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ABSTRACT OF THE THESIS

DYNAMICS OF A FERROMAGNETIC GRANULAR SYSTEM

by GUANGLEI ZHU

Thesis Director:

Liping Liu

We study theoretically and numerically the dynamics of a one-dimensional ferromagnet-

ic granular system. Corresponding to different types of potential in the chain, linear,

weakly nonlinear and strongly nonlinear partial differential equations are derived re-

spectively. The continuum limit is derived following the method used by Ishimori [14].

Specifically, we show that by giving initial dynamic force, a system endure anharmonic

nearest neighbor interaction(NNI) and inverse power-law long range interaction(LRI)

will generate nonlinear solitary waves. Both weakly and strongly nonlinear equations

occupied unique properties. Furthermore, we find that the equations of motion varies

with different values of the exponent parameter p in each case. Next, we focus on the

discussion of the dipole-dipole interaction which corresponds to the ferromagnetic sys-

tem. We show that though the main contribution to the solitary wave is the short

range part, the long-range interaction effect the shape of the solitary wave as well as its

propagation velocity.
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1 Introduction

In the last fifty years, started by Zabusky and Kruskal [37], the numerical [9, 30] and

experimental [23, 4, 22] studies on the propagation of nonlinear solitary waves in one-

dimensional chains of granular system, and in particular of spherical elastic particles,

have thrived [33, 2, 26, 9, 11]. Solitary waves are lumps of energy, which can maintain

their shapes while traveling at a constant speed. One of the most general governing

equations of solitary waves is called the Korteweg-de Vries(K-dV) equation [16]. A

wave equation have a soliton solution because of the balance of its nonlinearity and

dispersion effect. In a one-dimensional granular system, the particle chain can generate

nonlinear solitary waves by giving initial dynamic force. The nonlinearity arises due to

the anharmonic short range contact between two adjacent particles. Many important

equations regarding solitary waves are related to this system, including the Boussinesq

equation, the nonlinear Schrödinger equation, the Benjamin-Ono equation and so on

[7, 36].

However, the above equations can properly describe the system contains only local

forces, which directly relate to the interaction between the adjacent spheres. For some

materials and real systems, interactions between particles are more complicated that

they may extend further than the nearest neighbors, which is so called the long-range

interaction(LRI). This may include the long range Coulomb interaction, the dipole-

dipole interaction and the quadrupole-quadrupole interaction [28]. As is well known,

the dispersion relation of the lattice with the LRI is different from that of the lattice

with only the NNI. Therefore, for these systems, they will have different solitary wave

solutions. Particularly, If the particles are ferromagnetic material, then there exist a

”inverse power”-type magnetic potential between each spheres, no matter whether they

are contact directly or not. This is so called the nonlocal interaction. This paper is

to investigate the effects of the magnetic force to the prototype of granular system and

analyze the wave propagation in the chain of ferromagnetic spherical particles.

Much of the interest was given to the granular system is also because of the fact

that the properties of granular particles are tunable by changing there mass, radius and

material properties [6]. The tunable feature also gives such system many promising

potential applications such as sound or shock absorbing [13, 5], sound focusing [31]
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and scramblers [29, 4]. Besides the ferromagnetic material, there are also many other

Figure 1: An illustration of application of ferromagnetic granular system as acoustic lens. This
device can focus plane wave by adjusting the magnetic potential among the discs.

material and real systems, such as carbon nanotubes [8] and DNA [34] are affected by

the nonlocal interaction greatly. The behavior of these systems cannot be accurately

described by the classical local continuum theories. Thus, a well-defined model including

nonlocal forces is very important to analysis the dynamic behavior of these material and

systems. Works have been down related to this field can be traced back to nineteen-

sixties. Kroner [17] proposed the elasticity theory of materials with long range cohesive

force in 1967. Following him, many nonlocal constitutive models have been built by

different authors, such as Kunin [18], Maugin [21], and Eringen [1]. However, many of

these early works are done in the framework of lattice dynamics, not until recently, some

models account for both lattice approach and continuum approach have been discussed

by authors such as Rosenau [27], Pouget [25], Friesecke et al [12] and Lazar et al. [20]. To

be specific, Ishimori [14]investigated a one-dimensional lattice with the Lennard-Jones

long-range potential. He discussed the nonlinear waves in the continuum limit and found

several different types of equations, depending on the power n. Despite those models, a

further analysis of nonlocal interaction both in lattice dynamics and continuum field is

required to show the effect of non-locality in particular material systems.

This paper focus on the ferromagnetic material system, we simplified the system as

1D granular chains in which each particle is affected by both local interaction force and

nonlocal magnetic force. We first introduce the system as a chain of discrete contact

spheres under lattice dynamics approach, then we introduce the continuum limit and,

basing on the types of local interaction, we convert it into three different continuum
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models. These three models generate linear, weakly and strongly nonlinear wave e-

quations respectively. Then we approximate the solitary wave solutions separately and

analysis the dynamics properties of the systems.

The rest of the paper is as follow: In section 2, we introduce the model of 1D granular

system, we derive the equation of motion for the discrete system and then introduce the

continuum limits for three different cases, say harmonic case, weakly nonlinear case and

strongly nonlinear case. Then we specify the model as the ferromagnetic system which

endure dipole-dipole LRI. Basing on different types of local potential, three different

wave equations in continuum limit and there analytical solutions are obtained in section

3, respectively. In section 4, we do the numerical simulation to verify our results and

then comes the conclusion and discussion in section 5.
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2 Equation of motion of 1D granular system

2.1 General equation of motion with long range interaction

Figure 2: Ferromagnetic granular system under uniform magnetic field

Consider a one dimensional granular system with spacing a and lattice mass M , as

shown in Fig. 2. Kinematically, we describe the system by the displacement un(1 ≤

n ≤ N) of the nth lattice, where N is the total number of lattices in the system. The

interactions in the lattice are specified by the total interaction energy:

V (u0, · · · , uN ) = V1(u0, · · · , uN ) + V2(u0, · · · , uN ) (1)

where un is the displacement of the nth particle in x-direction, and

V1 =
N∑
n=1

ψ(un+1 − un) (2)

is the total interaction energy between nearest neighbors,

V2 =
1

2

N∑
n,m=1

Inm(un, um) (3)

is the total LRI energy, where

Inm(un, um) = ϕ
(

(m− n)a+ um − un
)
, (4)

is the LRI function which indicate that the nonlocal interaction potential between nth

and mth (1 ≤ m ≤ N) lattice points depends only on the inter-distance between two

lattice point. Here, ψ and ϕ represent the NNI and LRI energy between each two
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lattices, respectively. For this system, the total kinetic energy should be

