida. A community-aware search engine.
In Proceedings of the 13th international conference on World Wide Web, pages
413–421. ACM, 2004.

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

[6] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. The
Journal of Machine Learning Research, 3:397–422, 2003.

[7] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J.
Mach. Learn. Res., 3:397–422, March 2003.

[8] Peter Auer, Nicole Cesa-Bianchi, Paul Fischer, and Lehrstuhl Informatik. Finite-
time analysis of the multi-armed bandit problem. In Machine Learning, 2002.

[9] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling
in a rigged casino: The adversarial multi-armed bandit problem. In Foundations of
Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 322–331.
IEEE, 1995.

[10] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The non-
stochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77,
2002.

[11] Peter Bartlett and Shai Ben-David. Hardness results for neural network approxi-
mation problems. In Computational Learning Theory, pages 50–62. Springer, 1999.

[12] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD cup
and workshop, volume 2007, page 35, 2007.

98

[13] Paul N Bennett, Filip Radlinski, Ryen W White, and Emine Yilmaz. Inferring
and using location metadata to personalize web search. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information
Retrieval, pages 135–144. ACM, 2011.

[14] Paul N Bennett, Krysta Svore, and Susan T Dumais. Classification-enhanced
ranking. In Proceedings of the 19th international conference on World wide web,
pages 111–120. ACM, 2010.

[15] Paul N Bennett, Ryen W White, Wei Chu, Susan T Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. Modeling the impact of short-and long-term behavior
on search personalization. In Proceedings of the 35th international ACM SIGIR
conference on Research and development in information retrieval, pages 185–194.
ACM, 2012.

[16] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E Schapire.
Contextual bandit algorithms with supervised learning guarantees. Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS),
2011.

[17] Christopher JC Burges, Robert Ragno, and Quoc Viet Le. Learning to rank with
nonsmooth cost functions. In NIPS, volume 6, pages 193–200, 2006.

[18] Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview.
Journal of Machine Learning Research-Proceedings Track, 14:1–24, 2011.

[19] Haibin Cheng and Erick Cantú-Paz. Personalized click prediction in sponsored
search. In Proceedings of the third ACM international conference on Web search
and data mining, pages 351–360. ACM, 2010.

[20] Wei Chu, Lihong Li, Lev Reyzin, and Robert E Schapire. Contextual bandits with
linear payoff functions. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2011.

[21] Mark O’ Conner, Dan Cosley, Joseph A. Konstan, and John Riedl. Polylens: A
recommender system for groups of users. In Proceedings of the seventh conference
on European Conference on Computer Supported Cooperative Work, 2001.

[22] Koby Crammer and Claudio Gentile. Multiclass classification with bandit feedback
using adaptive regularization. Proceedings of the 28th International Conference on
Machine Learning, 2011.

[23] Varsha Dani, Thomas Hayes, and Sham M Kakade. The price of bandit informa-
tion for online optimization. Advances in Neural Information Processing Systems,
20:345–352, 2008.

[24] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear opti-
mization under bandit feedback. In Proceedings of the 21st Annual Conference on
Learning Theory (COLT), pages 355–366, 2008.

[25] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. In OSDI?04: PROCEEDINGS OF THE 6TH CONFERENCE

99

ON SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMEN-
TATION. USENIX Association, 2004.

[26] Miroslav Dudík, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford,
Lev Reyzin, and Tong Zhang. Efficient optimal learning for contextual bandits. In
ICML, 2011.

[27] Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford,
Lev Reyzin, and Tong Zhang. Efficient optimal learning for contextual bandits.
UAI, 2011.

[28] Leo Egghe. An improvement of the h-index: The g-index. ISSI newsletter, 2(1),
2006.

[29] Peter C. Fishburn. The Theory of Social Choice. Princeton University Press, 1973.

[30] Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan Dumais, and Thomas White.
Evaluating implicit measures to improve web search. ACM Transactions on Infor-
mation Systems (TOIS), 23(2):147–168, 2005.

