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Abstract of the Dissertation 

Developing Automated Applications for Clustering and Outlier Detection:  

Data Mining Implications for Auditing Practice 

By Paul Eric Byrnes 

Dissertation Chairman: Prof. Alexander Kogan 

 

  
 Occupational fraud is viewed as a growing, global problem, and solutions 

are thus needed.  Furthermore, since passage of Statement on Auditing 

Standards (SAS) 99, auditors have been held to a higher standard relative to 

audit quality.  More specifically, auditors are now required to consider the risks of 

material misstatement due to fraud throughout the entire audit process.  

Interestingly, clustering has emerged as one method for addressing this 

challenge. 

  Unfortunately, a set of difficulties exists in implementing data mining in 

practice, such as complexities relative to data pre-processing, algorithm 

selection, and model evaluation schemes.  Given this, the traditionally trained 

auditor is ill-equipped to effectively perform clustering in the context of the 

financial statement audit.  Given the likelihood that clustering will become 

ubiquitous in the auditing and accounting domains of the future, accounting 

professionals should be positioned to effectively use data mining in fulfillment of 

their responsibilities.  One possibility for achieving this involves substantial 
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automation of the clustering routine.  In this way, many of the historically manual 

decision points within the process can be eliminated, thus making it a more user 

friendly task.  In so doing, practitioners could then focus on problem investigation 

and resolution, instead of being burdened with technical nuances of clustering 

operations.  

  In this dissertation, efforts are made to progressively automate clustering 

and outlier detection.  This is done via auditing credit card customer data.  First, 

cluster analysis is performed to generate an initial set of partitions.  Next, each 

group is evaluated using various mechanisms to note whether nested clusters 

exist.  Following this, a method for identifying irregularities is proposed and 

implemented.  Overall, results demonstrate clustering and outlier detection can 

provide utility in the auditing of organizational assets.  In conclusion, findings are 

synthesized and two distinct applications are created.  These are provided as 

implementable artifacts as well as proofs of concept demonstrating feasibility of 

automating clustering and outlier detection routines.  It is hoped auditors see 

value potential in this type of software, and ultimately find such programs to offer 

both ease of use and perceived usefulness when investigating fraud in audit 

engagements. 
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CHAPTER 1:  INTRODUCTION 

  

1.1  Introduction and Motivation 

 
Occupational fraud is a problem for which solutions are needed.  In fact, 

the estimated impact of this phenomenon has increased in recent times.  More 

specifically, between 2009 and 2013, estimated global losses attributable to 

occupational fraud rose from about $2.9 to $3.7 trillion (ACFE, 2010; ACFE, 

2014).  This increasing pattern also applies in the United States, prompting a 

sense of urgency, particularly when considering that efforts have been underway 

for well over a decade in the accounting profession relative to mitigating the 

incidence of fraud. 

For example,  until 2002, auditors were not specifically required to 

consider the risk of fraud in financial statement audits.  However, events such as 

the egregious corporate scandals at Enron, WorldCom, and Tyco prompted a 

significant shift in stakeholder expectations of auditors and management.  Among 

other things, the enactment of SAS 99 in December 2002 immediately held 

auditors to a higher standard.  More specifically, it requires auditors to maintain 

professional skepticism relative to the risk of material misstatement attributable to 

fraud (Harding, 2006).  Consequently, auditors now have the obligation to 

actively embed fraud detection and investigation within the entire financial 

statement audit process, from planning the engagement through completion of 

the audit. 
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Since 2002, additional supplemental audit guidance has been formulated 

to provide more detailed assistance concerning how auditors might fulfill their 

duties in terms of considering the existence of fraud in financial statement audits.  

A common thread in such guidance entails the use of advanced data analytics, 

including but not limited to data mining methods.  However, while it is 

encouraging to see audit standards promoting adoption and usage of such 

analysis tools, getting the audit profession to actively move forward with this 

agenda appears somewhat problematic. 

While certain areas such as computer science, information technology, 

and even marketing might be considered progressive in embracing sophisticated 

data analysis technologies, the same cannot be said of the accounting 

profession.  Instead, the tendency has been to cling to traditional methods and 

processes to the extent feasible, and there is a definite rationale for this.  First, 

people often are naturally resistant to change, and this phenomenon can be 

ingrained in many organizational cultures.  In managing change within these 

contexts, the change agent (e.g., partner in an accounting firm) serves as an 

instrumental force in encouraging others to embrace new approaches and 

techniques (Van de Ven, 1986; Kanter, 1983).  In doing so, several issues are 

important, including achieving buy-in from affected individuals, maintaining 

employee input and involvement relative to the proposed change initiative, and 

ensuring that sufficient training is provided.  Interacting with this, the technology 

itself is a force influencing whether or not change will be embraced.  For 

example, the Technology Acceptance Model (TAM) helps explain the extent to 
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which a new technological development is likely to be adopted.  The two primary 

constructs in the TAM consist of perceived ease of use and perceived usefulness 

(Davis, 1989; Davis, 1985), and, while additional factors have been shown to be 

important, the TAM has nevertheless offered explanatory value in predicting the 

extent to which technology will be embraced (e.g., Tam and Ho, 2007; Wang and 

Benbasat, 2005).  Incidentally, the effective use of data mining historically entails 

many considerations and complexities regarding data preprocessing, algorithm 

selection, parameter optimization, and model evaluation.  Consequently, the vast 

majority of accounting practitioners would perceive ease of use as extremely low 

in this setting.  Consequently, this problem must be corrected if the profession is 

expected to both adopt and use data mining tools.  To assist in starting the 

conversation about and initially confronting this, the implemented processes in 

this paper are substantially automated in the R programming environment, and 

all associated code is provided in the appendices.  In this way, complexity 

concerns are at least mitigated, and readers will have actionable information they 

can immediately and readily adopt or adapt for use in clustering and/or outlier 

detection initiatives.   

Second, the accounting profession is perpetually preoccupied with and 

vigilant about litigation risk, and this position no doubt arises from legislation and 

standards as they currently exist.  For example, if full population testing of events 

and transactions is attainable via automated technologies, external auditors must 

immediately be concerned about increased liability potential in cases where 

material misstatements are not discovered.  In reality, this is completely 
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dysfunctional.  If auditors perform their engagements in good faith, with due 

diligence and professional care consistently applied, and maintain thorough 

working papers documenting all pertinent audit work, litigation risk should not be 

of any greater concern in cases where full population testing is conducted.  If 

technology can cost-effectively improve audit quality, incentives should be in 

place to encourage its adoption and usage.  Therefore, to maintain pace with the 

ever-changing business and technological landscapes, legislation and audit 

standards must continuously evolve in a corresponding manner. 

Incidentally, prior research has relied upon clustering for fraud detection in 

a wide variety of settings.  For example, it has been applied to identify fraud 

relative to money laundering (Liu et al., 2011; Khac & Kechadi, 2010; Zhang et 

al., 2003), credit card issues (Jyotindra & Ashok, 2011; Wu et al., 2010; Hao et 

al., 2010; Panigrahi et al., 2009; Tasoulis et al., 2008), insurance (Thiprungsri & 

Vasarhelyi, 2011; Ghani & Kumar, 2011; Xiaoyun & Danyue, 2010;  Jurek & 

Zakrzewska, 2008; Zhang et al., 2006), and financial statement activities (Glancy 

& Yadav, 2011; Deng & Mei, 2009; Virdhagriswaran & Dakin, 2006).  Without 

question, clustering has demonstrated effectiveness in locating irregularities, 

including but not limited to fraud.  Consequently, it is not surprising that current 

audit guidance recommends the use of clustering by auditors in the fraud 

discovery process.  Moving forward, efforts are needed to facilitate the actual 

adoption and usage of this valuable tool. 

 In this paper, the ultimate objective is to develop a comprehensive and 

seamless clustering and outlier detection program or set of applications that 
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auditors (and others) may use or adapt for use in better meeting stakeholder 

expectations.  This will be accomplished in a systematic fashion in the context of 

profiling the credit card customers of a large banking institution based upon a 

relevant subset of characteristics provided by the entity.  In achieving this, it is 

hoped that useful findings are generated that the company can use in managing 

customers and improving operations.  More important, it is intended that this 

research will successfully communicate the potential benefits and advantages of 

data mining for accountants and auditors seeking to fulfill their professional 

responsibilities in the evolving real-time global economy. 
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CHAPTER 2:  CUSTOMER BASE CLUSTERING 

 

2.1  Background 

 An area of data mining offers one potential set of solutions for customer 

profiling and outlier detection as introduced above.  Fayyad et al. (1996) note that 

clustering is a well-established approach for finding meaningful patterns in data.  

Furthermore, clustering has been effectively utilized in addressing an extensive 

array of business issues, including customer segmentation (Garla et al., 2012; 

Tan et al., 2006).  Therefore, clustering is certainly a suitable methodology to 

employ in the current study, but several considerations must be made prior to 

deciding on a specific strategy. 

In a generic sense, cluster analysis places data into groupings that are 

beneficial, such that each object is comparable to items in the same cluster and 

different from objects assigned to other groups (Tan et al., 2006).  Numerous 

methods exist for achieving this outcome, and no single algorithm is regarded as 

universally superior.  In fact, the most appropriate method might often be a 

function of properties of the data being analyzed (Alpaydin, 2010).  In addition, 

each algorithm employs a set of user-defined parameters, and these are often 

challenging to optimize.  For example, K-means requires the user to specify both 

the number of clusters and initial seed value.  While there might frequently exist 

some intuition concerning a range for the probable number of groups, the same 

cannot be said about the initial seed field.  In fact, initial seed is something for 

which the user likely has no a priori information.  Also, the available spectrum of 
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values for this variable is excessive.  For example, Weka allows users to select 

an initial seed of any non-negative integer between zero and 999,999,999, 

although each value will certainly not produce a distinct model.  Nevertheless, a 

brute force approach to determining the optimal seed is infeasible, particularly 

when taken in conjunction with the number of clusters parameter.  Using Weka 

as an example, with number of clusters ranging from three to ten, eight billion 

distinct K-means models would need to be created to exhaust all possible 

combinations of user specified parameter settings.  In addition to issues of 

parameterization, each clustering method has a set of advantages and 

disadvantages, and these must be weighed in some fashion prior to finalizing 

algorithm selection.   

As Garla et al. (2012) point out, K-means is one of the most frequently 

used clustering techniques.  This is primarily attributable to its relative simplicity, 

ability to handle very large data sets, and overall efficiency.  It offers linear time 

and space complexity such that substantial volumes of data can be easily 

processed (Tan et al., 2006).  On the other hand, this approach can produce 

empty clusters and may have difficulty in handling outliers.  Furthermore, 

because it uses the mean as the measure of central tendency, it assumes that 

the data follows a Gaussian (or normal) distribution. Nevertheless, K-means 

remains an extremely popular technique, and has demonstrated success in 

various applications and settings (e.g., Tan et al., 2006; Abdul-Nazeer and 

Sebastian, 2009; Garla et al., 2012; Mahendiran et al., 2012). 
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Other approaches have also been shown to perform well in data analysis 

routines, such as K-medoid and hierarchical methods.  For example, K-medoid 

(or partitioning around medoids) is an algorithm that functions comparably to K-

means, except it incorporates the median as the measure of central tendency.  

Consequently, it is more stable than K-means, and is applicable to a wide variety 

of data distributions.   

Hierarchical methods include agglomerative and divisive approaches, 

although the former is a significantly more common approach (Tan et al., 2006).  

In agglomerative clustering, the algorithm begins with each object as a distinct 

cluster, and iteratively merges the closest pair of clusters until one global cluster 

containing all points is established.  This process creates what is referred to as a 

tree, and this tree is ultimately "cut" at the appropriate number of clusters based 

upon some criterion or set of criteria.  Complete Link (MAX or CLIQUE), and 

Ward's Method are two distinct and popular agglomerative techniques.  By 

contrast, in divisive clustering, the opposite approach is taken.  Specifically, the 

algorithm begins with a single group containing all objects, and iteratively splits 

until each point is a separate cluster .  Once again, the tree is then sliced at the 

desired number of clusters in accordance with evaluation results.  Strengths of 

hierarchical methods include the ability to handle differing cluster sizes as well as 

local decision-making at each iteration concerning how clusters are merged or 

split.  Weaknesses include exponential time and space complexity and the fact 

that merging or splitting decisions are final (Tan et al., 2006). 
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Beyond K-means, K-medoid, and the hierarchical methods, other 

algorithms are available such as expectation maximization (EM) and DB Scan.  

However, they also present a series of challenges, including but not limited to 

significant time complexities.  For example, while EM is actually viewed as a 

generalized version of K-means, it tends to be extremely inefficient on large data 

sets.  In addition, the user must specify the number of clusters to be obtained as 

well as other settings.  Conversely, EM can effectively operate with a wide array 

of distributions as well as clusters of varying sizes and shapes (Tan et al., 2006). 

Generally speaking, it will be useful to consider an array of complementary 

algorithms when making a decision about which method to use for a given data 

set.  As previously mentioned, no algorithm is strictly superior, each method 

carries a set of strengths and weaknesses, and the most appropriate algorithm is 

often a function of the data to be evaluated.  In this study, K-means, Expectation 

Maximization, K-medoid, Complete Link, and Ward's Method will all be explored 

in determining which approach is most suitable for the involved data. 

 
 

2.2  Data 
 

 The raw data is provided by a banking institution, and contains many 

attributes pertaining to the organization’s credit card customers.  Also, the data 

set has 149,959 unique records.  A primary initial challenge involves data 

preprocessing, including dimensionality reduction, problematic record elimination 

or transformation, and various issues concerning discretization, feature 

selection/creation, and normalization. 
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2.2.1  Dimensionality Reduction   

The curse of dimensionality stipulates that, as the number of attributes 

increases beyond a certain point, the ability of data mining algorithms to produce 

meaningful results diminishes (Alpaydin, 2010).  Consequently, it is advisable to 

include only truly useful features, while also minimizing redundancy.  In 

establishing relevant dimensions, individual creditworthiness indicators reported 

in prior research and other sources serve to offer important guidance (e.g., 

Khandani et al., 2010; CFPB, 2012; CSD, 2013; Shuai et al., 2013).  An initial 

listing of ten dimensions is assembled based upon this exploration, but further 

examination via descriptive statistics ultimately necessitates elimination of certain 

variables.  For example, value of profitability represents the income a given 

customer presumably contributes to the institution, and would be useful for 

profiling purposes.  However, this dimension exclusively contains null entries 

within the current data set.  Also, VIP_Code is an internal metric used by the 

bank in assessing favorability of credit card clients, but 99.8 percent of records 

possess a value of “0” for this attribute.  Therefore, it cannot provide for adequate 

differentiation among customers.  Upon conclusion of the dimensionality 

reduction task, four attributes are established for profiling purposes.  These 

include AccountAge, CreditLimit, AdditionalAssets, and LatePayments, and are 

described in the discretization, feature selection/creation, and normalization 

subsection below. 
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2.2.2  Record Elimination 

 

 Because the objective is to comprehensively segment the customer base 

and perform outlier analysis in accordance with existing data, a conservative 

approach to record removal is taken.  Objects are only deleted if they contain 

obvious errors or are not able to be appropriately preprocessed for other 

reasons.  For example, LatePayments is created via division of actual late 

payments by account age in months.  The resulting attribute thus serves to 

standardize the measure for all customers, regardless of account age.  However, 

some records reflect new accounts and thus possess an account age of zero.  

These line items are discarded to avoid the division by zero problem in deriving 

LatePayments.  Following record elimination, the final data set includes 149,893 

records and four dimensions. 

 

2.2.3  Discretization, Feature Creation/Selection and Normalization 

 Each attribute is examined to determine the appropriate method of 

preprocessing.  In doing so, characteristics such as data type are carefully 

considered.  In the end, three dimensions are normalized and one variable is 

created and subsequently normalized.  The specific dimensions and associated 

preprocessing routines are discussed next. 

 The age of credit card accounts is an important metric within the United 

States (U.S.) credit scoring system.  Specifically, length of credit history carries a 

weighting of 15% in the computation of credit scores (CSD, 2013), and this 

suggests that account age is sufficiently important to consider in profiling credit 
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card customers.  The actual AccountAge dimension is expressed in months and 

ranges from one to 439.    In terms of preprocessing, normalization precludes 

numeric dimensions with larger inherent values from dominating attributes with 

innately smaller amounts (Han et al., 2001).  For example, if height in inches and 

weight in pounds are collectively used and provided equal weighting in a 

clustering operation involving people, results would be driven by the weight 

dimension.  This is because it occupies a wider range, and, for each record, 

would typically be of a significantly larger value relative to height.  Fortunately, 

proper transformation can resolve this problem.  In specific terms, Shalabi et al. 

(2006) offer a basis for normalizing values on a [0,1] scale as follows: 

 

                         
                          

                           
 

 

In the above equation, actual value is a specific amount to be transformed, 

minimum value is the smallest amount in the range of the target dimension, and 

maximum value is the largest amount for the feature of interest.  For example, in 

normalizing the AccountAge variable, minimum value is one and maximum value 

is 439.  When the formula is applied to each cell of the AccountAge column, all 

associated amounts fall within the desired [0,1] scaling. 

 Customer creditworthiness and credit lines maintain a positive relationship 

(Khandani et al., 2010).  As a client's creditworthiness improves, he/she tends to 

be eligible for and/or granted enhanced lines of credit.  Therefore, credit limit is 

an important indicator of credit risk and customer favorability, and should be a 
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pertinent attribute.  The actual CreditLimit dimension is measured in Brazilian 

Reais or Reals (BRL), and resides on a continuum from 45 to 80,000.  Given its 

numeric nature, it is normalized in the same manner as AccountAge, except that 

the minimum and maximum values are 45 and 80,000, respectively. 

 Having credit variety is viewed as important to maintaining a solid credit 

standing.  Specifically, 10% of U.S. credit score calculations incorporate the 

types of credit being used (Morgan, 2011).  In the provided data, 

AdditionalAssets pertains to the number of bank products a customer has in 

addition to a credit card.  For example, if a client held a credit card, savings 

account, mortgage, and auto loan, then the number of additional assets 

applicable to this individual would be three.  This is a reasonable proxy for types 

of credit, and thus AdditionalAssets should provide incremental value for profiling 

purposes.  As with the two previously discussed numeric variables, 

AdditionalAssets is transformed using the formula from Shalabi et al. (2006).  In 

doing so, the minimum value is zero and the maximum value is eight, such that 

normalized amounts ultimately lie in the closed interval between zero and one. 

Payment history is the most significant single determinant of U.S. credit 

scores.  In particular, it carries a weighting of 35% in this calculation, and late 

payments is the most prominent element used in computing payment history 

(CSB, 2013).  In highlighting its importance, a single late payment can reduce an 

individual's credit score by as many as 100 points (MSUFCU, 2015).  Without 

question, this is an instrumental component of creditworthiness, and is therefore 

included.  In achieving this, LatePayments is created from other elements in the 



- 14 - 
 

 
 

raw data so as to provide for a standardized representation.  Although the 

number of late payments is listed for each record, it is not inherently useful in this 

state.  Other things equal, one would expect to note a positive relationship 

between account age and number of late payments.  Therefore, simply 

normalizing the number of late payments and subsequently evaluating the data 

would produce misleading outcomes, and would tend to “punish” customers with 

older credit card accounts.  To effectively incorporate the late payments metric, it 

is first modified so that values are made comparable among all records.  In doing 

so, the LatePayments dimension is created through dividing number of late 

payments by account age in months, thus yielding a late payments per month 

measure for each record.  Next, the data is examined to determine whether 

further transformation is necessary.  In the U.S., it is typically the case that clients 

receive monthly credit card billing statements, and hence would be expected to 

make, at most, one payment per month.  If this scenario is generalizable to the 

current context, the feature creation process should have fully transformed this 

variable.  However, in examining the associated descriptive statistics, it is found 

to exist on a spectrum from zero to four.  Consequently, normalization is done in 

a manner similar to the previous three dimensions.  In completing this process, 

the minimum value is zero and the maximum value is four.  With the data set now 

fully normalized, three important additional considerations are made prior to 

beginning actual data analysis.  These are specifically addressed in the following 

three sections. 
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2.3  Dimension Redundancy 

First, chosen dimensions must be compared to determine whether there 

are any redundancies to address.  More specifically, when two or more features 

are highly related, all but one may be eliminated.  Optimally, the retained variable 

will be that which contributes most significantly to model building.  In testing for 

redundancy, a reference threshold of .75 is established1, and pair wise 

correlations of all four dimensions are computed and compared with the 

benchmark value.  In this way, any two dimensions having correlations of .75 or 

higher in absolute value terms are considered redundant.  If this materializes, 

involved variables are further examined to determine which should be retained.   

 To test for redundancy, pair-wise correlations of all dimensions are 

computed.  The results appear in Table 3 below, and do not seem to suggest 

problems.  Specifically, absolute values of all correlations are well below the 

threshold amount.  Consequently, the data set remains intact at this point. 

 

 

 

 

 

 

 

 

                                                      
 

1
 The .75 threshold is a rough heuristic.  It is not based on prior literature, and, admittedly, this 

represents a potential limitation.  
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Table 1:  Redundancy testing - Pair wise correlations of dimensions 

 

  

However, correlations not indicative of superfluousness nevertheless must 

still be addressed relative to any endogeneity concerns.  This can theoretically be 

alleviated in multiple ways, but one mechanism for effectively achieving this 

entails principal components analysis (PCA) (Tan et al., 2006).  In particular, 

PCA generates a new set of variables that are linear combinations of the original 

dimensions.  Also, these newly formed attributes maintain zero correlations with 

one another.  Beyond this, PCA also serves as a dimensionality reduction 

technique, because it will typically be the case that the number of principal 

components needed for clustering will be less than the quantity of original 

dimensions.  Moving forward, PCA is performed on all dimensions to be 

clustered, and the resulting principal components are used for evaluation. 

 

 

 

Dimensions AccountAge CreditLimit AdditionalAssets LatePayments

AccountAge 1.0000000 0.4362117 0.0848748 -0.5727938

CreditLimit 0.4362117 1.0000000 0.1641602 -0.2917644

AdditionalAssets 0.0848748 0.1641602 1.0000000 -0.0241305

LatePayments -0.5727938 -0.2917644 -0.0241305 1.0000000

Pairwise correlation matrix
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2.4  Dimension Irrelevance 

 Second, it is important to identify and eliminate all irrelevant dimensions, 

and some data mining applications have the capability to determine which 

attributes actually contribute to solution outcomes (Tan et al., 2006).  For 

example, IBM SPSS Modeler is able to assess the importance level for each 

dimension used in model construction.  Although important features in this study 

are manually selected through research efforts in the initial data preprocessing 

step, it is still worthwhile to confirm the extent to which each chosen dimension 

supports model building.  If a feature is identified as insignificant, it is irrelevant 

and discarded.  In dealing with this issue, variables are examined in SPSS to 

conclude whether any lack utility.  Intuitively, irrelevance is not expected to arise, 

given that an objective, literature-oriented approach is employed in feature 

selection and creation.  Outcomes are presented in Table 2, and confirm that all 

dimensions contribute meaningfully to the model creation process.  Therefore, all 

are retained for analysis routines. 

 
Table 2:  Irrelevance testing - SPSS analysis of dimension contributions 
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2.5  Model Evaluation Considerations 

 Third, a strategy is needed for model evaluation.  Tan et al. (2006) 

stipulate that such assessment activities can be accomplished using supervised, 

relative, and unsupervised approaches.  With supervised evaluation, cluster 

results are compared to an external standard, such as class label information.  

Given that no such guidance exists for the data in this study, a supervised 

method is infeasible. 

 

2.5.1  Relative Evaluation  

 With the relative approach, cluster analysis is achieved by comparing and 

contrasting results based upon a subset of criteria.  For example, in the K-means 

context, this form of evaluation might include incorporation of the sum of squared 

errors (SSE), but complementary mechanisms such as “knee” or “elbow” analysis 

would also be simultaneously performed.  More specifically, an array of model 

results is plotted as a line whereby number of clusters and SSE are placed on 

the x and y axes, respectively.  The graph is then reviewed to note where 

diminishing marginal returns occur concerning error reduction.  This is identified 

as the region(s) where the slope of a line segment between two adjacent number 

of cluster values becomes less negative, thus producing an "elbow" or "knee" 

effect.  Because SSE will naturally tend to decline as the number of clusters 

increases, elbow analysis serves as an important constraining mechanism.  

However, because it is not purely objective, a relative evaluation scheme such as 

this should be used in conjunction with other techniques.  Whatever the case, 
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because emphasis is on substantially automating the clustering and outlier 

detection processes, there is lack of preference for relative methods that are 

more likely to require a person in-the-process.  Instead, a fully objective criterion 

or set of criteria is sought. 

 

2.5.2  Unsupervised Evaluation 

 In the unsupervised domain, cluster analysis is conducted without the use 

of externally supplied information.  This essentially involves application of an 

objective function, and specific examples include maximizing silhouette 

coefficient, maximizing the Krzanowski-Lai index, minimizing the Calinski-

Harabasz metric, or minimizing the G3 index.  In reflecting upon this, other 

potential supplemental methods emerge.  For instance, percentage change is a 

measure frequently incorporated in the economics literature.  Examples include 

but are not limited to elasticity measures such as price elasticity of demand, 

income elasticity of demand, and cross elasticity of demand, and they all rely 

fundamentally on the notion of percentage change in expressing the elasticity for 

various phenomena (Ekelund et al., 2006).  This percentage change metric might 

also be suitable as an unsupervised evaluation technique in clustering.  In 

particular, the objective in this context would presumably entail maximizing 

absolute percentage reduction in error in moving from n to n+1 clusters.  

Following reflection, it is apparent that unsupervised evaluation measures will 

better facilitate the automation of model selection.  However, several options are 
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available, and it is not currently known which metric, if any, would be a suitable 

proxy for model accuracy.  

 

2.5.2.1  Cross-Validation Experiment for Unsupervised Metric Selection 

 In particular, in order for a measure to be useful for selection purposes, it 

should operate so as to choose the model that maximizes test accuracy.  

However, this is problematic in the current context because clustering is 

generally an unsupervised learning activity whereby label information is not 

available a priori for confirmation purposes.  Given this predicament, a 10-fold 

cross-validation experiment is conducted using three labeled (two-class) data 

sets adapted from the UCI repository in order to explore the extent to which 

particular cluster quality indices are satisfactory for model selection.  In achieving 

this, the data is clustered using a subset of algorithms.  In addition, four 

recognized cluster quality indices (i.e., Silhouette Coefficient, Krzanowski-Lai, 

Calinski-Harabasz, and G3) are all evaluated.  In conducting the experiment, 

some considerations must be made. 

 First, an approach is needed for deciding on the number of clusters for 

which models should be produced.  To avoid biasing results, this should not 

incorporate use of any indices to be evaluated (e.g., G3).  Given this situation, 

percentage change in error reduction is used as a basis.  More specifically, 

cutoffs are established at 10%, 15%, and 20%, and models are constructed in 

accordance with these three thresholds.  For example, the process initially 

proceeds by looking at percentage decline in error in moving from 1 to 2 clusters.  
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If this at least equals the cutoff value, then the procedure continues by examining 

percentage decline in moving from 2 to 3 clusters.  The process terminates when 

percentage change initially falls below the cutoff, and the number of clusters 

chosen corresponds to the point where percentage change in error reduction last 

was above or equal to the cutoff value.  

 Second, because this paper is interested in fraud discovery (or more 

appropriately, irregularity detection), I am investigating a two-class problem.  In 

particular, each object in this context is viewed as either normal (regular) or 

abnormal (irregular).  However, this does not imply a two-cluster scenario 

automatically exists.  In fact, any number of clusters might be applicable to this 

two-class problem.  Consequently, a system is needed for deciding how objects 

in clusters should be assigned to classes in the experimental setting, and this 

involves two general considerations.  First, when a cluster has an extremely 

small membership, all corresponding objects are viewed as irregular or 

abnormal.  To determine what constitutes an extremely small membership, the 

notion of minimum cardinality must be established, and entails some percentage 

of n/k, where n is the number of records or objects in the data set and k denotes 

the number of clusters.  In the cross-validation experiment, this percentage is set 

at four different levels including 5, 10, 15, and 20.  For example, one specific 

cardinality threshold is n / k * .05.  In this instance, if n is 10,000 and k is 10, then 

the cardinality threshold is 50.  In this case, if membership for a given cluster is at 

or below 50, then all objects in that partition are assigned to the abnormal class.  

Second, each cluster exceeding the cardinality threshold is seen as likely 
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containing both normal and abnormal objects.  In fact, points furthest from 

(closest to) the associated cluster representative are more likely to be irregular 

(regular).  In deciding where to assign an object, an outlier threshold must be 

constructed.  In this experiment, this threshold is set as average euclidean 

distance plus three standard deviations.  Thus, for each cluster satisfying the 

minimum cardinality condition, any object having a euclidean distance from the 

cluster representative that is greater than the outlier threshold is assigned to the 

abnormal class.  Remaining objects are assigned to the normal class.   

 The 10-fold cross-validation experiment is formulated such that each data 

set is randomly split into 10 subsets.  Then, for a given data set and array of 

cutoffs, each subset is used exactly nine times for training and one time for 

testing so that 10 iterations are performed in a single trial.  In each iteration, the 

training set is used for model building and initial assignment.  Then, the test set is 

classified based upon the training model results.  Following this, test accuracy is 

computed.  After the ten iterations, final test accuracy is calculated as the 

average of the ten test accuracies.  This entire process is repeated for all data 

sets and combination of thresholds.  This generates 36 sets of outcomes (3 data 

sets x 3 percentage change cutoffs x 4 cardinality thresholds).   

 Primary interest entails ultimate comparison of the four cluster quality 

indices with test accuracy information so that two questions may be answered:  

1) Is there at least one index that serves as an adequate proxy for model 

accuracy?, and 2) If so, which index is relatively superior?  In attempting to 

answer these questions, relevant values are documented and a ranking system 
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is implemented.  Specifically, for each iteration, index values for each algorithm 

are recorded.  Then, test accuracies are arranged in descending order.  Initially, 

extent to which the preferred value for each index corresponds with the highest 

test accuracy is noted.  Then, secondary interest involves determining whether a 

meaningful relationship exists between a given set of values for an index and 

associated test accuracies.  For instance, because a lower G3 index value is 

more favorable, if this index is indicative of test accuracy, there should be a 

significant negative correlation between the vectors of index values and test 

accuracies.  Obviously, the closer this correlation is to -1, the better.  In ranking 

each evaluation measure, the extent to which a metric successfully selects the 

correct method in terms of test accuracy is given primary weighting.  In the event 

of a tie, correlations serve to resolve matters.  For a given data set and 

associated array of parameter settings, the best performing index is given a 

score of 4, and the worst performing index is assigned a score of 1.  Also, the 

intermediate rankings are appropriately scored as 2 and 3.  Next, score sub-

totals for all three data sets are summed.  One set of outcomes is presented in 

Table 3 below. 
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Table 3: 10-fold cross-validation results example 

 

 
As can be seen, the silhouette coefficient performs most adequately in this 

particular set of trials.  More important, it consistently selects the best model in 

terms of test accuracy results.  The experimental procedure is repeated until all 

combinations of parameter settings are evaluated.  Then, individual index scores 

are summed to arrive at an aggregate index score for each measure.  Given that 

there are 36 individual rankings conducted, a particular index could achieve a 

maximum aggregate score of 144 (36 x 4), but this would require it to have the 

top ranking in all 36 instances.  Actually, the silhouette coefficient performed in a 

Index/Accuracy Comparisons threshold setting

% chg 15

I.  Credit Data Set Instances: 725 cardinality n/k*.15

Algorithm Silhouette Krzanowski-Lai Calinski-Harabasz G3 Index Accuracy Classes: 2 outlier mu + 3sd

single 0.467613 1.083821 39.00369 0.368585 0.9733137 Majority Class: 676

pam 0.235103 0.322108 157.597 0.283549 0.9613176 Minority Class: 49

complete 0.230381 1.356331 137.78 0.387161 0.9377722 Clusters: 5

ward 0.253824 3.989766 200.692 0.323444 0.9284641

kmeans 0.2495 0.2254 171.717 0.2828 0.9268746

Correlation with Accuracy: 0.7027 -0.3764 -0.8094 0.2234

Preferred Index Value: max max min min

Rank: 2 3 1 4

II.  Diabetes Data Set Instances: 520

Algorithm Silhouette Krzanowski-Lai Calinski-Harabasz G3 Index Accuracy Classes: 2

single 0.538424 1.260805 14.71386 0.336975 0.9640053 Majority Class: 497

complete 0.303043 12.45789 35.10375 0.347121 0.9577227 Minority Class: 23

pam 0.267823 0.61587 145.3756 0.277911 0.9556174 Clusters: 2

kmeans 0.2635 0.5506 148.6238 0.2752 0.9542884

ward 0.223921 2.357759 93.82827 0.265535 0.9516624

Correlation with Accuracy: 0.9634 0.0926 -0.7211 0.8063

Preferred Index Value: max max min min

Rank: 1 3 2 4

III.  Blood Transfusion Data Set Instances: 598

Algorithm Silhouette Krzanowski-Lai Calinski-Harabasz G3 Index Accuracy Classes: 2

kmeans 0.4459 0.4753 450.0757 0.0954 0.9455542 Majority Class: 559

pam 0.420731 0.747822 442.3003 0.09047 0.9401529 Minority Class: 39

complete 0.371967 0.405744 316.9125 0.288063 0.9292455 Clusters: 8

ward 0.389493 0.420585 413.9413 0.098196 0.9271155

single 0.427424 1.120209 40.00472 0.186358 0.9249172

Correlation with Accuracy: 0.6044 -0.2736 0.6812 -0.5256

Preferred Index Value: max max min min

Rank: 1 3 4 2

Results:

Index: Silhouette Krzanowski-Lai Calinski-Harabasz G3 Index Rank Points

Total Points: 11 6 8 5 1 4

Overall Ranking: 1 3 2 4 2 3

3 2

4 1

Best Index: Silhouette Coefficient
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superior fashion in an overall sense, achieving an aggregate score of 133 (see 

Table 4). 

