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ABSTRACT OF THE DISSERTATION 

Abstract 
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Dissertation Director: Assimina A. Pelegri  

 

 

Biomechanical imaging techniques based on acoustic radiation force (ARF) have been 

developed to characterize the viscoelasticity of soft tissue by measuring the motion 

induced with ARF noninvasively. The unknown stress distribution in the region of 

excitation (ROE) limits an accurate inverse characterization of soft tissue viscoelasticity.  

Thus, many assumptions have been made for both qualitative and quantitative ARF 

imaging within the ROE.  

In this thesis, the finite element method is applied to study the dynamic behavior 

of soft tissue in ARF imaging within the ROE to investigate the assumptions that are 

made in these imaging methods and decide what factors affect the accuracy of these 

assumptions. To this end, the effects of global boundary conditions and local 

heterogeneity are investigated, and simplified quantitative inversion model is evaluated 

for their limitations in describing soft tissue dynamic behavior.  
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 In order to improve quantitative estimation within the ROE, an inverse finite 

element (FE) characterization procedure based on a Bayesian formulation is presented, 

which takes full advantage of the prior information of the imaging system that are 

discarded in the simplified inversion models. The Bayesian approach formulates the 

known model parameters of the FE models as probability distributions, and aims to 

estimate a reasonable quantification of the probability distributions of soft tissue 

mechanical properties rather than best-fit values from an optimization procedure, which 

are not a practical or a comprehensive description of the estimation in the presence of 

measurement noise and model parameter uncertainty. To make the Bayesian approach 

computationally feasible, the Gaussian Process metamodeling method is applied as a 

statistical approximation of the complex FE model. A comprehensive numerical study in 

ARF induced creep imaging shows that the Bayesian approach with FE model improves 

the estimation results even in the presence of large uncertainty levels of the model 

parameters and provides a potential to improve the ROE-response-based imaging 

methods where the unknown stress limits an accurate inverse FE characterization. 
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Chapter 1: Introduction  

 

 1.1 Inverse Problem in Soft Tissue Viscoelasticity 

Biomechanical imaging techniques have demonstrated great promise for soft tissue 

characterization and detection of tumors. These noninvasive imaging techniques are 

developed based on the fact that the mechanical properties of biological soft tissue are 

dependent on the pathological state of the tissue. [1–5] The general approach applies 

mechanical excitations to soft tissue, and then measures the induced responses of the 

tissue as metrics to reconstruct its mechanical properties. In cases where inclusions are 

considered, biomechanical imaging techniques can be used to estimate the elasticity and 

viscosity contrasts of the inclusion relative to the background tissue. [6–8] These imaging 

modalities successfully provide good results in tissue characterization and cancer 

detection. [3,4,9] Ophir et al. proposed the elastography method, which applies a static 

mechanical compressive loading on the tissue surface and measures the induced strain by 

a set of ultrasound A-lines. [2] For surface excitation, there are other methods that apply 

surface vibrations on tissues to generate dynamic vibrational displacement or shear wave 

inside them. [7,10,11] Based on these external excitation techniques, many global inverse 

methods have been proposed to reconstruct soft tissue mechanical properties. [11–14] 

However, global inverse methods are limited by high computational cost and non-unique 

solutions. These methods necessitate accurate information of the global boundary 

conditions, which can be quite complex and unattainable in practice [15–17]. In addition, 

the surface excitation methods become challenging when they are used to image deep 
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organs, as the induced surface motion cannot effectively penetrate into deep regions due 

to attenuation or the physical barrier. [16,18,19] 

In order to promote stimulus effectiveness, internal excitation methods, which are 

based on generating a highly localized acoustic radiation force (ARF) to internally excite 

a targeted region in the soft tissue using focused ultrasound transducers, have been 

developed. [1,20–23] Compared to the global inverse scheme for modulus reconstruction, 

the localized ARF methods assume the excited soft tissues are in infinite and 

homogenous media, and no accurate description of the global model’s complex boundary 

or local heterogeneity is required. However, simplifying assumptions made about infinite 

and homogenous media limit the accurate description of the soft tissue’s viscoelasticity or 

its contrast. In addition, due to the unknown stress distribution in the region of excitation 

(ROE), an accurate finite element (FE) analysis of the inverse problem is challenging in 

ARF imaging.  

1.2 Research Goals 

This thesis has three goals.  

First, the dynamic behavior of soft tissue within the ROE is studied in acoustic 

radiation force imaging. The effects of global boundary conditions and local 

heterogeneity are investigated. Simplified inversion model is evaluated for its limitations 

in describing soft tissue dynamic behaviors.  

Second, an inverse FE procedure based on Bayesian approach is developed.  The 

response of soft tissue to a step ARF is used to reconstruct the time constant which is a 

viscoelastic metric of soft tissue.  Bayesian approach with FE model (BAFEM) is applied 
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to form a statistical inverse problem. The known model parameters of the FE models are 

represented as probability distributions, and the posterior distributions of soft tissue time 

constant are estimated.  

Third, different sources of uncertainty are studied to evaluate the inverse 

procedure based on the BAFEM. This study demonstrates the effectiveness of the 

proposed method in the presence of uncertain model parameters. 

1.3 Outline 

Chapter 2 reviews the general theory of acoustic radiation force and the current research 

methods undertaken in acoustic radiation force imaging. Particularly, ARF imaging 

methods in the region of excitation that are most related to this thesis are discussed in 

detail. 

In Chapter 3, the dynamic behavior of soft tissue in the region of excitation (ROE) 

is studied with FE models. The effects of global boundary conditions and local 

heterogeneity are investigated under different configurations. For a quantitative 

simplified model, its performance is evaluated for both homogeneous and heterogeneous 

cases.  

Chapter 4 demonstrates the formulation of the inverse FE procedure based on the 

Bayesian approach. The general Bayesian estimation of this problem is first introduced. 

To make the Bayesian approach computationally feasible, the Gaussian Process 

metamodeling method is applied as a statistical approximation of the complex FE model. 

The posterior distribution of the time constant of viscoelastic soft tissue is formulated 

with measurement noise and uncertainty model parameters in the end of this chapter. 
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In Chapter 5, the Bayesian approach with FE model that developed in Chapter 4 is 

applied to estimate the posterior distribution of the time constant. Different sources of 

uncertainty are considered in the inverse procedure, and their effects on the inverse 

estimation are quantified. 

Chapter 6 provides a summary on the major findings and contributions of this 

thesis. It also includes suggestions on future research on this topic.  
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Chapter 2: Review of Acoustic Radiation Force Imaging 

 

This chapter first introduces the general theory of acoustic radiation force. Then a review 

of the state of the art research undertaken on acoustic radiation force imaging is 

delivered. Particularly, quantitative imaging methods in the region of excitation that are 

most related to this thesis are discussed in detail, which demonstrates the significance of 

the problem this thesis solved. 

2.1 Acoustic Radiation Force Imaging Theory 

Acoustic radiation force (ARF) is a spatial-varying body force. The magnitude of the 

acoustic radiation force at a specific location is described by  

   
   

 
 (2.1) 

where fo is the body force magnitude,  is the tissue’s absorption coefficient, I is the 

intensity of the radiation force and c is the speed of sound in the tissue. [8,16,23] ARF 

can be generated by ultrasound transducer arrays or a high intensity focus ultrasound 

(HIFU) transducer.  The schematic of biomechanical imaging with ARF generated by 

HIFU transducer is shown in Fig. 2.1. The diagnostic ultrasound transducer mounted in 

the center opening of the HIFU transducer is used to monitor the motion of the tissue in 

the focal zone. In a finite element analysis, the motion of the tissue is directly estimated 

from the FE simulation. 
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Figure 2.1. Schematic of biomechanical imaging with acoustic radiation force (ARF) 

generated by HIFU transducer. ARF is a spatial-varying body force as shown in the focal 

zone that is the region of excitation (ROE). The diagnostic ultrasound transducer 

mounted in the center opening of the HIFU transducer is used to monitor the motion of 

the tissue in ROE. 

 

The analytical model for the displacement field induced by ARF is derived from 

the solution for a point load in an infinite isotropic homogeneous solid. Here, the point 

force is assumed to be applied at the origin along the z-axis. Then, the displacement field 

in the z direction is given by [24] 

   
      

         
 
  

  
         (2.2) 

where uz is the displacement component in the z direction, P is the magnitude of the 

applied point force,  is Poisson’s Ratio, E is Young’s modulus, z is the axial distance 

with respect to the origin in the z direction, and R is the distance from the origin. The 
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ARF body force field can be decomposed into infinitesimal volume elements which 

approximate a series of point forces applied in the z direction. The displacement field 

induced by the ARF body force is obtained by superimposing the displacement generated 

from each point force. In ARF creep imaging, the displacement along the z-axis, i.e., the 

axis of symmetry of the body force field, is interested. Then, the displacement for any 

location on the z-axis is given by convolving the solution in Equation (2.2) with the 

spatial-varying body force field  

      
     

        
    

      
 

             
 

 

 

  

 

 

  

 
    

           
                 

(

(2.3) 

with z denoting the axial distance with respect to the origin in the z direction, r the radial 

distance from z-axis, and f(r,z) the body force density. It should be mentioned that 

Equation (2.3) is derived for an ARF body force with distribution f(r,z) in an infinite 

isotropic homogeneous medium.  

2.2 Acoustic Radiation Force Imaging Methods 

ARF imaging techniques use focused ultrasound transducers to generate a highly 

localized ARF to excite the region of interest inside the soft tissue. The mechanical 

properties (or their contrasts) of soft tissue can be reconstructed by measuring either the 

shear wave propagation away from the region of excitation (ROE) or the responses 
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within the ROE. [25–29] Many imaging techniques have been proposed based on 

different ARF excitations and measurement metrics. 

2.2.1 Shear Wave Imaging 

Shear wave imaging methods measure the shear wave propagation away from the ROE. 

They can estimate the soft tissue elasticity or viscoelasticity quantitatively, and have been 

studied by many research groups. These methods have been developed based on the 

Navier’s equation described by [24,30] 

 
   

   
                     (2.4) 

where  is the density, u is the displacement that depends on both space and time, and b 

is the body force. Lamé first parameter  and shear modulus  can be expressed in terms 

of Young’s modulus E and Poisson’s ratio v as  

  
  

           
       

 

      
 (2.5) 

In ARF imaging, the measured shear wave propagation is outside the ROE, where there is 

no ARF body force. Thus, the last term in the right hand side of Equation (2.4) can be 

eliminated. Then, the Helmholtz wave equation for shear wave propagation can be 

derived based on Equation (2.4): [20,31,32] 

 
   

   
      (2.6) 



9 

 

where  is the density,  is the shear modulus, and u is the transverse displacement. 

Theoretically, for a near-incompressible (Poisson’s ratio        ), isotropic, linear 

elastic solid, the speed of the shear wave can be described by [24] 

    
 

       
  

 

 
 (2.7) 

where cs is the shear wave speed.  

 It was first proposed by Sarvazyan et al. that ARF could induce shear waves 

remotely in soft tissue by focused ultrasound transducers, and the propagation of the 

induced shear waves could be monitored to estimate the elasticity of the tissue. [20] The 

basic theory of shear wave elasticity imaging (SWEI) with ARF was derived based on 

two ways of shear wave generation: periodic and pulsing ultrasonic modulation. Optical 

detection and magnetic resonance imaging method were applied to detect the induced 

shear waves in the experimental studies. These proof-of-concept experiments 

demonstrated the feasibility of SWEI with ARF.  

ARF impulse induced shear waves have been applied in both in vivo and ex vivo 

experiments to image soft tissue shear modulus. [33–37] Direct inversion of the 

Helmholtz equation (Equation (2.6)) was first developed. However, the second order 

differentiation of displacement data is sensitive to noise, and the displacement data 

obtained with ultrasound generally have low signal-to-noise ratio (SNR). [35] Then, 

methods to estimate the shear wave speed were developed based on Equation (2.7), 

where the shear wave speed is estimated by measuring the time to peak displacement 

(TTP) at the lateral locations. [34,36,37]  
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Shear wave dispersion ultrasound vibrometry (SDUV) has been proposed to 

measure both tissue elasticity and viscosity. The theoretical basis for this method is 

described by [38–41] 

       
           

              
 (2.8) 

where cs is the shear wave propagation speed,  is the density,  is the frequency of the 

shear wave,  is the shear elasticity and  is the shear viscosity of the medium. Harmonic 

shear waves are produced with amplitude modulated ultrasound push beams.  Different 

frequencies of the push beam generates shear wave with different , then the resulting 

shear wave speeds are different. The elasticity and viscosity of soft tissue can be solved 

by fitting Equation (2.8) with several excitation frequencies and the corresponding 

measured shear wave speeds.  

There are other shear wave imaging methods developed with different ways of 

shear wave generation and measurement metrics. Supersonic shear imaging (SSI) applies 

a group of ARF excitations along the beam axis, which moves at a supersonic speed and 

generates a near plane shear wavefront that is monitored and used to imaging soft tissue 

elasticity. [31] Spatially modulated ultrasound radiation force (SMURF) uses two 

spatially separated ARF excitations and measures the displacement at a specified location 

to estimate the shear wave speed in the medium. [42]  
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2.2.2 Imaging within the Region of Excitation 

As is discussed in last section, shear wave imaging methods have enjoyed great 

popularity, because they can image the soft tissue mechanical property quantitatively. A 

potential drawback to the shear wave imaging methods is that they measure the tissue 

responses outside the region of excitation where the displacement of tissue is much 

smaller and is sensitive to jitter due to the low SNR of the measurement, which can 

deteriorate in the presence of heterogeneity due to shear wave reflection. [25,26,43] 

Sometimes, the spatial resolution can be lower than a qualitative imaging method. [37] 

Alternatively, many ARF imaging methods based on the ROE measurements have been 

developed, which present their unique advantages: 1) displacement within the ROE is 

largest, and less radiation force is needed to excite the tissue which can reduce possible 

heating and damage due to ARF; 2) it is easier to measure the responses within the ROE 

than the shear wave propagation for experimental implementation. [20,26,43]  

 Acoustic radiation force impulse (ARFI) imaging applied a short acoustic 

radiation force impulse (the duration of which is generally less than 1ms) to excite the 

soft tissue. The resulting transient responses within the ROE are used to estimate the 

stiffness contrast.  [22] These transient responses include the peak displacement, 

displacement at a given time, time of recovery from peak displacement, and time-to-peak 

displacement. [44,45] Many clinical applications of ARFI imaging have been develop for 

qualitative imaging of soft tissue. [46–49] Alternatively, harmonic motion imaging 

(HMI) employs a harmonic ARF and results in measurable dynamic responses, which are 

related to the local distribution of the tissue’s mechanical properties. The measured 

amplitude of the induced harmonic displacement is considered to be inversely 
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proportional to the local tissue stiffness [5,16,23]. Consequently, the dynamic 

displacement amplitude is used as an indication of the underlying tissue stiffness. HMI 

elastograms exhibit good stiffness contrast and are used for monitoring soft tissue 

stiffness changes in thermal ablation. [50,51] 

 Both ARFI imaging and HMI are qualitative methods due to the unknown stress 

distribution in the ROE. The magnitude of the ARF is decided by the intensity of the 

acoustic radiation and the tissue attenuation as described in Equation (2.1). However, the 

acoustic radiation intensity can be changed when it travels through the media due to 

reflection and attenuation, which makes an accurate estimation of the intensity at a given 

special location challenging. In addition, the tissue attenuation value varies from patient 

to patient and is non-uniform. [26,27,52] Therefore, an accurate estimation of the ARF 

within the ROE is impossible, which makes that most of the ROE-based methods can 

only provide qualitative estimation. However, as is discussed in the beginning of this 

section, the advantages of imaging with ROE measurements make it desirable to develop 

quantitative imaging methods within the ROE. 

