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Sparsity-based Methods for Cardiac Magnetic

Resonance Image Reconstruction and Analysis
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Dissertation Director:

Dimitris Metaxas

In signal processing, sparseness means that there are only small amounts of non-

zero elements. This property has been widely observed in various types of signals.

However, the data sparseness is hard to be regularized due to its non-convex na-

ture. The recent development of the compressed sensing technique builds a the-

oretical connection between the sparse constraint and its convex relaxation. This

discovery motivates us to explore different types of sparse properties for the gener-

ation and analysis of the cardiac magnetic resonance images (MRIs). In this work,

our proposed a series of sparse optimization algorithms have been applied to car-

diac image reconstruction, segmentation and motion tracking problems for fast

and robust analyzing the cardiac data.

The cardiac imaging is a challenging problem to MRI due to its fast motion.

We proposed a novel calibration-less algorithm to accelerate the generation of dy-

namic MR images with both compressed sensing and parallel imaging. In addition
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to the temporal signal, which usually provides more data redundancy than spatial

signals, the strong correlations among signals from different coils are utilized to

form joint sparse constraints. A general optimization framework is presented to

solve the problem under different types of temporal sparse constraints efficiently.

We then apply the sparse constraint to the cardiac muscle motion tracking. The

3D deformable heart model is built by simulating its motion in a cardiac cycle

based on tagged MRI. The tagged MR data is widely used to reveal the internal

myocardial motion. However, the automated tagging line detection results are

very noisy due to the poor image quality. To alleviate this issue, we introduce a

new family of sparse deformable models based on the sparseness of the detection

noise. Our new models track the heart motion robustly, and the resulting strains

are consistent with those calculated from manual labels.
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Chapter 1

Introduction

Cardiovascular disease (CVD), also called heart disease, is the leading cause of

death globally. The number of deaths resulted from CVD keeps increasing in

recent years from 12.3 million deathes (25.8%) in 1990 to 17.3 million (31.5%) in

2013. Cardiovascular disease is also a great burden to the United States. About

610,000 people die of heart disease in US every year, which is 1 in every 4 deaths.

Meanwhile, there are about 735,000 Americans have a heart attack every year. This

makes CVD also a major cause of disability [68].

Like many other diseases, the heart attacks are preventable if people act early

enough. There are several major warning signs and symptoms for heart attacks,

such as chest pain or discomfort, upper body pain or discomfort in the arms, back

neck, jaw, or upper stomach, shortness of breath, and nausea, lightheadedness,

or cold sweats. However, most of these symptoms are mistaken for less severe

problems. People may think they are just too tired, and miss the chances of early

actions. As a result, there are about 47% of sudden cardiac deaths occur outside a

hospital. Therefore, it is critical to provide easy-to-use cardiac function examina-

tion tools to the potential patients.

1.1 Cardiac Imaging

Cardiac imaging is a technique that produces images of the heart structure and

motion directly. It provides visual information about the heart that help doctors to
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localize pathologies and evaluate the need for further treatment. Nowadays, there

are a number of techniques available for cardiac imaging. The most frequently

used 3D cardiac imaging methods are Echocardiography, Computed Tomography

(CT) and Magnetic Resonance Imaging (MRI). Different modalities have their in-

trinsic advantages and disadvantages for cardiac imaging.

Echocardiography uses ultrasound to create images of the heart. It is one of the

most widely used diagnostic tests in cardiology. It provides a relatively low cost

method to visualize the heart motion in real-time. The ultrasound equipments are

more compact than the current CT and MRI systems. Meanwhile, the ultrasonog-

raphy is generally considered a safe imaging modality. This makes echocardiogra-

phy a good choice for preliminary cardiac examination. However, image quality of

echocardiography is often worse than CT and MRI. It is hard to extract fine cardiac

structures from ultrasound images.

Cardiac CT provides much better spatial resolution of the heart imaging. The

recent developments on cardiac CT allow a multi-detector CT scanner to success-

fully capture the detailed endocardial structures, including the papillary muscles

and trabeculae. However, the radiation and contrast exposures of cardiac CT are

always sources of significant concern. X-radiation (X-ray) is the fundamental tool

for CT imaging. Multiple times of X-ray imaging are required in order to acquire

a complete representation of a cardiac model. Therefore, cardiac CT can result in

a relatively high radiation exposure. By comparison, each cardiac CT scan carried

out is equivalent to approximately 100-600 chest X-rays or over 3 years of back-

ground radiation. People commonly concern about the possibility of an increased

cancer risk due to the high radiation doses, and are likely to against the risk if there

is not a significant health problem. The iodine-containing contrast agent may be

used to improve the image quality for cardiac CT. However, the contrast is harmful

to hyperthyroidism and renal function. Meanwhile, some people have the contrast
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agent allergy. All these adverse effects prevent cardiac CT from becoming routine

in clinical practice.

Cardiac MRI is a more established technique for cardiac imaging [35, 44]. It pro-

vides good spatial and temporal resolution of the heart in a whole cardiac cycle.

The anatomical and functional information about the heart is generated without

the need for contrast medium or invasive techniques. The magnetic field, which

is the main energy source of MRI, is considered safe for most people, except pa-

tients have implant devices, such as artificial cardiac pacemaker. Although there

are several good properties for MRI as mentioned above, it requires a long acqui-

sition time to produce good images. One common practice for cardiac imaging is

using retrospective electrocardiography (ECG) gating. In this technique, each por-

tion of the heart is imaged more than once while an ECG trace is recorded. The

ECG is then used to correlated the MRI data with their corresponding phases of

cardiac contraction. Once this correlation is complete, the corresponding data are

combined together to reconstruct the frame at each phase. During the acquisition

of these cardiac cycles, the patients are required to hold their breath to reduce any

additional movement other than heart. The movement due to respiration will pro-

duce image artifacts similar to motion blur. The whole imaging process will take

tens of seconds. The whole MRI procedure requires several times of breath hold-

ing like this, which may be very challenging for old and weak patients. Therefore,

it will help many patients if we can reduce or even remove the requirements for

breath holding for cardiac MRI.
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1.2 Cardiac MRI Reconstruction and Analysis

Cardiac MRI becomes a more important heart disease diagnosis tool in recent

years, since it provides accurate and reproducible assessment of global and ven-

tricular regional function. In this thesis, we will focus on the cardiac MRI data and

work on the problem of better reconstruction and analysis of the cardiac images

from various aspects.

The MRI reconstruction becomes an active area in recent year due to the de-

velopment of compressed sensing techniques [11, 12, 13]. The single MRI image

reconstruction has been used as the initial sample to demonstrate the power of

compressed sensing for sparse signal reconstruction [58, 59]. Cardiac MRI presents

additional problem for MRI reconstruction. First, a sequence of dynamic cardiac

images are required to reveal the motion properties of the heart. Second, the par-

allel imaging technique is widely used in current cardiac imaging system. The

dynamic MRI data, like cardiac motion introduce the temporal dimension to the

data. This additional dimension normally contains more redundant information

than the spatial dimensions since most organs deform smoothly along time or even

stay still. This observation is also true for natural images, where the videos are

more likely to have higher compressed rates than images. In this thesis, we exploit

the temporal sparse constraints to reconstruct the dynamic MR image with higher

accuracy. The parallel MR imaging technique is widely used on modern MRI sys-

tem, while its special properties have not been well studied for compressed sens-

ing based MRI reconstruction. In addition to the sparse constraints on single MRI

image, the relation among different sensors can be further modeled with struc-

tured sparse constraint and solved collaboratively. By combining the techniques

mentioned above, we have not only improved the reconstruction algorithm for

dynamic cardiac imaging, but also allow the patient to breath normally during the
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MRI acquisition, which makes the cardiac MRI available to more patients under

serious condition.

As more and more MRI images are collected, one critical question is how to

effectively utilize the images for clinical diagnosis. The qualitative evaluation re-

quires rich experience from domain expert, while the quantitative evaluation often

requires tedious labelling to get good estimation. Therefore, an automatical system

to estimate key cardiac measurements based on image information is very impor-

tant for promoting the cardiac MRI. In this thesis, we present a cardiac MR image

analysis system to estimate the key heart motion properties. The system uses the

routine 2D cardiac MRI images as input, and generate a 3D left ventricle model

based on our proposed sparse deformable models, which reveals the local heart

kinetic properties dynamically.

1.3 Main Contribution

The main contributions of this thesis are summarized as following:

1. We have proposed a novel reconstruction algorithm for dynamic parallel

MRI. The correlations among signals from multiple coils are exploited with

structured sparse constraints. The optimization problems under different

temporal sparse regularizers are solved under our uniform framework with

quadratic convergence rate. The proposed method is extended to reconstruct

the cardiac MR images with respiration motions.

2. We have built a complete 3D left ventricle (LV) motion analysis system based

2D cardiac images. The 3D static LV model is built based on 2D cardiac im-

ages with arbitrary directions. Then the cardiac motion are first estimated on

all 2D slices based on tagging lines, and then the motion information on 2D
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slices drives the 3D LV deformable model. The global and local strains are

estimated based on the LV deformation.

3. Sparse deformable models are proposed to robustly estimate the 3D heart

motion based on noisy observations. Various types of noise may be pro-

duced during the early steps of cardiac MR image processing. The sparse

deformable models decompose the noise as Gaussian noise and sparse out-

liers and solve the problem with sparsity based constraints.

1.4 Organization

The reminder of this thesis is organized as follows.

Chapter 2 first reviews the compressed sensing technique and its application to

MRI. Then our proposed structured sparse model is introduced in detail to solve

dynamic parallel MRI for heart. A new framework is present to solve this problem.

Finally, the method is extended for breathing-free cardiac MRI.

Chapter 3 presents our cardiac image analysis system in detail. The system con-

tains the following components: the heart segmentation, the tagging line motion

tracking, the 3D LV deformation reconstruction, and the motion feature analysis.

Chapter 4 introduces the sparse deformable models for motion tracking. The

method is then used on cardiac motion analysis to reconstruct 3D deformable mod-

els.

Finally, we summarized the contributions of this work, along with a discussion

of limitations and future work in Chapter 5.
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Chapter 2

Calibrationless Parallel Dynamic MRI with Joint
Temporal Sparsity

In this chapter, we propose a novel calibrationless method for parallel dynamic

magnetic resonance imaging (MRI) reconstruction, which overcomes the limita-

tions posed by traditional MRI reconstruction methods that require accurate coil

calibration. Thus, calibrationless methods, which remove the requirement of coil

sensitivity profiles for MRI reconstruction, are suitable for dynamic MRI. Dynamic

MRI contains rich temporal redundant information, i.e., the pixel intensities change

smoothly over time. This property can be modeled as various types of temporal

sparse priors, in the Fourier transform domain, or in the image domain using fi-

nite differences. In addition, the temporally changing patterns of pixels are similar

in the various coils, since their signals are different due to the coil sensitivity pro-

files. Therefore, we model the parallel dynamic MRI problems as joint temporal

sparsity tasks, and develop a class of algorithms to solve them efficiently. Experi-

ments on parallel dynamic MRI datasets demonstrate that our proposed methods

outperform the state-of-the-art parallel MRI reconstruction algorithms.

2.1 Compressed Sensing in MRI

Information theory is considered founded by Claude Shannon due to his funda-

mental work in this area. One of his main contribution is the Shannon sampling

theory [90]. It expresses the sampling rate must be at least twice the maximum
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frequency present in the signal to reconstruct the original function. This theory

guides the development of almost all types of digital imaging devices, including

the MRI machine. The sampling rate of MRI is considered cannot be improved

based on the sampling theory, since it has already touched the boundary. However,

the theory does not rule out that the sampling rate can be lower than the bound it

provides when the signal is under additional constraint. People did not find any

non-trivial constraint that is general enough for all image data until a recent ex-

periment with surprisingly positive results. Researchers found that the synthetic

image with partial Fourier domain samples can be almost perfectly reconstructed

under total variation regularization. This discover motivates researchers to find a

large category of constraints and establish a new research area, compressed sens-

ing.

The key idea of compressed sensing is exploiting the sparsity of the signal. The

theory states that the sparse signal can be recovered from far fewer samples than

required by the Shannon sampling theorem [90], where the sparse signal means

that the signal has only a few non-zero terms. In a n-dimensional space, a vec-

tor is called k-sparse vector if it has only k non-zero elements. Intuitively, the

sparse signals lay on only a group of orthogonal k-dimensional subspaces embed-

ded in the n-dimensional space. They are definitely more complex than a given

k-dimensional subspace, since the position of the non-zero terms are unknown.

However, they are proved to be much simpler than the full n-dimensional vector

when k � n. The position of one non-zero term can be encoded with O(log(n))

bits and its value can be encoded with O(1) bit. Therefore, a k-sparse vector can be

encoded with length O(k + k log(n)) bit by combining all the position and value

information of the k non-zero terms. This representation is more compact than the

full n-dimensional signal when k is small enough. Although a trivial method is

present to encode k-sparse signal with a compact format, the representation is not
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very interest. This is because that the position of non-zero term is hard to locate.

A exhaust search may be required to fined the non-zero positions. This means

that the cost is not reduced for data acquisition. The theory of compressed sens-

ing is established based on the definition of a group of measurements, which is

used to encode the sparse signal, and reconstruct the sparse signal based on these

measurements.

Assuming we expect to reconstruct a signal z ∈ Rn, and know only a group of

linear measurements y ∈ Rm, where m < n, the linear relation is defined as:

y = Φz, (2.1)

where Φ ∈ Rm×n is the sensing matrix with all the rows being orthonormal with

each other. This is a quite general setup. If the sensing matrix Φ is an identity

matrix, then y is a vector of sampled values of z. This simple setting is the typi-

cal acquisition method for most imaging system, like a digital camera. In the MRI

reconstruction problem, Φ is defined by the Fourier transform. If all the Fourier co-

efficiences, which are called k-space signals are acquired, then the inverse Fourier

transform can be used to reconstruct the MR image. However, the acqusition of the

k-space signal is a sequential process. This means that more k-space signal acqu-

sition requires longer time. Therefore, a simple idea to reduce the MRI acquisition

time is reducing the number of samples in the k-space. The reconstruction prob-

lem based on partial k-space signal is an under-constrained problem with infinite

many different solutions. The image cannot be correctly reconstructed based on

Shannon sampling theorem. The compressed sensing technique solve this under

constrained problem based on additional constraint, the sparseness of the signal.

The sparseness of vector z is defined based on some orthonormal bases. Given

an orthonormal base Ψ, the signal z is expanded into the space defined by Ψ as:
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z = Ψx (2.2)

The signal z is sparse if it has a sparse expansion x, where x can discard the

small coefficients without much perceptual loss. Formally speaking, consider zk

obtained by keeping only the terms corresponding to the k largest terms of the x

in the expansion. By definition, zk = Ψxk, where xk is the vector with all but the

largest k set to zero. This vector xk is strictly sparse. We will call k-sparse for such

objects with at most k nonzero terms. Since Ψ is an orthonormal transform, we

have ‖z− zk‖2 = ‖x− xk‖2, and the signal z is sparse or compressible means the

sorted magnitudes of x decay quickly, then z is well approximated by zk based on

l2 norm. This idea is close related to the image compression methods, like JPEG-

2000. They often compress the images by discarding small coefficients under some

transformation that can sparsify the image data.

