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ABSTRACT OF THE DISSERTATION

Structure-dependent electronic properties of oxides from

first principles

by Yuanjun Zhou

Dissertation Director: Professor Karin M. Rabe

This thesis contains several investigations on the structure dependent electronic proper-

ties of oxides, studied via first-principle calculations or tight-binding models. We start

by reviewing the background of structure correlated properties and functionalities in

transition metal oxides, followed by the introduction of the density functional theory

which will be used throughout this thesis. We next consider the spin-phonon coupling

effect for SrMnO3/LaMnO3 superlattice with epitaxial strain. We explain the origin of

the intriguing emergence of the large spin-phonon coupling effect for tensile strain. As

the study of superlattice goes on, we realize the emergent need of a systematic way to

determine the ground state structure for superlattices. Thus we develop the “stacking

method” to solve this problem, and test it using PbTiO3/SrTiO3 whose structure is

known to be complicated. We then use the stacking method for the further study on

epitaxially strained SrCrO3/SrTiO3 superlattice, and find a nonpolar-polar structural

transition along with a metal-insulator transition. We conclude that the polar structure

induces an orbital ordering, leading to the insulating state. We also study the interband

transition effect in the epitaxially strained SrVO3, and show that the suppressed inter-

band transitions lead to the significant transmittance for SrVO3 thin films. Finally we

ii



define the surface polarization effect for those surfaces where in-plane inversion symme-

try is broken. We extend the Berry-phase theory of the bulk polarization to the case of

surface polarization by formulating the problem in the hybrid Wannier representation.

The surface polarization is in agree with the accumulating charge at the common edge

of two facets as expected.
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and cell volume are optimized at each strain. Top, Pmc21 structure.

Bottom, P4/mmm structure. The zero of energy in both figures is the

minimum energy for the Pmc21 structure. The vertical lines show the

transition strain values where the ground state magnetic ordering changes. 28

3.4. Frequencies squared of from Eu1 in SMO/LMO superlattice as functions

of in-plane strains. The vertical arrows show the strain values where the

frequencies in FM, C-AFM and A-AFM deviate. . . . . . . . . . . . . . 29

x



3.5. Amplitude squared of atomic displacements in the normalized x eigenvec-

tor of the lowest frequency Eu phonon mode in SMO/LMO superlattice

as a function of in-plane strain. The reference structure for all three spin

configurations is the same (the optimized structure for FM ordering).

Top, A-AFM. Middle, FM. Bottom, C-AFM. The formula cell contains

10 atoms, but because of the mirror plane in LaO and SrO layers, the

displacements of two Mn atoms are identical, as well as Ox and Oy atoms

in two layers. The vertical arrows point out the transition points in Eu1

at which the amplitudes of Ox and Oy deviate. . . . . . . . . . . . . . . 30

3.6. Squared frequencies for polar modes Eu1 to Eu5 in the SMO/LMO su-

perlattice as functions of epitaxial strain. . . . . . . . . . . . . . . . . . 32

3.7. Atomic displacements of the lowest Eu mode for different strains. (a)

Small strains and compressive strains. (b) Large tensile strains. . . . . 33

4.1. Flowchart for the stacking method for identification of the ground-state

structure of a superlattice. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2. Total energies (black squares) and space-group-symmetry analysis for

relaxed structures of epitaxially-strained PTO. Top, -2% strain. Middle,

0% strain. Bottom, +2% strain. Energies are in meV per 5 atoms, with

the zero of energy for each strain taken as the energy of the ground state

structure at that strain. The horizontal axis is labeled at the bottom by

the space group of the starting structure, and at the top by the space

group of the supergroup produced at values of the tolerance higher than

the critical value CT, which is shown as a red bar. Stable distortions are

typeset in bold red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3. Energies of low-energy distorted structures of PTO as functions of epi-

taxial strain. Red lines represent structures with polar distortions, and

blue lines represent structures with octahedron rotations. . . . . . . . . 45

4.4. Total energies and space-group-symmetry analysis for relaxed structures

of epitaxially-strained STO. Conventions as in Figure 4.2. . . . . . . . . 46

xi



4.5. Energies of low-energy distorted structures of STO as functions of epitax-

ial strain. Red lines represent structures with polar distortions, blue lines

represent structures with octahedron rotations, and green lines represent

structures with combined distortions of polar modes and rotations. . . . 47

4.6. Total energies and space-group-symmetry analysis for relaxed structures

of the epitaxially-strained 2:2 PTO/STO superlattice. Conventions as in

Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7. Oxygen octahedron rotation patterns and polarization directions for the

PcGSS , Pchigh and CmGSS structures of the 2:2 PTO/STO superlattice.

The rotations of the two interfacial TiO2 planes (yellow) are in the same

sense in all three structures and are not shown. The blue and green

planes represent the TiO2 layer between SrO layers and PbO layers,

respectively. Note that the sense of the rotation in the central layer of

Pchigh is opposite to that of the rotation in the central layer of PcGSS

and CmGSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8. Schematic curves for the total energy as a function of the amplitude of

an unstable mode in two cases: trilinear terms including the mode are

(a) forbidden by symmetry, or (b) allowed by symmetry. . . . . . . . . . 55

4.9. Total energies and space-group-symmetry analysis for relaxed structures

of the epitaxially-strained 2:2 PTO/STO superlattice from a set of 20

randomly-distorted P1 starting structures. Conventions as in Figure 4.2.

Red, blue and green arrows point to PcGSS , Pchigh and CmGSS states,

respectively. The Cmhigh state does not appear in this set. . . . . . . . 56

4.10. The total energies of all the low-energy superlattice structures as func-

tions of epitaxial strain, as described in the text. The line colors are

chosen to correspond to the five distinct structures observed at -2% strain. 56

xii



5.1. (a) Magnetic orderings in the SCO layer. Red: ferromagnetic (F), black:

G-AFM (G), and blue: x-type AFM (x) states. (b) GS structures and

energies for F (red), G (black), and x (blue) magnetic states as functions

of epitaxial strain. The solid curves guide the eye. Insulating and metal-

lic states are denoted by open and solid symbols. Shapes of data points

indicate the space groups: pentagons (Pbam), triangles (P2/m), cir-

cles (P4/mbm), diamonds (P21/c), five-pointed stars (Pc) and squares

(Pmm2). The inset shows the energies of low energy structures relevant

to the F state in the epitaxial strain range 1.8% to 2.9%. . . . . . . . . . 62

5.2. The PDOS of the Cr dyz orbital for G-type 1:1 SCO/STO superlattice

and C-type bulk SCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3. PDOS of the spin up Cr t2g in the 1:1 superlattice for +3% strain, with

G-AFM magnetic ordering. The left panels represent the PDOS without

(top) and with (bottom) the polar distortion. The vertical dashed line

marks the energy of the highest occupied state. The distortions in the

SCO layer are shown on the right part, where gray, blue and orange

spheres represent Sr, Cr and O ions, respectively. . . . . . . . . . . . . . 65

5.4. The evolution of PDOS of Cr dxy, dyz and dxz as a function of polar

displacement of Cr ion in [100]. The amplitude of the displacement for

each curve is given in the legend in units of the in-plane lattice constant. 66

5.5. Decomposed polar mode energies for three epitaxial strain cases. . . . . 67

5.6. Decomposed polar mode energies for three epitaxial strain cases. . . . . 68

5.7. (a) PDOS of dyz orbitals for bulk SCO and different periods of SCO/STO

superlattices. (b) A sketch for the bonding/antibonding states for dyz or

dxz between different Cr layers. . . . . . . . . . . . . . . . . . . . . . . . 69

6.1. Dielectric functions with respect to wavelength. Real part (top panels)

and imaginary part (bottom panels). Solid lines are DFT calculated

data, and dots represent experimental data. The experimental data is

measured by Podraza’s group at Toledo University. . . . . . . . . . . . . 77

xiii



6.2. Transmittance of thin film SrVO3. Left, experiment. Right, first-principles

calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3. First principles calculation results of SrVO3. (A) Band structure of

SrVO3 in the vicinity of the Fermi level EF , comprised of nine bands

originating from O 2p orbitals, three bands from V 3d t2g, and two bands

from V 3d eg orbitals. Interband transition (I) through (III) are indi-

cated. (B) Brillouin zone of SrVO3 containing the Fermi surfaces of the

three t2g bands. Isosurface representation of the dipole matrix element

M2 for electronic states in the Brillouin zone for the interband transi-

tions. (C) (I): t22g to e1
g, (D) (II): 2p1 to t12g, (E) (III): 2p1 to t32g with

2p1 the highest lying valence band, t12g, t
2
2g, t

3
2g the lowest middle and

highest lying t2g bands, and e1
g, e

2
g the lowest, highest lying eg bands,

respectively. The Fermi surface of the t2g band involved in the transition

is indicated as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4. Decomposed ε
(2)
inter to 2p− t2g, t2g − t2g and t2g − eg contributions. . . . 80

6.5. Energy difference (upper panel) and M2
z (bottom panel) for t2g − t2g

transitions along the k path of Fig. 6.3(A). Solid and dotted lines rep-

resent the allowed transitions and those forbidden by the Fermi factor.

Blue, red and green represent transitions of t12g − t22g,t12g − t32g and t22g − t32g. 80

6.6. Energy difference (upper panel) and M2
z (bottom panel) for t2g−eg tran-

sitions along the k path of Fig. 6.3(A). Solid and dotted lines represent

the allowed transitions and those forbidden by the Fermi factor. Blue,

red and green represent transitions start from t12g t
2
2g and t32g. The light

and dark blue, red and green represent the transitions end in e1
g and e2

g,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xiv



6.7. Energy difference (upper panel) and M2
z (bottom panel) for 2p − t2g

transitions along the k path of Fig. 6.3(A). Solid and dotted lines rep-

resent the allowed transitions and those forbidden by the Fermi factor.

Blue, red and green represent transitions start from the lowst p, 2p3 to

the highest p, 2p1. The light to dark blue, red and green represent the

transitions end in t12g, t
2
2g and t32g, respectively. . . . . . . . . . . . . . . 83

7.1. Illustration of bulk and surface polarization effects. The polarizations

are denoted by black arrows, and net positive and negative bounded

charged are in red and blue, respectively. (a) Bulk polarization gives rise

to surface charges σ. (b) Surface polarization gives rise to edge charges λ. 86

7.2. (a) Illustration of the TB model, where four unit cells are presented.

The atoms are denoted by black dots. Nearest neighbor hoppings t1, t2

and t3 are shown in solid blue lines. Next-nearest neighbor hoppings t4

and t5 are shown in dashed blue lines. P are shown by black arrows.

The induced Qcorner are denoted by red (positive) and blue (negative)

large dots at the corners. (b) Band structure of the TB model in the

(kx, kz) space. The inset shows the high symmetry points in the 2D

Brillouin zone, where Γ, X, M, X ′ refer to (0,0), (0,1
2), (1

2 ,1
2) and (1

2 ,0),

respectively. (c) Band structure along kx for the 2D slab model that is

infinite along x while 10-cell-thick in z. (d) Difference between effective

x positions of each HWF and that deep in the bulk. . . . . . . . . . . . 89

7.3. (a) Illustration of the GaAs slab studied in the TB model, where the

blue and green balls represent Ga and As atoms, respectively. The grey

shaded planes denote the (110) family planes. (b) Electronic band struc-

ture of the GaAs slab in the 2D Brillouin zone, with the thickness of 8

cells z. (c) Difference between the γx of each group of HWFs and that

deep in the bulk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xv



7.4. (a) Overhead view of the hexagonal GaAs nanowire. The dashed black

line, which meets the edges along [111] at an angle of θ = 35.26◦, shows

the direction along which the zigzag surface chains run. The relevant sur-

face polarizations at the side surfaces are denoted by black arrows. The

blue and red vertical edges mean net negative and positive edge charge

distributions, respectively. (b) On-site charge distribution summed over

the trilayer. Red and blue dots represent positive and negative net

charges, respectively. The sizes of dots indicate the magnitudes of the

on-site net charge. the left and right regions to the dashed vertical line

show the total and symmetric part of onsite charges, respectively. . . . . 94

xvi



1

Chapter 1

Introduction

Transition metal oxides (TMOs) [1, 2] are the subject of extensive research in condensed

matter physics. They exhibit a range of correlated phenomena due to the complex

interplay between the charge, spin and orbital degrees of freedom. The nature of the

interplay is dependent on the structure of the material, as illustrated in Fig. 1.1. Various

correlated electronic phases are not only fundamental in physics, but can also be used

for applications. Colossal magnetoresistance, ferroelectricity, high Tc superconductivity,

various orbital orders, spin orders and charge orders are good examples of correlated

electronic phases in TMOs. In addition, tuning the correlated phases may give rise to

novel devices. For example, tuning magnetic states may lead to memory devices, and

switching the metallic/insulating states may lead to logic devices.

Among TMOs, perovskite is one of the most important classes, and in this the-

sis perovskite is the prototype system where we study various correlated properties.

Perovskite represents the class of compounds that have the CaTiO3 like pseudo-cubic

structure and the ABO3 formula, as shown in Fig. 1.2. Typical perovskites include

SrTiO3, SrVO3, LaMnO3. The A site cation is usually an alkaline or a rare earth atom,

and the B site cation is usually a transition metal atom whose d shell is not fully filled.

The six oxygens nearest to the B site atom form an octahedron. The octahedral crystal

field breaks the spherical symmetry of the B atom into an Oh symmetry, and the five

d orbitals of the B atom split into doubly degenerated eg and triply degenerated t2g

orbitals, as shown in Fig. 1.3.

Perovskites are of particular interests for several reasons. First, as a typical transi-

tion metal oxide, many remarkable phenomena and functional properties that have been

observed in perovskites[3, 4] need to be understood for condensed matter physics from
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Figure 1.1: Complex interplay of charge, spin, and orbital, associated with different
structures for transition metal oxides.

the fundamental point of view. For example, colossal magnetoresistance, spin-phonon

coupling effect, piezoelectricity, ferroelectricity, multiferroic effects, metal-insulator tran-

sitions that have been found in perovskites all attract tremendous interests. The rich

properties are related to the d shell electrons of the B site atom. Partially filled d shell

may give rise to the magnetic properties. The hopping effect between the d orbital and

the O p may lead to the B site displacements relative to the O octahedron, and give

rise of ferroelectricity related effects. The localization of d orbitals may induce various

strongly correlated properties, and even the Mott metal-insulator transition where the

energy levels of two degenerated spins are distinguished by the strong Coulomb repul-

sion. Charge ordering and orbital ordering are also common reasons for metal-insulator

transitions, and both of them are orbital selection effects due to the partially filled d

orbitals.

Furthermore, many of these properties are closely related to the structure of the

perovskite. The spin-phonon coupling effect occurs in magnetic materials where dif-

ferent magnetic states result in different frequencies for the same phonon displacement
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Figure 1.2: A cubic ABO3 perovskite unit cell.

pattern. The coupling strength can be further coupled to structural changes, for ex-

ample, epitaxial strain. Piezoelectricity broadly exists in insulators without inversion

symmetry, and is a linear interaction between mechanical stress and electronic charge

accumulation. Ferroelectricity is associated with a spontaneous polar distortion of the

crystalline structure, and can be switched to the negative polar state that is sym-

metrically equivalent. Multiferroics are defined as materials that exhibit more than

one primary ferroic order parameter simultaneously, usually ferroelectricity with mag-

netic ordering. Metal-insulator transitions can result from many mechanisms, including

structural distortions. For instance, the Jahn-Teller (JT) distortion, which is associated

with the local bond length changes between the B site atom and O, occurs to lift the

degeneracy of t2g or eg orbitals when they are partially occupied, possibly leading to

a metal-insulator transition, with the formation of orbital ordering or charge ordering.

Oxygen octahedral rotations will change the B atom-oxygen bond angles, and thus d−p

band widths near the Fermi level, and possibly induce a metal-insulator transition.

There are currently many ways to systematically tune the structure of a perovskite.

Thus, it is possible to engineer the functional properties and design novel devices. The

synthesis of bulk perovskites are now well developed and high quality single crystals
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Figure 1.3: The eg − t2g splitting of 3d orbitals in octahedral crystal field.

have been routinely grown for years[5, 6]. Substituting or doping the cations is one of the

most convenient ways to change the structure of a bulk perovskite by changing the ionic

radii tolerance factor. The ionic radii tolerance factor is defined as t = rA+r0√
2(rB+r0)

, where

rA, rB and r0 represent the radii of the A site, B site cation and O anion, respectively.

Usually for a perovskite the tolerance factor 0.71 < t < 1. When 0.9 < t < 1 the

structure tends to be cubic or tetragonal. When 0.71 < t < 0.9, the structure tends to

be orthorhombic or rhombohedral, meaning oxygen octahedral rotations are preferred.

Other tuning parameters such as pressure, temperature are also effective at driving

bulk perovskites through structrual phase transitions, and further tuning the electronic

properties.

Different structures and properties exist in other states of perovskites. Perovskites

can also be synthesized using the atomic size layered growth methods such as Pulsed

laser deposition (PLD) and Molecular beam epitaxy (MBE)[7]. Electronic properties

of layered structures including thin films and superlattices can be significantly different

from their bulk state because of the two-dimensional confinement effect. Moreover, for

these epitaxial methods, large scale epitaxial strain can be addressed due to the lattice

mismatch between epitaxial layers and substrates. Epitaxial strain has recently become

an important tuning parameter for structural changes in thin films and superlattices,

and it leads to many exotic phases and electronic properties that are not as easily

accessible for the bulk state. Examples include the epitaxial strain coupled multiferroic

state[8, 9] and metal-insulator transition[10].

Superlattices recently attract a great deal of attention. They are a class of periodic

layered structures, exhibiting many degrees of freedom that can be tuned for novel
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properties. Obviously, the charge transfer, and correlations between the constituents

may give rise to novel properties, especially at the interface[11, 12]. Also, the epitaxial

strain effect, compositional tuning of both A and B sites cations, and layering or con-

finement effects may dramatically change the crystalline and electronic structures of a

superlattice.

These degrees of freedom make superlattices a great innovative platform for the

design of new functional materials. On the other hand, the synthesis of superlattice

is time consuming and the degrees of freedom make it difficult for experimentalists

to decide the composition and epitaxial strain required for realizing desirable proper-

ties. First-principles calculations can be used to accelerate the process of materials

searching, particularly in the sphere of complex oxide systems. In modern condensed

matter physics, first-principles studies play an important role: they connect theoret-

ical formalisms to experiments. Density Functional Theory (DFT) is widely used for

first-principles calculations in solid state physics. It is a successful approach to access

many-body problems in real materials. As will be introduced in the next chapter, DFT

calculations do not make assumptions of models and fitting parameters. They start

from the fundamental many-body quantum physics of electrons and atoms in a crystal.

Thus, first-principles calculations can directly compare with and explain the experi-

mental results, and in addition, they provide the possibility to design novel materials.

By varying the chemical and structural complexity, first-principles calculations may

easily assess hypothetical materials (superlattices, thin films) or well-known materials

under extreme conditions (high pressure, large epitaxial strain) that have not been

studied. Reasonable calculations from first-principles provide good evidence or hints

for experimentalists. Recently this type of theory-experiment collaboration has been

more successful. Multiferroics due to epitaxial strain[13, 8] and hybrid improper ferro-

electrics are good examples[14] that were predicted by first-principles studies first and

then realized by experiments. This is one reason why the US government launched the

Materials Genome Initiative, to utilize the computational resources and first principles

studies to at least double the current speed of new material discovery. In this thesis,

DFT is mainly used to study the structural, electronic, magnetic and optical properties
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of perovskites for their strained bulk and superlattice states.

In this thesis I focus on both the structures and coupled properties of epitaxial strain

on different perovskites and their heterostructures using first-principles methods. I also

describe the fundamental formalism of surface polarization. Chapter 2 reviews the basic

theoretical background. The results and discussions are contained in Chapter 3 to 7.