 Guzina et al. proposed a model-based quantitative viscoelastic characterization of 

thin tissues with ROE responses to a harmonic acoustic radiation force excitation. [25,53] 

In this method, the model local boundaries and ARF distribution were considered, and 

the inverse problem was solved analytically based on the frequency dependent responses 

of the thin tissues. However, this analytical method only validates for tissues with 

specific geometry and boundary conditions, i.e., thin tissues with under-damped dynamic 

responses.  
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 A more general way to do quantitative imaging within the ROE is based on the 

temporal characteristics of the dynamic responses. Region of Excitation Time-to-Peak 

(ROE TTP) method has been developed to quantify tissue shear modulus within the ROE 

by measuring the time required for the displacement to reach its maximum under an 

impulsive excitation the duration of which is less than 1ms. [43,54] Since there is no 

analytical relationship between TTP and shear modulus for arbitrary ARF configuration. 

They proposed to use an empirical look-up table to build the relationship between TTP 

values and shear moduli. This method is developed to estimate only shear elasticity.  

To estimate viscoelastic properties of soft tissue, the ARF induced creep imaging 

methods have been developed with step ARF excitation, and repeated ARF pulses with a 

high duty cycle are used to mimic the step forcing function. [21,36,55–57] This method 

was first proposed by Walker et al., and aims to quantitatively estimate a “force free” 

parameter, time constant, which is the ratio of shear viscosity to shear elasticity for a 

Voigt viscoelastic material. The time constant is called a “force free” parameter due to 

the fact that it is independent of the ARF magnitude, and it is assumed that it’s decided 

by only the temporal creep displacement responses within the ROE. In order to estimate 

the absolute value of shear elasticity and viscosity, the ARF induced creep imaging needs 

to combine with other elasticity estimation methods. For example, Mauldin et al. applied 

shear wave elasticity imaging to estimate the tissue elasticity and ARF induced creep 

imaging to estimate the time constant. Then both the shear elasticity and viscosity can be 

estimated quantitatively. Without modeling the soft tissue and ARF, the time constant can 

be estimated with only the temporal creep response. This method did not consider the 
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interactions between tissue elements and the three-dimensional distribution of the ARF, 

which modeled the imaging system as a single degree-of-freedom (SDF) model. [29] 

2.3 Summary 

Acoustic radiation force imaging within the ROE offers both opportunities and 

challenges. It has advantages over shear wave imaging as is discussed in last section, 

while the unknown stress distribution within the ROE limits its quantitative imaging 

ability. In this thesis, the study will focus on the ARF imaging within the ROE.   

 Both the qualitative and quantitative imaging methods within the ROE are based 

on a series of assumptions: 1) the localized responses within the ROE are assumed to be 

independent of global boundary conditions; 2) the ROE is assumed to be in an 

homogeneous medium; and 3) single degree-of-freedom model is applied to describe the 

dynamic behavior of soft tissue that is actually a three-dimensional system. Sometimes, 

these assumptions may lead to large estimation error. It is necessary to investigate all 

these assumptions and decide what factors will affect the accuracy of these assumptions. 

What’s more important, a more systematic and efficient procedure should be developed 

to implement quantitative imaging within the ROE in ARF imaging.  
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Chapter 3: Dynamic Behavior of Soft Tissue in Acoustic Radiation 

Force Imaging  

 

A finite element method is employed to study the dynamic behavior of soft tissue within 

the ROE. The purpose of this study is to investigate these assumptions that are made in 

ARF imaging within the ROE and decide what factors will affect the accuracy of these 

assumptions. For the qualitative imaging, harmonic motion imaging (HMI) is 

investigated to study the effects of global boundary conditions on the localized ARF 

induced responses. In a heterogeneous medium, the contrast transfer efficiency of HMI is 

studied to justify the homogeneous assumption. For the quantitative imaging, the 

simplified single degree-of-freedom (SDF) model is evaluated for both homogeneous and 

heterogeneous cases. 

3.1 Global Boundary Effects 

The ARF generated by focused ultrasound is highly localized, and the response of the 

induced tissue is assumed to be only related to the local distribution of the mechanical 

properties, i.e., independent of global boundary conditions. However, simplifying 

assumptions made about the global boundary conditions limit the quantitative accuracy of 

the tissue’s mechanical properties. In particular, when the dimensions of the soft tissue 

are comparable to the focal region size, similarly to characterization of skin tissue or skin 

lesions, the boundary effects can dominate the responses of the target tissue. [53] In this 

section, HMI is investigated to study the effects of global boundary conditions on the 

localized ARF induced responses. In HMI, the measured amplitude of the induced 



16 

 

harmonic displacement is inversely proportional to the local tissue stiffness. [23,58] 

Consequently, the dynamic displacement amplitude is used as an indication of the 

underlying tissue stiffness. Different boundary conditions and viscoelastic properties are 

applied to the FE model and the corresponding displacement amplitudes are studied. The 

effect of the model’s global dimensions is also considered relative to its independence 

with respect to HMI excitation. 

3.1.1 Model Formulation 

The FE method has been widely used for the simulation of soft tissue dynamic behavior 

in ARF imaging. [14,45,50,59–62] The FE method has been applied to solve the 

governing partial differential equations (PDEs) of a system based on a weak form of the 

original PDEs, where the balance of linear momentum for a dynamic system can be 

express as [24,63] 

          
 

 

                
 

 

    

 

 

      (3.1) 

where     is the component of stress tensor,    is the component of the traction vector, 

  is the boundary of domain  ,     is the component of virtual displacement, and      is the 

component of virtual strain.  

In this study, the soft tissue in the FE model is assumed to be an isotropic, 

homogenous, linear viscoelastic, and near-incompressible medium. The objective is to 

investigate the effects of global boundary conditions on soft tissue HMI. Thus, the whole 

model is homogenous, and no hard inclusions representing tumors are included. The main 

components of the human breast are fat and glandular tissues, whose Young’s moduli (E) 
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are in the range of 7.5-66 kPa. [64] For a near-incompressible medium, the Poisson’s 

ratio of the model is set to 0.499. [6,45,65,66] As HMI applies dynamic excitation, the 

viscosity of soft tissues should be considered for the time-dependent responses in the FE 

model. For low frequency excitations (generally less than 100 Hz in HMI), the Kelvin-

Voigt viscoelastic model is effective in modeling the time-dependent responses of soft 

tissues or tissue mimicking phantoms. [21,56,58,67,68] The general equation of motion 

for the FE discretization system is described by  

                         (3.2) 

where u(t) is the global nodal displacement vector, F(t) is the global force vector, M, D 

and K are the global mass, damping, and stiffness matrices, respectively. [63] For a 

Kelvin-Voigt viscoelastic model,  

     (3.3) 

where  is the viscous coefficient. 

The effects of global boundary conditions in breast tissue characterization are 

investigated using an FE model. The dimensions of the FE model are 60 mm   48 mm  

 32 mm (width   depth   height). The mesh size is 4 mm and the 8-node linear brick 

C3D8 element is used with full integration over the volume of each element. The model 

is built with ABAQUS and is illustrated in Fig. 3.1. The bottom boundary of the model 

lies in the XY-plane when Z = 0, and is subjected to different constraint conditions. 

Human ribs are considered as the rigid structural support to breast tissue. [64] In our 

model, ribs are modeled as the encastre boundary, and the gaps between ribs are modeled 
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as the free part of the bottom boundary. The width of each rib is 12 mm, which is in the 

range of rib width of a normal adult. [69]  The red shaded area in Fig. 3.1 is the encastre 

boundary on the bottom of the model. 

 

 

Figure 3.1. The rib-like bottom boundary (RBB) and the cross-section at Y = 24 mm. 

The red shaded area is the encastre boundary on the bottom of the model. A raster-scan 

technique is applied to the interior nodes of the cross-section. C is a node in the center 

area of the model. 

 

A raster-scan technique is applied for the XZ cross section at Y = 24 mm as 

illustrated in Fig. 3.1. During the raster-scan process in HMI, the same harmonic force is 

applied at discretized locations inside the soft tissue. The displacement amplitude of each 

focal point is estimated based on the dynamic displacements measured by the diagnostic 

ultrasound transducer. Here, a harmonic force is sequentially applied at the interior nodes 

of the plane. When the force is applied on a node, the nodal displacement amplitude of 

this node is computed. This procedure is followed for every node until all the 

displacement data of the interior nodes are obtained.  

The Explicit Dynamic Analysis (EDA) procedure is generally used for dynamic 

FE simulation. However, the EDA needs to update the equation of motion for every small 
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time increment, and a large number of increments (more than 10,000 for this problem) 

should be performed to acquire the displacement amplitudes indirectly.  In order to 

improve the computational efficiency, Iorga et al. proposed a state-space model to 

analyze the dynamic responses of soft tissues in HMI. [59] The model order reduction 

techniques used in that study simplified the soft tissue model, but the procedure to 

formulate the state-space model is still complex. Hou et al. used the quasi-static 

deformation induced by the maximum HMI radiation force to approximate the dynamic 

displacement amplitude. [50] This approximation highly reduced the computational time 

and exhibited good accuracy for the pure elastic medium. However, for viscoelastic 

medium, the dynamic displacement amplitude of soft tissues is related to not only the 

HMI radiation force amplitude but also to its frequency, in which case the quasi-static 

deformation and the dynamic displacement amplitude can be quite different. 

The Direct-solution Steady-state Dynamic Analysis (DSDA) is used to compute 

the dynamic response of soft tissues. DSDA is a linear perturbation procedure in 

ABAQUS, and is used for steady-state dynamic response analysis of a system to 

harmonic excitation as is formulated in Equation (3.4). [70] 

 
                     

 
                   

  
     

 
     

   
     

 
      

  (3.4) 

where   is the excitation frequency, and other quantities are the same definition as in 

Equation (3.2) (u and F have complex components here). 

This method can directly provide the steady-state nodal displacement amplitudes 

of the model to different excitation frequencies and it takes about 5% of the 
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computational time of EDA. The EDA procedure illustrated that the dynamic response of 

the viscoelastic soft tissue in HMI quickly converges to its steady state. Thus, the steady 

state response of the tissue is detected as the displacement amplitude, and DSDA is 

suitable for this study.  

3.1.2 Model Validation 

The finite element (FE) model and the analytical procedure are validated by comparing 

the simulation results between DSDA and EDA.  The simulation parameters used are 

from literature reported experimental and simulation data on soft tissues. [58,59,71] The 

Young’s modulus of the model E is 20 kPa, and the viscous coefficient considered is 

0.0001s.  The amplitude of the harmonic force is 0.0022 N with frequencies of 

excitation f = 50 Hz and 75 Hz, respectively. The force is applied in the Z-direction at 

node C, which is a node in the center area of the model as is shown in Fig. 3.1. EDA 

simulation results indicate that the transient response of the system will decay quickly for 

both f = 50 Hz and 75 Hz and their responses reach steady state in the first two periods, 

see Fig. 3.2. This confirms that DSDA procedure is suitable for this study. The estimated 

displacement amplitudes for f = 50 Hz and 75Hz are 25.23 m and 30.86 m, 

respectively. For the same configuration with DSDA, the computed displacement 

amplitudes for f = 50 Hz and 75 Hz are 25.25 m and 30.59 m, respectively, indicating 

good agreement between the two analytical procedures. 
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Figure 3.2. Dynamic response of node C simulated with Explicit Dynamic Analysis 

(EDA).  The frequencies of the applied harmonic force are f = 50 Hz (─) and 75 Hz (--), 

respectively. The viscous efficient  is 0.0001s. 

 

The FE analytical results were also validated using experimental data of gelatin 

phantoms performed by Maleke et al. (2005) for different kinds of materials with E=20, 

30, 40, 50 and 60 kPa, respectively. Shan et al. calculated the values of the amplitude of 

the harmonic force and the viscous coefficients used in the experiments. [16,58] The 

calculated displacement amplitudes by DSDA for these five kinds of materials are all in 

the range of the estimated displacement amplitude from experiments as illustrated in 

Table 3.1. 
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Table 3.1. Comparison between simulation results of DSDA and experimental data on 

gelatine phantoms [71] 

Young’s 

modulus 

(kPa) 

Estimated 

displacement 

amplitude from 

experiments 

(µm) 

Estimated phase 

shift from 

experiments (°) 

Calculated 

displacement 

amplitude by 

DSDA (µm) 

Calculated phase 

shift by DSDA 

(°) 

20 10.69±0.43 62 10.97 67 

30 10.21±0.63 50 10.17 55 

40 9.62±1.41 44 8.58 48 

50 6.97±0.30 44 6.85 47 

60 5.41±1.78 36 6.51 39 

 

Harmonic force frequency f = 50 Hz, amplitude F = 0.0022 N. [16,58] 

 

3.1.3 Effects of Global Boundary 

In order to investigate the effects of global boundary conditions on the dynamic 

responses of soft tissues in HMI, different boundary conditions and viscoelastic 

properties are applied to the model, and the corresponding raster-scan displacement 

amplitudes are studied. The boundary conditions used in our model are a rib-like bottom 

boundary (RBB) and a completely fixed bottom boundary (CFBB) of which the bottom 

border of the model is totally constrained. Fig. 3.3 illustrates the displacement amplitudes 

in a raster-scan simulation on the cross-section at Y = 24 mm portrayed in a colourmap. 

Displacement amplitudes between nodes are computed by linear interpolation. The 

frequency of the harmonic force, f = 50 Hz and 75 Hz are applied to the model 

respectively. Two values of Young’s modulus are investigated, namely E = 20 kPa and 

60 kPa. As seen, a pure elastic case (0) of HMI is depicted in Fig. 3.3. Generally, for 
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nodes near the unconstrained boundary, the displacement amplitudes have large values; 

for nodes near the fixed boundary, the displacement amplitudes have small values. It is 

also noted that the displacement amplitude distribution patterns vary considerably for 

different Young’s moduli and frequencies of the applied harmonic force.  This can be 

explained by the presence of system resonance of the FE model, and it has been observed 

that there are several resonant frequencies near 50 Hz and 75 Hz for soft tissue models 

with simulation parameters in the same range.  [58,59] In addition, both changes in 

Young’s modulus and excitation location result in a shift of the resonance frequency. [66] 

For this pure elastic case, the resonance cannot be damped by viscosity; thus the 

displacement amplitude has high spatial variance and model dependence, and it is 

sensitive to excitation frequencies.  
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Figure 3.3. Mapping of displacement amplitudes (m) in a raster-scan simulation on the 

cross-section at Y = 24 mm with viscous coefficient  = 0, i.e. the pure elastic case. Two 

kinds of bottom boundary conditions, a rib-like bottom boundary (RBB) and a 

completely fixed bottom boundary (CFBB) are investigated for Young’s modulus E = 20 

kPa and E = 60 kPa, respectively. The frequency of the harmonic force: (a) f = 50 Hz and 

(b) f = 75 Hz. 
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Figure 3.4. Distribution of the displacement amplitude data after discarding the nodes 

nearest to the boundary for simulation with viscous coefficient 0. Only the regions 

inside the dashed boxed in Fig. 3.3 are summarized here. This boxplot illustrates the 

effect of global boundary conditions on the dynamic responses of FE model of soft 

tissues in a pure elastic case. The frequency of the harmonic force: (a) f = 50 Hz and (b) f 

= 75 Hz. 

