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Abstract

On Blowup Techniques and the Pluricomplex Green’s Function

By Shuai Jiang

Dissertation Director: Professor Jacob Sturm

The pluricomplex Green’s functions on a compact Kähler manifold

(M,ω) have been extensively studied over the past decades. Following

and generalizing the blow up techniques in [PS12], we use pluripotential

theory to show the existence and uniqueness of pluricomplex Green’s

functions with two types of prescribed singularities at a finite number

of interior points.
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1 Introduction, Examples and Organization

1.1 Model Examples

Let (M,ω) be a compact Kähler manifold of dimension n with smooth bound-

ary ∂M and p be an interior point of M . A lot of research work has been done

over the past decades regarding the existence and uniqueness of the solution

φ ∈ PSH(M,ω) such that


φ = 0 on ∂M,

(ω + i∂∂̄φ)n = 0 on M\{p},

(ω + i∂∂̄φ)n = V δp at the point p.

Here V =
∫
M
ωn =

∫
M

(ω + i∂∂̄φ)n is the volume of M with respect to ω and

δp is the Dirac measure centered at p, i.e. 1
V

∫
M
f (ω + i∂∂̄φ)n = f(p) for any

f ∈ C∞(M). For the case when the dimension n = 1, the answer is yes since

we can always find the Green’s function φ, ω + i∂∂̄φ = V δp, to the Laplace

equation for a compact Riemann surface M .

For general dimension n > 2, it is still an open question.

Fix a bounded domain D ⊂ Cn and a fixed interior point p ∈ D, and consider

the existence of a solution φ to the system of equations


(ω + i∂∂̄φ)n = V δp

φ|∂D = 0
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In general we have the existence of φ but can not guarantee the uniqueness.

See the following example.

Example 1.1.

On the unit disk D in Cn, take φ = log(|z1|2 + |z2|2 + · · · + |zn|2) and p to

be the origin. Clearly φ|∂D = 0 and direct computation gives (i∂∂̄ log(|z1|2 +

|z2|2 + · · · + |zn|2))n = δ0 near p. Away from p, some zi 6= 0, without loss of

generality we may assume zn 6= 0 and thus

0 = ( (∂∂̄ log(|zn|2) + ∂∂̄ log(1 + | z1

zn
|2 + · · ·+ |zn−1

zn
|2) )n

= ( ∂∂̄ log(1 + | z1

zn
|2 + · · ·+ |zn−1

zn
|2) )n

Indeed, ∂∂̄ log |zn|2 = 0 when zn 6= 0. Let fi(z) := zi
zn

for 1 ≤ i ≤ n− 1. This

gives a biholomorphic map

π := (f1, · · · , fn−1) : Cn\{zn = 0} −→ Cn−1

Let η := i∂∂̄ log(1 + |w1|2 + · · ·+ |wn−1|2) be a smooth positive (1,1) form on

Cn−1.

We have that ηn = 0 on Cn−1 and thus

(i∂∂̄ log(1 + | z1

zn
|2 + · · ·+ |zn−1

zn
|2))n = (π∗η)n = 0
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One can further get uniqueness of such a solution φ by adding the assumption

that φ has some prescribed logarithmic singularity near a single point p.

See the following example.

Example 1.2.

Suppose p is the only common zero of holomorphic functions {fi}i≤n defined

in a bounded domain D ⊂ Cn, then there exists a unique φ ∈ PSH(D) such

that 
φ|∂D = 0

(ω + i∂∂̄φ)n = V δp

φ = log(|f1|2 + · · ·+ |fn|2) + g for some g ∈ O(1) near p,

More generally, for a compact Kähler manifold (M,ω) of dimension n > 2 with

smooth boundary ∂M of real dimension 2n− 1, Phong and Sturm showed in

[PS12] that for sufficiently small ε, there exists a unique φ ∈ PSH(M,ω) such

that 
φ|∂M = 0

(ω + i∂∂̄φ)n = 0 on M\{p}

φ = ε log(|f1|2 + · · ·+ |fn|2) + g for some g ∈ O(1) near p
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1.2 Questions

We look at the existence and uniqueness of the solutions to the following

question.

Question 1.

For a compact Kähler manifold (M,ω) of dimension n > 2 with smooth bound-

ary ∂M of real dimension 2n − 1, and sufficiently small δ, does there exist a

unique φ ∈ PSH(M,ω), such that


φ|∂M = 0

(ω + i∂∂̄φ)n = 0 on M\{p}

φ = δ log(|f1|2β1 + · · ·+ |fn|2βn) + g for some g ∈ O(1) near p,

for any given constants 0 < βi 6 1, 1 6 i 6 n.

Remark 1.3.

For the case where all β’s are positive rational numbers, we will give an affir-

mative answer and prove the existence and uniqueness of such a φ in Corollary

4.10. Moreover, we show that g ∈ L∞(M) is unique and Hölder continuous

away from a neighborhood of p.

However, the question still remains open for general real positive constants

β1, · · · , βn.

We now check a few examples for Question 1 with respect to two basic types

of manifolds: bounded domains in Cn and compact submanifolds of CPn.
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Example 1.4 (Bounded domain in Cn).

Fix any positive real constants β1, · · · , βn as above and pick p to be the origin.

We let φ(z) := log(|z1|2β1 + · · ·+ |zn|2βn) and look at (i∂∂̄φ)n on D, where

D = {z ∈ Cn : |z1|2β1 + · · ·+ |zn|2βn < 1}

To see that φ ∈ PSH(D), it suffices to apply the following theorem.

Theorem 1.5 ( [Dem, Theorem 5.6] ).

Let u1, · · · , up ∈ PSH(Ω) and χ(t1, · · · , tp) : Rp → R be a convex function

such that χ is non decreasing in each tj. Then χ(u1, · · · , up) is plurisubhar-

monic on Ω.

Indeed, we let χ(t1, · · · , tn) := log(et1 + · · · + etn) and clearly χ : Rn → R

is a convex function and non-decreasing in each ti. For each 1 6 i 6 n, let

ui := βi log |zi|2 and thus ui is plurisubharmonic. It follows from the above

theorem that φ = χ(u1, · · · , un) is plurisubharmonic.

We wish to show (i∂∂̄φ)n = 0 on D away from the origin. For the part on D

where all zi 6= 0, differentiating twice gives

∂i∂jφ =∂i(
βj|zj|2βj−2zj

|z1|2β1 + · · ·+ |zn|2βn
)

=
δijβiβj|zj|2βj−2

|z1|2β1 + · · ·+ |zn|2βn
− βiβj|zi|2βi−2|zj|2βj−2zizj

(|z1|2β1 + · · ·+ |zn|2βn)2

In order to show (∂∂̄φ)n = 0 there, it suffices to prove that det(∂i∂jφ) = 0.

Observe that as a matrix ( ∂i∂jφ ) = diag(β1, · · · , βn) · B · diag(β1, · · · , βn),
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where B is the matrix

B :=


|z1|2β1−2

|z1|2β1+···+|zn|2βn

. . .

|zn|2βn−2

|z1|2β1+···+|zn|2βn



−


|z1|2β1−2z1

|z1|2β1+···+|zn|2βn
...

|zn|2βn−2zn
|z1|2β1+···+|zn|2βn

 ·
(

|z1|2β1−2z1
|z1|2β1+···+|zn|2βn

· · · |zn|2βn−2zn
|z1|2β1+···+|zn|2βn

)

Multiplying B by the non-zero vector (z1, · · · , zn)T gives

B ·


z1

...

zn

 =


|z1|2β1−2

|z1|2β1+···+|zn|2βn

. . .

|zn|2βn−2

|z1|2β1+···+|zn|2βn

 ·


z1

...

zn



−


|z1|2β1−2z1

|z1|2β1+···+|zn|2βn
...

|zn|2βn−2zn
|z1|2β1+···+|zn|2βn

 ·
(

|z1|2β1−2z1
|z1|2β1+···+|zn|2βn

· · · |zn|2βn−2zn
|z1|2β1+···+|zn|2βn

)
·


z1

...

zn


= 0

We see that detB = 0 and thus (∂∂̄φ)n = 0.

If some but not all zj = 0, we see that φ(z) = log(|z1|2β1 + · · · + |zn|2βn) is

locally bounded and thus (i∂∂̄φ)n is a positive closed current. Moreover, as a

measure (i∂∂̄φ)n takes no mass at pluripolar sets. See [Bl1, Prop 2.1.3].

To show that φ lies in the domain of definition of Monge-Ampère operator
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MA(φ) := (i∂∂̄φ)n for the entire domain D, it only remains to show that

(∂∂̄φ)n is well defined at the origin. We apply the following theorem.

Theorem 1.6 ( [Dem, Corollary 4.11] ).

Let u1, · · · , uq be plurisubharmonic functions on X such that the unbounded

locus L(ui) is contained in an analytic set Ai ⊂ X for every i. Then ∂∂̄u1 ∧

· · · ∧ ∂∂̄uq is well defined as long as Aj1 ∩ · · · ∩ Ajm has codimension at least

m for all choices of indices j1 < · · · < jm in {1, · · · , q}.