[31] Eugene Garfield et al. Citation analysis as a tool in journal evaluation. American
Association for the Advancement of Science, 1972.

[32] GroupLens. http://www.grouplens.org/node/73.

[33] Elad Hazan and Satyen Kale. Newtron: an efficient bandit algorithm for online
multiclass prediction. Advances in Neural Information Processing Systems (NIPS),
2011.

[34] Jorge E Hirsch. An index to quantify an individual’s scientific research output.
Proceedings of the National academy of Sciences of the United States of America,
102(46), 2005.

[35] Matthew Hoffman, Francis R Bach, and David M Blei. Online learning for latent
dirichlet allocation. In Advances in neural information processing systems, 2010.

[36] Samuel Ieong, Nina Mishra, Eldar Sadikov, and Li Zhang. Domain bias in web
search. In Proceedings of the fifth ACM international conference on Web search
and data mining, pages 413–422. ACM, 2012.

[37] W. Niu J. Kay. Adapting information delivery to groups of people. In the First
International Workshop on New Technologies for Personalized Information Access
at the 10th International Conference on User Modeling, 2005.

[38] Thorsten Joachims. Optimizing search engines using clickthrough data. In Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 133–142. ACM, 2002.

[39] David S. Johnson and Franco P Preparata. The densest hemisphere problem.
Theoretical Computer Science, 6(1):93–107, 1978.

[40] Anagnost T. Joseph F. McCarthy. Musicfx: An arbiter of group preferences for
computer supported collaborative workouts. In Computer-Supported Cooperative
Work, 1998.

100

[41] Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Efficient bandit algo-
rithms for online multiclass prediction. In Proceedings of the 25th international
conference on Machine learning, pages 440–447. ACM, 2008.

[42] Henry Kautz, Bart Selman, and Mehul Shah. Referral web: combining social
networks and collaborative filtering. Communications of the ACM, 40(3):63–65,
1997.

[43] Lorcan Coyle Kevin McCarthy, Maria Salame, Lorraine McGinty, Barry Smyth,
and Paddy Nixon. Cats: A synchronous approach to collaborative group rec-
ommendation. In The Nineteenth International Florida Artificial Intelligence Re-
search Society Conference, 2006.

[44] John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-
armed bandits. Advances in Neural Information Processing Systems, 20:1096–1103,
2007.

[45] John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-
armed bandits. In NIPS, 2007.

[46] Y-J. Lee. Vizsearch: A collaborative web searching environment. Computers and
Education, 2005.

[47] L. Li, W. Chu, J. Langford, and R.E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM, 2010.

[48] John Langford Lihong Li, Wei Chu and Robert E. Schapire. A contextual-bandit
approach to personalized news article recommendation. In WWW, 2010.

[49] Giovanna Petrone Liliana Ardissono, Anna Goy, Marino Segnan, and Pietro
Torasso. Intrigue: Personalized recommendation of tourist attractions for desk-
top and handset devices. In Applied Artificial Intelligence, pages 687–714, 2003.

[50] Francesco Ricci Linas Baltrunas, Tadas Makcinskas. Group recommendations with
rank aggregation and collaborative filtering. In Recsys, 2010.

[51] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–80, 2003.

[52] Judith Masthoff. Group modeling: Selecting a sequence of television items to suit
a group of viewers, 2004.

[53] Joseph F. McCarthy. Pocket restaurant finder: A situated recommender system
for groups. In the Workshop on Mobile Ad-Hoc Communication at CHI, 2002.

[54] Kevin McCarthy, Maria Salamo, Lorcan Coyle, Lorraine McGinty, Barry Smyth,
and Paddy Nixon. Group recommender systems: a critiquing based approach. In
IUI, 2006.

[55] Lokman I Meho. The rise and rise of citation analysis. Physics World, 2006.

101

[56] Qiaozhu Mei and Kenneth Church. Entropy of search logs: how hard is search?
with personalization? with backoff? In Proceedings of the 2008 International
Conference on Web Search and Data Mining, pages 45–54. ACM, 2008.