 

In order to investigate the effect of global boundary condition on the interior 

nodes, the nodes nearest to the boundary are first discarded, and then the displacement 

amplitude data of the remaining nodes are analyzed. To illustrate that, the interior region 

is marked as the region inside the dashed box in Fig. 3.3. The distance from the surface of 

the model to the edge of the dashed box is 6 mm, and the dimension of the dashed box is 

48 mm × 20 mm. A statistical analysis is performed for the interior region with Boxplot 

in Fig. 3.4. The top and bottom edges of the box are the 25th and 75th percentiles of the 



26 

 

amplitude data, the line near the middle of the box is the 50th percentile or the median. 

The length of the box is the interquartile range (IQR). The highest datum of the whisker 

represents the largest value that is within 1.5×IQR of the 75th percentiles, the lowest 

datum of the whisker represents the smallest value that is within 1.5×IQR of the 25th 

percentiles, and values not included between the whiskers are plotted as outliers with plus 

signs.  [72] The boxplot can accurately describe the displacement amplitude data 

distribution. For each case, the displacement amplitudes of the interior nodes are not 

uniform and vary in a wide range, which means that these displacement amplitudes are 

related to the global locations of the excited nodes. Comparing the cases that have the 

same Young’s modulus but different boundary conditions, it can be deducted that 

boundary conditions affect not only the response of nodes near the boundary, but also the 

response of the whole model.  
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Figure 3.5. Mapping of displacement amplitudes (m) in a raster-scan simulation on the 

cross-section at Y = 24 mm with viscous coefficient 0.0001s. Two kinds of bottom 

boundary conditions, RBB and CFBB, are investigated for Young’s modulus E = 20 kPa 

and E = 60 kPa, respectively.  The frequency of the harmonic force: (a) f = 50 Hz and (b) 

f = 75 Hz. 
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Figure 3.6. Distribution of the displacement amplitude data after discarding the nodes 

nearest to the boundary for simulation with viscous coefficient 0.0001s. Only the 

regions inside the dashed boxed in Fig. 3.5 are summarized here. The frequency of the 

harmonic force: (a) f = 50 Hz and (b) f = 75 Hz. 

 

The responses of models with low viscosity are considered next. The viscous 

coefficient is 0.0001s. After adding the viscosity, the two boundary conditions, RBB 

and CFBB, give similar results for displacement amplitudes of the interior nodes, as 

depicted in Figs. 3.5 and 3.6. In addition, it is noted that the two excitation frequencies 

also give similar displacement amplitude distribution patterns, signifying that the effect 

of resonance has been attenuated by viscosity. However, the displacement amplitudes 

still vary a lot at different locations of the model, for example, the case of f = 75 Hz and E 
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= 60 kPa in which the displacement amplitudes decrease gradually from the free top 

surface to the fixed (or partly fixed) bottom boundary.  

Subsequently, the viscous coefficient of the soft tissue is increased to 0.001s. 

As depicted in Fig. 3.7 and similarly to the case of viscous coefficient 0.0001s, 

displacement amplitudes of the interior nodes for both boundary conditions are nearly 

identical. Meanwhile, displacement amplitudes do not significantly change at different 

locations of the interior region. A statistical analysis is performed for the interior region 

with boxplot, Fig. 3.8. It is observed that the higher excitation frequency, f = 75 Hz, 

results in more uniform displacement amplitude data than f = 50 Hz does, which may be 

attributed to the fact that a higher frequency motion is damped more for the same 

viscosity and the effect of resonance related to the global boundary and location can be 

better attenuated for f = 75 Hz. For both frequencies, the displacement amplitude data 

vary in a small range for the interior region for the two Young’s moduli and two kinds of 

boundary conditions. To some extent, in HMI, the dynamic responses of this region can 

be considered independent of position or global boundary conditions, and then subjected 

to localized analysis procedure without considering the possible complex global 

boundary conditions when analyzing the interior region. 
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Figure 3.7. Mapping of displacement amplitudes (m) in a raster-scan simulation on the 

cross-section at Y = 24 mm with viscous coefficient 0.001s. Two kinds of bottom 

boundary conditions, RBB and CFBB, are investigated for Young’s modulus E = 20 kPa 

and E = 60 kPa, respectively.  The frequency of the harmonic force: (a) f = 50 Hz and (b) 

f = 75 Hz. 
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Figure 3.8. Distribution of the displacement amplitude data after discarding the nodes 

nearest to the boundary for simulation with viscous coefficient 0.001s. Only the 

regions inside the dashed boxes in Fig. 3.7 are summarized here. This boxplot shows the 

good independence of global boundary conditions of the dynamic responses of soft 

tissues in HMI when the viscous coefficients of the tissues are relatively high. The 

frequency of the harmonic force: (a) f = 50 Hz and (b) f = 75 Hz. 
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Figure 3.9. Displacement amplitudes of central node for cubic models with different 

dimensions and viscous coefficients. (a) E = 20 kPa and f = 50 Hz; (b) E = 60 kPa and f = 

50 Hz; (c) E = 20 kPa and f = 75 Hz; (d) E = 60 kPa and f = 75 Hz. 

 

Our results illustrate that the effects of global boundary conditions tend to vanish 

in the interior region of a model with high viscous coefficient in HMI analysis. Under the 

same excitation force, the dynamic responses of the interior regions should be 

approximately the same for different homogenous soft tissue models with the same 

viscoelasticity. In order to verify the above analysis, five cubic soft tissue models with 

different dimensions are studied. The edge lengths of the five cubic models are 16 mm, 

40 mm, 64 mm, 88 mm, and 112 mm, respectively. The same excitation force is applied 

to the central node of each model. The viscous coefficients 0, 0.0001s, 0.001s and 

0.01s are investigated. For each viscous coefficient, the displacement amplitudes of the 

central nodes are obtained for all five models, and then normalized by the maximum of 

the five displacement amplitudes. The results are plotted in Fig. 3.9. For 0, the pure 
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elastic case, the displacement amplitudes of the central nodes vary notably for models 

with different dimensions. For 0.0001s, the data only vary in a small range. For 

0.001s and 0.01s, all five models give approximately the same displacement 

amplitude for each case, indicating independence of the dynamic responses of the central 

nodes from the dimension of the models. In particular, for the 16 mm   16 mm   16 mm 

cubic model, the dynamic responses of its central node are incommensurable with the 

other larger models for all four viscous coefficient values. That means the localized 

dynamic responses of soft tissues are not independent of the global boundary conditions 

as the dimension of the model becomes small. When the dimensions of soft tissue 

become comparable to the focal region size, the global boundary effects may even 

dominate the responses of the target tissue. 

3.1.4 Summary 

In HMI, a qualitative imaging within the ROE, the effects of global boundary conditions 

on the localized ARF induced responses are studied with FE method. The FE model 

simulated two different boundary conditions, rib-like bottom boundary and completely 

fixed bottom boundary, and three different viscous coefficients 0, 0.0001s, and 

0.001s. In particular, for regions near the boundary, the dynamic responses of soft tissues 

are highly dependent on the boundary conditions. In the case of low viscous or pure 

elastic model, boundary conditions affect not only the responses of region near the 

boundary, but also the responses of the whole model. In the case of model with high 

viscous coefficient, HMI provides consistent displacement amplitude data for interior 

region, which can be considered independent of position or global boundary conditions, 
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and thus justifiably subjected to localized analysis. Study on the effects of global 

dimensions confirms that the dynamic responses of the interior region are independent of 

the dimensions of the model in the case of high viscous coefficient. 

3.2 Contrast Transfer Efficiency 

In HMI, localized analysis does not require an accurate description of the complex 

boundary of the global model, which highly simplifies the estimation of tissue stiffness. 

In homogenous media, the measured amplitude of the induced harmonic displacement 

and the local tissue stiffness are shown to be approximately in inverse proportion. 

However, in heterogeneous media, the response of the focal area can be affected by the 

local heterogeneity and the inverse proportion relation between displacement amplitude 

and tissue stiffness becomes invalid. In this case, the observed stiffness contrast is 

defined as the inverse of inclusion-to-background displacement amplitude contrast. Then, 

this contrast is compared with the true stiffness contrast, which yields the contrast-

transfer efficiency (CTE). Ponnekanti et al. and Kallel et al. used CTE to investigate the 

limitations of elasticity contrast visualization in static external excitation case. [73,74] 

Both their finite element simulations and analytical derivation results illustrated that 

elastograms are less efficient in depicting the elastic contrast of soft inclusion embedded 

in hard background than that of hard inclusion embedded in soft background. Maleke et 

al. showed that HMI is a reliable stiffness-mapping technique for tumor detection based 

on the CTE analysis of HMI for elastic materials. [61] However, soft tissues are 

viscoelastic materials. The viscosity of soft tissues needs to be taken into consideration in 
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the CTE analysis of HMI. In addition, a wide range of inclusion to background stiffness 

contrast should be studied to show a more general contrast-transfer performance of HMI. 

In this study, a finite element FE model is built, and the direct-solution steady-

state dynamic analysis (DSDA) is used to compute the dynamic responses of soft tissues 

in the finite element simulation as is discussed in last section. Then, the CTE of HMI is 

investigated for different inclusion to background contrast ratios. The effects of excitation 

frequency and material viscosity on CTE are also studied in HMI.  

3.2.1 Heterogeneous Finite Element Model 

A 3D FE model was developed using ABAQUS and is illustrated in Fig. 3.10. The 

dimensions of the original model of the soft tissue are 48mm  48mm   48mm (width  

 length    height). The bottom boundary is fixed in all directions. There is a 4mm 

 4mm   4mm cubic inclusion in the center of the model. As the applied harmonic force is 

along the z-direction, symmetry about the x=0 and y=0 planes can be used to reduce the 

dimensions of the model. The 3D FE model employed the 8-node linear brick C3D8 

element with full integration over the volume of each element. The FE model has totally 

12,600 elements with the minimum mesh size 0.4mm. The region near the inclusion has 

higher-density mesh to ensure computational accuracy. A mesh convergence study was 

also performed to make sure the mesh of the model is fine enough. The harmonic force 

used in this study is a body force applied along the z-direction. The focal volume of the 

body force is 1mm  1mm   2mm (width   length    height). The magnitude of the body 

force does not affect the final computed contrast in this study; because linear viscoelastic 
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material properties are assigned to the model and all the displacement amplitudes are 

proportional to the body force magnitude.  

 

 

Figure 3.10. 3D soft tissue model and 3D finite element model. The dimensions of the 

soft tissue model are 48mm × 48mm × 48mm. The bottom boundary is fixed in all 

directions. There is a 4mm × 4mm × 4mm cubic inclusion in the center of the model. 

Symmetry about the x=0 and y=0 planes is used to reduce the dimension the finite 

element model. The dimension of the finite element model is 24mm × 24mm × 48mm. 

 

3.2.2 Contrast-transfer Efficiency 

The contrast-transfer efficiency (CTE) of HMI is defined as the ratio of the observed 

stiffness contrast to the true stiffness contrast. The observed stiffness contrast Co is the 

inverse of inclusion-to-background displacement amplitude contrast. This contrast is 

obtained by averaging the displacement amplitude data inside the inclusion and in the 

background separately, calculating the ratio of the two averaged data (Equation (3.5)), 

and computing the inverse of this ratio. [61] 
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 (3.5) 

The true stiffness contrast is the inclusion-to-background elastic contrast. Seven 

inclusion-to-background elastic contrasts were studied: 1:30, 1:10, 1:3, 1:1, 3:1, 10:1, and 

30:1, from soft inclusion in hard background to hard inclusion in soft background. Then, 

the CTE in a logarithmic decibel scale is described as [61,73] 

                           (3.6) 

   
          

           
 

(3.7) 

where Co is the observed stiffness contrast and Ct is the true stiffness contrast. The ideal 

performance of a biomechanical imaging method in terms of CTE is when the observed 

elasticity contrast equals the true elasticity contrast, i.e.,          .   

3.2.3 Contrast-transfer Efficiency for Model with Inclusion 

The DSDA procedure is first validated by the general explicit dynamic analysis. Young’s 

moduli of both the background and inclusion are set to E=9kPa. The viscous coefficient 

is set to =0.001s. The body force is applied at the center of the inclusion. The DSDA 

procedure directly computes the steady-state displacement amplitude of the focal point 

for three different excitation frequencies: 25Hz, 50Hz and 100Hz. The results are 

D25=3.30m, D50=3.13m and D100=2.71m. The explicit dynamic analysis results for 

the same setting are illustrated in Fig. 3.11. The corresponding displacement amplitudes 
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are D25=3.27m, D50=3.11m and D100=2.68m, indicating good agreement between the 

two analytical procedures. It also shows that the dynamic response of the viscoelastic soft 

tissue converges to its steady state quickly. 

 

Figure 3.11. Dynamic responses of the focal point simulated with explicit dynamic 

analysis. The background and inclusion are assigned the same mechanical properties: 

E=9kPa and =0.001s. The three dashed straight lines indicate the displacement 

amplitudes for f=25Hz, 50Hz and 100Hz are D25=3.27m, D50=3.11m and 

D100=2.68m, respectively. 

 

In order to investigate the CTE of HMI for viscoelastic material, seven inclusion-

to-background elastic contrasts (true stiffness contrast) were studied: 1:30 (-29.6dB), 

1:10(-20dB), 1:3(-9.6dB), 1:1 (0dB), 3:1(9.6dB), 10:1(20dB), and 30:1 (29.6dB). Two 

kinds of Young’s moduli of the background are studied: Ebackground=3kPa and 9kPa. For 

each case, four different viscous coefficients are applied to the background: 

background=0.0002s, 0.0005s, 0.001s and 0.005s. After the viscoelastic properties of the 

background are assigned, the Young’s modulus of the inclusion changes to obtain 
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different inclusion-to-background elastic contrasts, but the viscosity of the inclusion is 

assumed to be the same as the background.  In addition, harmonic forces with three 

different frequencies are used as the excitation.  

The simulation results are shown in Figs. 3.12 and 3.13. Two relations are plotted: 

observed stiffness contrast versus true stiffness contrast, and contrast-transfer efficiency 

versus true stiffness contrast. They are also compared with the ideal case in which the 

observed stiffness contrast equals the true stiffness contrast and CTE(dB)=0. For all 

cases, the CTE decreases as |Ct(dB)| increases. For the low viscosity background, the 

CTE performance is quite good for |Ct(dB)|<10dB. As the viscosity of the background 

increases, the CTE generally decreases.  
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Figure 3.12. Observed stiffness contrast Co(dB) versus true stiffness contrast Ct(dB) 

(Left), and contrast-transfer efficiency CTE(dB) versus true stiffness contrast Ct(dB)  

(Right) for Ebackground=3kPa. The results are compared with the ideal relation that the 

observed stiffness contrast equals the true stiffness contrast and CTE (dB) =0. Four 

different viscous coefficients are studied: (a) background=0.0002s, (b) background=0.0005s, 

(c) background=0.001s and (d) background=0.005s. 