Notice that L(φ), the unbounded locus of φ = log(|z1|2β1 + · · ·+ |zn|2βn), is just

the origin and thus has codimension n. So by the Theorem 1.7 above, we see

that (i∂∂̄φ)p is a well defined positive closed (p, p) current for every 1 6 p 6 n

near the origin.

We conclude that (∂∂̄φ)n is well-defined on D ⊂ Cn and that on D\{p},

(i∂∂̄φ)n = 0.

Example 1.7 ( Submanifolds of CPn ).

Suppose we have q + 1 holomorphic sections s0, · · · , sq ∈ H0(CPn, O(k)) and

let

φ =
1

k
log(|s0|2hkFS + · · ·+ |sq|2hkFS)

it is easy to check that φ ∈ PSH(CPn, ωFS).

In fact, we have a more general example below. Let s0, · · · , sq ∈ H0(CPn, O(k))

be q + 1 holomorphic sections and let

φ =
1

k
log(|s0|2β0

hkFS
+ · · ·+ |sq|2βqhkFS

)
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For any given constants 0 < βi 6 1, we claim that φ ∈ PSH(CPn, ωFS).

Proof. We only need to prove the claim for k = 1, for otherwise it is easy to

prove through tensoring the power k.

i) First we observe that for any holomorphic function f on Pn and β > 0,

β log |f |2 is plurisubharmonic.

To show ωFS + i∂∂̄φ > 0 at any point p ∈ Pn, we choose t, a trivializing

section for O(1) in a neighborhood near p. So locally ωFS = i∂∂̄ψFS,

where ψFS is defined by |t|2 = e−ψFS . Observe that if we let fi = si
t
,

then {fi} are holomorphic functions near p.

ii) We have

ωFS + i∂∂̄φ (1.1)

=i∂∂̄(ψFS + φ) (1.2)

=i∂∂̄{ψFS + log(|s0

t
|2β0|t|2β0 + · · ·+ |sq

t
|2βq |t|2βq)} (1.3)

=i∂∂̄{log
1

|t|2
+ log(|s0

t
|2β0|t|2β0 + · · ·+ |sq

t
|2βq |t|2βq)} (1.4)

=i∂∂̄ log(|s0

t
|2β0|t|2β0−2 + · · ·+ |sq

t
|2βq |t|2βq−2) (1.5)

=i∂∂̄ log(|f0|2β0eψFS(1−β0) + · · ·+ |fq|2βqeψFS(1−βq)) (1.6)

iii) Let ui := βi log |fi|2 + (1−βi)ψFS for each 0 ≤ i ≤ q, then ui is plurisub-

harmonic as a convex combination of two plurisubharmonic functions

and equation (1.6) is equal to i∂∂̄ log(eu0 + · · ·+ euq).
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By [Dem, Theorem 5.6], χ(u0, · · · , uq) = log(eu0+· · ·+euq) is plurisubharmonic

and thus

ωFS + i∂∂̄φ = i∂∂̄χ(u0, · · · , uq) > 0

Thus we conclude that φ is plurisubharmonic.

But does there exist such a unique pluricomplex Green’s function φ on pro-

jective manifolds with smooth boundary such that φ is locally given by φ as

above?

In general for any compact Kähler manifold (M,ω) with smooth boundary

∂M and all βi = 1, the answer to both existence and uniqueness has been

given by Phong and Sturm in [PS12].

In this thesis, we give an affirmative answer to Question 1 for the case where

all the β1, · · · , βn are positive rational numbers. We also give the proof of

existence and uniqueness of solutions to the Question 2 and Question 3 below.

Question 2. Fix any constants 0 < βi 6 1 and any sufficiently small δ > 0.

Does there exist a unique pluricomplex Green’s function G ∈ PSH(M,ω),

which is zero on ∂M and locally near p,

G = δ log{
n∑
j=1

|fj|2βj(
n∑
i=1

|fi|2)1−βj}+ φ (1.7)

where φ is a bounded function defined on M?

The answer is yes, provided that the locally defined holomorphic functions

f1, · · · , fn have p as their only common zero locus. Moreover we prove that φ
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is Cα continuous away from any neighborhood of p, for any constant 0 < α <

min{βj}.

Question 3. Fix an integer N > n > 2, and n locally defined holomorphic

functions {fj}16j6n with p as their only common zero locus and 0 6 βij 6 2.

For any sufficiently small δ > 0 , does there exist a unique pluricomplex Green’s

function G ∈ PSH(M,ω) which vanishes on ∂M and locally near p,

G = δ log{
N∑
i=1

n∏
j=1

|fj|βij}+ φ (1.8)

where φ is a bounded function defined on M?

The answer is yes, provided that for each fixed 1 6 i 6 N ,

βi1 + · · ·+ βin = 2 (1.9)

and that the singularity term

log
N∑
i=1

n∏
j=1

|fj|βij has p as its only −∞ pole. (1.10)

Under the above two conditions, we also prove that φ is Cα continuous away

from any neighborhood of p, for any constant 0 < α < min
βij 6=0
{βij}.

Remark 1.8.

The homogeneity condition (1.9) is needed later when we apply blow-ups. The

single point singularity condition in (1.10) guarantees that G lies in the domain

of definition of the Monge-Ampère operator. See [Dem, Corollary 4.11].
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1.3 Organization

This thesis is organized as follows:

In Section 2, we cover some necessary background. In Section 2.1, we review

pluripotential theory on domains in Cn and on compact complex manifolds,

including maximal function and Perron’s envelop method. In Section 2.2 and

2.3, we review general blow up procedures of a manifold with respect to a

compact submanifold and construct a metric on the blow-up space.

In Section 3, we prove some necessary lemmas, and construct Green’s functions

with the singularity prescribed by (1.7) to answer Question 2.

We give a similar proof in Section 4 for Question 3.

In section 4.6, we give some applications and answer Question 1 for positive

rational indices {βi}16i6n.
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2 Definitions and Preliminaries

2.1 Pluripotential theory

We list here some useful and well known results from pluripotential theory for

domains in Cn and complex manifolds M of dimension n, assuming n > 2.

The results come from [Bl1][BT1][BT2][Dem][Dw][PSS12], where the reader

may find detailed proofs.

Definition 2.1 (Plurisubharmonic functions on domains in Cn).

Let Ω ⊂ Cn be a domain. An upper semi continuous function u defined on

Ω is called plurisubharmonic or denoted as u ∈ PSH(Ω) if, for any complex

line L such that L ∩ Ω is nonempty, the restriction of u onto any connected

component of L ∩ Ω is either subharmonic or constantly −∞.

Note that if u is smooth, then the definition is equivalent to that the complex

Hessian ∂2u
∂zi∂z̄j

(z) is nonnegative definite for any z ∈ Ω.

Theorem 2.2 (Operations on plurisubharmonic functions).

Convex combinations, finite maximums, decreasing limits and upper semicon-

tinuous regularizations of supremums of plurisubharmonic functions are still

plurisubharmonic.

Theorem 2.3 (Standard regularization and holomorphic mapping).

Let ηε = η( |z|
ε

) ∈ C∞(B(0, ε)) be the standard smoothing kernels in Cn and

u ∈ PSH(Ω), then uε = u∗ηε ∈ PSH(Ω1)∩C∞(Ω1) for any relatively compact
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subdomain Ω1 ⊂ Ω in which uε is well-defined and uε decreases pointwise to u

as ε −→ 0.

Let F : Ω1 −→ Ω be a holomorphic mapping between two domains and u ∈

PSH(Ω). Then u ◦ F is plurisubharmonic on Ω1.

Definition 2.4 (Pluripolar sets).

A subset Z ⊂ Ω is called pluripolar if it is the −∞ pole locus of some u ∈

PSH(Ω), i.e. Z = {u = −∞}. Note that an analytic subset A ⊂ Ω is

locally pluripolar since it is locally given by the zero locus of some holomorphic

function f .

Note that any countable union of pluripolar sets is pluripolar and by a Theorem

of Josefson [Jos], any locally pluripolar set is globally pluripolar.

Theorem 2.5 (Extension over analytic subsets).

Let u ∈ PSH(Ω\A) for some analytic subset A of codimension at least 2, then

u ∈ PSH(Ω). If A is of codimension 1, then we need to assume that u is

locally bounded.

A proof can be done through first showing that u is locally bounded and then

applying the upper semicontinuous regularization of supremums of a family of

plurisubharmonic functions to extend the definition over A.

Theorem 2.6 (log r-convexity).

Let u ∈ PSH(Ω) and fix a point z ∈ Ω. Define V (r) the average of u over a

sphere of radius r centered at z, then V (r) is a convex increasing function of

log r.
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Note that by Fubini’s Theorem it is easy to see that plurisubharmonic functions

are locally integrable, and the next theorem tells that many plurisubharmonic

functions are exponentially integrable.

Theorem 2.7 (Exponentially integrable psh functions).

Let u ∈ PSH−(B(0, 1) ) be a negative plurisubharmonic function in a neigh-

borhood of the unit ball such that u(0) > −1, then there exists a constant C

such that ∫
B(0, 1

2
)

e−u < C

Definition 2.8 (Differential forms with continuous coefficients).