Since Ψ is an orthonormal transformation, we have:

y = ΦΨx (2.3)

We can always consider this problem as an optimization problem of x. We further

substitute ΦΨ with one matrix A and the relation between observation and result

becomes:

y = Ax. (2.4)

The theory of compressed sensing is built based on a good property of A, which

is call incoherent. The coherence of the matrix A is defined as:

µ(A) =
√

n max(|A|) (2.5)

where max(|A|) is the maximum value of the absolute value of all the elements

in matrix A. The coherence measures the largest correlation between the vector
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before the transformation x and after the transformation y. The small correlation

means that any terms in y is related to all terms in x with even weights. The inco-

herent transform actually requires that y is a good measurement to all the terms in

vector x instead of partial measurement. In the extreme condition, if A is the iden-

tity matrix, then it is a strong coherent matrix. The only way to correctly recon-

struct x is having all the n measurements. Several types of transformation have the

incoherent property. Especially, the partial Fourier transform used in compressed

sensing is incoherent.

In order to solve the compressed sensing problem, we can minimize the num-

ber of non-zero terms in x while make sure the reconstructed signal x matches the

observation y. This is the following optimization function:

argmin
x
‖x‖0 (2.6)

s.t.Ax = y

where ‖ · ‖0 is the l0-norm, which is the number of non-zero terms. The target of

this function is find a sparse vector that matches the target function best. However,

this straightforward formulation is hard to solve. It is proved to be NP-hard, which

means that it cannot be solved in polynomial time now. All the known solutions

will have the same time complexity as enumerating all the possible combinations

of non-zero terms at most. The computing time is exponentially with the number

of terms in x. Therefore, it is not an efficient method in practice.

One practical method to solve l0-norm regularized optimization problem is re-

lax l0-norm to l1-norm, which is defined as ‖x‖1 = ∑i |xi|. Therefore, the optimiza-

tion problem is relaxed as:
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argmin
x
‖x‖1 (2.7)

s.t.Ax = y

The l1 relaxation is easier to be solved than the original l0 norm regularized prob-

lem, since it is convex. Therefore, this relaxed problem is solvable by various con-

vex optimization algorithms that are all solved in polynomial time. However, can

the solution of the relaxed problem match well with the original result? The fol-

lowing theory of compressed sensing [12] shows that the result will be the same as

that of the original problem with high probability.

Theorem 1. Suppose that the coefficient sequence x is k-sparse. Select m measurements

based on sensing matrix A with all the rows orthonormal with each other. Then if

m ≥ C · µ(A) · k · log n (2.8)

for some positive constant C. The solution to Equation 2.7 is exact with overwhelming

probability.

Generally, the number of measurements required for the reconstruction is re-

lated to the sparseness of the signal and the incoherent property of the sensing

matrix A.

One extension of Theorem 1 is applied the compressed sensing to piece-wise

constant signal. Supposing the signal only changes at sparse location, the finite

difference of the signal is sparse. It can be consider as the sparseness of the gradi-

ent. The signal can be recovered with the following optimization function based

on [11] Corollary 1.4:

argmin
x

∑
i∈(1,...,n−1)

|xi+1 − xi| (2.9)

s.t.Ax = y
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The finite difference in the high dimensional space is the total variation, which is

widely used for MR image reconstruction [59].

Equation 2.7 requires that the signal x exactly matches the observation y. How-

ever, this is a too-strong assumption in most practical problems. The observation y

may also contain noises. The true signal may be just approximately sparse with all

but the largest k terms very small. In order to deal with these kinds of near opti-

mum conditions, we need to introduce the concept of restricted isometry property

(RIP) [12]. For each integer k = 1, 2, . . . , define the isometry constant δk of a matrix

A as the smallest number such that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (2.10)

holds for all k-sparse vectors x. This property means that A approximately pre-

serves the Euclidean length of any k-sparse signals. This implies that any k-sparse

vectors cannot be in the null space of A, as the vectors in the null space are not

possible to be recovered.

The noisy data then can be reconstructed based on the following l1 minimiza-

tion with relaxed constraints:

argmin
x
‖x‖1 (2.11)

s.t.‖Ax− y‖ ≤ ε

where ε bounds the amount of noise in the data.

Theorem 2. Assume that δ2k <
√

2− 1. Then the solution x∗ to Equation 2.11 obeys

‖x∗ − x‖2 ≤ C0 ·
‖x− xk‖1√

k
+ C1 · ε (2.12)

for some constants C0 and C1.
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Figure 2.1: Estimation picture of l2-norm (left) and l1-norm (right) regularized re-
gression.

This theorem is published in [14]. It shows that the reconstructed solution x∗

is close to the original signal x, when the original signal x is close to its k-sparse

approximation xk and the noise in the observation is small. This constrained opti-

mization problem is usually transformed into an unconstrained form of a weighted

summation of the data term and the regularization term:

argmin
x
‖y− Ax‖2

2 + λ‖Ψx‖1 (2.13)

where λ is the sparse coefficient. Theoretically, for any given ε, there is a value

of λ that the solutions of the two problems in equation 2.11 and equation 2.13 are

the same. The only different is how to set these two coefficients in practice. In the

following thesis, we are mostly dealing with the problem with the form similar to

equation 2.13.

One active argument is that what is the different between the problem in equa-

tion 2.13 and the following ridge regression problem:

argmin
x
‖y− Ax‖2

2 + λ‖Ψx‖2 (2.14)

where l2-norm is used instead of l1-norm. The ridge regression has already been
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widely used to reduce the influence of outliers and overcome the overfitting. How-

ever, instead of encourage sparseness, the reconstructed result with l2-norm reg-

ularization is more likely to have all terms as non-zero. This is because of their

different shapes. The l2-norm is an isotropic norm, while the l1-norm is anisotropy.

The anisotropic structure of the l1-norm makes the solution more likely to contain

zero terms. Figure 2.1 provides some insight for the difference between l2- and

l1-norm regularization in 2-dimensional problem. We define the object function as:

(β− β̂)TXTX(β− β̂) (2.15)

where the minimum of the object function is archived at point β̂, and the red curves

are the elliptical contours of this function. The l2- and l1-norm constraints are used

to regularize β in the blue regions, respectively. The l2-norm constraint defines a

circle region, where the probability of having zero terms in the solution is zero.

However, the l1-norm constraint defines a rotated square region, where the con-

tours of the object function touch at a corner, corresponding to a zero coefficient.

Generally, the l1-norm has corners or edges at positions with zeros terms, where

are more likely to be touched by the contours of the object function. Therefore,

the l1-norm constraint will encourage sparseness. The difference highlights the

importance of intrinsic sparse property for the data. When the data is not sparse,

the l1-norm may not be better, or may even be worse than l2-norm regularization.

However, the sparsity-based methods become powerful when the data really has

the sparse property.

In fact, the success of the theory about compressed sensing motivates many re-

search related to utilizing l1-norm constraints for different types of machine learn-

ing and computer vision problems to exploit their sparse properties. However,

most of these work cannot be supported by the current compressed sensing the-

ory. Generally the compressed sensing theory focuses on reducing the acquisition

cost for the compressible signals. Traditionally, the full signal is fist acquired and
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then compressed for storage, like digital image. This is extremely wasteful. Differ-

ently, the compressed sensing method reduces the number of sampling by directly

acquire just the important information. This will benefit the practical problem that

the acquisition has heavy cost, like MRI acquisition. Most sparse-based machine

learning problems deal with tasks other than signal reconstruction. They solve

more general optimization problem with sparse constraints, where the incoherent

property of the sensing matrix is not well studied or the target function is com-

pletely different from what we presented here. This is more related to the general

statistical learning under l1-norm constraint, like lasso (least absolute shrinkage

and selection operator) [103]. The theories for these general problem are more in-

teresting and require further studies.

2.2 Parallel MRI Reconstruction

Multi-coil parallel magnetic resonance imaging (MRI) is a powerful technique in-

troduced [96] to accelerate the image acquisition. The image signals from a patient

are simultaneously collected by a group of spatially distributed coils with different

sensitivity profiles. Each coil, instead of sampling the full k-space, only samples it

partially. Since less sampling is required for each coil, the time of the MRI scanning

is reduced by parallel imaging without compromising the quality. The MRI image

is then reconstructed by combining the information from all the coils based on their

sensitivity profiles. In parallel MRI, it is an ill-posed problem to reconstruct both

the MRI image and the coil sensitivity maps jointly. Therefore, parallel MRI recon-

struction methods, e.g., SMASH [96] and SENSE [86], require estimation of the coil

sensitivity profiles before image reconstruction. These methods often proceed in

two stages: 1) the calibration stage, in which the sensitivity profiles are explicitly

estimated; 2) the reconstruction stage, in which the image is reconstructed based
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Figure 2.2: Sensitivity encoded images from different coils (rows) and frames
(columns).

on the estimated sensitivity maps. A major limitation is that the reconstruction

accuracy is sensitive to the calibration accuracy.

In dynamic multi-coil parallel MRI, the cost of the calibration is amplified, since

the sensitivity profiles of all coils change due to the patient’s movements. Previous

work [7, 77, 78] used SENSE [86] to reconstruct the parallel dynamic MRI images,

where the explicit coil sensitivity estimations are required at each time frame. This

does not only increase the acquisition time, but may also introduce calibration

errors due to the patient’s movements. For example, in cardiac MRI, patients are

required to hold their breath in each scan. The time of the breath holding is limited,

so the calibration and reconstruction scans may be acquired in different respiratory

periods. However, it is unrealistic to expect the patients to hold their breath while

the internal organs of the upper body are at the same position each time. The vary-

ing displacement of the chest will cause a misalignment between the scans during

the calibration and reconstruction stages. Such movement-caused inconsistencies

in the coil sensitivity estimation may result in significant visual artifacts in recon-

structed images [8].

To avoid the calibration step for parallel MRI, some calibrationless methods [18,
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61, 95] have been proposed recently. Instead of reconstructing the original image

directly, they reconstruct the sensitivity encoded images for all the coils. The differ-

ent coils focus on the same anatomical cross-section during the scan. They produce

different images only due to their different sensitivity profiles. Figure 2.2 shows

some sample sensitivity encoded images from different coils. Different regions are

highlighted due to the coil sensitivity profiles, while the intrinsic image informa-

tion remains the same. Therefore, all the sensitivity encoded images should have

high valued responses to sparsifying transforms at the same positions. Majumdar

et al. [61] reconstructed the parallel MRI images based on the fact that the position

of the high valued wavelet transform coefficients in different sensitivity encoded

coil images remain the same. They applied a group sparse constraint to the wavelet

transform coefficients for all the images, and solved the optimization problem with

Majorization-Minimization. Chen et al. [18] utilized the spatial total variation as

the image constraint, and the images from different coils are reconstructed based

on joint total variation. Shin et al. [95] explored the low rank property of the image

blocks in the k-space data, and optimized a structured low-rank matrix completion

problem to generate coil-by-coil sensitivity encoded images.

In the following section, we will propose a new parallel MRI method for dy-

namic images, called calibrationless dynamic MRI with joint temporal sparsity.

Our method is an extension of the temporal sparse SENSE method [78], which ex-

plores the benefit of temporal sparse properties of the MRI sequence. Unlike previ-

ous calibrationless methods, we do not assume any spatial sparse constraints.The

temporal signal contains more redundancy, due to the smoothness of the displace-

ment field. In addition, the signals among different coils are different, due to their

sensitivity profiles. Due to the smoothness of the coil sensitivity maps, the tempo-

ral changing patterns of intensities in the various coil images are similar. Therefore,

we utilize the smoothness of the temporal changes and the correlation of the coil
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images to propose a joint temporal sparse model to reconstruct parallel dynamic

images simultaneously. We present two variants using different temporal sparsi-

fying operators. They are compared to the state-of-the-art parallel dynamic MRI

reconstruction algorithms, and both show improved performance.

2.3 Joint Temporal Sparse MRI Reconstruction

In this section, we first introduce the dynamic MRI reconstruction based on com-

pressed sensing and SENSE [78]. Then we present our calibrationless method,

which reconstructs the image without the coil sensitivity profiles. Finally, the op-

timization algorithms are discussed for two typical temporal sparse constraints in

our framework.

2.3.1 k-t SPARSE-SENSE

The MRI reconstruction techniques have attracted increasing attention in recent

years, due to improved results based on compressed sensing [47, 59]. The key idea

for compressed sensing in MRI, is to explore the resulting image compressibility

due to the image sparseness under certain transforms, e.g., wavelet. By enforcing

these sparse priors, less sampling is required to acquire and reconstruct the MRI

image, which is almost lossless. Compressed sensing is suitable for dynamic MRI

since there is redundant information in the sequential temporal data. This is very

similar to video compression, where the inter-frame encoding is much more effi-

cient than the intra-frame encoding. For example, in k-t SPARSE-SENSE [78], a

temporal Fourier transform is used to sparsify the MRI image sequence.

Let X̄ ∈ RM×N×T denote a dynamic MRI image sequence, where the image

size is M× N, and the number of frames is T. Assuming there are C parallel coils

used in the imaging process, under-sampled k-space data yct are acquired from coil
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c ∈ {1, ..., C} at time t ∈ {1, ..., T}. The problem of reconstructing X̄ is formulated

as:

argmin
X̄
{1

2

C

∑
c=1

T

∑
t=1
‖FctSctX̄t − yct‖2

2 + λ
M

∑
i=1

N

∑
j=1
‖ΦX̄ij‖1} (2.16)

where Fct is the partial Fourier transform, Φ is a temporal sparsifying operator on

each pixel (e.g., temporal Fourier transform), and λ is the sparsity parameter. Be-

fore solving Eq. (1), the coil sensitivity profiles Sct are estimated in the calibration

stage.

2.3.2 Our Approach: Joint Temporal Sparsity

In this section, we present a calibrationless method to reconstruct the image with-

out coil sensitivity estimation. Since the signals on all the coils are acquired from

the same anatomical cross section, they are closely correlated with each other. The

signals have similar sparse properties for all the coils, i.e., the corresponding trans-

form terms are likely to be zeros or not at the same time. Therefore, we propose

joint temporal sparse priors for dynamic MRI reconstruction, to implicitly enforce

the relations among different coils. The coil sensitivity profiles are not required

for our method, which eliminates a significant source of error in the reconstructed

MRI images.

The coil-dependent sensitivity-encoded dynamic images X ∈ RM×N×T×C are

reconstructed in our proposed calibrationless algorithm, instead of the final image

X̄. The reason is that each sensitivity-encoded image Xct = SctX̄t contains its coil

sensitivity profile in itself, and therefore the Sct is not required to be estimated ex-

plicitly to solve the reconstruction. In our approach, the problem of reconstructing

the sensitivity-encoded images X based on the MRI signals yct is formulated as:

argmin
X
{1

2

C

∑
c=1

T

∑
t=1
‖FctXct − yct‖2

2 + λ
M

∑
i=1

N

∑
j=1
‖ΦXij‖2,1} (2.17)
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where ‖ · ‖2,1 is the L2, 1 norm, which regularizes the pixel-by-pixel temporal sparse-

ness jointly among coils. Let Zij = ΦXij be the transformed image data at one pixel

location for all C coils and T frames. The size of matrix Zij is C× B, where B is the

dimensionality of the transform Φ, e.g., the number of coefficients in the temporal

Fourier transform. The L2, 1 norm can be rewritten as:

‖Zij‖2,1 =
B

∑
b=1
‖Zijb‖2 =

B

∑
b=1

(
C

∑
c=1
|Zijcb|2

) 1
2

(2.18)

where the column-wise L2 norm is first applied to the coil dimension of Zij, and

then the row-wise L1 norm is applied to the transform’s dimension. In this way, the

corresponding terms in different coils are likely to be zero or not at the same time.