 



41 

 

For hard inclusion in soft background (Ct(dB)>0), the harmonic force frequency 

f=100Hz gives the best CTE performance except for background=0.005s. For f=25Hz and 

50Hz, CTE does not change much as the viscosity of the background increases. In this 

case, the hard inclusion has the same viscosity as the soft background, which means the 

hard inclusion has smaller viscous coefficient inclusion= and elasticity of the tissue 

dominates the dynamic response of the tissue. As is shown in Table 3.2, for example, 

inclusion=0.00017s for background=0.005s when Ct=30:1 (Ct(dB)=29.6dB). Then the 

observed stiffness contrast is not affected much in the cases of small viscous coefficients. 

However, a higher frequency motion (f=100Hz) is damped more in the high viscosity 

case (background=0.005s), which may dominate the dynamic response of the tissue and 

lead to low observed stiffness contrast.  

 

Table 3.2. Viscoelastic properties of the inclusion for different inclusion-to-background 

elastic contrasts (Ct) when Ebackground=3kPa and background=0.005s (background5.0Pa·s). 

Ct (dB) 
Einclusion 

(kPa) 

inclusion 

(Pa·s) 
inclusion (s) 

-29.6 0.1 5.0 0.15 

-20 0.3 5.0 0.05 

-9.6 1.0 5.0 0.015 

0 3.0 5.0 0.005 

9.6 9.0 5.0 0.0017 

20 30 5.0 0.0005 

29.6 90 5.0 0.00017 
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Figure 3.13. Observed stiffness contrast Co(dB) versus true stiffness contrast Ct(dB)  

(Left), and contrast-transfer efficiency CTE(dB) versus true stiffness contrast Ct(dB)  

(Right) for Ebackground=9kPa. The results are compared with the ideal relation that the 

observed stiffness contrast equals the true stiffness contrast and CTE (dB) =0. Four 

different viscous coefficients are studied: (a) background=0.0002s, (b) background=0.0005s, 

(c) background=0.001s and (d) background=0.005s. 
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For soft inclusion in hard background (Ct(dB)<0), the CTE performance is highly 

related to the viscosity of the tissue and CTE declines as the viscosity increases. Here, 

f=100Hz always gives the worst CTE performance, even for background=0.0002s, the CTE 

performance gets quite poor for Ct(dB)<-20dB. The CTE performance of f=25Hz and 

50Hz also gets very poor for Ct(dB)<-20dB as the viscosity increases. When 

background=0.005s, all three harmonic force frequencies give very low CTE for Ct(dB)<0 

and the observed stiffness contrast |Co(dB)| becomes very small. In this case, the soft 

inclusion has the same viscosity as the hard background, which leads to a much higher 

viscous coefficient of the inclusion. Similar to the hard inclusion in soft background case, 

as is shown in Table 3.2, for example, inclusion=0.15s for background =0.005s when Ct=1:30 

(Ct(dB)=-29.6dB). Then, the viscosity dominates the dynamic response of the inclusion 

especially for the higher frequency harmonic force, which results in the poor CTE 

performance for the soft inclusion in hard background case.  

Two kinds of Young’s moduli of the background (Ebackground=3kPa and 9kPa) give 

similar CTE performance. That means CTE of HMI is not sensitive to the elasticity of 

background but the inclusion-to-background elastic contrast and the viscosity of the 

tissue. 

3.2.4 Summary 

In summary, the contrast-transfer efficiency of HMI decreases as |Ct(dB)| increases. The 

CTE generally decreases as the viscosity of the tissue increases. A higher excitation 

frequency is more affected by the viscosity and the corresponding CTE declines faster as 

the viscosity of the tissue increases. The CTE of soft inclusion in hard background are 
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more sensitive to the viscosity of tissue than that of hard inclusion in soft background. As 

the viscosity increases, HMI becomes less efficient in depicting the stiffness contrast of 

soft inclusion in hard background than that of hard inclusion in soft background. It is also 

observed that CTE of HMI is not sensitive to the elasticity of background tissue. 

3.3 Evaluation of the Simplified Quantitative Model 

In Section 3.1 and 3.2, the effects of global boundary conditions and heterogeneity on the 

localized ARF induced responses are investigated for a qualitative imaging method 

within the ROE, i.e., HMI. For the quantitative imaging within the ROE, the simplified 

quantitative model should also be justified.  

The ARF induced creep imaging methods have been developed for quantitative 

imaging the time constant within the ROE. In these methods, a single degree-of-freedom 

(SDF) model based on the relation of creep strain due to a step stress is used to model the 

relation between the creep displacement and the step ARF. The SDF assumption can 

highly simplify the analytical model of the soft tissue viscoelastic characterization. The 

physical basis for this assumption is that the ARF generated by focused ultrasound is 

highly localized, and the response of the induced tissue is assumed to be only related to 

the local distribution of the mechanical properties. At the same time, it should be noted 

that the SDF assumption actually implies a homogeneous assumption in the analysis of 

each response. However, these approximations become challenging when considering the 

three dimensional (3D) nature of the original problem and in the presence of 

heterogeneity.  
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The limitations on the SDF model can be overcome by using finite element (FE) 

method, which is capable of modeling complicated geometries, material heterogeneities, 

complex mechanical models, and boundary conditions of biological soft tissue. [16] 

Thus, the dynamic behavior of viscoelastic soft tissue can be simulated with FE modeling 

without the SDF and homogeneous assumptions.  Different soft tissue viscoelasticity, 

ARF configurations and model heterogeneity can be effectively modeled and 

parametrically studied by employing FE. 

The purpose of this study is to investigate the fundamental limitation of the 

commonly used SDF and homogeneous assumptions in ARF induced creep imaging. 

Computational experiments were performed by FE simulations. For homogeneous model, 

the SDF assumption was evaluated quantitatively by analyzing the inverse problem with 

this assumption. For heterogeneous model, a qualitative analysis was performed by 

comparing the dynamic responses of the homogeneous model with that of the 

heterogeneous model, which demonstrated the limitations of the SDF and homogeneous 

assumptions in the presence of model heterogeneity.   

3.3.1 Creep Response of Viscoelastic Soft Tissue to Step ARF 

The soft tissue in this study is assumed to be an isotropic, linear viscoelastic, and near-

incompressible medium. The complex shear modulus of viscoelastic material is described 

by [67] 

          (3.8) 
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where    is the shear storage modulus,     is the shear loss modulus, and i is the 

imaginary unit. For a Voigt model, the shear storage and loss moduli of Equation (3.8) 

become 

                (3.9) 

in which case  is the shear modulus, is the angular frequency, and  is the shear 

viscosity.  

The complex shear modulus formulation in Equations (3.8) and (3.9) is in the 

frequency domain, while the dynamic simulation of soft tissue to a step force is a 

problem in the time domain, for which the viscoelasticity of soft tissue can be modeled 

by Prony series expansion. Then, for linear viscoelastic material, the relaxation modulus 

is described by [24,75] 

            
     

 

   

 (3.10) 

where      is the time-dependent relaxation modulus,    is the long-term modulus, and 

   and    are moduli and relaxation times of the Maxwell elements, respectively. The 

Voigt model has instantaneous stress relaxation under a step strain test; therefore, it does 

not have a well-defined relaxation function with a Prony series expansion. [24] The 

standard linear solid model that combines a spring and Maxwell model in parallel is used 

to approximate the Voigt model by setting N=1 and       in Equation (3.10). Then, in 

the FE model, the viscoelastic property described by the Prony series can be calculated 

by 
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      (3.11) 

                                               (3.12) 

where k is a constant and is set to 100 in this study for consideration of both accuracy and 

computational efficiency. 

In ARF creep imaging, the creep response of viscoelastic soft tissue has been 

studied with the relation [21,36,55,57] 

          
  

         
 

 
 (3.13) 

where      is the creep displacement of the focal point, A is the steady state displacement 

decided by the configuration of the ARF and shear modulus (, and  is the time 

constant that describes the ratio of shear viscosity to shear elasticity of the material. 

Based on Equation (3.13), the time constant,  can be estimated by fitting to the time-

dependent creep displacement, which in practice is measured by the diagnostic ultrasound 

transducer. In Equation (3.13), the relation between the creep displacement and the step 

ARF is based on the model of creep strain due to a step stress. Strictly speaking, this 

relation is only accurate for system without mass, in which case the stress is proportional 

to the applied force and the creep strain is proportional to the creep displacement.  Thus, 

Equation (3.13) is actually an approximation based on the fact that the ARF is highly 

localized. In this study, the errors associated with this approximation will be evaluated. 

The above SDF model did not consider the inertia effects, which are important in 

a dynamic analysis. In ARF creep imaging, there is another SDF model built with the 
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mass considered. Viola and Walker modified the model by adding an inertial component 

in series with the Voigt model, and solved for the time-dependent displacement induced 

by a step ARF [55] 

         
       

      
                

       

      
                 (3.14) 

  
  

  
 (3.15) 

with  the damping ratio, o the natural frequency, and  the time constant that defines 

the ratio of shear viscosity to shear elasticity of the material. Based on Equation (3.14),  

and o can be estimated by fitting to the time-dependent creep displacement. The time 

constant  can be given by Equation (3.15). However, in this study, it is shown that this 

model does not improve the estimation accuracy in the inverse problem due to the 

fundamental limitations of the SDF assumption.  

3.3.2 Finite Element Model  

As described in Chapter 2, ARF is a spatial-varying body force. For quantitative imaging, 

the ARF model should represent its spatial distributions. The focal zone of ARF is a 

Gaussian-shaped beam, and simplified models have been used to model the ARF 

distribution, such as 3D Gaussian function, superposition of a series of disks with varying 

force magnitudes and radii, and ellipsoid of rotation. [37,76] These models are simplified 

patterns of the actual ARF distribution, but they can well capture the main properties of 
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the spatial-varying body force. [77] Here, the step ARF is described by a 3D Gaussian 

function as [37,78] 

                
  

  

   
  

  

   
  

 (3.16) 

where r and z are the radial and axial positions relative to the center (r=0 and z=0) of the 

focal zone, respectively, t is time from the beginning of the excitation, f(r, z; t) is the 

time-varying body force density; fo is the spatial peak density of the body force, H(t) is 

the Heaviside step function representing a unit step, and r and z are parameters that 

decide the dimension of the body force. In practice, the distribution of the body force is 

decided by the frequency of the transducer, the speed of sound in the tissue, the 

attenuation of the media, and the F-number of the transducer. The F-number of an 

ultrasound transducer, Fnumber, is given by 

        
 

 
 (3.17) 

where F is the focal length and D is the diameter of the aperture. [45]  Given that other 

factors are fixed, the lateral beam width (-6dB) of the focal zone is proportional to 

Fnumber, and the axial length (-6dB) is proportional to the square of Fnumber . [52] In our 

study, the body force field for a 3.25MHz focused transducer with F=50mm, D=60mm, 

and inner diameter din=22.6mm (Sonic Concepts, Bothell, WA) is modeled. The F-

number is equal to 0.83. The normalized distribution of the acoustic radiation force 

intensity for the 3.25MHz focused transducer and the 3D Gaussian function are shown in 
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Fig. 3.14. The -6dB beam width of the focal zone is about 0.6mm and the -6dB axial 

length of the focal zone is about 3.2mm.  

 

 

         (a)               (b) 

 

Figure 3.14. Normalized distribution of the acoustic radiation force intensity for (a) 

3.25MHz focused transducer (Sonic Concepts, Bothell, WA) and (b) 3D Gaussian 

function. 

 

The SDF model was studied for different ARF configurations in the simulation. 

First, ARFs with the same relative distribution but different magnitude, 0.5fo, fo, and 2fo, 

are assigned as the body force magnitude as is described in Equation (3.16). Then, for 

ARFs with the same magnitude, the relative distribution can be changed by modeling 

transducers with different F-numbers. Here, three F-numbers are studied: 1.5, 0.83, and 

0.5, of which the first one has a larger focal zone and the third one has a smaller focal 

zone compared to the one discussed above (Fnumber = 0.83). 

In this study, axisymmetric FE models are developed to simulate the viscoelastic 

soft tissue. Diagrams of the axisymmetric models are shown in Fig. 3.15 (a). The 

dimensions of the modeled geometry are 24mm in radius and 48mm in height. For each 
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case studied in this study, the ARF is always applied along the axial direction (z 

direction). The origin of the coordinate system of this model is located at the center of the 

symmetry axis, i.e., center of geometry of this axisymmetric model. The distribution of 

the ARF is given by Equation (3.16), and the ARF focuses at the origin. As shown in Fig. 

3.15 (a), the bottom boundary of the FE model is fixed in all directions; other surfaces of 

the model are not constrained.  
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Figure 3.15. Model diagram and validation: (a) Diagram of the axisymmetric model with 

a spherical inclusion in the center of the model; and (b) Axial displacement induced by 

ARF for the homogeneous case with =3kPa. The horizontal axis in (b) is the axial 

distance from the focal center. 

 

The axisymmetric model allows for a highly refined mesh for the focal zone 

without increasing too much the computational time. The model consists of 5366 nodes 

and 5275 elements. The mesh for the region near the focal zone is refined with a 

minimum mesh size of 0.05mm, which ensures that the lateral variation of the ARF can 

be captured by the FE model due to the small radial dimension (-6dB) of the ARF, which 

is in the order of 0.5mm. The FE simulations were implemented with ABAQUS implicit 

dynamic analysis. The time-dependent creep displacements of the ARF focal center are 

obtained from the FE simulations, and then used for the analysis. In order to evaluate the 

effectiveness of SDF models in describing soft tissue as well as explore the limitations of 

SDF models, a homogenous case and a heterogeneous one are simulated. Their specific 

attributes are discussed hereafter. 
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In order to ensure the accuracy of the FE model, the FE simulation results were 

first compared to the analytical solution presented in Equation (2.3) for the homogeneous 

case with =3kPa. The computed axial displacements induced by the ARF described in 

Fig. 3.14 (b) are shown in Fig. 3.15 (b). The results show good agreement between the 

FE simulation and analytical solution. It should be noted that in the negative axial 

distance region, the displacement from the FE simulation is slightly greater than that from 

the analytical solution, while it is opposite in the positive axial distance region. The 

reason for this behavior is that the analytical solution is developed based on an infinite 

model assumption, but our FE model has boundaries, and the negative axial distance 

region is near the top free surface while the positive axial distance region is near the 

constrained bottom boundary. Accurate analytical solutions for the dynamic responses of 

viscoelastic soft tissue to ARF cannot be easily solved, especially for models with finite 

geometry and heterogeneity. [45] Equations (3.13) and (3.14) are only approximate 

solutions based on SDF and homogeneous assumptions, which is not capable of modeling 

the 3D configuration of the dynamic system and shear wave reflections due to 

heterogeneity, while they can be modeled with the FE method. 

3.3.3 Evaluation of the Simplified Model in Homogeneous Case 

In order to investigate the associated errors in soft tissue characterization with the SDF 

assumption, homogeneous models with different mechanical properties and ARF 

configurations are first studied. Four shear moduli (=1kPa, 3kPa, 9kPa and 27kPa) and 

three time constants (= 0.0003s, 0.0009s and 0.0027s) are studied with the FE model. 