          Table 4:  10-fold CV final rankings 

                                     
 
 
Furthermore, the silhouette corresponded with the best performing model in 

terms of test accuracy in 30 of the 36 experiments.  Because of its convincing 

relative dominance as well as satisfactory absolute performance, the silhouette 

coefficient appears suitable for automated model selection.  However, before 

proceeding, it is useful to first obtain a better understanding of this index. 

 

2.5.2.2  Silhouette Coefficient - An Indicator of Cluster Quality 

The silhouette coefficient is a measure of cluster cohesion and separation 

(Tan et al., 2006).  Consequently, the metric can meaningfully contribute to 

determining the number of clusters present in a given data set.  In addition, the 

above experiment has offered evidence of its appropriateness for algorithm 

selection.  The coefficient can theoretically vary between -1 and 1, with a higher 

value indicative of better cohesion and separation.  The general formula for the 

silhouette coefficient of the ith object is: 

 

  

Silhouette 133

Calinski-Harabasz 86

Krzanowski-Lai 74

G3 67

Aggregate Points



- 26 - 
 

 
 

                                         
       

           
 

Where:     ai = average distance from ith object to all other objects in same cluster, and 
      bi = average distance from ith object to all other objects in next closest cluster 

 

Typically, it is anticipated that bi > ai, and, in this setting, the silhouette coefficient 

can be simplified and expressed as:   

                               
  

  
  

When ai is zero, the silhouette coefficient attains its maximum value of 1.  

While this will certainly not be approximated in practical applications, a larger 

silhouette coefficient nevertheless argues for relative model superiority in terms 

of both cohesion and separation.  In particular, ai is the indicator of cohesion 

while bi is the measure of separation, such that lower (higher) values of ai (bi) are 

strictly preferred.  Given that cohesion and separation are described as two key 

indicators of cluster quality (Tan et al., 2006), it is not surprising the silhouette 

index is found to be suitable for model selection. 
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2.6  Analysis2  

2.6.1  Model Selection 

 In assessing models, automated cluster simulation routines are executed 

for the five previously discussed algorithms.  In doing so, silhouette coefficient is 

the basis for model judgment in this phase such that the algorithm producing the 

largest value is ranked as being most preferred.  Initial findings from this 

procedure are presented in Table 3, and suggest that the Complete-Link 

Hierarchical method be adopted for clustering. 

         Table 5:  Algorithm ranking 

        
 

To provide additional insight, the entire result set is plotted for each 

combination of algorithm and number of clusters.  This is shown in Figure 1. 

 

 

 

 

                                                      
 

2
 R will not operate with long vectors (i.e., length > 2^31).  Therefore, a random sample of 40,000 

objects is used to compute silhouette values during the simulation routines.  While this is 
perceived as a limitation, preliminary work with a variety of samples from the data yielded 
identical results in terms of ultimate model selection.   

Method SilhouetteCoefficient

Complete 0.5817

K-Means 0.3936

Ward 0.3768

EM 0.3613

PAM 0.3383

Algorithm Ranking
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Figure 1:  Algorithm performance plots - comprehensive 

 
 

The complete-link hierarchical method is strictly superior to the other four 

algorithms in terms of silhouette coefficient for the range between two and five 

clusters, inclusive.  In addition, it seems to achieve peak performance at three.  

For added clarity, an exclusive plot of silhouette coefficients for the complete-link 

method is considered next. 
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Figure 2:  Algorithm performance plot - Complete-Link 

 
 

In fact, at three clusters, the maximum silhouette coefficient is attained (i.e., 

.5817).  Even so, a two cluster solution is not substantially different, yielding a 

slightly lower silhouette of .5688.  Nevertheless, because the present objective 

entails choosing the model with the highest silhouette index, a complete-link 

hierarchical three-cluster solution is selected for subsequent analyses. 

 

2.6.2  Model Creation, Visualization, and Evaluation 

  This model is generated and a series of visualizations follow in an effort to 

note distinguishing features of each cluster.  In Figure 3 below, representative 

values for each profile are shown. 
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Figure 3:  Cluster representative values for complete-link model 

  

 

This graph depicts a meaningful set of groupings in that representative 

dimension values for a given profile are generally distinguishable from the others.  

In particular, cluster 2 is superior in terms of three dimensions, and thus 

represents the most creditworthy partition.  In addition, cluster 3 is inferior with 

respect to account age, late payments, and additional assets.  Interestingly, while 

this partition corresponds to the least creditworthy clients, its average credit limit 

is higher than the other segments.  Finally, cluster 1 represents the intermediate 

category, with representative values typically falling between the extremes.  To 

provide additional context, a three dimensional principal components scatter plot 

is generated whereby each object is depicted and a color coding scheme is 

employed to distinguish objects by cluster.  This is presented in Figure 4. 
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Figure 4:  3D plot of normalized principal components 

 
 
 The above image appears at a 35 degree rotation and shows all objects in three 

dimensional space based upon normalized principal component values.  

Furthermore, each record is color coded to indicate cluster membership.  Clearly, 

the vast majority of points are shown as black and correspond to the majority 

cluster.  In fact, this group is classified as cluster one by the complete-link model 

and contains 141,858 of the 149,893 observations (94.6%).  By contrast, the 

minority group contains only 147 records (.10%), and these are depicted as 

green in the above visualization.  Incidentally, these are treated as cluster three 

in the complete-link model, and, given the extremely rare membership of this 

cluster, all associated records should be considered as potential outliers and 

investigated individually.  The remaining 7,888 records appear as red points in 

Figure 4 above, and these correspond to cluster two.      
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 Finally, statistical testing is performed on a representative sample of the 

data using a non-parametric Kruskal-Wallis test.  However, given that there is 

small membership in one of the three clusters, results might be taken with a 

degree of caution.  Traditionally speaking, the minimally adequate group size for 

statistical testing purposes is 30 (Singleton and Straits, 1999).  However, the 

authors have also suggested minimum recommended group size might often be 

much larger than this (e.g., 100 to 200).  Nevertheless, results are shown in 

Table 5, and offer additional incremental evidence arguing for a three-cluster 

solution. 

                              Table 6:  Kruskal-Wallis test - Complete-Link 3 cluster model   

                     
                     *Based upon a representative sample of 30,000 records.

3
 

More specifically, all variables are shown to be highly significant, with each 

dimension having a p-value below .001.  This offers supplementary evidence 

indicating each cluster is distinct from the others and thus describes a unique 

                                                      
 

3
 Because the smallest cluster contains only 147 objects, a representative sample of 30,000 

ensures that about 30 records from this group should be captured in the sample (i.e., 
30,000/149,893 x 147 = 29.42).  Incidentally, tests on the full population were also performed and 
all results found to be highly significant as well. 

Significance

Field Chi-Squared df Level

AccountAge 156.89 2 p<.001

CreditLimit 212.83 2 p<.001

AdditionalAssets 6,833.20 2 p<.001

LatePayments 92.70 2 p<.001
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customer type.  At this point, the 3-cluster complete-link hierarchical solution is 

accepted as the final stage-one model.   

 Note that the analysis process up to this point is substantially automated 

in the R programming environment.  Consequently, significant processing and 

evaluation efficiencies have been achieved, and many of the complexities of 

clustering are at least mitigated.  It is hoped that this will ultimately assist in 

encouraging auditors to move more actively toward adopting data mining 

technologies in their quest to continue providing information useful for 

stakeholder decision-making.  For convenience, the R code pertaining to this 

chapter is reproduced in Appendix A. 

 To better facilitate understanding of existing customer group differences at 

this juncture, representative values are de-normalized and corresponding results 

are displayed in Table 7. 

 Table 7: De-normalized representative values for 3-cluster model 

 

Dimension 1 2 3

AccountAge 83 98 9

CreditLimit $7,462 $10,451 $16,741

AdditionalAssets 0.27 2.27 0.27

LatePayments 6.95% 6.66% 42.36%

Instances: 141,858 7,888 147

Percent of Total: 94.64% 5.26% 0.10%

Cluster
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As can be seen, each profile contains a different customer type.  For example, 

cluster 2 represents the most mature and creditworthy clients.  In particular, 

mean account age is over 8 years, and, of the total number of payments made by 

customers in this group, only 6.7% are late, on average.  However, this partition 

comprises just over five percent of the data set.  On the other hand, cluster 3 

describes the least mature and creditworthy individuals.  In particular, the mean 

account age is only nine months, and, on average, nearly half of all payments 

submitted are late.  Also, given the noted problems and issues, average credit 

limit appears exorbitant, especially when compared with the remaining segments.  

Fortunately, this group contains only 147 individuals (.10%).  Without question, 

these customer accounts all deserve closer investigation and scrutiny.  Cluster 1 

basically falls between the extremes, and thus corresponds to the intermediate 

portion of the customer base in terms of creditworthiness.  Also, this profile 

comprises the vast majority of credit card accounts.  In summary, each customer 

group possesses a unique set of characteristics, and this suggests that each 

partition should be approached and managed differently.   

 Clustering results such as those in Table 7 can offer immediate utility to 

auditors in events such as risk assessments and going concern engagements.  

For example, imagine that a comprehensive set of attributes and standardized 

procedures are established for describing the customer base.  The attributes 

might be industry specific, and industry benchmarks could be established for 

comparison purposes. The customer base could be clustered periodically (e.g., 

weekly, monthly, quarterly, annually, etc.) so the auditor was able to perform 
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trend analysis relative to this information.  To facilitate efficiency, the pertinent 

customer and industry benchmark information could be reflected as numeric 

scores.  In a manner analogous to ratio analysis, the auditor could plot the 

customer base and benchmark scoring information over a desired time horizon, 

thus being positioned to monitor and respond to changes in the organization's 

client structure.  For instance, if the customer base score exhibited significant 

decline and/or fell below the associated benchmark value, this would indicate 

substantially increasing risk, and the auditor would be positioned to incorporate 

this into the risk assessment, thus modifying the associated audit plan and 

corresponding audit scope and tests.  In the going concern context, customer 

base information would be useful for decision-making regarding the probability an 

organization will remain solvent.  Whatever the case, customers are critical to 

organizational success, and auditing would certainly benefit from using and 

disseminating information generated from pertinent customer data.  More 

important, clustering could be useful in both detecting and mitigating the 

incidence of fraud as well as assisting auditors in satisfying audit requirements 

relative to the consideration of fraud in financial statement audits. 
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CHAPTER 3:  INVESTIGATING AND CLUSTERING THE 

CLUSTERS 

 

3.1  Background 

 Another potentially important consideration relative to clustering strategy 

involves the actual partitions in a given model.  Tan et al. (2006) point out that a 

model could actually contain nested clusters.  This implies that segments be 

further examined prior to finalization, and a stream of research has pursued this 

issue.  In one study, a two-phase approach is implemented (Garla et al., 2012).  

In the first stage, K-means is used to obtain initial groupings.  In the second 

phase, primary profiles are evaluated using a probabilistic method.  In 

conclusion, it is found that a two-stage process provides for improved overall 

results.  In another paper, a self-organizing map (SOM) network is employed to 

initially establish region clusters (Mo et al., 2010).  These are investigated and 

multiple segments are ultimately discovered within each area.  In comparing this 

two-step method to three alternative approaches, the two-stage procedure is 

significantly better than two of the three alternatives, and not significantly 

different from the remaining method.  However, the two-stage approach is found 

to be most efficient, and therefore viewed as the preferred option.  The above 

findings suggest that evaluation of initial clusters is warranted, and this leads to a 

research question: 

RQ1: Can an improved set of customer profiles be achieved through a two-stage            
 clustering, or is a traditional single-stage method sufficient? 
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The above question will be explored in this chapter.  Upon conclusion, a finalized 

solution will be proposed and further examined.       

3.2  Preliminary Descriptive Statistics 

 The data set is now segregated into three subsets, one pertaining to each 

primary cluster identified at the conclusion of chapter one.  Preliminarily, because 

credit card fee discount information is available, associated descriptive statistics 

are computed for each subset to obtain a general sense of whether clusters differ 

on this dimension and the bank is currently managing its credit card customers in 

a systematic fashion and in accordance with the partitions identified thus far.  

Results appear in Table 8, and reveal several points of interest. 

Table 8:  Descriptive statistics - Fee discount percentages by cluster 

 
 Note:  only non-negative amounts are included in this analysis. 

 

Initially, discount differences between clusters are apparent, but these 

disparities are not consistently logical.  For example, while the discount range of 

the least creditworthy cluster (i.e., 3) is relatively narrow, minimum discount is 

much higher than that for the other two profiles.  Of potentially greater concern, 

the least favorable group enjoys the highest mean and median discounts at 72 

and 76 percent, respectively.  Furthermore, the most frequent discount in this 

partition is 84%, and this is 24 percentage points larger than that for the 

Cluster Mean Median Mode Min Max
Cluster 1    64% 60% 60% 0% 100%

Cluster 2 71% 70% 60% 4% 100%

Cluster 3    72% 76% 84% 38% 100%
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remaining groups.  By contrast, the most creditworthy segment (i.e., cluster 2) 

has lower mean, median, and mode discount percentages than the least 

creditworthy partition.  On the other hand, the intermediate group maintains 

discount statistics that, in general, are systematically below those of the most 

creditworthy cluster.  Basically, the greatest points of concern in terms of the 

discount issue pertain to cluster three, and, fortunately, there are few customers 

in this category.  Nevertheless, observations collectively suggest that, from the 

standpoint of fee discounts, the groups are not being treated in conformity with 

relevant indicators of creditworthiness.  These findings as well as the potential for 

nested clusters suggest that a more comprehensive profiling of the customer 

base is warranted.  Hopefully, among other things, final outcomes will facilitate 

the eventual development of a formal policy that representatives will 

subsequently implement in dispensing customer services. 

 

3.3  Nested Cluster Evaluations 

  In continuing analyses, each data subset is considered separately to 

determine whether nested clusters exist within the primary groupings identified in 

the previous chapter.  However, because cluster three has a very small 

membership, it will not be explored concerning the nested cluster issue.  In 

reality, all objects in this group are viewed as anomalous, and should thus be 

thoroughly investigated on an individual basis.  Conversely, cluster one contains 

the vast majority of objects while cluster 2 is not considered to be of small 

membership status.  Consequently, they are subjected to deeper review.  As in 



- 39 - 
 

 
 

the previous chapter, the silhouette index is used as a basis for model selection 

for the cluster 1 and 2 data subsets.  Once again, this process is substantially 

automated in R, and the associated R-script used for evaluation and model 

building is contained in Appendix B. 

 

3.3.1  Cluster 1 Model Selection 

Initially,  a simulation routine is again executed whereby silhouette 

coefficients are computed for a variety of clustering models.  However, one 

difference exists relative to the previous chapter.  Specifically, the number of 

potential sub-clusters considered is restricted to a range of two to six.  Resulting 

algorithm rankings for cluster 1 are generated and presented in Table 9. 

 
    Table 9:  Cluster 1 - Algorithm Rankings 

    

 

K-means, PAM, Ward, and EM are identical in terms of peak silhouette value (i.e. 

.522), initially suggesting that any of these algorithms could be chosen.  To offer 

additional insight, silhouette values are plotted for all combinations of algoirthms 

and cluster settings.  The associated graph appears in Figure 5 below. 

Method SilhouetteCoefficient

K-Means 0.522

PAM 0.522

Ward 0.522

EM 0.522

Complete 0.379

Algorithm Ranking



- 40 - 
 

 
 

Figure 5:  Algorithm performance plots - comprehensive 

 
 

In the above graph, the highest silhouette clearly occurs at two sub-clusters.  

Furthermore, as number of clusters increases, there is a general trend of decline 

in index values.  This suggests that, at most, two nested partitions might exist in 

the cluster 1 data.  However, because four methods have the same silhouette at 

two partitions, an additional observation is incorporated relative to algorithm 

selection.  Specifically, it is noted that, at any other setting for number of clusters, 

K-means exclusively maintains the largest silhouette value.  Based upon this, K-

means is chosen as the algorithm for subsequent model construction.  

Specifically, a K-means two-cluster solution is used in determining whether any 

nested clusters are present in this data.  Prior to execution, silhouette values for 

the chosen algorithm are first plotted, and follow in Figure 6. 
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Figure 6:  Algorithm performance plot - K-means 

 
 

From this perspective, the two-cluster silhouette value is again noted as vastly 

superior to that of all competing models.   

 

3.3.2  Cluster 1 Model Creation, Visualization, and Evaluation 

 Moving forward, a K-means two sub-cluster model is developed and 

further explored.  An image of cluster representatives follows in Figure 7. 

Figure 7:  Cluster representative values for K-means, 2 cluster model 
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Outcomes do not unambiguously argue that each of the two created sub-clusters 

represents a unique customer type.  More specifically, the partitions are primarily 

distinguished via additional assets, and the remaining three dimensions are 

comparable in terms of normalized representative values.  Even so, cluster 1.1 is 

technically superior in that it encapsulates more mature customers who maintain 

higher credit limits, possess more additional assets and make fewer late 

payments, on average, relative to cluster 1.2.  Whether the two clusters are 

unique enough to justify segregation remains an open question, and, to provide 

additional context, a three dimensional principal components scatter plot is 

generated such that each object is depicted and a color coding scheme is used 

to compartmentalize objects by cluster.  This is presented in the following image. 

Figure 8:  3D plot of normalized principal components for cluster 1 data 

 
 
In this view, objects are shown in three dimensional space in terms of normalized 

principal components.  The model initially appears much more balanced relative 
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to results from the prior chapter.  Nevertheless, the majority cluster (subcluster 

1.2) contains 103,015 of the 141,858 observations (72.6%), and this consists of  

objects appearing in red.  Conversely, the remaining segment (subcluster 1.1) 

contains only 38,843 records (27.4%).  In examining the plot, some level of 

separation is detected, but it fails to yield any convincing visual evidence that two 

distinct clusters are present. 

 To gain additional insight, a two-part error analysis routine is performed.  

First, "elbow" analysis is conducted.  In achieving this, error is computed for 

models ranging from one to six clusters, inclusive.  Then, a graph is created with 

number of clusters plotted in ascending order on the x-axis and related error 

amounts on the y-axis, with adjacent error points connected via a series of line 

segments.  Finally, the plot is examined to determine whether diminishing 

marginal returns occur in moving from n to n+1 clusters.  As explained in the 

previous chapter, this occurs where the slope of a line segment between any two 

adjacent number of cluster values becomes less negative relative to the previous 

line segment.  The graph follows in Figure 9. 

Figure 9:  Cluster 1 - Sub-cluster error analysis1 
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The individual segments collectively produce a line with a curvilinear structure, 

offering no clear argument that noteworthy diminishing marginal returns in error 

reduction is exhibited and indicating that nested clusters probably do not exist.  

Second, another graph is produced whereby number of clusters is shown in 

ascending order on the x-axis and percentage change in error reduction is 

plotted on the y-axis.  This is produced in Figure 10, and essentially mirrors the 

previous image. 

Figure 10:  Cluster 1 - Sub-cluster error analysis 2 

 

The highest percentage change occurs at two clusters, suggesting that, if sub-

clusters exist, then the maximum number is two.  However, the slope of the line 

is again highly curvilnear, and, in an overall sense, does not clearly campaign for 

the existence of nested clusters.  Furthermore, when combined with the previous 

image, aggregate error-related evidence argues that the cluster 1 data should not 

be split. 

 A final piece of evidence is collected through two-group Kruskal-Wallis 

non-parametric tests of all dimensions.  In this case, because a sufficient number 
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of records reside in each sub-cluster, a representative sample is selected for 

testing purposes.  Specifically, the total number of records in the population of 

cluster 1 is 141,858, with the majority (minority) partition containing 103,015 

(38,843) records.  Given that prior literature suggests minimum group size should 

be somewhere between about 30 and 200 instances (Singleton and Straits, 

1999), the target sample size in this setting is 368 so as to ensure the minority 

sub-cluster is represented in a satisfactory manner4.   The results appear in 

Table 10, and demonstrate that, with a .01 significance threshold, the groups are 

not significantly different in terms of three of the four involved attributes. 

 
              Table 10:  Cluster 1 - Kruskal-Wallis results (n=368) 

          
 

Furthermore, if this threshold is increased to .05, two of the dimension 

representatives continue to remain insignificant.  In comparing this table to the 

graph of cluster representatives in Figure 7 above, commonalities become 

apparent.  For instance, additional asset representative amounts are very 

different for the two sub-clusters, and the Kruskal-Wallis test is highly significant 

                                                      
 

4
 Because sub-cluster sizes are sufficient, emphasis is on obtaining about 100 cases from the minority 

cluster in the statistical sample (38,843/141,858 x 368 = 101). 

Significance

Field Chi-Squared df Level

AccountAge 1.06 1 p = .3023

CreditLimit 5.71 1 p = .01684

AdditionalAssets 369.00 1 p < .001

LatePayments 0.29 1 p = .5921
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for this attribute (p < .001).  Conversely, late payment representatives do not 

appear unlike for the two groups, and, not surprisingly, the Kruskal-Wallis test 

produces highly insignificant results, indicating that the two clusters are not 

statistically different relative to this variable.  Moving forward, because prior 

visual evidence and statistical testing generally fail to support the presence of 

nested partitions, cluster 1 is not split into sub-groups.  Instead, it is retained as it 

existed at the conclusion of the previous chapter.  Next, cluster 2 is evaluated in 

a similar manner to determine whether it contains multiple partitions. 

 

3.3.3  Cluster 2 Model Selection 

Initially,  silhouette coefficients are generated for the five algorithms with 

the number of sub-clusters again ranging from two to six, inclusive.  Outcomes 

are presented in Table 11. 

 
           Table 11:  Cluster 2 - Algorithm Rankings 

       

 

Method SilhouetteCoefficient

Complete 0.411

K-Means 0.352

PAM 0.318

Ward 0.311

EM 0.2879

Algorithm Ranking
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In this case, Complete-Link achieves the highest silhouette value (i.e. .411), but, 

to gain more specific insight, silhouettes are depicted for all combinations of 

algoirthms and cluster settings.  The associated graph appears in Figure 11. 

Figure 11:  Algorithm performance plots - comprehensive 

 
 

In the above, the silhouette is maximized at two sub-clusters, and all other 

models are substantially lower in terms of the comparison index.  This suggests 

that, at most, two sub-groups might exist in the cluster 2 data, and that the 

Complete-Link method should be used in making decisions about the nested 

cluster issue.  To obtain improved intra-algorithm contrast, silhouette values for 

the chosen method are plotted, and follow in Figure 12 below. 
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Figure 12:  Algorithm performance plot - Complete-Link 

 
 

In this context, the Complete-Link two-cluster silhouette value is seen as vastly 

superior to all competing models.   

 

3.3.4  Cluster 2 Model Creation, Visualization, and Evaluation 

 Moving forward, a Complete-Link two sub-cluster model is developed and 

further considered.  The plot of cluster representatives follows. 

Figure 13: Cluster representative values for Complete-Link, 2 cluster model 
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Initial visual information suggests each of the two segments created from cluster 

2 represents a distinct customer type.  More specifically, while the groups are 

primarily distinguished via additional assets, the other three dimensions also 

exhibit differences in terms of normalized representative values.  In particular, 

cluster 2.2 is more favorable in that it encapsulates more established customers 

who possess substantially higher levels of additional assets and make fewer late 

payments, on average, than the other group.  Interestingly, although cluster 2.2 

represents clients with higher creditworthiness, these customers actually 

maintain lower mean credit limits.  To gain additional perspective, a three 

dimensional principal components scatter plot is generated such that each object 

is shown and a color coding scheme is again employed to distinguish objects by 

cluster.  This is presented in Figure 14. 

Figure 14:  3D plot of normalized principal components for cluster 2 data 
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 The vast majority of points are shown in black and thus correspond to the 

majority cluster.  In fact, this group is classified as cluster one (subcluster 2.1) by 

the complete-link model and contains 7,768 of the 7,888 observations (98.5%).  

By contrast, the minority group (subcluster 2.2) contains only 120 records (1.5%), 

and these are depicted as red in the above visualization.  Overall, the plot offers 

some positive evidence for a two partition model.  

 For additional perspective, a two-part error evaluation process is again 

implemented.  First, "elbow" analysis is conducted, and the associated graph 

follows in Figure 15. 

Figure 15:  Cluster 2 - Sub-cluster error analysis 1 

 
  

In this case, a slight elbow is detected at 2 clusters, suggesting that diminishing 

marginal returns occur in error reduction when moving from a 2 to 3 group 

solution.  This provides some incremental evidence two partitions might be 

present in the data.  Second, another graph is created showing percentage 
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change in error reduction as the number of clusters increases.  This is produced 

in Figure 16, and corresponds with the previous image. 

Figure 16:  Cluster 2 - Sub-cluster error analysis 2 

 

 

Specifically, the highest percentage change occurs at two clusters.  In addition, 

with the exception of a 4 group model, percentage change in error reduction 

declines rather sharply and consistently as number of clusters increases.  

Collectively, this suggests that, if multiple segments exist in cluster 2, then the 

maximum number is two.  At this point, accumulated information argues for a 2 

cluster model.  However, prior to making a final decision, statistical testing is 

performed. 

 In particular, two-group Kruskal-Wallis non-parametric tests are again 

conducted for all dimensions.  In this case, the data population consists of 7,888 

records, with the majority (minority) cluster having 7,768 (120) objects.  Because 

the minority group is extremely small and currently falls within the recommended 
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group size range, initial testing is done for the population.  Results follow in Table 

10, and are significant for all dimensions. 

          Table 12:  Cluster 2 - Kruskal-Wallis results (n=7,888) 

         
 

In comparing this table with cluster representatives in Figure 13, commonalities 

become apparent.  For instance, additional asset representative amounts are 

very different for the two partitions, and the Kruskal-Wallis test is highly 

significant for this attribute (p < .001).  Conversely, credit limit representative 

values appear more comparable for the two groups, and, not surprisingly, the 

Kruskal-Wallis test produces less significant results (p < .01).  As a final 

measure, statistical tests are performed on a sample of the data.  In doing so, a 

prerequisite is that number of objects in the sample from the minority cluster 

must fall within the recommended range for group size (i.e., about 30 to 200).  

Consequently, a 50 percent representative sample is taken such that about 60 

records from the minority partition are anticipated to be in the sample.  Outcomes 

are presented in Table 13, and, although lower in terms of significance, they 

nevertheless support a two sub-cluster model. 

 

Significance

Field Chi-Squared df Level

AccountAge 16.5200 1 p < .001

CreditLimit 7.2700 1 p < .01

AdditionalAssets 655.4600 1 p < .001

LatePayments 29.7000 1 p < .001
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          Table 13:  Cluster 2 - Kruskal-Wallis results (n=3,944) 

                

 

Incorporating a significance threshold of .01, three of the four dimensions are 

found to be significantly different in terms of representative values.  In addition, if 

this threshold is expanded to .05, then statistically significant results are obtained 

for all attributes.  In the aggregate, information argues for the existence of two 

partitions within the cluster 2 data.  As such, this new model is retained, and the 

dimension values are de-normalized and presented in Table 14. 

                Table 14:  Cluster 2 - De-normalized results for 2 sub-cluster model 

           
  

Significance

Field Chi-Squared df Level

AccountAge 10.0700 1 p < .01

CreditLimit 3.9278 1 p = .04749

AdditionalAssets 330.6800 1 p < .001

LatePayments 15.1510 1 p < .001

Dimension 2.1 2.2

AccountAge 98 118

CreditLimit $10,499 $7,319

AdditionalAssets 2.24 4.49

LatePayments 6.71% 3.68%

Instances: 7,768 120

Percent of Total: 98.48% 1.52%

Cluster
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From this view, each segment indeed depicts a unique customer type.  More 

specifically, cluster 2.2 contains clients with higher creditworthiness.  These 

individuals have more established accounts, maintain a higher level of 

addditional assets, and make fewer late payments as a percent of total, on 

average, relative to cluster 2.1.  Interestingly, the less creditworthy sector has a 

higher average credit limit, and this appears counterintuitive.   

 As previously mentioned, cluster 3 contains a very small membership.  

Therefore, it is not further examined relative to the nested cluster issue.  Next, 

results from this and the previous chapter are combined into a single model.  

 

3.4  Results  

 This final, synthesized model consists of four clusters, and the de-

normalized representative values are shown in Table 15.  

Table 15:  De-normalized results for final synthesized 4-cluster model 

 

Dimension 1 2.1 2.2 3

AccountAge 83 98 118 9

CreditLimit $7,462 $10,499 $7,319 $16,741

AdditionalAssets 0.27 2.24 4.49 0.27

LatePayments 6.95% 6.71% 3.68% 42.36%

Instances: 141,858 7,768 120 147

Percent of Total: 94.64% 5.18% 0.08% 0.10%

Cluster
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Several interesting observations are noted here.  First, cluster 3 is clearly the 

least creditworthy group as it contains the least mature accounts, the lowest level 

of additional assets, and the highest incidence of late payments.  Even so, these 

clients have been rewarded with the highest credit limits, on average.  

Fortunately, this group comprises a very small percentage of the customer base.  

Conversely, cluster 2.2 contains the most creditworthy individuals.  They have 

the most established accounts, largest number of additional assets, and smallest 

incidence of late payments.  Nevertheless, this partition has been granted the 

lowest average credit limit.  Incidentally, clusters 1 and 2.1 reside intermediate to 

the other two segments.  However, cluster 2.1 is more favorable in terms of 

creditworthiness, with more mature accounts, higher credit limits and level of 

additional assets, and a slightly lower propensity for making late payments, 

relative to cluster 1.  Interestingly, the credit limits for these two partitions 

correspond logically, unlike those for clusters 2.2 and 3.  The final model is 

graphed in terms of normalized cluster representatives in Figure 17. 

 

 

 

 

 

 

 

 

 



- 56 - 
 

 
 

Figure 17:  Final clustering model 

 
 

In this format, it is not extremely difficult to identify and rank the profiles.  For 

example, cluster 2.2 pertains to clients with the most established accounts, 

greatest number of additional assets, and fewest late payments.  Therefore, this 

group is the most creditworthy in terms of the depicted dimensions. However, this 

assumes that each attribute is given equal weighting, and, based upon 

information presented earlier relative to the importance of variables in computing 

credit scores, this is not the case in practice. 

To clarify and finalize matters, a rudimentary scoring system is developed 

to incorporate individual dimension weights, thus facilitating a more technically 

accurate ranking of profiles.  In achieving this, prior literature is considered in 

attempts to establish an appropriate weighting for each dimension.  The system 

is implemented such that a higher score is indicative of greater creditworthiness 
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(or lower risk), and this requires that one existing dimension is slightly 

reformulated.  Specifically, because late payments is measured such that a lower 

amount is more favorable, the associated representative value for each profile is 

subtracted from one, and the resulting difference is used as the dimension value 

for calculating overall score.  To generate a given score, each of the four 

representative amounts for a single cluster is multiplied by its corresponding 

weight.  These products are then summed within each cluster to arrive at overall 

score.  This process is repeated until all scores have been computed.  In simple 

mathematical terms, the formula is as follows: 

                 

 

   

   

                   Where, Di = value of the ith dimension 

                      wi = weight of the ith dimension 

 

For reference purposes, individual weights are shown in table 16 below. 