Denote Dk(p,q)(Ω) as the set of differential forms β of bidegree (p, q) with Ck

continuous coefficients in Ω, i.e. locally in the form

β =
∑

i1<···<ip
j1<···<jq

βI,J̄ dzI ∧ dz̄J

where I = {i1, · · · , ip} and J = {j1, · · · , jq} and βI,J̄ are Ck continuous in Ω.

Definition 2.9 (Currents).

The currents of bidegree (p, q), denoted as T(p,q)(Ω) are the set of differential

forms α of bidegree (p, q) with distribution coefficients, i.e.

α =
∑

i1<···<ip
j1<···<jq

αI,J̄ dzI ∧ dz̄J

where I = {i1, · · · , ip} and J = {j1, · · · , jq} and the coefficients αI,J̄ are locally

defined distributions. Alternatively one can define currents by their action on
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smooth (n−p, n−q) forms with test functions as coefficients. For example, αI,J̄

can be complex measures on Ω. One can also define the current of integration

over a complex submanifold V , i.e. a bidegree (n− p, n− p) current [V ] that

acts on any smooth differential (p, p) form φ in the following way

[V ](φ) :=

∫
V

φ

We are mostly interested in positive, closed (p, p) currents, which are defined

below.

Definition 2.10 (Positive closed currents ).

A (p, p) current T is called Hermitian(or real), if T̄ = T . We call T to be of

order k if its local distributional coefficients are of order k, i.e. its action can

be extended to all test forms with coefficients in Ck smooth but not all that

in Ck−1. T is called a positive current if T (β) > 0 for any simple positive test

form β, i.e.

β = iβ1 ∧ β̄1 ∧ · · · ∧ iβn−p ∧ β̄n−p

for any test (1, 0) forms β1, · · · , βn−p.

Note that any positive current is of order 0, i.e. its coefficients are complex

measures. From now on, we suppose T is a positive closed (p, p) current.

Theorem 2.11 (i∂∂̄u as current).

For any u ∈ PSH(Ω), i∂∂̄u is a closed positive (1, 1) current. If we further

assume u = log |f | for some holomorphic function on Ω, then

i∂∂̄u = 2π · [{f = 0}]
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which is the current of integration over the zero locus of f .

Theorem 2.12 (i∂∂̄ ∧ T ).

For any u ∈ PSH(Ω) ∩ L∞loc(Ω), i∂∂̄u ∧ T := i∂∂̄(uT ) is a positive closed

current of bidegree (p + 1, p + 1). As a result, if u1, · · · , uk are are bounded

plurisubharmonic functions, the i∂∂̄u1∧· · ·∧i∂∂̄uk is a closed positive current.

We list a few properties of the Monge-Ampère operator MA(u) := (i∂∂̄u)n for

locally bounded, plurisubharmonic function u.

Definition 2.13 (||T ||K).

Fix any compact subset K in the domain of definition of T . With the positive

form β := idz1 ∧ dz̄1 + · · ·+ idzn ∧ dz̄n, ||T ||K is defined by

||T ||K =

∫
K

T ∧ βn−p

Theorem 2.14 (Chern-Levine-Nirenberg).

Let u1, · · · , uk ∈ PSH(Ω) ∩ L∞ and K be a compact subset of an open set

U relatively compact in Ω, then there exist a constant which depends only on

K,U,Ω such that

||i∂∂̄u1 ∧ · · · ∧ i∂∂̄uk||K 6 C(K,U,Ω)||u1||L∞(U) · · · ||uk||L∞(U)

Note that for k = n, one can define the relative Monge-Ampère capacity with

respect to any Borel subset E ⊂ Ω as

c(E,Ω) := sup
u∈PSH(Ω)
−16u60

{
∫
E

(i∂∂̄u)n}
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With this, one can show that locally bounded plurisubharmonic functions do

not carry Monge-Ampère mass on pluripolar sets. See [Bl1, Prop 2.2.3].

Theorem 2.15 (Continuity property, [BT2]).

Suppose k + p 6 n, u1, · · · , uk ∈ PSH(Ω) ∩ L∞loc. Let {u(i)
j }∞i=1 be sequences

of psh functions decreasing to uj, for each 1 6 j 6 k. Then i∂∂̄u
(i)
1 ∧ · · · ∧

i∂∂̄u
(i)
k ∧ T converges weakly to i∂∂̄u1 ∧ · · · ∧ i∂∂̄uk ∧ T .

Definition 2.16 (Perron Envelope).

Let Ω be a bounded domain in Cn and f ∈ L∞(∂Ω), the function

uf,Ω := sup{v ∈ PSH(Ω) : v∗|∂Ω
6 f}

is called a Perron-Bremermann envelope of f in Ω.

It is important to notice that such uf,Ω need not be upper semicontinuous in

general. The following theorem applies to envelopes with continuous boundary

function f .

Theorem 2.17 (Walsh [Wal]).

Let f ∈ C(∂Ω) and u = uf,Ω be defined as above. Assume u∗|∂Ω
= u∗|∂Ω

= f

on ∂Ω, then u is continuous on the entire Ω.

Definition 2.18 (Maximal functions).

A function u ∈ PSH(Ω) is called maximal if, for every v ∈ PSH(Ω) such that

v 6 u outside a compact subset K ⊂ Ω, we have v 6 u on the entire Ω.

Note for example, log ||z|| is maximal in Cn\{0} but not maximal in Cn. Let
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f be any holomorphic function on Ω, then log |f | and |f |γ with γ > 0 are

maximal.

The following theorem states that maximal functions have zero Monge-Ampère

mass in Ω. See [Bl1, Theorem 2.3.1].

Theorem 2.19.

Let u be a locally bounded plurisubharmonic function in Ω, then u is maximal

in Ω if and only if (i∂∂̄u)n = 0 in Ω. In particular, being a locally bounded

maximal plurisubharmonic function is a local property.

Definition 2.20 (ω-psh functions on manifolds).

Let (M,ω) be a compact Kähler manifold and ω a Kähler form on M . Then a

function ψ is called quasi-plurisubharmonic, or ω-plurisubharmonic, denoted

as ψ ∈ PSH(M,ω), if locally ω + i∂∂̄ψ = i∂∂̄(φ+ ψ) > 0, for a smooth local

potential function φ of ω.

In general, if α is a closed (semi-)positive (1, 1) current, we can still define

PSH(M,α) to be the set of functions ψ such that α+ i∂∂̄ψ > 0( > 0 ) in the

sense of currents.

Theorem 2.21 (The local ∂∂̄-lemma).

Let β be a smooth, closed, real (1, 1) form on a compact Kähler manifold

(M,ω), then locally β = i∂∂̄η for some smooth real function η.

In particular, locally one can find a Kähler potential function f , such that

ω = i∂∂̄f .
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Theorem 2.22 (The global ∂∂̄-lemma).

Let β be a smooth, d-exact, real (1, 1) form on a compact Kähler manifold

(M,ω), then there exists a smooth real function η such that β = i∂∂̄η.

Note that if we assume ∂M = ∅, by Stokes’ theorem it is impossible to find a

global Kähler potential function f for ω.

Definition 2.23 (Singular metric on line bundles).

A singular Hermitian metric on a line bundle L is a metric which is given in

any trivialization θ : L|U −→ U × C by

||ξ|| = |θ(ξ)|e−φ(x), x ∈ U, ξ ∈ Lx

where φ ∈ L1
loc(U) is an arbitrary function. Then there is a well-defined

curvature current c(L) := i∂∂̄φ. See [Dem2].

Definition 2.24 (Lelong number).

The Lelong number with respect to a plurisubharmonic function φ and a point

x ∈M is defined as

ν := lim inf
z→x

φ(z)

log |z − x|

Theorem 2.25 ([Dem2, lemma 2]).

If φ is plurisubharmonic on M , then e−2φ is integrable in a neighborhood of x

if ν(φ, x) < 1 and non integrable if ν(φ, x) > n.
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2.2 Blow up along a submanifold

Let M be complex manifold of dimension n and Z a closed submanifold of

dimension m < n.

Definition 2.26 (The (projectivised) normal bundle).

The normal bundle of Z in M is the vector bundle over Z defined as the

quotient NZ := (TM)|Z/TZ. The fibers of NZ are given at each point p ∈ Z

as NZ|p = TpM/TpZ. The projectivised normal bundle is defined as P(NZ)→

Z whose fibers are the projective spaces P(NZ|p) associated to the fibers NZ|p .

Now we construct M̃ , the blow up of M with center Z.

The idea is to replace each point p ∈ Z by the projective space of all vectors

at p that are normal to Z. Denote E = P(NZ) and let

M̃ = (M\Z) ∪ E, be the disjoint union of two sets. (2.1)

Define a map π : M̃ →M that extends the projection map P(NZ)→ Z.