The shear moduli chosen are within the range of reported mechanical properties of the 
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normal or tumorous human soft tissues. [6,79] The time constants used are on the same 

order as reported values for soft tissues or phantoms. [21,28,38,40,56] 

The SDF assumption was evaluated quantitatively by analyzing the inverse 

problem with the SDF model. The data from the computational experiments are 

generated from the FE simulation. Since the purpose of this study is to investigate the 

fundamental limitation of the SDF and homogeneous assumptions in ARF creep imaging, 

these data do not contain noise as in practical measurements in order to control variables 

in the analysis.  The results in this study should be considered as the best theoretically 

achievable ones.  

The time constant, , is reconstructed by fitting Equation (3.13) or (3.14) with the 

FE simulated creep displacements. This is an optimization problem described by 

   
 

                   
 

 
     

                   
 

 

   

 (3.18) 

where (p) is the objective function, p is the vector of parameters for optimization (p=[A 

]  for Equation (3.13) and p=[A o] for Equation (3.14), N is the number of the 

sampled data,   
        is displacement from FE simulation at time ti, and            is the 

calculated displacement from Equation (3.13) or (3.14) with the current parameter p. In 

this study, the optimization problem is solved with the Nelder-Mead simplex 

optimization algorithm.  [80] As it was discussed, the reconstructions based on Equation 

(3.13) or (3.14) will result in estimation errors. The relative estimation error (REE) of  is 

defined by 
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      (3.19) 

with   denoting the true time constant assigned to the FE model in the simulation, and 

   the time constant reconstructed by solving the optimization problem.  

For homogeneous models with different mechanical properties, the creep 

displacement for each case is shown in Figs. 3.16 (a), (b), and (c). In order to show the 

temporal behavior of the response, the displacements are normalized in Figs. 3.16 (d), (e), 

and (f). Responses for material with the same time constant, , are plotted in each figure 

as they are expected to have the same temporal behavior according to the SDF model 

described by Equation (3.13). In Figs. 3.16 (a), (b), and (c), even though the viscosity (or 

time constant) is different, the near steady state displacement is almost identical for the 

same elasticity and is inversely proportional to the elasticity of the tissue. That 

observation confirms that the steady state displacement is a good metric to image the 

elasticity relation between homogeneous models if the same ARF is applied in the focal 

zone. [21,36,55,56] The normalized displacements shown in Figs. 3.16 (d), (e), and (f) 

represent the temporal response behavior of soft tissue to step ARF. For the same time 

constant, based on the SDF model of Equation (3.13), the temporal behavior is expected 

to be identical for different shear moduli. However, the viscoelastic constitutive model 

actually describes the relation between stress and strain, not between the applied force 

and displacement. Equation (3.13) is derived from the SDF model, in which the stress is 

proportional to the applied force and the creep strain is proportional to the creep 

displacement. [56] This is not the case for a 3D model with the inertia effects considered. 
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It is noticed that the response curve deviates from the SDF case for the same time 

constant as the shear modulus of the model decreases. In addition, as the time constant 

increases, all the response curves converge to the SDF case.   

 

 

Figure 3.16. Creep displacement responses to step ARF for soft tissue with different 

viscoelasticity. Three time constants are studied: (a) =0.0003s, (b) =0.0009s, and (c) 

=0.0027s. The corresponding normalized creep displacement responses are shown in 

(d) =0.0003s, (e) =0.0009s, and (f) =0.0027s.  
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   (a)                                               (b) 

Figure 3.17. Relative estimation error (REE) of  by fitting the SDF models with the 

simulated creep displacement responses of the FE model. Each marker represents cases 

with the same shear viscosity. (a) is for the SDF model described by Equation (3.13) 

without considering the inertial effect; and (b) is for SDF model described by Equation 

(3.14) with the inertial component included. 

 

The above mentioned trends can also be observed in Fig. 3.17 (a), which plots the 

relative estimation error (REE) with this SDF model. In this figure, the horizontal axis is 

a logarithmic scale. Each marker represents cases with the same shear viscosity. The REE 

can be quite large for models with low time constant and elasticity, e.g., 142% for   

     and           . It should be indicated that even the REE decreases as the 

elasticity increases for the same time constant, REE increases as the elasticity increases 

for the same viscosity, as shown by the markers in Fig. 3.17 (a). In a Voigt model for the 

same time constant, the viscosity is proportional to the elasticity. This means that for the 

same time constant, the REE decrease is due to the increased viscosity, not elasticity. 

These results indicate that the SDF model tends to have better approximation for tissue 

with high viscosity and low elasticity, in which cases the SDF model may still be 
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preferred in qualitative imaging for its simplicity. Figure 3.17 (b) illustrates the REE with 

the SDF model that included the inertial component. It should be noted that adding the 

inertial component into the SDF model does not significantly improve the estimation 

accuracy, because for a 3D dynamic system, not only the focal region but also the 

surrounding tissue is induced to motion by the ARF, and the complex system inertia 

cannot be accurately counted by a SDF dynamic system, which is the fundamental 

limitation of the SDF approach.  

In order to ensure the REE is not resulted from the optimization process, the 

objective function (p) is evaluated near the true value of p that is assigned to the FE 

model. For one of the cases in Fig. 3.18 that the creep displacement data were generated 

from the homogenous FE model with =3kPa and =0.0009s, the contour of the 

objective function (p) is plotted near the true value=0.0009s as shown in Fig. 3.18. In 

particular, Fig. 3.18 (a) is the case that the creep displacement data are fitted with the 

SDF model without the inertial component. For Fig. 3.18 (b), the SDF model with the 

inertial component is used in the objective function (p). In this case, p=[A o], and 

only the contour near the true value=0.0009s is interested. Based on Equation (3.15) 

and assuming that A is known (equal to the steady state displacement), the contour of 

(p) with respect to o and  can be obtained in Fig. 3.18 (b). The two  that make (p) 

reach the minimum in Fig. 3.18 are the same as the ones used to calculated the REE in 

Fig. 3.17.  This result suggests that the REE is resulted not from the optimization process, 

but from the fundamental limitation of the SDF models. 
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(a)                                               (b) 

Figure 3.18. Contour of the objective function (p) near the true value  = 0.0009s. The 

creep displacement data were generated from the homogeneous FE model with =3kPa, 

and =0.0009s. The models used for fitting the creep displacement data are described by 

(a) Equation (3.13) and (b) Equation (3.14). 

 

The creep displacement responses for different ARF configurations are shown in 

Figs. 3.19 (a) and (b). Specifically, Fig. 3.19 (a) depicts the responses for ARFs with 

different magnitude, but the same distribution with Fnumber =0.83; and Fig. 3.19 (b) 

illustrates the responses for ARFs with different distribution, but the same magnitude fo 

for the body force described in Equation (3.16). The corresponding normalized creep 

displacement responses are shown in Figs. 3.19 (c) and (d).  The steady state response is 

affected by both the magnitude and distribution of the body force. However, the temporal 

response of soft tissue is not affected by the body force magnitude, as shown in Fig. 3.19 

(c). The results confirm the findings that the time constant is a “force-free” parameter in 

the analysis with the SDF model. Figure 3.19 (d) demonstrates that the induced responses 

by a smaller focal zone are closer to the output of the SDF model. The time constant  

was then reconstructed with the SDF model described by Equation (3.13), and the REEs 
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for ARF corresponding to Fnumber =1.5, 0.83, and 0.5 are 68%, 27%, and 12%, 

respectively. The results suggest that decreasing the focal zone can reduce the inertia 

effects on the dynamic responses of soft tissue, which means that when using the SDF 

model in ARF creep imaging, a smaller focal zone is desired to reduce the REE. This is 

similar to other imaging methods, e.g., ARFI and HMI, in which smaller focal zones 

result in better image contrast. [61,81] 
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Figure 3.19. Creep displacement responses with different ARF configurations: (a) ARFs 

with different magnitude, but the same distribution, i.e., Fnumber =0.83; and (b) ARFs with 

different distribution, but the same magnitude, i.e., fo. The corresponding normalized 

creep displacement responses are shown in (c) and (d). The model is homogeneous, and 

the viscoelastic parameters are =3kPa, and =0.0009s.  

 

3.3.4 Evaluation of the Simplified Model in Heterogeneous Case 

In order to demonstrate the limitations of the SDF and homogeneous assumptions in the 

presence of tissue heterogeneity, a qualitative analysis is performed by comparing the 
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temporal and steady state responses of the homogeneous model to that of the 

heterogeneous model. In this study, spherical inclusions are located in the center of the 

model, as illustrated in Fig. 3.15 (a).  There are two cases considered: spheres with 

diameters of 3mm and 6mm. Both the background and inclusion are assigned with the 

same time constant. Three background and inclusion shear modulus combinations, 

(     ), are studied, namely, (3kPa, 3kPa), (0.3kPa, 3kPa), and (30kPa, 3kPa).  

Under the homogeneous assumption, the steady state displacement, A, is inversely 

proportional to the underlying tissue elasticity (or shear modulus). In the heterogeneous 

media, the observed elasticity contrast, can be described by  

   
           

          
 (3.20) 

where    is the observed elasticity contrast of the inclusion to background, 

            is the steady state displacement of the background, and            is the 

steady state displacement inside the inclusion. Here,            is measured at the center 

of the inclusion, where the response is least affected by the heterogeneity. For regions 

near the boundary of the inclusion and background, the response can be more severely 

affected by heterogeneity, which results in a further reduced elasticity contrast. The ideal 

performance of a biomechanical imaging method is that the observed elasticity contrast 

equals the true elasticity contrast. 

To qualitatively illustrate the effect of heterogeneity and the fundamental 

limitation of the homogeneous assumption in modeling the dynamic behavior of soft 

tissue to step ARF, the creep displacement responses at the origin of the heterogeneous 
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models (center of the spherical inclusion) are shown in Fig. 3.20. The ARF is considered 

as a highly localized force in most ARF based imaging methods and the dynamic 

response is considered to be only related to the underlying local mechanical properties, 

which is equivalent to a homogeneous assumption of the imaged tissue. However, the 

results indicate that the local heterogeneity greatly affects the dynamic response of the 

focal zone. For inclusion with the same shear modulus, (       ), the responses vary 

as the background’s moduli change. In addition, the steady state displacements can no 

longer reflect the true elasticity contrast of the inclusion to the background as shown in 

Table 3.3. As the dimension of the inclusion increases from 3mm to 6mm in diameter the 

observed elasticity contrast gets closer to the true elasticity contrast.  
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Figure 3.20. Creep displacement responses at the origin of the heterogeneous models 

with different inclusion sizes: (a) Sphere with diameter 3mm; and (b) Sphere with 

diameter 6mm. The corresponding normalized creep displacement responses are shown 

in (c) and (d).  The solid black line is the homogeneous case. =0.0003s for both 

background and inclusion. 
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Table 3.3. Observed elasticity contrast for heterogeneous models 

   (kPa) 
   

(kPa) 

True elasticity 

contrast 

Observed elasticity contrast 

3mm-diameter 

inclusion 

6mm-diameter 

inclusion 

3 0.3 10 2.9 4.2 

3 3 1.0 1.0 1.0 

3 30 0.10 0.18 0.13 

 

The ARF induced displacement is the integration of the normal strain in the axial 

direction. Figures 3.21 explain the reduced contrast for heterogeneous media by 

demonstrating the effects of heterogeneity on the axial normal strain field with the case of 

the 3mm-diameter spherical inclusion. The dashed line shows the profile of the inclusion. 

Even though the inclusions have the same shear modulus, it is shown that the strain fields 

are quite different for the three cases due to the differences in heterogeneity. Figure 3.21 

(a) is the case for a homogeneous medium. For Fig. 3.21 (b), when the inclusion is in a 

soft background, the resulting displacement of the focal zone relates primarily to the 

strain of the background, and it reflects not only the elasticity of the inclusion but also of 

the background, or the heterogeneous structure of the local area. For an inclusion in a 

hard background, as shown in Fig. 3.21 (c), the strain field is constrained by the hard 

background, which results in a reduced displacement compared to the homogeneous case. 
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Figure 3.21. Axial normal strain field near the region of the 3mm-diameter spherical 

inclusion after a 10ms step ARF excitation. The dimension of the region is h=6mm (axial 

length) and r=3mm (radial length). The time constant is 0.0009s and the shear moduli 

are: (a) =3kPa, and =3kPa; (b) =0.3kPa, and=3kPa; and (c) =30kPa, and 

=3kPa. 

 

The temporal responses of soft tissue to step ARF are even more complex in the 

presence of heterogeneity. For each figure of the normalized displacements in Fig. 3.20, 

the background and inclusion are assumed to have the same time constant, and ideally the 

responses are expected to be identical according to the SDF assumption. However, for 

hard inclusions in soft background, the system tends to have larger time constants, i.e., 

the response needs more time to reach the steady state. At the beginning, before the shear 

wave reaches the background, the creep displacement results from the strain inside the 

inclusion. When the shear wave reaches the soft background, the creep will continue in 

the background and the induced strain is still relatively large because the background is 

much softer than the inclusion, similar to the case in Fig. 3.21 (b). On the contrary, for a 
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soft inclusion in hard background the motion inside the inclusion is constrained and the 

induced strain in the background is relatively small, thus the system tends to have a 

smaller time constant, i.e., the displacement rises faster to its maximum value than in the 

homogeneous case. In that case, the shear wave reflection in the boundary leads to an 

overshoot in some of the responses as shown in Fig. 3.20. 

Even though the SDF model has its fundamental limitations, it’s still preferable in 

many cases involving high viscous soft tissues because it is simple and minimizes the 

number of parameters in the optimization, which leads to sub-optimal, but stable and 

robust estimation. In addition, this estimation can be improved by reducing the focal zone 

size. In the cases of soft tissues with low viscosity, performance of the SDF models is 

quite poor, and inverse procedure based on FE methods may be introduced. Even though 

lots of the prior information for the FE modeling (local heterogeneity profile, ARF 

distribution, etc.) cannot be accurately obtained, proper integration of this prior 

information and its uncertainty could help to improve estimation accuracy, or to enhance 

the observed contrast, comparing to the SDF models that do not utilize any of that prior 

information. Considering heterogeneity, if the inclusion region is large, the responses in 

the early stage are not affected by the local heterogeneity as shown in Fig. 3.20 (b), in 

which case the early responses may still be used under the homogeneous assumption.  

3.3.5 Summary 

Finite element models are developed to study the dynamic behavior of viscoelastic soft 

tissue subjected to step ARF. Based on the FE simulations, the fundamental limitations of 

the commonly used SDF and homogeneous assumptions are studied for ARF induced 
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creep imaging. The results suggest that the SDF model tends to have good approximation 

for tissue with high viscosity and low elasticity. Especially, for the low viscosity case, the 

estimation results based on the SDF model can be quite poor.  In addition, accounting for 

the inertial component into the SDF model cannot effectively improve the estimation 

accuracy, but reducing the size of the focal zone can result in better estimation. For 

heterogeneous models, both the temporal and steady state responses of the focal region 

are highly affected by the local heterogeneity, rendering the SDF and homogeneous 

simplification ineffective.  