                                              Table 16:  Dimension Weights 

                                         
     

With conversion efforts complete, outcomes are plotted to include the final 

normalized numeric values as well as overall score information.  The graph 

follows in Figure 18. 

 

Dimension Weighting

AccountAge 0.2

CreditLimit 0.25

AdditionalAssets 0.15

LatePayments 0.4

Dimension Weights
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Figure 18:  Representative values and overall scores by cluster for final clustering model 

 

  

 Although this depiction might be scrutinized on multiple grounds, it is 

nevertheless an objective approach to enhance customer profile identification 

and ranking tasks.  Incidentally, the scoring system did not result in changing the 

rankings of the original partitions in terms of creditworthiness.  For instance, 

cluster 2.2 was previously viewed as representing the most favorable client type, 

and this observation persists when incorporating the scoring method.  In addition, 

cluster 3 was initially identified as containing the least creditworthy customers, 

and this remains true when using the score attribute as an exclusive basis for 

judgment.  Essentially, the OverallScore dimension simplifies the process of 

noting where each cluster resides in terms of relative creditworthiness level.  

Furthermore, it considers the individual dimension weights, so that, presumably, 

a more accurate perspective of customer profiles is established.  For added 
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clarity, an alternate set of overall score visualizations is provided in the following 

image.  Once again, a larger value is indicative of higher creditworthiness. 

 
Figure 19:  Dashboard view of customer profile overall scores 

 
 

The above dashboard readily facilitates prioritization of segments for the 

employed attributes of creditworthiness.  For example, it is clear that cluster 2.2 

(cluster 3) relates to the most (least) favorable grouping.   

 While there might be lingering limitations and questions concerning 

procedures used in scoring clusters within the customer profiling model, efforts 

thus far can at least be perceived as providing an objective basis upon which 

future work might build.  Furthermore, the four unique credit card customer 

clusters can be referenced by bank personnel in establishing a formal policy 
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wherein a distinct set of customer service protocols are tailored for each profile.  

In this way, customer representatives will subsequently have at their disposal a 

more systematic methodology for addressing the customer base that takes into 

account the creditworthiness of a customer prior to providing services including 

but not limited to determining satisfactory credit card fee discounts.  In the 

auditing context, the established clusters facilitate the identification of potentially 

problematic records, thus assisting in the irregularity/fraud detection process.  

Moving forward, the next chapter explores the process by which established 

clusters are examined so as to prioritize objects for productive use of auditor 

resources in the fraud/irregularity discovery and investigation processes. 
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CHAPTER 4:   OUTLIER DETECTION - LOCATING THE "NON-

CONFORMING CLIENTS" 

 

4.1  Background 

 Outlier detection is often an integral step in clustering.  In highlighting this, 

Figure 20 provides a simplified, generic example of objects depicted in two-

dimensional space. 

Figure 20: Clusters in two-dimensional space 

 
 

In looking at the diagram, one likely notes three partitions.  However, in each 

group, there are objects residing near the fringes.  This raises questions 

suggesting these data points should be further examined.  For instance, it may 

be that a subset of the records contain errors or are otherwise irregular items 

warranting formal investigation and resolution.  
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 In this chapter, efforts are made to identify potential outliers within the 

relevant clusters finalized in the previous section.  The reader should keep in 

mind that, while the method for outlier detection ultimately proposed, developed, 

and implemented in this chapter is used for identifying irregular customer 

records, it is applicable to ostensibly any outlier detection activity whereby data is 

able to be meaningfully represented in a numeric fashion.   

 Outliers have been historically described in a variety of ways.  For 

example, Hawkins (1980) referred to an outlier as "an observation which deviates 

so much from other observations as to arouse suspicions that it was generated 

by a different mechanism".  Barnett and Lewis (1994) described an outlier as "an 

observation which appears to be inconsistent with the remainder of that set of 

data".  Irrespective of specific definition, an outlier, exception, or anomaly can be 

perceived as a point that is substantially different from other items in the set to 

which it presumably belongs.  Outlier detection is a method for capturing those 

objects that are notably different from the others (Zimek et al., 2014).  

 

4.2  Outlier Methods  

 The process of outlier detection obviously entails preliminary 

considerations.  First, several methods have been addressed in the literature, 

including but not limited to classification, nearest neighbor, clustering, and 

statistical based anomaly detection methods (Chandola et al., 2009).  Method 

selection is an important step, and will be at least partially driven by the data 

itself.  For example, the presence of label information might suggest a 
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classification-based approach is most suitable, whereas the absence of such 

information might indicate that a clustering or nearest neighbor-based solution is 

desirable.  Given the nature of this study, outlier detection will obviously rely 

upon clustering-based techniques.  For example, one assumption in clustering-

based anomaly detection is that normal objects within a cluster are nearest the 

cluster representative while exceptions are furthest from this value.  This intuition 

is adopted as one foundation for identifying whether data points qualify as 

anomalous. 

 Because the centroid is defined as the average value for a group of 

records within a cluster, the arithmetic average might be initially thought of as an 

appropriate reference point to which all other objects in a profile should be 

compared.  However, the mean is a satisfactory measure of central tendency 

only when a normal distribution exists or is at least approximated.  In many 

cases, this condition might not hold.  In these scenarios, the median is a superior 

measure of central tendency.  Furthermore, the median is as good as the mean 

when the data distribution is Gaussian or near-Gaussian, suggesting the median 

is the preferred metric in general.  Given this, the median is employed as the 

measure of central tendency in this chapter.  More specifically, the median will be 

computed for each dimension within each cluster, resulting in a median vector 

representative for each partition.  The four median vectors then serve as the set 

of benchmark values for conducting outlier detection in the various clusters. 
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4.3  Outlier Measures 

 Second, the measure to be used for anomaly detection is an important 

consideration, because it influences performance and outcomes (Chandola et al., 

2009).  In addressing this, Zimek et al. (2014) propose the use of ensembles in 

outlier detection, whereby multiple methods are implemented in a type of majority 

voting context.  Collectively, this indicates that, instead of relying upon a single 

metric, a meaningful combination of measures could enhance overall quality of 

results.  In cluster-based outlier detection, proximity measures are often 

discussed (e.g., Tan et. al, 2005, Green and Rao, 1969).  These entail an array 

of both distance and similarity measures.  For instance, a subset of common 

distance measures are Manhattan, Minkowski, Euclidean, and Mahalanobis.  

Likewise, a few similarity measures include the Simple Matching Coefficient, 

Jaccard Coefficient, Cosine Similarity, and the Tanimoto Coefficient (Tan et al., 

2006).   

 Prior research has found that two measures of a particular type will tend to 

be more highly correlated than two metrics from differing categories (Zimek et al., 

2014).  Furthermore, distance (similarity) measures have been found to be more 

suitable in high (low) density data (Tan et al., 2006).  Given the various nuances, 

measure selection should obviously be done in a cautious and strategic manner.  
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4.3.1 Distance Measures for Outlier Detection 

In reflecting upon distance measures highlighted above, three exhibit substantial 

comparability in terms of formulaic structure.  For example, the general formula 

for Minkowski distance is: 

   Minkowski Distance  =           
  

    
 

  

   Where  n = number of observations 
       p = parameter 
      xi = the ith observation of x 
     yi = the ith observation of y 
 
 

In the above, p is a parameter and may theoretically be specified as any integer 

value above zero.  However, when p = 1, Minkowski distance is reduced to 

Manhattan distance, and when p = 2, it becomes Euclidean distance.  Because 

of these fundamental relationships, it is presumably not worthwhile to incorporate 

more than one of these three measures in a particular outlier detection 

ensemble.   

 In further exploring available distance measures, Chandola et al. (2009) 

find that Euclidean distance is popular in the context of outlier detection.  In 

addition, no prior intuition exists concerning what an appropriate parameter 

setting for p would be in the case of Minkowski distance.  Furthermore, when 

attempting to locate outliers in n-dimensional space, Euclidean distance would 

undoubtedly be more suitable than Manahattan.  Therefore, Euclidean distance 

is initially selected as one candidate method for exception identification.  The 

associated equation for Euclidean distance follows: 
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Euclidean distance = d(p,q) = d(q,p)              

          =          
         

           
  

          =           
  

    

 Where (in this study)    d = distance between two vectors p and q 
                                 p = a given customer record (vector) 
                                         q = median vector of a cluster (benchmark  
        vector) 
  

 Interestingly, Mahalanobis distance is fundamentally distinct from the 

other three aforementioned distance measures in that it incorporates the 

covariance matrix of the data when computing distance information.  In addition, 

it has been found to be quite successful in multivariate anomaly detection 

(Starkweather, 2013).  However, a lingering question relates to the appropriate 

estimator for Mahalanobis distance.  Holgersson and Karlsson (2012) 

investigated this phenomenon and found that, in very high-dimensional data 

where n (number of objects)  and p (number of dimensions) were comparable, 

the traditional estimator performed poorly relative to a ridge-based estimator.  

Conversely, in cases where n was 3.33 times greater than p, both versions 

performed equally well.  It was concluded that all estimators of Mahaloanobis 

distance performed adequately, except in cases of extremely high dimensionality 

wherein number of features was comparable to number of objects.  In this 

chapter, there are only four dimensions involved in analysis.  Furthermore, the 

smallest cluster contains 120 objects.  Consequently, a traditional estimator of 

mahalanobis distance is clearly sufficient for outlier detection in this setting.  The 

resulting formula is: 
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     Mahalanobis Distance  =                    
 
     Where   x = an observation or object 
         μ = mean value (median in this study) 
        S = covariance matrix 
 
At this point, two distance measures, Euclidean and Mahalanobis, are included in 

the emerging outlier detection scheme.  Moving forward, other proximity 

measures are contemplated. 

  

4.3.2  Similarity Measures for Outlier Detection 

 Similarity measures are able to assess the degree of likeness between 

any two objects.  Within this domain, Tan et al. (2006) discuss the Simple 

Matching, Jaccard, Cosine Similarity, and Tanimoto coefficients.  While these are 

often used in analysis of document data, a subset are useful elsewhere.  More 

specifically, the Simple Matching and Jaccard coefficients both rely upon usage 

of binary data in determining the extent to which any two records are similar.  

Consequently, they are not applicable in the current study because non-binary, 

numeric dimensions are present.  Conversely, Cosine Similarity and the 

Tanimoto Coefficient both entail the computation of vector lengths and dot 

products such that objects possessing non-binary, quantitative dimensions are 

able to be measured.   

 Cosine Similarity computes the cosine of the angle between two arrays x 

and y.  In this paper, x is a record and y is the benchmark (median) vector.  In 

calculating Cosine Similarity, a value of one stipulates the angle between two 

vectors is zero degrees, demonstrating the two objects are perfectly identical.  At 
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the other extreme, a value of zero means the angle between two vectors is 90 

degrees, and, thus, the two objects are completely dissimilar (Tan et al., 2006).  

The associated calculation for Cosine Similarity follows: 

         Cosine Similarity  =  cos(x,y)  =   
     

       
 

 
          Where     x = a vector x (record or object) 
       y = a vector y (record or object); in this study, y is the  
             median vector (benchmark vector) 
     
The Tanimoto Coefficient is also referred to as the Extended Jaccard Coefficient.  

Like Cosine Similarity, it may be used in cases of non-binary data (Tan et al., 

2006).  Also, a value of one indicates complete similarity while zero dictates 

complete dissimilarity.  The formula is: 

  Tanimoto Coefficient  =   
     

                  
 

  Where     x = a vector x (record or object) 
        y = a vector y (record or object); in this study, y is the 
    median vector (benchmark vector) 
  

While Cosine Similarity and the Tanimoto Coefficient have identical numerator 

terms, they differ considerably in denominator structure.  Consequently, the two 

measures could each provide incremental value in the outlier detection process.  

Furthermore, because two distance measures are being incorporated, it seems 

advisable to employ an equal number of similarity measures so as to construct a 

balanced evaluation scheme.  With the measurement selection phase complete, 

three additional considerations emerge.   
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4.4  Outlier Detection Method - Additonal Considerations 

 First, the distance measures are such that objects with larger values have 

higher probabilities of being anomalous.  On the other hand, similarity measures 

result in assessments that are exactly opposite of this.  To streamline and 

simplify outlier identification, all measures should operate in the same direction.  

In achieving this, similarity measures are converted to dissimilarity measures by 

simply subtracting the associated formulas from one (Tan et al., 2006).   

 Second, a threshold value will be helpful for suggesting a rough cutoff 

point relative to outlier status.  Chandola et al. (2009) discuss two possibilities for 

this.  The first is based upon the box plot (Tukey, 1977), and is referred to as the 

box plot rule.  One part of this rule argues that any object greater than 1.5 times 

the inter-quartile range (75th percentile - 25th percentile) below the 25th 

percentile or above the 75th percentile is deemed anomalous.  Acuna and 

Rodriguez (2011) elaborate on the second part of the box plot rule by discussing 

both mild and severe outliers.  They mention that mild anomalies are those lying 

beyond 1.5 times but no more than 3 times the inter-quartile range below the 

25th and above the 75th percentiles.  An object residing more than 3 times the 

inter-quartile range beneath the 25th percentile or beyond the 75th percentile is 

treated as a severe outlier.  

 An alternative approach for threshold establishment suggests that any 

record beyond +/- 3 standard deviations from the mean qualifies as an exception.  

Initially, at least partially because of its non-parametric nature, this study 

incorporates the box plot approach.  It should be emphasized that the 
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benchmarks will serve as mere heuristics, thus helping to flag the set of most 

significant objects. 

 Third, a method is needed for ranking identified exceptions in an 

aggregated manner so the most egregious outliers may be investigated first.  

Issa (2013) found that a large number of anomalies (i.e., "exceptional 

exceptions") are often generated such that examination of all outliers is 

impractical.  Furthermore, many exceptions could actually be false positives that 

unnecessarily consume investigatory resources.  To address this problem in one 

particular context, a methodology based upon a predictive ordered logistic 

regression model is incorporated to review and prioritize control risk 

assessments so that investigation emphasis is placed upon the most problematic 

issues (Issa & Kogan, 2014).  In another study, a suspicion score system is 

developed and implemented for prioritizing records relative to internal control rule 

violations in transactional data, thereby again confronting the issue of 

"exceptional exceptions" (Issa et al., 2015).  Once again, this procedure 

facilitates the productive use of scarce resources in examining problematic 

records.  With this in mind, and, given that four separate measures are being 

adopted in this paper, a scoring procedure is implemented for aggregating and 

ranking objects in each evaluated profile.   

 In particular, within each group, each of the four measures is normalized 

on a (0,1] scale in a manner comparable to how quantitative dimensions (e.g. 

AccountAge, CreditLimit, etc.) were preprocessed in chapter one.  However, the 

formula used in this stage is simplified, and, most important, it ensures that a 
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normalized measure for a given object will not have a value of zero unless it is 

identical to the median vector.  While it might be that either form of normalization 

achieves substantially similar results, the selected alternative is more technically 

precise.  This formula for normalizing distance and dissimilarity measures was 

applied in Scandizzo (2005) and follows: 

 

                         
            

             
 

 

Following normalization, the outlier score for a given object is computed as the 

sum of the four normalized measurements for that record.  With this approach, 

an outlier score can lie be between zero and four, inclusive.  This anomaly 

detection method is fully automated within R, and is written such that individual 

weights can be readily manipulated for each measure in cases where differential 

weighting is warranted.  By default, each metric is given equal weight, and, 

because it is not known in advance whether unequal weightings should be 

applied, default settings will be used in the following analysis section. 

 

4.5  Analysis  

 Relying upon the aforementioned methodology, each cluster is separately 

explored to determine the extent to which exceptions might exist.  For 

convenience, the code pertaining to this section is provided in Appendix C.  In 
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addition, the processing routine results in an output file that can be further 

analyzed in other environments such as Tableau, Clickview, Excel, etc.  

 

4.5.1  Cluster 1 Evaluation 

 Initially, cluster 1 is visualized using Tableau, and an array of pair-wise 

complete scatter plots follows in Figure 21. 

Figure 21:  Outlier Plots - Cluster 1 

 
 
In each of the above graphs, the representative value (i.e. median vector) exists 

at the origin.  Therefore, objects appearing furthest from this region are most 

likely to be anomalous.  Several items are well away from the origin, but not all 

measures yield consistent evidence.  For example, record 145500 is highlighted 
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in red in the upper set of images.  In terms of Mahalanobis, Euclidean, and 

Tanimoto, it is identified as furthest from the median value.  Conversely, it is 

relatively comparable to the median in terms of Cosine Similarity.  In another 

example, record 183782 is highlighted in orange in three regions of the above 

collection of plots.  Based upon Cosine Similarity, this object is most different 

from the cluster representative.  On the other hand, it does not appear as 

exceptional according to the remaining three measures.  Given the lack of 

consistency, it is useful to consider outlier score information created through 

aggregating the four measurements for each object.  A dashboard relating to this 

follows in Figure 22. 

Figure 22:  Outlier Dashboard - Cluster 1 

 
 
Because this cluster contains over 140,000 records, all views except for the box 

plot are limited to objects with outlier scores above 2.5.  Also, recall that a point 



- 74 - 
 

 
 

with a higher outlier score is more likely to be anomalous.  Consequently, it is not 

alarming that record 145500 possesses the largest score (i.e., 3.3128), given it 

was identified as the most probable outlier by three of the measures.  

Interestingly, record 183782 does not appear in the restricted dashboard view, 

even though it was labeled as most dissimilar to the cluster representative 

according to Cosine Similarity.  This occurred because the object received low 

measurements via the remaining three metrics.  Of additional interest, only three 

records possess outlier scores above 3.  In the box plot view, points above the 

red horizontal line correspond to those that are greater than three times the inter-

quartile range above the 75th percentile.  Such objects are viewed as potentially 

egregious outliers, and, as can be seen, a large number of exceptions are 

identified.  Fortunately, outlier scores provide a ranking mechanism, such that 

objects with higher scores are more likely to be anomalous.  Consequently, 

investigations should begin with the record having the highest outlier score, and 

proceed in a descending fashion. 

 

4.5.2  Cluster 2.1 Evaluation 

 Moving forward,  cluster 2.1 is examined in a similar manner, and a set of 

standard plots is generated in the following view. 
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Figure 23:  Outlier Plots - Cluster 2.1 

 
 

In the above, one object clearly emerges as most noteworthy regardless of 

measure considered.  Specifically, record 31968 is circled in red in the upper set 

of views, and is the most anomalous according to each of the four metrics.  In 

fact, separation between this point and and the next most probable outlier 

appears substantial.  For example, while record 31968, highlighted in orange 

above, is seen as second most different from the representative value in terms of 

the two similarity measures, it is less anomalous based upon the two distance 

measures.   

 Moving forward, an outlier dashboard is again constructed to provide an 

ordered presentation of findings.  Incidentally, this cluster contains nearly 8,000 
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records.  As such all but the box plot view is limited to data points with outlier 

scores above 2.7.  The dashboard is reproduced in Figure 24, and allows for 

some interesting observations. 

Figure 24:  Outlier Dashboard - Cluster 2.1 

 
 
 
First, record 31968 has an extremely high outlier rating of 3.987.  This is about 

16 percent higher than the second largest score, suggesting that the object 

stands out even among the set of potential anomalies and is therefore of 

particular interest.  Second, the box plot view shows that objects with scores 

above about 1.7 are viewed as severe outliers.  While this again appears to be a 

case of "exceptional exceptions" (Issa, 2013), only 106 records would be 

subjected to further review based upon this criterion.  In addition, recall that the 
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outlier score effectively ranks each object such that investigation ensues by first 

examining the record with the highest score and continuing in a descending 

manner. 

4.5.3  Cluster 2.2 Evaluation 

 At this juncture, cluster 2.2 is visualized using Tableau, and an array of 

pair-wise complete scatter plots follows in Figure 25. 

Figure 25:  Outlier Plots - Cluster 2.2 

 
 
This group only contains 120 points and is thus classified as a small membership 

cluster.  Given this, an outlier detection exercise is not specifically required here.  

In practice, all objects with small membership status are considered problematic 
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and should be targeted for further review.  However, to maintain consistency, all 

clusters are visualized in this chapter.  In the above figure, although all points are 

deemed anomalous, one is significantly different from the others.  Specifically, 

record 129834 is circled in red in the upper set of images, is well separated from 

the other objects, and yields the highest assessment by all four measures. 

 At this point, the outlier dashboard view is incrementally beneficial to 

consider.  This follows in Figure 26. 

Figure 26:  Outlier Dashboard - Cluster 2.2 

 

 
 
Record 129834 received the highest possible outlier score of 4.  Furthermore, 

this value is nearly twice that of the second most anomalous object, suggesting it 

indeed is an outlier among outliers.  Also, according to the box plot rule, only two 
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records (i.e., 129834 and 91601) are stipulated as substantial outliers.  However, 

this heuristic need not be referenced as this is a small membership cluster 

whereby all objects are viewed as outliers by definition.  Nevertheless, it is 

interesting to appreciate the relationships between the clustered set of points. 

 

4.5.4  Cluster 3 Evaluation   

 Finally,  cluster 3 is examined in a similar manner, and a set of standard 

plots is generated. 

Figure 27:  Outlier Plots - Cluster 3 

 
 
Note that cluster 3 only has 147 records, and, as such, is also a small 

membership cluster.  Therefore, all records would normally be investigated.  
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Nevertheless, it is interesting to note that one object clearly emerges as the most 

prominent.  In particular, record 77090 is circled in red in the upper set of views, 

and is the most anomalous according to three of the four metrics.  In addition, it 

is seen as fourth most dissimilar according to Cosine Similarity.  

 Moving forward, an outlier dashboard is again constructed to provide for 

an ordered presentation of findings.  This is reproduced in Figure 28. 

 
Figure 28:  Outlier Dashboard - Cluster 3 

 
 
Record 77090 has the highest outlier score, and is thus considered the most 

anomalous object in this cluster.  Also, according to the box plot rule, no records 

are identified as egregious outliers.  However, once again, the heuristic is not 
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necessary because this is a small membership cluster wherein all objects are 

subject to investigation. 

 The above outlier detection method demonstrates ability to not only 

identify potential exceptions, but also prioritize them in a manner so as to 

facilitate productive use of valuable and scarce investigatory resources.  As 

mentioned previously, although the scheme is applied in an effort to locate 

customers who do not fit established profiles, it can be implemented in ostensibly 

any outlier detection activity for which the associated data is able to be 

represented numerically.  For example, auditors could employ this method in 

locating anomalous transactions for the purposes of fraud discovery.  Also, the 

approach could be used during the course of an audit for other activities including 

but not limited to audit planning, risk assessment, and analytical procedures.  

One example of such an application follows in the next section. 

 

4.6  Outlier Detection Implementation Example - Ratio Analysis 

 Ratio analysis is a common analytical procedure in auditing.  It typically 

entails evaluating four different types of measures, including liquidity, leverage, 

profitability, and activity ratios (Whittington and Pany, 2008).  Historically, a 

univariate approach is adopted, whereby each ratio is considered in isolation and 

compared against the industry benchmark.  While such a piecemeal technique 

has value, it fails to identify relationships exhibited via the combination or 

synthesis of all examined ratios.  For example, in anomaly detection, objects 

identified as outliers in univariate space are often not found to be multivariate 
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outliers (Starkweather, 2013).  This suggests that a multivariate scheme is 

important to consider, and consists of treating the set of company ratios as an 

array to be compared with the industry benchmark vector of identical ratios (e.g., 

median, mean, etc.). 

 In achieving this, an assortment of measures of differing types might be 

considered.  For instance, two popular distance-based metrics include 

Mahalanobis and Euclidean distance.  Furthermore, two common similarity 

measures are Cosine Similarity and the Tanimoto Coefficient (Tan et al. 2005).  

In deciding what measure(s) to incorporate, two issues must be confronted.  

First, no metric is strictly superior, and ensembles of multiple approaches have 

been shown to be particularly effective (Zimek et al., 2014).  In fact, each 

measure possesses a set of strengths and weaknesses, and these should be 

contemplated in advance of measure selection.  Second, two metrics in a 

particular category tend to be more highly correlated than two measures of 

differing types (Zimek et al., 2014).  Given these observations, an approach that 

employs a combination of measures might be explicitly considered.   

 In the analysis example that follows, the four aforementioned measures 

are used individually and in the aggregate to perform multivariate ratio analysis of 

firms in the retail industry.  The compiled data is from Compustat, consists of 

entities with Standard Industrial Classification (SIC) codes between 5000 and 

5999, and pertains to business operations during the 2013 fiscal year.  Evaluated 

ratios are as follows:  1) current ratio, 2) long-term debt-to-equity ratio, 3) return 

on assets, and 4) inventory turnover.  In preparing the data for analysis, ratios 
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are standardized so that no single item will dominate outcomes.  For example, 

consider the current ratio and inventory turnover.  A typical current ratio might be 

about 2, whereas the usual inventory turnover value would be significantly higher 

(e.g., 7).  Also, turnover would tend to occupy a larger range relative to the 

current ratio.  If the amounts are not standardized, then turnover would dominate 

evaluation, thus biasing results.   

 In computing distance and similarity measurements, the median firm is 

used as the benchmark or comparison array.  For example, in calculating a given 

measurement for a particular company, the organization's ratio vector and the 

median firm's ratio vector are the computational inputs.  In addition, after 

calculating similarities, results are converted to dissimilarities.  In this way, a 

larger value for any given measure is always indicative of greater absolute 

distance or difference from the median firm.  Finally, for each entity, the four 

measurements are normalized on a (0,1] scale, and summed to arrive at a final 

outlier score (as previously described).  In the multivariate ratio analysis task that 

follows, company code 1106838 assumes the role of auditee. 

 To maximize efficiency, data processing is fully automated in R, and the 

resulting output file is used for subsequent visualization in Tableau.  A pair-wise 

complete set of normalized distance/dissimilarity plots for all objects follows in 

the next figure. 
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Figure 29:  Plots - Multivariate Ratio Analysis 

 
 

In each image, the median firm exists at the origin.  Therefore, objects farther 

from this location are more distant/different from the industry benchmark.  For 

example, the auditee is circled in the lower left graph, and is identified as 

substantially different from the median firm in terms of both Tanimoto and Cosine 

dissimilarities.  This client is again highlighted in the upper left plot.  In this case, 

the object is not as far from the origin when only considering distance measures, 

and certainly not perceived as anomalous when using Mahalonobis distance as 

the exclusive criterion.  While this viewpoint offers preliminary value, an 

aggregated representation of all measures yields more specific insights.   
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 In achieving this, each metric is given equal weighting.  For each object, 

the four measurements are summed during the data processing step to yield a 

final outlier score.  Because each measure is normalized on a (0,1] scale, the 

maximum score for an object is four.  The outlier score dashboard follows in 

Figure 30. 

 Figure 30:  Outlier Score Dashboard - Multivariate ratio analysis  

 

Except for the box plot, image views are restricted to organizations with outlier 

scores of at least 2.0 so as to reduce clutter.  A heat map is shown in the upper 

left section of the dashboard, and the size and color of each rectangle 

correspond to the relative magnitude of an outlier score.   For instance, company 

30697 has the shape with the largest area and most intense color scheme.  
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Consequently, it is viewed as having the highest probability of being anomalous.  

A comparable observation can be made from examining the lower left image.  In 

this case, size alone is indicative of outlier status.  Once again, company 30697 

is depicted as the most irregular object, although this finding is not as easy to 

deduce.   

 Of the 25 entities specifically depicted, the auditee has the 17th highest 

outlier score (i.e., 2.472), suggesting that, while several other firms are more 

likely to be anomalous, the auditee is nevertheless worthy of further investigation.  

For example,  the box plot image shows objects with outlier scores above about 

1.4 fall beyond the "normal" range of the data distribution.  More specifically, 

about 98% of points are expected to lie between the upper and lower horizontal 

lines of the box plot.  Also, a red horizontal line is stationed at three times the 

inter-quartile range above the 75th percentile such that, objects above that line 

are seen as severe cases.  This stipulates records with scores above about 2.2 

qualify as potentially serious outliers.  Incidentally, the auditee occupies this 

category. 

 To provide for contrast, ratios of the:  1) median firm, 2) entity with the 

lowest outlier score, 3) auditee, and 4) object with the highest outlier score are all 

presented in Table 17. 

Table 17:  Ratio Comparisons - Multivariate ratio analysis 

Company Current 
Ratio 

LT Debt-to-
Equity 

ROA Inventory 
Turnover 

Outlier 
Score 

Median 1.66 .29  .04     7 0.000 

791519 1.56 .16  .05     7 0.016 

1106838   .31 .07 -.38   26 2.472 

30697 2.64 .73  .01 152 3.988 
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In the data set, overall median and mean outlier scores are only .214 and .526, 

respectively.  As such, although there are 16 entities with outlier scores greater 

than 2.472, the auditee is still substantially different from the typical firm in this 

industry.  Furthermore, the client occupies the lower end of the distribution, 

suggesting the organization has an unfavorable relative standing.  In particular, 

its current ratio, long-term debt-to-equity ratio, and ROA values are all well below 

the associated industry benchmarks.  Of particular concern, ROA is highly 

negative, demonstrating the company suffered a relatively high net loss during 

2013.  If the auditee is mature and well-established, this is a significant issue.  

Conversely, the client's inventory turnover ratio is nearly four times larger than 

the median firm, and this in isolation might be viewed in a positive light.  Also, it 

could at least partially explain the abnormally low current ratio.  However, when 

taken in a multivariate context, the company's performance is clearly 

substandard and suggestive of substantial risk.  This would have a significant 

impact on risk assessment outcomes and subsequent formulation of the audit 

plan.  By contrast, the object having the lowest outlier score is quite comparable 

to the median firm, indicating it is generally operating in alignment with what 

would have been expected of firms in this industry during 2013. 

 It should now be more apparent the outlier detection method proposed, 

developed, and implemented in this section is applicable to a variety of 

accounting and auditing activities.  A primary pre-condition for its usage is that 

the associated data is able to be meaningfully represented in numeric terms.  

Given that the program code is provided in Appendix C, it can be readily 
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adopted, adapted, and/or translated, thus facilitating ease of use.  Collectively, it 

is hoped that this paper and the information provided within it will help to propel 

the accounting profession forward relative to the adoption of technology and 

automation in conducting future accounting and auditing tasks in a more 

productive manner. 
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CHAPTER 5:  CLUSTERING AND OUTLIER DETECTION 

APPLICATIONS AND USAGE DISCUSSION 

 

5.1  Introduction 

 To finalize this paper, procedures and approaches documented in the 

essays thus far are considered and synthesized to produce a seamless set of 

applications capable of performing clustering and outlier detection processes.  

The R code for this is contained in Appendices D and E.  The program in 

appendix D is most useful on smaller data sets, generally accommodating up to 

about 20,000 records.  Conversely, the application in Appendix E can ostensibly 

be used on both smaller and larger data sets.  At this point, the programs may be 

viewed as initial prototypes offering proofs of concept relative to feasibility of 

automating clustering and outlier detection. 

 

5.2  Background and Application Usage Information 

 Both programs operate with some assumptions relative to the data to be 

analyzed.  Initially, it is assumed the first column of data is reserved for a unique 

identifier, and all subsequent columns are to be processed by the application.  

Also, the data to be evaluated must be represented on a truly numeric basis.  For 

example, if an attribute to be clustered is of an interval or ratio nature, then it is 

already in a satisfactory state and can be used as is.  In more technical terms, 

interval and ratio data both demonstrate the properties of addition and 

subtraction (Tan et al., 2006), and thus are truly numeric representations.   
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 Conversely, categorical and ordinal data do not possess the properties of 

addition and subtraction, and are therefore not truly numeric.  For example, if we 

consider two account numbers in a general ledger, 1000 and 2000, it is not 

sensible to speak of account number 2000 as being the sum of account number 

1000 plus account number 1000.  In fact, this is categorical data, and needs to 

be modified before use.  One method for achieving this is asymmetric 

binarization (Tan et al., 2006).  This entails constructing a unique binary string for 

each distinct value of a target dimension.  For instance, if there are eight distinct 

account numbers in a data set to be analyzed, then a binary string of length eight 

is required to uniquely portray the attribute, thus effectively creating a new set of 

eight dimensions from the original account number variable.  The first unique 

account number might be binarized as 10000000, the second as 01000000, the 

third as 00100000, and so on until each distinct value for account number is 

converted to a unique binary string.   

 In the case of ordinal attributes, data is able to be ranked or ordered (Tan 

et al., 2006), but could require modification prior to use.  For example, academic 

grades A to E are considered ordinal data because they can be ranked in terms 

of favorability.  More specifically, an "A" is better than "B", a "B" is superior to an 

"C", and so forth.  One simple approach for transforming ordinal data entails 

establishing numbers that "mimic" the ordinal rankings in some logical manner.  