π =


Id|M\Z : M\Z →M\Z on M\Z

the canonical projection : E|p → p on E

Now we define the manifold structure on M̃ by giving explicitly an atlas. A

coordinate chart near a point p ∈ M\Z is naturally taken to be the original

chart of M near p. Let the coordinates be (x1, · · · , xm, ym+1, · · · , yn). We then

fix a locally finite collection of small coordinates balls {Uα}Uα⊂M that covers



21

Z such that

Uα ∩ Z = {(xαi , yαj ) ∈ Uα : yαj = 0 for all m+ 1 6 j 6 n} (2.2)

It follows that (xα1 , · · · , xαm) are the local coordinates on Z ∩ Uα. The span of

normal vector fields {∂yαj }m+16j6n yields a holomorphic frame of NZ |Uα near

p. Let us denote by (tm+1, · · · , tn) the coordinates along the fibers of NZ.

Then

[(xα1 , · · · , xαm, 0, · · · , 0), [tαm+1 : · · · : tαn])} (2.3)

are the coordinates of P(NZ)|Z∩Uα . To patch this with the coordinates of

Uα\Z, which are {(xαi , yαj ) ∈ Uα : yα 6= 0} and get a well defined local chart

for an neighborhood Ũα = π−1(Uα) ⊂ M̃ , we first set

Ũα,j = {(x, y) ∈ Uα\Z : yj 6= 0} ∪ {((x, y), [t]) ∈ P(NZ)|Z∩Uα : tj 6= 0} (2.4)

and clearly { Ũα,j }m+16j6n covers of Ũα. Then for each α, define a complex

manifold U ′α,

U ′α : = {((zα1 , · · · , zαn), [tαm+1 : · · · : tαn]) ∈ Uα × Pn−m−1 :

zktj = zjtk, for all j, k > m+ 1 }

Clearly U ′α is covered by its n−m open subsets U ′α,j, where for each m+ 1 6

j 6 N ,

U ′α,j := {((zα), [tα]) ∈ U ′α : zαj 6= 0 or tαj 6= 0} (2.5)
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For each pair Ũα → U ′α, we define a bijective holomorphic map fα : Ũα → U ′α

Figure 1: Coordinate neighborhood Ũα ⊂ M̃

as the following,

if y 6= 0, (x, y) 7−→ (z, [t]) := ((x, y), [y])

if y = 0, (x, 0, [t]) 7−→ (z, [t]) := ((x, 0), [t])

We see that fα factors through fα,j : Ũα,j → U ′α,j, which are defined as

if y 6= 0, (x, y) 7−→ (z, [t]) = ((x, y), [y])

= ((x, ym+1, · · · , yj, · · · , yn), [
ym+1

yj
, · · · , 1, · · · , yn

yj
])

if y = 0, (x, 0, [t]) 7−→ (z, [t]) = ((x, 0), [t])

= ((x, 0, · · · , 0, · · · , 0), [
tm+1

tj
, · · · , 1, · · · , tn

tj
])

Combine fα,j with the natural coordinates of τ ′α,j : U ′α,j → Cn, which are given
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as

((x, ym+1, · · · , yj, · · · , yn), [
ym+1

yj
, · · · , 1, · · · , yn

yj
]) 7−→ (x,

ym+1

yj
, · · · , yj, · · · ,

yn
yj

)

((x, 0, · · · , 0, · · · , 0), [
tm+1

tj
, · · · , 1, · · · , tn

tj
]) 7−→ (x,

tm+1

tj
, · · · , 0, · · · , tn

tj
)

We eventually get a holomorphic coordinate chart of M̃ near E from τ̃α,j :

Ũα,j → Cn, where τ̃α,j := τ ′α,j ◦ fα,j are defined by the following,

for z ∈M\Z, τ̃α,j(z) = (w1, · · · , wn)

: = (x1, · · · , xm,
ym+1

yj
, · · · , yj, · · · ,

yn
yj

)

for (z, [t]) ∈ E|Z∩Uα , τ̃α,j(z, [t]) = (w1, · · · , wn)

: = (x1, · · · , xm,
tm+1

tj
, · · · , 0, · · · , tn

tj
)

The inverse map τ̃−1
α,j : Cn ∩ {wj 6= 0} → Ũα,j\E is given as wj 6= 0 and

(w1, · · · , wn) 7−→ (w1, · · · , wm, wm+1wj, · · · , wj, · · · , wnwj) (2.6)

We conclude that τ̃α,j are coordinate charts on M̃ and that locally, E ∩ Ũα,j

is defined by the equation wj = 0(See also [Dem]), therefore E is locally a

smooth hypersurface in M̃ .

We wish to show that M̃ is a complex manifold by showing that τ̃α,i and τ̃β,l

glues well on their overlap, i.e. the coordinate change Ũα → Ũβ : (zαi )i6n 7→

(zβj )j6n gives rise to a holomorphic coordinate change (wαi )→ (wβj ).

Away from Z, say near point p ∈ (Ũα ∩ Ũβ)\Z, it is easy to see that (wαi ) →
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(wβj ) is biholomorphic. Indeed, the map Cn ∩ {wαi0 6= 0} → Cn ∩ {wβl0 6= 0} is

the composition

(wαi )→ (zαj )→ (zβk )→ (wβl )

where every intermediate map is holomorphic.

For any point p ∈ (Ũα ∩ Ũβ) ∩ Z, we can find some m + 1 6 i0, l0 6 n such

that p ∈ (Ũα,i0 ∩ Ũβ,l0) ∩ Z. This means tαi0 6= 0 and tβl0 6= 0. Then the map

(wαi )|wi0=0
→ (wβj )|wl0=0 is the following composition of the maps 1 , 2

and 3

(wαi ) = (zα1 , · · · , zαm,
tαm+1

tαi0
, · · · ,

tαi0−1

tαi0
, 0,

tαi0+1

tαi0
, · · · , t

α
n

tαi0
)

↓ 1

((zα1 , · · · , zαm, yαm+1, · · · , yαn), [
tαm+1

tαi0
, · · · ,

tαi0−1

tαi0
, 1,

tαi0+1

tαi0
, · · · , t

α
n

tαi0
])

=((zα1 , · · · , zαm, yαi0
tαm+1

tαi0
, · · · , yαi0

tαn
tαi0

), [
tαm+1

tαi0
, · · · ,

tαi0−1

tαi0
, 1,

tαi0+1

tαi0
, · · · , t

α
n

tαi0
])

↓ 2

((zβ1 , · · · , zβm, y
β
m+1, · · · , yβn), [

tβm+1

tβl0
, · · · ,

tβl0−1

tβl0
, 1,

tβl0+1

tβl0
, · · · , t

β
n

tβl0
])

=((zβ1 , · · · , zβm, y
β
l0

tβm+1

tβl0
, · · · , yβl0

tβn

tβl0
), [
tβm+1

tβl0
, · · · ,

tβl0−1

tβl0
, 1,

tβl0+1

tβl0
, · · · , t

β
n

tβl0
])

↓ 3

(wβi ) = (zβ1 , · · · , zβm,
tβm+1

tβl0
, · · · ,

tβl0−1

tβl0
, 0,

tβl0+1

tβl0
, · · · , t

β
n

tβl0
)
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Since 1 and 3 are holomorphic, we only need to show that 2 is

holomorphic. This follows from the fact that (tαi ) 7→ (tβl ) is holomorphic near

the point p. Indeed, they are the coordinates on the fibers of the normal

bundle NZ|Ũα∩Ũβ∩Z and the rank of NZ is constant so the transition map

Tα,β : (tαi ) 7−→ (tβl ), T ∈ Γ(Z,GL(n − m,C)) has to be holomorphic. The

proof is complete.

We give two examples to illustrate the coordinates taken in equation (2.6).

Example 2.27 (Nodal in C2).

Let N = { y2 = x3+x2 } ⊂ C2. Blow up C2 with respect to the origin by taking

x = x̃ and y = x̃ · ỹ, thus the blow up space Ñ = { ỹ2 = x̃+ 1 } ⊂ C2 × P1.

Figure 2: Blow up of y2 = x3 + x2

The exceptional divisor E is given by x̃ = 0. E ⊂ P1 consists of two points

that represent the two tangent lines of N at the origin.



26

Example 2.28 (Cusp in C2).

Let N := { y2 = x3 } ⊂ C2. Same as above, we take x = x̃ and y = x̃ · ỹ, thus

the blow up space

Ñ = {ỹ2 = x̃} ⊂ C2 × P1

The exceptional divisor E ⊂ P1 is just a single point, given by {x̃ = 0}, which

stands for the tangent line of N at the origin.

Definition 2.29 (The blow up of M with center Z).

The map π : M̃ →M is called the blow-up of M with center Z and E is called

the exceptional divisor of M̃ . From the above constructions, we see E is locally

a smooth hypersurface of M̃ and that π : M̃\E →M\Z is biholomorphic.
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2.3 Metric on general blow up spaces

We have constructed the blow up of Z ⊂ M and now wish to give a metric

on BlZM . The following lemma is a general standard fact that the blow up

space of M along a compact submanifold Z, admits a Kähler metric.

Lemma 2.30. (Kähler metric on blow up space)

For any compact Kähler manifold (M,ω) and a connected compact submanifold

Z ⊂M , we have a Kähler metric on BlZM , the blow up of M with respect to

center Z.