T =

N∑
n=2

1

2
Mu̇2n, (5)

where u̇n denotes the velocity of the nth particle in the chain. Therefore the Lagrangian

of the system can be expressed as

L = T − V =

N∑
n=2

1

2
Mu̇2n −

N∑
n=1

ψ(un+1 − un)− 1

2

N∑
n,m=1

Inm(un, um). (6)

The equation of motion for the nth particle of the discrete system obtained from the

variation of (6) is

Mün =ψ′(un+1 − un)− ψ′(un − un−1)

+
N∑
j=1

{ϕ′[ja+ un+j − un]− ϕ′[ja+ un − un−j ]},
(7)

where ün denotes acceleration of the nth particle and j = m − n is an integer. The

above equation will be untractable if N is very large. We shall seek for the continuum

description of the discrete system. Here we follow Nesterenko [24] and consider the

space between each particle is small compared with the wavelengths. Under the long

wavelength assumption, there exist a smooth function φ(·, t) : (0, L)→ IR such that

φ(xn, t) = un(t), xn = na, L = Na, ∀n = 0, · · · , N.

Then we can derive the continuum representation of the total interaction energy of the

system, which should be

V [φ] = V1[φ] + V2[φ], (8)

where

V1[φ] =

N∑
n=1

ψ[φ(xn+1)− φ(xn)], V2[φ] =
1

2

N∑
n,m=1

ϕ[(m− n)a+ φ(xm)− φ(xn)]. (9)
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The total kinetic energy of the system in continuum description is

T [φ] =

N∑
n=2

1

2
Mφ2t (xn). (10)

Finally, we can derive specified equations of motion for different types of systems, de-

pending on different kinds of local and nonlocal potentials.

2.2 Harmonic System

A 1D granular system includes nearest-neighbor interaction and long-range interactions

can be defined as a harmonic system if both local and nonlocal potentials are harmonic.

The system can be transformed to a spring-like system where each two spheres in the

chain are connected by a linear spring. To derive the equation of motion of such system,

first we can define the local potential density as

ψ[φ] =
1

2
K1[φ(xn+1)− φ(xn)]2, (11)

where K1 is the spring stiffness. For the nonlocal potential density ϕ[φ], we notice that

the particle motion is a small variable compared with lattice spacing, so we can write it

in a more general form:

ϕ[φ] ≈ ϕ[(m− n)a] +
1

2
ϕ

′′
[(m− n)a][φ(xm)− φ(xn)]2 (12)

where we have neglected the terms higher than O(φ(xn)3). The linear term vanished

because the particles are in equilibrium when φ(xn) = 0 for all xn. As a result, equation

(7) can be written as

Mφ(xn)tt =K1[φ(xn+1)− 2φ(xn) + φ(xn−1)]

+
N∑
j=1

ϕ
′′
(ja)[φ(xn+j) + φ(xn−j)− 2φ(xn)].

(13)

In the long wavelength approximation [14], we are looking for plane wave solutions of

the form

φ(xn, t) ' ei(kna−ωt). (14)
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Using this replacement, we can obtain the dispersion relation by substituting (14) into

(13), which gives us

Mei(kan−ωt)tt =K1[e
i[ka(n+1)−ωt] − 2ei(kan−ωt) + ei[ka(n−1)−ωt]]

+

N∑
j=1

ϕ
′′
(ja)[ei[ka(n+j)−ωt] + ei[ka(n−j)−ωt] − 2e(ikan−ωt)].

(15)

Extracting ei(kna−ωt) out on both sides, we obtain

Mω2(k)ei(kna−ωt) =2K1[1−
eika + e−ika

2
]ei(kna−ωt)

+ 2
N∑
j=1

ϕ
′′
(ja)[1− eikja + e−ikja

2
]ei(kna−ωt).

(16)

The corresponding dispersion relation should be

Mω2(k) = 2K1[1− cos(ka)] + 2L(ka) (17)

where

L(ka) =
N∑
j=1

ϕ
′′
(ja)[1− cos(jka)], (18)

is the LRI dispersion term. To derive the partial differential wave equation for the

harmonic system, we have to specify the LRI term here. Generally, there are two

different types of LRI potential in real systems or materials, the exponential law (also

called Kac-Baker)type and the inverse power-law type. Both of them can be transformed

into a harmonic one, but with different form of stiffness coefficient. Although sharing

the same property in many aspects, they are essentially different. In this paper, we

primarily consider the ferromagnetic granular system, which endures inverse-power law

type LRI. Generally, this type of long-range potential density can be written as

ϕ(x) ' γ

|x|q
, (q ∈ <, q ≥ 1). (19)

where γ is the LRI potential coefficient. Thus

ϕ
′′
(x) =

q(q + 1)

|x|q+2
γ. (20)
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Therefore, according to equation (18), the long-range term of equation (17) can be

written as

L(ka) =
N∑
j=1

[q(q + 1)][1− cos(jka)]

(ja)q+2
= JFp(ka), p = q + 2 (21)

where

J =
q(q + 1)

ap
γ, (22)

is the long range parameter which measures the strength of the LRI, and

Fp(ka) =
N∑
j=1

[1− cos(jka)]

jp
, (23)

is an even function of k. For given values of p, Fp(ka) can be expanded into different

forms(see appendix). Given the Taylor series of sin(ka) and cos(ka) that

cos(ka) ≈ 1− 1

2
(ka)2 +

1

24
(ka)4 +

1

720
(ka)6 + · · · ,

sin(ka) ≈ ka− 1

6
(ka)3 +

1

120
(ka)5 + · · · .