For instance, the letter grades A to E might be converted to the numbers 5 to 1, 

respectively.  One issue with this type of transformation scheme is the inherent 

assumption that distance between any two adjacent ordinal values is identical 
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(e.g., that distance between "A" and "B" is the same as that from "D" to "E"),  and 

this will not always be true.  Nevertheless, this form of ordinal transformation is 

discussed in the literature and done in practice (Tan et al., 2006).  Prior to 

running the programs in Appendix D or E, the data set must be structured so that 

all but column 1 contains data to be analyzed and that all dimensions to be 

evaluated are represented in meaningful, numeric terms.  As a final caveat, one 

should only include those attributes believed to be truly relevant for the clustering 

task. 

 The programs in appendices D and E also contain user specified 

parameters, although default settings are used where feasible to mitigate 

complexity.  For example, simulation routines are configured to explore models 

having between 3 and 15 clusters, inclusive, but the user is able to adjust the 

range if desired.  On the other hand, certain line items must be at least initially 

set by the user, such as path name for the data set to be imported for analysis 

and path names of destinations for processed information. 

 In the first program, some key parameters must be entered by the user.  

First, line 19 indicates the path where the data set to be analyzed resides.  

Incidentally, all path names are enclosed in quotes.  Second, line 398 specifies 

location where the initial clustering model output file should be sent.  Last, lines 

452 to 604 indicate the destination path for sending final output files, which are 

segregated by cluster and contain distance information resulting from outlier 

detection.  While there are several line items relative to output path settings, it is 

conceivable these would only need to be configured once by a given user.  On 
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the other hand, the data import path (i.e., line 19) might need to be modified 

frequently.  This program also contains some parameters with default settings.  

Specifically, "mink" and "maxk" are pre-set at 3 and 15, respectively.  

Nevertheless, they are located on lines 95 and 96, and can be manipulated if 

desired.  However, a condition is that "mink" cannot be set higher than "maxk". 

 The second application also requires the user to enter path information.  In 

particular, the import path is specified on line 24, and the output path line items 

are on lines 178, 373 to 525, and 713 to 865.  Once again, the import path 

command (i.e., line 23) might be expected to change often, while the output 

paths could be designed so as to remain substantially constant.  In addtion, there 

are some optional settings to consider.  First, a sample size can be selected.  

This parameter appears on line 104 (i.e., "sample" variable), and is set at 40,000 

by default.  Second, "minclust" and "maxclust" exist on lines 126 and 127, and 

they specify the range for number of clusters to be used in the simulation 

routines.  As with the previous program, these are also set at 3 and 15 by default, 

and the user can adjust them if necessary. 

 Basically, the two programs may be executed in an identical manner.  

More specifically, assuming that parameters are set as desired and that all 

necessary R packages have been imported/added to the RStudio library, the 

user may simply open an instance of RStudio, left-click the "Compile Notebook" 

icon located near the top of the upper-left window, select the "Compile" button, 

and await results.  When completed, the user will be presented with an electronic 

HTML document containing the R program code along with associated execution 
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notations, tables, and visualizations.  Incidentally, if a PDF or MS Word version of 

this document is preferred, this may be obtained by selecting the desired option 

from the drop-down list in the "Compile Notebook From Rscript" window prior to 

selecting the "Compile" button.  Furthermore, processed output files in .csv 

format will be sent to the output path locations as specified by the user, and 

these can be used in performing addtional analyses in programs such as Excel, 

Tableau, Clickview, etc. as desired.  

 Two limitation issues in R are worth mentioning.  First, all versions of 

RStudio are not compatible with all existing R packages.  Consequently, a new 

version of RStudio may not recognize all packages executable in earlier editions.  

Given this, it cannot be guaranteed that the programs in Appendices D and E will 

immediately operate as intended on any version of R5.  However, it should be the 

case that, at most, only minor modifications are necessary. 

 Second, R relies on random access memory (RAM) when processing 

data.  In some cases, the amount of required RAM can be substantial, and, in 

such contexts a server environment is highly recommended.  Also, even if a 

satisfactory amount of RAM is available, R might not be able to access it without 

additional configuration.  For example, if attempting to maximize memory access 

in a system with 64GB of RAM, right-click the RStudio executable file, left-click 

"properties", and, in the "Target" field following the end of the path name, enter " 

--max-mem-size=64G" followed by " --max-vsize=64G".  Similarly, if the system 

                                                      
 

5
 These programs were written using 64-bit R in conjunction with RStudio version 3.0.2.  32-bit 

versions of R have significant memory limitations and are not recommend here. 



- 94 - 
 

 
 

has 96GB of RAM, enter essentially the same information, except replace "64" 

with "96".  Ensuring that sufficient RAM is available and is able to accessed is 

one key to improving the R experience. 
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CHAPTER 6:  LIMITATIONS, FUTURE RESEARCH, AND 

CONCLUSIONS 

 

6.1  Limitations and Future Research 

 As with most studies, this paper has limitations and presents opportunities 

for future research.  First, the data set is viewed as somewhat lacking in terms of 

available dimensions.  For instance, while information such as customer profit 

and revenue are presumably captured by the banking institution, the data set 

contains missing values for these items.  Additional information could offer 

incremental value in comprehensively profiling the customer base.  Therefore, if 

more exhaustive data could be obtained, it would be worth analyzing.  While I 

believe the current results are meaningful, perhaps they could be enhanced via 

inclusion of other pertinent features.  

 Second, the formula implemented in establishing overall scores for 

clusters in chapter 3 is rudimentary and could be targeted for reengineering.  For 

example, only three of the four dimensions were given weightings based upon 

the findings of prior research.  The remaining feature was simply assigned 

influence based upon the available amount remaining following establishment of 

other weights.  Furthermore, a certain amount of extrapolation is required to 

make the sum of all weights equal one.  As such, a degree of subjectivity is 

inherent in this task.  Also, each score is computed simply as the sum of the 

products of each dimension value and associated weighting.  It would be 

instructive to determine the specific importance level of all variables and assign 
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weights in a fully objective manner.  It could also be that the scoring formula itself 

would benefit from further enhancements. 

 Third, data mining often involves analysis of extremely large data sets.  In 

this context, the notion of statistical significance between groups in a large 

population is problematic and perhaps even meaningless.  More specifically, the 

tendency in research is that, as the number of observations increases, the 

probability of finding significant outcomes also increases.  Consequently, it is not 

surprising that clustering results will often be found to be significant if testing is 

conducted on the full population.  Given this as well as the perceived utility of 

employing tests of statistical significance in this domain, the ability to extract and 

test representative samples is highly desirable.  However, an immediate 

empirical question concerns what a preferred sample size is in the clustering 

context, particularly in the case of unbalanced groups.  Future research might 

explore this issue in an effort to establish parameters concerning sampling from 

populations in cases of conducting statistical tests of clustering models. 

 Last, while user-defined weight parameters are incorporated for use in 

conducting outlier detection, intuition and/or information is lacking concerning 

what each weight should be for a each distance/dissimilarity measure.  

Consequently, equal weight was attached to each metric in this study.  It is likely 

that appropriate weight settings would be a function of the data being analyzed, 

and perhaps heuristics could be developed through subsequent research.  For 

example, because Mahalanobis Distance has been found to be particularly useful 

in multivariate outlier detection, the weight on this measure might be expanded 
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as the number of dimensions increases.  Conversely, it could be that Euclidean 

Distance becomes less suitable as the number of dimensions grows, suggesting 

its weight should be reduced in such cases.  Also, as the density of data 

decreases, this might dictate that greater (lesser) weight be placed on the 

similarity (distance) measures.  Determining specifics about what actual 

weightings should be in given situations produces a set of empirical questions 

justifying further study.  At least partially because this is a newly proposed 

method in need of validation, it would be interesting to assess the approach on a 

variety of data specifically seeded with outliers. 

 One obvious outcome for this project relates to providing information for 

creating formal and objectively determined customer profiles that can be 

translated into a set of customer relationship management policies.  Because 

each segment relates to a distinct client type in terms of creditworthiness, each 

group should be managed differently.  For example, the most creditworthy 

customers might be viewed as an irreplaceable and extremely valuable asset.  In 

this case, extensive efforts should be made in the areas of customer satisfaction 

and retention initiatives relative to individuals fitting this profile.  Furthermore, this 

group should be rewarded for their responsible handling of credit as well as the 

contributions they make toward the long-run success of the institution.  For 

example, among other things, they should be eligible for the highest credit card 

fee discounts.    

 The main purpose of this study entails initial formulation of automated 

clustering and outlier detection programs.  It is hoped they can be used or 
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adapted for use to provide valuable information to auditors and accountants in 

fulfilling their responsibilities to relevant stakeholder groups.  In very specific 

terms, the programs are designed for use by auditors in the fraud discovery 

process.  However, they should have utility in a variety of settings.  Throughout 

this paper, emphasis was placed upon substantial automation of associated 

tasks.  Upon completion of initial work, the program code was then reformulated, 

synthesized, and logically connected such that two separate applications 

eventually resulted.  In fact, the initial program proved to be primarily useful for 

relatively small data sets (see Appendix D).  Consequently, a second application 

was created to accommodate larger amounts of data (see Appendix E).  My 

belief is that, both programs demonstrate proofs of concept that clustering and 

outlier detection are indeed automatable.  Moving forward, perhaps additional 

program modifications and/or enhancements are worth considering.  

Furthermore, in striving for efficiency gains, the R-code might be translated into 

alternative, suitable languages (e.g., C, Python, Java, etc.).  Certainly, many 

opportunities exist for building on the work conducted and artifacts developed in 

this paper.  Ultimately, if the programs are found to be beneficial, cost-effective, 

and user-friendly, the likelihood of adoption by the accounting profession should 

be greatly enhanced.   

 Historically, data mining initiatives can be very cumbersome, time-

consuming, and complicated.  For instance, a significant amount of expertise is 

generally needed in the areas of data pre-processing, algorithm selection, and 

model evaluation.  Furthermore, resistance to change can interact with machine 
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learning complexities so as to inhibit adoption by the profession. The methods 

presented in this paper are highly automated and, to the extent feasible, made 

intuitive.  Also, associated code is included in the appendices so as to encourage 

the accounting profession and others to move forward in experimenting with and 

using data mining technologies in efforts to improve productivity.   

 While this paper demonstrates a set of fully automated solutions, the 

programs could be adapted and enhanced to accommodate the use of other 

clustering algorithms and outlier detection routines, making it ostensibly 

applicable to a wider variety of data mining initiatives.  For example, in the 

second and third chapters, five algorithms were considered for primary model 

building.  However, the approach could theoretically accommodate other 

methods as well.  For instance, one might seek to use DBScan in addition to the 

other algorithms.  The outlier detection process described in chapter four may 

also be refined for use in other contexts.  Specifically, because the model relies 

upon computation of well-established distance and similarity measures for 

multivariate use, it is applicable to any outlier detection context, as long as the 

involved data is able to be adequately represented in numeric terms.  However, 

other recognized proximity measures could ostensibly be explored in addition to 

or as substitutes for the metrics used in this paper. 

 

6.2  Conclusion 

 Customers are a key resource for any organization, and are instrumental 

in determining the extent to which business success is able to be achieved and 
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maintained.  Customer profiling can be perceived an important initial building 

block for understanding the customer base.  When an entity is aware of its mix of 

customer types, it is better equipped to tailor business strategies, initiatives, and 

activities, and thus improve current and future company performance.   

 Organizational fraud is a growing problem for which solutions are 

desperately needed.  Fortunately, data mining techniques can readily assist in 

addressing this significant problem.  Through substantial automation of data 

mining tasks, auditors can more easily employ clustering and outlier detection in 

fulfilling their duties in the evolving real-time global economy.  In so doing, they 

will be better positioned to add value to and advance the accounting profession 

both now and in the future. 
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APPENDIX A:  RSCRIPT - CHAPTER 2 CLUSTERING 

 
 
 
#Chapter 1 - Stage One Cluster Analysis and Testing 
#Stage One - Part I 
#Data preprocessing 
#Load necessary packages 
library(cluster) 
library(mclust) 
library(stats) 
library(plyr) 
library(Rcmdr) 
library(gplots) 
library(scatterplot3d) 
library(chemometrics) 
library(fields) 
library(fastcluster) 
library(EMCluster) 
 
#Increase memory limit 
memory.size(max=TRUE) 
memory.limit(size=999999) 
 
# Read main data set CustomerDataNormalizedCSV  in R and read number of 
rows 
CustomerData <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/PrimaryData/CreditCardClustering1.csv") 
View(CustomerData) 
y <- nrow(CustomerData) 
 
#Create a data frame of CustomerData  
x1 <- CustomerData[, 1:5] 
View(x1) 
 
#------------------------------------------------------------------------------------------- 
#Normalize four dimensions to be clustered 
#Assumes dimensions to be normalized are in columns 2, 3, 4, and 5 of data 
#Normalize AccountAge column 
aa1 <- x1[[2]] 
maxaa <- max(aa1) 
minaa <- min(aa1) 
aan <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  aan[i] <- ((aa1[i] - minaa)/(maxaa-minaa)) 
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  i <- i+1 
} 
 
#Check/verify max & min normalized AccountAge column values (max=1, min=0) 
View(max(aan)) 
View(min(aan)) 
 
#Add normalized AccountAge column to data frame x1 
x1["AccountAgeN"] <- aan 
 
#Normalize CreditLimit column 
cl1 <- x1[[3]] 
maxcl <- max(cl1) 
mincl <- min(cl1) 
cln <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  cln[i] <- ((cl1[i] - mincl)/(maxcl-mincl)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized CreditLmit column values (max=1, min=0) 
View(max(cln)) 
View(min(cln)) 
 
#Add normalized CreditLimit column to data frame x1 
x1["CreditLimitN"] <- cln 
 
#Normalize AdditionalAssets column 
adda1 <- x1[[4]] 
maxadda <- max(adda1) 
minadda <- min(adda1) 
addan <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  addan[i] <- ((adda1[i] - minadda)/(maxadda-minadda)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized AdditionalAssets column values (max=1, 
min=0) 
View(max(addan)) 
View(min(addan)) 
 
#Add normalized AdditionalAssets column to data frame x1 
x1["AdditionalAssetsN"] <- addan 
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#Normalize LatePayments column 
lp1 <- x1[[5]] 
maxlp <- max(lp1) 
minlp <- min(lp1) 
lpn <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  lpn[i] <- ((lp1[i] - minlp)/(maxlp-minlp)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized LatePayments column values (max=1, 
min=0) 
View(max(lpn)) 
View(min(lpn)) 
 
#Add normalized LatePayments column to data frame x1 
x1["LatePaymentsN"] <- lpn 
View(x1) 
#------------------------------------------------------------------------------------------ 
 
#Create data frame of normalized original variables for performing principal 
components analysis 
CustomerData1 <- data.frame(x1[ , c("AccountAgeN", "CreditLimitN", 
"AdditionalAssetsN", "LatePaymentsN")]) 
View(CustomerData1) 
 
#Perform principal component analysis and show associated information 
trans <- prcomp(CustomerData1, center=TRUE, scale.=TRUE) 
print(trans) 
summary(trans) 
plot(trans, typ="l", col="2", lwd="2") 
 
PC = predict(trans, CustomerData1) 
print(PC[1:10, ]) 
View(PC) 
plot(PC, type="b", col="2") 
 
#Add all principal components to x1, thus creating x1.pc 
x1.pc <- cbind(x1, PC) 
View(x1.pc) 
  
#Normalize four principal components to be clustered 
#Assumes dimensions to be normalized are in columns 10, 11, 12, and 13 of 
data 
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#Normalize PC1 column 
pc1 <- x1.pc[[10]] 
maxpc1 <- max(pc1) 
minpc1 <- min(pc1) 
pc1n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc1n[i] <- ((pc1[i] - minpc1)/(maxpc1-minpc1)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized PC1 column values (max=1, min=0) 
View(max(pc1n)) 
View(min(pc1n)) 
 
#Add normalized PC1 column to data frame x1.pc 
x1.pc["PC1N"] <- pc1n 
 
#Normalize PC2 column 
pc2 <- x1.pc[[11]] 
maxpc2 <- max(pc2) 
minpc2 <- min(pc2) 
pc2n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc2n[i] <- ((pc2[i] - minpc2)/(maxpc2-minpc2)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized PC2 column values (max=1, min=0) 
View(max(pc2n)) 
View(min(pc2n)) 
 
#Add normalized PC2 column to data frame x1.pc 
x1.pc["PC2N"] <- pc2n 
 
#Normalize PC3 column 
pc3 <- x1.pc[[12]] 
maxpc3 <- max(pc3) 
minpc3 <- min(pc3) 
pc3n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc3n[i] <- ((pc3[i] - minpc3)/(maxpc3-minpc3)) 
  i <- i+1 
} 



- 111 - 
 

 
 

 
#Check/verify max & min normalized PC3 column values (max=1, min=0) 
View(max(pc3n)) 
View(min(pc3n)) 
 
#Add normalized PC3 column to data frame x1.pc 
x1.pc["PC3N"] <- pc3n 
 
#Normalize PC4 column 
pc4 <- x1.pc[[13]] 
maxpc4 <- max(pc4) 
minpc4 <- min(pc4) 
pc4n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc4n[i] <- ((pc4[i] - minpc4)/(maxpc4-minpc4)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized PC4 column values (max=1, min=0) 
View(max(pc4n)) 
View(min(pc4n)) 
 
#Add normalized PC4 column to data frame x1.pc 
x1.pc["PC4N"] <- pc4n 
View(x1.pc) 
 
#Get data frame of x1.pc for clustering 
CustomerDataPC <- data.frame(x1.pc [ , c("PC1N", "PC2N", "PC3N")]) 
View(CustomerDataPC) 
 
#Export x1.pc and CustomerDataPC 
write.csv(x1.pc, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/x1.pc.csv", row.names=FALSE) 
write.csv(CustomerDataPC, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/CustomerDataPC.csv", 
row.names=FALSE) 
 
 
#Stage one - Part II 
#Conduct simulation routines to locate best stage one model (silhouette 
coefficient analysis) 
#Import data for analysis (if not currently loaded) 
x1.pc <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/x1.pc.csv") 
View(x1.pc) 
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#Get a random sample of 40,000 records from population of x1.pc (set s = 
sample size) 
#Necessary because silhouette calculation will not allow use of long vectors (> 
2^31) 
#Also necessary because processing is extremely inefficient on PAM 
#Investigating the use of "bigmemory.sri" to mitigte this problem (unresolved as 
of 7/27/15) 
s <- 40000 
p <- s/nrow(x1.pc) 
View(p) 
x1.pcs <- x1.pc[sample(nrow(x1.pc),replace=F,size=p*nrow(x1.pc)),] 
row.names(x1.pcs)<-NULL 
View(x1.pcs) 
 
#Create a data frame CustomerDataPCS of 3 top PCs from x1.pcs for computing 
silhouette coeffients 
c <- ncol(x1.pcs) 
c1 <- c-3 
c2 <- c-1 
CustomerDataPCS <- data.frame(x1.pcs[ , c1:c2]) 
View(CustomerDataPCS) 
 
 
#Execute Kmeans clustering model performance sequence 
#Use loop structure for initial Kmeans model building process 
nclust=12 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(CustomerDataPCS, "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
    fit <- kmeans(CustomerDataPCS, c, iter.max=500, nstart=10, 
algorithm="Lloyd") 
    sil <- silhouette(fit$cluster, d) 
    avgsil <- summary(sil, FUN=mean) $avg.width 
    x[y, ] <- c(c, avgsil) 
    y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
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View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/SilhouetteKmeans.csv") 
 
 
#Execute PAM clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 12 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(CustomerDataPCS, method = "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit <- pam(CustomerDataPCS, c) 
  sil <- silhouette(fit$clustering, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/SilhouettePAM.csv") 
 
 
#Execute Complete-Link Hierarchical clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 12 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(CustomerDataPCS, method = "euclidean") 
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y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit2 <- hclust(d, method = "complete") 
  memb <- cutree(fit2, k=c) 
  fit$clusters <- assignCluster(CustomerDataPCS, x1.pcs, memb) 
  fit$cluster <- as.integer(fit$clusters)   
  sil <- silhouette(fit$cluster, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/SilhouetteComplete.csv") 
 
 
#Execute Ward's Method Hierarchical clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 12 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(CustomerDataPCS, method = "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit2 <- hclust(d, method = "ward.D2") 
  memb <- cutree(fit2, k=c) 
  fit$clusters <- assignCluster(CustomerDataPCS, x1.pcs, memb) 
  fit$cluster <- as.integer(fit$clusters)   
  sil <- silhouette(fit$cluster, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
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View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/SilhouetteWard.csv") 
 
 
#Execute Expectation Maximization clustering model performance sequence 
#Use loop structure for initial Kmeans model building process 
nclust=12 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(CustomerDataPCS, "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit <- init.EM(CustomerDataPCS, nclass = c, EMC = .EMC.Rnd, stable.solution 
= TRUE, min.n = 1, min.n.iter = 10, method = "Rnd.EM") 
  sil <- silhouette(fit$class, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
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write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/SilhouetteEM.csv") 
 
 
#Stage One - Part III 
#Build final stage one model 
#Read data sets for clustering in R (if necessary) 
CustomerDataPC <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/CustomerDataPC.csv") 
x1.pc <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/x1.pc.csv") 
View(CustomerDataPC) 
View(x1.pc) 
r1 <- nrow(x1.pc) 
c3 <- ncol(x1.pc) 
 
#Get random sample of records for building training model 
#Default sample size set at 50,000 (change if needed) 
sample <- 50000 
p1 <- sample/r1 
x1.pcs <- x1.pc[sample(nrow(x1.pc),replace=F,size = p1*nrow(x1.pc)),] 
row.names(x1.pcs) <- NULL 
View(x1.pcs) 
 
c4 <- c3-3 
c5 <- c3-1 
CustomerDataPCS <- data.frame(x1.pcs[ , c4:c5]) 
row.names(CustomerDataPCS)<-NULL 
View(CustomerDataPCS) 
 
#Build/evaluate stage one training model (Decision 07/27/2015: Build 3 cluster 
Complete-Link model) 
#Set c = number of clusters 
c <- 3 
 
#Compute distance matrix for training data 
d1 <- dist(CustomerDataPCS, method="euclidean") 
 
#Build training model 
fit2 <- hclust(d1, method = "complete") 
memb <- cutree(fit2, k=c) 
 
#Append cluster assignment column 
fit.clusters <- assignCluster(CustomerDataPCS, x1.pcs, memb) 
fit.cluster <- as.integer(fit.clusters) 
StageOneModel <- data.frame(x1.pcs, fit.cluster) 
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View(StageOneModel) 
 
#3D Plots of top 3 principal components with cluster assignments depicted 
p2 <- data.frame(CustomerDataPCS) 
ddd <- data.frame(p2, StageOneModel[ , "fit.cluster"]) 
names(ddd)[1] <- "PC1" 
names(ddd)[2] <- "PC2" 
names(ddd)[3] <- "PC3" 
names(ddd)[4] <- "Cluster" 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
 
#Generate data frames for subsequent analysis 
x3 <- data.frame(CustomerDataPCS) 
x4 <- data.frame(StageOneModel[ , 6:9]) 
x5 <- data.frame(StageOneModel[ , 2:5]) 
 
#Get cluster means for normalized pcs, normalized original variables, and 
original variables 
aggregate(x3,by=list(fit.cluster),FUN=mean) 
aggregate(x4, by=list(fit.cluster), FUN=mean) 
aggregate(x5, by=list(fit.cluster), FUN=mean) 
 
#Get cluster medians for normalized pcs, normalized original variables, and 
original variables 
aggregate(x3,by=list(fit.cluster),FUN=median) 
aggregate(x4, by=list(fit.cluster), FUN=median) 
aggregate(x5, by=list(fit.cluster), FUN=median) 
 
 
#Peform oUtlier detection via mahalanobis distance (training model) 
#Set initial variables for subsequent usage 
r2 <- nrow(StageOneModel) 
c6 <- ncol(CustomerDataPCS) 
b1 <- r2*.01 
x6 <- max(StageOneModel[ ,"fit.cluster"]) 
p3 <- data.frame(CustomerDataPCS, fit.cluster) 
p4 <- data.frame(arrange(p3, fit.cluster), row.names=NULL) 
p5 <- data.frame(arrange(StageOneModel, fit.cluster), row.names=NULL) 
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#Separate data by cluster, compute medians, calculate mahalanobis distances, 
and create outlier plots for each cluster 
for (c in 1:x6) { 
  nam1 <- paste("Cluster", c, sep = "") 
  z <- assign(nam1, subset(p5, fit.cluster==c))   
  z1 <- subset(p4, fit.cluster==c) 
  med <- vector(mode="numeric", length=c6) 
  for (cc in 1:c6) { 
    med[cc] <- median(z1[ , cc]) 
  } 
  z2 <- data.frame(z1[ ,1:c6]) 
  z3 <- cov(z2, use = "everything" ) 
  md <- mahalanobis(z2, center = med, cov = z3, inverted = TRUE) 
  nam4 <- paste("Cluster", c, sep = "") 
  z4 <- assign(nam4, data.frame(z, md, row.names=NULL)) 
  y2 <- nrow(z4) 
  row.names(z4) <- 1:y2 
  df.2 <- c(1:y2) 
  if (y2 >= b1) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2) 
  } 
  if (y2 %in% c(3:b1)) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2)     
    cat("Cluster",c,"has small relative membership and this warrants investigation 
of all associated objects","\n") 
  } 
  if (y2 < 3) { 
    cat("Cluster",c,"has an extremely small membership and this clearly warrants 
investigation of all associated objects","\n") 
  } 
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} 
 
#Export processed information, segregated by cluster 
write.csv(Cluster1, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/Cluster1TrainResults.csv") 
write.csv(Cluster2, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/Cluster2TrainResults.csv") 
write.csv(Cluster3, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/Cluster3TrainResults.csv") 
 
 
#Assign records clusters based on Training Model 
#Create new data frames and variables for clustering operations 
TestData <- data.frame(x1.pc) 
View(TestData) 
ClusteringTestDataPC <- data.frame(CustomerDataPC) 
View(ClusteringTestDataPC) 
 
c10 <- ncol(StageOneModel) 
FitModel <- data.frame(CustomerDataPCS, StageOneModel[ , c10]) 
c11 <- ncol(FitModel) 
names(FitModel)[c11] <- "fit.cluster" 
View(FitModel) 
 
#Compute training model cluster reps and calculate distances from all reps to 
test records 
c3.1 <- ncol(ClusteringTestDataPC) 
c12 <- max(StageOneModel[ , "fit.cluster"]) 
r4 <- nrow(ClusteringTestDataPC) 
for (a in 1:c12) { 
  g1 <- subset(FitModel, fit.cluster==a) 
  v <- vector(mode="numeric", length=c3.1) 
  for (b in 1:c3.1) { 
    v[b] <- mean(g1[ , b]) 
  } 
  v <- rbind(v) 
  v1 <- vector(mode="numeric", length=r4) 
  for (c1.1 in 1:r4) { 
    v1[c1.1] <- rdist(ClusteringTestDataPC[c1.1, 1:c3.1], v)       
  } 
  head <- paste("EucDist", a, sep = "") 
  ClusteringTestDataPC[head] <- v1   
}  
View(ClusteringTestDataPC) 
 
#Assign test records to clusters 
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c13 <- ncol(ClusteringTestDataPC) 
z3 <- c3.1 + 1 
v2 <- vector(mode="numeric", length=r4) 
v3 <- vector(mode="numeric", length=r4) 
for (h in 1:r4) { 
  t1 <- min(ClusteringTestDataPC[h, z3:c13]) 
  v2[h] <- t1 
  t2 <- which.min(apply(ClusteringTestDataPC[h, z3:c13], MARGIN=2, min)) 
  v3[h] <- t2  
} 
ClusteringTestDataPC["EuclideanDistance"] <- v2 
ClusteringTestDataPC["Test.Cluster"] <- v3 
TestData["fit.cluster2"] <- v3 
TestModel <- data.frame(TestData) 
View(TestModel) 
 
#3D Plots of top 3 principal components with cluster assignments depicted 
c13 <- ncol(TestModel) 
c14 <- c13-4 
c15 <- c13-2 
p6 <- data.frame(TestModel[ , c14:c15]) 
ddd <- data.frame(p6, TestModel[ , c13]) 
names(ddd)[1] <- "PC1" 
names(ddd)[2] <- "PC2" 
names(ddd)[3] <- "PC3" 
names(ddd)[4] <- "Cluster" 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
 
#Generate data frames for subsequent analysis 
x7 <- data.frame(ClusteringTestDataPC[ , 1:c3.1]) 
x8 <- data.frame(TestModel[ , 6:9]) 
x9 <- data.frame(TestModel[ , 2:5]) 
 
#Get cluster means for normalized pcs, normalized original variables, and 
original variables 
aggregate(x7,by=list(ClusteringTestDataPC[ , "Test.Cluster"]),FUN=mean) 
aggregate(x8, by=list(TestModel[ , c13]), FUN=mean) 
aggregate(x9, by=list(TestModel[ , c13]), FUN=mean) 
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#Get cluster medians for normalized pcs, normalized original variables, and 
original variables 
aggregate(x7,by=list(ClusteringTestDataPC[ , "Test.Cluster"]),FUN=median) 
aggregate(x8, by=list(TestModel[ , c16]), FUN=median) 
aggregate(x9, by=list(TestModel[ , c16]), FUN=median) 
 
#Get cluster counts 
count1 <- count(TestModel[ , c13]==1) 
View(count1) 
count2 <- count(TestModel[ , c13]==2) 
View(count2) 
count3 <- count(TestModel[ , c13]==3) 
View(count3) 
 
#Perform statistical testing on population 
#generate data frame of normalized principal components for statistical testing  
ss1 <- data.frame(TestModel[ ,c("PC1N","PC2N","PC3N","fit.cluster2")]) 
View(ss1) 
 
#perform Kruskal-Wallis tests of normalized Principal components 
kruskal.test(PC1N~fit.cluster2, data=ss1) 
kruskal.test(PC2N~fit.cluster2, data=ss1) 
kruskal.test(PC3N~fit.cluster2, data=ss1) 
kruskal.test(PC1N+PC2N+PC3N~fit.cluster2, data=ss1) 
 
#generate data frame of normalized original variables for statistical testing 
ss2 <- data.frame(TestModel[ 
,c("AccountAgeN","CreditLimitN","AdditionalAssetsN","LatePaymentsN","fit.cluste
r2")]) 
View(ss2) 
 
#perform Kruskal-Wallis tests of normalized original variables 
kruskal.test(AccountAgeN~fit.cluster2, data=ss2) 
kruskal.test(CreditLimitN~fit.cluster2, data=ss2) 
kruskal.test(AdditionalAssetsN~fit.cluster2, data=ss2) 
kruskal.test(LatePaymentsN~fit.cluster2, data=ss2) 
kruskal.test(AccountAgeN+CreditLimitN+AdditionalAssetsN+LatePaymentsN~fit.
cluster2, data=ss2) 
 
#generate data frame of original variables for statistical testing 
ss3 <- data.frame(TestModel[ 
,c("AccountAge","CreditLimit","AdditionalAssets","LatePayments","fit.cluster2")]) 
View(ss3) 
 
#perform Kruskal-Wallis tests of original variables 
kruskal.test(AccountAge~fit.cluster2, data=ss3) 
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kruskal.test(CreditLimit~fit.cluster2, data=ss3) 
kruskal.test(AdditionalAssets~fit.cluster2, data=ss3) 
kruskal.test(LatePayments~fit.cluster2, data=ss3) 
kruskal.test(AccountAge+CreditLimit+AdditionalAssets+LatePayments~fit.cluster
2, data=ss3) 
 
#Get a representative sample of TestModel data for statistical analysis 
s <- arrange(TestModel,fit.cluster2) 
View(s) 
s1 <- data.frame(s[ ,1:c13]) 
View(s1) 
 
r <- nrow(s1) 
View(r) 
col <- ncol(s1) 
View(col) 
sc=30000 
samplepct=round(sc/r,8) 
View(samplepct) 
step=round(r/sc,0) 
View(step) 
z=matrix(nrow=r*samplepct-21, ncol=col) 
View(z) 
y <- 1 
i <- 1 
while (i < r) { 
  z[y, ] <- as.matrix(s1[i, 1:c13]) 
  y<-y+1 
  i<-i+step 
} 
View(z) 
s2 <- data.frame(z[ , 1:c13]) 
View(s2) 
 