Various types of sparsifying operators can be used for temporal MRI image recon-

struction since, as we mentioned, the pixel variation over time is smooth. Typical

choices include the temporal Fourier transform and temporal finite differences.

Although the coil sensitivity profiles are removed from the formulation, the

coil images are still correlated with each other, based on joint sparse constraints.

Finally, since these are sensitivity-encoded images they can be combined via a sum

of squares approach [40, 60] to produce the final image.

2.3.3 Optimization Algorithm

There are generally two types of joint sparse priors that can be used, based on

whether the inverse transform is available. The problem is relatively easy when

there is an invertible transform like the temporal Fourier transform, since Xij =

ΦT
F Zij can be represented as a function of Z. Therefore, we rewrite equation 2.17

using the Fourier transform to solve for Z:

argmin
Z
{1

2

C

∑
c=1
‖FcΦT

F Zc − yc‖2
2 + λ

M

∑
i=1

N

∑
j=1
‖Zij‖2,1} (2.19)

This formulation can be directly solved with FISTA [5] which requires solving
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the following subproblem for all pixels in each iteration:

argmin
Zij

{1
2
‖Zij − Z̃ij‖2

2 + λ‖Zij‖2,1} (2.20)

where Z̃ij is known at the beginning of the iteration. This subproblem has the

following analytical solution:

Zijt =


‖Zijt‖2−λ

‖Zijt‖2
Zijt if ‖Zijt‖2 > λ

0 otherwise
(2.21)

The problem is more complex when no invertible transform exists, like the fi-

nite differences. We still use FISTA to solve the problem, while the subproblem is

more complex:

argmin
Xij

{1
2
‖Xij − X̃ij‖2

2 + λ‖ΦDXij‖2,1} (2.22)

where X̃ is known for each iteration. Following previous work [4, 56], we consider

the dual problem for equation 2.22. Let P ∈ RC×(T−1), which satisfies:

C

∑
c=1

P2
ct ≤ 1 ∀t, |Pct| ≤ 1 ∀c, t (2.23)

The relation between X and P is defined by a linear operator L(P)ct = Pct −

Pc(t−1) and the corresponding inverse operator LT(X) = P, where Pct = Xct −

Xct+1. The optimal solution for equation 2.22 is X = X̃ − λL(P∗), based on [4],

where P∗ is the optimal solution for the dual problem minP
1
2‖X̃ − λL(P)‖2

2. This

dual problem can also be solved by FISTA iteratively.

2.4 Experiments

The experiments were conducted on cardiac parallel dynamic MRI dataset. The

cardiac cine MRI recorded the heart motion during a cardiac cycle for assessment

of its function. A Steady State Free Precession (SSFP) pulse sequence with cartesian
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Figure 2.3: The visual results of different methods. The first row is five frames from
the ground truth. The following two rows are generated using zero filled FFT and
k-t SPARSE-SENSE [78]. The final two rows are the results of our calibrationless
method with temporal Fourier transform, and finite differences.

sampling was employed for data acquisition on a 1.5T Siemens scanner equipped

with the standard 32-element matrix coil array.

We first compare our proposed joint temporal sparse method with k-t SPARSE-

SENSE [78], which is a calibration based method. Uniform random sampling

masks were used with reduction factor four to under-sample the original k-space
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data. Figure 2.3 shows the reconstruction results on five time frames of a cardiac

cine MRI sequence. Two types of temporal constraints, Fourier transform and fi-

nite differences, are validated in our framework. Both variants of our methods

show similar visual results as k-t SPARSE-SENSE. This shows the benefit of the

joint sparseness prior for temporal signals. Notice that the coil sensitivity maps,

which were provided for k-t SPARSE-SENSE during the reconstruction, are un-

known to our methods.

We then compared our proposed method to other calibrationless algorithms

quantitatively, including k-t SPARSE-SENSE (publicly available code exists), CaLM

MRI [61], and Joint Total Variation [18] (based on our own implementations). Since

CaLM MRI and Joint Total Variation were designed for static MR image reconstruc-

tion, we simply applied their methods to our dynamic MR images frame by frame.

To reduce randomness, we ran each algorithm 10 times to obtain the average re-

sults. Table 2.1 shows the average SNRs and computing times for all the methods.

The two variants of our proposed method showed consistently better performance

than all the other calibrationless algorithms, due to our novel approach, which is

based on the temporal sparse priors. CaLM MRI [61] and joint total variation [18]

are slower than our temporal sparse constraint approach, since the 2D spatial con-

straints have higher computing cost. Although k-t SPARSE-SENSE utilized addi-

tional coil sensitivity information, it is still slower than our proposed algorithms

due to the inefficient optimization algorithm. Our method does not require coil

calibration. It leads to further reductions in the time and the motion errors in dy-

namic MRI acquisitions.
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Table 2.1: Comparison of Signal-to-Noise Ratio (SNR) and computing times of dif-
ferent calibrationless MRI reconstruction methods

Method SNR (dB) Time (s)

k-t SPARSE-SENSE [78] 22.1 362.2
CaLM MRI [61] 17.8 624.5
Joint Total Variation [18] 19.8 497.0
Proposed with Fourier transform 24.5 160.7
Proposed with finite differences 26.6 281.9

2.5 Conclusions

We have proposed a novel calibrationless algorithm to accelerate the dynamic MRI

reconstructions with parallel imaging and compressed sensing. The main novelty

is in the use of a joint temporal sparsity approach, which does not require one to

estimate the coil calibration. The temporal sparse priors are utilized in a joint way

to exploit both signal sparseness and coil correlation. Two typical temporal sparse

priors, the Fourier transform and the finite differences, were validated with our

proposed joint sparse optimization algorithms. The experiments show that the

proposed method outperforms the state-of-art parallel dynamic MRI reconstruc-

tion algorithms. In addition, the proposed method is better than other calibration-

less algorithms in terms of both accuracy and efficiency and has the potential to

improve the efficiency of clinical MRI.
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Chapter 3

Left Ventricle Motion Analysis using Meshless
Deformable Models

Tagged magnetic resonance imaging (MRI) provides a powerful non-invasive tech-

nique for revealing the motion of the myocardial wall under normal and diseased

conditions of the heart. Importantly, this technique has been implemented on

mice, which have been used extensively for studying human heart diseases. Three-

dimensional motion and strain analysis of the tagged MR images would provide

an import tool for depicting wall motion and contractile function of the heart in

3D fashion. In this section, we propose a framework to reconstruct the left ventric-

ular motion of the mouse heart using tagged MR images. In our framework, the

2D tagging lines are extracted using a Gabor filter bank, and then the contours are

automatically delineated using deformable models. Then, the 3D control points

are generated from the movement of the tagging lines, and a 3D meshless model

is built using modified coherent point drift (CPD) based on the sparse contours.

Finally, the meshless model of the left ventricle is driven to deform by the control

points with our proposed nonlinear Laplacian kernel function. The strain of the my-

ocardial wall is analyzed based on the meshless deformation results. This method

is validated using the in vivo MRI tagging data from the mouse heart. The re-

sults show that the proposed method effectively quantifies the myocardium strain

distribution, which has the potential to detect accurately various kinds of heart

diseases.
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3.1 Introduction

Over the past two decades, experiments utilizing transgenic and knockout mice

have significantly advanced the research on cardiovascular diseases, and these

models have become an indispensable tool to study the cardiovascular diseases

in humans [133]. The majority of such studies have employed ex vivo methods

(e.g. immunostaining) for assessing the results of gene manipulation, and, for the

heart function, catheter-based measurements of left-ventricular (LV) pressure in

isolated Langendorff-perfused hearts are obtained. For the study of ventricular

function in particular, noninvasive imaging offers a powerful non-invasively tool

for making measurements that directly reflect its complex in vivo physiology.

Tagged magnetic resonance imaging (tMRI) has been widely used to analyze

the cardiac wall motion [15]. It has been widely used for the determination of hu-

man heart diseases as well as in experimental heart disease models in mice. It visu-

alizes the in-wall deformation of the myocardium in a noninvasive manner. Con-

ventional MRI can only distinguish different tissues. The myocardial wall shows

similar intensity. Therefore, there are only a few landmarks on the boundary of

the ventricles that can be reliably identified. The MR tagging methods [2, 127] are

introduced to increase the number of landmarks to be detected and tracked over a

cardiac cycle. By applying spatial variance magnetic field in tissue, one can create

line patterns on the MR images. As the tissue moves, the tags will move in the

subsequent images. They directly reflect the motion of the tissue within otherwise

featureless structures such as the myocardial wall. This helps the expert to analyze

the myocardial wall motion and diagnose heart diseases.

A typical cardiac motion analysis system often consist of three parts: heart seg-

mentation, motion tracking and motion analysis. In the first step, both epicardial

and endocardial boundaries are delineated to distinguish myocardium and other
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tissues. After building the inital heart model, its motion is tracked in a cardiac cy-

cle based on the landmark movements. In the final step, the motion properties, like

motion strain, are calculated based on deformable models. These motion proper-

ties show the local dynamic information of the heart. This is a direct evaluation

of the heart conditions. Although there are already several work in this area [109],

cardiac motion analysis is still a hard problem due to the challenging data.

The data acquisition from the mouse heart is usually analyzed based on similar

framework. However, it is more challenging for achieving adequate spatial and

temporal resolutions compared with the human heart. The mouse heart is about

1000th the size of a human heart and beats much faster at 400-600 beats per minute

(bpm) than human heart with 60-80 bpm. Currently available MRI instruments for

mouse imaging operate at a higher magnetic field strength (4.7T or above) than

clinical MRI scanners but is still unable to provide temporal and spatial resolution

in proportion with the mouse heart rate and size. Consequently, a compromise

is obtained between tagging spatial and temporal resolution in order to complete

the study in reasonable amount of time. As shown in Fig. 3.1a, there are five SA

slices which can only cover the equatorial region of the LV. The deformation in the

apex and base regions should be estimated by combining the contour and tagging

line information. Meanwhile, the distances between the tagging lines are small in

Fig. 3.1b. The tagging lines are easily tracked into adjacent ones in the dim images.

In 2D tagged MR images, the tagging lines show the motion of the myocar-

dial wall along the line. Although the tags provide motion information inside

the myocardial wall, they destroy the continuity of the myocardial wall boundary.

The fragmented edges will cause leaking during the segmentation, so it is very

hard to segment tagged MR image directly. During the motion tracking, the more

lines on the heart, the more motion details are shown. This requires higher spatial

resolution for the MR images, since the density of the tags cannot be larger than
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(a) (b)

Figure 3.1: (a) The setting of the MR images with fitted LV model: five SA images
parallel placed with equal displacements, and four LA images taken with 45◦ in
between. (b) Tagged SA image. The image resolution is low, and the tagging lines
are blurred due to the fast heart beating rate.

the number of pixels in this direction. Meanwhile, the displacement of the tissue

should not be larger than the distance between tags in consequence time frame in

order to track the tissue motion. Otherwise, there is ambiguity about which one

the tag will match. Currently, the tagged MRI methods provide only 2-3 tagging

lines on the radial direction of the mouse left ventricle, which is the thickest wall

in the whole heart. It is hard to reconstruct the motion, which is not only geomet-

rically reasonable, but also physically correct. In one 2D slice, there are typically

two images with tagging lines perpendicular to each other. Based on the tagging

line tracking results, the movements of all the intersection points are estimated. In

most 2D cardiac motion analysis problem, the intersection point movement will

directly be used as control point for deformable models.

The problem becomes more complex when we extend the motion modeling to

3D space. The first problem is that most data is not full 3D volume data. The

data often contain only sparse slices with large gaps between them. The MR im-

ages from different directions, i.e., short axis and long axis images, are acquired



30

to improve the resolution on the whole 3D space. Since there is no boundary in-

formation in the gaps between slices, the 3D contour is estimated based on the

incomplete 2D cues. During the motion tracking, the landmarks are hard to define

based on sparse slices. The intersection points defined in 2D slices are not the same

material point in a cardiac cycle. The MR image stay at a fixed slice during the ac-

quisition. During the heart movement, the material points will move into and out

of the given slice. This means that we cannot capture movement of any particular

material point based on only sparse slices. The displacements of control points

are often generated based on interpolation. The interpolation step will smooth the

model displacement and remove the motion details.

In view of these problem, we propose a complete framework for mouse cardiac

motion analysis based on tagged MR images. The extended active contour models

are used to extract the contours and tags of the heart in 2D. The 3D cardiac model

is built based on coherent point drift (CPD) [71]. The landmark points are esti-

mated based on our method with minimum interpolation. We use physical based

meshless deformable models to track the 3D left ventricle motion. The system is

applied to mouse data and shows promising result.

3.2 Related Work

In recent studies, as the increasing of human MRI data, many methods have been

developed to track and measure the cardiac motion [109]. There are two main

categories. The first category aims to track the model motion based on feature ex-

traction in spatial domain. The tagging lines and their intersections were usually

detected first. Then the myocardial motion was estimated based on their displace-

ments. [118] used the 2D active contour model to track the tagging lines semiau-

tomatically. Then, the LV was represented as a volumetric deformable model, and
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driven by the displacement of the tag intersections. [21] employed the Gabor filter

banks to detect the local tag intersections, and robust point matching to sparsely

track the myocardial motion. The whole model was then deformable based on

the intersection point tracking results. When the whole 3D volume sequence of

the cardiac motion is available, nonrigid registration method [93] is used to track

the heart motion. However, this method cannot be applied to the data with only

sparse slices. Optical flow [30] is also used to track the heart motion. The intensity

of each pixel will change due to the decay of the magnetic field. This violates the

intensity constancy assumption of optical flow. Various methods [30] proposed to

estimate the change of the intensity and match the pixels with time-varying inten-

sity. The methods in the second category obtains the deformation field based on

the frequency domain information. HARP(Harmonic Phase) [76] analyzed the im-

age in the frequency domain. The tagging technique gave rise to spectral peaks in

k-space. The tagging motions were extracted from the inverse Fourier transform

of a single peak. Other methods used local sine wave modeling [1] or Gabor filter

banks [21] to analyze the image in the frequency domain. These methods cannot

handle large tagging movement, and estimate only in-plane motion. Additional

information was needed to reconstruct 3D motion with only sparse tagged MR

images.

Several methods developed for human data have been applied to murine car-

diac motion analysis. The characterization of the murine cardiac mechanical func-

tion in normal, infarcted, or genetically engineered mice or rat model subjected

to stem cell intervention were reported in [57, 119, 133], and 3D rendering of LV

deformation was attempted. For example, recently [131] represented the 3D my-

ocardial deformation based on the movement of material points near the sparse SA

slices. By decomposing the heart movement in long-axis (LA) and SA directions,

[23] reconstructed the motion of the whole heart based on the combination of the
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displacement of intersections in all these components.