(24)

Keeping to the fourth order term, the dispersion relation can be written as

Mω2(k) ≈ 2K1[
1
2(ka)2 − 1

24(ka)4] + 2J
∑N

j=1[
1
2(jka)2 − 1

24(jka)4]j−p. (25)

The equation of motion corresponds to this dispersion relation can be obtained from

equation (25) that

M∂2t e
i(kna−ωt) ≈2K1[

1

2
(a∂x)2 +

1

24
(a∂x)4]ei(kna−ωt)

+ 2J
N∑
j=1

[
1

2
(ja∂x)2 +

1

24
(ja∂x)4]j−pei(kna−ωt),

(26)

which can be simplified as

Mφtt = a2K1[φxx +
1

12
a2φxxxx]− 2JFp(aD)φ, (27)
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where

D = i∂x, Fp(aD) =
N∑
j=1

[− 1

2
(ja∂x)2 − 1

24
(ja∂x)4]j−p. (28)

The Hamiltonian of the system should be

H =
1

2a

∫ ∞
−∞
{Mφ2t +K1[(aφx)2 − 1

12
a4φ2xx]− 2φJFp(aD)φ}dx. (29)

Equation (27) is actually a simple linear dispersive wave equation plus a nonlocal

term. The effect of the LRI term on the equation of motion will varies with certain value

of dispersive parameter p. This also indicates the properties of our harmonic system

vary with different types of nonlocal potential. Later we will illustrate that the nonlocal

potential will only influence the dispersion relation of the wave equations.

2.3 Weakly nonlinear system

Another essential type of granular system is called weakly nonlinear system. In this

particular system, the local potential will include both φ2 and φ3 term. Thus equation

(7) can be transformed to a nonlinear oscillators-like system [10]. First, we define the

local potential density as

ψ[φ] =
1

2
K1[φ(xn+1)− φ(xn)]2 − 1

6
K2[φ(xn+1)− φ(xn)]3, (30)

Now, equation (7) can be written as follows:

Mφ(xn)tt =K1[φ(xn+1)− 2φ(xn) + φ(xn−1)]

−K2[φ(xn+1)− 2φ(xn) + φ(xn−1)][φ(xn+1)− φ(xn−1)]

+
N∑
j=1

ϕ
′′
(ja)[φ(xn+j) + φ(xn−j)− 2φ(xn)].

(31)

Following the same steps as discussed in the harmonic section, we finally reach the

dispersion relation for weakly nonlinear system:

Mω2(k) = 2K1[1− cos(ka)]− 2K2{[1− cos(ka)][i sin(ka)]}+ 2L(ka). (32)
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Similarly, the corresponding nonlinear partial differential wave equation should be

Mφtt = a2K1[φxx +
1

12
a2φxxxx]− a3K2(φ

2
x)x − 2JFp(aD)φ. (33)

We notice that the above equation is in the similar form of Boussinesq equation:

φtt = φxx + aφxxxx − bφxφxx, (34)

which has solitary wave solutions in two directions due to the combination of effects

of its dispersive and nonlinear terms. The only difference between our equation and

Boussinesq equation is the LRI term. Again, the LRI term will influence only the

dispersion relation of the system so that a solitary wave solution can still be obtained

from (33). Finally, the Hamiltonian of the system should be

H =
1

2a

∫ ∞
−∞
{Mφ2t +K1[(aφx)2 − 1

12
a4φ2xx]

− 2

3
K2(aφx)3 − 2φJFp(aD)φ}dx.

(35)

2.4 Hertzian system

Hertzian system means the nearest-neighbor interaction between particles in the system

is governed by Hertz potential [24, 32](Fig. 3). One of the most interesting characters

of such system is that the local force between the spheres can not be linearized, means

there is no linear term in the force at all. This feature makes it different from weakly

nonlinear one and the system is so-called “strongly nonlinear system”. Assuming a

one-dimensional chain of spherical particles, which are barely contact at first. The

interaction between two adjacent beads is governed by the Hertz’s law:

F = Kh(−∆u)3/2, (36)

where ∆u(∆u < 0) is the change of distance between the centers of two spheres and Kh

is the stiffness constant which can be expressed as

Kh =
Ea1/2

3(1− ν2)
. (37)
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Figure 3: Comparing ψ(∆u) for the Harmonic local potential and Hertz potential.

Then, the potential energy between neighbors can be defined as:

V (∆u) =
2

5
Kh(−∆u)5/2. (38)

Thus, the total local interaction energy of the system should be

V1[φ] =
N∑
i=1

V (∆ui), (39)

where ∆ui = ui+1 − ui. Then, according to equation (2), for this specific problem, we

have

ψ(x) =
2

5
Kh(−x)5/2, ∀ x ∈ (0, L). (40)

Following, we first derive the governing wave equation for the general strongly non-

linear system, then we will specified it into Hertzian one. To make the long wavelength

assumption valid, we again have to assume that the particle motions are very small

when compared with the lattice spacing a. Therefore, according to the small parameter

ε = a/L, by Taylor expansion and truncation, we have

φ(xn+1) = φ(xn) + aφx(xn) +
a2

2
φxx(xn) +

a3

6
φxxx(xn) + o(a3)

= φ(xn) + aφx(xn) + η,

(41)
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where

η =
a2

2
φxx(xn) +

a3

6
φxxx(xn) + o(a3) (42)

is introduced for brevity. Therefore, equation (9) can be rewritten as

V1[φ] =

N∑
n=1

ψ[φ(xn+1)− φ(xn)] ≈ 1

a

∫ L

0
{ψ[aφx(x) + η]}dx. (43)

Also, we have

ψ[aφx(x) + η] = ψ[aφx(x)] + ψ′[aφx(x)]η +
1

2
ψ′′[aφx(x)]η2 + o(ε2). (44)

Thus, we can write the stored energy functional in continuum representation as

V1[φ] ≈ 1

a

∫ L

0
{ψ[aφx(x)] + ψ′[aφx(x)]η +

1

2
ψ′′[aφx(x)]η2

}
dx

≈ 1

a

∫ L

0

[
ψ(aφx) + ψ′(aφx)(

a2

2
φxx +

a3

6
φxxx) +

1

2
ψ′′(aφx)(

a2

2
φxx +

a3

6
φxxx)2

]
dx

≈ 1

a

∫ L

0

[
ψ(aφx) + ψ′(aφx)(

a2

2
φxx +

a3

6
φxxx) +

a4

8
ψ′′(aφx)φ2xx

]
dx.