#Attach appropriate column names to data frame s2 
names(s2)[1] <- "Record" 
names(s2)[2] <- "AccountAge" 
names(s2)[3] <- "CreditLimit" 
names(s2)[4] <- "AdditionalAssets" 
names(s2)[5] <- "LatePayments" 
names(s2)[6] <- "AccountAgeN" 
names(s2)[7] <- "CreditLimitN" 
names(s2)[8] <- "AdditionalAssetsN" 
names(s2)[9] <- "LatePaymentsN" 
names(s2)[10] <- "PC1" 
names(s2)[11] <- "PC2" 
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names(s2)[12] <- "PC3" 
names(s2)[13] <- "PC4" 
names(s2)[14] <- "PC1N" 
names(s2)[15] <- "PC2N" 
names(s2)[16] <- "PC3N" 
names(s2)[17] <- "PC4N" 
names(s2)[18] <- "fit.cluster2" 
s3 <- arrange(s2,Record) 
View(s3) 
 
#Perform statistical testing on representative sample 
#generate data frame of normalized principal components for statistical testing  
ss1 <- data.frame(s3[ ,c("PC1N","PC2N","PC3N","fit.cluster2")]) 
View(ss1) 
 
#perform Kruskal-Wallis tests of normalized Principal components 
kruskal.test(PC1N~fit.cluster2, data=ss1) 
kruskal.test(PC2N~fit.cluster2, data=ss1) 
kruskal.test(PC3N~fit.cluster2, data=ss1) 
kruskal.test(PC1N+PC2N+PC3N~fit.cluster2, data=ss1) 
 
#generate data frame of normalized original variables for statistical testing 
ss2 <- data.frame(s3[ 
,c("AccountAgeN","CreditLimitN","AdditionalAssetsN","LatePaymentsN","fit.cluste
r2")]) 
View(ss2) 
 
#perform Kruskal-Wallis tests of normalized original variables 
kruskal.test(AccountAgeN~fit.cluster2, data=ss2) 
kruskal.test(CreditLimitN~fit.cluster2, data=ss2) 
kruskal.test(AdditionalAssetsN~fit.cluster2, data=ss2) 
kruskal.test(LatePaymentsN~fit.cluster2, data=ss2) 
kruskal.test(AccountAgeN+CreditLimitN+AdditionalAssetsN+LatePaymentsN~fit.
cluster2, data=ss2) 
 
#generate data frame of original variables for statistical testing 
ss3 <- data.frame(s3[ 
,c("AccountAge","CreditLimit","AdditionalAssets","LatePayments","fit.cluster2")]) 
View(ss3) 
 
#perform Kruskal-Wallis tests of original variables 
kruskal.test(AccountAge~fit.cluster2, data=ss3) 
kruskal.test(CreditLimit~fit.cluster2, data=ss3) 
kruskal.test(AdditionalAssets~fit.cluster2, data=ss3) 
kruskal.test(LatePayments~fit.cluster2, data=ss3) 
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kruskal.test(AccountAge+CreditLimit+AdditionalAssets+LatePayments~fit.cluster
2, data=ss3) 
 
 
#Perform oUtlier detection via mahalanobis distance (test model -- all objects) 
#Set initial variables for subsequent usage 
r5 <- nrow(TestModel) 
b2 <- r5*.01 
x10 <- max(TestModel[ , c13]) 
p7 <- data.frame(ClusteringTestDataPC[ , 1:c3.1], TestModel[ , c13]) 
names(p7)[ncol(p7)] <- "fit.cluster2" 
View(p7) 
p8 <- data.frame(arrange(p7, fit.cluster2), row.names=NULL) 
p9 <- data.frame(arrange(TestModel, fit.cluster2), row.names=NULL) 
 
#Separate data by cluster, compute medians, calculate mahalanobis distances, 
and create outlier plots for each cluster 
for (c in 1:x10) { 
  nam1 <- paste("Cluster", c, sep = "") 
  z <- assign(nam1, subset(p9, fit.cluster2==c))   
  z1 <- subset(p8, fit.cluster2==c) 
  med <- vector(mode="numeric", length=c3.1) 
  for (cc in 1:c3.1) { 
    med[cc] <- median(z1[ , cc]) 
  } 
  z2 <- data.frame(z1[ ,1:c3.1]) 
  z3 <- cov(z2, use = "everything" ) 
  md <- mahalanobis(z2, center = med, cov = z3, inverted = TRUE) 
  nam4 <- paste("Cluster", c, sep = "") 
  z4 <- assign(nam4, data.frame(z, md, row.names=NULL)) 
  y2 <- nrow(z4) 
  row.names(z4) <- 1:y2 
  df.2 <- c(1:y2) 
  if (y2 >= b2) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2) 
  } 
  if (y2 %in% c(3:b2)) { 
    Out.999 = quantile(md, .999) 
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    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2)     
    cat("Cluster",c,"has small relative membership and this warrants investigation 
of all associated objects","\n") 
  } 
  if (y2 < 3) { 
    cat("Cluster",c,"has an extremely small membership and this clearly warrants 
investigation of all associated objects","\n") 
  } 
} 
 
#Export processed information, segregated by cluster 
write.csv(Cluster1, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/Cluster1TestResults.csv") 
write.csv(Cluster2, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/Cluster2TestResults.csv") 
write.csv(Cluster3, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/Cluster3TestResults.csv") 
 
#Export ClusteringTestDataPC and TestModel 
write.csv(ClusteringTestDataPC, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/ClusteringTestDataPC.csv") 
write.csv(TestModel, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/TestModel.csv") 
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APPENDIX B:  RSCRIPT - CHAPTER 3 CLUSTERING 

 
 
 
#Chapter Two - Stage Two Cluster Analysis and Testing 
#Analyze the 3 Primary Clusters (nested cluster analysis) 
library(cluster) 
library(mclust) 
library(stats) 
library(plyr) 
library(Rcmdr) 
library(gplots) 
library(scatterplot3d) 
library(chemometrics) 
library(fields) 
library(fastcluster) 
library(EMCluster) 
 
#Increase memory limit 
memory.size(max=TRUE) 
memory.limit(size=999999) 
 
#Read data set StageOneFinal in R 
Stage2 <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/StageOneFinalPC.csv") 
View(Stage2) 
x <- data.frame(Stage2) 
View(x) 
 
#Create data frames and find n for each cluster 
cluster1 <- subset(x, fit.cluster2==1) 
View(cluster1) 
n1 <- nrow(cluster1) 
View(n1) 
cluster2 <- subset(x, fit.cluster2==2) 
View(cluster2) 
n2 <- nrow(cluster2) 
View(n2) 
cluster3 <- subset(x, fit.cluster2==3) 
View(cluster3) 
n3 <- nrow(cluster3) 
View(n3) 
 
#---------------------------------------------------------------------------------------------- 
#Obtain discount % descriptive statistics for each cluster (a digression) 
#Entails calculations for each cluster and measure 
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s1 <- cluster1[[20]] 
st1 <- data.frame(s1) 
names(st1)[1] <- "Discount" 
stat1 <- subset(st1, Discount>-0) 
stats1 <- stat1[ ,1] 
mean1 <- mean(stats1) 
median1 <- median(stats1) 
mode1 <- sort(table(stats1),decreasing=TRUE)[1:1] 
View(mode1) 
min1 <- min(stats1) 
max1 <- max(stats1) 
cluster1stats <- c(mean1, median1, min1, max1) 
View(cluster1stats) 
 
s2 <- cluster2[[20]]  
st2 <- data.frame(s2) 
names(st2)[1] <- "Discount" 
stat2 <- subset(st2, Discount>-0) 
stats2 <- stat2[ ,1] 
mean2 <- mean(stats2) 
median2 <- median(stats2) 
mode2 <- sort(table(stats2),decreasing=TRUE)[1:1] 
View(mode2) 
min2 <- min(stats2) 
max2 <-max(stats2) 
cluster2stats <- c(mean2, median2, min2, max2) 
View(cluster2stats) 
 
s3 <- cluster3[[20]]  
st3 <- data.frame(s3) 
names(st3)[1] <- "Discount" 
stat3 <- subset(st3, Discount>-0) 
stats3 <- stat3[ ,1] 
mean3 <- mean(stats3) 
median3 <- median(stats3) 
mode3 <- sort(table(stats3),decreasing=TRUE)[1:1] 
View(mode3) 
min3 <- min(stats3) 
max3 <-max(stats3) 
cluster3stats <- c(mean3, median3, min3, max3) 
View(cluster3stats) 
#---------------------------------------------------------------------------------------------- 
 
#CLUSTER 1 - BEGIN STAGE 2 PREPROCESSING AND ANALYSIS 
#Create data frame of normalized original variables for performing principal 
components analysis 
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x1 <- data.frame(cluster1[ , c("Record", "AccountAge", "CreditLimit", 
"AdditionalAssets", "LatePayments")], row.names=NULL) 
View(x1) 
 
#Normalize four dimensions to be clustered 
#Assumes dimensions to be normalized are in columns 2, 3, 4, and 5 of data 
#Normalize AccountAge column 
aa1 <- data.frame(x1[ , 2]) 
names(aa1)[1] <- "AccountAge" 
View(aa1) 
maxaa <- max(aa1) 
minaa <- min(aa1) 
aan <- vector(mode="numeric", length=n1) 
i<-1 
while(i<n1+1) { 
  aan[i] <- ((aa1[i, 1] - minaa)/(maxaa-minaa)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized AccountAge column values (max=1, min=0) 
View(max(aan)) 
View(min(aan)) 
 
#Add normalized AccountAge column to data frame x1 
x1["AccountAgeN"] <- aan 
View(x1) 
 
#Normalize CreditLimit column 
cl1 <- data.frame(x1[ , 3]) 
names(cl1)[1] <- "CreditLimit" 
View(cl1) 
maxcl <- max(cl1) 
View(maxcl) 
mincl <- min(cl1) 
View(mincl) 
cln <- vector(mode="numeric", length=n1) 
i<-1 
while(i<n1+1) { 
  cln[i] <- ((cl1[i, 1] - mincl)/(maxcl-mincl)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized CreditLmit column values (max=1, min=0) 
View(max(cln)) 
View(min(cln)) 
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#Add normalized CreditLimit column to data frame x1 
x1["CreditLimitN"] <- cln 
 
#Normalize AdditionalAssets column 
adda1 <- data.frame(x1[ , 4]) 
names(adda1)[1] <- "AdditionalAssets" 
View(adda1) 
maxadda <- max(adda1) 
View(maxadda) 
minadda <- min(adda1) 
View(minadda) 
addan <- vector(mode="numeric", length=n1) 
i<-1 
while(i<n1+1) { 
  addan[i] <- ((adda1[i, 1] - minadda)/(maxadda-minadda)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized AdditionalAssets column values (max=1, 
min=0) 
View(max(addan)) 
View(min(addan)) 
 
#Add normalized AdditionalAssets column to data frame x1 
x1["AdditionalAssetsN"] <- addan 
View(x1) 
 
#Normalize LatePayments column 
lp1 <- data.frame(x1[ , 5]) 
names(lp1)[1] <- "LatePayments" 
View(lp1) 
maxlp <- max(lp1) 
View(maxlp) 
minlp <- min(lp1) 
View(minlp) 
lpn <- vector(mode="numeric", length=n1) 
i<-1 
while(i<n1+1) { 
  lpn[i] <- ((lp1[i, 1] - minlp)/(maxlp-minlp)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized LatePayments column values (max=1, 
min=0) 
View(max(lpn)) 
View(min(lpn)) 
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#Add normalized LatePayments column to data frame x1 
x1["LatePaymentsN"] <- lpn 
View(x1) 
 
#Create data frame of normalized original variables for performing principal 
components analysis 
grp1 <- data.frame(x1[ , c("AccountAgeN", "CreditLimitN", "AdditionalAssetsN", 
"LatePaymentsN")]) 
View(grp1) 
 
#Perform principal component analysis and show associated information 
trans <- prcomp(grp1, center=TRUE, scale.=TRUE) 
print(trans) 
summary(trans) 
plot(trans, typ="l", col="2", lwd="2") 
 
PC = predict(trans, grp1) 
print(PC[1:10, ]) 
View(PC) 
plot(PC, type="p", col="2") 
plot(PC, type="l", col="2") 
plot(PC, type="b", col="2") 
 
#Create a data frame of x1 and principal components, thus creating x1.pc 
x1.pc <- cbind(x1, PC, row.names=NULL) 
View(x1.pc) 
 
#Normalize all four principal components 
#Assumes dimensions to be normalized are in columns 10, 11, 12, and 13 of 
data 
#Normalize PC1 column 
pc1 <- x1.pc[[10]] 
View(pc1) 
maxpc1 <- max(pc1) 
View(maxpc1) 
minpc1 <- min(pc1) 
View(minpc1) 
y <- n1 
View(y) 
pc1n <- vector(mode="numeric", length=y) 
View(pc1n) 
i<-1 
while(i<y+1) { 
  pc1n[i] <- ((pc1[i] - minpc1)/(maxpc1-minpc1)) 
  i <- i+1 
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} 
View(pc1n) 
 
#Check/verify max & min normalized PC1 column values (max=1, min=0) 
View(max(pc1n)) 
View(min(pc1n)) 
 
#Add normalized PC1 column to data frame x1.pc 
x1.pc["PC1N"] <- pc1n 
View(x1.pc) 
 
#Normalize PC2 column 
pc2 <- x1.pc[[11]] 
View(pc2) 
maxpc2 <- max(pc2) 
View(maxpc2) 
minpc2 <- min(pc2) 
View(minpc2) 
pc2n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc2n[i] <- ((pc2[i] - minpc2)/(maxpc2-minpc2)) 
  i <- i+1 
} 
View(pc2n) 
 
#Check/verify max & min normalized PC2 column values (max=1, min=0) 
View(max(pc2n)) 
View(min(pc2n)) 
 
#Add normalized PC2 column to data frame x1.pc 
x1.pc["PC2N"] <- pc2n 
View(x1.pc) 
 
#Normalize PC3 column 
pc3 <- x1.pc[[12]] 
View(pc3) 
maxpc3 <- max(pc3) 
View(maxpc3) 
minpc3 <- min(pc3) 
View(minpc3) 
pc3n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc3n[i] <- ((pc3[i] - minpc3)/(maxpc3-minpc3)) 
  i <- i+1 
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} 
View(pc3n) 
 
#Check/verify max & min normalized PC3 column values (max=1, min=0) 
View(max(pc3n)) 
View(min(pc3n)) 
 
#Add normalized PC3 column to data frame x1.pc 
x1.pc["PC3N"] <- pc3n 
View(x1.pc) 
 
#Normalize PC4 column 
pc4 <- x1.pc[[13]] 
View(pc4) 
maxpc4 <- max(pc4) 
View(maxpc4) 
minpc4 <- min(pc4) 
View(minpc4) 
pc4n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc4n[i] <- ((pc4[i] - minpc4)/(maxpc4-minpc4)) 
  i <- i+1 
} 
View(pc4n) 
 
#Check/verify max & min normalized PC4 column values (max=1, min=0) 
View(max(pc4n)) 
View(min(pc4n)) 
 
#Add normalized PC4 column to data frame x1.pc 
x1.pc["PC4N"] <- pc4n 
View(x1.pc) 
 
#Export x1.pc for subsequent model building (pre-processed cluster 1 data) 
write.csv(x1.pc, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1Data.csv") 
#Reload x1.pc (if not currently loaded) 
x1.pc <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1Data.csv") 
View(x1.pc) 
 
#Perform model building simulation routines 
#First get a random sample of 40,000 records from population of x1.pc (set s = 
sample size) 
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#Necessary because silhouette calculation will not allow use of long vectors (> 
2^31) 
#Also necessary because processing is extremely inefficient on pam 
s <- 40000 
p <- s/nrow(x1.pc) 
View(p) 
x1.pcs <- x1.pc[sample(nrow(x1.pc),replace=F,size=p*nrow(x1.pc)),] 
row.names(x1.pcs)<-NULL 
View(x1.pcs) 
 
#Create a data frame Cluster1PCS of 3 top PCs from x1.pcs for computing 
silhouette coefficients 
c <- ncol(x1.pcs) 
c1 <- c-3 
c2 <- c-1 
Cluster1PCS <- data.frame(x1.pcs[ , c1:c2]) 
View(Cluster1PCS) 
 
#Execute Kmeans clustering model performance sequence 
#Use loop structure for initial Kmeans model building process 
nclust=6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster1PCS, "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit <- kmeans(Cluster1PCS, c, iter.max=500, nstart=10, algorithm="Lloyd") 
  sil <- silhouette(fit$cluster, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
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write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1SCKmeans.csv") 
 
 
#Execute PAM clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster1PCS, method = "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit <- pam(Cluster1PCS, c) 
  sil <- silhouette(fit$clustering, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1SCPAM.csv") 
 
 
#Execute Complete-Link Hierarchical clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster1PCS, method = "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit2 <- hclust(d, method = "complete") 
  memb <- cutree(fit2, k=c) 
  fit$clusters <- assignCluster(Cluster1PCS, x1.pcs, memb) 
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  fit$cluster <- as.integer(fit$clusters)   
  sil <- silhouette(fit$cluster, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1SCComplete.csv") 
 
 
#Execute Ward's Method Hierarchical clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster1PCS, method = "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit2 <- hclust(d, method = "ward.D2") 
  memb <- cutree(fit2, k=c) 
  fit$clusters <- assignCluster(Cluster1PCS, x1.pcs, memb) 
  fit$cluster <- as.integer(fit$clusters)   
  sil <- silhouette(fit$cluster, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
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names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1SCWard.csv") 
 
 
#Execute Expectation Maximization clustering model performance sequence 
#Use loop structure for initial EM model building process 
nclust=6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster1PCS, "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit <- init.EM(Cluster1PCS, nclass = c, EMC = .EMC.Rnd, stable.solution = 
TRUE, min.n = 1, min.n.iter = 10, method = "Rnd.EM") 
  sil <- silhouette(fit$class, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1SCEM.csv") 
 
 
#Build final cluster 1 model - based upon silhouette results 
#Decision 7/29/15:  create K-means 2-cluster model (set c=2) 
c <- 2 
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#Import cluster 1 data for clustering (if necessary) 
ClusterOne <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1Data.csv") 
x1.pc <- data.frame(ClusterOne) 
r1 <- nrow(x1.pc) 
c3 <- ncol(x1.pc) 
View(x1.pc) 
 
#Get random sample of records for building training model 
#Default sample size set at 50,000 (change if needed) 
sample <- 50000 
p1 <- sample/r1 
x1.pcs <- x1.pc[sample(nrow(x1.pc),replace=F,size = p1*nrow(x1.pc)),] 
row.names(x1.pcs) <- NULL 
View(x1.pcs) 
 
#Set variables and data frame of principal components for clustering 
c4 <- c3-3 
c5 <- c3-1 
Cluster1.pcs <- data.frame(x1.pcs[ , c4:c5]) 
View(Cluster1.pcs) 
 
#Create sub-cluster training model relative to cluster 1  
fit <- kmeans(Cluster1.pcs, c, iter.max=500, nstart=10, algorithm="Lloyd") 
ClusterOneModel <- data.frame(Cluster1.pcs, fit$cluster) 
View(ClusterOneModel) 
 
#3D Plots of top 3 principal components with cluster assignments depicted 
p2 <- data.frame(Cluster1.pcs) 
ddd <- data.frame(p2, ClusterOneModel[ , "fit.cluster"]) 
names(ddd)[1] <- "PC1" 
names(ddd)[2] <- "PC2" 
names(ddd)[3] <- "PC3" 
names(ddd)[4] <- "Cluster" 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=255, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=285, pch = 1) 
 
#Generate data frames for subsequent analysis of training data 
x3 <- data.frame(Cluster1.pcs) 
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x4 <- data.frame(x1.pcs[ , 6:9]) 
x5 <- data.frame(x1.pcs[ , 2:5]) 
 
#Get cluster means for normalized pcs, normalized original variables, and 
original variables 
aggregate(x3,by=list(fit$cluster),FUN=mean) 
aggregate(x4, by=list(fit$cluster), FUN=mean) 
aggregate(x5, by=list(fit$cluster), FUN=mean) 
 
#Get cluster medians for normalized pcs, normalized original variables, and 
original variables 
aggregate(x3,by=list(fit$cluster),FUN=median) 
aggregate(x4, by=list(fit$cluster), FUN=median) 
aggregate(x5, by=list(fit$cluster), FUN=median) 
 
#Create final stage two model data set 
StageTwoModel <- data.frame(x1.pcs, ClusterOneModel[ , "fit.cluster"]) 
names(StageTwoModel)[ncol(StageTwoModel)] <- "fit.cluster" 
View(StageTwoModel) 
 
#Cluster 1 - Sub-cluster OUtlier Detection Via Mahalanobis Distance (training 
model) 
#Set initial variables for subsequent usage 
r2 <- nrow(StageTwoModel) 
c6 <- ncol(Cluster1.pcs) 
b1 <- r2*.01 
x6 <- max(StageTwoModel[ ,"fit.cluster"]) 
p3 <- data.frame(ClusterOneModel) 
p4 <- data.frame(arrange(p3, fit.cluster), row.names=NULL) 
p5 <- data.frame(arrange(StageTwoModel, fit.cluster), row.names=NULL) 
 
#Separate data by cluster, compute medians, calculate mahalanobis distances, 
and create outlier plots for each cluster 
for (c in 1:x6) { 
  nam1 <- paste("Cluster", c, sep = "") 
  z <- assign(nam1, subset(p5, fit.cluster==c))   
  z1 <- subset(p4, fit.cluster==c) 
  med <- vector(mode="numeric", length=c6) 
  for (cc in 1:c6) { 
    med[cc] <- median(z1[ , cc]) 
  } 
  z2 <- data.frame(z1[ ,1:c6]) 
  z3 <- cov(z2, use = "everything" ) 
  md <- mahalanobis(z2, center = med, cov = z3, inverted = TRUE) 
  nam4 <- paste("Cluster", c, sep = "") 
  z4 <- assign(nam4, data.frame(z, md, row.names=NULL)) 
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  y2 <- nrow(z4) 
  row.names(z4) <- 1:y2 
  df.2 <- c(1:y2) 
  if (y2 >= b1) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", main=c("Cluster 1, 
Subcluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster 1, sub-cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster 1, Subcluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2) 
  } 
  if (y2 %in% c(3:b1)) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", main=c("Cluster 1, 
Subcluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster 1, sub-cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster1, Subcluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2)     
    cat("Cluster 1, sub-cluster",c,"has small relative membership and this warrants 
investigation of all associated objects","\n") 
  } 
  if (y2 < 3) { 
    cat("Cluster 1, sub-Cluster",c,"has an extremely small membership and this 
clearly warrants investigation of all associated objects","\n") 
  } 
} 
 
#Export processed training model information, segregated by sub-cluster 
write.csv(Cluster1, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1Subcluster1TrainResults.csv
") 
write.csv(Cluster2, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1Subcluster2TrainResults.csv
") 
 
 
#Cluster 1 - Final assignment of all records to sub-clusters based upon training 
model results 
#Create new data frames and variables for clustering operations 
TestData <- data.frame(x1.pc) 
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View(TestData) 
c3 <- ncol(x1.pc) 
c4 <- c3-3 
c5 <- c3-1 
Cluster1TestDataPC <- data.frame(x1.pc[ , c4:c5]) 
View(Cluster1TestDataPC) 
 
FitModel <- data.frame(ClusterOneModel) 
View(FitModel) 
 
#Compute training model cluster reps and calculate distances from all reps to 
test records 
c3.1 <- ncol(Cluster1TestDataPC) 
c12 <- max(ClusterOneModel[ , "fit.cluster"]) 
r4 <- nrow(Cluster1TestDataPC) 
for (a in 1:c12) { 
  g1 <- subset(FitModel, fit.cluster==a) 
  v <- vector(mode="numeric", length=c3.1) 
  for (b in 1:c3.1) { 
    v[b] <- mean(g1[ , b]) 
  } 
  v <- rbind(v) 
  v1 <- vector(mode="numeric", length=r4) 
  for (c1.1 in 1:r4) { 
    v1[c1.1] <- rdist(Cluster1TestDataPC[c1.1, 1:c3.1], v)       
  } 
  head <- paste("EucDist", a, sep = "") 
  Cluster1TestDataPC[head] <- v1   
}  
View(Cluster1TestDataPC) 
 
#Assign test records to clusters 
c13 <- ncol(Cluster1TestDataPC) 
z3 <- c3.1 + 1 
v2 <- vector(mode="numeric", length=r4) 
v3 <- vector(mode="numeric", length=r4) 
for (h in 1:r4) { 
  t1 <- min(Cluster1TestDataPC[h, z3:c13]) 
  v2[h] <- t1 
  t2 <- which.min(apply(Cluster1TestDataPC[h, z3:c13], MARGIN=2, min)) 
  v3[h] <- t2  
} 
Cluster1TestDataPC["EuclideanDistance"] <- v2 
Cluster1TestDataPC["Test.Cluster"] <- v3 
TestData["fit.cluster2"] <- v3 
TestModel <- data.frame(TestData) 
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View(TestModel) 
 
#3D Plots of top 3 principal components with cluster assignments depicted 
c13 <- ncol(TestModel) 
c14 <- c13-4 
c15 <- c13-2 
p6 <- data.frame(TestModel[ , c14:c15]) 
ddd <- data.frame(p6, TestModel[ , c13]) 
names(ddd)[1] <- "PC1" 
names(ddd)[2] <- "PC2" 
names(ddd)[3] <- "PC3" 
names(ddd)[4] <- "Cluster" 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
 
#Generate data frames for subsequent analysis 
x7 <- data.frame(Cluster1TestDataPC[ , 1:c3.1]) 
x8 <- data.frame(TestModel[ , 6:9]) 
x9 <- data.frame(TestModel[ , 2:5]) 
 
#Get cluster means for normalized pcs, normalized original variables, and 
original variables 
aggregate(x7,by=list(Cluster1TestDataPC[ , "Test.Cluster"]),FUN=mean) 
aggregate(x8, by=list(TestModel[ , c13]), FUN=mean) 
aggregate(x9, by=list(TestModel[ , c13]), FUN=mean) 
 
#Get cluster medians for normalized pcs, normalized original variables, and 
original variables 
aggregate(x7,by=list(Cluster1TestDataPC[ , "Test.Cluster"]),FUN=median) 
aggregate(x8, by=list(TestModel[ , c13]), FUN=median) 
aggregate(x9, by=list(TestModel[ , c13]), FUN=median) 
 
#Get sub-cluster counts 
count1 <- count(TestModel[ , c13]==1) 
View(count1) 
count2 <- count(TestModel[ , c13]==2) 
View(count2) 
 
#Perform statistical testing on population 
#generate data frame of normalized principal components for statistical testing  
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ss1 <- data.frame(TestModel[ ,c("PC1N","PC2N","PC3N","fit.cluster2")]) 
View(ss1) 
 
#perform Kruskal-Wallis tests of normalized Principal components 
kruskal.test(PC1N~fit.cluster2, data=ss1) 
kruskal.test(PC2N~fit.cluster2, data=ss1) 
kruskal.test(PC3N~fit.cluster2, data=ss1) 
kruskal.test(PC1N+PC2N+PC3N~fit.cluster2, data=ss1) 
 
#generate data frame of normalized original variables for statistical testing 
ss2 <- data.frame(TestModel[ 
,c("AccountAgeN","CreditLimitN","AdditionalAssetsN","LatePaymentsN","fit.cluste
r2")]) 
View(ss2) 
 
#perform Kruskal-Wallis tests of normalized original variables 
kruskal.test(AccountAgeN~fit.cluster2, data=ss2) 
kruskal.test(CreditLimitN~fit.cluster2, data=ss2) 
kruskal.test(AdditionalAssetsN~fit.cluster2, data=ss2) 
kruskal.test(LatePaymentsN~fit.cluster2, data=ss2) 
kruskal.test(AccountAgeN+CreditLimitN+AdditionalAssetsN+LatePaymentsN~fit.
cluster2, data=ss2) 
 
#generate data frame of original variables for statistical testing 
ss3 <- data.frame(TestModel[ 
,c("AccountAge","CreditLimit","AdditionalAssets","LatePayments","fit.cluster2")]) 
View(ss3) 
 
#perform Kruskal-Wallis tests of original variables 
kruskal.test(AccountAge~fit.cluster2, data=ss3) 
kruskal.test(CreditLimit~fit.cluster2, data=ss3) 
kruskal.test(AdditionalAssets~fit.cluster2, data=ss3) 
kruskal.test(LatePayments~fit.cluster2, data=ss3) 
kruskal.test(AccountAge+CreditLimit+AdditionalAssets+LatePayments~fit.cluster
2, data=ss3) 
 
#Get a representative sample of TestModel data for statistical analysis 
s <- arrange(TestModel,fit.cluster2) 
View(s) 
s1 <- data.frame(s[ ,1:c13]) 
View(s1) 
 
r <- nrow(s1) 
col <- ncol(s1) 
sc=369 
samplepct=round(sc/r,8) 
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step=round(r/sc,0) 
z=matrix(nrow=r*samplepct+2, ncol=col) 
y <- 1 
i <- 1 
while (i < r) { 
  z[y, ] <- as.matrix(s1[i, 1:c13]) 
  y<-y+1 
  i<-i+step 
} 
View(z) 
s2 <- data.frame(z[ , 1:c13]) 
View(s2) 
 
#Attach appropriate column names to data frame s2 
names(s2)[1] <- "Record" 
names(s2)[2] <- "AccountAge" 
names(s2)[3] <- "CreditLimit" 
names(s2)[4] <- "AdditionalAssets" 
names(s2)[5] <- "LatePayments" 
names(s2)[6] <- "AccountAgeN" 
names(s2)[7] <- "CreditLimitN" 
names(s2)[8] <- "AdditionalAssetsN" 
names(s2)[9] <- "LatePaymentsN" 
names(s2)[10] <- "PC1" 
names(s2)[11] <- "PC2" 
names(s2)[12] <- "PC3" 
names(s2)[13] <- "PC4" 
names(s2)[14] <- "PC1N" 
names(s2)[15] <- "PC2N" 
names(s2)[16] <- "PC3N" 
names(s2)[17] <- "PC4N" 
names(s2)[18] <- "fit.cluster2" 
s3 <- arrange(s2,Record) 
View(s3) 
 
#Perform statistical testing on representative sample 
#generate data frame of normalized principal components for statistical testing  
ss1 <- data.frame(s3[ ,c("PC1N","PC2N","PC3N","fit.cluster2")]) 
View(ss1) 
 
#perform Kruskal-Wallis tests of normalized Principal components 
kruskal.test(PC1N~fit.cluster2, data=ss1) 
kruskal.test(PC2N~fit.cluster2, data=ss1) 
kruskal.test(PC3N~fit.cluster2, data=ss1) 
kruskal.test(PC1N+PC2N+PC3N~fit.cluster2, data=ss1) 
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#generate data frame of normalized original variables for statistical testing 
ss2 <- data.frame(s3[ 
,c("AccountAgeN","CreditLimitN","AdditionalAssetsN","LatePaymentsN","fit.cluste
r2")]) 
View(ss2) 
 
#perform Kruskal-Wallis tests of normalized original variables 
kruskal.test(AccountAgeN~fit.cluster2, data=ss2) 
kruskal.test(CreditLimitN~fit.cluster2, data=ss2) 
kruskal.test(AdditionalAssetsN~fit.cluster2, data=ss2) 
kruskal.test(LatePaymentsN~fit.cluster2, data=ss2) 
kruskal.test(AccountAgeN+CreditLimitN+AdditionalAssetsN+LatePaymentsN~fit.
cluster2, data=ss2) 
 
#generate data frame of original variables for statistical testing 
ss3 <- data.frame(s3[ 
,c("AccountAge","CreditLimit","AdditionalAssets","LatePayments","fit.cluster2")]) 
View(ss3) 
 
#perform Kruskal-Wallis tests of original variables 
kruskal.test(AccountAge~fit.cluster2, data=ss3) 
kruskal.test(CreditLimit~fit.cluster2, data=ss3) 
kruskal.test(AdditionalAssets~fit.cluster2, data=ss3) 
kruskal.test(LatePayments~fit.cluster2, data=ss3) 
kruskal.test(AccountAge+CreditLimit+AdditionalAssets+LatePayments~fit.cluster
2, data=ss3) 
 