In Chapter 3 I will discuss the spin-phonon coupling effect in the 1:1 SrMnO3/LaMnO3

superlattice. Spin-phonon couplings have recently been the subject of active experimen-

tal and theoretical interest, especially with the discovery of a novel multiferroic phase in

EuTiO3 resulting from spin-phonon coupling for a low-frequency polar mode. Artificial

structuring, specifically superlattice layering, is well known to affect crystal structure,

magnetic ordering and phonons, and therefore could also in principle be used to enhance

spin-phonon coupling. In this Chapter, I use first-principles methods to study magnetic

ordering and spin-phonon coupling in a 1:1 SMO/LMO superlattice with varying epi-

taxial strain. Having found the magnetic phase transitions in agreement with previous

work, we investigate the epitaxial strain effects on spin-phonon couplings, and find that

the character of the lowest polar mode can be changed in tensile strain, leading to a

substantial increase of the spin-phonon coupling. This work shows the possibility of

enhancing spin-phonon coupling in magnetic perovskite oxides by combining superlat-

tice layering with epitaxial strain tuning, providing an approach to tailoring functional

materials. This work has been published on the Physical Review B[15].

During the study of superlattices, we realize the clear need for an efficient method

to determine the ground state and low-energy alternative structures of superlattices.

Methods of structural determination for superlattices that are commonly used are com-

putationally formidable phonon-based distortion freeze in and relaxations or conjectures

from the ground state structures for bulk constituents. In Chapter 4, a method based on

a simple strategy – to generate starting structures based on low-energy structures of the

constituent compounds, which are then optimized via structural relaxation calculations

– is proposed. This “stacking method” is demonstrated on the 2:2 PbTiO3/SrTiO3 su-

perlattice, which has been the subject of recent experimental and theoretical interest.

Our work shows the success and efficiency of the stacking method in determination of
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the ground state and alternative low energy states of the PTO/STO superlattice. This

method can be implemented as an automatic process and easily generalized for different

combinations of superlattices, paving the way for future superlattice studies. This work

has been published on Physical Review B[16].

With the development of the stacking method in Chapter 4, I will use it to deter-

mine the ground state structures of SrCrO3/SrTiO3, a dielectric/metallic superlattice

for different epitaxial strain and the interplay of magnetic states in Chapter 5. In this

Chapter, I perform and analyze first-principles calculations on a 1:1 superlattice of two

perovskite oxides: SrCrO3, a d2 system with competing phases, and the d0 incipient

ferroelectric SrTiO3. We show that the superlattice layering has a dramatic effect on

the Cr d-bands near the Fermi level. We also show that with increasing tensile epitax-

ial strain, a first order transition occurs between a nonpolar metallic state and a polar

insulating state. It is the coupling of the polar distortion in the SrCrO3 layer to the

superlattice d-bands that lifts the degeneracy of dyz and dxz orbitals and leads to the

insulating state. These results demonstrate a new mechanism for metal-insulator tran-

sitions driven by polar distortions, beyond the particular example of SrCrO3/SrTiO3.

This is of particular interest in the design of novel functional materials for electric-field

control of the conductivity and of the band gap, and should attract the attention of

both theorists and experimentalists working on materials design and discovery. This

work has been published on Physical Review Letter[17].

Thin films are another type of heterostructure. Unlike the superlattice, there is no

out-of-plane periodicity. The thickness of a thin film can range from sub-nanometer

(monolayer) to micrometer. In this thesis when I refer to thin films, I will merely

consider the thickness from nanometers to tens of nanometers. This means that my

research of thin films does not focus on surface effects. Since there are at least tens of

atomic layers, the “bulk” properties actually dominate. Nonetheless, the epitaxial strain

plays an important role for thin films. Thus I use the “strained bulk” to investigate

the properties of thin film in the thesis. Our experimental colleagues found that the

thin films of SrVO3 are of decent transparency. With the conducting SrVO3 film, by

comparing the transparency and meanwhile the conductivity, they found that the thin



8

film of SrVO3 had a superior performance than the widely used indium tin oxides for

the transparent conductor. In Chapter 6 I will introduce our theoretical study on the

interband transitions of SrVO3, showing that it is the key for the small absorption

within the visible light range. This work has been submitted.

At surfaces of a crystal, the electronic properties can be quite different from the bulk

due to the broken symmetry at the surface, which usually leads to surface relaxations

and reconstructions. Besides the superlattice first principles studies, my research also

includes the formal study of the surface effect. We realize that at the surface where

the in-plane inversion symmetry is broken, an in-plane polarization localized at the

surface should be expected even if the bulk is nonpolar due to the centrosymmetric

lattice. The Berry phase theory has been well-established for the bulk polarization.

However, the surface polarization effect has not yet been studied, and the terminology

is often confused with the dipole density that is localized and perpendicular to the

surface. It is remarkable that such a fundamental concept as surface polarization has

been overlooked until now. Probably the reason is that it only results in line charges

at facet edges, which are harder to observe than the surface charges resulting from

the parent phenomenon of bulk polarization. Nevertheless, it seems very likely that

experimental probes now have the sensitivity to detect such line charges. These effects

can occur in a broad range of insulating materials systems, and can also be associated

with domain walls, twin and grain boundaries, and interfaces. Thus, we believe that a

proper understanding of surface polarization and its consequences will become essential

when trying to understand the electrostatics of nanostructures at near-atomic length

scales. In Chapter 7 I will define and discuss the surface polarization and edge charge

effect in the language of Berry phase theory and show our results of tight-binding model

studies. This work has been published on Physical review B Rapid Communication[18].
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Chapter 2

Introduction to Methods

In this chapter I first introduce the basic theoretical background of Density Functional

Theory (DFT) and its extension, Hubbard U method, used throughout the thesis.

Then the phonons, structural relaxation, and polarization calculations based on DFT

are reviewed.

2.1 Density functional theory

2.1.1 Energy functional and Kohn-Sham equation

For an N electrons system, the many-body Hamiltonian H can be described as,

H(R, r) = TN (R) + Te(r) + VNN (R) + Vee(r) + VeN (r,R), (2.1)

In which TN (R), Te(r) represent the kinetic energies for nuclei and electron, respectively,

while VNN (R), Vee(r) and VeN (R, r) denote the Coulomb potential energies for nuclei-

nuclei, electron-electron, and nuclei-electron interactions, respectively. R and r are

the position coordinates for nuclei and electrons. Considering the Born-Oppenheimer

approximation and the large nuclei masses, the kinetic energy of nuclei, TN , can be

treated as a perturbation. The rest terms can be written as

Te(r) = − ~2

2m

∑
i

∂2

∂r2
i

, (2.2)

VNN (R) = − e2

2m

∑
I 6=J

ZIZJ
|RI −RJ |

, (2.3)

Vee(r) = − e2

2m

∑
i 6=j

1

|ri − rj |
, (2.4)



10

VeN (r,R) = −e2
∑
iI

ZI
|ri −RI |

. (2.5)

where Z is the charge of nuclei, i, I label electrons and nuclei, and m is the mass of

the electron.

To directly solve the many-body problem in a crystal, the number of Schrödinger

equations need to be solved are of the formidable order of 1023.

Hohenberg and Kohn [19] showed that the total energy of the ground state of an

interacting electronic system is a unique functional of the electron density electronic

density. Although no practical solution was provided in this paper, the theorem of

Hohenberg and Kohn inspires the approaches of density functionals that circumvent

the large number of Schrödinger equations.

Following the previous paper, Kohn and Sham [20] provided a method to proceed

further. In this idea, the original many-body electron problem is replaced by a fictitious

one-electron problem. In this framework, the density of the system is given by the one-

electron wavefunction ψi(r),

n(r) =
∑
i

|ψ(r)|2. (2.6)

Hence the total energy functional can be given by

EKS [ψi] = − 1

2m

∑
i

〈ψi| ∇2 |ψi〉+
1

2

∫
n(r)n(r′)

|r− r′|
drdr′+

∫
Vext(r)n(r)dr+ENN+Exc[n(r)].

(2.7)

It is the so-called Kohn-Sham energy functional, and the minimum value is equal to

the ground state energy of the many-body system. The first term in EKS is the one-

electron kinetic energy, the second term is the classical Coulomb energy expressed in

the electron density, namely the Hartree term, the third term is the potential energy

of electrons in the external field created by the ions, the fourth term is the Coulomb

energy between ions, and the last term is the exchange and correlation energy. All the

differences between the real many-body total energy and the one-electron total energy

is included in the Exc term.

To determine the wave functions that minimize the Kohn-Sham energy functional,

we use the variational method on ψi with the orthonormal constraint 〈ψi|ψj〉 = δij and
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that gives the Kohn-Shame equation:[
− ~2

2m
∇2 + VH(r) + Vext(r) + Vxc(r)

]
ψi(r) = εiψi(r), (2.8)

where ψi is the wave function of electronic state, εi is the Kohn-sham eigenvalue, VH is

the Hartree potential with the expression:

VH(r) = e2

∫
n(r′)

|r− r′|
dr′. (2.9)

The Vext term in Eq. (2.8) is the external potential, and the Vxc is the exchange-

correlation potential given by

Vxc(r) =
δExc[n(r)]

δn(r)
. (2.10)

Once the explicit expression of Exc or Vxc is known, the Kohn-Sham equation can

be calculated self-consistently. Then the exact total energy would be given as

E0 =
∑
i

εi −
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n(r)]−

∫
Vxc(r)n(r)dr. (2.11)

2.1.2 Approximations of exchange-correlation funtionals

Given the basis of the DFT in the previous subsection, the exact expression of the

term of Exc is not available. Approximations of it are required to really solve the

problem. The local density approximation (LDA) [20] is the simplest and one of the

most successful approximations. The LDA assumes that the exchange-correlation en-

ergy at position r is equal to the exchange-correlation energy per electron εxc(n) in a

homogeneous electron gas with the density n(r) that is equal to the real system:

ELDAxc [n(r)] =

∫
εxc(n(r))n(r)dr, (2.12)

and

δELDAxc [n(r)]

δn(r)
=
∂[n(r)εxc(r)]

∂n(r)
. (2.13)

The exchange-correlation energy functional is purely local in the LDA. Several

parametrization works [21, 22] use interpolation formulas to link results for the exchange-

correlation energy of electron gases. The LDA generally ignores the inhomogeneities in
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the electron density, but it turns out to have predicted very successful results. It has

been shown that this can be partially due to the correct sum rule for the exchange-

correlation hole that is included in the LDA [23, 24].

There are many attempts to improve the exchange-correlation functional. For ex-

ample, generalized gradient approximation (GGA) [25] includes the gradient expansion

terms, and meta-GGA takes a dependence on the kinetic energy density on the Lapla-

cian of the wavefunctions into account. Other approximations exist that consider more

terms and effects. They may have better performances than the LDA in particular

cases, but overall the accuracy is not dramatically improved.

2.1.3 Practical implementations.

Plane waves are commonly used as a basis set for the electronic wave functions, after

the Fourier transforms, the Kohn-Sham equations can be written as∑
G′

[
~2

2m
|k + G|2δGG′ + VH(G−G′) + Vext(G−G′) + Vxc(G−G′)

]
ci,k+G′ = εici,k+G.

(2.14)

The sum over G′ is finite in practice, and it is determined by the “cutoff” energy

|k + G| < Gcut, (2.15)

where ~2
2mG

2
cut = Ecut. This means that the number of plane waves can be easily

controlled by the cutoff energy. It is one of the reasons that the plane-wave based DFT

softwares are in more widely used. In this thesis all the first-principles calculations are

performed using the V ienna Ab initio Simulation Package (VASP-5.2)[26, 27].

Another important step to carry out DFT is the k-point sampling. For each k point

the Kohn-Sham equations are solved, and the Kohn-Sham eigen-energy εi should be

integrated over the Brillouin zone. The infinite number of k points in Brillouin zone

represent the infinite number of electrons in the solid according to the Bloch’s theorem.

However, to carry out the DFT calculation we cannot and do not necessary to calculate

the the infinite number of k points, because the wavefunctions tend to be smooth in

the k space. Instead, we usually use a equally spacing k mesh to sample the Brillouin

zone, and the integration over the Brillouin zone becomes a summation over the finite
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k points. The denser the k mesh, the more accurate the calculation. Usually the cutoff

energy and the k point mesh are determined by checking the convergence of the total

energy beforehand.

When using the plane wave basis set to expand the electronic wave functions, a

large number of plane waves are needed to expand the core orbitals to express the fast

oscillations. The all-electron calculation is usually believed to be relatively accurate

but slow due to the huge number of plane waves used.

The pseudopotential approximation largely reduces the number of plane waves. By

assuming the electronic properties are mainly determined by the valence electrons, the

pseudopotential for the valence electrons are constructed. The corresponding pseudo

wave functions are identical to the real wave functions outside the core region and

smooth inside without radial nodes. The pseudo wave functions are built to be smooth

at the core region boundary and of the same scattering properties with the all-electron

wave functions.

The earliest pseudopodential type is norm conserving[28]. It requires the equality

of the squared amplitudes of the real and pseudo wave functions inside the core region.

It is convenient in some calculations associated with summing the electron density

in the core region, but it is relatively expensive when calculate the localized orbitals

such as the rare earth and 3d elements for which large sets of plane waves are needed.

Vanderbilt developed the ultrasoft pseudopotential[29], in which the norm conserving

requirement is relaxed to further lower the number of plane waves. The price is a local

charge term for the valence charge consistency.

Another important development is the projector augmented-waves (PAW) pseu-

dopotentials [30, 31]. The PAW method combines the ideas from the pseudopotential

and the linearized augmented-plane-wave (LAPW). It gives small cutoff energies for

most of the elements and also the accuracy of the all electron calculation. All the

first-principle calculations in this thesis are based on the PAW potentials.

2.1.4 Beyond DFT

DFT + Hubbard U. The DFT, or more specifically LDA and GGA often fail in transition
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metal oxides due to an inadequate description of the strong Coulomb repulsion between

d or f electrons localized on metal ions. The DFT with Hubbard U (DFT+U) method

[32, 33, 34] assumes that the strongly correlated d or f electrons that can be described

in a tight-binding basis are subject tot on-site quasiatomic interactions. The Hubbard

parameter U is defined as

U = E(dn+1) + E(dn−1)− 2E(dn), (2.16)

in which E(dn) means the energy that n d orbitals are occupied. So, the Hubbard U

indicates the Coulomb energy cost to place two electrons at the same site.

DFT+U method is quite successful in dealing with magnetic and strongly correlated

systems. Additionally, the DFT+U does not increase the computational cost signifi-

cantly comparing to the original DFT, leading to its wide-range use. In this thesis, the

DFT+U is the main method I use for the magnetic systems.

2.2 Phonon calculation

A phonon is a vibrational mode in crystals. With the harmonic approximation, it is a

property of the second derivative of the total energy.

E(u) = E0 +
∑
R,i

∂E

∂u(R)i
u(R)i+

1

2

∑
R,R′,j,k

∂2E

∂u(R)j∂u(R′)k
u(R)ju(R′)k+o(u3), (2.17)

where u(R)i denotes the displacements of the ion with equilibrium position R in i. In

matrix notation, the equations of motion are given by

M ü(R) = −
∑
R′

C(R−R′)u(R′), (2.18)

where C(R−R′) is the force constant matrix, the second derivatives of E with respect

to atomic displacements u. With the plane waves solutions u(R, t) = eei(q·R−ωt), we

have

Mω(q)2e = C(q)e, (2.19)

in which the C̃(q) is the Fourier transformation of C(R) into the reciprocal space. It

is now an eigenvalue problem to obtain the phonon frequency ω2.
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In first-principles calculations, there are two main methods to compute phonon

frequencies. Frozen phonon method is the most straightforward one. In this method,

the atoms are rigidly displaced from the equilibrium positions, and forces between other

atoms are computed by the Hellmann-Feynman formula. Hence the force constant

matrix can be constructed. It can be easily implemented, but for zone boundary q

points, supercell is required since the forces between the atoms in the unit cell and the

neighboring unit cell need to be considered.

A more advanced method is based on the density-functional perturbation theory[35,

36]. The first and second derivatives of the ground-state energy read

∂E

∂λi
=

∫
∂Vλ(r)

∂λi
n(r)dr, (2.20)

∂2E

∂λi∂λj
=

∫
∂2Vλ(r)

∂λi∂λj
n(r)dr +

∫
∂Vλ(r)

∂λi

∂nλ(r)

∂λj
dr. (2.21)

Apply this onto the force constant matrix, we have the electronic part

elC̃αβij (q) =
1

Nc

[∫ (
∂n(r)

∂uαi (q)

)∗ ∂Vion(r)

∂uβj (q)
dr +

∫
n(r)

∂2Vion(r)

∂uα∗i (q)∂uβj (q)
dr

]
. (2.22)

Note that there still is an ionic part ionC̃αβij (q) which can be computed analytically that

needs to sum up for the total force constant matrix in the reciprocal space[36].

The most important advantage of DFPT in the phonon calculation is circumventing

the expensive supercell calculation that comes from to the O(N3) power law of compu-

tational complexity with N the number of atoms in the cell. Now, within DFPT the

responses to perturbations of different wavelengths are decoupled, leading to the fairly

easy and independent calculation for phonons with arbitrary wave vector q.

To calculate the derivative of the electron charge density in DFPT, we only have to

consider the occupied states,

(H0 − εkv + αPv)
∣∣∣∆ψk

v

〉
= −Pc∆V0

∣∣∣ψk
v

〉
, (2.23)

in which only occupied states are considered, and Pv and Pc are project operators to

occupied and unoccupied states.



16

For a specific wave vector k + q, we project both sides of Eq. 2.23 over the states

of k + q. The projector Pk+q commutes with H0, and we denote its action on Pc and

Pv with Pk + qc and Pk + qv, respectively. Then Eq. 2.23 becomes

(H0 − εkv + αPk+q
v )

∣∣∣∆ψk+q
v

〉
= −Pk+q

c ∆V0

∣∣∣ψk
v

〉
, (2.24)

We can also decompose the perturbing ∆V into Fourier components,

∆V0(r) =
∑
q

∆vq0 (r)eiq·r, (2.25)

in which ∆vq0 (r) is lattice periodic. Using the periodic parts of the Bloch wave functions

ukv , Eq. 2.24 reads(
H0 − εkv + α

∑
v′

∣∣∣uk+q
v′

〉〈
uk+q
v′

∣∣∣) ∣∣∣∆uk+q
v

〉
= −

[
1−

∑
v′

∣∣∣uk+q
v′

〉〈
uk+q
v′

∣∣∣]∆vq0

∣∣∣ukv〉 ,
(2.26)

where v′ runs over the valence bands, and δuk+q
v is the first order correction of the

k + q component of ukv . The derivative of electronic density is given by

∆nqv (r) = 4
∑
kv

〈ukv (r)|∆uk+q
v (r)〉. (2.27)

The derivative of electronic density then gives the new self-consistent potential,

∆vq0 (r) = ∆vq(r) + e2

∫
∆nq(r′)

|r− r′|
e−iq·(r−r

′)dr′ +
dvxc(n)

dn

∣∣∣
n=n(r)

∆nq(r). (2.28)

The Eq. 2.26,2.27,2.28 form a self-consistent loop which is equivalent to the self-consistent

calculation of electron charge density n(r). Thus the phonon calculation with arbitrary

wave vector can be calculated by DFPT with the same complexity of ground state

calculation.

2.3 Structural relaxation

The structural relaxation in this thesis refers to the search of local energy minimiza-

tion process, in other words, given an starting structure, the local minimum structure

with the same symmetry of the starting structure should be found by the structural
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relaxation. The relaxation of the ionic positions can be performed according to the

Hellmann-Feynman (HF) forces from DFT calculations,

Fi,α = −
∑
j

〈ψj |
∂H

∂ui,α
|ψj〉 . (2.29)

Here F is the force, and i α and j go over the indices of atoms, components of the force

and the band indices, respectively. Having the HF forces, the iterative optimization

algorithms such as molecular dynamics and the conjugate gradients methods can be

carried out to find the structure with the least forces, leading to a local minimum of

the total energy.

The starting structure is thus critical for the structural relaxation. For bulk mate-

rials, phonon calculations, especially the unstable phonon modes at high symmetry k

points usually provide hints for possible distortions we need to consider. The unstable

phonons denote the phonon modes with imaginary frequencies, which means the cur-

rent structure is a metastable state, and the atomic distortion follow the phonon mode

would lower the total energy and lead to a local minimum.

Thus a reasonable approach to determine the distortions in the starting structure is

to freeze in the unstable phonon modes. After structural relaxation, the phonon calcu-

lation should be performed again to determine the phonon modes that can further lower

the total energy from the current local minimum or saddle point. Another commonly

used way to determine the ground state structure is to freeze in all the combinations

of unstable phonon modes, and select the lowest energy structure after relaxations.