Proof. A detailed proof can be found in [Dem][PS12]. For completeness, we

include a proof here to serve for our results.

i) The idea to cover Z with a family of small neighborhoods and locally

construct a Kähler metric on BlZM as

π∗ω − ε i
2
∂∂̄ log hE ∈ [π∗ω] + ε c1(O(−E))

for some Hermitian metric hE on the line bundle O(−E),where E is the

exceptional divisor and π : BlZM → M is the canonical surjection. For

a small neighborhood near Z, we can find a small ε > 0 such that

π∗ω − ε i
2
∂∂̄ log hE > 0 (2.7)

Then use the compactness of Z to claim that there exists a finite col-

lection of such neighborhoods that covers Z and choose an uniform ε
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smaller than the minimum of the finitely many ε’s to prove that (2.7) is

true for the entire Z.

ii) Let Uα ⊂ M be a locally finite collection of coordinate neighborhoods

which covers Z, and let zα = (xα, yα) be coordinates on Uα such that

Z ∩ Uα = {(xα, yα) ∈ Uα : yαm+1 = · · · = yαn = 0}

Choose a family of cut-off functions {ψα} with respect to Z and ∪αUα

such that ψα ∈ C∞(Uα), 0 6 ψα 6 1 and
∑
α

ψα = 1 near Z.

Recall in equation (2.4) that the neighborhood Ũα = π−1(Uα) ⊂ BlZM

is covered by n open sets Ũα,j as,

Ũα,j = {(x, y) ∈ Uα\Z : yj 6= 0} ∪ {((x, y), [t]) ∈ P(NZ)|Z∩Uα : tj 6= 0}

and that on each Ũα,j, we have a local coordinate chart τ̃α,j : Ũα,j −→ Cn

as the following,

for z ∈ Ũα,j\E, yj 6= 0,

τ̃α,j(z) = (w1, · · · , wn)

: = (x1, · · · , xm,
ym+1

yj
, · · · , yj, · · · ,

yn
yj

)

for (z, [t]) ∈ Ũα,j ∩ E, tj 6= 0,

τ̃α,j(z, [t]) = (w1, · · · , wn)

: = (x1, · · · , xm,
tm+1

tj
, · · · , 0, · · · , tn

tj
)
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iii) Now we give the metric hE on O(−E) over M̃ . For any section f ∈

O(−E), define |f |2hE over Ũα,j as,

|f |2hE =
|f |2∑

α

ψα{|wj|2 · (1 +
n∑

i 6=j,i=m+1

|wi|2)}+ 1− ψ
on Ũα,j (2.8)

=
|f |2∑

α

ψα{|yj|2 · (1 +
n∑

i 6=j,i=m+1

|ti|2
|tj |2 )}+ 1− ψ

on Ũα,j ∩ E

(2.9)

=
|f |2∑

α

ψα{|yj|2 · (1 +
n∑

i 6=j,i=m+1

|yi|2
|yj |2 )}+ 1− ψ

on Ũα,j\E

(2.10)

=
|f |2∑

α

ψα{|ym+1|2 + · · ·+ |yn|2}+ 1− ψ
on Ũα,j (2.11)

where we have replaced ψα ◦ π with ψα.

Notice that in (2.9), wj = yj on Ũα,j ∩ E by the choice of coordinate

charts τ̃α,j and there the denominator seems to be zero on

E ∩ Ũα,j = {wj = yj = 0} ∩ Ũα,j

But since f ∈ O(−E) is locally given as a holomorphic function that

vanishes on E ∩ Ũα,j, by letting Ũα to be sufficiently small, we may

assume f = wj · g in Ũα,j for some holomorphic function g,
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and we have

|f |2hE =
|f |2∑

α

ψα{|ym+1|2 + · · ·+ |yn|2}+ 1− ψ
on Ũα,j (2.12)

=
|g|2∑

α

ψα{ |ym+1|2
|yj |2 + · · ·+ |yn|2

|yj |2 }+ 1− ψ
on Ũα,j (2.13)

=
|g|2∑

α

ψα{1 +
n∑

i 6=j,i=m+1

|wi|2}+ 1− ψ
on Ũα,j (2.14)

Also we see that (2.12) is independent of α and j, so |f |2hE defined above

glues well on the overlap of any pair of charts τ̃α1,j : Ũα1,j → Cn and

τ̃α2,k : Ũα2,k → Cn for different α1, α2, j, k.

iv) We see that hE is a well defined smooth metric on O(−E) and that near

E ⊂ M̃ , ψ = 1 and thus

−i∂∂̄ log hE = i∂∂̄ log(|ym+1|2 + · · ·+ |yn|2) (2.15)

= ω
FS |Pn−m−1

(2.16)

Therefore we conclude that locally on Uα, equation (2.7) defines a Kähler

metric as

π∗ω − ε i
2
∂∂̄ log hE > 0 , for any 0 < ε < εα

where εα is a small constant depending on Uα. To see it is positive for

the entire E, notice that Z ⊂M is compact and so {Uα} is a finite cover.

It suffices to choose ε < min{εα}.
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3 Case I

The singuarity in Question 2 gives rise to Theorem 3.1, which also applies to

finitely many interior points p1, · · · , pN in M . It is a generalization of [PS12,

Theorem 1] where all βi = 1. The proof that deals with a single point p is

given in Theorems 3.8.

3.1 Theorem I

Theorem 3.1. Let ω be a Kähler form on compact complex manifold M of

dimension n > 2 and assume ∂M 6= 0 is smooth. Fix N interior points

{p1, · · · , pN}, N ·n constants 0 < βmj 6 1 and N ·n local holomorphic functions

{fmj} such that for each 1 6 m 6 N , {fmj}16j6n are defined in a neighborhood

of pm, with pm as their only common zero in this neighborhood.

Then there exists a constant ε0 such that for all 0 < εm < ε0, 1 6 m 6 N ,

there exists a unique function G(z; p1, · · · , pN) ∈ PSH(M,ω) satisfying that

(ω + i
2
∂∂̄G)n = 0 on M\{p1, · · · , pn} and that


G = 0 on ∂M (3.1)

G = εm log{
n∑
j=1

|fmj|2βmj(
n∑
i=1

|fmi|2)1−βmj}+O(1) near pm (3.2)

Moreover, G ∈ Cα(K) for any compact K ⊂M\{p1, · · · , pN} and any positive

constant α < min
m6N,j6n

βmj.

With an iteration of N times, each of which deals with a singularity at an

isolated point pm and yields an exceptional divisor Em, we may reduce to the

case of N = 1 which will be shown in Theorem 3.8 in Section 3.5.
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Indeed, we can apply N steps of iterated blow up procedures. On the m-th

step, the blow up map is a biholomorphism away from the particular point

pm. So the boundary points get mapped to the new boundary(which is the

biholomorphic image via the m-th blow up map) and the images of the isolated

points pm+1, · · · , pN in the interior of the first m − 1 blow up spaces, stays

isolated in the interior of the m-th blow up space. Furthermore, they stay away

from the exceptional divisors Em and E1, · · · , Em−1. Then one can continue

with the process for pm+1, · · · , pN and eventually apply Theorem 3.8 to the

single point pN .

3.2 Singular (1,1) form on X(M, p, f1, · · · , fn)

Now we consider M near p with the given data (M, p, fi) and apply the general

blow up arguments to the special case of blowing up M near p, which is the

only common zero of the local holomorphic functions f1, · · · , fn. We first

construct a singular (1,1) form on the blow up space X = X(M, p, fi) in some

ambient space W , where the blow up spaces X and W were previously given

by [PS12].

Lemma 3.2 (Singular (1,1) form ωδ(M, p, f1, · · · , fn, β1, · · · , βn) ).

Given (M, p, fi) the data of the Kähler manifold (M,ω), an interior point p,

and local holomorphic functions fi, 1 6 i 6 n with p as their only common

zero. Then there exists a complex analytic space X = X(M, p, f1, · · · , fn)

and a biholomorphism π1 : X\X0 → M\{p}, mapping X0 7→ p for some X0

biholomorphically equivalent to Pn−1 with following property:
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The form ωδ defined on M\{p} as

ωδ = ω + δ
i

2
∂∂̄{ψ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fj(z)|2)1−βj + 1− ψ} (3.3)

has the pull back π∗1ωδ on X\X0 that extends to a closed strictly positive sin-

gular (1,1) form on X. Here ψ is some cut-off function supported in some

small neighborhood of p.