 
#Cluster 1 - Sub-Cluster OUtlier Detection Via Mahalanobis Distance (test model 
-- all objects) 
#Set initial variables for subsequent usage 
r5 <- nrow(TestModel) 
b2 <- r5*.01 
x10 <- max(TestModel[ , c13]) 
p7 <- data.frame(Cluster1TestDataPC[ , 1:c3.1], TestModel[ , c13]) 
names(p7)[ncol(p7)] <- "fit.cluster2" 
View(p7) 
p8 <- data.frame(arrange(p7, fit.cluster2), row.names=NULL) 
p9 <- data.frame(arrange(TestModel, fit.cluster2), row.names=NULL) 
 
#Separate data by cluster, compute medians, calculate mahalanobis distances, 
and create outlier plots for each cluster 
for (c in 1:x10) { 
  nam1 <- paste("Cluster", c, sep = "") 
  z <- assign(nam1, subset(p9, fit.cluster2==c))   
  z1 <- subset(p8, fit.cluster2==c) 
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  med <- vector(mode="numeric", length=c3.1) 
  for (cc in 1:c3.1) { 
    med[cc] <- median(z1[ , cc]) 
  } 
  z2 <- data.frame(z1[ , 1:c3.1]) 
  z3 <- cov(z2, use = "everything" ) 
  md <- mahalanobis(z2, center = med, cov = z3, inverted = TRUE) 
  nam4 <- paste("Cluster", c, sep = "") 
  z4 <- assign(nam4, data.frame(z, md, row.names=NULL)) 
  y2 <- nrow(z4) 
  row.names(z4) <- 1:y2 
  df.2 <- c(1:y2) 
  if (y2 >= b2) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", main=c("Cluster 1, 
Subcluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster 1, sub-cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster 1, Subcluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2) 
  } 
  if (y2 %in% c(3:b2)) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", main=c("Cluster 1, 
Subcluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster 1, sub-cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster 1, Subcluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2)     
    cat("Cluster 1, sub-cluster",c,"has small relative membership and this warrants 
investigation of all associated objects","\n") 
  } 
  if (y2 < 3) { 
    cat("Cluster 1, sub-cluster",c,"has an extremely small membership and this 
clearly warrants investigation of all associated objects","\n") 
  } 
} 
 
#Export processed cluster 1 information, segregated by sub-clusters 
write.csv(Cluster1, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1.1TestResults.csv") 
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write.csv(Cluster2, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1.2TestResults.csv") 
 
#Export Cluster1DataPC and TestModel 
write.csv(Cluster1TestDataPC, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1TestDataPC.csv") 
write.csv(TestModel, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster1SubclusterTestModel.csv") 
 
 
#CLUSTER 2 - BEGIN STAGE 2 PREPROCESSING AND ANALYSIS 
#Create data frame of normalized original variables for performing principal 
components analysis 
x2 <- data.frame(cluster2[ , c("Record", "AccountAge", "CreditLimit", 
"AdditionalAssets", "LatePayments")], row.names=NULL) 
View(x2) 
 
#Normalize four dimensions to be clustered 
#Assumes dimensions to be normalized are in columns 2, 3, 4, and 5 of data 
#Normalize AccountAge column 
aa2 <- data.frame(x2[ , 2]) 
names(aa2)[1] <- "AccountAge" 
View(aa2) 
maxaa <- max(aa2) 
minaa <- min(aa2) 
aan <- vector(mode="numeric", length=n2) 
i<-1 
while(i<n2+1) { 
  aan[i] <- ((aa2[i, 1] - minaa)/(maxaa-minaa)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized AccountAge column values (max=1, min=0) 
View(max(aan)) 
View(min(aan)) 
 
#Add normalized AccountAge column to data frame x2 
x2["AccountAgeN"] <- aan 
View(x2) 
 
#Normalize CreditLimit column 
cl2 <- data.frame(x2[ , 3]) 
names(cl2)[1] <- "CreditLimit" 
View(cl2) 
maxcl <- max(cl2) 
View(maxcl) 
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mincl <- min(cl2) 
View(mincl) 
cln <- vector(mode="numeric", length=n2) 
i<-1 
while(i<n2+1) { 
  cln[i] <- ((cl2[i, 1] - mincl)/(maxcl-mincl)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized CreditLmit column values (max=1, min=0) 
View(max(cln)) 
View(min(cln)) 
 
#Add normalized CreditLimit column to data frame x2 
x2["CreditLimitN"] <- cln 
View(x2) 
 
#Normalize AdditionalAssets column 
adda2 <- data.frame(x2[ , 4]) 
names(adda2)[1] <- "AdditionalAssets" 
View(adda2) 
maxadda <- max(adda2) 
View(maxadda) 
minadda <- min(adda2) 
View(minadda) 
addan <- vector(mode="numeric", length=n2) 
i<-1 
while(i<n2+1) { 
  addan[i] <- ((adda2[i, 1] - minadda)/(maxadda-minadda)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized AdditionalAssets column values (max=1, 
min=0) 
View(max(addan)) 
View(min(addan)) 
 
#Add normalized AdditionalAssets column to data frame x2 
x2["AdditionalAssetsN"] <- addan 
View(x2) 
 
#Normalize LatePayments column 
lp2 <- data.frame(x2[ , 5]) 
names(lp2)[1] <- "LatePayments" 
View(lp2) 
maxlp <- max(lp2) 
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View(maxlp) 
minlp <- min(lp2) 
View(minlp) 
lpn <- vector(mode="numeric", length=n2) 
i<-1 
while(i<n2+1) { 
  lpn[i] <- ((lp2[i, 1] - minlp)/(maxlp-minlp)) 
  i <- i+1 
} 
 
#Check/verify max & min normalized LatePayments column values (max=1, 
min=0) 
View(max(lpn)) 
View(min(lpn)) 
 
#Add normalized LatePayments column to data frame x2 
x2["LatePaymentsN"] <- lpn 
View(x2) 
 
#Create data frame of normalized original variables for performing principal 
components analysis 
grp2 <- data.frame(x2[ , c("AccountAgeN", "CreditLimitN", "AdditionalAssetsN", 
"LatePaymentsN")]) 
View(grp2) 
 
#Perform principal component analysis and show associated information 
trans <- prcomp(grp2, center=TRUE, scale.=TRUE) 
print(trans) 
summary(trans) 
plot(trans, typ="l", col="2", lwd="2") 
 
PC = predict(trans, grp2) 
print(PC[1:10, ]) 
View(PC) 
plot(PC, type="p", col="2") 
plot(PC, type="l", col="2") 
plot(PC, type="b", col="2") 
 
#Create a data frame of x2 and principal components, thus creating x2.pc 
x2.pc <- cbind(x2, PC, row.names=NULL) 
View(x2.pc) 
 
#Normalize all four principal components 
#Assumes dimensions to be normalized are in columns 10, 11, 12, and 13 of 
data 
#Normalize PC1 column 
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pc1 <- x2.pc[[10]] 
View(pc1) 
maxpc1 <- max(pc1) 
View(maxpc1) 
minpc1 <- min(pc1) 
View(minpc1) 
y <- n2 
View(y) 
pc1n <- vector(mode="numeric", length=y) 
View(pc1n) 
i<-1 
while(i<y+1) { 
  pc1n[i] <- ((pc1[i] - minpc1)/(maxpc1-minpc1)) 
  i <- i+1 
} 
View(pc1n) 
 
#Check/verify max & min normalized PC1 column values (max=1, min=0) 
View(max(pc1n)) 
View(min(pc1n)) 
 
#Add normalized PC1 column to data frame x2.pc 
x2.pc["PC1N"] <- pc1n 
View(x2.pc) 
 
#Normalize PC2 column 
pc2 <- x2.pc[[11]] 
View(pc2) 
maxpc2 <- max(pc2) 
View(maxpc2) 
minpc2 <- min(pc2) 
View(minpc2) 
pc2n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc2n[i] <- ((pc2[i] - minpc2)/(maxpc2-minpc2)) 
  i <- i+1 
} 
View(pc2n) 
 
#Check/verify max & min normalized PC2 column values (max=1, min=0) 
View(max(pc2n)) 
View(min(pc2n)) 
 
#Add normalized PC2 column to data frame x2.pc 
x2.pc["PC2N"] <- pc2n 
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View(x2.pc) 
 
#Normalize PC3 column 
pc3 <- x2.pc[[12]] 
View(pc3) 
maxpc3 <- max(pc3) 
View(maxpc3) 
minpc3 <- min(pc3) 
View(minpc3) 
pc3n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc3n[i] <- ((pc3[i] - minpc3)/(maxpc3-minpc3)) 
  i <- i+1 
} 
View(pc3n) 
 
#Check/verify max & min normalized PC3 column values (max=1, min=0) 
View(max(pc3n)) 
View(min(pc3n)) 
 
#Add normalized PC3 column to data frame x2.pc 
x2.pc["PC3N"] <- pc3n 
View(x2.pc) 
 
#Normalize PC4 column 
pc4 <- x2.pc[[13]] 
View(pc4) 
maxpc4 <- max(pc4) 
View(maxpc4) 
minpc4 <- min(pc4) 
View(minpc4) 
pc4n <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) { 
  pc4n[i] <- ((pc4[i] - minpc4)/(maxpc4-minpc4)) 
  i <- i+1 
} 
View(pc4n) 
 
#Check/verify max & min normalized PC4 column values (max=1, min=0) 
View(max(pc4n)) 
View(min(pc4n)) 
 
#Add normalized PC4 column to data frame x2.pc 
x2.pc["PC4N"] <- pc4n 
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View(x2.pc) 
 
#Export x2.pc for subsequent model building (pre-processed cluster 2 data) 
write.csv(x2.pc, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2Data.csv") 
 
#Read x2.pc data (if not currently loaded) 
x2.pc <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2Data.csv") 
View(x2.pc) 
 
#Begin silhouette analysis for Cluster 2 
#Cluster 2 contains less than 40,000 objects (no sample needed) 
#Create a data frame Cluster2PC of 3 top PCs from x2.pc for computing 
silhouette coeffients 
c <- ncol(x2.pc) 
c1 <- c-3 
c2 <- c-1 
Cluster2PC <- data.frame(x2.pc[ , c1:c2]) 
View(Cluster2PC) 
 
#Execute Kmeans clustering model performance sequence 
#Use loop structure for initial Kmeans model building process 
nclust=6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster2PC, "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit <- kmeans(Cluster2PC, c, iter.max=500, nstart=10, algorithm="Lloyd") 
  sil <- silhouette(fit$cluster, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
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#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2SCKmeans.csv") 
 
 
#Execute PAM clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster2PC, method = "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit <- pam(Cluster2PC, c) 
  sil <- silhouette(fit$clustering, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2SCPAM.csv") 
 
 
#Execute Complete-Link Hierarchical clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster2PC, method = "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit2 <- hclust(d, method = "complete") 
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  memb <- cutree(fit2, k=c) 
  fit$clusters <- assignCluster(Cluster2PC, x2.pc, memb) 
  fit$cluster <- as.integer(fit$clusters)   
  sil <- silhouette(fit$cluster, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2SCComplete.csv") 
 
 
#Execute Ward's Method Hierarchical clustering model performance sequence 
#Use loop structure for initial model building process 
nclust= 6 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster2PC, method = "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit2 <- hclust(d, method = "ward.D2") 
  memb <- cutree(fit2, k=c) 
  fit$clusters <- assignCluster(Cluster2PC, x2.pc, memb) 
  fit$cluster <- as.integer(fit$clusters)   
  sil <- silhouette(fit$cluster, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
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z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2SCWard.csv") 
 
 
#Execute Expectation Maximization clustering model performance sequence 
#Use loop structure for initial EM model building process 
nclust=8 
x=matrix(nrow=nclust-1, ncol=2) 
d <- dist(Cluster2PC, "euclidean") 
y <- 1 
c <- 2 
for (c in c:nclust) { 
  fit <- init.EM(Cluster2PC, nclass = c, EMC = .EMC.Rnd, stable.solution = TRUE, 
min.n = 1, min.n.iter = 10, method = "Rnd.EM") 
  sil <- silhouette(fit$class, d) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c(c, avgsil) 
  y<-y+1   
} 
View(x) 
max(x[ ,2]) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
z <- data.frame(x) 
names(z)[1] <- "Clusters" 
names(z)[2] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed data 
write.csv(s, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2SCEM.csv") 
 
 
#Build final cluster 2 model - based upon silhouette results 
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#Decision 7/29/15:  Create Complete-Link 2-cluster model (set c=2) 
c <- 2 
 
#Read x2.pc data (if not already loaded) 
x2.pc <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2Data.csv") 
View(x2.pc) 
 
#Create data frame for clustering 
c3 <- ncol(x2.pc) 
c4 <- c3-3 
c5 <- c3-1 
Cluster2PC <- data.frame(x2.pc[ , c4:c5]) 
View(Cluster2PC) 
 
#Generate cluster 2 sub-cluster model 
d <- dist(Cluster2PC, method = "euclidean") 
fit2 <- hclust(d, method = "complete") 
memb <- cutree(fit2, k=c) 
 
#Append cluster assignment column 
fit$clusters <- assignCluster(Cluster2PC, x2.pc, memb) 
fit$cluster <- as.integer(fit$clusters) 
Cluster2Model <- data.frame(x2.pc, fit$cluster) 
View(Cluster2Model) 
 
#3D Plots of top 3 principal components with cluster assignments depicted 
p2 <- data.frame(Cluster2PC) 
ddd <- data.frame(p2, Cluster2Model[ , "fit.cluster"]) 
names(ddd)[1] <- "PC1" 
names(ddd)[2] <- "PC2" 
names(ddd)[3] <- "PC3" 
names(ddd)[4] <- "Cluster" 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=340, pch = 1) 
 
#Generate data frames for subsequent analysis 
x3 <- data.frame(Cluster2PC) 
x4 <- data.frame(Cluster2Model[ , 6:9]) 
x5 <- data.frame(Cluster2Model[ , 2:5]) 
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#Get cluster means for normalized pcs, normalized original variables, and 
original variables 
aggregate(x3,by=list(fit$cluster),FUN=mean) 
aggregate(x4, by=list(fit$cluster), FUN=mean) 
aggregate(x5, by=list(fit$cluster), FUN=mean) 
 
#Get cluster medians for normalized pcs, normalized original variables, and 
original variables 
aggregate(x3,by=list(fit$cluster),FUN=median) 
aggregate(x4, by=list(fit$cluster), FUN=median) 
aggregate(x5, by=list(fit$cluster), FUN=median) 
 
#Get sub-cluster counts 
c6 <- ncol(Cluster2Model) 
count1 <- count(Cluster2Model[ , c6]==1) 
View(count1) 
count2 <- count(Cluster2Model[ , c6]==2) 
View(count2) 
 
#Perform statistical testing on population  
#generate data frame of normalized principal components for statistical testing 
names(Cluster2Model)[ncol(Cluster2Model)] <- "fit.cluster" 
ss1 <- data.frame(Cluster2Model[ ,c("PC1N","PC2N","PC3N","fit.cluster")]) 
View(ss1) 
 
#perform Kruskal-Wallis tests of normalized Principal components 
kruskal.test(PC1N~fit.cluster, data=ss1) 
kruskal.test(PC2N~fit.cluster, data=ss1) 
kruskal.test(PC3N~fit.cluster, data=ss1) 
kruskal.test(PC1N+PC2N+PC3N~fit.cluster, data=ss1) 
 
#generate data frame of normalized original variables for statistical testing 
ss2 <- data.frame(Cluster2Model[ 
,c("AccountAgeN","CreditLimitN","AdditionalAssetsN","LatePaymentsN","fit.cluste
r")]) 
View(ss2) 
 
#perform Kruskal-Wallis tests of normalized original variables 
kruskal.test(AccountAgeN~fit.cluster, data=ss2) 
kruskal.test(CreditLimitN~fit.cluster, data=ss2) 
kruskal.test(AdditionalAssetsN~fit.cluster, data=ss2) 
kruskal.test(LatePaymentsN~fit.cluster, data=ss2) 
kruskal.test(AccountAgeN+CreditLimitN+AdditionalAssetsN+LatePaymentsN~fit.
cluster, data=ss2) 
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#generate data frame of original variables for statistical testing 
ss3 <- data.frame(Cluster2Model[ 
,c("AccountAge","CreditLimit","AdditionalAssets","LatePayments","fit.cluster")]) 
View(ss3) 
 
#perform Kruskal-Wallis tests of original variables 
kruskal.test(AccountAge~fit.cluster, data=ss3) 
kruskal.test(CreditLimit~fit.cluster, data=ss3) 
kruskal.test(AdditionalAssets~fit.cluster, data=ss3) 
kruskal.test(LatePayments~fit.cluster, data=ss3) 
kruskal.test(AccountAge+CreditLimit+AdditionalAssets+LatePayments~fit.cluster, 
data=ss3) 
 
#Get a representative sample of Cluster2Model data for statistical analysis 
s <- arrange(Cluster2Model,fit.cluster) 
View(s) 
c13 <- ncol(Cluster2Model) 
s1 <- data.frame(s[ , 1:c13]) 
View(s1) 
 
r <- nrow(s1) 
col <- ncol(s1) 
sc=3944 
samplepct=round(sc/r, 2) 
step=round(r/sc,0) 
z=matrix(nrow=r*samplepct, ncol=col) 
y <- 1 
i <- 1 
while (i < r) { 
  z[y, ] <- as.matrix(s1[i, 1:c13]) 
  y<-y+1 
  i<-i+step 
} 
View(z) 
s2 <- data.frame(z[ , 1:c13]) 
View(s2) 
 
#Attach appropriate column names to data frame s2 
names(s2)[1] <- "Record" 
names(s2)[2] <- "AccountAge" 
names(s2)[3] <- "CreditLimit" 
names(s2)[4] <- "AdditionalAssets" 
names(s2)[5] <- "LatePayments" 
names(s2)[6] <- "AccountAgeN" 
names(s2)[7] <- "CreditLimitN" 
names(s2)[8] <- "AdditionalAssetsN" 
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names(s2)[9] <- "LatePaymentsN" 
names(s2)[10] <- "PC1" 
names(s2)[11] <- "PC2" 
names(s2)[12] <- "PC3" 
names(s2)[13] <- "PC4" 
names(s2)[14] <- "PC1N" 
names(s2)[15] <- "PC2N" 
names(s2)[16] <- "PC3N" 
names(s2)[17] <- "PC4N" 
names(s2)[18] <- "fit.cluster" 
s3 <- arrange(s2,Record) 
View(s3) 
 
#Perform statistical testing on representative sample 
#generate data frame of normalized principal components for statistical testing  
ss1 <- data.frame(s3[ ,c("PC1N","PC2N","PC3N","fit.cluster")]) 
View(ss1) 
 
#perform Kruskal-Wallis tests of normalized Principal components 
kruskal.test(PC1N~fit.cluster, data=ss1) 
kruskal.test(PC2N~fit.cluster, data=ss1) 
kruskal.test(PC3N~fit.cluster, data=ss1) 
kruskal.test(PC1N+PC2N+PC3N~fit.cluster, data=ss1) 
 
#generate data frame of normalized original variables for statistical testing 
ss2 <- data.frame(s3[ 
,c("AccountAgeN","CreditLimitN","AdditionalAssetsN","LatePaymentsN","fit.cluste
r")]) 
View(ss2) 
 
#perform Kruskal-Wallis tests of normalized original variables 
kruskal.test(AccountAgeN~fit.cluster, data=ss2) 
kruskal.test(CreditLimitN~fit.cluster, data=ss2) 
kruskal.test(AdditionalAssetsN~fit.cluster, data=ss2) 
kruskal.test(LatePaymentsN~fit.cluster, data=ss2) 
kruskal.test(AccountAgeN+CreditLimitN+AdditionalAssetsN+LatePaymentsN~fit.
cluster, data=ss2) 
 
#generate data frame of original variables for statistical testing 
ss3 <- data.frame(s3[ 
,c("AccountAge","CreditLimit","AdditionalAssets","LatePayments","fit.cluster")]) 
View(ss3) 
 
#perform Kruskal-Wallis tests of original variables 
kruskal.test(AccountAge~fit.cluster, data=ss3) 
kruskal.test(CreditLimit~fit.cluster, data=ss3) 
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kruskal.test(AdditionalAssets~fit.cluster, data=ss3) 
kruskal.test(LatePayments~fit.cluster, data=ss3) 
kruskal.test(AccountAge+CreditLimit+AdditionalAssets+LatePayments~fit.cluster, 
data=ss3) 
 
 
#Cluster 2 - Sub-Cluster OUtlier Detection Via Mahalanobis Distance 
#Set initial variables for subsequent usage 
r2 <- nrow(Cluster2Model) 
c6 <- ncol(Cluster2PC) 
c7 <- ncol(Cluster2Model) 
names(Cluster2Model)[c7] <- "fit.cluster" 
b1 <- r2*.01 
x6 <- max(Cluster2Model[ , "fit.cluster"]) 
p3 <- data.frame(Cluster2PC, Cluster2Model[ , c7]) 
names(p3)[c6+1] <- "fit.cluster2" 
p4 <- data.frame(arrange(p3, fit.cluster2), row.names=NULL) 
p5 <- data.frame(arrange(Cluster2Model, fit.cluster), row.names=NULL) 
 
#Separate data by cluster, compute medians, calculate mahalanobis distances, 
and create outlier plots for each cluster 
for (c in 1:x6) { 
  nam1 <- paste("Cluster", c, sep = "") 
  z <- assign(nam1, subset(p5, fit.cluster==c))   
  z1 <- subset(p4, fit.cluster2==c) 
  med <- vector(mode="numeric", length=c6) 
  for (cc in 1:c6) { 
    med[cc] <- median(z1[ , cc]) 
  } 
  z2 <- data.frame(z1[ , 1:c6]) 
  z3 <- cov(z2, use = "everything" ) 
  md <- mahalanobis(z2, center = med, cov = z3, inverted = TRUE) 
  nam4 <- paste("Cluster", c, sep = "") 
  z4 <- assign(nam4, data.frame(z, md, row.names=NULL)) 
  y2 <- nrow(z4) 
  row.names(z4) <- 1:y2 
  df.2 <- c(1:y2) 
  if (y2 >= b1) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", main=c("Cluster 2, 
Subcluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster 2, sub-cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster 2, Subcluster",c,"QQ Plot")) 
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    abline(v=Out.999, col="red", lwd=2) 
  } 
  if (y2 %in% c(3:b1)) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", main=c("Cluster 2, 
Subcluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster 2, sub-cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster 2, Subcluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2)     
    cat("Cluster 2, sub-cluster",c,"has small relative membership and this warrants 
investigation of all associated objects","\n") 
  } 
  if (y2 < 3) { 
    cat("Cluster 2, sub-cluster",c,"has an extremely small membership and this 
clearly warrants investigation of all associated objects","\n") 
  } 
} 
 
#Export processed information, segregated by cluster 
write.csv(Cluster1, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2.1Results.csv") 
write.csv(Cluster2, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2.2Results.csv") 
 
#Export Cluster2PC and Cluster2Model 
write.csv(Cluster2PC, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2PC.csv") 
write.csv(Cluster2Model, row.names=TRUE, "K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2Model.csv") 
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APPENDIX C:  RSCRIPT - CHAPTER 4 OUTLIER DETECTION 

 
 
 
#Chapter 3 - Outlier Detection 
#Calculates distances/dissmilarities and outlier scores and locates anomalies 
#Code supports sequential analysis of four clusters (1, 2.1, 2.2, and 3 in this 
case) 
 
#install necessary packages 
library(knitr) 
library(stats) 
library(chemometrics) 
library(fields) 
 
#Read Cluster1.2Final data, rename, and read number of rows 
Cluster1 <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/Cluster1.csv") 
View(Cluster1) 
x1 <- Cluster1 
y <- nrow(x1) 
 
#Create new data frames for outlier detection purposes 
df.1 <- data.frame(x1[ , c("PC1N","PC2N","PC3N")], row.names=NULL) 
View(df.1) 
df.2 <- c(1:y) 
View(df.2) 
 
#Compute medians of 3 relevant normalized principal components 
#Entails calculation of median for the column vector corresponding to each 
dimension 
d1 <- df.1[[1]]  
m1 <- median(d1) 
View(m1) 
 
d2 <- df.1[[2]] 
m2 <- median(d2) 
View(m2) 
 
d3 <- df.1[[3]] 
m3 <- median(d3) 
View(m3) 
 
#Compute Mahalanobis Distances 
z <- cov(df.1, use = "everything") 
md <- mahalanobis(df.1, center = c(m1, m2, m3), cov = z, inverted=TRUE) 
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#Add md column to data set x1 
x1["MahalanobisDistance"] <- md 
 
#Normalize md column 
mah1 <- x1[[18]] 
max1 <- max(mah1) 
i <- 1 
mdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  mdn[i] <- mah1[i]/max1 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxmdn <- max(mdn) 
View(maxmdn) 
minmdn <- min(mdn) 
View(minmdn) 
 
#Add normalized md column to data set x1 
x1["MahalanobisNorm"] <- mdn 
 
#Cluster 1 Data - Mahalanobis Plots/Visuals 
C1.995 = quantile(mdn, .995) 
plot(df.2, mdn, xlab="Object", ylab="Mahalanobis Distance", main="Cluster 1 
Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(mdn>C1.995) 
 
qqplot(mdn, df.2, xlab="Mahalanobis Distance", main="Cluster 1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Euclidean distances 
med <- rbind(c(m1,m2,m3)) 
ed <- rdist(df.1, med) 
 
#Add ed column to data set x1 
x1["EuclideanDistance"] <- ed 
 
#Normalize ed column 
euc1 <- x1[[20]] 
max2 <- max(euc1) 
i <- 1 
edn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
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  edn[i] <- euc1[i]/max2 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxedn <- max(edn) 
View(maxedn) 
minedn <- min(edn) 
View(minedn) 
 
#Add normalized ed column to data set x1 
x1["EuclideanNorm"] <- edn 
 
#Cluster 1 Data - Euclidean Plots/Visuals 
C1.995 = quantile(edn, .995) 
plot(df.2, edn, xlab="Object", ylab="Euclidean Distance", main="Cluster 1 Outlier 
Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(edn>C1.995) 
 
qqplot(edn, df.2, xlab="Euclidean Distance", main="Cluster 1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Cosine Dissimilarities (1 - cosine similarity) 
cd=vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) {  
  cd[i] <- 1-
(((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))/((sqrt(df.1[i,1]^2+df.1[i,2]^2+df.1[i,3]^
2))*(sqrt(m1^2+m2^2+m3^2))))  
  i<-i+1 
} 
 
#Add cd column to data set x1 
x1["CosineDissimilarity"] <- cd 
 
#Normalize cd column 
cos1 <- x1[[22]] 
max3 <- max(cos1) 
i <- 1 
cdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  cdn[i] <- cos1[i]/max3 
  i<-i+1 
} 
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#Check/verify max & min normalized values (max=1, min>=0) 
maxcdn <- max(cdn) 
View(maxcdn) 
mincdn <- min(cdn) 
View(mincdn) 
 
#Add normalized cd column to data set x1 
x1["CosineDissimilarityNorm"] <- cdn 
 
#Cluster 1 Data - Cosine Plots/Visuals 
C1.995 = quantile(cdn, .995) 
plot(df.2, cdn, xlab="Object", ylab="Cosine Dissimilarity", main="Cluster 1 Outlier 
Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(cdn>C1.995) 
 
qqplot(cdn, df.2, xlab="Cosine Dissimilarity", main="Cluster 1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Tanimoto Dissimilarities (1 - Tanimoto Coefficient) 
td <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1){ 
  td[i] <- 1-
((((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))/(((sqrt(df.1[i,1]^2+df.1[i,2]^2+df.1[i,3
]^2))^2)+((sqrt(m1^2+m2^2+m3^2))^2)-
((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))))) 
  i<-i+1 
} 
 
#Add td column to data set x1 
x1["TanimotoDissimilarity"] <- td 
 
#Normalize td column 
tan1 <- x1[[24]] 
max4 <- max(tan1) 
i <- 1 
tdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  tdn[i] <- tan1[i]/max4 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxtdn <- max(tdn) 
View(maxtdn) 
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mintdn <- min(tdn) 
View(mintdn) 
 
#Add normalized td column to data set x1 
x1["TanimotoDissimilarityNorm"] <- tdn 
 
#Cluster 1 Data - Tanimoto Plots/Visuals 
C1.995 = quantile(tdn, .995) 
plot(df.2, tdn, xlab="Object", ylab="Tanimoto Dissimilarity", main="Cluster 1 
Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(tdn>C1.995) 
 
qqplot(tdn, df.2, xlab="Tanimoto Dissimilarity", main="Cluster 1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Calculate Outlier Scores from all 4 normalized values 
#Includes weight parameters w1 to w4 for each metric (default value is 1 -- sum 
of weights = 4) 
w1 <- 1 
w2 <- 1 
w3 <- 1 
w4 <- 1 
df.3 <- x1[18:25] 
View(df.3) 
os <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1){ 
  os[i] <- ((df.3[i,2]*w1)+(df.3[i,4]*w2)+(df.3[i,6]*w3)+(df.3[i,8]*w4)) 
  i<-i+1 
} 
 
#Add outlier score column to data set x1 
x1["OutlierScore"] <- os 
View(x1) 
 
#View max and min outlier scores (max<=4, min>0) 
maxos <- max(os) 
View(maxos) 
minos <- min(os) 
View(minos) 
 
#Cluster 1 Data - Outlier Score Plots/Visuals 
C1.995 = quantile(os, .995) 
plot(df.2, os, xlab="Object", ylab="Outlier Score", main="Cluster 1 Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
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which(os>C1.995) 
 
qqplot(os, df.2, xlab="Outlier Score", main="Cluster 1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Export processed info as csv file on hard drive 
write.csv(x1, "K:/Itau/Credit 
Card/Paul/Dissertation/OutlierDetectionStageThree/Cluster1Outliers.csv") 
 
 
 
#Read Cluster2.1 data, rename, and read number of rows 
Cluster2.1 <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2.1.csv") 
View(Cluster2.1) 
x1 <- Cluster2.1 
y <- nrow(x1) 
 
#Create new data frames for outlier detection purposes 
df.1 <- data.frame(x1[ , c("PC1N","PC2N","PC3N")], row.names=NULL) 
View(df.1) 
df.2 <- c(1:y) 
View(df.2) 
 
#Compute medians of 3 relevant normalized principal components 
#Entails calculation of median for the column vector corresponding to each 
dimension 
d1 <- df.1[[1]]  
m1 <- median(d1) 
View(m1) 
 
d2 <- df.1[[2]] 
m2 <- median(d2) 
View(m2) 
 
d3 <- df.1[[3]] 
m3 <- median(d3) 
View(m3) 
 
#Compute Mahalanobis Distances 
z <- cov(df.1, use = "everything") 
md <- mahalanobis(df.1, center = c(m1, m2, m3), cov = z, inverted=TRUE) 
 
#Add md column to data set x1 
x1["MahalanobisDistance"] <- md 
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#Normalize md column 
mah1 <- x1[[18]] 
max1 <- max(mah1) 
i <- 1 
mdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  mdn[i] <- mah1[i]/max1 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxmdn <- max(mdn) 
View(maxmdn) 
minmdn <- min(mdn) 
View(minmdn) 
 
#Add normalized md column to data set x1 
x1["MahalanobisNorm"] <- mdn 
 
#Cluster 2.1 Data - Mahalanobis Plots/Visuals 
C1.995 = quantile(mdn, .995) 
plot(df.2, mdn, xlab="Object", ylab="Mahalanobis Distance", main="Cluster 2.1 
Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(mdn>C1.995) 
 
qqplot(mdn, df.2, xlab="Mahalanobis Distance", main="Cluster 2.1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Euclidean distances 
med <- rbind(c(m1,m2,m3)) 
ed <- rdist(df.1, med) 
 
#Add ed column to data set x1 
x1["EuclideanDistance"] <- ed 
 
#Normalize ed column 
euc1 <- x1[[20]] 
max2 <- max(euc1) 
i <- 1 
edn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  edn[i] <- euc1[i]/max2 
  i<-i+1 
} 
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#Check/verify max & min normalized values (max=1, min>=0) 
maxedn <- max(edn) 
View(maxedn) 
minedn <- min(edn) 
View(minedn) 
 
#Add normalized ed column to data set x1 
x1["EuclideanNorm"] <- edn 
 
#Cluster 2.1 Data - Euclidean Plots/Visuals 
C1.995 = quantile(edn, .995) 
plot(df.2, edn, xlab="Object", ylab="Euclidean Distance", main="Cluster 2.1 
Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(edn>C1.995) 
 
qqplot(edn, df.2, xlab="Euclidean Distance", main="Cluster 2.1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Cosine Dissimilarities (1 - cosine similarity) 
cd=vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) {  
  cd[i] <- 1-
(((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))/((sqrt(df.1[i,1]^2+df.1[i,2]^2+df.1[i,3]^
2))*(sqrt(m1^2+m2^2+m3^2))))  
  i<-i+1 
} 
 