For the structural relaxations of more complex systems such as the superlattice,

considerations of pre-processes are necessary to simplify the overall calculation. This

will be discussed explicitly as the stacking method in the Chapter 3.

2.4 Modern theory of polarization

The macroscopic polarization is the most essential concept in the description of di-

electric properties such as ferroelectricity, piezoelectricity, pyroelectricity, flexoelectric-

ity and so on. The standard model of the macroscopic polarization is based on the

Clausius-Mossotti (CM) model, in which the dipole moment in a unit cell is calculated
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by the mass centers displacements of the positive and negative charges. However, the

absolute polarization in a unit cell is actually useless and ill-defined, and the polar-

ization differences should be used to define the polarization. This idea, with formal

quantities such as Berry phases and Wannier functions, is developed as the “modern

theory of polarization [37]. The modern theory of polarization explains the microscopic

picture of polarization, and it also make it accessible in the first-principle calculations.

Universally, the polarization can be given by the integrated current

∆P =

∫ ∆t

0
dtj(t) = P (∆t)− P (0). (2.30)

This quantity is independent of the way of unit cell definition and it has nothing to do

with the periodic static charge distribution inside the unit cell.

Hence to calculate the polarization, usually an unpolar high symmetric phase is

selected as the reference state with ∆P = 0, and the polarization difference of interested

becomes equal to the ∆P = P .

The total polarization consists of the ionic part and the electronic part,

P = Pion + Pe. (2.31)

The ionic part is contributed from the positive point charges,

Pion =
e

Ω

∑
i

Zioni ri (2.32)

where Ω is the volume of the unit cell, and eZi are the positive point charges with

positions ri.

The electronic polarization cannot be described directly using the mass centers, but

it can be written as a Berry phase of the occupied bands[38]:

Pe =
e

(2π)3
Im
∑
n

∫
dk 〈unk| ∇k |unk〉 , (2.33)

where n sums over the occupied states and |unk > are the lattice periodic part of the

Bloch wave functions that

|ψnk〉 = eik·r |unk〉 . (2.34)

In practice the first-principle calculation is carried out in discrete k-space, which means

the integration over k is replaced by a sum over a k-point mesh spanning the Brillouin
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zone. In the one-dimensional case, Pn = (e/2π)φn, where the Berry phase φn are given

as

φn = Im

∫
dk 〈unk| ∂k |unk〉 . (2.35)

But in the discrete k-space it can be written as

φn = Im ln
M−1∏
j=0

〈
un,kj |un,kj+1

〉
, (2.36)

where kj = 2πj/Ma gives the jth k-point in the one-dimensional k path. Also, the

polarization is only well-defined modulo a quantum of polarization ea/Ω, with e the

electronic charge, a the lattice constant along the polarization direction of interest, and

Ω the volume of unit cell. A typical value of polarization is below 100 µC/cm−2. To

figure out the quantum factor, a series of polarization calculations are usually performed

based on the structures from a non-polar reference state to the polar one with small

changes, and a smooth curve of polarization should be obtained that the non-polar

structure is origin. The end point of the curve reflects the polarization for the structure

of interest.
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Chapter 3

Epitaxial strain effects on magnetic ordering and

spin-phonon couplings in the (SrMnO3)1/(LaMnO3)1

superlattice from first principles

In this chapter, we have studied the influence of epitaxial strain on magnetic orderings

and the couplings between the spin and polar phonons in the 1:1 SrMnO3/LaMnO3 su-

perlattice from first principles. Magnetic phase transitions of the superlattice induced

by epitaxial strain are observed, consistent with previous reports. We find that oxygen

octahedral rotations lower the ground state energy but do not destroy the magnetic

phase transitions induced by strain. We compute zone center phonon frequencies and

eigenvectors as functions of epitaxial strain and magnetic ordering. A substantial in-

crease of the coupling strength between the spin and the lowest-frequency polar mode

is observed for tensile strains. This increase can be attributed to a change of charac-

ter of the lowest mode resulting from different relative couplings of the various polar

modes to epitaxial strain. Finally, spin-phonon coupling strengths are computed in a

Heisenberg formalism. This analysis directly reveals the changes in exchange couplings

due to specific atomic displacements or phonon modes, as well as the nonequivalence of

the out-of-plane exchange couplings across LaO layers and across SrO layers, the latter

being the result of the artificial structuring in the superlattice.

3.1 Introduction

Spin-phonon coupling is a measure of the dependence of the frequency of a given phonon

mode on the magnetic order of the system. It can be determined from experiments mea-

suring the changes of phonon frequencies with magnetic field[39] or as the temperature

is varied through a magnetic phase transition[40]. It can be determined more directly
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from first-principles calculations of the phonons with the system constrained to various

magnetic orderings [41]. While in most materials, this effect is found to be very small,

there are a number of exceptions, such as EuTiO3[39, 13]. In fact, as a result of the

combination of spin-phonon coupling with epitaxial strain, the antiferromagnetic para-

electric bulk phase of EuTiO3 is transformed to a multiferroic (ferromagnetic and ferro-

electric) phase[13, 8]. The search for large spin-phonon coupling and epitaxially induced

multiferroicity has been extended to other perovskite compounds[42, 43, 44, 45, 46, 47].

Most notably, SrMnO3 has been found to have large changes in the lowest frequency

polar phonon mode with changes in magnetic ordering. [42, 47].

Recent improvements in epitaxial growth methods make it possible to study the

physics of high-quality thin films and superlattices, as well as to impose percent level

strains by using the mismatch between the substrate and the epitaxial layer[48]. Artifi-

cial structuring is well known to have substantial effects on structure, phonon frequen-

cies and eigenvectors and magnetic ordering[49]. Recent work predicting enhancement

in spin-phonon coupling in a CaMnO3/BaTiO3 superlattice[50] shows that interfacial

effects and epitaxial strain in a superlattice can also be used to tune the spin-phonon

coupling.

The SrMnO3/LaMnO3 (SMO/LMO) superlattice has attracted a great deal of theo-

retical and experimental interest[51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 12]. In particular,

it has been found that epitaxial strain induces a sequence of magnetic phases[52, 58]. In

this chapter, we carry out a detailed first-principles study of the spin-phonon coupling

in this system. First, we investigate the epitaxial strain effect on the phase transitions

among magnetic orderings in the superlattice system. We find that oxygen octahedral

rotations, which were not included in previous studies, lower the ground state energy

but do not destroy the magnetic phase transitions induced by strain. We compute zone

center phonon frequencies and eigenvectors as functions of epitaxial strain and mag-

netic ordering. We then focus on the spin-phonon couplings by studying the low-energy

magnetic states for a range of epitaxial strains, and report a substantial spin-phonon

coupling for large strains. The spin-phonon coupling strengths are computed to de-

scribe the spin-phonon coupling effect quantitatively. Our results show the possibility
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of tuning spin-phonon coupling using epitaxial strains, paving the way for additional

applications of strain engineering in functional oxides.

3.2 Methods

Our calculations were performed using the generalized gradient approximation GGA+U

method[61] with the Perdew-Becke-Erzenhof parametrization[62] implemented in the

V ienna Ab initio Simulation Package (VASP-5.2[26, 27]). We used the Liechtenstein

implementation[33] with on-site Coulomb interaction U = 2.7 eV and on-site exchange

energy J = 1.0 eV to describe the localized 3d electron states of Mn atoms[43]. The

projector augmented wave (PAW) potentials[30, 31] used contain 10 valence electrons for

Sr (4s24p65s2), 11 for La (5s25p66s25d1), 13 for Mn (3p63d54s2), and 6 for O (2s22p4).

For structure optimization we used a 500 eV energy cutoff,
√

2a0 ×
√

2a0 × 2a0

supercell and 4× 4× 4 Monkhorst-Pack(MP) k-meshes with a threshold force of 10−3

eV/Å on all atoms. To obtain phonon frequencies and eigenvectors we used the frozen

phonon method with ionic displacement of 0.02 Åand 600 eV energy cutoff; k-point

meshes and supercells depend on the magnetic ordering considered and are specified

further below. The effects of epitaxial strain were included within the strained bulk

approach, in which the two lattice vectors (a = a0(x̂− ŷ) and b = a0(x̂+ ŷ)) that define

the (001) substrate-matching plane were held fixed and all other structural parameters

relaxed.

Fig. 3.1(a) shows the undistorted 10-atom unit cell of the SMO/LMO superlattice,

which has the tetragonal P4/mmm symmetry. We break the symmetry by displacing

the atoms as in the Pnma ground state structure of LaMnO3, or a−a−c+ in Glazer

notation[63], generated by M+
3 [001] and R+

4 [110] antiferrodistortive rotations of the

ideal perovskite structure. As can be seen in Fig. 3.1(b), rotation of one octahedron

forces opposite rotations of its neighbors in the same plane. In the M+
3 [001] mode the

octahedron rotations are identical in neighboring layers, while in R+
4 , shown in Fig.

3.1(c), the rotations alternate layer by layer. The two types of A-site cations lower the

symmetry of this distortion from Pnma to Pmc21, with a
√

2a0×
√

2a0×2a0 supercell.
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Figure 3.1: (a). View of the 10 atom SMO/LMO unit cell, where Sr, La, Mn, and O
atoms are in green, red, yellow and black, respectively. (b). Top view of the rotational
distortion M+

3 [001]. (c). Side view of the rotation distortion R+
4 [110].

While Pnma is nonpolar, Pmc21 is a polar space group allowing nonzero in-plane

polarization, as the antipolar displacements of the different A-site cations along [110]

in general will not cancel each other; insulating superlattice systems with this structure

can be characterized as improper ferroelectrics [64, 65, 66].

We consider the following collinear magnetic orderings in this study: FM, C-AFM

with ferromagnetically aligned chains of spins along ẑ, A-AFM with spins in the xy

planes ferromagnetically aligned, A-AFMy with spins in the xz planes ferromagneti-

cally aligned, and the “4-layer” state shown in Fig. 3.2. The phonons for all magnetic

orderings were computed for the same P4/mmm reference structure, obtained by re-

laxing with FM magnetic ordering. The supercells and k-point meshes were chosen as

follows: a0×a0×2a0 supercell and 6×6×3 MP k-mesh for FM state,
√

2a0×
√

2a0×2a0

and 4×4×4 for C-AFM state,a0×a0×2a0 and 10×10×5 for A-AFM state, a0×2a0×2a0

and 6× 4× 4 for the A-AFMy state and a0 × a0 × 4a0 and 8× 8× 2 for the 4− layer

state. These k-meshes are chosen to achieve convergence of phonon frequencies within

3 cm−1 [42].

To quantify the spin-phonon coupling we approximate the total energy as E = E0 +

EPMph +Espin [42, 41], in which E0 represents the energy of the undistorted paramagnetic

reference structure and EPMph = 1
2

∫
dq
∑

ijαβ C
PM
iα,jβ(q)uiα(q)ujβ(q), where CPMiα,jβ are the

force constant matrices of a paramagnetic (PM) state with i, j representing the atomic
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indices and α, β the displacements along cartesian directions. From here on, we consider

only phonons, force constant matrices and atomic displacements with q = 0 with respect

to the a0 × a0 × 2a0 cell, and so we drop the explicit dependence on q. The last term

in the total energy, Espin = −
∑

<ij> JijSi · Sj , is the energy contributed by nearest

neighbor (NN) magnetic exchange interactions. The total force constant matrix for a

specific spin configuration is thus given by

Ciα,jβ = CPMiα,jβ −
∑
<ij>

∂2Jij
∂uiα∂ujβ

〈Si · Sj〉 , (3.1)

The spin-phonon coupling effect is represented by the nonzero second derivatives of

Jij with respect to atomic displacements; these are symmetric matrices denoted by

J
′′
ij . Note that the first derivatives of Jij are in general nonzero, corresponding to the

spin-lattice couplings in the system[58].

In this study, we investigate the spin-phonon coupling for the lowest-frequency po-

lar mode. For SMO/LMO this is an Eu mode, a two-fold degenerate polar mode

with atomic displacements in xy plane. Two Mn atoms are contained in a unit cell,

and thus six exchange couplings are considered (see figure 3.2(a)). They are denoted

as J
′′
1x, J

′′
1y, J

′′
1z, J

′′
2x, J

′′
2y, J

′′
2z, with the subscripts 1, 2 indexing the Mn atoms in

the unit cell, and x, y, z denoting the direction of the exchange coupling. In the

SMO/LMO superlattice, the Eu modes are symmetric across mirror planes within

the SrO and LaO layers and thus we only need to know the sums J
′′
1x + J

′′
2x and

J
′′
1y + J

′′
2y; on the other hand, J

′′
1z is distinct from J

′′
2z. To solve for these four J

′′

matrices and the CPM matrix, five magnetic configurations are needed: FM, A-AFM,

C-AFM, A-AFMy, and 4− layer, shown in Fig. 3.2(b). For example, in the FM state,

CF = CPM − S2
[
(J
′′
1x + J

′′
2x) + (J

′′
1y + J

′′
2y) + J

′′
1z + J

′′
2z

]
. Extending this to other four

magnetic configurations we obtain

CF

CA

CC

CAy

C4L


=



1 −S2 −S2 −S2 −S2

1 −S2 −S2 S2 S2

1 S2 S2 −S2 −S2

1 −S2 S2 −S2 −S2

1 −S2 −S2 S2 −S2





CPM

J
′′
1x + J

′′
2x

J
′′
1y + J

′′
2y

J
′′
1z

J
′′
2z


, (3.2)
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Figure 3.2: (a)The labeling of the spin exchange parameters. (b) The magnetic ordering
to calculate C4−layer, with J1z and J2z across LaO and SrO layers, respectively. The
black arrows in (b) denote spin orientations.

where S = 1.75. CF , CA, CC , CAy , C4L denote the force constant matrices of FM,

A-AFM, C-AFM, A-AFMy and the 4-layer ordering.

For computing force constant matrices for use in Eq.3.2, we use the supercells for

the phonon computations as described above. We displace atoms with q = 0 patterns

for the a0 × a0 × 2a0 unit cell, yielding 30 × 30 “partial” force constant matrices. For

example, in order to build C-AFM magnetic ordering we need a
√

2a0 ×
√

2a0 × 2a0

supercell containing two Sr atoms. When we calculate derivatives of J matrices with

respect to Sr atomic displacements, we move the two Sr atoms in the supercell with the

same displacement as in a zone-center distortion in the a0 × a0 × 2a0 unit cell.

3.3 Results

3.3.1 Pmc21 structure

In Table 5.1, we report the computed structural parameters for the Pmc21 structure

with magnetic orderings FM, A-AFM and C-AFM. The lowest-energy magnetic order-

ing is FM. The effective lattice constant a0 = (a · b · c)1/3 in FM, A-AFM, and C-AFM

states is 3.894, 3.890 and 3.888 Å, respectively, indicating similar volumes. However, the
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Table 3.1: Strain free structural details of SMO/LMO in FM, A-AFM, and C-AFM
states. The values of LMO were taken from Ref. [44]
.

FM A-AFM C-AFM

Relative energy(meV/f.u.) 0.0 49.9 140.3

a0 = (a · b · c)1/3 (Å) 3.894 3.890 3.888

axy =
√
a · b (Å) 3.886 3.930 3.856

θM (◦) 2.8 0.1 5.1
θR(◦) 8.2 8.3 7.3
Q2(a.u.) 0.002 0.000 0.001
b
a − 1 (%) 0.5 0.9 0.2
LMO JT Q2(a.u.) 0.072 0.831

LMO b
a − 1 (%) 0.9 5.2

FM state prefers a structure close to cubic, as shown by the geometric average of its in-

plane lattice constants axy=3.886Å. A-AFM favors in-plane tensile state (axy=3.930Å)

while C-AFM favors compressive strain (axy=3.856Å). The different unit-cell shapes

for the three spin configurations directly result in strong spin-lattice coupling in the

system, as we will see further below.

The incorporation of SMO layers into the superlattice substantially changes the

structural parameters relative to those of pure LMO. With respect to the large in-

plane orthorhombicity( ba − 1) in the ground state structure of LaMnO3, the difference

between the two in-plane lattice constants is reduced in SMO/LMO. It is well known

that the orthorhombicity in LaMnO3 is due to the strong Jahn-Teller(JT) distortion,

quantified here by Q2. We note that the Q2 is much smaller in the superlattice than

in LaMnO3[44], possibly because the crystal fields of the two types of A-site cations

split the degenerate dx2−y2 and d3z2−r2 orbitals of Mn atoms and thus suppress the JT

distortion. The results for JT distortions are in good agreement with values found in

the previous study of SMO/LMO[58].
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3.3.2 Spin-lattice coupling and epitaxial-strain phase sequence

Application of epitaxial strain can change the relative energies of phases with different

relaxed unit cell shapes and even stabilize non-bulk structures. In the previous sub-

section we found that the relaxed unit cell shapes for the three magnetic orderings are

quite different, implying the existence of significant spin-lattice coupling. Here, we see

how this large spin-lattice coupling leads to magnetic phase transitions for accessible

epitaxial strains.

We calculate the total energies for FM, A-AFM, and C-AFM ordering in the Pmc21

structure for a range of epitaxial strains. The phase sequence is plotted in Fig. 3.3. As

the strain varies from compressive to tensile, the ground state changes from C-AFM

to FM, and then from FM to A-AFM. The epitaxial-strain-induced magnetic phase

sequence is the same as that found in previous work[52, 58], where it was explained

using the theory of orbital ordering under strain; however, that analysis was carried

out assuming the high-symmetry P4/mmm structure. To study the effect of octahedral

rotations on the phase boundaries, we carry out the same total energy calculations with

epitaxial strain in the space group P4/mmm, and plot the phase sequence in Fig. 3.3.

The phase boundaries shift relatively little, although the FM phase is slightly wider

with octahedral rotations than in the P4/mmm structure.

3.3.3 Spin-phonon coupling

Materials with large spin-lattice couplings can be expected also to have large spin

phonon couplings, as in EuTiO3[13] and SrMnO3,[43] both cases reflecting the sensitiv-

ity of the magnetic exchange couplings to the crystal structure. In this subsection, we

investigate the spin-phonon coupling in the P4/mmm high-symmetry reference struc-

ture of the LMO/SMO superlattice as a function of epitaxial strain, focusing on the

lowest-frequency polar mode since its sensitivity to changes in epitaxial strain is of the

most interest.

First we carry out Γ point phonon calculations for FM, C-AFM and A-AFM order-

ings in the P4/mmm structure at 0% epitaxial strain. With the 10-atom unit cell, there
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Figure 3.3: Total energy as a function of in-plane lattice constant for three magnetic
orderings. The unstrained lattice constant is 3.89Å. Atomic positions and cell volume
are optimized at each strain. Top, Pmc21 structure. Bottom, P4/mmm structure.
The zero of energy in both figures is the minimum energy for the Pmc21 structure.
The vertical lines show the transition strain values where the ground state magnetic
ordering changes.
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Figure 3.4: Frequencies squared of from Eu1 in SMO/LMO superlattice as functions of
in-plane strains. The vertical arrows show the strain values where the frequencies in
FM, C-AFM and A-AFM deviate.

are 30 phonon modes at the Γ point, of which 18 are polar modes. In the SMO/LMO

system, the lowest frequency mode is a Eu mode and denoted as Eu1. The Eu1 modes

for all three spin configurations are found to have frequencies of about 83 cm−1, within

1 cm−1 of each other, and thus the spin-phonon coupling effect at 0% epitaxial strain

is negligible.

The lack of spin-phonon coupling for the lowest frequency polar mode seems surpris-

ing in light of the large coupling in SMO mentioned in the Introduction. Calculations of

the polar phonon frequencies of cubic LMO (a = 3.890Å) for FM and A-AFM magnetic

orderings, show weak spin-phonon coupling for the lowest mode, 60 cm−1 for FM vs 63

cm−1 for A-AFM, but larger effects for the higher frequency modes: 192 vs 179 cm−1

and 315 vs 308 cm−1.