(45)

Moreover, integrating by parts we have

∫ L

0

[
ψ′(aφx)φxxx

]
dx = ψ′(aφx)φxx

∣∣∣L
0
− a

∫ L

0

[
ψ′′(aφx)φ2xx

]
dx. (46)

Neglecting the boundary contribution for periodic solutions or solutions that vanishes

at the boundary we have

V1[φ] =

∫ L

0
We(φx, φxx)dx, We(φx, φxx) =

1

a
ψ(aφx)− a3

24
ψ′′(aφx)|φxx|2. (47)
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For the nonlocal interaction potential term, according to (9), we have

V2[φ] =
1

2

N∑
n,m=1

ϕ[|(m− n)a+ φ(xm)− φ(xn)|]

≈ 1

2a2

∫
U
ϕ{y + φ(y)− [x+ φ(x)]}dxdy

≈ 1

2a2

∫
U

[
ϕ(y − x) + ϕ′(y − x)[φ(y)− φ(x)]

+
1

2
ϕ′′(y − x)[φ(y)− φ(x)]2 + o(ε2)

]
dxdy,

(48)

where we assumed xm = y = ma, xn = x = na, and

U = {(x, y) ∈ R2 : |y − x| > a}. (49)

Note that by symmetry, the second term of the expansion equals to zero. Therefore,

neglecting higher order terms and within a trivial constant, the total nonlocal potential

energy of the system can be written as

V2[φ] =
1

4a2

∫
U
{2ϕ(y − x) + ϕ′′(y − x)[φ(y)− φ(x)]2}dxdy. (50)

On the other hand, the total kinetic energy of the system is

T [φ] =

N∑
n=2

1

2
Mφ(xn)2t =

∫ L

0

1

2
ρφ2tdx, (51)

where ρ = M/a is the chain density. Therefore, the action function of the system is

given by

S[φ] =

∫ t1

t0

{∫ L

0
{ 1

2
ρφ2t −We(φx, φxx)}dx

− 1

4a2

∫
U
{2ϕ(y − x) + ϕ′′(y − x)[φ(y)− φ(x)]2}dxdy

}
dt.

(52)

Given the total interaction energy, we now can derive the continuum equation of motion
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of the lattice system. By assuming a small perturbation of the system, we have

d

dδ
S[φ+ δφ1]

∣∣∣
δ=0

=

d

dδ

∫ t1

t0

{∫ L

0

{ 1

2
ρ(φ+ δφ1)

2
t −

1

a
ψ[a(φ+ δφ1)x]

+
a3

24
ψ′′[a(φ+ δφ1)x]|(φ+ δφ1)xx|2

}
dx

− 1

4a2

∫
U
{ϕ′′(y − x)[φ(y) + δφ1(y)− φ(x)− δφ1(x)]2}dxdy

}
dt

=
d

dδ

∫ t1

t0

{∫ L

0

{
ρδφtφ1t −

d

dx
δφ1
{
ψ′(aφx)

+
a3

24
[aψ′′′(aφx)φ2xx + 2ψ′′(aφx)φxxx]

}}
dx

− 1

2a2

∫
U
{ϕ′′(y − x)[φ(y)− φ(x)][δφ1(y)− δφ1(x)]}dxdy

}
dt

=

∫ t1

t0

∫ L

0
φ1

{
ρφtt −

d

dx

{
ψ′(aφx) +

a3

24
[aψ′′′(aφx)φ2xx + 2ψ′′(aφx)φxxx]

}
− 1

a2

∫
{y:|y−x|≥a}

{ϕ′′(y − x)[φ(y)− φ(x)]}dy
}
dxdt.

(53)

Finally, by the Hamilton’s principle, immediately we know the equation of motion of

the nth particle in continuum approximation. According to (53), we obtain

ρφtt =
d

dx

{
ψ′(aφx) +

a3

24
[aψ′′′(aφx)φ2xx + 2ψ′′(aφx)φxxx]

}
+

1

a2

∫
{y:|y−x|≥a}

{ϕ′′(y − x)[φ(y)− φ(x)]}dy,
(54)

∀ (x, t) ∈ (0, L)× (0,+∞).

Comparing with equation (12), we found that the long-range interaction parts of these

two equations are the same under the continuum approximation. So we can rewrite

equation (54) as

ρφtt =
d

dx

{
ψ′(aφx) +

a3

24
[aψ′′′(aφx)φ2xx + 2ψ′′(aφx)φxxx]

}
− 2JsFp(aD)φ, (55)

where

Js =
J

a
(56)

is the long range parameter for the strongly nonlinear system. The corresponding Hamil-
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tonian of the system takes the form

H =
1

2

∫ ∞
−∞
{ρφ2t + 2We(φx, φxx)− 2

a
φJsFp(aD)φ}dx. (57)

Now, we will specified the local potential energy to Hertzian type. From equation (40),

we have

ψ
′
(aφx) = −Kh(a)3/2(−φx)3/2, ψ

′′
(aφx) =

3

2
Kh(a)1/2(−φx)1/2,

ψ
′′′

(aφx) = −3

4
Kh(a)−1/2(−φx)−1/2, ∀ x ∈ (0, L).

(58)

Substituting equation (58) into equation (55), we obtain the equation of motion of the

nth particle in continuum approximation for this specific system as

ρφtt +Kha
3/2 d

dx

{
(−φx)3/2 +

a2

32
(−φx)−1/2φ2xx −

a2

8
(−φx)1/2φxxx

}
+ 2JsFp(aD)φ

=
1

c2n
φtt − {

3

2
(−φx)1/2φxx +

a2

8
(−φx)1/2φxxxx −

a2

8

φxxφxxx

(−φx)1/2
− a2

64

φ3xx
(−φx)3/2

}

+
2JsFp(aD)

c2nρ
φ

=0.

(59)

where

c2n =
Kha

3/2

ρ
. (60)

Remark

The existence of strongly nonlinear system is due to the nonlinearity of local potential

density. A system possess Hertzian interaction between adjacent lattices is described

in this category because the Hertz contact force is nonlinear and cannot be linearized

for the reason of lacking a small parameter. Instead of assuming the spheres in the

chain are barely contact at the beginning of this section, we assume the pre-compression

δ0(δ0 < 0), however, is very large compared to the motion of spheres, we can then

transformed the Hertzian system into a weakly nonlinear one.
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Under this assumption, first we can expand equation (9) as

ψ[δ0 + φ(xn+1)− φ(xn)] =ψ(δ0) +
1

2
ψ

′′
(δ0)[φ(xn+1)− φ(xn)]2

+
1

6
ψ

′′′
(δ0)[φ(xn+1)− φ(xn)]3,

(61)

which is in the similar form with equation (30). Then, we follow the same steps discussed

in weakly nonlinear case and finally we get the dispersion relation for this problem:

Mω2(k) = 2ψ
′′
(δ0)[1− cos(ka)] + 2ψ

′′′
(δ0){[1− cos(ka)][i sin(ka)]}+ 2L(ka). (62)