Meshless deformable models are first proposed as a substitute to the mesh-

based finite element models. Comparing to mesh-based models, meshless mod-

els allow larger deformation. No local connection information is recorded in the

model. The material points can move far away from their original neighbors. The

new neighbors are defined dynamically based on their distances. The meshless

models are first used to simulate the fluid as smoothed-particle hydrodynamics

(SPH) [38]. Then the methods are extended to deal with object with large deforma-

tion [72]. A more extensive introduction for meshless model can be find in [6, 55].

Wong et al. [113] use meshless model to simulate the heart motion based on cardiac

physiome model. They introduce the pacemaker cells to generate action potentials

at the beginning of a cardiac cycle. The heart deforms due to the stress generated

from the electric signal from pacemaker cells. The personalize electromechanical

properties of the heart is required for the whole model. In our work, we estimate

the heart motion based on solely the MRI data, so no additional electric model is

needed.

3.3 Cardiac Image Analysis System

We first give a brief overview of our cardiac motion analysis system based on

meshless deformable models. Similar to the general framework, we first generate

the initial 3D left ventricle model from a group of cine MR images from different

directions. We delineate the left ventricle contours in each 2D image, and then

project them to 3D space based on the position of each slice in physical space. A

standard left ventricle model is deformed with coherent point drift method to fit

these 2D contour lines. In this way, we produce a 3D left ventricle model that does
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not only match the 2D contour lines, but is also similar to the standard left ventri-

cle model. Then, we deform it with our meshless deformable models. The initial

model is represented as a meshless volume. It deforms based on the motion se-

quences of landmarks calculated based on the tagging line movements in a cardiac

cycle. Finally, we calculate the strain on each material point based on moving least

square.

3.3.1 Initial Model Reconstruction

Left ventricle is first segmented in each 2D image [107]. On the short axis im-

ages, left ventricle is normal a ring shape. The blood pool is inside the endocar-

dial boundary and left ventricle muscle is between the epicardial and endocardial

boundaries. We first segment the blood pool with graph cut. This will produce

the endocardial boundary. Then the ring area close to the blood pool is consid-

ered as left ventricle area, while the area far away is background. We apply graph

cut again to delineate the epicardial boundary. Graph cut will often produce non-

smooth left ventricle boundary due to its connection to the right ventricle and pap-

illary muscles. We use active contour models to refine the boundaries. On the long

axis images, left ventricle shows a U-shape with its open to the left atrium or aorta.

There are valves between them, while they are often unclear due to their thin struc-

ture and fast moving. Similar to short axis image, we use graph cut to segment the

left ventricle and active contour models to refine the boundary. The segmentation

results are combined together to reconstruct the 3D left ventricle model, and they

will also be used for the tagging line tracking on 2D images.

The DICOM information of each MR image contains the position of this image

slice in physical space. We use this to project the boundaries back to the 3D space.

These 2D boundaries should lie on the surface of the 3D left ventricle model. This
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means that the short axis and long axis boundaries should always have intersec-

tion points. However, they often do not intersect with each other due to the seg-

mentation errors. We reconstruct the 3D surface model by utilizing a generic left

ventricle model. The generic left ventricle model is built from MR images obtained

from a healthy volunteer. The heart is manually segmented and validated by ex-

perts. This provide a sample for the standard left ventricle shape. We use CPD [71]

to deform the generic model to fit all the 2D boundaries generated above. The de-

formed model will be still similar to a generic model. Meanwhile, it matches the

boundaries in each 2D spaces. On the point where different slices provide incon-

sistent cues, the result will balance their effect. The 3D model is only needed in the

initial time frame. This initial model will deform to the following frames based on

the landmark motions.

3.3.2 Landmark motion tracking

The landmark points are extracted based on the movements of tagging lines in

each MR images. We will first track the tagging lines in each image separately.

Then we interpolate them to generate the 3D motion on landmark points.

Tagging Line Tracking

The tagging lines are generated by a special pulse sequence of initial magnetic

field. At the beginning, they are parallel line pattern along one direction inside

the image plane. The tags will move with the cardiac tissues and show the muscle

movement. We track the tagging lines in each image separately. Each tagging

line is defined by a spline. It tracks the location with lowest intensity to follow

the tagging line position. Similar to active contour models, the smoothness of the

spline is constrained by its first and second derivatives. Meanwhile, we add a

repulsive force between tagging lines, since two tags will not intersect with each
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other.

Control Point Generation

After tracking the 2D tagging lines from tagged MR images, we extract 3D con-

trol points from them to drive deformable models. The material points starting

at the intersections of the initial SA images are used as the control points in [131].

They propose an iterative interpolation method to linearly approximate the ma-

terial point displacements from the initial intersections. However, this intuitive

method makes the problem harder. The material points on the intersections will

move out of the initial slice in the consequence slices. Considering all the material

points that projected to the same intersection on the SA at initial frame, they may

have very different displacements on SA direction due to contracting and twisting

motion of the heart. Therefore, the new position of an intersection point cannot be

estimated based on the corresponding intersection point alone. Interpolations are

needed in all three directions. In contrast to [131], we map the intersections at each

frame back to the initial frame to utilize the special property of tagging planes.

The tagging planes are created at initial frame as a flat plane, then bent during

the LV deformation. The points on the intersections of tagging lines are always on

the intersections of corresponding tagging planes. Due to the flat property of the

tagging planes at initial frame, the SA projections of these points are always the in-

tersections at initial frame. Therefore, only the LA position interpolation is needed

when it is mapped back to the initial frame. This will improve the accuracy while

accelerating the process.
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(a) Short axis image (b) Long axis image (c) 3D embedded view

Figure 3.2: The mouse left ventricle has a ring shape on the short-axis images (a)
and a U shape on the long-axis images (b). By mapping them to the 3D anatomic
space, they intersect with the reconstructed left ventricle model exactly on the left
ventricle boundaries (c).

3.4 Initial Model Reconstruction

Most of the previous work focuses on left ventricle reconstruction based on short-

axis [84, 87, 99]. Since the short-axis images are parallel to each other, they are

usually combined to a 3D volume. However, due to the limited number of slices,

the inter-slice resolution is usually much lower than intra-slice directions. The dis-

tance between slices is about 10 times the pixel distance inside each slice. During

the MR image acquisition, the long-axis images usually are first generated to lo-

calize the heart position, while they are rarely used for the segmentation for the

left ventricle [24, 106]. These images have higher resolution in the long axis, which

can help overcome the low inter-slice resolution on short-axis images. Therefore,

we utilize both short- and long-axis MR images simultaneously in this work for

3D left ventricle reconstruction. Each image at different position provides differ-

ent contours of the model. Meanwhile, the consistency among them improves the

robustness of the reconstruction.

The short- and long-axis images are instances of the same volume of different

orientations. Fradkin et al. [37] utilized their consistency to infer the short-axis

image position based on the long-axis segmentation result. However, the spatial
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relationship is only used for initialization. The short-axis contours are then de-

formed independently. The contours after deformation may be inconsistent with

the long-axis ones. Koikkalainen et al. [53] reconstructed a 3D heart model based

on parallel MR images from the short and long axes. Different from usual long-axis

slices, which are radially placed, they acquired parallel images in the long axis. The

slices with different orientations are considered as volume data of the same region

with different resolutions. A reference model is registered with them simultane-

ously to overcome the insufficient sampling for each single volume data. Since

most long-axis images are not parallel in MR acquisition, their method will require

on additional protocol for heart reconstruction. van Assen et al. [108] proposed a

left ventricle reconstruction algorithm based on multiple shape priors. Based on

active shape models (ASMs), they first build a point distribution model from train-

ing shapes, and then fit this model to all the 2D images to refine the segmentation.

The images generate forces on the intersection of the 3D model with the corre-

sponding 2D plans. Similarly, sparse shape composition [128] is used to represent

shape models based on sparse reconstruction. The methods, like ASM, represent

the shapes based on a large number of training samples, but the training shapes

are not always available in clinical applications.

To address the limitations in previous efforts to incorporate 2D slices with ar-

bitrary orientations for 3D left ventricle reconstruction, we introduce a new recon-

struction framework. The main contributions of the work are as follows. First, all

the slices are segmented simultaneously with a 3D left ventricle model. The 2D

contours are just the projection of the model on the corresponding images, so we

handle the inconsistency among all the contours, i.e., the short- and long-axis con-

tours are not exactly intersected. Second, there are no restrictions on the position

and orientation of each slice. Any additional slice will help improve the segmen-

tation accuracy and robustness. Third, only an elastic shape prior [19] is required
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in our framework. The reference shape can be generated with one sample data or

built manually by expert without any sample. Different from the methods based

on multiple shape priors, which ensure that the shape follows a point distribu-

tion model, we constrain the non-rigid deformation of the reference shape. The

3D shape regularization term is integrated into all the 2D image segmentations to

form a unified problem, which is efficiently solved by our proposed alternating

optimization algorithm.

3.4.1 Model Reconstruction based on Sparse MR Images with Arbitrary Orien-

tations

Given a group of 2D cardiac MR images Ii, which have known transformations Ti

to the 3D anatomical coordinate system, we expect to reconstruct a 3D left ventri-

cle shape model T(Sre f ), where Sre f is a reference left ventricle model and T is a

non-rigid transformation. The projection of the reconstructed model T(Sre f ) onto

image Ii is defined as Pi(T(Sre f )). It should match with the left ventricle area in

the image. The fitness of the model to each image Ii is measured by the energy

function Eimg. Since the slices are sparse in the 3D volume, the reconstruction

problem is under constrained with only the image information. Therefore, we fur-

ther assume the model is deformed from the reference model Sre f with a smooth

non-rigid deformation T. The model reconstruction is formulated as the following

optimization problem:

min
T
{∑

i
Eimg(Pi(T(Sre f )), Ii) + γR(T)} (3.1)

where Eimg is the energy term for the fitness to each image Ii, R(T) is the regular-

ization term for the deformation T and γ is a trade-off parameter.

The image energy term Eimg is defined based on both the shape and appearance

information. The conventional active contour models focus only on the boundaries
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Figure 3.3: The pipeline of our 3D left ventricle system. The 3D surface model is
deformed from a reference model to fit 2D contours, while the 2D contours is con-
strained by both image cues and 3D model prior. They are updated alternatingly
to reconstruct the left ventricle model.

of the models. They deform the contours to fit locations that have high probabili-

ties to be boundaries. In our model, we also consider the appearance of the interior

region. The appearance statistics are adaptively learned during the deformation.

The model is updated based not only on the edge information, but also the region

statistics to ensure the appearance consistency of the new territory. The region-

based deformable model is defined based on free form deformation. Instead of

deformable contours, the whole interior region is deformed to optimize both the

edge and the region energy function:

Eimg = Eedg + µEreg (3.2)

where Eedg is the edge energy term, Ereg is the region energy term and µ is a con-

stant that balances the contributions from the two terms. In our formulation,

we are able to omit the model smoothness term in 2D images since the whole

model smoothness is regularized by the smooth non-rigid transformation of the

3D model.
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The model is attracted to edge feature with high image gradient via the edge

energy term Eedg. A distance map to the edge feature is built based on gradient vec-

tor field [115]. The edge force moves the contour to the minimum of the distance

map. Therefore, the edge energy term Eedg is defined as:

Eedg =
∫

C
Φ(x)dx (3.3)

where C is the contour in a 2D image and Φ is the distance map function.

The probability of each pixel belonging to the model is defined based on the

interior intensity distribution from last iteration. The region energy term deform

the model toward areas with high probability. It is defined as:

Ereg =
∫

R
log P(x)dx (3.4)

where R is the interior region of the contour and P is the probability of each pixel

as the interior region of the model.

The 2D contours are projections of one 3D left ventricle model to the corre-

sponding images. Therefore, different from the 2D deformation regularization

term in previous segmentation algorithms, we employ a 3D shape prior to con-

strain all the 2D segmentations simultaneously. The 3D model is defined based on

the deformation of a reference left ventricle model T(Sre f ). We regularize the non-

rigid deformation T to ensure that the new model is still similar to the reference

one. The smoothness of transformation T is defined as:

R(T) =
∫

R3

T̃(x̃)
G̃(x̃)

dx̃ (3.5)

where G is Gaussian kernel function and G̃ is its Fourier transform. Function T̃

indicates the Fourier transform of the deformation function T and x̃ is a frequency

domain variable. Gaussian kernel is used as a low-pass filter to regularize the high
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Algorithm 1 3D left ventricle reconstruction

Input: The sparse images Ii with arbitrary orientation, and the reference left
ventricle model Sre f
Output: The data-specific 3D left ventricle model
Initialize the 2D contours Ci with graph cuts
repeat

Transform the contours Ci to 3D anatomic space
Deform the 3D reference model Sre f based on (3.7)
Find the model-plane intersections Pi(T(Sre f ))
Deform the contours Ci based on (3.8)

until Ci and T converge.

frequency part of the deformation and enforce the smoothness.

3.4.2 Deformable Model Implementations

The image forces are only defined on the intersection of the model in each plane.

They are not applied directly to the vertices of the model. Therefore, we intro-

duce the contours of the left ventricle on the images Ci and reformulate the energy

function as:

min
Ci,T
{∑

i
[Eimg(Ci, Ii) + λD(Ci, Pi(T(Sre f )))] + γR(T)} (3.6)

where D is the distance between the contour Ci and the projection of the left ven-

tricle model Pi(T(Sre f )). In this formulation, instead of deforming the reference

model directly, the image forces only deform the 2D contours. Therefore, the whole

energy function is separated into two parts. The 2D contours and the 3D model can

be optimized alternatingly with Algorithm 1.

We initialize the 2D segmentation via graph cuts [9, 10]. It is very effective to

generate a coarse segmentation, while it requires lots of interaction to refine the re-

sult. In our work, we use a two-stage segmentation for short-axis images based on

its donut shape [107]. We use only a few strokes to indicate the blood pool. Then
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the left ventricle is automatically segmented with no further interaction. Further-

more, the long-axis images are also segmented via graph cuts, which initialized

based on its relative position with short-axis images. The regional segmentation

results on all the images are then translated into boundary ones and refined by

Metamorphs [107].

The initial contours are first transformed to the 3D anatomic space. Then as-

suming the contours Ci are fixed, the reference left ventricle model is deformed to

the contours. The energy function is reduced to:

min
T
{λ ∑

i
D(Ci, Pi(T(Sre f ))) + γR(T)} (3.7)

We use coherent point drift [71] to optimize (3.7). The result model maintains

the shape of the reference model, and balances the differences among the contours

in different slices.

The deformed model T(Sre f ) is then projected to the 2D spaces. We use them

as shape priors and optimize the contours Ci. In this step, the energy function is

independent for each slice:

min
Ci
{Eimg(Ci, Ii) + λD(Ci, Pi(T(Sre f )))} (3.8)

where the distance function D are defined by the distance maps of the model pro-

jection on the slices. This will make the contours more consistent with the left

ventricle model.

During the alternating optimization, the parameter λ will increase to further

enforce the consistency between the left ventricle model and all the contours. When

λ→ ∞, the alternating algorithm (3.6) will converge to (3.1).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: (a) The initial label for graph cuts, (e) the blood pool segmentation
result, (b, f) the left ventricle region (green) from graph cuts on both short- and
long-axis images, (c, g) the boundaries based on graph cuts and (d, h) the finial
result based on our framework.