Proof. i) Fix ε0 > 0 and since p is the only common zero of the local

holomorphic functions f1, · · · , fn. We can find a small open neighbor-

hood U ⊂ M such that
n∑
j=1

|fi|2 6= 0 on U\{p}. Choose another open

neighborhood U0 ⊂⊂ U and define

Uε0 := U0 ∩ {z :
n∑
j=1

|fi(z)|2 < ε0
2

4
}

We blow up Uε0 with center p and denote the blow up space Vε0 , as

Vε0 := BL<f1,··· ,fn>Uε0

= {((z1, · · · , zn), [t1, · · · , tn]) ∈ Uε0 × Pn−1 : tifj(z) = tjfi(z)}

Set theoretically gluing Vε0 with M\{p} on Uε0\{p} defines space X by

X := (Vε0 ∪M\{p})/ ∼: q1∈M\{p}∼(q2,[t])∈Vε0⇐⇒q1=q2

Clearly Uε0\{p} is covered by n open subsets {z : fj(z) 6= 0} ∩ Uε0 and
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Vε0 is covered by n open subsets

{(z, [t]) : tj 6= 0} ∩ Vε0

The surjection proj1 : Vε0 ⊂ Uε0 × Pn−1 → Uε0 defines X0 as the inverse

image of p, which is biholomorphic to Pn−1.

ii) Now construct a complex manifold W such that X is locally an an-

alytic subset of W . Perturb the holomorphic functions f1, · · · , fn by

ξ ∈ B ε0
2

(0) ⊂ Cn. Let the graph of the map (f1, · · · , fn) over Uε0 be

Z = {(z, ξ) ∈ Uε0 ×B ε0
2

: ξi = fi(z) for all 1 6 i 6 n}

Note that Z ⊂M×Bε0 is a smooth compact submanifold of dimension n

and the image of Z under the projection map proj1 : Z → U0 is a subset

of U0 and is thus compactly supported in U . Define local holomorphic

functions g1(z, ξ), · · · , gn(z, ξ) over U0 ×Bε0 as

gi(z) := fi(z)− ξi for 1 6 i 6 n

By the triangle inequality,
n∑
j=1

|gj(z)|2 < ε0
2 on Uε0 × B ε0

2
. Clearly in

U0 ×Bε0 , we have

Z = {g1 = · · · = gn = 0} ∩ Uε0 ×B ε0
2
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and since Z is compact, Z has an neighborhood T , defined as

T := {(z, ξ) ∈ U0×Bε0 : min
(z′,ξ′)∈Z

{
n∑
j=1

|fj(z)− fj(z′)|2 + |ξj−ξ′j|2 <
ε0

2

5
} }

By letting ε0 be sufficiently small, we have that T ⊂⊂ U0×Bε0 ⊂M×Bε0

iii) Let W ε0
2

be the blow up of Uε0 ×B ε0
2

with center Z, denoted as

W ε0
2

: = BL<g1,··· ,gn> (Uε0 ×B ε0
2

)

= { (z, ξ, [t]) ∈ Uε0 ×B ε0
2
× Pn−1 : ti gj(z, ξ) = tj gi(z, ξ) }

Let W be the set theoretically union of W ε0
2

and (M ×Bε0)\Z glued via

the canonical surjection

proj1 : W ε0
2
−→ Uε0 ×B ε0

2

(z, ξ, [t]) 7−→ (z, ξ)

As Z ⊂ M × Bε0 is a smooth submanifold, we see that W is a smooth

manifold. The exceptional divisor Eg is locally the inverse image of Z

under the blow up map, which is denoted as

π1 : W −→M ×Bε0

Eg 7−→ Z

On W , let Wε0 := π1
−1(U0 ×Bε0) and we see that locally near Eg,
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Eg ⊂ π1
−1(T ) ⊂⊂ Wε0 and clearly Wε0 is covered by its n open subsets

Wε0,j = {(z, ξ, [t]) ∈ U0 ×Bε0 × Pn−1 : tj 6= 0 or gj(z, ξ) 6= 0}

With the same construction as (2.4) in section 2.2, we see that Wε0,j

admits a local holomorphic chart τj : Wε0,j → Cn that glues biholo-

morphically on the overlap with one another. Away from Eg, W\Eg is

biholomorphic to (M ×Bε0)\Z.

iv) Since Z is a compact submanifold of M ×Bε0 , blowing up Z in M ×Bε0

and applying constructions similar to lemma 2.30, we get a singular

Hermitian metric hEg on O(−Eg) over W as the following.

Suppose Wε0 is covered by a finite collection of neighborhoods {Wα}α in

W . Choose a family of cut-off functions χ
Wα

with respect to π−1
1 (T ) and

Wε0 such that χ
Wα
∈ C∞(Wε0), 0 6 χ

Wα
6 1 and

χ
W

:=
∑
α

χ
Wα

= 1 on π−1
1 (T )

Let Tα := π(Wα) and thus T ⊂⊂ ∪αTα. Moreover, each Wα is covered

by n open subsets

Wα,j = {(z, ξ, [t]) ∈ Tα × Pn−1 : tj 6= 0 or gj(z, ξ) 6= 0} ∩Wα

For a section f in O(−Eg), since f|Eg = 0, we may assume that locally

f = gj · f̃ in the neighborhood Wα,j for some holomorphic function f̃ .
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Define |f |2hEg on W̃α,j as

=
|f |2∑

α

χ
Wα
{

n∑
k=1

|gk|2βk(
n∑
i=1

|gi|2)1−βk}+ 1− χ
W

(3.4)

=
|gj · f̃ |2∑

α

χ
Wα
{|gj|2

n∑
k=1

|gk
gj
|2βk(

n∑
i=1

| gi
gj
|2)1−βk}+ 1− χ

W

on Wα,j\Eg (3.5)

=
|f̃ |2∑

α

χ
Wα
{

n∑
k=1

|gk
gj
|2βk(

n∑
i=1

| gi
gj
|2)1−βk}+ 1− χ

W

on Wα,j\Eg (3.6)

=
|f̃ |2∑

α

χ
Wα
{

n∑
k=1

| tk
tj
|2βk(

n∑
i=1

| ti
tj
|2)1−βk}+ 1− χ

W

on Wα,j (3.7)

We see from (3.4) that hEg defined in this way glues well for all α and

j. It is a smooth(resp. singular) Hermitian metric on O(−Eg) if and

only if all βi = 1(resp. some βi < 1). With hEg , we can define a Kähler

form(resp. positive closed singular (1,1) form) on W later in step vi).

v) Define X to be a subset of W by setting ξ1 = · · · = ξn = 0, and locally

X is defined by

Xε0 := {(z, 0, [t]) ∈ Uε0 ×B ε0
2
× Pn−1 : ti fj(z) = tj fi(z)}

which is an analytic subspace of the smooth manifold W . Note that X

might not be smooth in general, for which we apply Hironaka’s theorem

with iterated blow ups later in next lemma. Now we see that this defines

a map π1 : X → M which is a biholomorphism between X\X0 and

M\{p}, where X0 = π1
−1(p) is biholomorphically equivalent to Pn−1.
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Moreover, near X0, X is covered by its n open subsets

Xε0,j = {(z, 0, [t]) ∈ Xε0 : tj 6= 0 or fj(z) 6= 0}

By letting U1 := proj1(T ), we have a small open neighborhood U1 near

p on M satisfying U1 ⊂⊂ U0. Choose any cut-off function ψ ∈ C∞(U)

such that

ψ ◦ proj1 ◦ π1 = χ
W

: Wε0 −→ R

then clearly

ψ|U1
≡ 1 and ψ|U\U0

≡ 0

Indeed, consider the projection map proj1 : U0×Bε0 → U0 and the blow

up map π1 : Wε0 → U0 × Bε0 , the image of proj1 ◦ π1 lies in U0. The

composition of proj1 and ψ gives

χ
T

:= ψ ◦ proj1 : π1(Wε0) −→ U0 −→ R

This defines a cut-off function χ
T

in U0 × Bε0 near T , such that χ
T
≡ 1

on T .

vi) We wish to define a positive closed singular (1,1) form on X in the

sense of currents. We do so by first constructing a (1,1) form on W , the

ambient manifold where X lies in.

Given the Kähler metric ω on M, we extend it naturally to a Kähler

metric on M × Bε0 , denoted as ω′ := ω + ω0, where ω0 is the standard
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Euclidean metric on Bε0 . Choose the cut-off functions χ
W

, χ
T

defined in

step iv) and v), we define a closed singular (1,1) form ω′′δ on W\Eg,

ω′′δ := π1
∗ω′+δ

i

2
∂∂̄{χ

W
log

n∑
j=1

|fj(z)− ξj|2βj(
n∑
i=1

|fi(z)− ξi|2)1−βj+1−χ
W
}

(3.8)

Thus on (M ×Bε0)\Z, which is biholomorphically equivalent to W\Eg,

ω′′δ = ω′+ δ
i

2
∂∂̄{χ

T
log

n∑
j=1

|fj(z)− ξj|2βj(
n∑
i=1

|fi(z)− ξi|2)1−βj + 1−χ
T
}

(3.9)

On Eg, we define the form ω′′δ as

ω′′δ := π1
∗ω′ + δ

i

2
∂∂̄{ log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)1−βj} (3.10)

In step vii) we will show that the ω′′δ defined in (3.8)(3.10), is strictly

positive closed (1,1) form with bounded potential function in the sense

of currents.

But first we need to show that the two definitions are coherent on the

overlap of a neighborhood away from Eg and some open set contained

in χ
W

= 1 near Eg.