The corresponding wave equation is

Mφtt = a2ψ
′′
(δ0)[φxx +

1

12
a2φxxxx] + a3ψ

′′′
(δ0)(φ

2
x)x − 2JFp(aD)φ. (63)

From equation (40), we have that

ψ
′′
(δ0) =

3

2
Kh(−δ0)1/2, ψ

′′′
(δ0) = −3

4
Kh(−δ0)−1/2, ∀ x ∈ (0, L). (64)

Substituting (64) into (63), we finally obtain the equation of motion of a Hertzian system

with large pre-compression as

Mφtt =
3

4
Kh{2(−δ0)1/2a2[φxx +

1

12
a2φxxxx]− (−δ0)−1/2a3(φ2x)x} − 2JFp(aD)φ. (65)
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3 Ferromagnetic chains with nonlocal interactions

3.1 Nonlocal potential in ferromagnetic system

In this section, we specify our model as a one- dimensional chain of ferromagnetic balls

with local elastic interactions and nonlocal magnetic interactions. To calculate the

nonlocal interaction energy we recall that the magnetic flux induced by a magnetic

dipole m at the origin is given by [15]

B(x) =
µ0
4π

[
3n(n ·m)−m

r3
], (66)

where µ0 is the magnetic constant, r being the radius of spheres, and n = r/|r| is a unit

vector. Assume that all balls are of the same diameter a and the same magnetization

of magnitude M and direction e, i.e.,

m = M
πa3

6
e. (67)

Then the total magnetic energy of the chain along ex can be written as

U [ui] = −µ0πM
2a6

144

1

2

∑
m,n

[
3(ex · e)2 − 1

[|(n−m)(a+ δ0) + (un − um)|]3
]

=
1

2

∑
m,n

γ(e)κmn[|(m− n)(a+ δ0) + (um − un)|], m 6= n,

, (68)

where

γ(e) = −µ0πM
2a6[3(ex · e)2 − 1]

144
,

κmn(um − un) =
1

[|(m− n)(a+ δ0) + (um − un)|]3
.

(69)

Comparing with the general form of LRI term written as (19) and (22), we found the

long-range parameter for the ferromagnetic system should be

J =
q(q + 1)

ap
γ(e) = −µ0πM

2a[3(ex · e)2 − 1]

12
. (70)

On the other hand, as mentioned in the previous chapter, according to different

values of dispersive parameter p, the inverse-power law type long range interaction can
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be expanded into different form. In this specific problem, we have p = 5 and

F5(ka) =
∞∑
j=1

1− cos(jka)

j5
=
∞∑
j=1

{ 1

2
(jka)2 − 1

24
(jka)4 +O[(jka)4]}j−5

=
1

2
ζ(3)(ka)2 +O[(ka)4],

(71)

where ζ(m) =
∑∞

n=1 n
−m is the Riemann zeta function, and

ζ(3) =

∞∑
n=1

1

n3
= 1 +

1

23
+

1

33
+ · · · ≈ 1.202.

Now, we start looking for the wave equations described ferromagnetic system with dif-

ferent types of local interaction.

3.2 Harmonic local interaction

From equation (25) and (71), we obtain the dispersion relation of the ferromagnetic

system with harmonic local interaction:

Mω2(k) = [K1 + ζ(3)J ](ka)2 − 1

12
K1(ka)4, (72)

where the corresponding wave equation is

φtt − c2φxx − c20
a2

12
φxxxx = 0, (73)

where

c2 = c20(1 + ζ(3)Ĵ), Ĵ =
J

K1
, c20 =

K1a
2

M
. (74)

The wave equation for harmonic system contains only a linear term and a higher order

dispersion term. We assume equation (73) has plane wave solution:

φ(x, t) = exp[i(ωt− kx)], (75)

then from (73) the dispersion relation is given by

ω = ±ck[1− a2

12
c20k

2]1/2, (76)
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and the wave speed is given by

v =
ω

k
= c[1− a2

12
c20k

2]1/2. (77)

Since the velocity of each plane waves depends on k, an initial wave contains several

sinusoidal waves cannot maintain its original shape as it travels through the medium.

This shows the linear dispersive wave spreads out while it travels.

3.3 Weakly nonlinear local interaction

From equation (32) and (71), we obtain the dispersion relation of the ferromagnetic

system with weakly nonlinear local interaction:

Mω2(k) = [K1 + ζ(3)J ](ka)2 − [K1/12](ka)4 −K2[i(ka)3] (78)

The corresponding nonlinear partial differential equation writes

φtt − c2φxx − c20
a2

12
φxxxx +

K2a
3

2M
(φ2x)x = 0, (79)

where

c2 = c20[1 + ζ(3)Ĵ ], Ĵ =
J

K1
, c20 =

K1a
2

M
. (80)

This is in the same form of Boussinesq type equation. Specifically, for ferromagnetic

system with hertzian local contact and with large pre-compression, we can derive the

dispersion relation from equation (62) and (71):

Mω2(ka) = [
3

2
Kh(−δ0)1/2 + ζ(3)J ](ka)2 − 3

4
iKh(−δ0)−1/2(ka)3

− 1

8
Kh(−δ0)1/2(ka)4 +O[(ka)4].

(81)

The corresponding wave equation is

φtt − c2φxx −
c20
8

[a2φxxxx +
3a

δ0
(φ2x)x] = 0, (82)
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where

c2 = c20[
3

2
+ ζ(3)Ĵ ], Ĵ =

J

Kh(−δ0)1/2
, c20 =

a2

Kh(−δ0)1/2M
. (83)

We notice that in the weakly nonlinear system, the particles in the chain endure both

weakly nonlinear interaction and long range harmonic interaction. This kind of one-

dimensional system has attracted many investigations in the last few years [7, 35]. Un-

der our continuum approximation, the LRI term effect only the dispersion relation of

the system. This can be observed from the equation (78) and (79) that no LRI correc-

tions appear in the wave equation. Since introduced by Zabusky and Kruskal [37], the

Korteweg-de Vires(KdV) equation can be derived from equation (79) under the same

approximation. It describes solitary wave propagation in one direction:

zt + czx +
c20a

2

24c
zxxx +

K2a
3

2Mc
zxzxx = 0, z = −φx. (84)

It is nonlinear because of the product shown in the second summand. Since solitary

wave propagate without any distortion of its shape, we can change to the moving frame

by introducing the new variables

z(x, t) = f(x− vt) = f(y) (85)

where vw is the soliton velocity. Substituting (85) into (84), we have

(v − c)fy −
c20a

2

24c
fyyy −

K2a
3

2Mc
ffy = 0. (86)