To see if the greatly reduced spin-phonon coupling for the lowest frequency polar

mode in the superlattice is due to the changes in the structure, we performed calcula-

tions of the phonon frequencies for the “pure SMO” structure, in which the La in the

superlattice structure are replaced by Sr, and the “pure LMO” structure in which the



30

Figure 3.5: Amplitude squared of atomic displacements in the normalized x eigenvector
of the lowest frequency Eu phonon mode in SMO/LMO superlattice as a function of
in-plane strain. The reference structure for all three spin configurations is the same (the
optimized structure for FM ordering). Top, A-AFM. Middle, FM. Bottom, C-AFM.
The formula cell contains 10 atoms, but because of the mirror plane in LaO and SrO
layers, the displacements of two Mn atoms are identical, as well as Ox and Oy atoms
in two layers. The vertical arrows point out the transition points in Eu1 at which the
amplitudes of Ox and Oy deviate.
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Sr in the superlattice structure are replaced by La. In “pure SMO”, the Eu1 mode is

221i cm−1 in FM, 174i cm−1 in A-AFM and 189i cm−1 in C-AFM. In “pure LMO”, the

Eu1 mode is 10 cm−1 in FM, 9 cm−1 in A-AFM and 12 cm−1 in C-AFM. From this we

conclude that the suppression of the spin-phonon coupling for the superlattice relative

to SMO arises from the change in the electronic structure, the most obvious feature of

this is the change in Mn valence (+3.5 in the superlattice and +4 in SMO).

However, application of tensile epitaxial strain in the superlattice can lead to a

substantial spin-phonon coupling for the lowest Eu mode, as shown in Fig. 3.4. At 2%

tensile strain, the FM phonon frequency deviates from the other two, and above 4%

all three are split. The phonons in all three spin configurations become unstable with

increasing tensile strain; because of the spin-phonon coupling the critical strain values

in FM, C-AFM and A-AFM are different (3.3%, 4.2% and 4.5%, respectively).

To understand the nature of the “turning on” of the spin-phonon coupling, in Fig.

3.5 we show the independent components of the eigenvector of the lowest frequency

phonon mode for the three magnetic orderings as a function of epitaxial strain. For

compressive strains, the Sr and La atoms have the largest displacements, with the dis-

placement of the La atoms opposite to that of Sr and the other atoms, corresponding to

an antipolar A-site displacement pattern. In addition, the amplitudes of displacements

of Ox and Oy atoms are almost identical. In contrast, in tensile strain, the amplitudes

of displacements of A-site cations are small, with the two A-site cations moving in the

same direction, while O displacements dominate, with different amplitudes of displace-

ments of Ox and Oy atoms. The sharp change in the character of the eigenvector of the

Eu1 mode indicates the crossover of a higher frequency mode with increasing strain,

with the transition in the lowest Eu mode occuring at the strain at which the ampli-

tudes of Ox and Oy become different. These transition strains match precisely to the

strain values in Fig. 3.4 at which the phonon frequencies begin to become different.

To investigate the crossover in the lowest Eu mode, in Fig. 3.6 we plot the frequen-

cies of five of the seven Eu modes with respect to strain for three different magnetic

orderings (the acoustic mode and an isolated mode at much higher frequency are ex-

cluded). The five Eu modes all soften with tensile strain, but not equally. The mode
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Figure 3.6: Squared frequencies for polar modes Eu1 to Eu5 in the SMO/LMO super-
lattice as functions of epitaxial strain.

with highest frequency for compressive strain appears to cross the other modes, mixing

with them over the intermediate strain range, and to become the lowest frequency mode

for large tensile strain. This is supported by the fact that the character of the highest

frequency mode for compressive strain is similar to that for the lowest frequency mode

for tensile strain. Moreover, this mode is seen to have a large spin-phonon coupling

both for compressive and tensile strain.

To shed light on why this Eu1 mode has a large spin-phonon coupling, we note it

is dominated by Oz displacements, which directly change the Mn-O-Mn bond angle.

By the Goodenough-Kanamori rules[67], this is the most effective way to change the

exchange coupling J . Fig. 3.7 shows the displacement patterns for different strains.

The displacement patterns for large tensile strains mainly bend the Mn-Oz-Mn bonds,

making the FM ordering more favorable due to superexchange involving Mn t2g and

O pz orbitals, as the bond angle is changed from 180◦. Consequently, this mode gets

softened in the FM and C-AFM phases, which have FM ordering out-of-plane, so that
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Figure 3.7: Atomic displacements of the lowest Eu mode for different strains. (a) Small
strains and compressive strains. (b) Large tensile strains.

additional energy is gained.

These phonon calculations are for the high-symmetry P4/mmm structure. In the

ground state Pmc21 structure, a polar distortion is induced by the combination of

oxygen octahedron distortions, as discussed briefly above. For compressive strains, this

polar distortion has the same character (alternating in-plane La and Sr displacements)

as the lowest frequency polar mode. For tensile strains, the instability of the oxygen-

dominated polar mode will change the character of the polar distortion, though it will

not break any additional symmetries.

The possibility of tuning the strengths of spin-phonon couplings by utilizing epitaxial

strains to bring down modes with distinct character could be a general property of

perovskite materials which would not be limited in the SMO/LMO system. This idea

has been confirmed by calculations for the 1:1 SrVO3/LaVO3 superlattice[68].

3.3.4 Spin-phonon coupling coefficients

To describe the spin-phonon coupling quantitatively, we computed the J
′′

matrices,

which specify the dependence of the exchange couplings on atomic displacements as

described in the methods section above. The values of the force constants are one order

of magnitude larger than the corresponding elements of the J
′′

matrices, and we thus
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Table 3.2: Spin-phonon coupling strengths at 0% strain. Units, cm−2.

State ω2
PM λ1x + λ2x λ1y + λ2y λ1z λ2z

Eu1 6897.0 41.9 23.1 3.0 59.7
Eu2 14806.9 172.3 71.8 19.3 89.6
Eu3 58298.5 649.2 844.9 453.5 431.3
Eu4 67285.8 146.4 139.6 -91.5 53.8
Eu5 100517.8 1634.4 1011.5 589.9 656.1

Table 3.3: Spin-phonon coupling strengths at 4% tensile strain. Units, cm−2.

State ω2
PM λ1x + λ2x λ1y + λ2y λ1z λ2z

Eu1 1065.2 -231.3 965.6 999.8 35.3
Eu2 6280.6 -48.0 466.4 735.2 118.4
Eu3 35002.6 1026.5 889.6 23092.5 -20152.1
Eu4 51111.8 275.5 1466.6 4559.1 -2371.4
Eu5 66423.5 562.9 725.8 8441.6 -6983.6

treat J
′′

as a perturbation. Using the eigenvectors of CPM , the first-order corrections

to the squared frequencies are

ω2 = ω2
PM −

∑
α

λα 〈Sαi · Sαj〉 , (3.3)

where α represents the three Cartesian directions, and λα =
〈
uPM |J

′′
α |uPM

〉
is the

spin-phonon coupling strength obtained from the computed 30 × 30 J
′′

matrices. We

summarize the mode-specific coupling terms at 0% and 4% tensile strains in Table 3.2

and Table 3.3. The phonon frequencies of Eu modes in each magnetic ordering can be

recovered by using the given λ values in Eq. 3.3. For the example of the Eu3 mode at

4% tensile strain (Table 3.3) we find,

ω2
F = ω2

PM − S2 · (λ1x + λ2x + λ1y + λ2y + λ1z + λ2z) = 20129.6 cm−2,

ω2
A = ω2

PM − S2 · (λ1x + λ2x + λ1y + λ2y − λ1z − λ2z) = 38139.5 cm−2,

ω2
C = ω2

PM − S2 · (−λ1x − λ2x − λ1y − λ2y + λ1z + λ2z) = 31865.7 cm−2. These

squared frequencies with large spin-phonon couplings are those shown in Fig. 3.6.

From Tables 3.2 and 3.3, it can be seen that there are large differences between the

spin-phonon coupling strengths at 0% and 4% epitaxial strain. This suggests that in

addition to the dramatic effects resulting from crossover in the Eu mode, it should also
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possible to tune the spin-coupling strengths using epitaxial strain.

3.4 summary

In summary, we have studied the influence of epitaxial strain on magnetic orderings and

the couplings between the spins and polar phonons in the 1:1 SMO/LMO superlattice

from first principles. The ground state magnetic order of the SMO/LMO superlattice

from compressive to tensile strain is C-AFM, FM and A-AFM. We have shown that the

spin-phonon coupling in the lowest polar phonon mode is weak at compressive strains

and small strains, but it turns on when the tensile strain is greater than 2%, which

can be attributed to a change of character of the lowest mode produced by different

relative coupling of the various modes to epitaxial strain. We speculate that this could

be a more general property of perovskite superlattices. Finally, we have calculated

spin-phonon coupling parameters in a Heisenberg formalism and shown directly that

the strength of spin-phonon couplings are functions of epitaxial strain. The tuning

of spin-phonon coupling using epitaxial strain provides a useful approach for future

tailoring of functional materials.
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Chapter 4

Determination of ground-state and low-energy structures

of perovskite superlattices from first principles

In the studies of Chapter 3, we have realize the issue to determine the ground state

structure of the superlattice. In that case, the rotations do affect the total energies and

slightly shift the magnetic phase boundary locations within epitaxial strain, without

changing the main results. However, this is not always true. In the development of first-

principles high-throughput searches for materials with desirable functional properties,

there is a clear need for an efficient method to determine the ground state and low-

energy alternative structures of superlattices. In this chapter, a method based on a

simple strategy – to generate starting structures based on low-energy structures of the

constituent compounds, which are then optimized via structural relaxation calculations

– is proposed. This “stacking method” is demonstrated on the 2:2 PbTiO3/SrTiO3

superlattice, which has been the subject of recent experimental and theoretical interest.

Considerations relevant to wider use of the method are discussed.

4.1 Introduction

Discovery of new functional materials with enhanced performance, novel functional-

ities and reduced cost and toxicity is a central goal of materials science. Recently,

there has been tremendous progress in the synthesis of superlattices, which are artifi-

cially structured materials built up from unit-cell-scale layers of different constituent

compounds[69, 70, 71]. In many cases, superlattices have distinctive functional prop-

erties, which can be attributed to the strain in the layers and the high density of

interfaces[72, 73, 14]. The design of functional superlattice materials requires explo-

ration of an enormous parameter space of constituent materials and layer sequences.
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With the development of computational techniques and resources, specifically high-

throughput first-principles approaches, this process can be greatly accelerated[74].

For the first-principles calculation of physical properties of a given system, deter-

mination of the ground-state structure (GSS) is the essential first step. Methods to

predict the GSS from a given stoichiometry have recently been much discussed[75].

These include genetic algorithms[76, 77, 78], random search methods[79], data min-

ing of experimentally-determined structural information[80, 81] and coupled cluster

expansion method[82, 83]. While highly effective at identifying novel structures, such

methods are very computationally demanding. Fortunately, for superlattices, the space

of structures to be considered is already constrained by physical considerations, making

these powerful but costly methods unnecessary. For (001) perovskite superlattices, the

structures are expected to be closely related to the high-symmetry P4/mmm structure

generated from layered cation ordering in the ideal perovskite structure. As for pure

perovskites, this high symmetry structure is expected to be unstable with respect to

lower-symmetry structures with distortions such as polar distortions, oxygen octahe-

dron rotations, and Jahn-Teller distortions. These instabilities can be identified by

first-principles calculations of the phonon dispersion of the P4/mmm structure, and

different instabilities or combinations of instabilities can in general be expected to lead

to a variety of low-energy metastable structures in addition to the ground state[84].

For perovskite superlattices, most first-principles studies have utilized one of three

basic strategies for ground-state structure determination. One approach focuses on

instabilities identified by first-principles phonon-dispersion calculations. Starting with

the high-symmetry reference structure, the phonon dispersion is computed, unstable

modes at high-symmetry points are identified, and a set of low-symmetry structures

is obtained by freezing in selected modes and relaxing the structure. For each low-

symmetry structure thus obtained, the phonon dispersion is calculated; the process

terminates when the structure is at a local minimum of the energy. Given the compu-

tational demands of phonon-dispersion calculations, this method is expensive even in

the simple case of a pure perovskite; for superlattices, with larger unit cells and more

modes at each wavevector, it becomes prohibitive.
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In the second method, closely related to the first, the phonon dispersion is computed

only for the high-symmetry reference structure. The unstable phonon modes at high

symmetry k-points are identified, and structures generated by freezing in the unstable

modes, singly and in combination, are relaxed and compared, the one with lowest total

energy being the GSS. A final phonon-dispersion calculation is performed to verify

that the candidate GSS is stable. This method has been widely used in first-principles

studies of the epitaxial-strain-induced phases of pure perovskites [85, 9] and ultrashort

period (1:1) superlattices of perovskites[14, 86, 87, 15].

A quite different strategy is to generate starting structures by making small random

displacements of the atoms away from the high-symmetry P4/mmm structure, relax

each starting structure and compare the distinct structures thus generated. This has

the advantage of sampling the relevant structure space without any particular bias, but

it is relatively demanding, as a general random initial configuration will take a large

number of iterations to converge to the nearest minimum. Further, in principle this

method could miss local minima or even the ground state due to statistical fluctuations,

with no guarantees even if the number of starting structures is systematically increased.

Therefore, this method is best used as a complementary “double check,” to make sure

that no exotic low-energy structures have been missed by other methods.

Given the ground state structure of the superlattice, it would be implausible if the

structure of an individual layer were to derive from a high-energy bulk structure. In-

deed, the assumption that the structures of each constituent layer should derive from

the ground state of the corresponding pure compound at the relevant epitaxial strain

has been used as the basis for structure determination in a number of previous studies

[88, 89, 90]. If a starting structure is obtained by distorting each layer to its ground

state structure, and then relaxed, the expectation is that the original distortions would

remain, and additional distortions of certain types (specifically out-of-plane polariza-

tion and oxygen octahedron rotations about an in-plane axis) in one layer would induce

the same distortion in an adjacent layer through considerations of electrostatic bound-

ary conditions and steric constraints associated with the rigidity of oxygen octahedra.

However, it should be noted that the structure of an individual layer could be derived
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not from the ground state, but from a distinct low-energy alternative state of the cor-

responding pure compound at the relevant epitaxial strain. In that case, the “bulk”

energy cost would be more than balanced by a reduction in energy associated with

matching conditions or interface energetics. Thus, the assumption above should be

modified to be that structures of the constituent layers will derive from a low-energy

state of the pure compound at the relevant epitaxial strain, and that the ground state

and low-energy states of the superlattice can be obtained by relaxing starting structures

obtained from stacking combinations of the low-energy pure-compound states.

In this chapter, we propose a simple and efficient stacking method, suitable for

high-throughput studies, to determine the GSS and low-energy structures in perovskite

superlattices based on this modified assumption. In section 4.2, we describe the method

in detail. In section 4.3, we demonstrate the method by application to the struc-

ture determination of the (PbTiO3)2(SrTiO3)2 superlattice as a function of epitaxial

strain, as previous work suggests that this system is particularly rich in low-energy

structures[14, 87]. We first describe the construction of a database of the low en-

ergy structures of the constituent pure compounds PbTiO3 (PTO) and SrTiO3 (STO).

We then describe the results of structure determination of (PbTiO3)2(SrTiO3)2 (2:2

PTO/STO) via the stacking method, illuminating various aspects of implementation

of the method. At 0% strain, we find that 2:2 PTO/STO does not have a unique GSS,

as previously proposed[87], but that the energy surface at the lowest energy is rather

flat. This has important implications for experimental studies of the structure and

properties of this system.

4.2 Methods

Our stucture determination method, which we refer to the “stacking method,” is based

on the assumption that for the GSS of the superlattice, structures of the constituent

layers will derive from a low-energy state of the pure compound at the relevant epi-

taxial strain. Based on this assumption, we construct starting structures by putting

each constituent layer into a low-energy pure-compound structure, generating all such

symmetry-inequivalent combinations. Relaxations from these starting structures using



40

Figure 4.1: Flowchart for the stacking method for identification of the ground-state
structure of a superlattice.

Hellmann-Feynman forces and stresses are performed to minimize the overall energy

of the superlattice structure. This energy of the superlattice includes the energy as-

sociated with electrostatic interactions of the layers, steric constraints associated with

rigidity of the oxygen octahedra, and contributions from the interface regions.

Our method is iterative, starting with combinations of the ground states of the

constituents and adding low-energy constituent structures into the combinations until

no more low-energy structures for the superlattice are found. For this, we choose an

energy window: when the iterative step yields no new superlattice structures with

energies within the window, the process terminates. Thus, in addition to the GSS, our

method will identify the lowest-energy alternative structures as well, which can be of

interest for functional properties.

Once the constituents for the superlattice are chosen, the first step is to generate

the database of low-energy states of the pure constituent compounds at the relevant

epitaxial strain. This can be done using a conventional method such as the second
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method mentioned in Section 4.1. In a study including various combinations of several

different constituents, it is convenient to generate the database for all constituents as

a pre-processing step.

The steps in the stacking method for structure determination of a superlattice with

specified layer thickness then follow the flow chart shown in Fig. 4.1:

(1) We set the energy window ∆E. We define Nc to be the number of active

constituents. If a constituent has been given “inactive” status, we will not include any

additional higher-energy structures for the relevant constituent. At the beginning, all

constituents are active.

(2) We use the lowest energy structure for each constituent to construct the starting

structure for the superlattice, with the atomic positions of the interfacial layers being

the linear combination of the two adjacent constituents.

(3) We relax the structure and set it as the candidate GSS.

(4) Considering each constituent in turn, we take the next lowest-energy structure

of the given constituent and construct “new” starting structures by combining it with

the low-energy structures for the other constituents already included.

(5) We do structural relaxations on the new starting structures.

(6) If the minimum of the energy of the “new” superlattices, min{Enew}, is lower

than the current ground state energy EGS , then we replace the GSS with the “new”

superlattice of the lowest energy, and then return to step (4).

(7) If 0 < min{Enew}−EGS < ∆E, we check to see if any of the “new” structures in

the energy window are distinct structures not already identified. We add these to the

list of low-energy structures and return to step (4). If the number of distinct structures

in the energy window is smaller than 3, then go to step (4). Else, if no new low-energy

structures are found within the energy window or min{Enew}−EGS > ∆E, then we are

done with adding low-energy structures for this constituent. We declare this constituent

to be inactive and decrease the number of active constituents Nc by one. If there are

still active constituents, we go to step (4).

(8) If only the ground-state structure is desired, the process now terminates, with
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the identification of the ground state structure as the lowest energy structure found.

If the identification of low-energy alternative structures is also desired, there is one

additional step (not included in the ground-state search flowchart in Fig. 4.1). For

each low-energy superlattice structure S already identified, the full distortion patterns

in each constituent layer are analyzed. All symmetry-inequivalent combinations of the

distorted layer structures (those with reversal of the out-of-plane polarizations or in-

plane rotations can be excluded as being much higher in energy) are generated. Those

that are not symmetry-equivalent to S are included as additional starting structures and

relaxed. This step will be explained in more detail in the discussion of the application

to (PbTiO3)2(SrTiO3)2 superlattice.

Structural relaxations in this approach preserve space group symmetries, so that

the space group of the relaxed structure will be the same or a supergroup of the space

group of the starting structure. In the latter case, the iterative relaxation process will

in general yield a structure that has tiny displacements of the atoms that break the

symmetry of the supergroup. For example, if we start with a low-symmetry configu-

ration with polar P4mm which relaxes to a nonpolar P4/mmm structure, the relaxed

structure would in general have tiny displacements away from the P4/mmm structure

resulting in a space group of P4/mmm. For this reason, most space-group-identification

software tools find the highest-symmetry space group consistent with displacements of

the atoms by a specified distance, referred to as the tolerance. If the displacements in

the case of the relaxed structure in the example above are less than the tolerance, the

space group will be identified as P4/mmm. In the first-principles calculation, a very

low tolerance (10−5Å) is chosen to avoid artificially increasing the symmetry during the

calculation. Using the python package “pyspglib” [91], we analyze the relaxed structure

by increasing the tolerance from 10−5Å until we find the critical tolerance (CT) at which

the space group changes from the space group of the starting structure to one of its

supergroups. A small CT suggests that the structure has relaxed into a structure with

a higher symmetry space group. The upper limit on CT which establishes relaxation to

the supergroup is CTUL = 2δE/δF , where δF is the force threshold in the relaxation

and δE is the energy resolution. We will discuss explicitly how the the upper limit on
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CT is chosen for the example of 2:2 in the next section.

Our calculations for PTO/STO were performed using the local density approximation[22,

92] implemented in the Vienna Ab initio Simulation Package (VASP-5.2.12)[26, 27].