[57] Bradley N Miller, Istvan Albert, Shyong K Lam, Joseph A Konstan, and John
Riedl. Movielens unplugged: experiences with an occasionally connected recom-
mender system. In Proceedings of the 8th international conference on Intelligent
user interfaces, pages 263–266. ACM, 2003.

[58] MoviePilot. http://moviepilot.com/.

[59] Seth A. Myers and Jure Leskovec. On the convexity of latent social network
inference. In NIPS, 2010.

[60] George Popescu and Pearl Pu. What’s the best music you have? designing music
recommendation for group enjoyment in groupfun. In CHI ’12 Extended Abstracts
on Human Factors in Computing Systems, 2012.

[61] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In
Proceedings of the 1994 ACM conference on Computer supported cooperative work,
pages 175–186. ACM, 1994.

[62] Herbert Robbins. Some aspects of the sequential design of experiments. In Herbert
Robbins Selected Papers, pages 169–177. Springer, 1985.

[63] P. Rusmevichientong and J.N. Tsitsiklis. Linearly parameterized bandits. Mathe-
matics of Operations Research, 35(2), 2010.

[64] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock.
Methods and metrics for cold-start recommendations. In Proceedings of the 25th
annual international ACM SIGIR conference on Research and development in in-
formation retrieval, pages 253–260. ACM, 2002.

[65] Si Shen, Botao Hu, Weizhu Chen, and Qiang Yang. Personalized click model
through collaborative filtering. In Proceedings of the fifth ACM international con-
ference on Web search and data mining, pages 323–332. ACM, 2012.

[66] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user modeling for per-
sonalized search. In Proceedings of the 14th ACM international conference on
Information and knowledge management, pages 824–831. ACM, 2005.

[67] Jill Freyne Shlomo Berkovsky. Group-based recipe recommendations: analysis of
data aggregation strategies. In Recsys, 2010.

[68] Ashish Chawla Sihem AmerYahia, Senjuti Basu Roy, Gautam Das, and Cong Yu.
Group recommendation: Semantics and efficiency. In VLDB, 2009.

[69] Barry Smyth. A community-based approach to personalizing web search. Com-
puter, 40(8):42–50, 2007.

102

[70] David Sontag, Kevyn Collins-Thompson, Paul N Bennett, Ryen W White, Susan
Dumais, and Bodo Billerbeck. Probabilistic models for personalizing web search.
In Proceedings of the fifth ACM international conference on Web search and data
mining, pages 433–442. ACM, 2012.

[71] Kazunari Sugiyama, Kenji Hatano, and Masatoshi Yoshikawa. Adaptive web
search based on user profile constructed without any effort from users. In Pro-
ceedings of the 13th international conference on World Wide Web, pages 675–684.
ACM, 2004.

[72] Jian-Tao Sun, Hua-Jun Zeng, Huan Liu, Yuchang Lu, and Zheng Chen. Cubesvd:
a novel approach to personalized web search. In Proceedings of the 14th interna-
tional conference on World Wide Web, pages 382–390. ACM, 2005.

[73] Sutton and Barto. Reinforcement learning, and introduction. Cambdrige, MIT
Press, 1998.

[74] Bin Tan, Xuehua Shen, and ChengXiang Zhai. Mining long-term search history to
improve search accuracy. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 718–723. ACM, 2006.

[75] Bilyana Taneva, Tao Cheng, Kaushik Chakrabarti, and Yeye He. Mining acronym
expansions and their meanings using query click log. In Proceedings of the 22nd in-
ternational conference on World Wide Web, pages 1261–1272. International World
Wide Web Conferences Steering Committee, 2013.

[76] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer:
extraction and mining of academic social networks. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
990–998. ACM, 2008.

[77] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael AS Potts. Information re-
retrieval: repeat queries in yahoo’s logs. In Proceedings of the 30th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 151–158. ACM, 2007.

[78] Jaime Teevan, Susan T Dumais, and Eric Horvitz. Personalizing search via au-
tomated analysis of interests and activities. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 449–456. ACM, 2005.