The above equation is integrable, which leads us to

(v − c)f − c20a
2

24c
fyy −

K2a
3

4Mc
f2 = c1. (87)

Integrating again on both sides, we obtain

1

2
(v − c)f2 − c20a

2

48c
f2y −

K2a
3

12Mc
f3 = c1f + c2. (88)
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where c1, c2 are constants. To investigate the behavior of the above equation, we apply-

ing boundary condition that

y → ±∞, f → 0, fy → 0, fyy → 0, (89)

then c1 = c2 = 0. The above equation can be written as

f2y = f2(
24c(v − c)
c20a

2
− 4K2a

Mc20
f). (90)

The solution of the above ODE is well known as

f =
6Mc(v − c)

K2a3
sech2{ 1

2a
[
24c(v − c)

c20
]1/2y}. (91)

Therefore, an exact solitary wave solution of (84) is

z =
6Mc(v − c)

K2a3
sech2{ 1

2a
[
24c(v − c)

c20
]1/2(x− vt)}, (92)

or written in terms of the strain amplitude zm as

z = zmsech2[(
K2azm
c20M

)1/2(x− vt)], (93)

where

v = c+
K2a

3

6Mc
zm (94)

is the solitary wave velocity, and

W = (
c20M

K2azm
)1/2 (95)

is the width of the solitary wave. The kink amplitude is

Ak =

∫ ∞
−∞

z(x, t)dx = 2

√
c20Mzm
K2a

. (96)

The process of deriving the equation of motion for ferromagnetic system with weakly

nonlinear local interaction is very robust and the differences between this case and
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Hertzian contact with large pre-compression are only coefficients.

3.4 Hertzian local interaction

Following , we refer to a dynamic system lacking of a generic linearization with definite

wave speed as a strongly nonlinear system. In contrast to a weakly nonlinear system that

can be seen as the classic Boussinesq equation plus a long-range interaction part, the

strongly nonlinear system, e.g., the ferromagnetic system with Hertzian local interaction,

admits no nontrivial linearization. In a strongly nonlinear system, the linear part in the

equation disappear, which means the linear wave cannot propagate in the chain anymore.

This situation was described as ”sonic vacuum” by Nesterenko [24] in 1992. The reason

we get two different wave equations for Hertzian local contact system is the lack of one

small parameter in the strongly nonlinear case, only long wave approximation still valid.

Therefore, the wave equation introduced here has unique properties. For the strongly

nonlinear case, the above wave equation cannot describe the system properly. Instead

of using (32), we need to use (59) to derive the equation of motion, which should be

1

c2n
φtt − {

3

2
(−φx)1/2φxx +

a2

8
(−φx)1/2φxxxx −

a2

8

φxxφxxx

(−φx)1/2
− a2

64

φ3xx
(−φx)3/2

}

− ζ(3)Ĵsφxx = 0.

(97)

where

Ĵs =
Js

Kha−1/2
. (98)

Similarly, we are looking for the stationary solutions of (97), so we need to assume

that φ(x, t) = f(x − vst) = f(y), where vs is the phase velocity. However, instead of

expressing the phase velocity vs(ηm) as a function of its strain amplitude, we should use

vs(ηm, Ĵs), where we plug in the effect of the LRI interaction. and equation (97) can be

written as

(
vs(ηm, Ĵs)

2 − c2nζ(3)Ĵs
c2n

)f0xx =
3

2
(−f0x)1/2f0xx +

a2

8
(−f0x)1/2f0xxxx

− a2

8

f0xxf0xxx

(−f0x)1/2
− a2

64

f30xx
(−f0x)3/2

,

(99)
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The solution of (99) can be obtained by following the procedure discussed by Nesterenko

[24]. Using the replacement η = −f0x, substituting it in (99), we have

(
vs(ηm, Ĵs)

2 − c2nζ(3)Ĵs
c2n

)ηx =
3

2
η1/2ηx +

a2

8
η1/2ηxxx +

a2

8

ηxηxx

η1/2
− a2

64

η3x
η3/2

=
3

2
η1/2ηx +

a2

8

(ηηxx)x

η1/2
− a2

64

η3x
η3/2

=
3

2
η1/2ηx + [

a2

8
η1/2ηxxx +

a2

16
ηxηxxη

−1/2]

+ [
a2

16
ηxηxxη

−1/2 − a2

64
η3xη
−3/2].

(100)

The above equation is integrable. With the condition that η(x = +∞) = η0, ηx(x =

+∞) = 0, ηxx(x = +∞) = 0, we have

(
vs(ηm, Ĵs)

2 − c2nζ(3)Ĵs
c2n

)η = η3/2 +
a2

8
η1/2ηxx +

a2

32
η−1/2η2x + C1. (101)

If we do the replacement of variable η = z4/5, equation (101) can be changed into

(
vs(ηm, Ĵs)

2 − c2nζ(3)Ĵs
c2n

)z4/5 = z6/5 +
a2

10
z1/5zxx + C1, (102)

where C1 is a constant. The above equation can be rewritten as

w4/5 = w6/5 + w1/5wχχ + C2, (103)

with the replacement

z = (
vs(ηm, Ĵs)

2 − c2nζ(3)Ĵs
c2n

)5/2w, χ =

√
10

a
x. (104)

A convenient form can be obtained from (103)

wχχ = − ∂

∂w
W (w),

W (w) = −5

8
w8/5 +

1

2
w2 + C3w

4/5.