The projector augmented wave (PAW) potentials[30, 31] used contain 10 valence elec-

trons for Sr (4s24p65s2), 14 for Pb (5d106s26p2), 10 for Ti (3p63d24s2). We used a

500 eV energy cutoff,
√

2 ×
√

2 × 4 supercell and 4 × 4 × 1 Monkhorst-Pack(MP) k-

meshes[93] for total energy calculations in structural relaxation, and the force threshold

is δF = 5 × 10−3 eV/Å. The energy resolution is 1 meV/5atom, so that δE = 0.2

meV/atom and the CTUL is thus 0.08Å.

4.3 Results

4.3.1 Low energy structures of pure compounds: PbTiO3 and SrTiO3

In the stacking method, the first step in structure determination of a superlattice is con-

struction of the database of the low energy structures of the constituent pure compounds

at the relevant epitaxial strain(s). For our demonstration case (PbTiO3)2(SrTiO3)2, the

constituents are PTO and STO. First-principles computations of the phonon disper-

sions for the cubic-perovskite high-symmetry reference structures show that in both

compounds, Γ15 and R25 modes are unstable[94, 95]. To identify the low-energy struc-

tures for each compound at each epitaxial strain, we freeze in the unstable Γ and R

modes, singly and in combinations, and relax the structures (we note that not all struc-

tures thus obtained will be distinct). The space group of each relaxed structure is

identified by using the CT approach with a threshold of 0.08Å. Here we label the struc-

tures not by the space group, but by the distortions that generate them, indicated in

Cartesian components. u and w denote nonzero in-plane and out-of-plane polar mode

components, respectively, while a and c denote non-zero R-point octahedron rotations

around in-plane and out-of-plane axes, respectively.

Figs. 4.2 and 4.3 show the relaxed total energies and CTs for bulk PTO for various

combinations of polar distortions and R point octahedron rotations at three values

of epitaxial strain (-2%, 0% and +2%, defined with respect to 3.849Å, the computed



44

Figure 4.2: Total energies (black squares) and space-group-symmetry analysis for re-
laxed structures of epitaxially-strained PTO. Top, -2% strain. Middle, 0% strain. Bot-
tom, +2% strain. Energies are in meV per 5 atoms, with the zero of energy for each
strain taken as the energy of the ground state structure at that strain. The horizontal
axis is labeled at the bottom by the space group of the starting structure, and at the
top by the space group of the supergroup produced at values of the tolerance higher
than the critical value CT, which is shown as a red bar. Stable distortions are typeset
in bold red.
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Figure 4.3: Energies of low-energy distorted structures of PTO as functions of epitaxial
strain. Red lines represent structures with polar distortions, and blue lines represent
structures with octahedron rotations.

lattice constant of cubic STO). For -2% and 0% epitaxial strain, the most favorable

distortion is the out-of-plane polar distortion, denoted by 00w, while for +2%, the

states with in-plane polarization and out-of-plane polarization are essentially equal in

energy, consistent with previous studies[96, 97, 98, 99, 100]. The low-energy structures

at each strain, in order of increasing total energy, are listed in Table 4.1 and constitute

the required database for PTO.

Figs. 4.4 and 4.5 show the analogous results for STO. For -2% epitaxial strain,

the out-of-plane oxygen-octahedron rotation 00c is most favorable. For +2% epitaxial

strain, in-plane polar distortions combined with in-plane octahedron rotations produce

the lowest energy structures, with different combinations of these two distortions result-

ing in slightly different energies, in agreement with previous studies[101, 102, 103, 98].

The 0% epitaxial strain case is the most complicated: five distinct structures with dif-

ferent rotation patterns have almost identical energy. This suggests a rather flat energy

surface. As for PTO above, the database of low-energy structures for STO is given in

Table 4.1.
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Figure 4.4: Total energies and space-group-symmetry analysis for relaxed structures of
epitaxially-strained STO. Conventions as in Figure 4.2.
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Figure 4.5: Energies of low-energy distorted structures of STO as functions of epitaxial
strain. Red lines represent structures with polar distortions, blue lines represent struc-
tures with octahedron rotations, and green lines represent structures with combined
distortions of polar modes and rotations.

Table 4.1: The low energy distorted structures of PTO and STO for -2%, 0% and +2%
strain.

Perovskite Stable distortions

PTO -2% 00w, 00c, uu0, u00
PTO 0% 00w, uu0, u00, aac, 00c
PTO +2% uu0, uuw, u00, u0w, 00w, aa0, 00c
STO -2% 00c, aa0, 00w, a00
STO 0% 00c, a0c, aac, a00, aa0
STO +2% uu0aa0, 0u0a00, u-u0aa0, u00a00,

uu0, a00, aa0, u00, 00c
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Table 4.2: Space groups of (PTO)2/(STO)2 starting structures for -2% strain. The
space group information is obtained using ISOTROPY[104, 105]. The labels #1 and
#2 differentiate between two inequivalent starting structures with the same space group.

PTO/STO 00c aa0 00w

00w P4bm#1 Pma2 P4mm
00c P4/mbm P21/c P4bm#2

Table 4.3: Space groups of (PTO)2/(STO)2 starting structures for +2% strain. Con-
ventions as in Table 4.2. The triplets in parentheses indicate different settings for a
given space group.

PTO/STO uu0aa0 0u0a00 u-u0aa0 u00a00

uu0 Pnc2 Pc#1 Pc#2 Pc#3
(001

4) (001
4) (001

4)
u-u0 Pc#4 Pc#5 Pmn21 Pc#6

(001
4) (001

4) (001
4)

uuw Pc#7 P1#1 P1#2 P1#3
(1

400)
u-uw P1#4 P1#5 Pm P1#6
u00 Pc#8 Pc#9 Pc#10 Abm2#1

(001
4) (001

4) (001
4)

0u0 Pc#11 Pc#12 Pc#13 Abm2#2
(001

4) (001
4) (001

4) (001
4)

u0w P1#7 P1#8 P1#9 Cm#1
(000)

0uw P1#10 Cm#2 P1#11 P1#12
(1

200)

4.3.2 Structure determination for (PTO)2/(STO)2

In this section, we describe the starting structures and the ground-state and low-energy

structures of (PTO)2/(STO)2 found through our structural determination procedure

with an energy window of 30 meV/5 atoms for -2% epitaxial strain and 15 meV/5

atoms for 0% and +2% epitaxial strain. As discussed in the previous section, in both

compounds, at -2% there is a single structure much lower in energy than the others,

and it is expected that the GSS of the superlattice will be a stacking of these two

structures. At 0% and +2% strain, the near-degeneracy of several low-energy states

in one or both compounds is expected to lead to a less clear-cut situation requiring a
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Table 4.4: Space groups of (PTO)2/(STO)2 starting structures for 0% strain. Conven-
tions as in Table 4.2 and 4.3. The dash indicates that the structure is equivalent to the
one above it.

PTO/STO 00c a0c aac a00 aa0

00w P4bm Cm#1 Pc#1 Cmm2 Pma2
(1

200) (1
400)

uu0 Pmc21 P1#1 Pc#3 Pc#2 Pnc2
(1

400) (001
4)

u-u0 - - P21 - Pmn21

u00 Amm2#1 Cm#2 P1#2 Abm2#1 Pc#4
(1

201
4) (1

200) (00-1
4) (001

4)
0u0 - C2 - Abm2#2 -

(-1
4 -1

4 -1
4)

systematic approach; it is here that our stacking method will yield nontrivial results.

The simplest case is for -2% strain. The iterative process terminates after only

six starting structures, shown in Table 4.2. Specifically, only two PTO low-energy

structures are included, as inclusion of PTO uu0 yielded no new superlattice structures

within the energy window and “inactivated” the PTO layer in further iterations, while

all four low-energy structures of STO are included. The starting structures are thus

obtained by combining the two lowest energy structures of PTO at -2% strain with the

three lowest energy structures of STO at -2% strain (the rows and columns, respectively,

of Table 4.2).

As shown in the top panel of Fig. 4.6, the GSS is P4bm, obtained from the P4bm#1

starting structure built from the ground state of PTO (00w) and STO (00c), with

octahedron rotations and polar displacements along [001], consistent with previous

results[87]. The P4bm#2 starting structure also relaxes to this structure. In this

P4bm state, the interlayer interactions induce octahedron rotations in the PTO layer

and out-of-plane polarization in the STO layer. The main distortions are therefore

can be denoted as 00w00c/00w̃00c̃ using the notation we defined, where the tilde for

the STO layer is used to indicated that the amplitude of the distortion is in general

different from that in the PTO layer. Rotations in TiO2 atomic layers between PbO

atomic layers and those between SrO atomic layers are in the same direction and with
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surprisingly close amplitudes. Rotations in the two interfacial TiO2 atomic layers are

in opposite directions, so that one is in the same direction as the bulk atomic layers

and the other opposite. Above the GSS we find two unstable saddle point structures,

P4/mbm (00c/00c̃) and P4mm (00w/00w̃) which are supergroups of the GSS P4bm,

and a distinct structure, Pma2 (00waa0/00w̃ãã0), with small amplitudes of octahedron

rotations along [110][106].

For +2% strain, there are many low-energy states of STO at this strain. Also the

low-energy states of STO and PTO include in-plane distortions along [110] or [100],

as shown in Table 4.1, and so there can be multiple symmetry-inequivalent ways to

combine distortions due to different relative orientations of the in-plane distortions. A

lot of starting states relax into the single Pnc2 state (uu0aa0/ũũ0ãã0), with the polar

distortion along [110] and octahedron rotations around [110]. However, the criterion

that at least three distinct structures need to be found before the termination of the

iterative process leads to the inclusion of three and four low energy bulk structures for

PTO and STO, respectively, as listed in Table 4.3. The majority of starting structures

(26 out of 32) relax to the GSS Pnc2 structure as shown in the bottom panel of Fig.

4.6 (the data for 15 of the Pc and P1 starting structures are not shown; they all relax

to the GSS Pnc2 structure). Octahedron rotations are induced in PTO layers due to

the interlayer interactions, with amplitudes similar to those in STO layers. However,

in contrast to the large energy difference between distinct structures for -2%, here

the energy scale for alternative low-energy states is smaller, due to the smaller energy

differences for stable distortions in +2% strained bulk STO. We also find a unstable

saddle point structure above the GSS, Amm2 (uu0/ũũ0), which is the supergroup of

the GSS Pnc2, and other alternative low-energy structures Abm2low (0u0a00/0ũ0ã00),

and Abm2high (u00a00/ũ00ã00)[106].

The most complicated case is for the intermediate value of 0% strain. Low-energy

states of STO and PTO both with in-plane distortions, characteristic of tensile strain,

and out-of-plane distortions, characteristic of compressive strain, are represented in the

starting-state combinations determined by the iterative process (Table 4.4). We find

that the P4bm stacking of the two ground states for the constituent compounds is in
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Figure 4.6: Total energies and space-group-symmetry analysis for relaxed structures of
the epitaxially-strained 2:2 PTO/STO superlattice. Conventions as in Figure 4.2.
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fact not the ground state structure for the superlattice. Further, the GSS is not unique:

as seen in the middle panel of Fig. 4.6, relaxation identifies two distinct structures, Cm

and Pc, with an energy difference less than 0.3 meV/5 atoms, less than the resolution of

our calculation. Both the Pc and Cm structures have octahedron rotations and polar

displacements in each constituent layer. The difference is that the direction of in-plane

distortions is [110] for Pc (uuwaac/ũũw̃ããc̃) and is [100] for Cm (u0wa0c/ũ0w̃ã0c̃),

suggesting a “flat” energy surface for in-plane distortions. The ground-state Pc struc-

ture has been previously identified and discussed[87]. The present results suggest that

the experimental determination of the low-temperature structure would not show Pc

as a well-defined ground state, but that the results would show variations in the direc-

tions of the distortions resulting from the flatness of the energy surface in the vicin-

ity of this structure, which could also have an impact on the physical properties. In

addition to the characterization of the ground state, at this stage we find a num-

ber of low-energy unstable saddle point structures. P4bm (00w00c/00w̃00c̃), Pmc21

(uu000c/ũũ000c̃), Amm2 (uu0/ũũ0), Pnc2 (uu0aa0/ũũ0ãã0), Abm2 (u00a00/ũ00ã00),

Cmm2 (00wa00/00w̃ã00), Pmn21 (u-u0aa0/ũ-ũãã0), Pma2 (00waa0/00w̃ãã0)[106].

They are all supergroups of the GSS Pc or Cm structures.

Finally, we carried out the final step described in Sec. 4.2 to identify additional

low-energy structures. First, for 0% strain, we analyzed the full distortion patterns

in each constituent layer for the Pc GSS, which can be characterized as uuwaac (in-

plane polarization along [110], out-of plane polarization along [001], octahedron rotation

around [110] and octahedron rotation around [001]. Excluding the configurations with

high energy due to electrostatics or steric constraints, these can be combined in four

ways: uuwaac/ũũw̃ããc̃, -u-uwaac/ũũw̃ããc̃, uuwaa-c/ũũw̃ããc̃ and -u-uwaa-c/ũũw̃ããc̃.

Two of these, uuwaac/ũũw̃ããc̃, -u-uwaac/ũũw̃ããc̃, relaxed to the Pc GSS, while the

other two relax to a distinct Pc structure with energy 2 meV/5 atoms above the ground

state, which we denote as Pchigh. The Pchigh structure is closely related to the ground

state Pc structure, the main difference being the pattern of oxygen octahedron rotations

around [001]. As shown in Fig. 4.7, for the Pchigh state the octahedron between SrO

layers rotates in the opposite sense to the one between PbO layers, while for the Pc
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GSS state, these two octahedra rotate in the same direction.

The reason that this low-energy structure was not identified in the earlier steps

of structure determination is that the starting structures did not contain any oxygen

octahedron rotation in the PTO layer (see Table 4.4). The rotation in the PTO layer in

the relaxed structure is induced by the symmetry breaking for the superlattice by the

rotations in the STO layer, picking out one of two senses for the rotation. Fig.4.8 shows

an analogous coupling of distortions in a pure perovskite, showing two inequivalent

local minima obtained by freezing a Γ−3 mode into a structure obtained by freezing in

a M+
3 and a M−1 mode; symmetry analysis shows that in the energy expansion around

the high-symmetry cubic structure there is a term trilinear in M+
3 , M−1 and Γ−3 . By

relaxation of the starting state with M+
3 and M−1 nonzero and Γ−3 =0, only the lower

minimum would be found.

With the same procedure applied to the Cm GSS at 0% strain and the P4bm GSS

at -2% strain, we find a Cmhigh state at 0% with distortion pattern u0wa0-c+u0wa0c

and energy 2 meV/5 atoms, and a P4bmhigh state at -2%, with distortion pattern

00w00-c/00w̃00c and energy 3 meV/5 atoms. The appearance of inequivalent local

minima thus appears to be relatively common in superlattices. The idea that the

low-energy landscape is complex for small epitaxial strain, as observed in a previous

study[87], is here strengthened by the fact that even more distinct structures at small

scales of differences in total energies are found by the stacking method than previously

recognized.

As a complementary approach to investigating the energy surface for the 0% case, we

generated and relaxed twenty randomly-distorted starting structures[107]. The results

are shown in Fig. 4.9. Seven of the starting structures relax to the Pc GSS, one relaxes

to the Cm GSS, and eight are at the same energy with a CT just barely larger than

our threshold of 0.08Å, indicating that they stay in P1 structure but are close to the

Cm or Pc GSS, corresponding to intermediate directions of in-plane polarization. For

the ground state, these results confirm the flatness of the energy surface suggested by

our stacking method results. Four of the starting structures relax to the low-energy

structure Pchigh. The low-energy state Cmhigh was missed in this process.
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It is also instructive to put our results into the context of a more conventional

“energy curve” approach for constructing epitaxial phase sequences. This approach

involves computation of the epitaxial strain dependence of the energy for relaxed struc-

tures based on selected distortions of the superlattice, plotting of the energies vs epi-

taxial strain, and analysis of the resulting curves to find the ground state structure and

low energy structures at each strain. We performed additional calculations of the total

energies of all the low-energy structures identified in our structure determination (Fig.

4.6) for all three values of epitaxial strain, and present the resulting set of energy vs

epitaxial strain curves in Fig. 4.10. At -2% strain in Fig. 4.10, the stacking method

identified the three lowest-energy configurations, P4bm, P4/mbm and P4mm, the other

two structures in this diagram being outside the 30 meV/5atoms energy range. For +2%

strain, the stacking method identified the four lowest-energy structures (shown as three

points in Fig. 4.10 due to the small energy differences), the other two structures being

outside the energy window. In agreement with previous work[14, 87], at 0% strain,

many distinct structures are close in energy, The energy curve approach is useful in

understanding the evolution of symmetry-breaking distortions with strain and the re-

sulting phase transitions, but involves energy computation for structures that are quite

high in energy. In addition, the selection of distortions for the superlattice is generally

not systematic. In comparison, our stacking method concentrates on the low-energy

structures at each strain, and thus is more efficient for constructing the phase sequence

and identifying the low-energy alternative structures at each strain.

4.4 Discussion

The example of PTO2STO2 demonstrates that the stacking method provides an efficient

and systematic method for identifying the ground state and low-energy alternative

structures for perovskite superlattices. The results at 0% strain show that it is not

enough to combine ground state structures of constituents, as has been assumed in

some past studies, but that the ground state of the superlattice can be derived from

alternative low-energy structures of the constituents. Further, the stacking method

found ground-state and low-energy structures that had been missed by other methods.
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Figure 4.7: Oxygen octahedron rotation patterns and polarization directions for the
PcGSS , Pchigh and CmGSS structures of the 2:2 PTO/STO superlattice. The rotations
of the two interfacial TiO2 planes (yellow) are in the same sense in all three structures
and are not shown. The blue and green planes represent the TiO2 layer between SrO
layers and PbO layers, respectively. Note that the sense of the rotation in the central
layer of Pchigh is opposite to that of the rotation in the central layer of PcGSS and
CmGSS .

Figure 4.8: Schematic curves for the total energy as a function of the amplitude of an
unstable mode in two cases: trilinear terms including the mode are (a) forbidden by
symmetry, or (b) allowed by symmetry.
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Figure 4.9: Total energies and space-group-symmetry analysis for relaxed structures of
the epitaxially-strained 2:2 PTO/STO superlattice from a set of 20 randomly-distorted
P1 starting structures. Conventions as in Figure 4.2. Red, blue and green arrows point
to PcGSS , Pchigh and CmGSS states, respectively. The Cmhigh state does not appear
in this set.

Figure 4.10: The total energies of all the low-energy superlattice structures as functions
of epitaxial strain, as described in the text. The line colors are chosen to correspond to
the five distinct structures observed at -2% strain.
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The approach is readily generalized to multicomponent perovskite superlattices and to

superlattices based on other structure types.

We note that there may be exceptional cases in which our basic assumption, that the

structure of an individual layer derives from a low-energy structure of the constituent

compound, is violated. It is for this reason that our method includes a complementary

small-scale random search that could identify such systems by yielding low energy

structures that violate this assumption. We also emphasize that this approach avoids

making an exhaustive examination of all possible structures, no matter how implausible,

for a chosen supercell. The supercells for the starting structures are determined by the

low energy structures determined for the constituent compound, and effort is focused on

the structures most likely to be low in energy given the validity of the basic assumption.

The method is thus particularly suitable for high-throughput studies of superlattices

with constituents drawn from a specified set of pure compounds. Once the database of

low-energy structures for the specified set of compounds is constructed, the generation

of starting structures is rapid and automatic, and computational effort is focused on

structures that are likely to be low in energy.

4.5 Summary

In summary, we have proposed a stacking method for the determination of the GSS and

low-energy structures in perovskite superlattices. This method has been demonstrated

on the 2:2 PTO/STO superlattice. For the range of epitaxial strain considered, our

results for the GSS are consistent with previous work. For 0% strain, this method

highlights the previously unrecognized feature that the energy surface is flat at the

lowest energies and hence the GSS is not unique. The method is double-checked by the

random initial configuration method, and no structures with lower energy are found.