(a) Initial contours (b) Result contours (c) Result model

Figure 3.5: (a) The initial 2D contours mapped onto 3D anatomic space, (b) the
result contours after deformation based on our framework and (c) the resulted 3D
model embedded onto a long-axis image.
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3.4.3 Evaluation

We test our reconstruction algorithm on mouse cardiac MR images. Sparse short-

and long-axis images are acquired from the C57BL/6 mice. For each data, there

are four to six short-axis slices that are parallel to each other with equal intervals,

and four long-axis slices that are radially spaced every 45◦. Their positions in the

anatomic space are recorded during the acquisition.

We use a few strokes inside and outside the blood pool area, as shown in

Fig. 3.4a, to initialize the segmentation, and get the blood pool area in Fig. 3.4e.

This step is relatively stable due to the high intensity difference between the blood

and heart wall. Then the region just outside the blood pool is set as the left ven-

tricle. Graph cuts is used to produce a rough segmentation of the left ventricle on

both short- and long-axis images. The result of this step often leaks out to other tis-

sues due to the similar intensity among them (Fig. 3.4b, f). It consequently affects

the corresponding boundaries refined by Metamorphs, which cannot correct the

region with heavy leak (Fig. 3.4c, g). Our proposed deformable model overcome

these problems with 3D shape constraints. It achieves better segmentation result

in 2D images (Fig. 3.4d, h).

We apply our alternating reconstruction algorithm to generate 3D left ventricle

model based on the initial 2D contours. It is noticeable in Fig. 3.5a that the contours

from the short- and long-axis images do not intersect with each other based on

only 2D information. Our model introduces a 3D shape model to regularize all the

contours. It improves the the 2D segmentation results on different slices (Fig. 3.4d,

h). Meanwhile, different from the initial contours projected into anatomic space,

the our results balance their differences and make them consistent with each other

(Fig. 3.5b). The 3D left ventricle model is also constructed based on our model. It

is embedded into a long axis image in Fig. 3.5c. The model is smooth and match

left ventricle wall in the image.
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Our proposed framework for 3D left ventricle reconstruction uses sparse short-

and long-axis images based on only one shape prior. Less MR images are required

to acquire by using our method. This is not only very important for mouse car-

diac imaging, but also desired for human data acquisition, since it will reduce the

potential risk of strong magnetic field and improve the patient’s comfort. In the

future, we will test our framework on human cardiac MR data. Meanwhile, we

will introduce a left ventricle detection module to substitute graph cuts-based ini-

tialization and build a fully automatic system.

3.5 Landmark motion tracking

Tagged MRI is widely used in clinical diagnosis to locate regions of dysfunction

in the left ventricle wall [15]. It generates an MRI-visible tagging pattern on the

cardiac muscle. The tagging lines deform with the tissue in vivo and provide kine-

matic information of the heart wall in a cardiac cycle. The motion of the material

points can be reconstructed based on the combination of tag motion information

from many images generated at different locations and different time points. This

can be further used to estimate the mechanic properties of the cardiac muscle. As

the first step of motion estimation, tagging line tracking plays a crucial role in im-

proving accuracy of the cardiac motion analysis.

There have been many methods proposed for tagged MR image analysis [109].

MRI tagging produces line pattern with low image intensity on the MR images.

Several methods have been proposed to extract the tagging lines based on low in-

tensity. The deformable models [22, 82] are used to directly model the deformation

of the tagging lines. They track the low intensity regions, and maintain the tagging

line smoothness. Other methods estimate dense displacement field on the whole



46

image. Conventionally, it can be tracked with optical flow technique, while addi-

tional brightness adjusting is required to overcome the sharpness reducing of the

MR image [30, 41]. The free form deformation is also used to find a deformation

field based on cross-correlation between image patches [17], which is less sensitive

to the brightness change.

The tagging line structure will produce peaks around the harmonic frequencies

of the tag. The traditional MR image usually has only one peak in the frequency

domain, which is near zero. The tagging pattern produces additional peaks at high

frequencies. Harmonic phase (HARP) [75, 76] band-pass filters the images around

the first harmonic. This intrinsically implies that the image can be modeled by

sine waves locally at each pixel, whose frequency is similar to that of the initial

tags. Since the frequencies and the orientations of the sine waves vary at differ-

ent pixels, a relatively wide band-pass filter is usually used in HARP. Arts et al.

proposed a local sine wave model (SinMod) [1] to estimate the frequency of each

pixel on the direction perpendicular to the tags. This improves the robustness of

the phase map under large deformation which comes along with large change of

the frequency. Gabor filters are used to further estimate the orientation of the local

sine wave [21]. A Gabor filter bank is a set of filters with parameters corresponding

to various frequencies and orientations. By finding the optimized parameters that

maximize filter responses, it improves the stability of the tagging line extraction

under large deformation. However, the frequency and orientation are optimized

independently at each pixel in [21]. As a result, the spatial discontinuity will occur

in their estimation. Consequently, this will cause errors in displacement calcula-

tion.

In order to overcome this problem, we propose a new type of deformable

models, which we term Gabor deformable models, to improve the results ob-

tained by the local Gabor filters. Compared to HARP, which provides only one
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best-estimated phase at each point, Gabor filters can provide various responses at

one point based on their frequencies. The stronger response means that the fil-

ter matches better with the local sine wave. Meanwhile, the sine waves change

smoothly on continuous tissues, so do the frequencies of their corresponding Ga-

bor filters. This enables our deformable models to select the best local Gabor filter

based on not only its response, but also its continuity. The smoothly changing Ga-

bor filters further help to improve the smoothness of the phases. In addition, the

frequency of a local Gabor filter can be used to estimate the period of the tagging

patterns. This further constrains the distance between the tagging lines. Based

on above-mentioned properties, we design our novel Gabor deformable models to

track the tagging line motion on cardiac MR images. Extensive experiments have

been designed to evaluate this method.

3.5.1 Tagging Line with Gabor Deformable Models

In this section, we will first introduce the Gabor filter and some of its promising

properties. Then, we will present a tagging line tracking based on deformable

models and extend it with Gabor filter.

Gabor Filter

Daugman first introduced Gabor filter to image analysis [27]. He found that the

cells in the mammalian visual system can be modeled by Gabor functions. This

discovery encourages more research on applying Gabor filter to various computer

vision applications, like texture segmentation [112] and image enhancing [117].

Gabor filter is a product of an elliptical Gaussian kernel and a sinusoidal plan

wave in the spatial domain. It can be written as

h(x, y) = s(x, y)g(x, y),
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(a) (b) (c) (d)

Figure 3.6: A sample Gabor filter: (a) the real part of sinusoid, (b) the Gaussian
envelope, (c) the real part of the Gabor function in space domain and (d) the mag-
nitude of the Gabor filter in the frequency domain.

where g(x, y) is a Gaussian function in Fig. 3.6a, known as envelope, s(x, y) is

a complex sinusoidal function in Fig. 3.6b, known as carrier. The 2D Gaussian

function is defined as

g(x, y) =
1

2πσxσy
e
−
(

x2

σ2
x
+

y2

σ2
y

)
,

where σx and σy are the sharpness of the Gaussian function. The complex sinu-

soidal function is defined as

s(x, y) = e−j2π(ux+vy),

where (u, v) is the frequency of the 2D complex sinusoid. The complex sinusoid

only affects the argument of the filter. The magnitude of the filter is solely based

on the Gaussian function, which monotonously decreases from the center. Mean-

while, the magnitude of the Gabor filter in frequency domain is also a Gaussian

function centering at the frequency (u, v) in Fig. 3.6d. This makes it satisfy the

minimum space-bandwidth product per the uncertainty principle. It means that

the Gabor filter achieves the best balance between the spatial and frequent domain

support.

By adjusting the frequency and orientation of the Gabor filter, we can produce

different responses at the same point. The strength of the response depends on

the local tagging patterns. Stronger response means that the filter better fits the

intrinsic frequency at this point. The tagging patterns usually vary on the whole
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image, so do the Gabor filters with the optimized responses. Therefore, it is not

the best choice to apply a global filter on the whole image, like HARP. In order

to overcome the inconsistency of the frequency among pixels, a larger band-pass

filter is designed in HARP to acquire the entire signal inside a reasonable frequency

region. However, this introduces more noise into the phase estimation. Differently,

the Gabor filter estimates the local frequency, which allows us to choose best filter

at each point.

Previous work: Intensity based Deformable Models

Deformable models have been used in tagging line tracking. The tagging lines

have low intensity in the MR images. This line pattern can be tracked by a set of

deformable curves. Suppose that there are m horizontal tagging lines on a cardiac

image. The vertical tagging lines can be processed by rotating the image. The

tagging lines are modeled by a set of splines. Each of them has n control points that

are evenly sampled along the horizontal direction. For a control point (xi
j, yi

j), the

horizontal coordinate xi
j is fixed and only the vertical coordinate yi

j moves during

the deformation. The tagging lines deform based on the image information and

the smoothness constraints. They are optimized by a combined energy function

with image term EI and smoothness term ES. The image term EI minimizes the

intensities on all the control points, which is defined as

EI =
m,n

∑
i=1,j=1

I(xi
j, yi

j)
2
.

The smoothness term ES regularizes the shape of the tagging lines by minimiz-

ing the first and second order derivatives of the splines. It is defined as

ES = α
m,n

∑
i=1,j=2

‖yi
j − yi

j−1‖2 + β
m,n−1

∑
i=1,j=2

‖yi
j−1 − 2yi

j + yi
j+1‖2,

where α and β control the weights of the first and second order terms.
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The intensity-based deformable models are sensitive to image noise. The track-

ing result may vibrate on a straight tagging line or even drift to its neighbors due to

large deformation. Therefore, we integrate Gabor filter into the deformable models

to improve the robustness of tagging line detection and constrain the gaps between

tagging lines.

Proposed New Method: Gabor Deformable Models

Previous work used the best Gabor filters for each pixel to estimate their phases [21].

They produced a phase map similar to that from HARP. The points with a specific

phase form the tagging lines. However, the lines generated based the above phase

map often have branches due to the image noise. To deal with this problem, we

employ a deformable model to optimize both the responses and the continuity of

the Gabor filters along the tagging lines. On each control point, the Gabor filter is

selected based on the phase and the magnitude of the response. This changes the

image term EI to

EI =
m,n

∑
i=1,j=1

{‖ arg(h(xi
j, yi

j, ui
j, vi

j))− φ0‖2 + ‖h(xi
j, yi

j, ui
j, vi

j)‖2},

where arg(h(·)) is the phase of Gabor filter response, φ0 is the desired phase, and

‖h(·)‖ is the strength of the response. The response depends on both the position

(xi
j, yi

j) and the Gabor filter frequency (ui
j, vi

j).

In addition to the point-wise response, the frequency of the Gabor filter is also

required to change smoothly during the deformation. It is regularized in a similar

way as the spline. The smoothness of the Gabor filter is defined as

ES =α
m,n

∑
i=1,j=1

{‖ui
j − ui

j−1‖2 + ‖vi
j − vi

j−1‖2}

+ β
m,n

∑
i=1,j=1

{‖ui
j−1 − 2ui

j + ui
j+1‖2 + ‖vi

j−1 − 2vi
j + vi

j+1‖2}.
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The frequency of the chosen Gabor filter is close to the frequency of the tagging

pattern. It is the reciprocal of the distance between tagging lines. The higher the

frequency means that the tagging lines are closer to each other, and the lower the

frequency means that the tagging lines are further away from each other. We use

the estimated frequency to constrain the distances between tagging lines. This

introduces another term ED for tagging line gaps as

ED =
m,n

∑
i=1,j=1

‖(yi
j − yi−1

j )− 1
vi

j
‖2,

where the vertical distance ‖yi
j− yi−1

j ‖ should be similar to the estimation from the

vertical frequency vi
j. This effectively prevents two nearby splines sticking with

each other. The combined energy with all above-mentioned terms can be defined

as

E = EI + ES + ED.

We minimize this energy function with block coordinate gradient descent (BCGD).

The variables are separated into two blocks. The frequencies of the Gabor filters

are solved based on fixed tagging line position. Then, we optimize the position

of the tagging line based on fixed Gabor filter. Each iteration consists of making a

gradient step with respect to each block in a cyclic order.

Initialization: The deformable models need a reasonable initialization. For the

first frame, we assume that they only have small displacement from the initial tags

generated from the magnetic field, which are a group of straight lines with equa-

tion distance in between. The gap between the lines is estimated by the reciprocal

of the first harmonic frequency peak. In the following frames, the tagging lines are

initialized based on those in the previous frame.
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(a) Cine image (b) Tagged image (c) Frequency (d) Initial tags

Figure 3.7: The left ventricle is segmented on cine MR image. (a) and (b) are seg-
mentation result on the first frame. The tagging lines on the first frame are then
initialized based on the first harmonic peak after Fourier transform.

Figure 3.8: The tagging line extraction result on both horizontal and vertical tagged
MR images in a cardiac cycle.

3.5.2 Evaluation

We applied our proposed method to track the LV motion of the mouse heart [131].

We carried out the experiments on 19 groups of short-axis MR image sequences

in a cardiac cycle. They were acquired from different parts of the heart on three

C57BL/6 mouse subjects. All the images were generated on a 4.7T Varian INOVA

system. One group of image sequences is acquired at the same position. It contains

one cine MR sequence and two tagged MR sequences with tagging lines perpen-

dicular to each other. The image size were all 256× 256, and the numbers of time

frames varied from 11 to 15.

The left ventricle is manually segmented by experts. Then based on the first
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harmonic peak in Fig. 3.7c, the tagging line are initialized on the first frame in

Fig. 3.7d. The Gabor filter-based tracking algorithm is used to tagging line motion

in the whole cardiac MR sequence. The tracking result is shown in Fig. 3.8. The

tagging lines deforms based on the local Gabor filters inside the left ventricle wall.

They maintain well both the spatial and temporal continuity following the heart

motion.

A novel method is present here to extract the tagging line motion from tagged

cardiac MR images. The Gabor filter is utilized to estimate the local displacement

as well as tagging frequency. The continuity is enforced on both the displacement

field and the Gabor filter. This enables us to estimate more accurately the tagging

line motion. In the future, we will extend the tagging line tracking to the dense

displacement field estimation. This will introduce more 2D constraints on the dis-

placement. We also expect to add the influence of the adjacent slices to the model

to reconstruct a 3D deformation model.

3.6 Meshless Deformable Models

The meshless models are used to deform the initial model based on the control

points. They are widely used in problems with large deformations and nonlin-

ear material behavior. Different from the traditional mesh-based approaches, the

meshless model abandons the grid or mesh structures, and uses only the particles

to represent the model [69]. Therefore, the complex and sensitive mesh generation

process is eliminated.