(105)
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The general solution of (105) for periodical motion is well known as(Landau and Lifshitz

[19])

χ = χ0 +

∫ w

w0

dw√
−2[W (w)−W (wmax)]

, (106)

where wmax corresponds to the maximum strain in the periodic wave. What we discussed

here is the case when C3 = 0, which indicate the pre-compression of the system equals to

zero. In a strongly nonlinear granular system contains only nearest-neighbor interaction,

sound is not available to propagate due to the absence of quadratic term in the equation

of motion. However, quadratic term comes from the LRI part is included in our system,

which makes it possible for sound to travel through the system with the speed of

c2 = c2nζ(3)Ĵs. (107)

The solution for this particular system is written as

w = (
5

4
)5/2 cos5(

1

5
χ), (108)

Therefore, the solution of (101) can be written as

η = {5[vs(ηm, Ĵs)
2 − c2nζ(3)Ĵs]

4c2n
}2 cos4(

√
10

5a
y). (109)

For periodic waves, this solution being a sequence of positive humps connected at the

points with zero strains. The solitary solution however, can be taken as one hump of

the periodic solution. The spatial size of the soliton is therefore

Ls = (
5a√
10

)π ≈ 5a. (110)

which indicates the width of solitary waves is limit as five particles spacing. We can also

derive the kink amplitude expression by integrating (109) on one solitary wave interval
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([5aπ/2
√

10, 15aπ/2
√

10]), which gives us

∫ 15aπ/2
√
10

5aπ/2
√
10

η(y)dy =ηm{120πa/
√

10 + 8
√

10a[sin(3π)− sin(π)]

+
√

10a[sin(6π)− sin(2π)]}/64

=[
15πa

8
√

10
]ηm,

(111)

where

ηm = {5[vs(ηm, Ĵs)
2 − c2nζ(3)Ĵs]

4c2n
}2 = {5[vs(ηm, Ĵs)

2 − c2]
4c2n

}2, (112)

is the strain amplitude. Then we have the solitary wave speed

vs(ηm, Ĵs) = [
4c2nη

1/2
m + 5c2nζ(3)Ĵs

5
]1/2 = [

4c2nη
1/2
m

5
+ c2]1/2. (113)

Since we also have the relationships between the wave front velocity vm, solitary wave

velocity vs and maximum strain ηm:

vm = vs(ηm, Ĵs)ηm, (114)

we can express the solitary wave velocity as a function of vm and Ĵ :

vs(vm, Ĵs) = [
4

5
c2n[

vm

vs(vm, Ĵs)
]1/2 + c2]1/2. (115)

The above equation shows the nonlinear dependency of solitary wave velocity on wave

front velocity and range parameter.
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4 Numerical simulation

We use the fourth-order Runge-Kutta(RK4) finite difference method to simulate the

system [3]. This method is fourth-order accurate in time. The RK4 method is imple-

mented in Matlab. After initialising the system, the code integrates forward in time

with step size h = 10−7s. The geomoetrical parameters for the simulation are from

material properties. We discussed this method in details in Appendix B.

Our system is simplified as a 1D chain of stainless steel spheres being arranged

horizontally with zero initial compression, which means they are in equilibrium positions

at the beginning. The diameter of the balls are d = 0.005m with the density ρ =

7780kg/m3, Young’s modulus E = 193Gpa and Poisson ratio ν = 0.3. The chain

contains N + 1 particles. Here we pick N = 70. The 19th and 20th particle are the

strikers and the last sphere of each end of the chain has infinite radius which act as a wall

and will remain stationary during the simulation. The initial velocities of all spheres are

set to zero at the beginning. Then the system is perturbed by given the same amount

of speed(0.5m/s, 1m/s, 5m/s, 10m/s) in opposite directions to the two strikers so that

we can investigate the propagation of waves in the chain. We assumed that the friction

and energy dissipation are negligible during the simulation.

We focus our analysis on the effects of long-range potential and particle speed to

the wave propagation velocity in different systems. Numerically, we calculate the wave

propagation velocity by measuring the time a solitary wave need to travel between two

particles in the chain. We try to use the particles in the middle of the chain (30th, 40th

and 50th, 60th) to calculate results and take the average to minimize errors. Fig. 4 shows

the relationship between the wave propagation velocity c and the long-range parameter

Ĵ in harmonic system. c0 is the wave propagation velocity in the case Ĵ = 0, which

corresponds to the system without long-range potential. We plot the ratio between c and

c0 to shows the effect of long-range potential more clearly. The analytical relationship

between c and Ĵ is illustrated by equation (74). We can see from the plot that the

numerical results match the theoretical results perfectly. Remarkably, an interesting

behavior in this case is the wave propagation velocity decrease sharply when Ĵ goes

near the limit −0.832(−1/ζ(3)). This also indicate a system can have sharp resolution

by tuning the LRI effect in certain range. Our simulation also demonstrate that not the
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Figure 4: The ratio of wave propagation velocity c/c0 vs different values of the long-range
parameter Ĵ in harmonic system, where the initial velocity of the strikers are vi = ±5m/s.

Figure 5: For the harmonic system, plot (a) shows the relationship between the wave propaga-
tion velocity c and the initial velocity of the strikers vi in the circumstance Ĵ = 0.14. Plot (b)
shows the wave front velocity vm in the chain at different time in the circumstance Ĵ = 0.07,
vi = 5m/s.

same with nonlinear waves, the wave front speed does not effect the wave propagation

velocity in harmonic system, which can be seen in the plot (a) of Fig. 5. The wave

propagation velocities are nearly the same when vi = 0.5m/s and vi = 10m/s. The plot

(b) of Fig. 5 shows the wave front velocity vm decreases rapidly from 3.81m/s to 3.42m/s

while wave propagating through the chain between 1.07 × 10−4s and 2.07 × 10−4s and

the wave length is about 10 particle diameters in this certain case.
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Figure 6: The ratio of wave propagation velocity v/v0 vs different values of the long-range
parameter Ĵ in two different systems. Solid lines and discrete asterisks represent theoretical and
numerical results respectively. Plot (a) shows the weakly nonlinear system and plot (b) shows
the strongly nonlinear system. Different curves correspond to waves propagating at different
wave front velocities vm in both cases.

Figure 7: For the weakly nonlinear system, plot (a) shows the propagation velocity v of solitary
waves at different front velocities vm. Plot (b) shows vm in the chain at different time. Both in
the circumstance Ĵ = 0.07.
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Figure 8: For the hertz system, plot (a) shows the propagation velocity v of solitary waves
at different front velocities vm. Plot (b) shows vm in the chain at different time. Both in the
circumstance Ĵ = 0.004.

Figure 6 shows the relationship between the wave propagation velocities v and long-

range parameter Ĵ under different wave front velocities vm in weakly nonlinear and

hertz system, respectively. v0 represent wave propagation velocities in the circumstance

Ĵ = 0 in both cases. we can see v increase as long as Ĵ going larger in both cases, which

implies that the long-range interaction force among the lattices will increase the speed

of wave propagating through them. Plots (a) of Fig. 7 and of Fig. 8 illustrate that

the v grow with vm under the same value of Ĵ both in weakly nonlinear system and

hertz system. This result also demonstrate that while the wave propagating through the

particle chain, the velocities of the lattices will influence the wave propagation velocity.