We have also shown the existence at 0% strain of a second low-energy structure with

the same space group as the Pc GSS, which could be difficult to identify using other

methods. This method allows for the efficient determination of the GSS and low-energy

structures in general superlattice systems, paving the way for high-throughput studies

of superlattices.
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Chapter 5

SrCrO3/SrTiO3 superlattice: Coupled nonpolar-polar

metal-insulator transition

Within this chapter, using first principles calculations and the stacking method intro-

duced in Chapter 4, we determined the epitaxial-strain dependence of the ground state

of the 1:1 SrCrO3/SrTiO3 superlattice. The superlattice layering leads to significant

changes in the electronic states near the Fermi level, derived from Cr t2g orbitals. An

insulating phase is found when the tensile strain is greater than 2.2% relative to un-

strained cubic SrTiO3. The insulating character is shown to arise from Cr t2g orbital

ordering, which is produced by an in-plane polar distortion that couples to the super-

lattice d-bands and is stabilized by epitaxial strain. This effect can be used to engineer

the band structure near the Fermi level in transition metal oxide superlattices.

5.1 Introduction

Metal-insulator transitions (MIT) occur in many transition metal oxides as a function

of composition, temperature, pressure and epitaxial strain [4]. At the atomic scale, the

mechanism for the metal-insulator transition depends on the physics of the insulating

state. For Mott insulators, the relevant parameters are the transition metal (TM) d-

level occupation, which can be changed through doping, and the bandwidth, which can

be changed by varying the TM-oxygen-TM bond angles. For band insulators, a gap can

be opened at the Fermi level by a structural distortion that lowers the crystal symmetry.

A symmetry-breaking distortion that lifts the degeneracy of a partially occupied state

will always lower the energy; this is called a Jahn-Teller distortion or a Peierls distortion

depending on whether the degenerate states are localized atomic orbitals or extended

bands. Polar distortions have also been shown to couple to states near the Fermi level,
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proving useful in band-gap engineering[108, 109]. When the distortion can be controlled

by an applied field or stress, the system can dynamically be driven back and forth

through the MIT, a property of particular interest for applications to high-performance

switching devices[110, 111],

SrCrO3 (SCO) is a d2 perovskite. It was initially reported as a paramagnetic and

metallic cubic perovskite[112]. Experimental studies also showed a tetragonal C type

antiferromagnetic (C-AFM) phase, with the Neel temperature below 100K and space

group P4/mmm, coexisted with the cubic phase in the low temperature[113, 114]. This

tetragonal C-AFM state is further investigated in first-principles studies[115, 116]. It is

correlated to a partial orbital ordering d1
xy,(dyzdxz)

1, where the dxy is nearly occupied

while dyz and dxz orbitals are both half occupied[114, 115]. For the single layer film

of SCO epitaxially grown on SrTiO3, due to the missing apical oxygen of the CrO5

octahedra at the surface, dyz and dxz orbitals become lower in energy than dxy, leading

to a d1
yzd

1
xzd

0
xy orbital ordering and an insulating state[10]. However, recently Zhou et

al claimed that SCO is an insulator while the insulator-metal transition occurs under

sufficient pressure[117], due to the bond instability found around 4 GPa, suggesting the

strong interaction between structure and electronic structure.

Layering a d-band perovskite oxide in a superlattice with a d0 insulating perovskite

will lead to large changes in the d-band states near the Fermi level, depending on the

thickness of the d-band layer [118, 119, 120]. For SCO, SrTiO3 (STO) is a natural

choice as the second component. It is a d0 insulator with a 3.25 eV band gap and an

A-site cation in common with SCO. In addition, the structure of STO can be tuned

by epitaxial strain, with different octahedral rotation patterns and polar distortions in

compressive and tensile strain[102, 98, 16]; these distortions are expected to influence

the structure in the SCO layer.

In this chapter, we present first-principles results for the ground-state phase sequence

of the 1:1 SrCrO3/SrTiO3 superlattice with varying epitaxial strain, with a first-order

MIT from a metallic x-type P21/c phase to a polar insulating G-type Pmm2 phase

observed at 2.2% tensile epitaxial strain. We show that the insulating character arises
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from orbital ordering induced by a polar distortion in the SCO layer. The polar dis-

tortion is shown to be stabilized by a combination of epitaxial strain and the polar

distortion in the adjacent STO layer. This offers the possibility of driving the system

through the MIT by an applied field or stress that coupled to the polar mode.

5.2 Methods

Our first-principles calculations were performed using the local density approximation[22,

92] with Hubbard U (LDA+U) method implemented in the V ienna Ab initio Simulation

Package (VASP-5.2[26, 27]). We used the Dudarev implementation[34] with effective

on-site Coulomb interaction U = 1.5 eV to describe the localized 3d electron states of

Cr atoms. The projector augmented wave (PAW) potentials[30, 31] contain 10 valence

electrons for Sr (4s24p65s2), 12 for Cr (3p63d44s2)10 for Ti (3p63d24s2) and 6 for O

(2s22p4).
√

2 ×
√

2 × 2 and 2 × 2 × 2 cells were used to allow the structural distor-

tions and magnetic orderings for the 1:1 superlattice. 500 eV energy cutoff, 4 × 4 × 4

k mesh and 5 × 10−3 eV/Å force threshold were used for structural relaxations. A

15 × 15 × 11 k-point mesh was used for density of state calculations. Our calcula-

tions give a = 3.812Å for the relaxed tetragonal state of C-AFM SrCrO3, consistent

with the previous first-principles and experimental studies[115, 114], with aspect ratio

c/a = 0.964 slightly smaller than the experimental value of 0.99. The epitaxial strain

value is defined with respect to 3.849Å, the computed lattice constant of the cubic STO.

The effects of epitaxial strain were studied through “strained bulk” calculations[121].

5.3 Results and discussion

5.3.1 1:1 superlattice

At each value of epitaxial strain in the range −4% - 3%, we determined the ground

state (GS) structure of the superlattice using the “stacking method” [16]. This involved

combining the computed low-energy structures of epitaxially strained STO and SCO

to obtain a set of starting structures, which were then relaxed to the nearest energy

minimum using first-principles calculations. To obtain the low-energy structures of
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SCO, we considered F, G, A, and C-type AFM ordering in the tetragonal phase with

various distortions. C-AFM was found to be the ground state magnetic ordering in the

full range of epitaxial strain considered. For C-AFM and FM states, P4/mmm is the

GS structure. For G-AFM, P4/mmm is the GS from −4% to 0%, P4/mbm Jahn-Teller

(JT)[122, ?] distortion is the GS beyond 0% and anti-polar distortion Pmcm is also

unstable beyond 2%. For A-AFM, P4/mmm is the GS from −4% to 0%, P4/mbm JT

distorted structure is the GS beyond 0%, and polar distortion Pmm2 is the unstable

beyond 3%. The low-energy structures of epitaxially-strained STO have been previously

discussed in the literature[102, 98, 16]. We use the low-energy structures of STO listed

in Table I of Ref. [16], consistent with the reports in other studies. When the epitaxial

strain is within −1% - 1%, the low-energy structures of STO are generated by the M and

R point octahedral rotations. For compressive epitaxial strain greater than −1%, the

out-of-plane polar mode becomes unstable, while the in-plane rotations are suppressed.

For tensile epitaxial strain greater than 1%, the main distortions are in-plane polar

modes along [110] and [100] and out-of-plane rotations are suppressed.

To include magnetic ordering in the stacking method for the 1:1 superlattice, we

consider three magnetic phases for the single layer of SCO that can fit in the 2 × 2

lattice, as shown in Fig. 5.1(a). The three phases are FM, G-AFM for the checkerboard

ordering in the CrO plane, and x-type AFM for the AF ordering along [100] and FM

along [010] in the CrO plane. For each magnetic state of SCO and each value of

epitaxial strain, we generate the starting structures by following the procedures of the

stacking method. We also carry out relaxations for a small number of random starting

structures[16]. Thes show that from −3% to −1% epitaxial strain, the JT distortion is

found in the SCO layer, while it is not metastable in the bulk state.

In Fig.5.1(b) we plot the total energies of the GS of the superlattice obtained by

the “stacking method” for the three magnetic states versus epitaxial strain. From −3%

to 2.2%, the x-AFM is the GS magnetic state, as expected from the resemblance of

magnetic ordering to the bulk C-type AFM state. Beyond 2.2%, the GS magnetic state

changes to G-AFM.

It is instructive to examine the epitaxial strain dependence of the structure for each



62

Figure 5.1: (a) Magnetic orderings in the SCO layer. Red: ferromagnetic (F), black:
G-AFM (G), and blue: x-type AFM (x) states. (b) GS structures and energies for F
(red), G (black), and x (blue) magnetic states as functions of epitaxial strain. The
solid curves guide the eye. Insulating and metallic states are denoted by open and
solid symbols. Shapes of data points indicate the space groups: pentagons (Pbam),
triangles (P2/m), circles (P4/mbm), diamonds (P21/c), five-pointed stars (Pc) and
squares (Pmm2). The inset shows the energies of low energy structures relevant to the
F state in the epitaxial strain range 1.8% to 2.9%.
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magnetic ordering. For FM state, from −3% to 0%, P4/mbm structure with the a0a0c−

oxygen octahedral rotation pattern is the lowest energy structure in this phase. From

0% to 2.3%, the lowest energy structure is P21/c, with an a−a−c− rotation pattern

and JT Q2 mode. The amplitude of the Q2 mode is about 1% of the lattice constant

and does not change much with the strain. As the tensile epitaxial strain increases, the

a0a0c− rotation decreases while the a−a−c0 increases. Beyond 1%, the lowest energy

structure of FM state is insulating. Beyond 2.3%, the lowest energy structure is Pc,

with the a−a−c0 rotation and small and decreasing amount of a0a0c− rotation, JT Q2

mode in the SCO layer, and polar distortions along [110].

For the G-AFM state, from −3% to −1%, Pbam is the lowest energy structure, with

the a0a0c− rotation mainly in the STO and JT Q2 distortion in the SCO layer. The

JT distortion amplitude is small but enough to lift the dyz dxz degeneracy. However,

the system is still metallic due to the band overlap. From 0% to 2.2%, P21/c with

the a−a−c− oxygen octahedral rotation pattern and JT Q2 mode is the lowest energy

structure. Beyond 2.2%, the polar structure Pmm2, with only polar distortion along

[100] becomes the lowest energy structure, leading to the insulating overall GS, with

magnetic moment 1.8 µB.

For the x-AFM state, from −3% to 0%, the lowest energy structure is nonpolar

P2/m, with a0a0c− rotation mainly in the STO layer, and small JT Q2, Q3 modes in

the SCO layer. From 0% to 2.2%, the lowest energy structure is P21/c. Beyond 2.2%,

the lowest energy structure is insulating. In particular, from 2.2% to 2.7%, the lowest

energy structure is Pc with the a−a−c0 rotation and a small and decreasing amount of

a0a0c− rotation, JT Q2 mode in the SCO layer and polar distortion along [110]. The

in-plane rotation is now the main distortion pattern, and the amplitudes for both STO

and SCO layers are similar, due to the connection of oxygen octahedra. Beyond 2.8%,

the lowest energy structure changes to Pmm2.

The phase boundary at 2.2% epitaxial strain is of particular interest. The inset of

Fig. 5.1 shows the energies for F, G, and x structures for 1.8%− 2.9% epitaxial strain.

The energy of the G-type polar Pmm2 structure decreases relative to that of the x-type

nonpolar P21/c structure with increasing epitaxial strain, with a first-order transition
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Figure 5.2: The PDOS of the Cr dyz orbital for G-type 1:1 SCO/STO superlattice and
C-type bulk SCO.

at 2.2% epitaxial strain. We note the metal-insulator transition associated with the

change from the nonpolar to the polar structure.

To figure out the mechanism of the insulating phase in the 1:1 superlattice beyond

2.2% epitaxial strain, we first consider the effect of the superlattice layering on the

bands near the Fermi level. It eliminates the dispersions of Cr t2g bands along kz,

and significantly narrows the band widths of dyz and dxz. Fig. 5.7 shows the PDOS

of dyz of one Cr atom in the G-type 1:1 superlattice and C-AFM bulk SCO for 3%

tensile epitaxial strain in the P4/mmm symmetry. The 1:1 superlattice is metallic for

the P4/mmm structure, with the dyz band much narrower than in the bulk case. The

thickness of the STO layer has little effect. Our calculations show that the Cr-layer

structure and bands are very similar for 1:1 and 1:3 superlattices.

Next, we consider the coupling effect of the polar distortion to the superlattice insu-

lating Pmm2 state. The Pmm2 structure is generated from the high symmetry refer-

ence structure by the doubly-degenerate in-plane Eu polar distortion, with eigenvector

(0.00, 0.00, −0.15, 0.08, 0.53, 0.53, 0.37, 0.40, 0.06, 0.33) specifying the displacement

pattern of the atoms (Sr, Sr, Cr, Ti, Oz1, Oz2, Ox1, Ox2, Oy1, Oy2). From 2.2% to 3%,

the band gap increases from 0.27 to 0.47 eV, and the polarization increases from 36 to

41 µC/cm−2.
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Figure 5.3: PDOS of the spin up Cr t2g in the 1:1 superlattice for +3% strain, with
G-AFM magnetic ordering. The left panels represent the PDOS without (top) and with
(bottom) the polar distortion. The vertical dashed line marks the energy of the highest
occupied state. The distortions in the SCO layer are shown on the right part, where
gray, blue and orange spheres represent Sr, Cr and O ions, respectively.
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Figure 5.4: The evolution of PDOS of Cr dxy, dyz and dxz as a function of polar
displacement of Cr ion in [100]. The amplitude of the displacement for each curve is
given in the legend in units of the in-plane lattice constant.

The effects of the in-plane polar distortion on the electronic structure of the super-

lattice are evident from the projected density of states (PDOS) of the t2g bands of the

spin up Cr atom, shown in Fig. 5.3. The layered structure of the superlattice splits dxy

from dxz and dyz and increasing tensile epitaxial strain lowers the energy of the dxy

orbital relative to dyz and dxz. At 3% epitaxial strain, in the undistorted structure, all

three d orbitals are partially occupied. The in-plane polar distortion lifts the degener-

acy of dyz and dxz, so that in the polar Pmm2 state the dxy and dyz orbitals are fully

occupied while dxz is unoccupied, corresponding to d1
xyd

1
yzd

0
xz orbital ordering.

In fact, the OO can be produced by polar displacements just of the Cr atoms. To

show this, we consider a Pmm2 1:1 SCO/STO superlattice, in which only the Cr atoms

are uniformly displaced along [100], while all other atoms stay at the high symmetry

positions. In Fig. 5.4 we show the PDOS of the distorted superlattice as a function
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Figure 5.5: Decomposed polar mode energies for three epitaxial strain cases.

of Cr displacement. There is a dramatic downward shift of the dyz with increasing

displacement, accompanied by a smaller upward shift of dxy and a decrease in the dxy

bandwidth.

Finally, we discuss why the in-plane polar distortion becomes the GS for tensile

strain. Our calculations show that for any distortion that lifts the dyz and dxz degener-

acy, there is a energy gain. This explains the emergence of JT distortions in P21/c or

Pbam structures for the 1:1 superlattice. However, in general, for large tensile epitaxial

strain, the in-plane polar state is likely to be more favorable than the JT distortion due

to the well-known polarization-strain coupling. In Fig. 5.5 we compare the energies of

the decomposed polar mode for 1.8% 2.2% and 3% epitaxial strain cases. As the tensile

strain increases, the energy gain from the inplane polar mode also increase. Also, the

polar mode is very soft. If we fit the decomposed mode with polynomials, the second

order coefficient becomes from positive for 1.8% to negative for 3% epitaxial strain. It

shows that in the large tensile strain this polar mode is unstable.

However, JT distortion does not show instability in tensile epitaxial strain. In

Fig. 5.6 we plot the energy of decomposed JT distortion for the 2.2% epitaxial strain
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Figure 5.6: Decomposed polar mode energies for three epitaxial strain cases.

case. The curve shows a positive second order coefficient, suggesting only a linear

energy gain.

The other reason for the polar ground state structure is the polar distortion in the

STO layer. To show this, we fixed the STO layer in a nonpolar structure for 3% strain,

froze in the in-plane polar mode and JT distortion in the CrO2 layer in turn, and

relaxed. Distortions survive in both cases and the relaxed structure with JT distortion

has lower energy, suggesting that the in-plane polar mode in the STO coupled differently

to the in-plane polar mode and the JT mode in the SCO layer.

This insulating state also raises the possibility of controlling band gap by applied

electric field. Given the SCO/STO superlattice in the insulating state, an in-plane

electric field will change the atomic positions, and hence change the band gap, because

the band gap is sensitive to the displacement of the Cr atom relative to the O atoms

around it.
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Figure 5.7: (a) PDOS of dyz orbitals for bulk SCO and different periods of SCO/STO
superlattices. (b) A sketch for the bonding/antibonding states for dyz or dxz between
different Cr layers.
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5.3.2 Thicker superlattices

The thickness also play an important role to the electronic state of the superlattice.

When the number of layers of SrCrO3 is larger than 1, bonding/antibonding states

of Cr dyz or dxz between different Cr layers are possible for the C-AFM state. In

Fig. 5.7 we plot the PDOS of the Cr dyz orbital. It shows that compare to the bulk

state, in the superlattice, the dyz bands are very narrow, similar to the 1:1 superlattice

care. However, in the 2:2 case for example, the bonding and antibonding states arise,

leading to two occupied dxy, one occupied dByz and one occupied dBxz. So the superlattice

is insulating even without the polar mode or JT distortion. On the other hand, the

inplane polar mode and JT distortion that can lift the dyz and dxz degeneracy do not

gain linear order of energy in this case, and therefore we cannot have them in the

superlattice after structural relaxations.

Fig. 5.7(a) also shows the 4:2 SCO/STO superlattice case. For these superlattices

with thick SCO layers, the hybridizations among Cr layers are even more complicated.

For the 4:2 case we can see that 4 levels are formed, with half of them occupied. As the

number of SCO layers increases, the hybridized energy level increases, and the band gap

between them will be reduced. Keeping increasing the SCO layer in the superlattice,

and eventually the DOS will coincide with the bulk case.

The thickness of STO layer is however not so critical to the electronic structure near

the Fermi energy. We have calculated the 1:3 and 2:4 superlattices, and their band

structures and DOS near the Fermi energy are similar to the 1:1 and 2:2 superlattices,

respectively.

5.4 Summary

In summary, we have studied both the lattice and electronic structures of the ground

state for the 1:1 SCO/STO superlattice. Distortions in SCO layers are established by

the superlattice layering with STO. For tensile epitaxial strain, due to the in-plane polar

distortion associated with nonzero Cr displacements, the d1
xyd

1
yzd

0
xz orbital ordering can
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be formed and the band gap is therefore induced. The polar distortion induced metal-

insulator transition can be used to engineer the SCO band structures near the Fermi

level. Our study sheds light on a new way to control electronic band structures and

approach the metal-insulator transition point.
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Chapter 6

Transparent conducting SrVO3 thin film

Transparent conductor is electrically conductive and optically transparent. It is a cru-

cial component of many electronic devices, including touch screens, high definition

televisions (HDTVs) and photovoltaics. Thus there is a huge market of transparent

conductors over twenty billion dollars. Currently the best and mostly used transparent

conductors are indium tin oxides (ITOs). However, to keep enhancing the performance,

and to avoid the expensive indium, a large number of studies have been carried out to

look for substitutes of ITOs. The conventional paradigm to combine high electrical con-

ductivity and high optical transparency in the visible spectrum is to begin with a wide

band gap semiconductor with low electron effective mass and to increase its conduc-

tivity by degenerate doping. Our experimental collaborators (Roman Engel-Herbert’s

group at Penn State) recently found that the metallic correlated transition metal oxide,

SrVO3, is highly transparent for visible and near-infrared light under 100 nm thick-

ness. This may introduce a new material design concept for transparent conductors

by beginning with a highly conducting, correlated metal. The strong electron-electron

interaction causes an enhancement of the electron effective mass, which makes plasma

frequency shift to lower energy. In addition, when interband transitions within the vis-

ible light range are suppressed by the small transition matrix or Fermi factor, the light

absorption in the visible range will be suppressed, directly benefiting optical trans-

parency without compromising electrical conductivity. In this chapter, we calculate

the band structure, interband transitions and dielectric functions of SrVO3 from first

principles, and the results of dielectric functions are in good agreement with experi-

mental data. Our results indicate the robustness of this design concept, opening up

new avenues for designing transparent conductors in other correlated metals.
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6.1 Introduction

Transparent conductors are extremely rare. A good transparent conductor should have

good electric conductivity and meanwhile good transparency for visible light. These two

properties contradict to some extent. The conductivity σ = enµ = e2τn/m∗ is related

to the density n and mobility µ of carriers, where the mobility can be determined by

the carrier scattering τ and effective mass m∗. Hence to enhance the conductivity

large n/m∗ and τ are desired. For conductors, when the frequency of light is less than

the plasma frequency ~ωp = ~e
√

n
m∗ε , the light will interact with the carriers, lead to

intraband transitions and will not be transmitted through. Thus the plasma frequency

has to be suppressed below the visible light range (1.55 eV) and a small n/m∗ value

is desired. The current design strategy the transparent conductors is to balance the

trade-offs between n, m∗ and τ by doping wide band gap (> 3.25 eV) semiconductors,

most of which are transparent conductive oxides (TCOs), ZnO- or indium tin oxide

(ITO-) based materials[123, 124]. High dopant concentrations necessarily lead to the

additional scattering contributions and lower the scattering time τ , and thus lead to an

intrinsic limit to optimize the performance.