 3.4 Discussions 

In this chapter, the finite element method is applied to investigate the dynamic behavior 

of viscoelastic soft tissue in ARF imaging within the ROE. It is shown that, in HMI (a 

qualitative imaging method), the dynamic responses within the ROE can be affected by 

both the global boundary conditions and local heterogeneity. For a simplified quantitative 

model in ARF induced creep imaging, the relative estimation error can be quite large for 

certain material and ARF configurations.   

In order to obtain better quantitative estimation with ROE responses, all the 

assumptions need to be justified and FE analysis procedure considering the 3D 

configuration of the dynamic system may be necessary for the inverse characterization. 

However, as is discussed in previous section, the information that is needed to build the 

FE model cannot be accurately obtained in ARF imaging. Though the ARF distribution 

can be calculated using Field II or FOCUS ultrasound simulation package based on the 

properties of the medium, geometry, and center frequency of the transducer, [82,83] the 
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quality of the estimation is affected by the inaccurate or non-uniform attenuation 

coefficient as is shown in Equation (2.1). [8] In addition, reflection and nonlinear 

propagation of ultrasound also make the simulated ARF field inaccurate. In order to 

estimate the time constant in ARF induced creep imaging, the elasticity of the material 

should be known to build the FE model, while it’s challenging to estimate the elasticity 

accurately in practice. 

Considering the SDF model used in ARF induced creep imaging, all the uncertain 

information that is discussed above is discarded, and the inverse estimation is 

implemented based merely on the temporal responses, which leads to large estimation 

errors in certain cases. A possible way to improve the inverse problem is to integrate the 

uncertain information with the FE model. The remainder of this thesis will demonstrate 

an inverse finite element analysis procedure based on a Bayesian approach, which takes 

full advantage of the prior information of model parameters that are discarded in the SDF 

models. 
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Chapter 4: Bayesian Approach with Finite Element Model 

 

This chapter demonstrates the inverse FE analysis procedure based on a Bayesian 

approach in ARF induced creep imaging. First, an introduction on the proposed method is 

presented. Then, the general Bayesian estimation of this problem is demonstrated. The 

Gaussian Process metamodeling method is then introduced as a statistical approximation 

of the complex FE model to make the Bayesian approach computationally feasible. In the 

end of this chapter, the posterior distribution of the time constant in ARF induced creep 

imaging is formulated with measurement noise and uncertainty model parameters. 

4.1 Introduction 

As is discussed in Chapter 3, simplified quantitative model has its limitations that can be 

surmounted by using finite element (FE) methods, which are capable of modeling 

complicated geometries, material behaviors, heterogeneities, and boundary conditions of 

soft tissues. However, most of the parameters for an FE model cannot be accurately 

obtained in ARF induced creep imaging. When an FE model is built to estimate the time 

constant by fitting the measured temporal creep displacements, one needs to configure 

the model with known ARF loading, boundary conditions, and elasticity of the soft tissue, 

the estimation of which all are subjected to considerable uncertainty. This thesis aims to 

integrate these uncertain parameters with the FE model to improve its estimation 

performance, which takes full advantage of the prior information of model parameters 

that are discarded in the SDF models. The proposed method is formulated based on a 

Bayesian approach, which has been widely used for biomedical image processing 
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problems. [84–87] In a Bayesian formulation, the known model parameters of the FE 

models are represented as probability distributions and the final characterization results 

are the posterior distributions of soft tissue mechanical properties rather than best-fit 

values from an optimization procedure, which are not a practical or a comprehensive 

description of the estimation in the presence of parameter uncertainty. 

A straightforward solution for the above-mentioned statistical inverse problem is 

the Monte Carlo (MC) method, but the computationally demanding FE simulations 

renders the direct implementation of the MC method infeasible since it requires 

thousands of FE model runs. Metamodeling techniques have been developed to handle 

the expensive model simulations by approximating the model output. [88–90] One 

popular approach is the Gaussian process (GP) metamodeling, which has been developed 

to obtain a statistical approximation of a complex model output by using the concept of 

Bayesian approach, which has the advantage of providing not only the predicted value 

but also the prediction uncertainty. [89,91,92] In addition, this method does not need a 

prescribed assumption of nonlinearity on the model in contract to a polynomial regression 

which needs to set the degree of the polynomial.  A posterior distribution of the output 

for a new input can be inferred by conditioning on the data of a small number complex 

model runs, here, FE simulations of the soft tissue models. However, in this study, the 

purpose is to estimate the unknown parameter of the FE model, while the GP metamodel 

only computes the output of model. Kennedy and O’Hagan proposed a modular Bayesian 

approach to incorporate GP metamodel with Bayesian estimation to calibrate model 

parameters. [89] They considered different sources of uncertainty, including the 

additional code uncertainty due to a limited number of complex model runs. Even though 
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the proposed method can be used for parameter calibration, the objective of their method 

is to make a better prediction of the true physical process output rather than the true 

calibration parameter. They increased the flexibility of the calibration process to better fit 

the experiment data by adding a discrepancy function and making some of the known 

parameters unknown, and used them as calibration parameters. [89] In this way, the 

predictive power of the fitted model is improved, but it may reduce the identifiability of 

the calibration parameter in conjunction with the discrepancy function and other 

parameters. [93,94]  

This chapter explores the integration of the Bayesian approach with the FE model 

to solve a statistical inverse problem in ARF induced creep imaging of the viscoelasticity 

metric, time constant. 

4.2 Bayesian Estimation 

As is discussed in Chapter 3, in ARF induced creep imaging, ARF pulses with a high 

duty cycle have been used to mimic the step forcing function. Single degree-of-freedom 

(SDF) (or discrete model in [36]) simplified models have been developed to describe the 

induced temporal responses. Assuming a Voigt viscoelastic model yields the relation 

                                     
 

 
 (4.1) 

where U(t) is the creep displacement of the focal point at time t,     is the steady state 

displacement,      is the normalized (by    ) displacement,   is the shear modulus,  is 

the shear viscosity, and  is the time constant (or retardation time) that describes the ratio 

of shear viscosity to shear modulus of the material. For a time series           
 , the 
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experimental creep displacements                  
                 are measured. 

In order to fit the temporal responses, the data are normalized by the averaged steady 

state responses, which yields                 
 . Each measurement is a noisy version 

of the true tissue motion. Suppose a model for this dynamic system, yields 

                                      
                            (4.2) 

where       is the noisy measurement at time   ,          is model response at time 

   with time constant   , and the displacement jitter, i, is assumed to follow a normal 

distribution with standard deviation   . Using the model in Equation (4.1), the time 

constant    can be estimated by fitting the measured displacement with least square 

method (LSM). Since both U(t) and Uss are proportional to the magnitude of ARF, the 

estimated  is considered as a “force-free” parameter, i.e., it is independent of the ARF 

magnitude which is generally unknown. [55] However, it depends on the three 

dimensional (3D) distribution of ARF. The inverse problem with the SDF model is 

solved merely based on the measured responses. Factors that also determine the temporal 

responses, such as boundary conditions, elasticity and distribution of ARF, are not 

considered in the SDF model. [29] 

In ARF induced creep imaging, without considering the model parameter 

uncertainty, that is, both elasticity and ARF distribution are accurately known, the only 

source of uncertainty is from the measurement noise. Based on Equation (4.2) and 

Bayesian estimation, the posterior distribution of   can be given by [95]  
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                               (4.3) 

where         is the posterior probability density of   at   ,           is the likelihood 

of obtaining the whole observation for given    and jitter  ,       and      are the 

priors. Both    and    are assumed to have normal priors in this study, and it’s 

straightforward to change to other distribution. As it was mentioned, each    is 

proportional to the measured displacement and has a base constant value of 1% steady 

state displacement.  

 In order to get the posterior distribution of  , a sampling based method can be 

implemented based on Equation (4.3) with Markov Chain Monte Carlo (MCMC) method. 

However, this would require thousands of FE model simulations, which renders it 

computationally infeasible. The use of a GP metamodel makes the calculation possible. 

4.3 Gaussian Process Metamodeling 

Gaussian process (GP) metamodel has been developed for inference of the uncertainty 

distribution of complex computer model outputs based on a limited number of model 

runs. It provides not only the predicted value but also the prediction uncertainty. 

Gaussian process assumes that a finite set of the model outputs                   

for input             follows a multivariate Gaussian distribution, [96–98] and it 

can be described by a mean function       and a covariance function         with a 

common choice of form [98–100] 
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             (4.4) 

                
 

 
 

      
   

  
 

 

   

    
         (4.5) 

where      is a vector of known functions over  , and   is the coefficient vector. Here, 

the GP metamodel is mainly used for interpolation of unknown output in which case the 

prediction results are not significantly affected by the form of the mean function. Thus, a 

zero mean function is selected for simplicity, i.e.,       . In Equation (4.5), d is the 

dimension of input   ,            is the length scale vector defined for each 

dimension, and         is the Kronecker delta function. The elements of set 

         are called hyperparameters of the GP, and their determination will be discussed 

in next section. In the last term,    has a small value to account for numerical fluctuations 

and stabilize matrix computations of the covariance matrix. [100] Each element of the 

covariance matrix   (an           ) of the multivariate Gaussian can be calculated 

with Equation (4.5). Then, the GP definition gives 

                                                  (4.6) 

   

                                 

                                 
 

                                 

  (4.7) 
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To make a Bayesian inference of the posterior distribution for a new input   , it should 

be calculated based on the known output   and hyperparameters, which yields the mean 

and variance of the new output        [97,99,100] 

                     
      (4.8) 

                           
       (4.9) 

                                        (4.10) 

              (4.11) 

where    is the element-wise covariance between     and  , and     is the covariance of 

    with itself. Then, the GP metamodel can be combined with Bayesian estimation to 

improve computational efficiency. 

4.4 Bayesian Estimation with Gaussian Process Metamodeling 

GP metamodel provides not only a prediction mean of the inferred output but also the 

variance of the inference which results from the code uncertainty due to a limited number 

of complex model runs. Then, in Bayesian model parameter estimation; there are three 

sources of uncertainty to be accounted in the analysis: measurement noise, code 

uncertainty, and model parameter uncertainty. 

At this point, there are two sets of data: the noisy measurement   (SFE model 

output plus noise) and the model output   (CFE model output). Considering the problem 
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in Section 4.2, it can be augmented that the input of      to    by adding    at each input, 

and thus expressing the input as         . Then   and   have the same input domain, 

and the GP definition gives 

 
 
                                (4.12) 

where 

          
          

       
            

  (4.13) 

where     is covariance for  ,         is covariance for  , and         is covariance 

between   and  , which are all calculated with Equation (4.5). [89] For a multivariate 

normal distribution given in Equation (4.14), the density at arbitrary X can be calculated 

with Equation (4.15), which are [95] 

             (4.14) 

                          
 

 
                (4.15) 

where k is the dimension of X. Then, according to Bayes' theorem described in Equation 

(4.3), the posterior distribution of the parameters is proportional to the likelihood times 

their priors, which yields  
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(4.16) 

  In order to get the posterior distribution for the model parameter, i.e.,            

with a full Bayesian analysis, it needs to marginalize out the hyperparameters 

         and the measurement noise  . However, this formulation is computationally 

expensive and it is not easy to choose appropriate priors for these parameters. Following 

the idea of modular Bayesian approach, [89] plausible point estimates for the 

hyperparameters to replace the probability distribution in Equation (4.16) can be 

calculated. This approximation has been shown to provide similar results as the full 

integration. In addition, for similar reasons, the modular Bayesian approach proposes to 

derive the hyperparameters with only the model output   instead of           which 

involves integration over the prior distribution of    . Then, the hyperparameters are 

calculated by maximizing the log marginal likelihood for data  , which is 

                
 

 
       

 

 
       

 

 
      (4.17) 

The covariance matrix C is defined by Equations (4.5) and (4.7), and is dependent on the 

hyperparameters         . The partial derivatives of the above log marginal likelihood 

can be evaluated by  

 

  
               

 

 
                  

  

  
  (4.18) 
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  (4.19) 

 

   
               

 

 
                  

  

   
  (4.20) 

Then the hyperparameters can be solved with conjugate gradients optimization routine 

based on Equations (18)-(20). This process is also called the training of GP metamodel, 

i.e., the hyperparameters in Equations (4.4) and (4.5) are determined in the light of the 

data. [99] 

 Another source of uncertainty is the model parameter uncertainty. In modular 

Bayesian approach, it is proposed to consider these parameters unknown, which will 

increase the flexibility of the model and make better fitting and prediction. However, if 

we want to utilize the model parameter information that is discarded in the SDF model 

estimation, these parameters over theirs prior distributions should be marginalized out. 

Now, the input   is augmented to         , where   is the vector of model parameters. 

Then, posterior distribution of    is obtained 

          

                      
 

 
 
 
  

 

            
 
                     

(4.21) 

Summary for the development of Equation (4.21) is illustrated in Fig. 4.2. 
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Figure 4.2. Flowchart of Bayesian estimation with GP metamodel. 
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Equation (4.21) can only provide a relative value for the probability density of   . 

In order to get the absolute value, a constant coefficient Po should be solved by plugging 

the right hand side of Equation (4.21) into Equation (4.22). 

                 (4.22) 

However, it is intractable to solve this integral analytically. To obtain the posterior 

distribution that is defined by Equation (4.21), a Markov Chain Monte Carlo (MCMC) 

method is generally used in such a Bayesian inference problem as a sampling based 

numerical approximation. [97,101,102] In this study, MCMC sampling with Metropolis–

Hastings algorithm is implemented to calculate the posterior distribution of   . [102,103] 

The key idea for the MCMC method is to build a Markov chain that converges to the 

proposed stationary distribution. To this end, Metropolis–Hastings algorithm generates a 

random walk by accepting the proposed new state   
    with probability [103–105] 

       
    

        

    
      

    
    

    

    
      

  
   (4.23) 

where     
    

     is the proposal distribution that generates the new state   
    based 

on current state   
 . Q is required to be symmetric, i.e.     

    
         

      
  . A 

Gaussian distribution satisfied this requirement and is a popular choice, [103,104] then Q 

can be formulated as  

        
 

    
 

 
      

    (4.24) 
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Then Equation (4.23) can be simplified as 

       
    

        

    
      

   (4.25) 

Equation (4.24) shows that the algorithm tends to visit the point that is close to current 

state. If the new state results in a higher probability density, then it will be accepted as the 

current state in next iteration. If the new state produces a small probability density, it still 

can be accepted with probability provided by Equation (4.25). 

A typical MCMC sampling with Metropolis–Hastings algorithm for this study is 

shown in Fig. 4.1. After a “burn-in” period from the start value 0.1 ms, the algorithm 

converges to the expected distribution around the true value 0.5 ms. The data points in 

the “burn-in” period cannot be included in the final sample set that will be used to infer 

the posterior distribution of the time constant. 
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Figure 4.1. A typical MCMC sampling with Metropolis–Hastings algorithm. Start value  

= 0.1 ms and true value = 0.5 ms. 
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Chapter 5: Bayesian Estimation of Soft Tissue Viscoelasticity 

 

The Bayesian approach with the FE model (BAFEM) to estimate a posterior distribution 

of time constant in ARF induced creep imaging has been developed in Chapter 4. To 

solve a this statistical inverse problem in ARF induced creep imaging, different sources 

of uncertainty in the estimation, including displacement jitter from the measurement, 

boundary condition, elasticity uncertainty and ARF distribution uncertainty are 

considered. This chapter investigates the effect of the above sources of uncertainty 

individually, as well as their combined effect. The cases with soft tissue local 

heterogeneity are studied with simplified heterogeneous models. Numerical simulation 

results of the BAFEM are compared with the SDF model estimations.  This chapter 

demonstrates the potential of BAFEM as a new perspective to solve a statistical inverse 

problem in ARF imaging and provide more accurate and comprehensive estimation of 

soft tissue viscoelasticity. 