Plots (b) of Fig. 7 and of Fig. 8 show that vm almost maintain the same values while

wave propagating through the chain in both weakly nonlinear system and hertz system,

which lead to the preservation of the solitary waves profile. The wave lengths of both

cases are limited to approximately 5 particle diameters, which is consistent with the

theoretical prediction (110).



30

5 Conclusion

We investigated the dynamics of the one-dimensional ferromagnetic granular system

with both local and nonlocal interactions. Systems with harmonic, cubic and Hertz local

potentials were discussed separately and several different wave equations in continuum

limit have been found. We generalized the granular systems with different types of

potentials into three classical kinds, namely the harmonic system, the weakly nonlinear

system and the strongly nonlinear system. We showed that the exponent parameter

p has significant effect to the dispersion relation of the wave equations in each case.

Namely, for p = 5, which corresponds to the ferromagnetic granular, a sech2 shape KdV

solitary wave is found for the weakly nonlinear system and a cos4 shape solitary wave

is found for the strongly nonlinear system. Simulation results show that the shape of

the waves and their velocities change slightly during propagation as prediction. Also,

our numerical simulation results verified the relationships between wave propagation

velocity, wave front velocity and the LRI parameter Ĵ in both cases. Most importantly,

we demonstrated that the effects of the ferromagnetic long-range potential to the shape

of the solitary wave as well as to its propagation velocity. This tunable feature makes

the system could have potential applications in the design of acoustic lenses which can

be used in sound focusing devices.
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Appendix A: Details of derivation of

Here, we list out the expansions of Fp(ka) for different values of p, which defined as the

LRI term in the text.

Fp(ka) =
∞∑
j=1

1− cosh(jka)

jp
. (116)

For p = 2

F2(ka) =
π

2
|ka| − 1

4
(ka)2. (117)

For p = 3

F3(ka) ≈ −π
2
|ka|2 log |ka|+ 3

4
(ka)2 +

1

288
(ka)4. (118)

For p = 4

F4(ka) =
1

2
ζ(2)(ka)2 log |ka| − π

12
|ka|3 +

1

12
(ka)4. (119)

For p = 5

F5(ka) ≈ 1

2
ζ(3)(ka)2 +

1

24
(ka)4 log |ka|. (120)

For p > 5

Fp(ka) ≈ 1

2
ζ(p− 2)(ka)2 − 1

24
ζ(p− 4)(ka)4. (121)

Appendix B: Numerical method

In numerical analysis, the Runge-Kutta methods play an important role in all iterative

methods, which were first developed by C. Runge and M. W. Kutta around 1900. Among

these methods, the fourth-order Runge-Kutta method( Also known as RK4), which is

used here, is reasonably simple and robust and is a good general candidate for numerical

solution of differential equations when combined with an intelligent adaptive step-size

routine. This specific method is well known, but will be described briefly here for
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completeness. Consider a initial value problem that

ẏ = f(t, y), y(t0) = y0.

By given a time-step size h, we have

yτ+1 = yτ +
h

6
(k1 + 2k2 + 2k3 + k4),

tτ+1 = tτ + h,

where τ is the time steps and

k1 = f(tτ , yτ ),

k2 = f(tτ +
h

2
, yτ +

h

2
k1),

k3 = f(tτ +
h

2
, yτ +

h

2
k2),

k4 = f(tτ + h, yτ + hk3).

Here yτ+1 is the approximation of the next value. This method iteratively calculate four

increments and take the weighted average of them so that the total accumulated error

is order O(h4). For our specific problem, we have the general equation of motion in the

form

Mün =ψ′(un+1 − un)− ψ′(un − un−1)

+

N∑
j=1

{ϕ′[ja+ un+j − un]− ϕ′[ja+ un − un−j ]}.

So we have

ün = f(t, u̇n), u̇(t0) = u̇0.

u̇τ+1
n = u̇τn +

h

6
(k1n + 2k2n + 2k3n + k4n),

tτ+1 = tτ + h,



33

where

k1n =f(tτ , u̇τn)

=
1

M

{
ψ′(uτn+1 − uτn)− ψ′(uτn − uτn−1)

+

N∑
j=1

{ϕ′[ja+ uτn+j − uτn]− ϕ′[ja+ uτn − uτn−j ]}
}
,

k2n =f(tτ+
h
2 , u̇

τ+h
2

n +
h

2
k1n)

=
1

M

{
ψ′(u

τ+h
2

n+1 − u
τ+h

2
n +

h

2
k1n)− ψ′(uτ+

h
2

n − uτ+
h
2

n−1 +
h

2
k1n)

+

N∑
j=1

{ϕ′[ja+ u
τ+h

2
n+j − u

τ+h
2

n +
h

2
k1n]− ϕ′[ja+ u

τ+h
2

n − uτ+
h
2

n−j +
h

2
k1n]}

}
,

k3n =f(tτ+
h
2 , u̇

τ+h
2

n +
h

2
k2n)

=
1

M

{
ψ′(u

τ+h
2

n+1 − u
τ+h

2
n +

h

2
k2n)− ψ′(uτ+

h
2

n − uτ+
h
2

n−1 +
h

2
k2n)

+

N∑
j=1

{ϕ′[ja+ u
τ+h

2
n+j − u

τ+h
2

n +
h

2
k2n]− ϕ′[ja+ u

τ+h
2

n − uτ+
h
2

n−j +
h

2
k2n]}

}
,

k4n =f(tτ+h, u̇τ+hn + hk3n)

=
1

M

{
ψ′(uτ+hn+1 − u

τ+h
n + hk3n)− ψ′(uτ+hn − uτ+hn−1 + hk3n)

+

N∑
j=1

{ϕ′[ja+ uτ+hn+j − u
τ+h
n + hk3n]− ϕ′[ja+ uτ+hn − uτ+hn−j + hk3n]}

}
.

For harmonic local potential

ϕ[∆x] =
1

2
K1[∆x]2.

For cubic local potential

ϕ[∆x] =
1

2
K1[∆x]2 − 1

6
K2[∆x]3.

For Hertzian local potential

ϕ[∆x] =
2

5
Kh[∆x]5/2.
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For dipole-dipole LRI

ψ[∆x] ' γ

|∆x|5

By given the time steps τ , step size h and initial condition u̇0, we can calculate the

positions and velocities of any particles in the chain at any time steps.
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Appendix C: Core simulation code in MATLAB

We only include the Hertz system code. Other two cases are very similar to this one.

Main file
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Initialization file
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RK4 file
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41
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Overlaps file
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