To see this, first notice that on W\Eg, gj(z, ξ) = fj(z) − ξj 6= 0 for

some 1 6 j 6 n. Without loss of generality, we may assume that

g1(z, ξ) = f1(z) − ξ1 6= 0. Then we must have t1 6= 0 and gi
g1

= ti
t1

,

for every 1 6 i 6 n.
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Hence on the overlap we have,

ω′′δ = π∗1ω
′ + δ

i

2
∂∂̄{χ

W
log

n∑
j=1

|fj(z)− ξj|2βj(
n∑
i=1

|fi(z)− ξi|2)1−βj + 1− χ
W
}

= π∗1ω
′ + δ

i

2
∂∂̄{log

n∑
j=1

|fj(z)− ξj|2βj(
n∑
i=1

|fi(z)− ξi|2)1−βj}

= π∗1ω
′ + δ

i

2
∂∂̄{ log

n∑
j=1

|gj|2βj(
n∑
i=1

|gi|2)1−βj}

= π∗1ω
′ + δ

i

2
∂∂̄{ log

n∑
j=1

|gj|2βj
|g1|2βj

(
n∑
i=1

|gi|2

|g1|2
)1−βj}+ δ

i

2
∂∂̄ log |g1|2

= π∗1ω
′ + δ

i

2
∂∂̄{ log

n∑
j=1

|gj|2βj
|g1|2βj

(
n∑
i=1

|gi|2

|g1|2
)1−βj}

= π∗1ω
′ + δ

i

2
∂∂̄{ log

n∑
j=1

|tj|2βj
|t1|2βj

(
n∑
i=1

|ti|2

|t1|2
)1−βj}

= π∗1ω
′ + δ

i

2
∂∂̄{ log

n∑
j=1

|tj|2βj
|t1|2βj

(
n∑
i=1

|ti|2

|t1|2
)1−βj}+ δ

i

2
∂∂̄ log |t1|2

= π∗1ω
′ + δ

i

2
∂∂̄{ log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)1−βj}

vii) To show ω′′δ > 0 on W , first notice that π∗1ω
′ > 0 on W\Eg ' (B×M)\Z

as it is the pull back of ω′ by a biholomorphic map. So by compactness

of Z we can let δ > 0 to be sufficiently small to make ω′′δ > 0.

On Eg, we only have π∗1ω
′ > 0 and in order to show ω′′δ > 0 we need to

prove that the (1,1) form in (3.10) denoted as

Ω(β, t) =
i

2
∂∂̄{ log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)1−βj}

is strictly positive.
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If all βi = 1, Ω(β, t) = ω
FS

, the Fubini-Study metric over the projective

space Pn−1 and hence is strictly positive. Since Z is compact, we can get

strict positivity of ω′′δ for any arbitrary small constant δ. In fact, ω′′δ is a

smooth Kähler metric on W , see [PS12].

If all βi < 1, choose a constant C1 = max16i6n{βi} < 1,

Ω(β, t) =
i

2
∂∂̄{ log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)1−βj}

=
i

2
∂∂̄{ log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)1−C1+C1−βj}

=
i

2
∂∂̄{ log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)C1−βj}+
i

2
∂∂̄ log (

n∑
i=1

|ti|2)1−C1

=
i

2
∂∂̄{ log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)C1−βj}+ (1− C1)ω
FS

We show that the first term in the above line is semi-positive. Let

uj(t, βj) = log{|tj|2βj(
n∑
i=1

|ti|2)C1−βj}

= βj log |tj|2 + (C1 − βj) log
n∑
i=1

|ti|2

Then ∂∂̄uj(t, βj) > 0 and uj is plurisubharmonic. Now apply [Dem,

Theorem 5.6] to see that

log
n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)C1−βj = log(eu1 + · · ·+ eun) (3.11)

is plurisubharmonic. Therefore Ω(β, t) > (1− C1)ω
FS
> 0.
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For general β values, where some but not all βi = 1, we can still go

through the same steps as above by letting

uj(t, βj) = log{|tj|2βj(
n∑
i=1

|ti|2)1−βj} (3.12)

= βj log |tj|2 + (1− βj) log
n∑
i=1

|ti|2 (3.13)

Clearly i∂∂̄uj > 0 for each 1 6 j 6 n and thus

Ω(β, t) =
i

2
∂∂̄ log(eu1 + · · ·+ eun) > 0

We have semi-positivity, and it still remains to show strict-positivity.

Define Θ as

Θ(u1, · · · , un) = log(eu1 + · · ·+ eun)

= log
n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)1−βj

Clearly we have that DjΘ > 0 for every 1 6 j 6 n. As there exists some

βi0 < 1, we have

i∂∂̄ui0 > (1− βi0)i∂∂̄ log
n∑
i=1

|ti|2

= (1− βi0)ω
FS |Pn−1

we have that ui0 is strictly plurisubharmonic.
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To show Θ is strictly plurisubharmonic, it suffices to show that locally

ξpξq∂p∂qΘ > λ · ξξ for some small positive constant λ and any vector

ξ ∈ Cn. This can be seen from

ξpξq∂p∂qΘ(u1, · · · , un)

=ξpξq∂p(
n∑
j=1

DjΘ∂quj)

=ξpξq(
n∑
j=1

DjΘ∂p∂quj +
n∑
i=1

n∑
j=1

(DiDjΘ)∂pui∂quj )

=
n∑
j=1

DjΘ( ξpξq∂p∂quj ) +
n∑
i=1

n∑
j=1

(DiDjΘ)( ξp∂pui )( ξq∂quj )

>
n∑
j=1

DjΘ( ξpξq∂p∂quj )

>λ0 · ξξ

where λ0 is a local constant depending on the smallest eigenvalue of

( ∂k∂̄lui0 ). And λ0 > 0, as ui0 is strictly plurisubharmonic.

viii) Now we have a singular (1,1) form on M\{p} as

ωδ := ω + δ
i

2
∂∂̄{ψ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj + 1− ψ} (3.14)

On W , we have constructed a strictly positive singular (1,1) form

ω′′δ = π∗1ω
′+δ

i

2
∂∂̄{χ

W
log

n∑
j=1

|fj(z)− ξj|2βj(
n∑
i=1

|fi(z)− ξi|2)1−βj+1−χ
W
}

We get a positive singular (1,1) form ω′δ by restricting ω′′δ from W to X
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and letting ξ1 = · · · = ξn = 0.

ω′δ := ω′′δ |ξ=0
(3.15)

= π∗1ω + δ
i

2
∂∂̄{χ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj + 1− χ} (3.16)

where χ := χ
W |ξ=0

and notice that as a result of the restriction,

π1
∗ω′ = π1

∗(ω + ω0 )

changed into π1
∗ω. Moreover, we have that ω′δ is strictly positive on the

entire X. On X\X0, ω′δ is the same as π1
∗ωδ, the pull back of ωδ from

M\{p}.

To summarize, π∗1ωδ, the pull back of ωδ from M\{p} to X\X0, extends

to X. This can be seen from that fact that ψ ◦ π1 = χ
W

= 1 near X0 in

a neighborhood of the exceptional divisor Eg in W and that

ω′δ |X0
=π1

∗ω + δ
i

2
∂∂̄{χ

W
log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)1−βj + 1− χ
W
}

=π1
∗ω + δ

i

2
∂∂̄{χ

W
log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj + 1− χ
W
}

The proof of lemma 3.2 is complete.
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3.3 Singular (1,1) form on iterated blow up space X ′

The X constructed in a local way in lemma 3.2 is an analytic subspace of W

and X is in general not smooth. To get a smooth manifold, we apply the

iterated blow up technics[PS12] given by a deep theorem of Hironaka(See[H])

to resolve the singularities Xsing ⊂ X in the ambient space W . Their process

is to blow up W finite times and resolve the singularities of X. From there we

have an iterated blow up space W ′, a smooth manifold X ′ which lies inside

the ambient space W ′ and a positive closed (1,1) current Ω′ on X ′.

Lemma 3.3 (Hironaka’s Theorem on iterated blow-ups, see [H][PS12]).

Let W be a complex manifold and X ⊂ W be a complex analytic space. Then

there exists an iterated blow up space π2 : W ′ → W with the exceptional divisor

E ⊂ W ′ that resolves the singularities of X in the following way:

Let

X ′ = π−1
2 (X)\E ⊂ W ′ (3.17)

Then X ′ is a smooth manifold and π2 : X ′ → X, the restriction of the map π2

on X ′, is surjective. Moreover, we have a divisor E ′ with normal crossings in

X ′ as

E ′ = E ∩X ′ = π−1(Xsing) (3.18)

and an isomorphism on X ′\E ′

π2 : X ′\E ′ → Xreg (3.19)
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From lemma 3.3, the singularities in Xsing ⊂ X0 are resolved with the blow

up map π2 : W ′ −→ W and the construction of E ′ ⊂ X ′ ⊂ W ′.

Now we wish to give a closed positive singular (1,1) form Ω′ on X ′.

Lemma 3.4 (Existence of hE′ and Ω′ on X ′).

Same as in lemma 3.2, fix a singular (1,1) form ω′δ on X,

ω′δ = π∗1ω + δ
i

2
∂∂̄{χ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj + 1− χ}

Then there exists a closed strictly positive singular (1,1) form Ω′ on X ′,

Ω′ := π∗2(ω′δ)− ε
i

2
∂∂̄ log hE′ > 0 (3.20)

for some small constant ε and some smooth metric hE′ on O(−E ′), where E ′

is some effective divisor on X ′.