#Add cd column to data set x1 
x1["CosineDissimilarity"] <- cd 
 
#Normalize cd column 
cos1 <- x1[[22]] 
max3 <- max(cos1) 
i <- 1 
cdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  cdn[i] <- cos1[i]/max3 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxcdn <- max(cdn) 
View(maxcdn) 
mincdn <- min(cdn) 
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View(mincdn) 
 
#Add normalized cd column to data set x1 
x1["CosineDissimilarityNorm"] <- cdn 
 
#Cluster 2.1 Data - Cosine Plots/Visuals 
C1.995 = quantile(cdn, .995) 
plot(df.2, cdn, xlab="Object", ylab="Cosine Dissimilarity", main="Cluster 2.1 
Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(cdn>C1.995) 
 
qqplot(cdn, df.2, xlab="Cosine Dissimilarity", main="Cluster 2.1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Tanimoto Dissimilarities (1 - Tanimoto Coefficient) 
td <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1){ 
  td[i] <- 1-
((((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))/(((sqrt(df.1[i,1]^2+df.1[i,2]^2+df.1[i,3
]^2))^2)+((sqrt(m1^2+m2^2+m3^2))^2)-
((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))))) 
  i<-i+1 
} 
 
#Add td column to data set x1 
x1["TanimotoDissimilarity"] <- td 
 
#Normalize td column 
tan1 <- x1[[24]] 
max4 <- max(tan1) 
i <- 1 
tdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  tdn[i] <- tan1[i]/max4 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxtdn <- max(tdn) 
View(maxtdn) 
mintdn <- min(tdn) 
View(mintdn) 
 
#Add normalized td column to data set x1 
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x1["TanimotoDissimilarityNorm"] <- tdn 
 
#Cluster 2.1 Data - Tanimoto Plots/Visuals 
C1.995 = quantile(tdn, .995) 
plot(df.2, tdn, xlab="Object", ylab="Tanimoto Dissimilarity", main="Cluster 2.1 
Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(tdn>C1.995) 
 
qqplot(tdn, df.2, xlab="Tanimoto Dissimilarity", main="Cluster 2.1 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Calculate Outlier Scores from all 4 normalized values 
#Includes weight parameters w1 to w4 for each metric (default value is 1 -- sum 
of weights = 4) 
w1 <- 1 
w2 <- 1 
w3 <- 1 
w4 <- 1 
df.3 <- x1[18:25] 
View(df.3) 
os <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1){ 
  os[i] <- ((df.3[i,2]*w1)+(df.3[i,4]*w2)+(df.3[i,6]*w3)+(df.3[i,8]*w4)) 
  i<-i+1 
} 
View(os) 
 
#Add outlier score column to data set x1 
x1["OutlierScore"] <- os 
View(x1) 
 
#View max and min outlier scores (max<=4, min>0) 
maxos <- max(os) 
View(maxos) 
minos <- min(os) 
View(minos) 
 
#Cluster 2.1 Data - Outlier Score Plots/Visuals 
C1.995 = quantile(os, .995) 
plot(df.2, os, xlab="Object", ylab="Outlier Score", main="Cluster 2.1 Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(os>C1.995) 
 
qqplot(os, df.2, xlab="Outlier Score", main="Cluster 2.1 - QQ Plot") 
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abline(v=C1.995, col="red", lwd=2) 
 
#Export processed info as csv file on hard drive 
write.csv(x1, "K:/Itau/Credit 
Card/Paul/Dissertation/OutlierDetectionStageThree/Cluster2.1Outliers.csv") 
 
 
 
#Read Cluster2.2 data, rename, and read number of rows 
Cluster2.2 <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageTwo/Cluster2.2.csv") 
View(Cluster2.2) 
x2 <- Cluster2.2 
y <- nrow(x2) 
 
#Create new data frames for outlier detection 
df.1 <- data.frame(x2[ , c("PC1N","PC2N","PC3N")], row.names=NULL) 
View(df.1) 
df.2 <- c(1:y) 
 
#Compute medians of 3 PCs 
#Entails calculation of median for the column vector corresponding to each 
dimension 
d1 <- df.1[[1]]  
m1 <- median(d1) 
View(m1) 
 
d2 <- df.1[[2]] 
m2 <- median(d2) 
View(m2) 
 
d3 <- df.1[[3]] 
m3 <- median(d3) 
View(m3) 
 
#Compute Mahalanobis Distances 
z <- cov(df.1, use = "everything") 
md <- mahalanobis(df.1, center = c(m1, m2, m3), cov = z, inverted=TRUE) 
 
#Add md column to data set x2 
x2["MahalanobisDistance"] <- md 
 
#Normalize md column 
mah1 <- x2[[18]] 
max1 <- max(mah1) 
i <- 1 
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mdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  mdn[i] <- mah1[i]/max1 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxmdn <- max(mdn) 
View(maxmdn) 
minmdn <- min(mdn) 
View(minmdn) 
 
#Add normalized md column to data set x2 
x2["MahalanobisNorm"] <- mdn 
 
#Cluster 2.2 Data - Mahalanobis Plots/Visuals 
C2.995 = quantile(mdn, .995) 
plot(df.2, mdn, xlab="Object", ylab="Mahalanobis Distance", main="Cluster 2.2 
Outlier Plot") 
abline(h=C2.995, col="red", lwd=2) 
which(mdn>C2.995) 
 
qqplot(mdn, df.2, xlab="Mahalanobis Distance", main="Cluster 2.2 - QQ Plot") 
abline(v=C2.995, col="red", lwd=2) 
 
#Compute Euclidean distances 
med <- rbind(c(m1,m2,m3)) 
ed <- rdist(df.1, med) 
 
#Add ed column to data set x2 
x2["EuclideanDistance"] <- ed 
 
#Normalize ed column 
euc1 <- x2[[20]] 
max2 <- max(euc1) 
i <- 1 
edn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  edn[i] <- euc1[i]/max2 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxedn <- max(edn) 
View(maxedn) 
minedn <- min(edn) 
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View(minedn) 
 
#Add normalized ed column to data set x2 
x2["EuclideanNorm"] <- edn 
 
#Cluster 2.2 Data - Euclidean Plots/Visuals 
C2.995 = quantile(edn, .995) 
plot(df.2, edn, xlab="Object", ylab="Euclidean Distance", main="Cluster 2.2 
Outlier Plot") 
abline(h=C2.995, col="red", lwd=2) 
which(edn>C2.995) 
 
qqplot(edn, df.2, xlab="Euclidean Distance", main="Cluster 2.2 - QQ Plot") 
abline(v=C2.995, col="red", lwd=2) 
 
#Compute Cosine Dissimilarities (1 - cosine similarity) 
cd=vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) {  
  cd[i] <- 1-
(((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))/((sqrt(df.1[i,1]^2+df.1[i,2]^2+df.1[i,3]^
2))*(sqrt(m1^2+m2^2+m3^2))))  
  i<-i+1 
} 
 
#Add cd column to data set x2 
x2["CosineDissimilarity"] <- cd 
 
#Normalize cd column 
cos1 <- x2[[22]] 
max3 <- max(cos1) 
i <- 1 
cdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  cdn[i] <- cos1[i]/max3 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxcdn <- max(cdn) 
View(maxcdn) 
mincdn <- min(cdn) 
View(mincdn) 
 
#Add normalized cd column to data set x2 
x2["CosineDissimilarityNorm"] <- cdn 
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#Cluster 2.2 Data - Cosine Plots/Visuals 
C2.995 = quantile(cdn, .995) 
plot(df.2, cdn, xlab="Object", ylab="Cosine Dissimilarity", main="Cluster 2.2 
Outlier Plot") 
abline(h=C2.995, col="red", lwd=2) 
which(cdn>C2.995) 
 
qqplot(cdn, df.2, xlab="Cosine Dissimilarity", main="Cluster 2.2 - QQ Plot") 
abline(v=C2.995, col="red", lwd=2) 
 
#Compute Tanimoto Dissimilarities (1 - Tanimoto Coefficient) 
td <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1){ 
  td[i] <- 1-
((((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))/(((sqrt(df.1[i,1]^2+df.1[i,2]^2+df.1[i,3
]^2))^2)+((sqrt(m1^2+m2^2+m3^2))^2)-
((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))))) 
  i<-i+1 
} 
 
#Add td column to data set x2 
x2["TanimotoDissimilarity"] <- td 
 
#Normalize td column 
tan1 <- x2[[24]] 
max4 <- max(tan1) 
i <- 1 
tdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  tdn[i] <- tan1[i]/max4 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxtdn <- max(tdn) 
View(maxtdn) 
mintdn <- min(tdn) 
View(mintdn) 
 
#Add normalized td column to data set x2 
x2["TanimotoDissimilarityNorm"] <- tdn 
 
#Cluster 2.2 Data - Tanimoto Plots/Visuals 
C2.995 = quantile(tdn, .995) 
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plot(df.2, tdn, xlab="Object", ylab="Tanimoto Dissimilarity", main="Cluster 2.2 
Outlier Plot") 
abline(h=C2.995, col="red", lwd=2) 
which(tdn>C2.995) 
 
qqplot(tdn, df.2, xlab="Tanimoto Dissimilarity", main="Cluster 2.2 - QQ Plot") 
abline(v=C2.995, col="red", lwd=2) 
 
#Calculate Outlier Scores from all 4 normalized values 
#Includes weight parameters w1 to w4 for each metric (default value is 1 -- sum 
of weights = 4) 
w1 <- 1 
w2 <- 1 
w3 <- 1 
w4 <- 1 
df.3 <- x2[18:25] 
View(df.3) 
os <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1){ 
  os[i] <- ((df.3[i,2]*w1)+(df.3[i,4]*w2)+(df.3[i,6]*w3)+(df.3[i,8]*w4)) 
  i<-i+1 
} 
 
#Add outlier score column to data set x2 
x2["OutlierScore"] <- os 
View(x2) 
 
#View max and min outlier scores (max<=4, min>0) 
maxos <- max(os) 
View(maxos) 
minos <- min(os) 
View(minos) 
 
#Cluster 2.2 Data - Outlier Score Plots/Visuals 
C2.995 = quantile(os, .995) 
plot(df.2, os, xlab="Object", ylab="Outlier Score", main="Cluster 2.2 Outlier Plot") 
abline(h=C2.995, col="red", lwd=2) 
which(os>C2.995) 
 
qqplot(os, df.2, xlab="Outlier Score", main="Cluster 2.2 - QQ Plot") 
abline(v=C2.995, col="red", lwd=2) 
 
#Export processed info as csv file on hard drive 
write.csv(x2, "K:/Itau/Credit 
Card/Paul/Dissertation/OutlierDetectionStageThree/Cluster2.2Outliers.csv") 
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#Read Cluster3 data, rename, and read number of rows 
Cluster3 <- read.csv("K:/Itau/Credit 
Card/Paul/Dissertation/ClusteringStageOne/Cluster3.csv") 
View(Cluster3) 
x1 <- Cluster3 
y <- nrow(x1) 
 
#Create new data frames for outlier detection purposes 
df.1 <- data.frame(x1[ , c("PC1N","PC2N","PC3N")], row.names=NULL) 
View(df.1) 
df.2 <- c(1:y) 
View(df.2) 
 
#Compute medians of 3 relevant normalized principal components 
#Entails calculation of median for the column vector corresponding to each 
dimension 
d1 <- df.1[[1]]  
m1 <- median(d1) 
View(m1) 
 
d2 <- df.1[[2]] 
m2 <- median(d2) 
View(m2) 
 
d3 <- df.1[[3]] 
m3 <- median(d3) 
View(m3) 
 
#Compute Mahalanobis Distances 
z <- cov(df.1, use = "everything") 
md <- mahalanobis(df.1, center = c(m1, m2, m3), cov = z, inverted=TRUE) 
 
#Add md column to data set x1 
x1["MahalanobisDistance"] <- md 
 
#Normalize md column 
mah1 <- x1[[18]] 
max1 <- max(mah1) 
i <- 1 
mdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  mdn[i] <- mah1[i]/max1 
  i<-i+1 
} 
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#Check/verify max & min normalized values (max=1, min>=0) 
maxmdn <- max(mdn) 
View(maxmdn) 
minmdn <- min(mdn) 
View(minmdn) 
 
#Add normalized md column to data set x1 
x1["MahalanobisNorm"] <- mdn 
 
#Cluster 3 Data - Mahalanobis Plots/Visuals 
C1.995 = quantile(mdn, .995) 
plot(df.2, mdn, xlab="Object", ylab="Mahalanobis Distance", main="Cluster 3 
Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(mdn>C1.995) 
 
qqplot(mdn, df.2, xlab="Mahalanobis Distance", main="Cluster 3 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Euclidean distances 
med <- rbind(c(m1,m2,m3)) 
ed <- rdist(df.1, med) 
 
#Add ed column to data set x1 
x1["EuclideanDistance"] <- ed 
 
#Normalize ed column 
euc1 <- x1[[20]] 
max2 <- max(euc1) 
i <- 1 
edn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  edn[i] <- euc1[i]/max2 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxedn <- max(edn) 
View(maxedn) 
minedn <- min(edn) 
View(minedn) 
 
#Add normalized ed column to data set x1 
x1["EuclideanNorm"] <- edn 
 



- 178 - 
 

 
 

#Cluster 3 Data - Euclidean Plots/Visuals 
C1.995 = quantile(edn, .995) 
plot(df.2, edn, xlab="Object", ylab="Euclidean Distance", main="Cluster 3 Outlier 
Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(edn>C1.995) 
 
qqplot(edn, df.2, xlab="Euclidean Distance", main="Cluster 3 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Cosine Dissimilarities (1 - cosine similarity) 
cd=vector(mode="numeric", length=y) 
i<-1 
while(i<y+1) {  
  cd[i] <- 1-
(((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))/((sqrt(df.1[i,1]^2+df.1[i,2]^2+df.1[i,3]^
2))*(sqrt(m1^2+m2^2+m3^2))))  
  i<-i+1 
} 
 
#Add cd column to data set x1 
x1["CosineDissimilarity"] <- cd 
 
#Normalize cd column 
cos1 <- x1[[22]] 
max3 <- max(cos1) 
i <- 1 
cdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  cdn[i] <- cos1[i]/max3 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxcdn <- max(cdn) 
View(maxcdn) 
mincdn <- min(cdn) 
View(mincdn) 
 
#Add normalized cd column to data set x1 
x1["CosineDissimilarityNorm"] <- cdn 
 
#Cluster 3 Data - Cosine Plots/Visuals 
C1.995 = quantile(cdn, .995) 
plot(df.2, cdn, xlab="Object", ylab="Cosine Dissimilarity", main="Cluster 3 Outlier 
Plot") 
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abline(h=C1.995, col="red", lwd=2) 
which(cdn>C1.995) 
 
qqplot(cdn, df.2, xlab="Cosine Dissimilarity", main="Cluster 3 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Compute Tanimoto Dissimilarities (1 - Tanimoto Coefficient) 
td <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1){ 
  td[i] <- 1-
((((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))/(((sqrt(df.1[i,1]^2+df.1[i,2]^2+df.1[i,3
]^2))^2)+((sqrt(m1^2+m2^2+m3^2))^2)-
((df.1[i,1]*m1)+(df.1[i,2]*m2)+(df.1[i,3]*m3))))) 
  i<-i+1 
} 
 
#Add td column to data set x1 
x1["TanimotoDissimilarity"] <- td 
 
#Normalize td column 
tan1 <- x1[[24]] 
max4 <- max(tan1) 
i <- 1 
tdn <- vector(mode="numeric", length=y) 
while (i<y+1) { 
  tdn[i] <- tan1[i]/max4 
  i<-i+1 
} 
 
#Check/verify max & min normalized values (max=1, min>=0) 
maxtdn <- max(tdn) 
View(maxtdn) 
mintdn <- min(tdn) 
View(mintdn) 
 
#Add normalized td column to data set x1 
x1["TanimotoDissimilarityNorm"] <- tdn 
 
#Cluster 3 Data - Tanimoto Plots/Visuals 
C1.995 = quantile(tdn, .995) 
plot(df.2, tdn, xlab="Object", ylab="Tanimoto Dissimilarity", main="Cluster 3 
Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(tdn>C1.995) 
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qqplot(tdn, df.2, xlab="Tanimoto Dissimilarity", main="Cluster 3 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Calculate Outlier Scores from all 4 normalized values 
#Includes weight parameters w1 to w4 for each metric (default value is 1 -- sum 
of weights = 4) 
w1 <- 1 
w2 <- 1 
w3 <- 1 
w4 <- 1 
df.3 <- x1[18:25] 
View(df.3) 
os <- vector(mode="numeric", length=y) 
i<-1 
while(i<y+1){ 
  os[i] <- ((df.3[i,2]*w1)+(df.3[i,4]*w2)+(df.3[i,6]*w3)+(df.3[i,8]*w4)) 
  i<-i+1 
} 
View(os) 
 
#Add outlier score column to data set x1 
x1["OutlierScore"] <- os 
View(x1) 
 
#View max and min outlier scores (max<=4, min>0) 
maxos <- max(os) 
View(maxos) 
minos <- min(os) 
View(minos) 
 
#Cluster 3 Data - Outlier Score Plots/Visuals 
C1.995 = quantile(os, .995) 
plot(df.2, os, xlab="Object", ylab="Outlier Score", main="Cluster 3 Outlier Plot") 
abline(h=C1.995, col="red", lwd=2) 
which(os>C1.995) 
 
qqplot(os, df.2, xlab="Outlier Score", main="Cluster 3 - QQ Plot") 
abline(v=C1.995, col="red", lwd=2) 
 
#Export processed info as csv file on hard drive 
write.csv(x1, "K:/Itau/Credit 
Card/Paul/Dissertation/OutlierDetectionStageThree/Cluster3Outliers.csv") 
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APPENDIX D:  CLUSTERING AND OUTLIER DETECTION 

APPLICATION VERSION1.0 

 
 
 
#Automated Clustering and Outlier Detection Application V1 
#Stage One - Clustering and Evaluation 
#Load necessary packages 
library(knitr) 
library(rmarkdown) 
library(cluster) 
library(clusterSim) 
library(NbClust) 
library(plyr) 
library(Rcmdr) 
library(gplots) 
library(scatterplot3d) 
library(stats) 
library(chemometrics) 
library(fields) 
library(fastcluster) 
 
#Import target data set into R and read number of rows 
MainData <- read.csv("C:/Users/Eric/Documents/Rutgers - Dissertation 
Items/AutomatedClusteringProject/ClusteringExperiment1.csv") 
r1 <- nrow(MainData) 
c1 <- ncol(MainData) 
zz <- c1-1 
 
#Create data frames of MainData  
x1 <- MainData[ , 1:c1] 
View(x1) 
x2 <- MainData[ , 2:c1] 
 
#Normalize all dimensions to be clustered 
m <- matrix(nrow=r1, ncol=zz)  
for (c in 1:zz) { 
  max <- max(x2[ , c]) 
  min <- min(x2[ , c])   
    for (r in 1:r1) { 
      m[r,c] <- ((x2[r, c] - min)/(max - min)) 
    } 
} 
 
#Add normalized results to data frame x1, thus creating x1.m 
x1.m <- cbind(x1, m) 
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#Create data frame of matrix m for principal components analysis 
mm <- data.frame(m) 
 
#Perform principal components analysis and generate initial plots of two primary 
PC's 
trans <- prcomp(mm, center=TRUE, scale.=TRUE) 
print(trans) 
summary(trans) 
plot(trans, typ="l", main="Principal Components - Explained Variance", col="2", 
lwd="4") 
PC = predict(trans, mm) 
plot(PC, type="p", col="2") 
plot(PC, type="b", col="2") 
 
#Add principal components to x1.m, thus creating x1.p 
x1.p <- cbind(x1.m, PC) 
 
#Set variable and create data frame of PC columns  
c2 <- ncol(PC) 
x3 <- data.frame(PC) 
 
#Normalize all principal components 
p <- matrix(nrow=r1, ncol=c2) 
for (c in 1:c2) { 
  max <- max(x3[ , c]) 
  min <- min(x3[ , c])   
    for (r in 1:r1) { 
      p[r,c] <- ((x3[r, c] - min)/(max - min)) 
    } 
} 
View(p) 
 
#Add normalized pc results data frame x1.p, thus creating x1.pc 
x1.pc <- cbind(x1.p, p) 
View(x1.pc) 
 
#Automatically select principal components needed for clustering 
ll <- as.data.frame(summary(trans)[6]) 
l <- as.vector(ll[3, ], mode="numeric") 
s <- 0 
PCC <- list() 
for (u in 1:c2) { 
  if (s < .8) { 
    PCC[[u]] <- p[ , u] 
  } 
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  s <- l[u] 
} 
PCCN <- as.data.frame(PCC) 
c3 <- ncol(PCCN) 
ClusteringDataPC <- data.frame(p[ , 1:c3]) 
View(ClusteringDataPC) 
 
#Algorithm Selection Processes (using clusterSim and NbClust packages) 
#Following two variables (minK & maxK) correspond to exploration range for 
number of clusters 
#These can be specified by the user (default range is from 3 to 15) 
minK <- 3 
maxK <- 15 
 
#Subpart 1 - Explore Hierarchical (Ward and complete link) and PAM 
(partitioning around medoids) 
fit <- cluster.Sim(ClusteringDataPC, p=6, minClusterNo=minK, 
maxClusterNo=maxK, icq="S", outputCsv="AlgorithmResults", distances=c("d2"), 
methods=c("m2","m5","m6")) 
 
#Create a full result set for the best model from cluster.Sim process (for choosing 
algorithm) 
m1 <- matrix(c(fit$method, fit$classes, fit$result), nrow=1, ncol=3) 
best.Sim <- data.frame(m1) 
names(best.Sim)[1] <- "BestMethod" 
names(best.Sim)[2] <- "NumberOfClusters" 
names(best.Sim)[3] <- "SilhouetteValue" 
 
#Create a partial result set for the best model from cluster.Sim process (for 
choosing k) 
v1 <- as.numeric(fit$classes) 
v2 <- as.numeric(fit$result) 
m1 <- matrix(c(v1, v2), nrow=1, ncol=2) 
best.SimClus <- data.frame(m1) 
names(best.SimClus)[1] <- "NumberOfClusters" 
names(best.SimClus)[2] <- "SilhouetteValue" 
 
#Subpart 2 - Explore K-means 
fit2 <- NbClust(ClusteringDataPC, min.nc=minK, max.nc=maxK,  
method="kmeans", index="silhouette") 
 
#Create a full result set for the best model from NbClust process (for choosing 
algorithm) 
m2 <- matrix(c("Kmeans", cbind(fit2$Best.nc)), nrow=1, ncol=3) 
best.Nb <- data.frame(m2) 
names(best.Nb)[1] <- "BestMethod" 
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names(best.Nb)[2] <- "NumberOfClusters" 
names(best.Nb)[3] <- "SilhouetteValue" 
 
#Create a partial result set for the best model from NbClust process (for choosing 
k) 
m1 <- matrix(fit2$Best.nc, nrow=1, ncol=2) 
best.NbClus <- data.frame(m1) 
names(best.NbClus)[1] <- "NumberOfClusters" 
names(best.NbClus)[2] <- "SilhouetteValue" 
 
#Combine the two full result sets into a single view, and find best model 
information 
combined.full <- as.matrix(rbind(best.Nb, best.Sim[ ,1:3])) 
comp <- as.vector(combined.full[ , 3]) 
as.numeric(comp) 
if (comp[1] > comp[2]) { 
  best.full <- combined.full[1, 1] 
  show(combined.full[1, ]) 
} 
if (comp[2] > comp[1]) { 
  best.full <- combined.full[2, 1] 
  show(combined.full[2, ]) 
} 
 
#Combine the two partial result sets into a single view, and sort for use in 
subsequent processing 
combined.partial <- rbind(best.NbClus, best.SimClus[ ,1:2]) 
sorted.partial <- data.frame(arrange(combined.partial, desc(combined.partial[ 
,2]))) 
best.partial <- data.frame(sorted.partial[1, ]) 
 
#Set number of clusters to be used in final model generation 
k <- best.partial[1,1] 
 
 
#Use 4 if statements to create the preferred model based upon above algorithm 
selection routines 
 
if (best.full == "Kmeans") { 
  #Create final Kmeans model and show stats 
  model <- kmeans(ClusteringDataPC, centers=k, iter.max=500, nstart=10, 
algorithm="Lloyd") 
  sil <- silhouette(model$cluster, dist(ClusteringDataPC,"euclidean")) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  show(avgsil) 
  show(model$centers) 
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  show(model$size) 
  show(model$totss) 
  show(model$tot.withinss) 
  show(model$betweenss) 
   
  #Create cluster plot of final Kmeans model 
  clusplot(ClusteringDataPC, model$cluster, main="Kmeans - 2D Plot of Final 
Model", xlab="Principal Component 1", ylab="Principal Component 2", 
col.clus=2) 
   
  #Append cluster assignment (adds cluster assignment column to data) 
  FinalModel <- data.frame(x1.pc, model$cluster) 
  View(FinalModel) 
} 
 
if (best.full == "pam") { 
  #Create final pam model and show stats 
  model <- pam(ClusteringDataPC, k) 
  show(model$medoids) 
  show(model$id.med) 
  show(model$objective) 
  show(model$isolation) 
  show(model$clusinfo)   
   
  #Create cluster plot of final pam model 
  clusplot(model, main="PAM - 2D Plot of Final Model", xlab="Principal 
Component 1", ylab="Principal Component 2", shade=TRUE, col.clus=2) 
          
  #Append cluster assignment (adds cluster assignment column to data) 
  FinalModel <- data.frame(x1.pc, model$clustering) 
  cc <- ncol(FinalModel) 
  names(FinalModel)[cc] <- "model.cluster" 
  View(FinalModel)   
} 
 
if (best.full == "ward") { 
  #Build model and generate preliminary visuals 
  model <- hclust(dist(ClusteringDataPC, method = "euclidean"), method = 
"ward.D2") 
  plot(model, main="Ward's Method Hierarchical Clustering - Initial Dendrogram", 
hang=-1, col=2) 
   
  #Set color scheme to traffic light style with green (red) for high (low) values 
  color <- colorRampPalette(c("red", "orange", "green")) 
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  #Create horizontal clusters for rows and columns and convert these into 
dendograms. 
  RowDend <- as.dendrogram(hclust(dist(ClusteringDataPC, 
method="euclidean"), method="ward")) 
  ColDend <- as.dendrogram(hclust(dist(t(ClusteringDataPC), 
method="euclidean"), method="ward")) 
     
  #Draw combined heatmap and dendogram structure 
  heatmap.2(as.matrix(ClusteringDataPC), Rowv=RowDend, Colv=ColDend, 
main=NULL, xlab="Ward's Method - Row and Column Dendogram", col=color, 
margins=c(7,5)) 
     
  #Generate final Ward's method model and append cluster assignment to data 
  memb <- cutree(model, k=k) 
  model$clusters <- assignCluster(ClusteringDataPC, x1.pc, memb) 
  model$cluster <- as.integer(model$clusters) 
  FinalModel <- data.frame(x1.pc, model$cluster) 
  View(FinalModel)   
} 
   
if (best.full == "complete") { 
  #Build model and generate preliminary visuals 
  model <- hclust(dist(ClusteringDataPC, method = "euclidean"), method = 
"complete") 
  plot(model, main="Complete-Link Hierarchical Clustering - Initial Dendrogram", 
hang=-1, col=2) 
   
  #Set color scheme to traffic light style with green (red) for high (low) values 
  color <- colorRampPalette(c("red", "orange", "green")) 
   
  #Create horizontal clusters for rows and columns and convert these into 
dendograms. 
  RowDend <- as.dendrogram(hclust(dist(ClusteringDataPC, 
method="euclidean"), method="complete")) 
  ColDend <- as.dendrogram(hclust(dist(t(ClusteringDataPC), 
method="euclidean"), method="complete")) 
   
  #Draw combined heatmap and dendogram structure 
  heatmap.2(as.matrix(ClusteringDataPC), Rowv=RowDend, Colv=ColDend, 
main=NULL, xlab="Complete Link - Row and Column Dendogram", col=color, 
margins=c(7,5)) 
     
  #Generate final Complete-Link model and append cluster assignment to data 
  memb <- cutree(model, k=k) 
  model$clusters <- assignCluster(ClusteringDataPC, x1.pc, memb) 
  model$cluster <- as.integer(model$clusters) 
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  FinalModel <- data.frame(x1.pc, model$cluster) 
  View(FinalModel) 
} 
   
#Generate 3D plots of final clustering model 
t <- ncol(FinalModel) 
assign <- FinalModel[ , t] 
 
if (c3 == 3) { 
  #3D Plots of principal components with cluster assignments (entailing four 
orientations) 
  ddd <- data.frame(p[ , 1:3], assign) 
  names(ddd)[1] <- "PC1" 
  names(ddd)[2] <- "PC2" 
  names(ddd)[3] <- "PC3" 
  names(ddd)[4] <- "Cluster" 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
} 
 
if (c3 > 3) { 
  #3D Plots of PCs 1, 2, and 3 with cluster assignments (entailing four 
orientations) 
  ddd1 <- data.frame(p[ , 1:3], assign) 
  names(ddd1)[1] <- "PC1" 
  names(ddd1)[2] <- "PC2" 
  names(ddd1)[3] <- "PC3" 
  names(ddd1)[4] <- "Cluster" 
  scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
  scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
  scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
  scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
   
  #3D Plots of PCs 1, 2, and 4 with cluster assignments (entailing four 
orientations) 
  ddd2 <- data.frame(cbind(p[ , 1:2], p[ , 4]), assign) 
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  names(ddd2)[1] <- "PC1" 
  names(ddd2)[2] <- "PC2" 
  names(ddd2)[3] <- "PC4" 
  names(ddd2)[4] <- "Cluster" 
  scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
  scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
  scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
  scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
   
  #3D Plots of PCs 2, 3, and 4 with cluster assignments (entailing four 
orientations) 
  ddd3 <- data.frame(p[ , 2:4], assign) 
  names(ddd3)[1] <- "PC2" 
  names(ddd3)[2] <- "PC3" 
  names(ddd3)[3] <- "PC4" 
  names(ddd3)[4] <- "Cluster" 
  scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
  scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
  scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
  scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
} 
 
#Get cluster counts 
xx <- max(FinalModel[ ,"model.cluster"]) 
for (j in 1:xx) { 
  cnt1.1 <- count(FinalModel[ , t]==j) 
  cnt1.2 <- cnt1.1[2,2] 
  cat("Cluster",j,"contains",cnt1.2,"records.\n") 
} 
 
#Get cluster means for original variables 
aggregate(x2, by=list(model$cluster), FUN=mean) 
 
#Get cluster means for normalized original variables 
aggregate(m, by=list(model$cluster), FUN=mean) 
 
#Get cluster means for normalized principal components 
aggregate(ClusteringDataPC, by=list(model$cluster), FUN=mean) 
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#Get cluster medians for original variables 
aggregate(x2, by=list(model$cluster), FUN=median) 
 
#Get cluster medians for normalized original variables 
aggregate(m, by=list(model$cluster), FUN=median) 
 
#Get cluster medians for normalized principal components 
aggregate(ClusteringDataPC, by=list(model$cluster), FUN=median) 
 