[79] Jaime Teevan, Daniel J Liebling, and Gayathri Ravichandran Geetha. Under-
standing and predicting personal navigation. In Proceedings of the fourth ACM
international conference on Web search and data mining, pages 85–94. ACM, 2011.

[80] Jaime Teevan, Meredith Ringel Morris, and Steve Bush. Discovering and using
groups to improve personalized search. In Proceedings of the Second ACM Inter-
national Conference on Web Search and Data Mining, pages 15–24. ACM, 2009.

[81] Roman Vershynin. Introduction to the non-asymptotic analysis of random matri-
ces. Chapter 5 of: Compressed Sensing, Theory and Applications, 2012.

103

[82] Robert A Wagner and Michael J Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1), 1974.

[83] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD
thesis, University of Cambridge England, 1989.

[84] Ingmar Weber and Carlos Castillo. The demographics of web search. In Proceed-
ings of the 33rd international ACM SIGIR conference on Research and development
in information retrieval, pages 523–530. ACM, 2010.

[85] Ryen White and Georg Buscher. Characterizing local interests and local knowl-
edge. In Proceedings of the 2012 ACM annual conference on Human Factors in
Computing Systems, pages 1607–1610. ACM, 2012.

[86] Ryen W White, Peter Bailey, and Liwei Chen. Predicting user interests from
contextual information. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, pages 363–370.
ACM, 2009.

[87] Ryen W White, Paul N Bennett, and Susan T Dumais. Predicting short-term
interests using activity-based search context. In Proceedings of the 19th ACM
international conference on Information and knowledge management, pages 1009–
1018. ACM, 2010.

[88] Ryen W White, Wei Chu, Ahmed Hassan, Xiaodong He, Yang Song, and Hongning
Wang. Enhancing personalized search by mining and modeling task behavior. In
Proceedings of the 22nd international conference on World Wide Web, pages 1411–
1420. International World Wide Web Conferences Steering Committee, 2013.

[89] Ryen W White, Susan T Dumais, and Jaime Teevan. Characterizing the influence
of domain expertise on web search behavior. In Proceedings of the Second ACM
International Conference on Web Search and Data Mining, pages 132–141. ACM,
2009.

[90] Qiang Wu, Chris JC Burges, Krysta M Svore, and Jianfeng Gao. Ranking, boost-
ing, and model adaptation. Tecnical Report, MSR-TR-2008-109, 2008.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Recommendation Targeting to Groups
	Enhance Personalized Search by Groups
	Identify Reference Group for Researchers

	Recommendation to Groups
	MAB Background and Problem Formulation
	Multi-armed Bandits Background
	Group-MAB Formulation
	A Naive Approach and Its Regret Bound

	Two Settings of Reward Process
	Receiving Individual Rewards
	Receiving Group Reward

	Related Work
	Group Recommendation
	Stochastic Contextual Bandits

	Proofs
	Proof for Theorem 1
	Proof for Theorem 3

	Numerical Results
	Group-UCB
	Contextual -Greedy

	A Group Recommender Demo System
	System Overview
	Recommendation Model
	User Study and Model Evaluation

	Conclusion

	Cohort Modeling for Enhanced Personalized Search
	Introduction
	Background and Related Work
	Contributions

	Cohort Modeling
	Empirical Datasets
	All Queries
	New Queries in User Search History
	Popularity of Queries
	Query Entropy
	Acronym Queries

	Experiment Results and Findings
	Ranking Models and Evaluation Metrics
	Research Questions and Findings

	Learned Cohort Models
	Clustering Method
	Evaluating Clustered Cohorts
	Preference Analysis

	Discussion and Conclusion

	Comparable Groups
	Introduction
	Problem Setting
	Data and Analysis
	Exploratory Data Analysis

	Algorithms to Comparable Researchers
	On Venue Score
	On Topic Similarity
	On Prefix Matching
	On Parallel Computation

	Conclusions and Future Work

	Summary and Future Directions
	References