3.6.1 Meshless volume representation

The meshless representation is used in our left ventricle model. In a discrete de-

formable model, the displacements are defined on all the nodes distributed in the
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(b) Meshless model of grid

Figure 3.9: The point set is represented as (a) mesh and (b) meshless models. The
neighborhood is defined by the connectivity in mesh model, and the distance in
meshless one.

models. The displacements of all the points are estimated based on the nodes. For

example, in finite element method, the displacement of a point is defined by ele-

ment contains it. In meshless models, the displacement of a point is defined based

on its neighborhood. Given a point i and its neighbor j, we use a polynomial kernel

to compute the weight connecting them:

wij = W(|vj − vi|, hi) (3.9)

W(r, h) =


315

64πh9 (h2 − r2)3 if r < h

0 otherwise.
(3.10)

where r is the distance from point j to i, and h is the support of the sphere ker-

nel. The influence between point i and j becomes weaker as the distance is larger,

and becomes zero when the distance is larger than hi. Therefore, the neighbors

of a point i are all the points within distance hi (Fig.3.9b). However, in the mesh

structure (Fig.3.9a), a degenerated mesh may have neighbor points with very large

distance.

Consider a 3D meshless model with material points as x = (x, y, z)T. Each

point has a displacement u = (u, v, w)T. The coordinates of a point before and
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after the deformation are x and x + u, respectively. In order to computer strain,

stress and elastic force on each point, we first need to calculate the gradient of

the displacement field ∇u. We use moving least square algorithm (MLSA) with

a linear basis to estimate the deformations. Let us consider the x-component u of

the displacement field u = (u, v, w)T, and the value ui at node i. Then, u(x) can be

defined as:

u(x) =
m

∑
k=1

pk(x)ak(x) = pT(x)a(x) (3.11)

where p(x) is basis functions, and m is the number of bases. We use linear basis

function in our work, while high order terms are also allowed in the model. a(x) is

the unknown parameter vector that will be estimated. The error of this approxima-

tion is measured by the weighted sum of square differences between the estimated

values ũj and the measured values uj:

e = ∑
j

w(‖xj − x‖2)(pT(x)a(x)− uj)
2 (3.12)

where node j are the neighbors of point x, and w(·) is the kernel function Eq.3.10.

The unknowns a(x) are solved by least squares. Thus, the displacement field is:

u(x) = ∑
j
(pT A−1(x)Bj(x))uj = ∑

j
Φj(x)uj (3.13)

where

A(x) =∑
j

w(‖xj − x‖2)p(xj)pT(xj) (3.14)

B(x) =w(‖xj − x‖2)p(xj) (3.15)

and Φj is the shape function of node j. The x-component derivative of the shape

function is defined as:

Φj,x =(pT A−1Bj),x (3.16)

=pT
,x A−1Bj + pT(A−1),xBj + pT A−1Bj,x (3.17)
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where

Bj,x(x) =
dw
dx

(‖xj − x‖2)p(xj) (3.18)

and

A−1
,x =− A−1A,x A−1 (3.19)

=− A−1 ∑
j

dw
dx

(‖xj − x‖2)p(xj)pT(xj)A−1 (3.20)

The myocardium will produce internal forces due to the derivative of the dis-

placement field ∇u = (u,x, u,y, u,z). The forces will prevent the heart from large

deformation and finally deform the heart wall back to initial shape.

3.6.2 Meshless Model with Nonlinear Laplacian Kernel

Different from the traditional simulation methods, the meshless model abandons

the grid or mesh structures, using only the particles to represent the model [69].

It is widely used in problems with large deformations and nonlinear material be-

havior. Meanwhile, the complex and sensitive mesh generation process is elim-

inated. The material point is considered as the center of the phyxel which is a

sphere with radial decreasing mass distribution. Given a dense phyxel represen-

tation, any point on the model is expressed as the weighted average of all the

phyxels whose ranges cover this position. The mechanical properties, like mass

and density, are all able to be defined in this manner.

Many deformable models have been proposed under the meshless framework.

Usually, some kinds of internal forces are used to express the interactions among

the phyxels based on the special material properties. The myocardial wall is con-

sidered as nearly incompressible, which is experimentally proved that the volume

change is no more than 4% [109]. So we propose a constraint that all the material

points tend to keep the distances to the nearby points. Similar constraint has been

used for surface mesh based deformation in [98] to preserve the surface detail,
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while we use it to maintain the shape on 3D volume meshless model. In the neigh-

borhood of any vertex i, the distance-preserve deformation can be approximated

as rotation:

x′i − x′j = Ri(xi − xj) + ε, ∀j ∈ N (i). (3.21)

where xi and x′i are the positions of the vertex i at the initial and the following

frame, Ri is the rotation matrix at the vertex i, and N (i) is the neighborhood of

the vertex i. The actual movement of the point set may not be presented as rota-

tion. However, a deformation under the proposed constraint can be archived by

minimizing the error ε. Given the positions of the control points after deformation,

positions of all the material points will be calculated by minimizing the following

energy function:

min
x′,R

n

∑
i=1

∑
j∈N (i)

ωij||(x′i − x′j)−Ri(xi − xj)||2 (3.22)

s.t. x′k = ck, k ∈ F

where ωij is a fixed weight based on the positions of the two points in the initial

frame, and F is the set of indices of the control points with position ck. The energy

term for each phyxel is related to the Laplacian coordinate change under rotation

only. The Laplacian coordinate was also used in [110], where the scaling and ro-

tation matrix was used for transformation. But only the linear components were

estimated to approximate the rotation, which limits the method suitable for small

deformation. The nonlinear model usually achieves better accuracy with more

complex computation. In our work, the nonlinear system can be efficiently solved

by iteratively optimizing the position and the rotation matrices.

Given the position x′ after the deformation, the optimal rotation Ri can be

solved separately for each vertex i. We define the weighted covariance matrix
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Figure 3.10: Non-linear meshless deformation

Input: the positions of the initial points x, and the control points c
Output: the positions x′ after deformation
precalculate the weight ωij, and the initial guess x′0
repeat

for each i, calculate local rotation Ri from Si in (3.23)
solve linear system (3.24) to get the new position x′

for all k ∈ F , set x′k as ck
until x′ converges.

between the initial and deformed positions around the vertex i as:

Si = ∑
j∈N (j)

ωij(xi − xj)(x′i − x′j)
T (3.23)

Supposing the singular value decomposition of Si is Ui iVT
i , Ri can be derived as

Ri = ViUT
i with changing the sign of some columns in Ui, such that det(Ri) > 0.

Then with the updated optimal rotation matrix R, the minimum of (3.22) can

be achieved by the following linear functions for all the vertex i:

∑
j∈N (i)

ωij(x′i − x′j) = ∑
j∈N (i)

ωij

2
(Ri + Rj)(xi − xj) (3.24)

All the linear functions can build a sparse linear system, with the Laplace operator

applied to x′. The control points will always keep their given positions, while the

positions of the other points will be updated based on the solution of the linear

system. Based on the above method, x′ and R are solved iteratively. So with an

initial guess of the positions x′0, we are able to solve the non-linear problem by

algorithm 3.10.

3.6.3 Strain Analysis

The strain is a description of the relative displacement in the body. It is close related

to the gradient of the displacement field ∇u, where ui = x′i − xi is the displace-

ment of points. Based on the moving least square method, the displacement field



59

for the point i is expressed in its neighborhood as:

∇u|xi = A−1

(
∑

j
(xj − xi)(uj − ui)

Tωij

)
,

where A = ∑j(xj − xi)(xj − xi)
Tωij is the moment matrix, which is based solely on

the initial model. Then, the Jacobian matrix of the deformation is then defined as:

J = I +∇uT =


u,x + 1 u,y u,z

v,x v,y + 1 v,z

w,x w,y w,z + 1

 (3.25)

The Green-Lagrangian strain tensor ε is:

ε =
1
2
(JTJ− I) =

1
2
(∇u +∇uT +∇u∇uT).

In the strain tensor ε, there are only six different terms due to symmetry. The

diagonal terms are the normal strains on three perpendicular directions, and the

others are the shear strains.

3.6.4 Experiments

Experimental settings: The C57BL/6 mice were examined on a 4.7T Varian IN-

OVA system. Both of the SPAMM tagged images and cine image were acquired

within the whole cardiac cycle. Two sets of tagged SA images were acquired with

tagging planes perpendicular to each other in each slice. Then, four slices in LA

views were chosen radially spaced every 45◦. The tagging plane on the LA slices

were parallel to the SA. This made the three tagging planes all perpendicular to

each other, which is the minimum requirement for the reconstruction of the 3D

motion for the heart. The non-tagged images were also acquired for both the LA

and SA slices mentioned above at the same time step as the tagged ones, which

were used for the segmentation of the heart boundary.
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Figure 3.11: Comparing the 3D strains from the linear [110] and our nonlinear
models with the 2D strains in a cardiac cycle, including radial stain (Err), circum-
ferential strain (Ecc) and radial-circumferential strain (Erc). The 2D strains are gen-
erated based on the movement of intersection points on the SA.

We compare the global strains calculated from our deformation method with

that from the 2D mouse heart analysis in [133] and the linear 3D deformation

method in [110]. In [133], the strains were calculated based on the movement of

the intersection points on the SA slices. Thus, only the 2D SA strains are available.

In [110], the LV model is deformed based on linear Laplacian kernel.

In Fig. 3.11, the radial, circumferential and radial-circumferential shear strains

from the linear [110] and our nonlinear models are compared with the correspond-

ing 2D strains from [133]. The resulting strains of the nonlinear model are similar

to the 2D ones, with average difference 5%, while the differences from the linear

model are around 40%. The reason is that the heart deformation can not be well

simulated by the linear kernel. The nonlinear Laplacian kernel in our work is more

accurate in this problem.

The strains related to longitudinal direction are not able to be estimated based

on 2D intersection point movement. The 3D methods naturally present them. The

strains outside the SA slices are shown in Fig. 3.12. Similar to the other strains, the

nonlinear kernel gives larger strains. The magnitude of the strains from the linear

kernel is less than 50% of that from nonlinear model. Similar to the SA results, the

linear kernel tends to underestimate the magnitude of the strains.
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Figure 3.12: The comparison between 3D strains from the linear [110] and
nonlinear models in a cardiac cycle, including longitudinal strain (Ell), radial-
longitudinal strain (Erl) and circumferential-longitudinal strain (Ecl). Note that
2D strains cannot cover these directions.

All the methods are implemented using C++ on an Intel i7 2.80GHz computer

with 8GB RAM. The computing time for the nonlinear deformation on 15 frames

(a cardiac cycle) is around 40 seconds, which is comparable to the linear one. The

similar preprocesses which construct the Laplacian matrices for both methods take

up the majority of the computing time. In addition, the iterative method to solve

nonlinear Laplacian kernel often converges in less than ten steps. Therefore, our

nonlinear deformation improves the simulation accuracy without sacrificing the

computational efficiency.

3.7 Conclusion

In this section, we present a comprehensive framework for LV motion analysis

from the tagged MRI. The whole process is optimized to stably track the move-

ment of the heart during the cardiac cycle. The sparse 2D MR slices with arbitrary

orientations are combined to reconstruct a 3D LV model with single shape prior.

The tagging lines are tracked with deformable models based on Gabor filter banks.

The 3D meshless LV model is built and deformed based on the nonlinear Lapla-

cian kernel. The experiments show that it can simulate the LV motion better than
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the linear one. Based on the deformable model, any local strains can be easily

calculated, which enables us to analyze many global and local properties of the

ventricular wall. In the future, we will further test and apply our method on vari-

ous diseased models such as myocardial infarction. We will refine the deformable

model by adding more constraints from the contours and the tagging lines.
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Chapter 4

Sparse Deformable Models

Deformable models integrate bottom-up information derived from image appear-

ance cues and top-down prior knowledge of the shape. They have been widely

used with success in medical image analysis. One limitation of traditional de-

formable models is that the information extracted from the image data may con-

tain gross errors, which adversely affect the deformation accuracy. To alleviate

this issue, we introduce a new family of deformable models that are inspired from

compressed sensing, a technique for accurate signal reconstruction by harnessing

some sparseness priors. In this section, we employ sparsity constraints to handle

the outliers or gross errors, and integrate them seamlessly with deformable mod-

els. The proposed new formulation is applied to the analysis of cardiac motion

using tagged magnetic resonance imaging (tMRI), where the automated tagging

line tracking results are often very noisy due to the poor image quality. Our new

deformable models track the heart motion robustly, and the resulting strains are

consistent with those calculated from manual labels.

4.1 Introduction

Physics-based deformable models and their variations have been studied exten-

sively in recent decades and are widely used in computer vision, computer graph-

ics and medical image analysis [63, 65, 67, 74]. They are able to solve diverse types
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of problems, such as, but not limited to, image segmentation [52], image registra-

tion [89, 91], shape reconstruction [66, 102], and motion analysis [64, 80]. The name

“deformable models” is derived from nonrigid body mechanics, which describes

how elastic objects respond to applied forces. Starting from an initial shape, the

model is usually deformed by two types of forces, i.e., internal and external forces.

The external force drives the model to fit the observations, while the internal force

constrains the geometric flexibility of the shape. For example, in the image seg-

mentation problem, the external force computed from the image intensity drives

the model to the estimated boundary, while the internal force keeps the boundary

smooth. In motion analysis (e.g., cardiac motions [20, 42, 46, 83, 109]) and shape

manipulation problems [74], control points are employed as the external force to

drive the model, and the internal force maintains the smoothness and preserves

shape details. The control points are tracked along a motion sequence, and then an

initial model is deformed to fit the control points in each following frame. This is

often measured by the distances between the control points and the corresponding

points on the initial model. In fact, in the context of motion analysis and shape

manipulation, many previous methods [97, 110, 116, 132] use Euclidean distance

or L2 norm as the distance metric for penalty functions. This assumes intrinsically

that the errors of the target points follow a Gaussian distribution with small vari-

ances. Nevertheless, this is not always true in practice. Since the control points are

usually derived from automated detections, they may contain not only Gaussian

noise, but also some gross errors or outliers due to erroneous detections. There-

fore, the accuracy of the traditional deformable models depends heavily on the

accuracy of the control point detection.

In this section, we focus on improving the robustness of traditional deformable

models, particularly for the problems of cardiac motion analysis. Inspired by the

robust recovery power of the compressed sensing approach [11, 29], we propose
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a new class of deformable models using sparse regularization. Recent research in

compressed sensing shows that using an L1 norm can dramatically increase the

probability of accurate signal recovery, even when there are both sparse outliers

and moderate Gaussian noise [13]. Thus, we design a robust deformable model

by integrating seamlessly an L1 norm regularization with a modified Laplacian

deformable model [97, 124]. This new model is able to handle outliers or gross

errors. In addition, it is designed as a convex optimization problem, and can be ef-

ficiently solved within a constrained solution space. However, when the variances

of the Gaussian noise are large, solely using the L1 norm may cause overfitting

problems due to its nature of pursuing the sparse structure [12]. Therefore, we

propose a deformable model using hybrid norm regularization that is able to han-

dle both the Gaussian errors and gross errors. We also generalize these two models

in a unified formulation, which we call Sparse Deformable Models.

In the following section, we discuss the relevant work of deformable models

and compressed sensing. Our proposed sparse deformable models (SDM) are pre-

sented in detail in section 4.3. In section 4.4, we validate our models on a clinically

important and challenging problem, i.e., the left ventricle (LV) motion analysis in

mouse cardiac tagged MRI. The experimental results demonstrate the robustness

of our models on mouse heart motion tracking even with inaccurate results of con-

trol point detection. The last section draws conclusions on model advantages, and

discusses directions of future work.