SrVO3 (SVO) is a paramagnetic metal at room temperature. It has recently been

found by our colleagues to be transparent for thin film states (< 100 nm), and with

even better performance than conventional thin film TCOs. SVO is a new type of

transparent conductors. It has a low plasma frequency, 1.58 eV, possibly due to the

strong correlation effect [125]. Meanwhile, SVO avoids the doping issue. It is a metal

with conductivity σ = 3.3× 104 S/cm for the 45 nm thin film, better than ITOs. Most

importantly, the amplitudes of interband transitions within the visible light energy

range have been suppressed for the high transparency of thin film SVO.

In this chapter, I carry out a detailed first-principles study on strained SVO to

investigate the reason of suppressed interband transitions. I calculate the dielectric

functions and simulate the transmittance of light for thin film SVO, and the results are

in good agreement with experimental data. I analyze the electronic band structure and

the interband transitions. The results show that within the visible light range, there
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exist interband transitions with small transition matrix that have tiny contribution to

the light absorption, and those with large transition matrix but are blocked by the

Fermi factor.

6.2 Method and formalism

Our first-principles calculations of SrVO3 were performed using the generalized gra-

dient approximation (GGA) with the Perdew-Becke-Erzenhof parameterization [62] as

implemented in the Vienna Ab initio Simulation Package (VASP-5.2.12) [26, 27]. The

projector augmented wave (PAW) potentials [30, 31] used contained 10 valence electrons

for Sr (4s24p65s2), 13 for V (2s22p63d34s2) and 6 for O (2s22p4). We used 500 eV as the

energy cutoff. An 8× 8× 8 Monkhorst-Pack k-point mesh was used for the structural

relaxation, and a 31× 31× 31 Γ centered k-mesh was used for the interband transition

calculation. Extensive testing with the GGA+U method with nonzero U and ferro-

magnetic, G-type antiferromagnetic and nonmagnetic configurations showed that the

relevant features of the band structures and interband transitions are not sensitive to

U or the magnetic ordering. For U=0, the ground state was found to be non-magnetic.

Since SrVO3 is paramagnetic at room temperature, we performed the analysis for the

nonmagnetic state with U=0. The c lattice parameter of the tetragonal five-atom unit

cell was relaxed with in-plane lattice constant fixed to the experimental value 3.868Å,

preserving P4/mmm symmetry, yielding a value for c/a ratio of 0.979.

The plasma frequency was calculated from the band structure using

ω2
p,αβ =

4πe2

V ~2

∑
n,k

2gk
∂f(Enk)

∂E
(eα

∂Enk
∂k

)(eβ
∂Enk
∂k

) (6.1)

where α, β denote the direction, V denotes the volume of the unit cell, f is the occupancy

function, E is the band energy, e is the unit vector, and gk is the weight of k point.

For SrVO3, the plasma frequency is determined by the t2g bands that cross the Fermi

level. Since the t2g band structure is relatively simple, the uncertainty in the plasma

frequency is determined by the uncertainty in the t2g bandwidth. We have computed

band structures for different U and k-meshes, and the t2g bandwidth is found to vary

by less than 2%. The uncertainty in can thus be estimated to be about 4% of the
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computed value.

The intraband contribution to the dielectric function was obtained empirically from

the Drude model,

ε
(1)
intra(ω) = 1−

ω2
p

ω2 + γ2
, (6.2)

ε
(2)
intra(ω) =

γω2
p

ω3 + ωγ2
, (6.3)

γ =
ne2ρ

me
. (6.4)

Using measured values ρ = 2× 10−7Ω · cm, n = 2× 1022cm−3, we estimate γ = 0.1

eV and me = 4.5m0 .

The interband contributions to the dielectric functions εinter were calculated using

the VASP implementation, in the approximation that the local field effects are neglected

[126]. The imaginary part is determined by

ε
(2)
inter,αβ(ω) =

4π2e2

V
lim
q→0

1

q2

∑
c,v,k

2wkδ(Eck − Evk − ω)× 〈uck+eαq|uvk〉〈uvk|uck+eαq〉

(6.5)

where V is the volume of the unit cell, the index c and v refer to conduction and valence

bands, respectively, and uk is the cell periodic part of the wavefunction at k-point k.

and eα, eβ denote unit vector in Cartesian directions. limq→0〈uck+eαq|uvk〉 gives the α

component of the dipole matrix element between two bands.

The real part of the dielectric function is obtained using the Kramers-Kronig trans-

formation,

ε
(1)
inter,αβ(ω) = 1 +

2

π
P

∫ ∞
0

ε
(2)
inter,αβ(ω′)ω′

ω′2 − ω2 + iη
dω′, (6.6)

where the P means the principal value, and η is a tiny shift.

The refractive index can be calculated using the dielectric functions, and further

the reflectivity and absorption rate can also be obtained. From the complex refractive

index writes

(n+ iκ)2 = ε(1) + iε(2), (6.7)

where n and κ are the real and imaginary parts of the refractive index. Thus,

n =

√
1

2
(
√
ε(1),2 + ε(2),2 + ε(1)), (6.8)



76

κ =

√
1

2
(
√
ε(1),2 + ε(2),2 − ε(1)). (6.9)

Then the reflectivity is

R =
(1− n)2 + κ2

(1 + n)2 + κ2
. (6.10)

Transmissivity at the surface can be calculated as T = 1−R. The absorption rate is a

function of reflectivity and κ

λ =
4πκ

R
, (6.11)

and the transmittance decreases exponentially with the thickness of the film,

T = T exp(−λz). (6.12)

6.3 Results and Discussion

We first calculate the dielectric functions of the strained bulk SrVO3, with in-plane

lattice constant 3.868Å, the experimental value. In Fig. 6.1 we compare the calculations

with experimental results. The experimental dielectric functions were measured by

Podraza’s group at Toledo University via the spectroscopic ellipsometry. In low energy

range (< 1.2 eV) there is a discrepancy between the calculation and the experiment.

The suppression of the intraband contribution, namely the Drude peak part, to the

dielectric functions is related to the electron-electron correlation of SrVO3[125, 127].

Since the GGA we used for the exchange-correlation potential in the calculation does

not carefully describe the strong correlation, this may lead to the low energy range

discrepancy of dielectric functions. However for higher energy range, including the

visible light range, where the interband transitions are the main components for the

dielectric functions, our calculation captures the main features. For 1.3 − 2.8 eV the

ε(2) is suppressed, and the main peak is at 3.4 eV as the experimental data. In the rest

of the chapter, we focus on the 1.3− 3.6 eV energy range and explain the transparency

by analyzing the interband transitions.

With the dielectric functions, we can also calculate the transmittance of different

thickness thin films using Eq. 6.12. In Fig. 6.2 we show the experimental and calculated
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Figure 6.1: Dielectric functions with respect to wavelength. Real part (top panels)
and imaginary part (bottom panels). Solid lines are DFT calculated data, and dots
represent experimental data. The experimental data is measured by Podraza’s group
at Toledo University.

transmittance. Both sets of data show that SVO thin films have a high transparency.

The transmittance for light with wavelength 400–900 nm, which almost covers the

visible light range, is higher than 70% for the 45 nm-thick film. Even if Fig. 6.2

show the transparency in a direct representation, since the experimental results are

calculated from the dielectric data in Fig. 6.1, Fig. 6.2 and 6.1 are actually equivalent.

As we can see in Fig. 6.2, the calculated transmittance for short wavelength is in a

good agreement with experiment, while for the wavelength greater than 900 nm, the

calculated transmittance is more suppressed than the experimental value.

A key requirement for optical transparency is that the contributions of interband

transitions must be suppressed in the optical range, either by the absence of transitions
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Figure 6.2: Transmittance of thin film SrVO3. Left, experiment. Right, first-principles
calculation.

with the relevant energies or by the suppression of their contribution by the Fermi

factor, matrix elements and/or joint density of states.

Here, we analyze the interband transitions in SrVO3 via first principles calculations

of the band structure of SrVO3 and the dipole transition matrix elements for the optical

transitions between bands. The three relevant sets of bands yielding interband transi-

tions below 3.6 eV are shown in Figure 6.3(A): the valence band, dominated by oxygen

2p orbitals; the lowest conduction band, predominantly V t2g; which lies at the Fermi

level, and the higher-lying conduction band, derived from the V eg orbitals. Fig. 6.3(B)

shows the sheets of the Fermi surface, with the bands from Γ to X clearly differentiating

the outer sheet from the two inner sheets. Thus the interband transitions of interest

are t2g − t2g, t2g − eg and 2p − t2g transitions. Fig. 6.4 shows the imaginary dielectric

function ε(2) decomposed into the above three sets of interband transitions.

Interband transitions from filled t2g to empty t2g states occur at low energy, below

1 eV. In Fig. 6.4 it is shown that the contribution of t2g − t2g interband transitions are

within the Drude peak. The transition matrix elements and energy difference along the

band structure k path are shown in Fig. 6.5. The matrix elements for t2g−t2g transitions

can be extremely large, possibly due to the degenerate t2g bands in those areas, for which

the eigenfunctions are similar, leading to the large 〈uck+eαq|uvk〉. However, they are

not contribution because of the same Fermi factor.
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Figure 6.3: First principles calculation results of SrVO3. (A) Band structure of SrVO3

in the vicinity of the Fermi level EF , comprised of nine bands originating from O 2p
orbitals, three bands from V 3d t2g, and two bands from V 3d eg orbitals. Interband
transition (I) through (III) are indicated. (B) Brillouin zone of SrVO3 containing the
Fermi surfaces of the three t2g bands. Isosurface representation of the dipole matrix
element M2 for electronic states in the Brillouin zone for the interband transitions. (C)
(I): t22g to e1

g, (D) (II): 2p1 to t12g, (E) (III): 2p1 to t32g with 2p1 the highest lying valence

band, t12g, t
2
2g, t

3
2g the lowest middle and highest lying t2g bands, and e1

g, e
2
g the lowest,

highest lying eg bands, respectively. The Fermi surface of the t2g band involved in the
transition is indicated as well.
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Figure 6.4: Decomposed ε
(2)
inter to 2p− t2g, t2g − t2g and t2g − eg contributions.

Figure 6.5: Energy difference (upper panel) and M2
z (bottom panel) for t2g − t2g tran-

sitions along the k path of Fig. 6.3(A). Solid and dotted lines represent the allowed
transitions and those forbidden by the Fermi factor. Blue, red and green represent
transitions of t12g − t22g,t12g − t32g and t22g − t32g.
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Figure 6.6: Energy difference (upper panel) and M2
z (bottom panel) for t2g − eg tran-

sitions along the k path of Fig. 6.3(A). Solid and dotted lines represent the allowed
transitions and those forbidden by the Fermi factor. Blue, red and green represent
transitions start from t12g t

2
2g and t32g. The light and dark blue, red and green represent

the transitions end in e1
g and e2

g, respectively.

The interband transitions between the V t2g bands and the eg bands lie in an energy

range of 1.3 to 4.3 eV, and mainly contribute to the small peak at 2.1 eV in Fig. 6.4.

The transition matrix elements and energy difference along the band structure k path

are shown in Fig. 6.6. To see the transition matrix within the Brillouin zone, we plot

M2
z of middle t2g to the lower eg, t

2
2g − e1

g transitions (marked I in Fig. 6.3(A)) in an

isosurface representation in Figure 6.3(C). Only the wavevectors inside the Fermi surface

sheet shown correspond to filled-to-empty transitions and contribute to the optical

absorption; the small matrix element factor for these transitions suppresses the resulting

peak in the imaginary part of the dielectric function, as shown in Fig. 6.4. It can be

seen that the matrix elements are substantially larger for transitions at wavevectors

just outside the Fermi sheet, so that the exact location of the Fermi level in the t2g

bands is critical in suppressing the contribution of the t2g to eg transitions in the visible

range.

Finally, we consider the interband transitions from the filled valence band to the
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empty t2g band states, which contribute the main peak of ε(2) at 3.4 eV as shown in

Fig. 6.4. (The interband transitions from the filled valence band to the eg band are

higher than 3.6 eV). The transition matrix elements and energy difference along the

band structure k path are shown in Fig. 6.7. We can find that large matrix elements

near Γ point is not allowed due to the Fermi factor, and the main contribution comes

from several sets of 2p−t2g transitions. As an example of the computed matrix elements

in the Brillouin zone, we plot the transitions M2
z from the highest valence band to the

lower t2g, 2p1 − t12g band (marked II in Fig. 6.3(A)) in Fig. 6.3(D). The filled-to-empty

transitions are at wavevectors outside of the Fermi surface sheet, where the matrix

elements are relatively small. The energy for filled-to-empty transitions ranges from

2.8 eV to 3.4 eV, with the largest matrix elements (yellow isosurfaces) just outside the

Fermi surface sheet. This is in dramatic contrast to the much larger matrix elements

inside the sheet (red isosurfaces), which correspond to filled-to-filled transitions in the

energy range 1.3 - 2.8 eV and thus do not contribute to optical absorption. We also plot

M2
z for the transitions from the highest valence band to the upper t2g band, 2p1 − t32g

(marked III in Fig. 6.3(A)) in Fig. 6.3(E). States located just outside the Fermi surface

gave rise to the strong absorption peak at 3.4 eV. From this, we see that here too,

the exact location of the Fermi level in the t2g bands is critical in suppressing strong

transitions in the visible range.

Transparent conducting SrVO3 thin film is a great start, and we then propose ways

to tune and improve the transparency. We note that for SrVO3 the Fermi factor ensures

a near-zero optical absorption from interband transitions in the energy range 2.1 eV and

2.8 eV. Thus, manipulating band position, Fermi surface size and shape via epitaxial

strain, and manipulating band dispersion via doping on the A-site cations are reasonable

strategies to enhance the transparency.

Furthermore, to search for other candidates of transparent conductors within tran-

sition metal oxides, there are several keys noteworthy. 1. As p − d transitions, the

2p− t2g transitions matrix are usually greater than the t2g − eg transition matrix and

contribute to the main absorption peak of interband transitions. So the energy differ-

ence of 2p− t2g bands should be large enough to avoid absorptions in the visible light
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Figure 6.7: Energy difference (upper panel) and M2
z (bottom panel) for 2p− t2g tran-

sitions along the k path of Fig. 6.3(A). Solid and dotted lines represent the allowed
transitions and those forbidden by the Fermi factor. Blue, red and green represent
transitions start from the lowst p, 2p3 to the highest p, 2p1. The light to dark blue, red
and green represent the transitions end in t12g, t

2
2g and t32g, respectively.

range. To achieve this, except choosing an appropriate material, we can use epitaxial

strain to tune the energy levels of d and p bands. Also, the band engineering via polar

distortion of the B-site transition metal atom relative to the oxygen octahedron studied

in the previous SrCrO3/SrTiO3 example provides another possibility.

2. It is not shown that t2g−eg contribution is always small, thus it would be a good

idea to push the t2g − eg energy difference outside or to the edge of visible light energy

range. The t2g − eg band gap can be tuned by the crystal field, namely by epitaxial

strain. The tetragonal effect further splits the dxy from dyz/dxz in t2g, and dx2−y2 from

d3z2−r2 in eg, so that the band gap between the higher t2g and the lower eg can be

manipulated, and thus the position of the small ε(2) peak within the visible light range

can be optimized.

3. The width of the Drude peak should be suppressed, which is usually true for

transition metal oxides where the correlation effect is strong.
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6.4 Summary

In summary, we have studied in depth the interband transitions of SrVO3. I have found

three sets of transitions, t2g − t2g, t2g − eg, and top 2p− t2g that are within the visible

light range. Some t2g− t2g transitions show large transition matrix elements due to the

similar eigenfunctions, but are in low energy less than 1 eV. The t2g − eg transitions

have overall small transition matrix. Those with largest transition matrix are blocked

by the Fermi factor, leading to the small ε(2) peak at 2.1 eV. This is the main reason

for the good transparency of SrVO3. 2p − t2g transitions have large joint density of

states and transition matrix, leading to the ε(2) main peak at 3.4 eV. By tuning the

Fermi level, or using epitaxial strain to change the Fermi surface or orbital energy

levels, the optical properties of SrVO3 may be further engineered. The understandings

of interband transitions of SrVO3 also provide good hints to search for other correlated

transparent conductors.
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Chapter 7

Surface polarization and edge charges

In previous chapters I have discussed the structure-dependent effects for superlattices

and thin films, and in this chapter I will investigate polarization effect at the surface.

The term “surface polarization” is introduced to describe the in-plane polarization

existing at the surface of an insulating crystal when the in-plane surface inversion

symmetry is broken. In this chapter, the surface polarization is formulated in terms

of a Berry phase, with the hybrid Wannier representation providing a natural basis for

study of this effect. Tight binding models are used to demonstrate how the surface

polarization reveals itself via the accumulation of charges at the corners/edges for a

two dimensional rectangular lattice and for GaAs.

7.1 Introduction

Electronic properties at surfaces can be quite distinct from the bulk state. One of the

main reasons is that the surface lowers the crystalline symmetry. Furthermore, when

the in-plane inversion or mirror symmetry is broken, there should exist an in-plane

polarization at the surface, no matter surface reconstructions happen or not.

For over two decades, it has been understood that the electric polarization P of

an insulating crystal is a bulk quantity whose electronic contribution is determined

modulo 2eR/Ω (where R is a lattice vector and Ω is the unit cell volume) by the Bloch

functions through a Berry-phase expression, or alternatively, in real space through

the charge centers of the Wannier functions [128, 129]. It was also shown that the

macroscopic surface charge of an insulating crystal is predicted by the standard bound-

charge expression σsurf = P · n̂ (where n̂ is the surface normal) [130], as illustrated

schematically in Fig. 7.1(a).
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Figure 7.1: Illustration of bulk and surface polarization effects. The polarizations are
denoted by black arrows, and net positive and negative bounded charged are in red and
blue, respectively. (a) Bulk polarization gives rise to surface charges σ. (b) Surface
polarization gives rise to edge charges λ.

Here, we introduce and analyze a related quantity, the “surface polarization,” de-

fined as a 2-vector P lying in the plane of an insulating surface of an insulating crystal.

By analogy with the bulk 3-vector P , it has the property that when two facets meet,

the linear bound-charge density appearing on the shared edge is predicted to be

λedge = P1 · n̂1 +P2 · n̂2 (7.1)

where Pj is the surface polarization on facet j and n̂j is a unit vector lying in the plane

of the facet and pointing toward (and normal to) the edge, as illustrated in Fig. 7.1(b).

This surface polarization P is quite distinct from the dipole per unit area normal to

the surface, which has also been called “surface polarization” by other authors [131, 132].

The latter is always present regardless of the symmetry of the surface, and manifests

itself macroscopically through the surface work function. In contrast, our surface po-

larization P lies in-plane and is nonzero only when the symmetry of the terminating

surface supports a nonzero in-plane vector, as for example on the (110) surface of GaAs.

It can also arise from a spontaneous symmetry-lowering surface reconstruction, as ob-

served recently at the Pb1−xSnxSe (110) surface [133] and predicted for an ultrathin

film of SrCrO3 on SrTiO3 substrate (001) [10]. The surface polarization will be most

evident when the bulk P vanishes, as will be the case for the systems discussed below.