5.1 Finite Element Modeling and Implementation 

5.1.1 Finite Element Model 

The soft tissue is modeled as an isotropic, linear viscoelastic and near-incompressible 

solid with Poisson’s ratio          Axisymmetric FE models are built to reduce the 

computational cost. There are two types of FE models built in this study: synthetic FE 

(SFE) model and characterization FE (CFE) model, as illustrated in the diagram of Fig. 

5.1 (a).  
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Figure 5.1. (a) Diagrams of Synthetic FE (SFE) model and Characterization FE (CFE) 

model; (b) FE mesh of SFE model. The SFE model generates numerical experiments data 

which is in practice measured by ultrasonic tracking methods. The CFE model is the 

model used in the inverse computation. 

 

The SFE model is developed to generate synthetic displacement data. In practice, 

many groups have developed ultrasonic tracking methods to measure the displacement of 

soft tissue induced by ARF. [25,26,106,107] Numerical models have been commonly 

used to justify the performance of biomechanical inverse algorithms as summarized in 

[108], because the estimated parameters  are able to be compared with the true value, i.e., 

the value assigned to the numerical models, which is generally unknown in experiments. 

In addition, it is easy to make a comprehensive parametric analysis with the numerical 

model. As shown in Fig. 5.1 (b), the SFE model consists of 5,275 elements (5,139 four-

node bilinear axisymmetric quadrilateral elements and 136 three-node linear 

axisymmetric triangular elements) with hybrid formulation that handles the near-

incompressible material behavior. The SFE model has been previously validated with the 
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analytical model solution for the steady state response. [29] In the analysis, it is assumed 

that the SFE model is the “true model”, and performance of the inverse algorithm is 

evaluated by comparing its estimation with parameter of the SFE model. In ARF 

imaging, the tissue displacement measured by ultrasonic tracking is subject to jitter and 

underestimation. [107,109,110] ARF displacement jitter tends to increase with the 

displacement magnitude, while the percentage of displacement underestimation does not 

change much with the displacement amplitude. [109] Equation (4.1) shows  is only 

related to the relative displacement with respect to the steady state displacement, which 

means the effect of displacement underestimation is not significant on the estimation of ; 

therefore, only jitter for measurement noise is considered, and a simple linear relation 

between jitter and displacement is assumed.  

The CFE model is used in the inverse computation to fit the synthetic data. One 

advantage of ARF imaging is that the global boundary conditions have little effect on the 

responses of ROE for a viscoelastic soft tissue.  [111] Subsequently, it is easy to build the 

CFE model pertaining solely to the local boundary conditions. Here, since homogeneity 

is assumed, it’s necessary to assure that the boundary of the CFE model has negligible 

effect on the responses of ROE, while the dimensions are kept as small as possible to 

reduce computational cost. The qualified dimensions of the CFE model are mainly 

decided by a rough estimation of the soft tissue viscoelasticity that determines the shear 

wave speed and attenuation, [40] and the time interval of interest during which the 

reflected shear wave should not significantly affect the responses of ROE. The CFE 

model has only 900 elements, which ensures both the computational efficiency and 

negligible uncertainty due to the global boundary conditions.  
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Acoustic radiation force is a 3D spatial-varying body force that is related to the 

absorption coefficient of the medium, the temporal averaged intensity of the location and 

the speed of sound in the medium as is discussed in Chapter 2. Intensity I can be 

estimated from the distribution of acoustic pressure, which can be calculated using Field 

II or FOCUS ultrasound simulation package based on the properties of the medium, 

geometry, and center frequency of the transducer. [82,83] However, in practice, 

absorption coefficient cannot be accurately known and may be nonuniform. [8] In 

addition, reflection and nonlinear propagation of ultrasound also make the simulated ARF 

field inaccurate. In this study, ARF generated by a 3.25 MHz single-element focused 

transducer (F-number is 0.83) is mimicked by a 3D Gaussian function. The uncertainty of 

estimated ARF distribution is quantified by the modeled -6 dB focal region volume in the 

CFE model. 

 In order to estimate the time constant using the CFE model, the elasticity of the 

material should be known, while its absolute value cannot be estimated in ARF induced 

creep imaging. Mauldin et al. proposed a method to combine ARF induced creep imaging 

with shear wave elasticity imaging for elastic parameters estimation. [36] Alternatively, 

in concert with ROE Time-to-Peak (TTP) technique to quantify elasticity, [43] it’s 

possible to develop a purely ROE-based method without shear wave measurements. This 

thesis will focus on the estimation of time constant with ARF induced creep imaging, and 

the elasticity is assumed to be known with uncertainty. 
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5.1.2 Design and Implementation 

Three soft tissue material properties are studied here with shear modulus and time 

constant combinations       :                                and                . 

They are in the common range of soft tissue viscoelasticity with relatively low viscosity 

in which case the SDF model has poor performance. [29] For ARF, as is mentioned 

above, its uncertainty is modeled with the -6 dB focal region volume. Its value is scaled 

as a volume ratio   , and      means the true value. Then, if there is an estimation of 

20% larger than the true value, the input is set to      .2.  

For each ARF induced creep responses, 51 displacement data in 10 ms time step 

are obtained from the SFE model simulation with added noise. This is data   in Equation 

(4.12). In order to build a good GP metamodel for the CFE model, the set of input points 

at which the CFE model will run needs to have a good coverage of the input space of 

          . The values of the unknown    and uncertain model parameter    are 

chosen through a Latin hypercube sampling (LHS) that maximizes the minimum distance 

between points. [112,113] Here, 30 LHS samples to cover the interested space of 

   and   are chosen. The interested space for    can be decided based on the SDF model 

estimation and its prior, but set to a wide range to include the true value. The interested 

space for   is decided based on the priors of the uncertain model parameters. Then for 

each sampled (    ), the CFE model will run and output the displacement, i.e., 51 

displacement data in 10 ms time step. If all the CFE model outputs are used to build the 

GP metamodel, then it has       points in    which will result in a large dimensional 

covariance matrix that is generally singular due to the small “distance” between points. 
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That means it’s necessary to select part of the points to form the code output, and large 

distances between points are desired. A suboptimal but simple procedure is used to 

choose the points: 1) sort the 30 LHS samples with ascending order of   , which is the 

most dominate factor of the response; 2) then merge all the output data to one vector with 

the same order; 3) choose the points spaced by Ns points, where Ns cannot be a factor of 

51. In this way, a good cover of the time input is guaranteed; meanwhile, successive 

parameter LHS samples do not have the same time input. 

5.2 Characterization without Finite Element Model Parameters Uncertainty 

In order to solve the inverse problem in ARF imaging with BAFEM, a finite element 

model of soft tissue needs to be built first. As it is mentioned in last section, this is the 

CFE model which is used in the inverse procedure.  Since the ARF induced motion is 

highly localized, it is not necessary to build the CFE model with the exact global 

boundary conditions.  It is desirable to reduce its complexity and dimension, at the same 

time, the CFE model should bring negligible uncertainty as an approximation of the true 

model. As is demonstrated in Fig. 5.2 comparison between responses of the SFE model 

and the CFE model illustrate good agreement (0.5% maximum deviation) for the soft 

material that is highlighted in this study, i.e.,       . It also should be valid for 

material with similar or smaller shear modulus, but not for material with much larger 

shear modulus, i.e.,         in Fig. 5.2, due to a larger shear wave speed. If the 

inverse process is based on the response of the early stage (e.g., before 3ms), then this 

CFE model is also acceptable for        . That is, both the material property and the 
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interested time interval determine the CFE model dimension, which allows an inverse 

process without considering the uncertainty due to the model boundary conditions. 

 

 

Figure 5.2. Comparison between responses of the SFE model and CFE model. All cases 

have the time constant 0.5ms. 

 

 Before applying the GP metamodel to BAFEM, its prediction accuracy is tested. 

The GP metamodel is trained with the CFE model output  . The three materials in Fig. 

5.3 are not included in the design points as described in Section 5.1, but they are within 

the interval to generate the design points with Latin hypercube sampling (LHS). The 95% 

confidence interval of the prediction is quite narrow, which indicates the GP metamodel 

brings small code uncertainty to the estimation. Then, if one wants to infer the output for 

a new material, the GP metamodel can be used to do the calculation instead of the 

computationally expensive CFE model. 
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Figure 5.3. Validation of the GP metamodel for three viscoelastic materials (μ,τ). The 

three materials are not included in the design points, but within the interval to generate 

the LHS design points. 

 

 The simplest case with no model parameter uncertainty and known displacement 

jitter level is investigated first. The only source of uncertainty is the jitter of the 

displacement. It is assumed that the jitter has zero mean and standard deviation (SD) 

consisting of a constant part   , and a displacement-dependent part   , i.e., the jitter SD 

is       . The constant part is set to 1% of the steady state displacement, and the 

displacement-dependent part is set to 5% of the measured displacement, which is the 

similar level to the reported relation between jitter and maximum displacement. [109] 

Other forms of jitter due to different experimental setting and ultrasound tracking method 

can also be considered with this inverse procedure.  Figure 5.4 shows the posterior 

distribution for both Bayesian approach with the FE model (BAFEM) and Bayesian 

approach with the SDF (BASDF).  Since the SDF model is simple in computation, the 

BASDF does not need to use the GP metamodel as required for the BAFEM. Each 
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posterior distribution is calculated with 1000 MCMC samples, and its density is 

approximated with kernel smoothing bandwidth determined with Silverman's rule of 

thumb.  [114] The results are compared with the true value and least square method with 

SDF (LSMSDF) estimation without noise added. The true value is the value that is set to 

the SFE model to generate the numerical experiment data. For all three materials, the 

BAFEM posterior distributed around the true value with a small SD, while the BASDF 

posterior is biased. As it is discussed above, this is due to the inadequacy of the SDF 

models, which are not able to model the three-dimensional true system. For LSMSDF, 

even without jitter, the estimation is highly biased in Fig. 5.4.  
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Figure 5.4. Posterior distribution of time constant for Bayesian approach with FE model 

(BAFEM) and Bayesian approach with SDF (BASDF). The results are compared with the 

true value and least square method estimation with the SDF. Three soft tissue material 

properties are studied with (μ,τ):  (a) (1.5kPa,1.0ms), (b) (3kPa,0.5ms),  and (c) 

(1.5kPa,0.5ms). 

 

 One issue in the inverse computation is to set a good prior for the time 

constant   . In this study, a normally distributed prior with the LSMSDF estimation as its 

mean is employed for   . This mean value is generally biased compared to the true value. 

As it is noted in Fig. 5.5, being too confident (with a small SD) on this mean value may 

lead to a biased posterior distribution, since the prior value is a dominant factor in the 
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estimation. Generally, accurate prior knowledge of     is absent. In such a case, a larger 

SD of     is preferred in order to have a good coverage of the true value, and Bayesian 

estimation can update the prior with data to converge to the true value as it is shown in 

Fig. 5.5. 

 

Figure 5.5. Effects of prior distribution on the predicted posterior for time constant. Both 

priors’ mean are biased from the true value. p2 has a much smaller SD than p1. The true 

soft tissue material property is                  . 

 

 In practice, the displacement jitter level in ARF imaging also cannot be accurately 

obtained. One may estimate it from the experiment setting with uncertainty, and then 

integrate over its distribution as in Equation (4.3). In Table 5.1, the true displacement-

dependent jitter level used to generate the measurement   is 5% of the measured 

displacement at each time, while when using BAFEM, the true jitter level is unknown. It 
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is reasonable to estimate a jitter level with uncertainty based on the imaging system 

configuration, [109] which means the jitter level is also a probability distribution. In 

modular Bayesian approach, Kennedy and O’Hagan proposed to calculate a plausible 

estimate of the measurement noise level from data. Then, they used the plausible value 

instead of its distribution in the inference. [89] However, the process to calculate this 

value needs to integrate over the prior distribution of all the model parameters and it’s 

still an approximation due to the inaccurate prior information. In this study, the results 

with both distribution and point value are compared and recorded in Table 5.1. They all 

give consistent estimations on the mean value, nonetheless the predicted posterior SDs 

with distributed values are more consistent than that with the point values. It is a 

reasonable choice to use the distributed value of jitter level, and it will not bias the 

predicted mean or increase the SD. 
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Table 5.1. Effects of prior jitter level estimation on the predicted posterior of     (ms). 

The true value of    is 5.0%. The true value of      is 0.5ms. 

Displacement-

dependent jitter 

level,    

Distribution,          
   

   Point value (  ) 

Posterior mean Posterior SD Posterior mean Posterior SD 

2.5% 0.50 0.028 0.50 0.024 

5.0% 0.51 0.033 0.51 0.033 

10% 0.50 0.027 0.52 0.060 

 

 

 

5.3 Characterization with Finite Element Model Parameter Uncertainty 

Before integrating all the sources of uncertainty together, the effect of uncertain shear 

modulus and ARF volume are first considered individually, while the displacement jitters 

are still included. A truncated normal distribution bounded by 2SD around mean is 

considered. Of course, other forms of distribution can also be used based on our prior 

knowledge of the parameter. An 8-point Legendre-Gauss quadrature (LGQ) is employed 

to evaluate the integration in Equation (4.21). In Fig. 5.6, its accuracy is validated with a 

“Brute force” integration based on Trapezoidal Rule with 200 subintervals. For both the 

biased and unbiased mean, both the 8-point and 12-point LGQ provides accurate 

evaluation of the log-likelihood, while the 4-point LGQ results are not accurate enough. 

For computational efficiency, the 8-point LGQ is used in the implementation.  
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Figure 5.6. Log-likelihood for different τ values with different integration methods over 

the uncertain    distribution. The true soft tissue material property is             

     . The uncertain    has distribution: (a)                  
    and 

(b)                     
  . 

 

 Figure 5.7 (a) shows the case with elasticity uncertainty but no ARF distribution 

uncertainty. For the unbiased mean cases, the shear modulus distribution with a smaller 

SD results in a predicted posterior with a smaller SD as expected. A         SD means 

that the prior information on shear modulus is very accurate compared to the one with 

       SD. In this case, the predicted posterior meanSD is 0.510.035ms which is close 

to the case with no elasticity uncertainty as in Table 5.1. The predicted posterior with 

       SD is 0.510.048 ms, which does not increase the prediction SD significantly. 

Even the biased mean with        SD, a good prediction 0.520.047ms can still be 

obtained.  This is because when both the elasticity and the time constant near the true 

values, they produce a much higher likelihood value which is more significant than the 

prior distribution value of the elasticity. However, if a biased mean with small SD is used 
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for the elasticity distribution, i.e., we are too confident on some inaccurate value, the 

predicted mean will be biased, i.e., 0.580.036ms for the fourth case in Fig. 5.7 (a). It 

also indicates that an overestimated shear modulus results in an overestimated time 

constant. But for similar case in Fig. 5.7(b), it shows an overestimated ARF volume 

results in an underestimated time constant. In addition, the unbiased mean of ARF 

volume with larger uncertainty leads to a biased posterior mean (the solid blue line), 

which means the underestimated part of ARF volume plays a more important role and 

leads to an overestimation of the predicted mean. 
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Figure 5.7. Posterior prediction for time constant with uncertain (a) elasticity and (b) 

ARF distribution. The true soft tissue material property is                 . 