4.2 Related Work

4.2.1 Deformable Models

With the success of active contour models [52], many methods have been proposed

to improve deformable models. Most of the work focuses on either internal force
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or external force. In this section, we introduce some relevant papers on these two

aspects.

Internal forces usually enforce the smoothness characteristics of deformable mod-

els, such as the local deformation similarity. An unconstrained deformable model

may easily result in unrealistic shapes due to weak or misleading image cues.

Therefore, the internal force is critical for robustness. The global parametric mod-

els (e.g., deformable superquadratics) were proposed to build models based on a

few global shape parameters [3, 100]. Although these models reduce the degrees

of freedom dramatically, they have difficulty in capturing the shape details. The

local geometry properties can be used as constraints to solve these problems. For

examples, splines were used on image deformation to constrain the smoothness

of the deformation field [105]. A piecewise-smooth finite element model (FEM)

was employed to represent the deformable boundary [32, 33], which achieved

real-time myocardial segmentation in both ultrasound and MRI data. Laplacian

coordinates [97] have been also a well-known measurement approach for the local

similarity. Comparing with spline- and FEM-based methods, Laplacian coordi-

nates allow more flexible shape representation. [97] employed them to constrain

the smoothness and local similarity of the 2D mesh deformation in shape editing.

[92] decomposed the Laplacian coordinates into components in the perpendicular

and tangential directions, to formulate a detail-preserved internal force. In this

section, we adapt the traditional Laplacian coordinates in a new setting of 3D vol-

umetric and meshless deformable models to enforce the smoothness and local shape

similarity.

External forces match the model to the observations derived from the image ap-

pearance. They are usually categorized as short-range and long-range forces. The

short-range forces are defined based on the local information in a small neigh-

borhood. For example, in segmentation problems, they drive the contour to the
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estimated boundary. The boundary may be defined by the intensity, gradient

change, or high response of boundary detectors [52]. In registration problems,

the source image is deformed to match the target image according to the appear-

ance similarity [31]. The pixels are matched based on textures in their neighbor-

hoods. The long-range forces deform the model to match pre-calculated land-

marks [101] or satisfy model priors [25]. Region appearance features have also

been used [50, 51, 134] to augment the deformable models by leveraging the image

intensity statistics. They discriminate the inside and outside region based on their

intensities and textures. Recently, dictionary learning was also used to learn ap-

pearance characters [48, 49]. Each pixel is classified into different regions based on

their reconstruction residues under different dictionaries. Our deformable model

uses control points as the external force, which is a natural choice for cardiac mo-

tion analysis.

4.2.2 Robust Shape Priors

Most deformable models assume that there is no outlier or gross error on the de-

tected landmarks, while such errors are very common due to the image noise or

weak appearance cues. Statistical shape models, such as active shape models [26]

and their variants, can effectively handle outliers using shape priors. Some of them

detect and eliminate the outliers explicitly before the deformation. [34] proposed

a method to detect outliers by hypothesis testing based on the point distribution

model. The detected outliers are removed or replaced based on the mean shape

of the model. [85] proposed to detect the abnormal regions by registering with a

standard atlas. The regions largely different from the normal intensities are de-

termined to be outliers. [54] used a local shape dissimilarity measure, which is

invariant to scaling, rotation and translation, to detect the outliers, and then dis-

placed them based on the local valid points. Other researchers aimed to reduce the
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effect of the outliers during the model deformation. [88] evaluated M-estimator,

least median of squares and random sample consensus (RANSAC) [36] to handle

outliers in active shape models. RANSAC showed the best performance in the

quantitative evaluation. [28] utilized wavelet transformation to build a hierarchi-

cal shape model to improve the local robustness. The low-frequency bands carry

global shape information, and the high-frequency bands serve local smoothness

constraints. Besides shape priors, image atlas-based methods also naturally have

the properties of handling segmentation errors [94]. Priors can also be based on

data-specific properties, e.g., the relative positions of multiple components, which

are modeled by formulating the relation explicitly [81] or learning shape priors

from examples [79].

Recently, compressed sensing methods have been intensively investigated. These

methods aim to reconstruct a signal that is known to be compressible with certain

transformations based on sparse measurements. Such sparse methods have been

widely used in computer vision and image processing communities to deal with

gross errors or outliers. Particularly, the sparse constraints have been employed to

model shape priors effectively [129, 130] and register shapes robustly [45]. In their

settings, most of the control points generated from point detectors are roughly ac-

curate, while a small number of points may contain large errors. These points are

represented as sparse outliers and optimized with sparsity regularization.

Most above-mentioned methods rely on the use of training samples, which are

not always available in practice for deformable models. In addition, they are based

on the static images or shapes to form an over-complete dictionary and assume

that the target model can be sparsely reconstructed by the dictionary. Different

from these above-mentioned methods, we propose to seamlessly integrate sparsity

priors with deformable models to handle outliers adaptively and dynamically for a

sequence of images. Therefore, there is no need for training data.
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4.3 Methodology

Consider a set of points V , where each point has a neighborhood structure1, and

a subset of V as control points Vc that are computed from the observations (e.g.,

tagging line tracking results). Denote the homogeneous coordinate of the point i

as vi = [xi, yi, zi, 1]T and its position after deformation as v′i = [x′i, y′i, z′i]
T, where

i = 1, 2, · · · , n. Then the coordinates of all the deformed points are represented as:

V′ = [v′1
Tv′2

T · · · v′n
T
]T. (4.1)

The goal of our deformable models is to track the motion of the whole shape,

given the position V′c of control points Vc. Instead of calculating the deformed

point positions V′ directly, we optimize the deformations T for each point. The

deformed position v′i then can be derived by the relation v′i = Tivi. It is easier to

incorporate the shape constraints into the deformations than the point positions.

This will be further discussed in the internal force. The deformation of each point

i is parameterized by an affine 3× 4 transformation matrix Ti, where the first three

columns are linear transformation and the last column is translation.

In our model, the internal force preserves the local shape structure by using the

Laplacian coordinates, and the external force minimizes the difference between the

shape and the control points via our proposed sparse constraints.

4.3.1 Internal Force

Our internal force ensures the local similarity by regularizing the differences of

the transformation matrices between neighboring points. Instead of measuring

the matrix distance directly, we measure the difference by the deformation they

1 Mesh- and meshless-based models are the most widely used shape representations. Our model
works for both representations. The neighborhood is defined by the connectivity for the mesh
model, or the distance for the meshless model.
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generate. Specifically, if a point is deformed using the transformation matrices

of its neighboring points, the resulting displacements should be similar. In other

words, for a point i, its displacement after applying its own transformation matrix

Ti should be similar to applying its neighbor’s transformation matrix Tj. Thus, the

energy function of the internal force is:

Eint = ∑
i∈V

∑
j∈N (i)

wij‖Tivi − Tjvi‖2
2, (4.2)

where‖ · ‖2 denotes the entry-wise matrix L2 norm2, and weight wij is the strength

of connection between points i and j. In the meshless model, it is defined by a

kernel function, such as the polynomial kernel [70]:

w(r, h) =
315

64πh9

 (h2 − r2)3 if r < h

0 otherwise,
(4.3)

where r is the distance between points i and j, and h is the support of the kernel,

which means that the kernel is non-zero only when r < h. The function only

contains the square term of r. Since r is defined as the square root of ∑ r2
k , where rk

is the distance in the kth direction, this kernel eliminates the requirement of square

root calculation.

The unconstrained transformation matrix Ti is able to deform the local struc-

ture arbitrarily. This may produce some unnatural and unreasonable shapes to

minimize the energy. For example, if all transformation matrices are zero matri-

ces, points will be transformed to the origin. Thus, the whole model degenerates

to a single point and the internal energy is zero. Although this complete degen-

eration may not happen in most applications because of the external force from

the control points, the deformable models with unconstrained transformation will

still lose geometry details in directions with less control points information, e.g.,

2 The matrix norms in this section are all entry-wise norms.
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the direction perpendicular to the surface [73]. To alleviate this problem, we re-

strict Ti to translations, rotations and isotropic scales. In particular, we disallow

the anisotropic scaling, which will remove local shape details.

The translations are defined explicitly in the last column of Ti, and rotations

and isotropic scales are both represented in the linear transformation, which also

contains other types of transformation that we do not expect in our model, e.g.,

anisotropic scales. Therefore, we define a special type of linear transformation con-

taining only rotations and isotropic scales. Rotations are represented by multipli-

cation with an orthogonal matrix, which is represented as the matrix exponential

of a skew-symmetric matrix exp(H). In particular, 3× 3 skew-symmetric matrices

emulate a cross product with a vector, i.e., Hx = h× x. Based on this property, one

can derive the following expansion of the exponential above:

exp(H) = αI + βH + γhTh, (4.4)

where I and H are linear terms, while hTh is quadratic. Adding the isotropic scale

s to the transformation, the class of matrices for linear part becomes T = s exp(H).

Here, we keep only the linear term of the matrices and form the approximately

constrained transformation as:

Ti =


s −h1 h2 px

h1 s −h3 py

−h2 h3 s pz

 . (4.5)

In this matrix, s is the isotropic scalar, h contains the non-zero parts of the skew-

symmetric matrix, and p is the translation part. It is a good linear approximation

for rotations with small angles.

Within this setting, we expect to find Ti satisfies Eq.4.5, while minimizing the

internal energy. In Eq.4.2, Ti only appears in the structure Tivk, where k = i or in

the neighborhood of point i. Ti is a matrix and vk is a vector in this function. In
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order to enforce the constraint, we reformulate it to a function of ti = (si, hi, pi)
T,

which is the vector of the unknowns in Ti. Thus, we substitute Tivk with AktT
i ,

where Ak contains the position of vk. It is defined as:

Ak =


vkx 0 vkz −vky 1 0 0

vky −vkz 0 vkx 0 1 0

vkz vky −vkx 0 0 0 1

 . (4.6)

Thus, the internal force is reformed as

Eint = ∑
i∈V

∑
j∈N (i)

wij‖Aiti − Aitj‖2
2. (4.7)

Since this is a summation of the quadratic forms of the transformation matrices

ti, we can represent the energy function as a quadratic form of all the unknown

transformations t. In order to form the internal force, we encode the point position

matrix Ai into matrix Ki as

Ki = Mi ⊗ Ai, (4.8)

where ⊗ is the Kronecker product, and Mi is a mi × n node-arc matrix of vi, where

mi is the number of its neighbors. For each neighbor vj, there is one row in Mi

where the ith element is wij and the jth element is −wij, while the other elements

are all zeroes:

Mi =


ith column jth column

· · · wij · · · −wij · · ·
...

...

, j ∈ N (vi). (4.9)

Kit is the difference of the displacements based on different transformations of

the neighborhood of point i. We concatenate the matrix Ki for all the points to

form the matrix K = [KT
1 KT

2 · · ·KT
n ]

T. Thus, the energy function of the internal

force (Eq.4.2) is formulated as:

Eint = ‖Kt‖2
2. (4.10)
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This energy function is a quadratic form of all the independent transformation

unknowns. By solving this function, we directly get the transformation matrices

for all the points, which contain only translation, rotation and isotropic scale. There

is no need to regularize each transformation explicitly to the three types above.

This setting of internal force is able to ensure the smoothness of the whole shape

and preserve the local similarity. In addition, this internal force is intentionally

designed as a convex optimization problem, so it can be coupled seamlessly with

our sparsity-based external forces.

4.3.2 External Force

Besides the shape constraint from the internal force, the deformable model also

aims to match the observations. For example, a point i on the model is expected

to fit the position of corresponding control point v′i after deformation ti. In other

words, v′i = Aiti, where Ai is the position of point i defined above. We concatenate

the point coordinates Ai into an 3n× 7n sparse matrix:

D =



A1

A2

. . .

An


, (4.11)

where V′ = Dt is the model deformation based on the transformation parameters

t. We use a control point indicator c to select the rows of D and V′ corresponding

to the control points. Thus, this deformable model is defined as:

arg min
t
{‖Kt‖2

2 + λ‖Dct−V′c‖2
2}, (4.12)

where λ is the stiffness weight, which controls how much the model is able to

deform to match the control points. Larger λ results in a better fitting, but the

deformed shape may not be smooth. The L2 norm is used as a penalty function
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in this formulation. This is also known as a Laplacian deformable model (LDM).

Similar settings have been used in many applications, such as shape editing [97, 98]

and cardiac modeling [111]. However, it may not be the most proper metric for

certain problems, especially when there are gross errors or outliers.

Sparsity Constraint Using L1 Norm

Gross errors may easily happen in medical imaging problems, such as the erro-

neous detections in a noisy image. The L2 norm in Eq.4.12 follows a Gaussian

distribution for residuals. It may overfit these sparse outliers, and hence adversely

affect the deformation accuracy. It is desirable to model such sparse outliers dur-

ing the deformation. The L0 norm counts the number of non-zero elements and

can model such sparse errors exactly. Therefore, we can use it to capture the sparse

outliers:

arg min
t
‖Kt‖2

2

s.t.‖Dct−V′c‖0 < k, (4.13)

where ‖ · ‖0 is the L0 norm and k is the pre-defined maximum number of outliers.

However, the L0 norm is non-convex, and solving an L0 norm problem is NP-hard.

Although greedy methods [62, 104] can be employed to solve such problem, we do

not know the sparsity number, i.e., the number of outliers, and different data may

have different sparsity numbers. Therefore, in practice it is hard to use an L0 norm

as the sparsity constraint in deformable models. Recent developments in com-

pressed sensing [11] show that minimizing an L1 norm problem can produce a

nearly identical sparse solution as using the L0 norm. Thus, we use convex relax-

ation to define a sparse deformable model based on the L1 norm (we use SDM-L1

to stand for Sparse Deformable Models with L1 norm regularization):

arg min
t
{‖Kt‖2

2 + λ‖Dct−V′c‖1}, (4.14)
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Figure 4.1: The toy sample of the deformable model using L2 and L1 norm regu-
larization. The circles are the observed control points with outliers. We fit a grid to
control points. The stars are the desired result (ground truth).

where λ is a constant and controls how sparse the outliers are. Different from

sparsity number k, this λ is more flexible as this is a soft constraint.

To illustrate intuitively the effectiveness of method, we test it on a toy example

of shape deformation (Fig. 4.1). The initial model is a 4× 4 grid with four-direction

connection. Four corners are chosen as the control points, and the top-right one is

an outlier, as shown in Fig. 4.1a. The deformable model aims to fit these four

points while maintaining the original grid shape. The result using the L2 norm is

adversely affected by the outlier, since the quadratic form of the energy function

results in a large penalty on this outlier. We obtain a much more accurate result

by using the L1 norm, since the linear constraint has a higher tolerance for gross

errors.

Sparsity Constraint Using Both L1 and L2 Norms

Similar sparsity constraints have been successfully applied in many applications,

such as face recognition [114], background subtraction [43], and shape prior mod-

eling [129]. However, in deformable models, the observations may still contain
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Gaussian errors with large variations. Solely using the L1 norm may not be able to

handle them well. Therefore, we combine both L1 and L2 norms, which assist our

sparse deformable models to handle more general cases (we use SDM-L1/L2 to

stand for the Sparse Deformable Model with both L1 and L2 norm regularization):

arg min
t,e

{‖Kt‖2
2 + λ

(
‖Dct−V′c − e‖2

2 + γ‖e‖1

)
}, (4.15)

where e represents the gross errors and is constrained by the L1 norm, and γ ∈

[0, 1] controls how sparse e is. The new model combines the advantages of both

L1 and L2 norms, and is able to handle both gross errors and traditional Gaussion

errors with large variations. In fact, this model is closely related to the other models

by adjusting the parameters λ and γ. If γ is extremely large, e will be all zeros.