The purpose of this Letter is to extend the Berry-phase theory to the case of surface

polarization P as defined above. To do this, we introduce a formulation based on hybrid
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Wannier functions (HWFs), which are Bloch-like parallel to the surface and Wannier-

like in the surface-normal direction [134, 135, 136, 137]. This allows for the use of

Berry-phase methods parallel to the surface while allowing a real-space identification of

the surface-specific contribution in the normal direction. We illustrate the concept first

for a “toy” 2D tightbinding (TB) model, demonstrating the method of calculating the

surface polarization. We then consider an atomistic 3D model of an ideal (110) surface

of a generic III-V zincblende semiconductor, using a TB model of GaAs to describe the

electronic structure. In both cases, we confirm that the surface polarization correctly

predicts corner and edge charges.

7.2 Formalism and methods

We first show how to express the surface polarization in terms of the Berry phases of

HWFs for a 2D insulating sample, which we take to lie in the (x, z) plane. We take the

“surface” (here really an edge) to be normal to ẑ and introduce HWFs |hlj(kx)〉, where

l indexes unit-cell layers normal to the z direction and j runs over occupied Wannier

functions in a single unit cell. For the bulk, the lattice is periodic in z as well as x,

and the |hlj(kx)〉 and their centers zbulk
lj (kx) can be obtained using the 1D construction

procedure given in Ref. [138]. To study the surface behavior we consider a ribbon

consisting of a finite number of unit cells along ẑ. We then construct and diagonalize

the matrix Zmn = 〈ψm(kx)| z |ψn(kx)〉, whose eigenvectors yield the HWFs and whose

eigenvalues give the HWF centers zlj(kx). In practice these are easily identified with the

bulk zbulk
lj (kx) covering the range of l values that define the ribbon, with only modest

shifts induced by the presence of the surface, allowing a common labeling scheme for

both.

If we were interested in computing the dipole moment normal to the surface, we

could obtain this from an analysis of the kx-averaged z positions z̄lj of the HWFs, where

a is the lattice constant along x. However, our purpose here is different: we want to

compute the polarization parallel to the surface. For this, we compute the Berry phase

γx,lj =

∫
dkx 〈hlj | i

d

dkx
|hlj〉 . (7.2)
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of each HWF “band” (lj) as kx runs across the 1D BZ. Doing the same for the bulk

HWFs (these are independent of l) and taking the difference, we obtain a set of Berry-

phase shifts ∆γx,lj ≡ γx,lj − γbulk
x,j from which the electronic surface polarization can be

determined via

Pelec
x = − ea

Ωπ

top surf∑
lj=center

∆γx,lj (7.3)

where a factor of two has been included for spin degeneracy and Ω is the edge repeat

length a in 2D. Since ∆γx,lj decays exponentially into the bulk, the sum will converge

within a few layers of the surface, but for definiteness we sum to the center of the ribbon.

If the zlj values of some neighboring HWF bands overlap, the procedure needs to be

generalized by grouping the HWFs into layers and using a multiband generalization to

assign contributions to each layer.

The generalization to a 3D crystal with surface normal to z is straightforward. The

HWFs are |hlj(kx, ky)〉 with centers zlj(kx, ky). The surface polarization Pelec
x is then

obtained by computing Berry phases with respect to kx as before, averaging over all ky,

and multiplying by the lattice constant a divided by the surface cell area Ω. The other

surface polarization Py is given by the same formalism but with x and y reversed.

In the models considered in this paper, the surface polarization is purely electronic,

as the ions are held fixed in their bulk positions. More generally, Px = P ion
x + Pelec

x

with the ionic contribution given by P ion
x = Ω−1

∑
lτ Zτ (Xlτ − Xbulk

lτ ), where Zτ and

Xlτ are the x position and bare charge of ion τ in cell l, and Xbulk
τ is the corresponding

bulk position of the same atom.

7.3 Two-dimensional tight-binding model

To illustrate these ideas, we start by considering a tight-binding (TB) model of the

simple 2D crystal shown in Fig. 7.2(a). We assume a rectangular lattice with an aspect

ratio b/a = 0.8. There are two atoms symmetrically located along a diagonal of the

rectangular unit cell with coordinates (1
3 ,

1
3) and (2

3 ,2
3), so that the bulk crystal has

inversion symmetry. We consider only one s orbital per atom with onsite energy taken to

be zero, and assume that each atom contributes one electron so that only the lower band
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Figure 7.2: (a) Illustration of the TB model, where four unit cells are presented. The
atoms are denoted by black dots. Nearest neighbor hoppings t1, t2 and t3 are shown
in solid blue lines. Next-nearest neighbor hoppings t4 and t5 are shown in dashed blue
lines. P are shown by black arrows. The induced Qcorner are denoted by red (positive)
and blue (negative) large dots at the corners. (b) Band structure of the TB model
in the (kx, kz) space. The inset shows the high symmetry points in the 2D Brillouin
zone, where Γ, X, M, X ′ refer to (0,0), (0,1

2), (1
2 ,1

2) and (1
2 ,0), respectively. (c) Band

structure along kx for the 2D slab model that is infinite along x while 10-cell-thick in
z. (d) Difference between effective x positions of each HWF and that deep in the bulk.
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is (doubly) occupied. We take the nonzero hoppings to be those shown in Fig. 7.2(a)

and choose their values to be t1 = −2.2, t2 = −0.15, and t3 = −0.1, t4 = −0.09 and

t5 = −0.06 in eV. The position operators are taken to be diagonal in the local-orbital

representation so that 〈φi|z|φj〉 = ziδij .

We plot the bulk band structure of the TB Hamiltonian in Fig. 7.2(b). For the

selected parameters the band gap is large compared to the band widths; in particular,

the upper (unoccupied) band is quite flat. Next we compute the surface polarization

of a ribbon cut from the 2D lattice, taking it to be ten unit cells thick along z and

infinite along x. For the atoms in the surface layers, the hoppings to the interior

atoms are the same as those described above, while the hoppings to the vacuum side

are set to zero. We used an equally spaced 60-point kx grid. At each kx the 20 × 20

Hamiltonian is diagonalized, resulting in the band structure shown in Fig. 7.2(c). There

are no obvious surface states, and in fact the result looks almost indistinguishable

from a surface projection of the bulk band structure. The eigenfunctions |ψn(kx)〉

are expressed in the tight-binding basis as |ψn(kx)〉 =
∑

j cnj(kx) |χj(kx)〉, where the

|χj(kx)〉 are the Bloch basis function formed as a Fourier sum at wavevector kx of atomic

orbitals |φi〉. From the ten occupied bands we construct the 10 × 10 position matrix

Zmn = 〈ψm(kx)|z|ψn(kx)〉 =
∑

j zjc
∗
mj(kx)cnj(kx). Diagonalizing this matrix, we get

ten eigenvalues zl(kx) that can each be clearly associated with a particular unit cell

layer, and ten eigenfunctions that are the HWFs. We label the HWF |hl(kx)〉, where l

is the layer index running from the bottom to the top of the ribbon.

Next we calculate γx,l, the Berry phase along kx, for each l using Eq. (7.2). Deep

in the interior these Berry phases become equal to π within numerical precision, while

the Berry phases near the edge are slightly shifted away from π, leading to a nonzero

surface polarization as shown in Fig. 7.2(d).

The value of the surface polarization obtained from Eq. (7.3) is Px = ±2.1× 10−4 e

for the top and bottom surfaces respectively. Similarly we can compute the surface

polarizations for the left/right surfaces using a ribbon ten cells wide in x and infinite

along z. We obtain Pz = ±4.7× 10−4 e along the left and right edges respectively. At

the corners, the surface polarizations are directed head-to-head or tail-to-tail, as shown
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in Fig. 7.2(a).

We have investigated the dependence of the surface polarizations on the model

parameters, finding that its magnitude scales roughly as a power of the ratio of the

valence band width over the band gap. We also find that the surface polarization

contributions decay into the interior with a decay length that increases as this ratio

increases. The hopping parameters we chose give a decay length short enough to achieve

essentially zero (< 10−7) polarization in the center of the 10-layer ribbon.

Given the values of the surface polarizations in the 2D model, we predict that the

charge accumulation at the corner of a finite sample should equal the sum of the two

adjacent surface polarizations, here |Px|+ |Pz| = 6.8× 10−4 e. To test this, we directly

calculate the corner charge in a finite 2D sample, specifically a 10× 10 supercell, large

enough to ensure neutrality in the central region and in the middle of the edges of the

sample. The corner charge is obtained by summing up the on-site charge differences,

relative to the bulk, for atoms in the quadrant containing the corner. We find Qcorner =

6.8× 10−4 e for the top left and bottom right corners, and −6.8× 10−4 e for the other

two corners, in agreement with our prediction from the computed surface polarizations.

7.4 GaAs with (110) facets

We now consider a TB model of a generic III-V zincblende semiconductor, with GaAs

as the prototypical example. The crystal structure is characterized by Ga-As zigzag

chains running along 〈110〉. Although the crystal structure does not have inversion

symmetry, the tetrahedral symmetry forbids a nonzero spontaneous polarization. We

use tight-binding parameters from Ref. [139], in which is shown the bulk bandstructure

and density of states. The unit cell contains two Ga and two As atoms, each with four

sp3 hybridized orbitals and four electrons, as shown in Fig. 7.3(a). The position matrix

is assumed to be diagonal and atom-centered in the basis of tight-binding orbitals.[140]

To describe the (110) surface, we construct a slab geometry as shown in Fig. 7.3(a),

and we henceforth label the Cartesian directions as shown there. That is, the surface,

which is normal to ẑ, has zigzag chains running along ŷ. Since the two atoms making
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Figure 7.3: (a) Illustration of the GaAs slab studied in the TB model, where the blue
and green balls represent Ga and As atoms, respectively. The grey shaded planes
denote the (110) family planes. (b) Electronic band structure of the GaAs slab in the
2D Brillouin zone, with the thickness of 8 cells z. (c) Difference between the γx of each
group of HWFs and that deep in the bulk.
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up these chains are inequivalent, we expect a surface polarization in the x̂ direction.

We take the slab to be eight unit cells thick; for the atoms in the surface layer, the

hoppings to the atoms inside the slab are the same as in the bulk, while the hoppings

to the vacuum side are set to zero. At each (kx,ky) of the 100×100 k grid in the surface

BZ, the 128 × 128 Hamiltonian is diagonalized, and we obtain the band structure for

the slab, shown in Fig. 7.3(b). Surface states are evident as isolated bands.

Next, we diagonalize the 64×64 position matrices Z(kx, ky) constructed from the

eigenstates of the occupied bands. The eigenvalues, which are the z coordinates of

the HWF centers, can be clearly divided into groups, each consisting of four HWFs j

representing the four Ga-As bonds around an As atom, each group being associated

with one of the 16 atomic layers l. In this case, it is more useful to calculate the Berry

phase of each group of HWFs rather than of each single HWF [130].

As expected, the Berry phase in the ŷ direction along the zigzag chain is found to be

zero, but in the x̂ direction it is nonzero for the HWF groups near the top and bottom

surfaces of the slab. Thus, we confirm that there is a nonzero surface polarization Px.

We plot the difference between the Berry phase γx of each group of HWFs and that for

the bulk in Fig. 7.3(c). By summing up the contributions from each group of HWFs

from the center of the bulk to one surface, the total surface polarization is found to be

0.178 e/L. Here L = a/
√

2 is the repeat length of the zigzag chain, i.e., the surface

cell dimension along ŷ, where a is the surface lattice constant along x̂. Subdividing

the dominant surface-group contribution further, we find that the surface polarization

comes mainly from the surface-most HWF, corresponding to a shift of the center of the

dangling bond on the surface As atom.

The surface polarization on the {110} surfaces predicts an accumulated line charge

for the common edge of two such surfaces. In order to demonstrate this effect, we

consider a hexagonal wire of GaAs that is infinite along [111], with a periodicity corre-

sponding to three of the GaAs buckled (111) layers. In this case, the six side surfaces

of the wire are all {110} planes: (11̄0), (101̄), (011̄), (1̄10), (1̄01), and (01̄1). As

shown in Fig. 7.4(a), on each side facet the surface polarization is perpendicular to
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Figure 7.4: (a) Overhead view of the hexagonal GaAs nanowire. The dashed black
line, which meets the edges along [111] at an angle of θ = 35.26◦, shows the direc-
tion along which the zigzag surface chains run. The relevant surface polarizations at
the side surfaces are denoted by black arrows. The blue and red vertical edges mean
net negative and positive edge charge distributions, respectively. (b) On-site charge
distribution summed over the trilayer. Red and blue dots represent positive and nega-
tive net charges, respectively. The sizes of dots indicate the magnitudes of the on-site
net charge. the left and right regions to the dashed vertical line show the total and
symmetric part of onsite charges, respectively.

the zigzag chains, forming a pattern of P vectors shown as black arrows. The sur-

face polarizations for each neighboring pair of side facets have a common component

along [111], but are head-to-head or tail-to-tail for the component normal to [111],

leading to alternating positive and negative line charges for the six edges as shown.

According to Eq. (7.1), we expect the line charge per three-layer vertical period to be

Q3L = 2P cos θ · 3L cos θ = 0.71e, where the 3L cos θ factor is the vertical period.

For comparison, we directly calculate the edge charges per trilayer period in a

nanowire with a radius of 8 atoms. We sum up the site populations within the TB

model with a 60-point k grid along [111]. The onsite charge is the difference from the

bulk value. The computed onsite charges are shown in the left half of Fig. 7.4(b), while

the right half shows the corresponding results after averaging with a 60◦-rotated ver-

sion of itself. The surface charges decay rapidly into the bulk, leading to a neutral bulk



95

state inside the nanowire. Also, a surface dipole density normal to the surface is clearly

visible, especially in the orientationally averaged results. However, we are interested

in the accumulation at the edges, which is obviously present in the unaveraged results

in the left half of the figure. The edge charge is calculated by summing up the onsite

charges in the wedge-shaped region illustrated in Fig. 7.4(b), using a weight of 1/2 for

atoms located on its radial edges. The total edge charge per trilayer is found to be

±0.71e, in agreement with the value predicted using the previously calculated surface

polarization.

7.5 Discussion

We emphasize that this numerical value is not intended to be realistic for GaAs. A

more accurate estimate would require the use of an improved tight-binding model and

treatment of surface relaxations and dielectric screening effects, or better, direct first-

principles calculations. Our purpose here has been to show that the surface polarization

as defined here correctly predicts edge charges. We note that an analysis based on

maximally localized Wannier functions [141] is also possible. However, we believe our

HWF-based approach is more natural, as the Wannier transformation is only done in

the needed direction and no iterative construction is required.

We stress that the concept of surface polarization P is quite general, occurring

whenever the surface symmetry is low enough. In some cases this can arise from a

spontaneous symmetry-lowering surface relaxation or reconstruction, allowing “surface

ferroelectricity” if it is switchable. In other cases, as for GaAs (110), the ideal surface

space group already has low enough symmetry to allow a nonzero P . This will occur

quite generally for low-angle vicinal surfaces. The concept also applies to planar defects

such as domain walls, stacking faults, and twin boundaries, and to heterointerfaces; if

P is present within this plane, it may induce a line charge where the plane intersects

the surface. Such edge and line charges are potentially observable using electric force

microscopy [142] , electron holography [143], or other experimental methods. Finally we

note that the concept of surface polarization may become more subtle in the presence

of orbital magnetization, which we have omitted from our considerations here.
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7.6 Summary

In summary, we have formulated the concept of surface polarization, i.e., the dipole

moment per unit area parallel to the surface, which can exist whenever the surface

symmetry is low enough. Using TB models we have computed the surface polarizations

for a 2D toy model and a generic III-V zincblende semiconductor, and shown that

the predicted corner or edge charges are in good agreement with direct calculations.

We point out that surface and interface polarizations can be responsible for observable

effects, and perhaps even desirable functionality, in a broad range of insulating materials

systems.
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Chapter 8

Conclusion and Outlook

In this thesis we have discussed several structure-dependent electronic properties of

oxides, including the spin-phonon coupling effect for 1:1 SrMnO3/LaMnO3 superlattice,

ground state structure determination, the metal-insulator transition due to the nonpolar

to polar structural transition for 1:1 SrCrO3/SrTiO3 superlattice, the optical interband

transitions for tetragonal SrVO3 thin film, and the surface polarization of the crystal

whose surface in-plane mirror symmetry is broken.

These chapters have shown the importance of the structure of a crystal. It is usually

related to many functional properties, and thus means of altering crystal structures

may be considered tuning parameters to search for desirable properties. Currently,

doping, temperature and pressure are still important techniques to control the structure

of bulk materials, leading to changes of electronic states. With the development of

epitaxy synthesis methods, heterostructures such as thin films and superlattices are also

accessible, yielding many possibilities for a number of innovations. The two-dimensional

confinement of superlattice and thin film structures lead to electronic structures distinct

from the bulk state. Epitaxial strain that commonly exists for heterostructures has

also become a very important and useful tuning parameter for inducing structural

transitions, as studied in depth in the thesis, and also many previous references.

To further discover and innovate novel properties and functionalities, there are sev-

eral points that are worth investigating in my opinion. First, superlattice of differ-

ent constituent combinations. The large number of combinations of constituents give

all kinds of possibilities to turn on novel properties in superlattices. In this thesis

we have discussed three types of superlattices 1. SrMnO3/LaMnO3, a typical Mott

insulating/Mott insulating and AFM/AFM superlattice, with the same B-site atom,
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while different A-site atoms with different chemical valences that may lead to elec-

tron transfer. 2. PbTiO3/SrTiO3, a band insulating/band insulating, and ferroelec-

tric/dielectric superlattice, with different A-site atoms but the same chemical valence. 3.

SrCrO3/SrTiO3, a metallic/dielectric superlattice. Beyond these, there could be many

other combinations such as metallic/Mott insulating superlattice, metallic/metallic su-

perlattice with different magnetic ordering etc.

Second, different orientations of superlattices. Synthesis of superlattices in (111)

orientation is a challenge. For (001) oriented perovskite superlattice, each atomic layer,

both AO and BO2 are usually charge neutral, or with alternating ±1 valence. For (111)

oriented superlattice, the atomic layers are either B or AO3, the chemical valence can

be alternating ±3 or ±4. These charged planes lead to problems in layered synthesis.

Nonetheless, recent experimental successes indicate that this will soon become an active

topic of investigation. A simple change of epitaxy orientation changes a lot. The most

important aspect is the symmetry of the lattice. For example, for the cubic perovskite

along [001], the d orbitals split into doubly degenerate eg and triply degenerate t2g

due to the octahedral crystal field. For perovskites grown along [111], the most robust

symmetry is a three fold rotational symmetry. In this case, the t2g orbitals further split

into one a1g orbital and doubly degenerate e′g orbitals, while eg are still degenerate.

Thus orbital orders or charge orders different from the [001] oriented structures may

arise. More specifically, 1:1 perovskite superlattice in (111) orientation can be viewed

as double perovskite in (111). 2:2 perovskite superlattice in (111) forms a buckled

honeycomb lattice, for which topological properties are usually easy to establish. 3:3

superlattice then can form Kagome lattice. Currently most studies focus on the topo-

logical properties or the interplay of strong correlation and spin-orbit coupling effects

that lead to the rich phase diagrams in the (111) oriented superlattices. The dimension,

structural related properties have also been investigated in theory, but there are still

many subjects to be studied.

Third, surface. Surface is an interface with vacuum, or air. The symmetry is lowered

at the surface, possibly leading to the surface polarization as discussed in Chapter 7.

The missing apical atoms at the surface may lead to the reconstruction of structure
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and result in different electronic properties. Also, for the similar reasons of the second

point, surfaces of different facets can have various properties. Recently many studies

on the (111) surface of perovsites found 2D electron gas and other interesting results.

Last but not least, when using first-principles calculation for novel materials de-

signing and searching, the ground state structure still leave problems. Even if we have

developed the stacking method for the ground state structure determination for (001)

perovksite superlattices, improvements are expected to generalize it to a broader range

of systems. For example, how should we determine the ground state structures for

superlattices oriented along directions other than [001]? Whether the stacking method

works is a question. Moreover, even if stacking method works, whether we should

have low energy structures for bulk materials with epitaxial strain other than (001)

orientation will be another question.

Overall, transition metal oxide is not a new paradigm, but during the course of

research we have been finding new tuning parameters to engineer the properties of

TMOs. Even for just the subgroup of perovskites, there are many unsolved problems to

be investigated and novel materials/functionalities to be discovered. Meanwhile, first

principles calculations can give the ground state electronic structure of existing and

hypothetical materials, provide valuable information to understand new phenomena

and help discover novel functionalities. I hope this thesis has presented valuable results

for the specific topics and will generate a lot of interests for further studies.
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