 

In ARF imaging, all sources of uncertainty will be present in the imaging process 

and they need to be integrated together to evaluate the performance of the BAFEM. In 
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Table 5.2, different uncertainty combinations and the corresponding posterior prediction 

for the time constant are listed. For each estimation of the time constant, 1000 MCMC 

samples are generated based on Equation (4.21), which can be done within an hour with 

Matlab code running on a PC. All BAFEM predictions have better estimation than the 

BASDF method. There is no model parameter uncertainty for BASDF in Table 5.2, since 

the SDF model cannot integrate this information into the computational procedure.  

 

Table 5.2. Posterior prediction for  (ms) with different model parameter uncertainty. The 

true soft tissue material property is                 . 

 
Model parameter distribution 

Posterior prediction for 

(ms) 

      mean SD 

Case 1             
             0.53 0.059 

Case 2                
               0.55 0.052 

Case 3                
               0.48 0.052 

Case 4                
               0.57 0.053 

Case 5                
               0.51 0.056 

  BASDF - - 0.75 0.03 

 

 

Among all cases, Case 4 results in the worst estimation because both parameter 

distributions tend to overestimate the predicted mean as is discussed in last paragraph. 

Case 5 leads to the best prediction due to the fact that the two distributions induced bias 

is canceled out. All these cases indicate that the BAFEM can improve the prediction of 

time constant in the presence of displacement jitter and large model parameter 

uncertainty. Figure 5.8 illustrates that the BAFEM can be improved if we can reduce the 

displacement jitter level or have more accurate prior model parameter information. The 
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details of the mean and SD predictions are listed in Table 5.3. However, for BASDF, 

even with a reduced displacement jitter level, the estimated time constant is still highly 

biased due to the limitation of the SDF model that cannot represent the true three-

dimensional dynamic system of the ARF induced motion. 

 

 

Figure 5.8. Posterior prediction for time constant with improved displacement data or 

prior information.  The two improvements are: I1) reduced model parameter uncertainty 

with SD       for     and 0.1 for   ; I2) reduced displacement-dependent jitter level 2%. 

Case 1 is described in Table 5.2. 
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Table 5.3. Posterior prediction for  (ms) with improvements in Fig. 5.8. The true soft 

tissue material property is                 . 

 
Posterior prediction for (ms) 

mean SD 

Case 1 0.53 0.059 

Case 1 with I1 0.51 0.036 

Case 1 with I2 0.51 0.039 

Case 1 with I1&I2 0.51 0.026 

BASDF with I2 0.76 0.017 

 

 

5.4 Characterization with Soft Tissue Heterogeneity 

In ARF imaging, a quantitative imaging of soft tissue mechanical property 

becomes challenging in the presence of local heterogeneity. In shear wave imaging, the 

quantitative imaging quality can be highly reduced by the local boundary due to 

reflection, which, sometimes, leads to a poor spatial resolution that can be lower than a 

qualitative imaging method within the ROE. [37] In ARF imaging within the ROE, the 

dynamic responses of soft tissue are also altered by the local heterogeneity as is discussed 

in Section 3.3.4.  In this section, the BAFEM inverse procedure is applied to estimate the 

time constant in the presence of local heterogeneity. Generally, in ARF imaging, a 

simplified model to mimic soft tissue heterogeneity would be a spherical tumorous 

inclusion inside normal soft tissue, and it is assumed that both the inclusion and 

background tissues are homogeneous. [44,61,115,116] In addition, a fully bonded 

interface is generally assumed, i.e., both displacement and stress are assumed to be 

continuous.  
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In order to build the FE model of the soft tissue with inclusion, the profile of the 

inclusion should be known beforehand, which can be realized by profile extraction in 

practice. [117] However, the profile of the inclusion boundary cannot be accurately 

obtained, or, it is possible that there is no actual boundary but region with large gradient 

of mechanical properties. In such a case, the uncertainty due to the inclusion profile 

should be considered. As is shown in Fig. 5.9, the inclusion diameter d is known with 

uncertainty in the characterization FE (CFE) model, which will be modeled as a prior 

distribution. 

 
Figure 5.9. Diagram of the characterization FE (CFE) model with spherical inclusion of 

diameter d. 

 

 

As is shown in Fig 5.10, even though the mechanical properties for both 

inclusions are the same, the temporal responses vary due to different local boundary 

conditions, which show that it’s necessary to model the local boundary in order to obtain 

an accurate quantitative estimation.  
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(a)       (b) 

Figure 5.10. Creep displacement responses inside the spherical inclusion. (a) is the 

original responses, and (b) is the normalized responses. =0.5ms for both the background 

and inclusion. Background shear modulus B = 3kPa, and inclusion shear modulus I = 

9kPa. 

 

 

In this thesis, two spherical inclusions are modeled: d = 4mm and d = 8mm that 

will be set in the Sythetic FE (SFE) model as the true value. In the inverse 

characterization process, the diameter d is known with uncertainty and assigned to the 

CFE model. The shear moduli of the background and inclusion are set to be B = 3kPa 

and  I = 9kPa, respectively. The background and inclusion are assumed to have the same 

time constant, =0.5ms. In the characterization process, the inclusion time constant is 

unknown and needs to be inversely solved based on the creep displacement responses 

inside the inclusion. 
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(a) 

 

 
(b) 

Figure 5.11. Posterior distribution of time constant for model with spherical inclusion of 

diameter (a) 4mm and (b) 8mm. Uncertin estimations of prior diameter, d (mm), are 

studied with different distribution. The Bayesian approach with SDF (BASDF) is also 

presented as a comparison. 
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Posterior distribution of time constant in the presence of uncertain inclusion 

diameter is shown in Fig. 5.11. The value of the diameter is modeled as a normal 

distribution with both unbiased and biased mean values as well as large and small 

standard deviations. The same BAFEM inverse procedure is applied to estimation the 

posterior distribution of the time constant. For both inclusions, the Bayesian approach 

with the SDF model gives very poor estimation, and the estimated mean values are highly 

biased from the true value. For BAFEM, even though the diameter is not accurately 

known, the estimated posterior distribution is around the true value of the time constant, 

which highly improved the accuracy of the inverse solution. In addition, in each case, the 

distribution of the diameter does not change the posterior distribution much, which means 

that the uncertainty is mainly contributed by the measurement noise. It also means that 

the bias set for the diameter is acceptable in practice, which will not affect the posterior 

prediction significantly. 

The above results demonstrate the feasibility of the proposed BAFEM to improve 

the quantitative estimation in the presence of local heterogeneity. However, practical 

application of the proposed method in heterogeneous case is still subjected to several 

limitations and challenges. First, the inclusion itself may not be homogeneous for soft 

tissue. Second, the inclusion and the background may not be fully bonded (especially for 

benign inclusions), which means certain contact condition should be defined. [115] 

Finally, the heterogeneous structure will increase the uncertainty of prior estimation on 

ARF distribution due to the unknown properties inside the inclusion. [60] 
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5.5 Summary 

An inverse finite element characterization procedure based on a Bayesian approach is 

applied to calculate the time constant in ARF induced creep imaging. It aims to improve 

the estimation accuracy when the SDF models have poor performance. The Bayesian 

approach with FE model (BAFEM) procedure provides a predicted distribution of the 

time constant in the present of displacement jitter, code uncertainty, and model parameter 

uncertainty. The major improvement of the proposed procedure is that it can make the 

best use of prior information on the ARF imaging system and soft tissues, which are 

discarded in the SDF models. By an integration of the uncertain prior information, 

prediction of BAFEM is more comprehensive and accurate than that of methods based on 

the SDF models for this problem. By GP metamodeling of the FE models, a MCMC 

procedure is made computationally feasible and efficient in Bayesian parameter 

estimation, and the associated code uncertainty is integrated in the calculation. It provides 

a potential to improve the ROE-response-based methods where the unknown stress limits 

an accurate characterization with FE methods.  
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Chapter 6: Conclusions and Future Work 

 

6.1 Conclusions 

This thesis provides an extensive analysis on both the forward problem and inverse 

problem in acoustic radiation force imaging of soft tissue within the ROE. In the forward 

problem, the finite element method is employed to study the dynamic behavior of soft 

tissue within the ROE, which investigates the assumptions that are made in ARF imaging 

within the ROE and analyze the factors that affect the accuracy of these assumptions. 

This thesis also suggests that these assumptions may lead to large estimation error in 

certain cases and an inverse FE analysis procedure is necessary to improve the imaging 

quality. In the inverse problem, an inverse FE characterization procedure based on a 

Bayesian approach is presented. By an integration of the uncertain prior information into 

FE model, numerical simulation results demonstrate that the Bayesian approach with FE 

model provides an efficient and practical estimation of the probability distributions of the 

mechanical property of soft tissue. The detailed conclusions are presented in the 

following subsections. 

6.1.1 Forward Dynamic Simulation with FE models 

As is discussed in Section 2.3, the unknown stress distribution within the ROE limits the 

accurate characterization with the ROE responses in ARF imaging, and assumptions have 

been made for both qualitative and quantitative imaging within the ROE. The forward 
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dynamic simulation aims to study these assumptions and decide what factors will affect 

the accuracy of these assumptions. 

In the case of qualitative imaging, the effects of global boundary conditions on 

ROE responses are investigated via harmonic motion imaging (HMI). It is observed that 

the dynamic response of soft tissue with high viscosity is independent of the global 

boundary conditions for regions remote to the boundary; thus it can be subjected to local 

analysis to estimate the underlying mechanical properties. However, the dynamic 

response is sensitive to global boundary conditions for tissue with low viscosity or 

regions located near to the boundary.  In a heterogeneous medium, the contrast transfer 

efficiency (CTE) of HMI is studied to evaluate the homogeneous assumption. The results 

illustrated that as the true inclusion-to-background contrast increases (i.e., the 

heterogeneity of the model increases), the observed contrast that is based on the measured 

displacement amplitude decreases. 

In the case of quantitative imaging, the simplified single degree-of-freedom 

(SDF) model is evaluated for both homogeneous and heterogeneous cases. This theis 

investigates the fundamental limitations of the commonly used SDF and homogeneous 

assumptions in ARF induced creep imaging. Finite element models are developed to 

simulate the dynamic behavior of viscoelastic soft tissue subjected to step ARF. The 

results indicate that the SDF model can provide good estimations for homogeneous soft 

tissue with high viscosity, but exhibits poor performance for low viscosity soft tissue. In 

addition, a smaller focal region of the ARF is desirable to reduce the estimation error 

with the SDF models. For heterogeneous media, the ROE responses are highly affected 
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by the local heterogeneity, which results in deterioration of the effectiveness of the SDF 

and homogeneous simplifications.  

6.1.2 Inverse FE Characterization based on A Bayesian Approach 

The purpose of the inverse FE characterization is to improve the quantitative 

imaging within the ROE. The integration of Bayesian approach with the FE model solves 

a statistical inverse problem in ARF induced creep imaging, which estimates a 

viscoelasticity metric, time constant. Gaussian process metamodeling is applied to 

provide a fast statistical approximation based on a small number of computationally 

expensive FE-model runs, which makes the Bayesian estimation procedure 

computationally feasible.  

The inverse FE characterization procedure can take full advantage of the prior 

information of model parameters and consider all the associated uncertainties, which 

make a more practical and comprehensive description of the estimation in the presence of 

measurement noise and model parameter uncertainty. In a comparison study with the 

simplified quantitative models, the Bayesian approach with FE model improves the 

estimation results even in the presence of large uncertainty levels of the model 

parameters. With reasonable prior information in ARF induced creep imaging, the 

estimated mean values of the time constant are generally unbiased or near unbiased, in 

contrast to the simplified SDF model which can lead to large estimated error as is 

discussed in Section 3.4. In addition, in this method, the estimation can further be 

improved if more accurate displacement data and prior model parameter information are 

available. However, for the simplified SDF model, even accurate prior model parameter 
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information is available; the estimated parameter is still highly biased due to the 

limitation of the SDF model that cannot integrate all the uncertain prior information into 

the estimation. 

6.2 Novel Contributions 

This thesis investigates the commonly used assumptions in ARF imaging within the ROE 

by exploring the dynamic behavior of soft tissue and analyzing the factors that affect the 

accuracy of these assumptions. This study demonstrates both the advantageous conditions 

and limitations of these assumptions, which points out when a more accurate inverse 

procedure is necessary to characterize the mechanical properties of soft tissue. 

Instead of solving the inverse problem with best-fit values from an optimization 

procedure, this thesis proposes to formulate a statistical inverse problem to take full 

advantages of prior information to improve the quantitative imaging in the ROE where 

the unknown stress distribution limits an accurate estimation, which is a new perspective 

to formulate the inverse problem in the field of ARF imaging within the ROE. The 

Bayesian approach with the FE model highly improves the characterization accuracy in 

the presence of large uncertainty levels of the model parameters. This new perspective 

demonstrates how to integrate uncertain prior information with FE method efficiently to 

improve the estimation accuracy, which can be extended to other ROE-response-based 

imaging method where the uncertain prior information limits an elaborate modeling and 

characterization of soft tissue. 
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6.3 Future Work 

For the inverse FE characterization part, this thesis mainly focuses on the 

estimation of time constant in ARF induced creep imaging. In future work, other ROE-

response-based methods may implement the same inverse procedure to improve the 

estimation. In particular, if this method can be combined with the Time-to-Peak (TTP) 

method that is introduced in Chapter 2, then both the elasticity and viscosity of soft tissue 

can be characterized with a full ROE-response-based method. 

For soft tissue with heterogeneity, models with more complex heterogeneous 

structure may be considered in future work, in which cases it is more challenging to 

obtain the necessary prior information to build the FE model. The advantage of the 

proposed method is the flexibility to integrate more uncertain prior information. As the 

model changes, additional uncertainty due to new model parameters can be easily added 

to the inverse procedure without increasing the computational cost significantly.  

For computational efficiency, this problem can be parallel computed for both the 

training of the Gaussian process metamodel and the MCMC sampling for Bayesian 

inference. In future work, this method may be implemented with parallel computing. This 

will also allow more design points to be used to train the Gaussian process metamodel, 

which will reduce the uncertainty due to metamodeling. 
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Appendix: Abbreviations  

 

ARF Acoustic Radiation Force 

ARFI Acoustic Radiation Force Impulse 

BAFEM Bayesian Approach with Finite Element Model 

CFE Characterization Finite Element 

CTE Contrast-Transfer Efficiency 

DSDA Direct-solution Steady-state Dynamic Analysis 

FE Finite Element 

GP Gaussian Process 

HIFU High Intensity Focused Ultrasound 

HMI Harmonic Motion Imaging 

MCMC Markov Chain Monte Carlo 

LGQ Legendre-Gauss Quadrature 

LHS Latin Hypercube Sampling 

LSM Least Square Method 

REE Relative Estimation Error 

ROE Region of Excitation 

SD Standard Deviation 

SDF Single Degree-of-Freedom 

SFE Synthetic Finite Element 

SNR Signal-to-Noise Ratio 

TTP Time-to-Peak 
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