Thus, the model degenerates to a method with only an L2 norm, as in Eq.4.12, and

it is sensitive to gross errors. If λ is extremely large and γ is small, the deformation

errors will be approximately equal to e. Thus, the model is similar to the one with

only sparse constraints, as in Eq.4.14. It will be robust to the outliers, but cannot

handle large Gaussian noise. Therefore, Eq.4.15 is actually a general form of these

models. In addition, it is also closely related to the Huber norm, which has been

used in statistics for robust estimation. It is defined as:

ρ(x) =

 x2 |x| ≤ γ

2γ|x| − γ2 |x| > γ.
(4.16)

The Huber norm is similar to the L2 norm when the errors are smaller than γ,

and similar to the L1 one when the errors are larger than γ. Therefore, it effectively

models both the Gaussian noise and the outliers. Using the notation of the Huber

norm, SDM-L1/L2 can be rewritten as:

arg min
t
{‖Kt‖2

2 + λ‖Dct−V′c‖Huber}. (4.17)

Besides handling different types of errors, another benefit of this deformable

model is the convexity and the continuous first-order derivative. Therefore, the
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above problem can be solved efficiently using our proposed algorithm introduced

below.

Optimization Framework

Although the above problem can be solved by the standard convex optimization

algorithms, such as interior point method [39], we propose an effective optimiza-

tion algorithm that fully utilizes the special structure of this problem. We alter-

nately optimize two variables t and e. These two subproblems both have analyti-

cal solutions. They can be solved efficiently in each iteration. The results converge

quickly in our experiments. We initialize the gross error e as zero and apply our

alternating algorithm to the problem. In the first step, when e is fixed, the problem

is reduced to the conventional L2 norm regularization:

arg min
t
{‖Kt‖2

2 + λ‖Dct−V′c − e‖2
2}. (4.18)

It can be solved by least square minimization. In the second step, t is fixed, and

the optimization problems for each term ei of the outlier e are independent:

arg min
ei

{
(
(Dct)i −V′ci − ei

)2
+ γ|ei|}, (4.19)

where (Dct)i is the ith element of the vector Dct. The minima for the two parts

can be achieved at (Dct)i − V′ci and 0, respectively. The minimum of the energy

function must lie between them, since both of them are convex. Therefore, ei has

the same sign as (Dct)i−V′ci. After determining the sign of ei, the problem reduces

to a constrained quadratic function of ei, and the solution is:

ei =

 max{0, (Dct)i −V′ci − γ/2} if (Dct)i −V′ci ≥ 0

min{0, (Dct)i −V′ci + γ/2} otherwise.
(4.20)

Since there are analytical solutions for both of the sub-steps in our algorithm,
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the energy function will monotonically decrease to a minimum solution. The con-

vexity of the whole problem makes sure that this is the global solution of the prob-

lem.

4.4 Experiments

4.4.1 Validation on Synthetic Data

Our methods were validated on synthetic 3D volumes with pre-defined deforma-

tion. Three methods were compared: 1) Laplacian deformable models (LDM) [97,

110], 2) sparse deformable models with L1 norm regularization (SDM-L1), and 3)

sparse deformable models with both L1 and L2 norm regularization (SDM-L1/L2).

First, an LV volume model was generated, with the internal points evenly dis-

tributed in short- and long-axis directions. Ten percent of short-axis slices with

equal intervals were chosen as the control points. Then random global transfor-

mations were applied to this model, such as scaling, rotation and twisting. Two

types of errors were also applied to the deformed model to simulate the noisy

tracking results. Gaussian noise was added to all control points, and a few points

were selected randomly and large displacements were applied to simulate gross

errors. Based on the displacements of the control points, deformable models were

employed to reconstruct the displacements of the other points. The deformable

models were tested under different parameter setting and different noise intensi-

ties. In each parameter setting, we randomly generated 1000 samples and calcu-

lated the mean and variance of deformation errors.

We first analyzed the deformation errors when changing the coefficient γ, re-

flecting the balance between the L1 and L2 norms (Fig. 4.2a). The deformation

error is large when γ is close to zero, and reduces dramatically when γ is a little

larger. Since SDM-L1/L2 is similar to SDM-L1 when γ is small, it indicates that
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Figure 4.2: (a) shows the deformation errors related to the coefficient γ of the L1
norm. (b) and (c) show the deformation errors of different deformable models (er-
rors are measured in millimeters). They are compared under different Gaussian
noise variances and numbers of outliers, respectively. SDM-L1/L2 out-performs
the other two most of the time, while the SDM-L1 norm is better when the Gaus-
sian noise intensity is small.

SDM-L1 cannot handle Gaussian error properly. As γ becomes even larger, the

mean error increases again. It becomes stable when γ is large enough, which is

similar to the result of LDM. The results show that SDM-L1/L2 outperforms the

other models that use only one type of norm. Theoretically, the model achieves

the best result when the threshold γ is similar to the variance of Gaussian noise.

However, it is hard to measure the noise variance exactly in real data. Therefore,

we set it to one tenth of the median of the neighborhood distances empirically and

it shows good results.

We also tested our sparse deformable model under different noise intensities.

First, we increased the variance of Gaussian noise with fixed outliers. In Fig. 4.2b,

SDM-L1 performs the best when the noise intensity is low. As the variance in-

creases, SDM-L1/L2 outperforms the others. LDM is always the worst, due to the

Table 4.1: Quantitative evaluation of deformation errors (Unit: mm).

Method Average Min Max Median

LDM 1.036 0.724 1.635 0.927
SDM-L1 2.107 0.437 3.580 2.069
SDM-L1/L2 0.482 0.341 0.719 0.469
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outliers. It shows that our model is more stable when handling moderate Gaussian

noise. Then we tested the models with different numbers of outliers. In Fig. 4.2c,

the errors of all models increase almost linearly with the number of outliers. SDM-

L1/L2, which is still the best among them, performs better than SDM-L1 when

there are a few outliers. They achieve similar errors when the outliers are domi-

nant. Both of the experiments show that SDM-L1/L2 is more stable under different

noisy conditions.

4.4.2 Motion Analysis of Mouse LV

We also tested our method on mouse myocardial strain analysis. The strain com-

putation is especially sensitive to tracking outliers. Even when there are only small

amounts of outliers in deformation, the strains on points near these outliers will

be highly affected. To obtain the ground truth, we manually labeled the tagging

lines in each 2D image, and then used the tag motion to drive a 3D LV volume

model based on the finite element method (FEM). This approach is very accurate.

However, manual labeling is time-consuming and tedious, and FEM is not very

efficient. In this experiment, we used this method as a reference, and compared

our models using automatic tagging line tracking results that contain outliers. We

compared the LDM, SDM-L1 and SDM-L1/L2. Table 4.1 shows the deformation

errors of different models on 17 datasets. SDM with the combined norm has small-

est average error owing to its robustness to outliers. Meanwhile, the results of

SDM-L1 are much less stable than other two methods. The reason is perhaps that

there is strong Gaussian noise in real data.

To further analyze the regional LV motion, we divide the LV into 17 segments,

based on the standardized myocardial segmentation of the American Heart Asso-

ciation [16]. The heart was first sectioned into apical, mid-cavity, and basal parts

perpendicular to the left ventricular long axis. Each part was further segmented
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Figure 4.3: Box plot of the errors for different deformable models. In each box
plot, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, and the whiskers extend to the extreme data points. The unit of Y-
Axis is millimeters. X-axis shows three compared methods: LDM, SDM-L1 and
SDM-L1/L2.

based on different short-axis directions. We compared the deformation errors on

all the segments. Fig. 4.3 shows 16 of them (excepting the true apex segment).

The results show that SDM-L1/L2 always has the best accuracy, i.e., small aver-

age deformation errors and standard deviation. In contrast, SDM-L1 has the worst
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Figure 4.4: Comparison of the strains generated from different deformable models
with the reference model in three mouse cardiac data. Each column represents one
dataset, and each row represents one type of strain. In each figure, y-axis is the
strain, and x-axis means the frame in a cardiac cycle.
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Figure 4.5: The first row is the short-axis slice, and the second row is the long-axis
slice. The three columns are colored by the radial, circumferential and longitudinal
strains, respectively.

accuracy in both aspects. Comparing among different parts based on the short-

axis directions, the lateral parts have relatively larger errors than the septal parts.

This may because the lateral parts have larger movements. Comparing along the

long-axis direction, the basal part has relative larger errors in all the methods. The

reason is that there are no short-axis slices in this part. All the point movements are

calculated based on the control points from the middle part. The free ends at the

basal boundaries produce more errors than other parts. The errors are smaller in

the middle and apical parts in the results of LDM and SDM-L1/L2 due to the dense

control points. However, they are still large for SDM-L1 in these parts. This shows

that using the L1 norm alone cannot represent the noisy tracking errors well, and

the L2 norm is necessary in handling this data.

We also computed the myocardial strains over a cardiac cycle, which are com-

monly used to describe the strength of the heart motion. The strains were decom-

posed into radial, circumferential, and longitude directions, and the shear strains
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Figure 4.6: The deformations of the LV on a cardiac cycle are colored by the cir-
cumferential strain.

among them. Fig. 4.4 provides the comparisons of the strains generated with dif-

ferent deformable models on several mouse datasets. The rows correspond to dif-

ferent types of strains, and the columns correspond to different mice. Each figure

contains the strains generated from different models in a cardiac cycle. The num-

bers of frames in the cardiac cycles may be different in each mouse because of the

acquisition procedures. The first column is from a healthy mouse, and the other

two are from mice with myocardial infarctions. It is shown that the strains gener-

ated from the healthy mouse are larger than those from the unhealthy ones. For

each individual dataset, the strains generated from the automatically tracked tag-

ging lines are less stable than that from manually labeled ones, due to the tracking

errors. The strains based on LDM are relatively smooth, but this method tends to

underestimate the strains. The results from SDM-L1 have the worst stability be-

cause of its nature to pursue the sparsest solution. Since the control points contain

both outliers and strong Gaussian noise, the L1 norm alone cannot handle Gaus-

sian noise stably. The results from SDM-L1/L2 best match the reference strains.

This shows that our model performs well in the LV motion tracking, even with

inaccurate control points.

The LV strain is estimated on dense sample points. Based on these motion



85

results, strains at arbitrary positions inside the LV can be calculated by linear in-

terpolation. In order to analyze the local heart motion properties, strains at the

end of systole are projected onto short- and long-axis slices in Fig. 4.5. We show

the radial, circumferential, and longitudinal strains on the LV in the MR images.

The strains change smoothly in each slice. Generally, the lateral side has larger

strain than the septal side. The reason is that the right ventricle motion restricts

the septal side motion.

We also visualize the strains on the external and internal surfaces of the LV.

Since the points of the surface mesh are all in the initial volume model, where

the strains are calculated, we use them as samples and linearly interpolate the

strains on the LV surface. The circumferential strains are shown locally on the LV

external and internal surfaces in Fig. 4.6. They indicate larger contraction near

the endocardium than the epicardium. The high strain area starts from the apical

endocardium and expands quickly toward the base, which is similar to human

hearts.

4.5 Conclusions

In this section, we introduce a group of sparse deformable models. Benefitted

from the sparsity techniques, these deformable models are able to handle outliers

or gross errors. Therefore, they are robust to deal with noisy images or tracking er-

rors. We have validated these methods on both synthetic data and the mouse car-

diac motion tracking. Both qualitative and quantitative results demonstrate that

our methods outperform and are more robust than previous ones. It is also note-

worthy that the applications of our proposed methods are not limited to cardiac

motion analysis. It is flexible enough for many other medical image problems.

In the future, we plan to extend the deformable models by using structured
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priors. The LV is conventionally separated into 17 segments. This inspires us to

add group constraints to the current sparse model. The group sparsity and other

structure sparsity constraints will further improve the robustness of the model.

The current regularization term is only related to the external force based on noisy

observations. It is also possible to extend the other parts of the model. The problem

with modeling arbitrary internal forces is that the resulting model may not be a

convex problem. The traditional finite difference method can be employed to find

a local minimum, while the performance can then be further analyzed.
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Chapter 5

Conclusions

In this thesis, we present a group of sparse methods for cardiac MRI reconstruction

and analysis. These methods tackle several different problems from data acquisi-

tion to further image processing. The key idea among all the methods is exploit-

ing the sparse properties inside the data. In the MRI reconstruction problem, the

group sparse structure is identified and utilized to optimize the signals from multi-

ple coils together. In the 3D LV model reconstruction problem, the sparse 2D slices

with arbitrary orientations are combined to model a full 3D shape. In the LV mo-

tion tracking problem, the tracking error is regularized with sparse constraint due

to the non-Gaussian distribution of tagging line tracking error. The sparseness is a

key idea for many signal processing methods. It has already been widely used for

data compression, signal reconstruction, and etc. The simplified sparse represen-

tation is a good way to explore the intrinsic property of the data. It is potentially

to be used extensive in general data analysis.

The main challenge for utilizing sparse method comes from the following two

aspects. First, how to identify the sparse properties of the data. Second, how to

efficient solve the optimization problem based on the sparse properties. After a

decade of development, the idea of sparseness is not limited to the number of non-

zero terms. More studies focus on the relation and distribution of these non-zero

terms. The structure sparsity is a more interesting problem, which further inves-

tigates the intrinsic data property. The additional property usually can further

compress the data. Therefore, the sparseness of the data can be further considered
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as the compressibility of the data. The extension of the problem definition makes it

harder to be solved generally. The optimization problem for the naive sparse con-

straints have been studied for a long time. The simple structure sparse problems,

like group sparse, also have suitable method to solve. However, the more general

structure sparse problem, like the clustered sparse structure, may not have a good

optimization method. More research is still needed to find good optimization al-

gorithms for various sparse regularization problems.

The development of cardiac MRI poses a series of new problems for further

research. They are dramatically different from conventional natural image pro-

cessing in many aspects. The image presents the 2D slice inside the object instead

of the surface. The signal is acquired from the k-space sampling instead of the im-

age space. The MR image intensity naturally decay and blur along time following

the property of magnetic field. All these properties open a new area for computer

vision study. Therefore, we have proposed a group of algorithm to solve various

problems. The sparse methods have been used in different ways to help solving

these problems.

The sparse methods already have significant contribution to the recent devel-

opment of MRI reconstruction and analysis. The study started from some surpris-

ing empirical observation, while it fast evolved into a complete research area with

solid theoretical proof and wide clinical applications. It is a great pleasure to wit-

ness and participate the golden age of sparse method. After the introduction of

compressed sensing theory, the related methods have been applied to nearly every

application of computer vision and medical image analysis. The develop in recent

years not only utilizes the advantage of sparse methods, but also discovers the

drawback. This is the necessary process for a new method to become a common

tool. In the further, although sparse methods may not be the super star for solving

the new problems, they will still be a key component for many algorithms, which
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explore the sparsity in some aspects. Like many established algorithms, the sparse

methods will help developing more useful algorithms in the further.
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