#Perform Kruskal-Wallis tests of significance 
#Generate variables and perform statistical testing 
col <- ncol(FinalModel) 
dd1 <- (col/2)+1 
ss1.2 <- data.frame (FinalModel[ ,dd1:col]) 
dd2 <- ncol(ss1.2) 
dd3 <- as.integer(dd2/2)+1 
 
if (c3 == 3) { 
  dd4 <- dd3+2 
  ss1.1 <- data.frame(cbind(ss1.2[ , dd3:dd4], ss1.2[ ,dd2])) 
  names(ss1.1)[1] <- "PC1N" 
  names(ss1.1)[2] <- "PC2N" 
  names(ss1.1)[3] <- "PC3N" 
  names(ss1.1)[4] <- "model.cluster" 
  ss1 <- as.matrix(ss1.1) 
   
  t1 <- kruskal.test(PC1N~model.cluster, data=ss1) 
  show(t1) 
  t2 <- kruskal.test(PC2N~model.cluster, data=ss1) 
  show(t2) 
  t3 <- kruskal.test(PC3N~model.cluster, data=ss1) 
  show(t3) 
  t4 <- kruskal.test(PC1N+PC2N+PC3N~model.cluster, data=ss1) 
  show(t4) 
  print("If p-value less than .05, results are significant and clusters are statistically 
different") 
} 
 
if (c3 == 4) { 
  dd4 <- dd3+3 
  ss1.1 <- data.frame(cbind(ss1.2[ , dd3:dd4], ss1.2[ ,dd2])) 
  View(ss1.1) 
  names(ss1.1)[1] <- "PC1N" 
  names(ss1.1)[2] <- "PC2N" 
  names(ss1.1)[3] <- "PC3N" 
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  names(ss1.1)[4] <- "PC4N" 
  names(ss1.1)[5] <- "model.cluster" 
  ss1 <- as.matrix(ss1.1) 
   
  t1 <- kruskal.test(PC1N~model.cluster, data=ss1) 
  show(t1) 
  t2 <- kruskal.test(PC2N~model.cluster, data=ss1) 
  show(t2) 
  t3 <- kruskal.test(PC3N~model.cluster, data=ss1) 
  show(t3) 
  t4 <- kruskal.test(PC4N~model.cluster, data=ss1) 
  show(t4) 
  t5 <- kruskal.test(PC1N+PC2N+PC3N+PC4N~model.cluster, data=ss1) 
  show(t5) 
  print("If p-value less than .05, results are significant and clusters are statistically 
different") 
} 
 
if (c3 > 4) { 
  dd4 <- dd3+4 
  ss1.1 <- data.frame(cbind(ss1.2[ , dd3:dd4], ss1.2[ ,dd2])) 
  names(ss1.1)[1] <- "PC1N" 
  names(ss1.1)[2] <- "PC2N" 
  names(ss1.1)[3] <- "PC3N" 
  names(ss1.1)[4] <- "PC4N" 
  names(ss1.1)[5] <- "PC5N" 
  names(ss1.1)[6] <- "model.cluster" 
  ss1 <- as.matrix(ss1.1) 
   
  t1 <- kruskal.test(PC1N~model.cluster, data=ss1) 
  show(t1) 
  t2 <- kruskal.test(PC2N~model.cluster, data=ss1) 
  show(t2) 
  t3 <- kruskal.test(PC3N~model.cluster, data=ss1) 
  show(t3) 
  t4 <- kruskal.test(PC4N~model.cluster, data=ss1) 
  show(t4) 
  t5 <- kruskal.test(PC5N~model.cluster, data=ss1) 
  show(t5) 
  t6 <- kruskal.test(PC1N+PC2N+PC3N+PC4N+PC5N~model.cluster, data=ss1) 
  show(t6) 
  print("If p-value less than .05, results are significant and clusters are statistically 
different") 
} 
 
#Export FinalModel final results (for additional analyses/visualizations) 
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write.csv(FinalModel, row.names=FALSE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/FinalClusteringResults.csv") 
 
 
#Stage Two - Outlier Detection via Mahalanobis Distance 
#Set initial variables for subsequent usage 
r2 <- nrow(FinalModel) 
c4 <- ncol(PCCN) 
b <- r2*.01 
x <- max(FinalModel[ ,"model.cluster"]) 
p2 <- data.frame(ClusteringDataPC, model$cluster) 
p3 <- data.frame(arrange(p2, model$cluster), row.names=NULL) 
p4 <- data.frame(arrange(FinalModel, model$cluster), row.names=NULL) 
 
#Separate data by cluster, compute medians, calculate mahalanobis distances, 
and create outlier plots for each cluster 
for (c in 1:x) { 
  nam1 <- paste("Cluster", c, sep = "") 
  z <- assign(nam1, subset(p4, model.cluster==c))   
  z1 <- subset(p3, model.cluster==c) 
  med <- vector(mode="numeric", length=c4) 
  for (c5 in 1:c4) { 
    med[c5] <- median(z1[ , c5]) 
  } 
  z2 <- data.frame(z1[ ,1:c4]) 
  z3 <- cov(z2, use = "everything" ) 
  md <- mahalanobis(z2, center = med, cov = z3, inverted = TRUE) 
  nam4 <- paste("Cluster", c, sep = "") 
  z4 <- assign(nam4, data.frame(z, md, row.names=NULL)) 
  y2 <- nrow(z4) 
  row.names(z4) <- 1:y2 
  df.2 <- c(1:y2) 
  if (y2 >= b) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2) 
  } 
  if (y2 %in% c(3:b)) { 
    Out.999 = quantile(md, .999) 
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    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2)     
    cat("Cluster",c,"has small relative membership and this warrants investigation 
of all associated objects","\n") 
  } 
  if (y2 < 3) { 
    cat("Cluster",c,"has an extremely small membership and this clearly warrants 
investigation of all associated objects","\n") 
  } 
} 
 
#Export final clustering results, segregated by cluster 
if (c == 3) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
} 
 
if (c == 4) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
} 
 
if (c == 5) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
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  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
} 
 
if (c == 6) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
} 
 
if (c == 7) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
} 
 
if (c == 8) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
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  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
} 
 
if (c == 9) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
} 
 
if (c == 10) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
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  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
} 
 
if (c == 11) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
} 
 
if (c == 12) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
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  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
  write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12Results.csv") 
} 
 
if (c == 13) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
  write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12Results.csv") 
  write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13Results.csv") 
} 
 
if (c == 14) { 
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  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
  write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12Results.csv") 
  write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13Results.csv") 
  write.csv(Cluster14, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster14Results.csv") 
} 
 
if (c == 15) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
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  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
  write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12Results.csv") 
  write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13Results.csv") 
  write.csv(Cluster14, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster14Results.csv") 
  write.csv(Cluster15, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster15Results.csv") 
} 
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APPENDIX E:  CLUSTERING AND OUTLIER DETECTION 

APPLICATION VERSION2.O 

 
 
 
#Automated Clustering and Outlier Detection Program V2 
#For use on both small and larger data sets 
#Load necessary packages 
library(knitr) 
library(rmarkdown) 
library(cluster) 
library(plyr) 
library(Rcmdr) 
library(gplots) 
library(scatterplot3d) 
library(stats) 
library(chemometrics) 
library(fields) 
library(fastcluster) 
library(mclust) 
library(EMCluster) 
 
#Increase memory limit 
memory.size(max=TRUE) 
memory.limit(size=999999) 
 
#Import target data set into R and read number of rows 
#User specified parameter 1:  Set path name for data set to be imported, 
processed, & clustered 
MainData <- read.csv("C:/Users/Eric/Documents/Rutgers - Dissertation 
Items/AutomatedClusteringProject/ClusteringExperiment1.csv") 
r1 <- nrow(MainData) 
c1 <- ncol(MainData) 
zz <- c1-1 
View(MainData) 
 
#Create data frames of MainData  
x1 <- MainData[ , 1:c1] 
x2 <- MainData[ , 2:c1] 
 
 
#Stage I  - Data Preprocessing 
#Normalize all dimensions to be clustered 
m <- matrix(nrow=r1, ncol=zz)  
for (c in 1:zz) { 
  max <- max(x2[ , c]) 
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  min <- min(x2[ , c])   
    for (r in 1:r1) { 
      m[r,c] <- ((x2[r, c] - min)/(max - min)) 
    } 
} 
 
#Add normalized results to data frame x1, thus creating x1.m 
x1.m <- cbind(x1, m) 
 
#Create data frame of matrix m for principal components analysis 
mm <- data.frame(m) 
 
#Perform principal components analysis and generate initial plots of two primary 
PC's 
trans <- prcomp(mm, center=TRUE, scale.=TRUE) 
print(trans) 
summary(trans) 
plot(trans, typ="l", main="Principal Components - Explained Variance", col="2", 
lwd="4") 
PC = predict(trans, mm) 
plot(PC, type="p", col="2") 
plot(PC, type="b", col="2") 
 
#Add principal components to x1.m, thus creating x1.p 
x1.p <- cbind(x1.m, PC) 
c1.2 <- ncol(x1.p) 
 
#Create variable and create data frame of PC columns  
c2 <- ncol(PC) 
x3 <- data.frame(PC) 
 
#Normalize all principal components 
p <- matrix(nrow=r1, ncol=c2) 
for (c in 1:c2) { 
  max <- max(x3[ , c]) 
  min <- min(x3[ , c])   
    for (r in 1:r1) { 
      p[r,c] <- ((x3[r, c] - min)/(max - min)) 
    } 
} 
 
#Add normalized pc results data frame x1.p, thus creating x1.pc 
x1.pc <- cbind(x1.p, p) 
View(x1.pc) 
 
#Automatically select principal components needed for clustering 
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ll <- as.data.frame(summary(trans)[6]) 
l <- as.vector(ll[3, ], mode="numeric") 
s <- 0 
PCC <- list() 
for (u in 1:c2) { 
  if (s < .8) { 
    PCC[[u]] <- p[ , u] 
  } 
  s <- l[u] 
} 
PCCN <- as.data.frame(PCC) 
c3 <- ncol(PCCN) 
ClusteringDataPC <- as.data.frame(PCCN) 
 
#Stage II - Model Simulation Routines (to find model with highest silhouette 
coefficient) 
#Get a sample of records for simulations (and building the model in the next 
stage) 
#User specified parameter 2: set sample size (i.e., "sample") 
#Note: Sample only used if data set to be processed has more than 40,000 
records 
#Default sample size set at 40,000 (for efficiency reasons, do not set higher than 
this) 
if (r1 > 40000) { 
  sample <- 40000 
  p1 <- sample/r1 
  x1.pcs <- x1.pc[sample(nrow(x1.pc),replace=F,size = p1*nrow(x1.pc)),] 
  row.names(x1.pcs) <- NULL 
} 
 
if (r1 <= 40000) { 
  x1.pcs <- data.frame(x1.pc) 
} 
 
c4 <- c1.2 + 1 
c5 <- c1.2 + c3 
ClusteringDataPCS <- data.frame(x1.pcs[ , c4:c5]) 
row.names(ClusteringDataPCS)<-NULL 
View(ClusteringDataPCS) 
 
#Compute distance matrix for subsequent simulations and analyses 
d1 <- dist(ClusteringDataPCS, method="euclidean") 
 
#Execute similations using Kmeans, PAM, Complete-Link Hierarchical, and 
Ward's Method 
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#User specified parameters 3 & 4: Set range (i.e., minclust & maxclust) for # of 
clusters to be considered 
#Default values set at minclust=3 and maxclust=15 
minclust=3 
maxclust=15 
rowtot <- (maxclust-minclust+1)*4 
x=matrix(nrow=rowtot, ncol=3) 
y <- 1 
for (c in minclust:maxclust) { 
  fit <- kmeans(ClusteringDataPCS, c, iter.max=500, nstart=10, 
algorithm="Lloyd") 
  sil <- silhouette(fit$cluster, d1) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c("kmeans", c, avgsil) 
  y<-y+1 
  fit <- pam(d1, c, diss=TRUE) 
  sil <- silhouette(fit$clustering, d1) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c("pam", c, avgsil) 
  y<-y+1 
  fit2 <- hclust(d1, method = "complete") 
  memb <- cutree(fit2, k=c) 
  fit.clusters <- assignCluster(ClusteringDataPCS, x1.pcs, memb) 
  fit.cluster <- as.integer(fit.clusters)   
  sil <- silhouette(fit.cluster, d1) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c("complete", c, avgsil) 
  y<-y+1 
  fit2 <- hclust(d1, method = "ward.D2") 
  memb <- cutree(fit2, k=c) 
  fit.clusters <- assignCluster(ClusteringDataPCS, x1.pcs, memb) 
  fit.cluster <- as.integer(fit.clusters)   
  sil <- silhouette(fit.cluster, d1) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c("ward", c, avgsil) 
  y<-y+1 
  fit <- init.EM(ClusteringDataPCS, nclass = c, EMC = .EMC.Rnd, stable.solution 
= TRUE, min.n = 1, min.n.iter = 10, method = "Rnd.EM") 
  sil <- silhouette(fit$class, d1) 
  avgsil <- summary(sil, FUN=mean) $avg.width 
  x[y, ] <- c("em", c, avgsil)  
  y<-y+1   
} 
View(x) 
 
#Create data frame z, Sort in descending order by Silhouette Coefficient  
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z <- data.frame(x) 
names(z)[1] <- "Algorithm" 
names(z)[2] <- "Clusters" 
names(z)[3] <- "Silhouette" 
View(z) 
 
s <- arrange(z, desc(Silhouette)) 
View(s) 
 
#Export processed simulation data 
#User specified parameter 5:  Set path name corresponding to desired output 
destination 
write.csv(s, row.names=FALSE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Silhouettes.csv") 
 
 
#Stage III - Model Construction 
#Automatically select model based upon simulation results 
method <- s[1, 1] 
View(method) 
ss <- as.matrix(s[ , 2:3]) 
sss <- as.vector(ss[ , 1], mode="numeric") 
k <- sss[1] 
View(k) 
 
View(ClusteringDataPCS) 
View(x1.pcs) 
 
#Build model and create visualizations 
if (method == "complete") { 
  fit2 <- hclust(d1, method = "complete") 
  memb <- cutree(fit2, k=k) 
 
  #Append cluster assignment column 
  fit.clusters <- assignCluster(ClusteringDataPCS, x1.pcs, memb) 
  fit.cluster <- as.integer(fit.clusters) 
  StageOneModel <- data.frame(x1.pcs, fit.cluster) 
  View(StageOneModel) 
} 
 
if (method == "ward") { 
  fit2 <- hclust(d1, method = "ward.D2") 
  memb <- cutree(fit2, k=k) 
   
  #Append cluster assignment column 
  fit.clusters <- assignCluster(ClusteringDataPCS, x1.pcs, memb) 
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  fit.cluster <- as.integer(fit.clusters) 
  StageOneModel <- data.frame(x1.pcs, fit.cluster) 
  View(StageOneModel) 
} 
 
if (method == "kmeans") { 
  fit <- kmeans(ClusteringDataPCS, centers=k, iter.max=500, nstart=10, 
algorithm="Lloyd") 
   
  #Append cluster assignment column 
  StageOneModel <- data.frame(x1.pcs, fit$cluster) 
  cc <- ncol(StageOneModel) 
  names(StageOneModel)[cc] <- "fit.cluster" 
  View(StageOneModel) 
} 
 
if (method == "pam") { 
  fit <- pam(d1, k, diss=TRUE) 
   
  #Append cluster assignment column 
  StageOneModel <- data.frame(x1.pcs, fit$clustering) 
  cc <- ncol(StageOneModel) 
  names(StageOneModel)[cc] <- "fit.cluster" 
  View(StageOneModel) 
} 
 
if (method == "em") { 
  fit <- init.EM(ClusteringDataPCS, nclass = k, EMC = .EMC.Rnd, stable.solution 
= TRUE, min.n = 1, min.n.iter = 10, method = "Rnd.EM") 
     
  #Append cluster assignment column 
  StageOneModel <- data.frame(x1.pcs, fit$class) 
  cc <- ncol(StageOneModel) 
  names(StageOneModel)[cc] <- "fit.cluster" 
  View(StageOneModel) 
} 
 
#Create plots of principal components 
if (c3 == 3) { 
  p2 <- data.frame(ClusteringDataPCS) 
  ddd <- data.frame(p2, StageOneModel[ , "fit.cluster"]) 
  names(ddd)[1] <- "PC1" 
  names(ddd)[2] <- "PC2" 
  names(ddd)[3] <- "PC3" 
  names(ddd)[4] <- "Cluster" 
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  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=30, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=60, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=120, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=150, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=210, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=240, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=300, pch = 1) 
  scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=330, pch = 1) 
  } 
 
if (c3 > 3) { 
  #3D Plots of PCs 1, 2, and 3 with cluster assignments 
  p2.1 <- data.frame(ClusteringDataPCS[ , 1:3]) 
  ddd1 <- data.frame(p2.1, StageOneModel[ , "fit.cluster"]) 
  names(ddd1)[1] <- "PC1" 
  names(ddd1)[2] <- "PC2" 
  names(ddd1)[3] <- "PC3" 
  names(ddd1)[4] <- "Cluster" 
  scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
  scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
  scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
  scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
   
  #3D Plots of PCs 1, 2, and 4 with cluster assignments 
  p2.2 <- data.frame(ClusteringDataPCS[ , 1:2], ClusteringDataPCS[ , 4]) 
  ddd2 <- data.frame(p2.2, StageOneModel[ , "fit.cluster"]) 
  names(ddd2)[1] <- "PC1" 
  names(ddd2)[2] <- "PC2" 
  names(ddd2)[3] <- "PC4" 
  names(ddd2)[4] <- "Cluster" 
  scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
  scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
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  scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
  scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
   
  #3D Plots of PCs 2, 3, and 4 with cluster assignments 
  p2.3 <- data.frame(ClusteringDataPCS[ , 2:4]) 
  ddd3 <- data.frame(p2.3, StageOneModel[ , "fit.cluster"]) 
  names(ddd3)[1] <- "PC2" 
  names(ddd3)[2] <- "PC3" 
  names(ddd3)[3] <- "PC4" 
  names(ddd3)[4] <- "Cluster" 
  scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
  scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
  scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
  scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
} 
 
#Generate data frames for subsequent analysis 
c7 <- c1+1 
c8 <- (c1*2)-1 
x3 <- data.frame(ClusteringDataPCS) 
x4 <- data.frame(StageOneModel[ , c7:c8]) 
x5 <- data.frame(StageOneModel[ , 2:c1]) 
 
#Get cluster means for normalized pcs, normalized original variables, and 
original variables 
aggregate(x3,by=list(fit.cluster),FUN=mean) 
aggregate(x4, by=list(fit.cluster), FUN=mean) 
aggregate(x5, by=list(fit.cluster), FUN=mean) 
 
#Get cluster medians for normalized pcs, normalized original variables, and 
original variables 
aggregate(x3,by=list(fit.cluster),FUN=median) 
aggregate(x4, by=list(fit.cluster), FUN=median) 
aggregate(x5, by=list(fit.cluster), FUN=median) 
 
 
#Stage IV - OUtlier Detection Via Mahalanobis Distance (initial model) 
#Set initial variables for subsequent usage 
r2 <- nrow(StageOneModel) 
c9 <- ncol(PCCN) 
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b1 <- r2*.01 
x6 <- max(StageOneModel[ ,"fit.cluster"]) 
p3 <- data.frame(ClusteringDataPCS, fit.cluster) 
p4 <- data.frame(arrange(p3, fit.cluster), row.names=NULL) 
p5 <- data.frame(arrange(StageOneModel, fit.cluster), row.names=NULL) 
 
#Separate data by cluster, compute medians, calculate mahalanobis distances, 
and create outlier plots for each cluster 
for (c in 1:x6) { 
  nam1 <- paste("Cluster", c, sep = "") 
  z <- assign(nam1, subset(p5, fit.cluster==c))   
  z1 <- subset(p4, fit.cluster==c) 
  med <- vector(mode="numeric", length=c9) 
  for (cc in 1:c9) { 
    med[cc] <- median(z1[ , cc]) 
  } 
  z2 <- data.frame(z1[ ,1:c9]) 
  z3 <- cov(z2, use = "everything" ) 
  md <- mahalanobis(z2, center = med, cov = z3, inverted = TRUE) 
  nam4 <- paste("Cluster", c, sep = "") 
  z4 <- assign(nam4, data.frame(z, md, row.names=NULL)) 
  y2 <- nrow(z4) 
  row.names(z4) <- 1:y2 
  df.2 <- c(1:y2) 
  if (y2 >= b1) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2) 
  } 
  if (y2 %in% c(3:b1)) { 
    Out.999 = quantile(md, .999) 
    plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
    abline(h=Out.999, col="red", lwd=2) 
    cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
    qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
    abline(v=Out.999, col="red", lwd=2)     
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    cat("Cluster",c,"has small relative membership and this warrants investigation 
of all associated objects","\n") 
  } 
  if (y2 < 3) { 
    cat("Cluster",c,"has an extremely small membership and this clearly warrants 
investigation of all associated objects","\n") 
  } 
} 
 
#Export processed information, segregated by cluster 
#User specified parameter 6: Set path name corresponding to desired output 
destination 
#Note:  Set path name for each of the following "write.csv" line items in this code 
block 
if (c == 3) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
} 
 
if (c == 4) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
} 
 
if (c == 5) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
} 
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if (c == 6) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
} 
 
if (c == 7) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
} 
 
if (c == 8) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
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  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
} 
 
if (c == 9) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
} 
 
if (c == 10) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
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  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
} 
 
if (c == 11) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
} 
 
if (c == 12) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
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  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
  write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12Results.csv") 
} 
 
if (c == 13) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
  write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12Results.csv") 
  write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13Results.csv") 
} 
 
if (c == 14) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
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  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
  write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12Results.csv") 
  write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13Results.csv") 
  write.csv(Cluster14, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster14Results.csv") 
} 
 
if (c == 15) { 
  write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1Results.csv") 
  write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2Results.csv") 
  write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3Results.csv") 
  write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4Results.csv") 
  write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5Results.csv") 
  write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6Results.csv") 
  write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7Results.csv") 
  write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8Results.csv") 
  write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9Results.csv") 
  write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10Results.csv") 
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  write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11Results.csv") 
  write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12Results.csv") 
  write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13Results.csv") 
  write.csv(Cluster14, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster14Results.csv") 
  write.csv(Cluster15, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster15Results.csv") 
} 
 
 
#Stage V - Assigning All Records to clusters based on Training Model  
#Only executed if model is based on a sample from the data set 
#Create new data frames and variables for clustering operations 
if (r1 > 40000) { 
  TestData <- data.frame(x1.pc) 
  View(TestData) 
  ClusteringTestDataPC <- data.frame(ClusteringDataPC) 
  View(ClusteringTestDataPC) 
 
  c10 <- ncol(StageOneModel) 
  FitModel <- data.frame(ClusteringDataPCS, StageOneModel[ , c10]) 
  c11 <- ncol(FitModel) 
  names(FitModel)[c11] <- "fit.cluster" 
  View(FitModel) 
   
  #Compute training model cluster reps and calculate distances from all reps to 
test records 
  c3.1 <- ncol(ClusteringTestDataPC) 
  c12 <- max(StageOneModel[ , "fit.cluster"]) 
  r4 <- nrow(ClusteringTestDataPC) 
  for (a in 1:c12) { 
    g1 <- subset(FitModel, fit.cluster==a) 
    v <- vector(mode="numeric", length=c3.1) 
    for (b in 1:c3.1) { 
      v[b] <- mean(g1[ , b]) 
    } 
    v <- rbind(v) 
    v1 <- vector(mode="numeric", length=r4) 
    for (c1.1 in 1:r4) { 
      v1[c1.1] <- rdist(ClusteringTestDataPC[c1.1, 1:c3.1], v)       
    } 
    head <- paste("EucDist", a, sep = "") 
    ClusteringTestDataPC[head] <- v1   
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  }  
  View(ClusteringTestDataPC) 
 
  #Assign test records to clusters 
  c13 <- ncol(ClusteringTestDataPC) 
  z3 <- c3.1 + 1 
  v2 <- vector(mode="numeric", length=r4) 
  v3 <- vector(mode="numeric", length=r4) 
  for (h in 1:r4) { 
    t1 <- min(ClusteringTestDataPC[h, z3:c13]) 
    v2[h] <- t1 
    t2 <- which.min(apply(ClusteringTestDataPC[h, z3:c13], MARGIN=2, min)) 
    v3[h] <- t2  
  } 
  ClusteringTestDataPC["EuclideanDistance"] <- v2 
  ClusteringTestDataPC["Test.Cluster"] <- v3 
  TestData["fit.cluster2"] <- v3 
  TestModel <- data.frame(TestData) 
  View(TestModel) 
   
  #Create variables 
  c14 <- c1.2 + 1 
  c15 <- c1.2 + c3.1 
  c16 <- ncol(TestModel) 
   
  if (c9 == 3) { 
    #3D Plot of PCS 1, 2, and 3 with cluster assignments 
    p6 <- data.frame(TestModel[ , c14:c15]) 
    ddd <- data.frame(p6, TestModel[ , c16]) 
    names(ddd)[1] <- "PC1" 
    names(ddd)[2] <- "PC2" 
    names(ddd)[3] <- "PC3" 
    names(ddd)[4] <- "Cluster" 
    scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=30, pch = 1) 
    scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=60, pch = 1) 
    scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=120, pch = 1) 
    scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=150, pch = 1) 
    scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=210, pch = 1) 
    scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=240, pch = 1) 
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    scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=300, pch = 1) 
    scatterplot3d(ddd, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=330, pch = 1) 
  } 
   
  if (c3 > 3) { 
    #3D Plots of PCs 1, 2, and 3 with cluster assignments 
    p6.1 <- data.frame(TestModel[ , c14:c15]) 
    ddd1 <- data.frame(p6.1, TestModel[ , c16]) 
    names(ddd1)[1] <- "PC1" 
    names(ddd1)[2] <- "PC2" 
    names(ddd1)[3] <- "PC3" 
    names(ddd1)[4] <- "Cluster" 
    scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
    scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
    scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
    scatterplot3d(ddd1, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
     
    #3D Plots of PCs 1, 2, and 4 with cluster assignments 
    c14.1 <- c14 + 1 
    p6.2 <- data.frame(TestModel[ , c14:c14.1], TestModel[ , c15]) 
    ddd2 <- data.frame(p6.2, TestModel[ , c16]) 
    names(ddd2)[1] <- "PC1" 
    names(ddd2)[2] <- "PC2" 
    names(ddd2)[3] <- "PC4" 
    names(ddd2)[4] <- "Cluster" 
    scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
    scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
    scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
    scatterplot3d(ddd2, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
     
    #3D Plots of PCs 2, 3, and 4 with cluster assignments 
    p6.3 <- data.frame(TestModel[ , c14.1:c15]) 
    ddd3 <- data.frame(p6.3, TestModel[ , c16]) 
    names(ddd3)[1] <- "PC2" 
    names(ddd3)[2] <- "PC3" 
    names(ddd3)[3] <- "PC4" 
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    names(ddd3)[4] <- "Cluster" 
    scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=50, pch = 1) 
    scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=140, pch = 1) 
    scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=230, pch = 1) 
    scatterplot3d(ddd3, col.axis = "green", col.grid = "green", main = "Principal 
Components Scatterplot", angle=320, pch = 1) 
  } 
     
  #Generate data frames for subsequent analysis 
  c7 <- c1+1 
  c8 <- (c1*2)-1 
  x7 <- data.frame(ClusteringTestDataPC[ , 1:c3.1]) 
  x8 <- data.frame(TestModel[ , c7:c8]) 
  x9 <- data.frame(TestModel[ , 2:c1]) 
 
  #Get cluster means for normalized pcs, normalized original variables, and 
original variables 
  aggregate(x7,by=list(ClusteringTestDataPC[ , "Test.Cluster"]),FUN=mean) 
  aggregate(x8, by=list(TestModel[ , c16]), FUN=mean) 
  aggregate(x9, by=list(TestModel[ , c16]), FUN=mean) 
 
  #Get cluster medians for normalized pcs, normalized original variables, and 
original variables 
  aggregate(x7,by=list(ClusteringTestDataPC[ , "Test.Cluster"]),FUN=median) 
  aggregate(x8, by=list(TestModel[ , c16]), FUN=median) 
  aggregate(x9, by=list(TestModel[ , c16]), FUN=median) 
 
  #Stage VI - OUtlier Detection Via Mahalanobis Distance (test model- all objects) 
  #Set initial variables for subsequent usage 
  r5 <- nrow(TestModel) 
  b2 <- r5*.01 
  x10 <- max(TestModel[ , c16]) 
  p7 <- data.frame(ClusteringTestDataPC[ , 1:c3.1], TestModel[ , c16]) 
  names(p7)[ncol(p7)] <- "fit.cluster2" 
  p8 <- data.frame(arrange(p7, fit.cluster2), row.names=NULL) 
  p9 <- data.frame(arrange(TestModel, fit.cluster2), row.names=NULL) 
 
  #Separate data by cluster, compute medians, calculate mahalanobis distances, 
and create outlier plots for each cluster 
  for (c in 1:x10) { 
    nam1 <- paste("Cluster", c, sep = "") 
    z <- assign(nam1, subset(p9, fit.cluster2==c))   
    z1 <- subset(p8, fit.cluster2==c) 
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    med <- vector(mode="numeric", length=c3.1) 
    for (cc in 1:c3.1) { 
      med[cc] <- median(z1[ , cc]) 
    } 
    z2 <- data.frame(z1[ ,1:c3.1]) 
    z3 <- cov(z2, use = "everything" ) 
    md <- mahalanobis(z2, center = med, cov = z3, inverted = TRUE) 
    nam4 <- paste("Cluster", c, sep = "") 
    z4 <- assign(nam4, data.frame(z, md, row.names=NULL)) 
    y2 <- nrow(z4) 
    row.names(z4) <- 1:y2 
    df.2 <- c(1:y2) 
    if (y2 >= b2) { 
      Out.999 = quantile(md, .999) 
      plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
      abline(h=Out.999, col="red", lwd=2) 
      cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
      qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
      abline(v=Out.999, col="red", lwd=2) 
    } 
    if (y2 %in% c(3:b2)) { 
      Out.999 = quantile(md, .999) 
      plot(df.2, md, xlab="Object", ylab="Mahalanobis Distance", 
main=c("Cluster",c,"Outlier Plot")) 
      abline(h=Out.999, col="red", lwd=2) 
      cat("The following rows in cluster",c,"data appear very 
suspicious:",which(md>Out.999),"\n")   
      qqplot(md, df.2, xlab="Mahalanobis Distance", ylab="Ranked Observation", 
main=c("Cluster",c,"QQ Plot")) 
      abline(v=Out.999, col="red", lwd=2)     
      cat("Cluster",c,"has small relative membership and this warrants investigation 
of all associated objects","\n") 
    } 
    if (y2 < 3) { 
      cat("Cluster",c,"has an extremely small membership and this clearly warrants 
investigation of all associated objects","\n") 
    } 
  } 
 
  #Export processed information, segregated by clusters (if more than 15 
clusters, add info as needed) 
  #User specified parameter n:  Set path name for each of the following line items 
  #This path name is the location where the processed output files are to be sent 
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  if (c == 3) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
  } 
   
  if (c == 4) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
  } 
   
  if (c == 5) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
  } 
   
  if (c == 6) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 



- 220 - 
 

 
 

  } 
   
  if (c == 7) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
  } 
   
  if (c == 8) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
    write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8TestResults.csv") 
  } 
   
  if (c == 9) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 



- 221 - 
 

 
 

    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
    write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8TestResults.csv") 
    write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9TestResults.csv") 
  } 
   
  if (c == 10) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
    write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8TestResults.csv") 
    write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9TestResults.csv") 
    write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10TestResults.csv") 
  } 
   
  if (c == 11) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
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    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
    write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8TestResults.csv") 
    write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9TestResults.csv") 
    write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10TestResults.csv") 
    write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11TestResults.csv") 
  } 
   
  if (c == 12) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
    write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8TestResults.csv") 
    write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9TestResults.csv") 
    write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10TestResults.csv") 
    write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11TestResults.csv") 
    write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12TestResults.csv") 
  } 
   
  if (c == 13) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
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    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
    write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8TestResults.csv") 
    write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9TestResults.csv") 
    write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10TestResults.csv") 
    write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11TestResults.csv") 
    write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12TestResults.csv") 
    write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13TestResults.csv") 
  } 
   
  if (c == 14) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
    write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8TestResults.csv") 
    write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9TestResults.csv") 
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    write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10TestResults.csv") 
    write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11TestResults.csv") 
    write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12TestResults.csv") 
    write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13TestResults.csv") 
    write.csv(Cluster14, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster14TestResults.csv") 
  } 
   
  if (c == 15) { 
    write.csv(Cluster1, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster1TestResults.csv") 
    write.csv(Cluster2, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster2TestResults.csv") 
    write.csv(Cluster3, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster3TestResults.csv") 
    write.csv(Cluster4, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster4TestResults.csv") 
    write.csv(Cluster5, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster5TestResults.csv") 
    write.csv(Cluster6, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster6TestResults.csv") 
    write.csv(Cluster7, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster7TestResults.csv") 
    write.csv(Cluster8, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster8TestResults.csv") 
    write.csv(Cluster9, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster9TestResults.csv") 
    write.csv(Cluster10, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster10TestResults.csv") 
    write.csv(Cluster11, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster11TestResults.csv") 
    write.csv(Cluster12, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster12TestResults.csv") 
    write.csv(Cluster13, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster13TestResults.csv") 
    write.csv(Cluster14, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster14TestResults.csv") 
    write.csv(Cluster15, row.names=TRUE, "C:/Users/Eric/Documents/Rutgers - 
Dissertation Items/AutomatedClusteringProject/Cluster15TestResults.csv") 
  } 
} 