Proof.

i) From lemma 3.2, on W we constructed a positive closed singular (1,1)

form ω′′δ , together with π∗1(ωδ) as its restriction to X. Apply lemma 3.3

to get E ′ ⊂ X ′ ⊂ W ′ and π2 : X ′ → X that resolves the singularities

Xsing which lies in X0 ⊂ Eg ⊂ W . Here Eg is the compact smooth

submanifold of W defined in lemma 3.2.



47

ii) Choose a finite collection of small neighborhoods {Uα}α that covers Eg.

Since ω′′δ is strictly positive and locally in Uα we have

ω′′δ = i∂∂̄φα

where φα is a strictly plurisubharmonic function in Uα. This means that

locally in Uα, there exists a small positive constant λα such that for all

ξ ∈ Cn,

i∂k∂j̄φα ξ
kξj > λα |ξ|2

Fix a smooth Kähler form ω
δ,W

on W as in (3.23). Then locally in Uα,

ω
δ,W

= gkj̄(x) dzk ∧ dzj. Let Λ(x) be the largest eigen value of (gij̄(x))

and let

Λ := max
α
{ sup
x∈Uα

Λ(x)}

and fix any large positive constant A, such that 1
A
6

min
α
λα

Λ
. We see that

ω′′δ >
ω
δ,W

A
in the neighborhood ∪αUα of Eg.

iii) Now apply [PS12, lemma 7] to the Kähler form
ω
δ,W

A
. It follows that

there exists an effective divisor E1 on W ′ supported on E(i.e. locally

E1 =
∑
ν

mνEν for some integers mν and some divisors Eν in E), together

with a smooth metric hE1 on O(−E1) such that

π∗2(
ωδ,W
A

)− ε i
2
∂∂̄ log hE1 > 0

is a Kähler form on W ′ for ε sufficient small.
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Define

ΩW ′ := π∗2(ω′′δ )− ε i
2
∂∂̄ log hE1

Then we claim that ΩW ′ is a strictly positive singular Hermitian (1,1)

form on W ′. Indeed, the strict positivity can be seen from that π∗2(ω′′δ )

is semi-positive on W ′ and strictly positive away from the exceptional

divisor E. And near E, in the neighborhood π2
−1(∪αUα), we have that

π∗2(ω′′δ ) >
π∗2(ω

δ,W
)

A
and thus

π∗2(ω′′δ )− ε i
2
∂∂̄ log hE1 >

π∗2(ω
δ,W

)

A
− ε i

2
∂∂̄ log hE1 > 0

iv) Since we have that X ′ ⊂ W ′ is a resolution of singularity of X ⊂ W

with the exceptional divisor E ′ ⊂ X ′. Restrict the divisor E1 to X ′ and

get an effective divisor E2 supported in E ′ ⊂ X ′. Restrict the smooth

metric hE1 from the line bundle O(−E1) to O(−E2) and get a smooth

metric hE2 on O(−E2) over X ′. Then we have a strictly positive singular

(1,1) form Ω′ on X ′ as

Ω′ := π∗2(ω′δ)− ε
i

2
∂∂̄ log hE2 > 0 (3.21)

Here the positivity can be seen from the fact that Ω′ is the restriction of

ΩW ′ from W ′ to its submanifold X ′ and that ΩW ′ defined in step iii) is

strictly positive.
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Remark 3.5.

Note that for the case where β1 = · · · βn = 1, Phong-Sturm showed in [PS12]

that the following Kähler forms

ω
δ,X

:=π∗1ω + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi(z)|2 + 1− χ } (3.22)

ω
δ,W

:=π∗1ω + δ
i

2
∂∂̄{χ

W
log

n∑
i=1

|fi(z)− ξi|2 + 1− χ
W
} (3.23)

get pulled back to π∗2(ω
δ,X

) and π∗2(ω
δ,W

), which are smooth semi-positive (1,1)

forms on X ′ and W ′. Thus by defining

Ω0 := π∗2(π∗1(ω) + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi|2 + 1− χ})− ε i
2
∂∂̄ log hE2 > 0

we have a smooth Kähler form Ω0 on X ′. So we can see that X ′ is a smooth

Kähler manifold with Ω0, which happens to be same as Ω′ for this special case.

As a generalization (for β1 6 1, · · · , βn 6 1) to their result, Ω′ defined in (3.21)

is a family of strictly positive closed (1,1) currents {Ω′β}βi61 on X ′.

To summarize this section, we have the following lemma.

Lemma 3.6. Given (M, p, fi) the data of a compact Kähler manifold (M,ω)

with smooth boundary ∂M , an interior point p, and local holomorphic functions

fi, 1 6 i 6 n with p as their only common zero.

Then there exists a compact complex manifold X ′ = X ′(M, p, fi) with Kähler

form Ω0 and a holomorphic map π : X ′ −→M , sending ∂X ′ −→ ∂M with the

following properties:
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a) There is a closed, strictly positive singular (1,1) form Ω′ on X ′, an ef-

fective divisor E ′ and an ε > 0 sufficiently small such that

Ω′ := π∗(ωδ)− ε
i

2
∂∂̄ log hE′ > 0 for some smooth metric hE′ on O(−E ′)

b) The restriction π|X′\E′ defines a surjective holomorphic map π : X ′\E ′ →

M\{p} and

π∗Ω
′ =ω + δ

i

2
∂∂̄{ψ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj

+ 1− ψ} − ε i
2
∂∂̄ log(hE′ ◦ π−1)

where ψ(z) is some cut-off function which is 1 in a neighborhood of p

and compactly supported in a slightly larger neighborhood.

Proof. i) Fix a neighborhood U , and some U0 ⊂⊂ U , take the cut off

function ψ(z) supported in U0 same as in lemma 3.2. We have thus a

closed positive singular (1,1) form ωδ on M\{p} defined as

ωδ = ω + δ
i

2
∂∂̄{ψ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj + 1− ψ}

Apply lemma 3.2 and we have the analytic subspace

X = X(M, p, f1, · · · , fn)

in the ambient space W and a biholomorphic map π1 : X\X0 →M\{p}
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such that π∗1(ωδ) extends to a singular (1,1) form ω′δ on X.

ii) Since X ⊂ W is only an analytic subspace with X0 ⊂ Eg ⊂ W , where Eg

is the exceptional divisor in W = BLZ(M × Bε0) over Z = {g1(z, ξ) =

· · · = gn(z, ξ) = 0} ⊂M ×Bε0 and

X0 = Eg ∩ {ξ1 = · · · ξn = 0}

We see that Xsing ⊂ X0 and X\X0 ⊂ Xreg.

iii) Then we apply lemma 3.3 (Hironaka’s theorem) to get an iterated blow

up space π2 : W ′ → W , which is a smooth manifold with the exceptional

divisor E ⊂ W ′ and a smooth submanifold X ′ ⊂ W ′ such that the

restricted map

π2|X′ : X ′ → X

is surjective and that

π2|X′\E′ : X ′\E ′ → Xreg

is biholomorphic. Here E ′ = E ∩X ′ = π2
−1(Xsing) ∩X ′.

iv) Apply lemma 3.4 to pull back π1
∗(ωδ) via the surjective blow up map

π2|X′ : X ′ → X

which resolves the singularity Xsing with the exceptional divisor E ′. We

get a smooth metric hE′ on the line bundle O(−E ′) over X ′, such that
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for sufficient small ε > 0,

π2
∗(π∗1(ωδ))− ε

i

2
∂∂̄ log hE′ > 0

Set Ω′ = π2
∗(π∗1(ωδ))− ε i2∂∂̄ log hE′ and this proves a).

v) Now we prove b). First notice that since Xreg = X\Xsing ⊃ X\X0, so

the map π1 : Xreg → M\{p} is surjective. Taking its composition with

the biholomorphism

π2 : X ′\E ′ → Xreg

defines a surjective holomorphic map

π = π1 ◦ π2 : X ′\E ′ →M\{p}

Clearly π sends ∂X ′ to ∂M and π is a biholomorphism between M\{p}

and its inverse image, which is

π−1(M\{p}) = π−1
2 (X\X0) ⊂ X ′\E ′

So we can push forward Ω′ to M\{p} and get

π∗Ω
′ =ω + δ

i

2
∂∂̄{ψ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj

+ 1− ψ} − ε i
2
∂∂̄ log(hE′ ◦ π−1)
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3.4 A solution φ ∈ PSH(X ′,Ω′)

Through the iterated blow up procedures, we have E ⊂ W ′ and E ′ ⊂ X ′ with

Ω′, a strictly positive singular Hermitian form on X ′. And as shown in remark

3.5 (See also [PS12]), there is a Kähler form on X ′, defined as

Ω0 := π∗2(π∗1(ω) + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi|2 + 1− χ})− ε i
2
∂∂̄ log hE2 > 0 (3.24)

Note that on X ′\E ′,

Ω′ = π∗2(π∗1ω + δ
i

2
∂∂̄{χ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj

+ 1− χ} )− ε i
2
∂∂̄ log hE′

= π∗ω + δ
i

2
∂∂̄{χ

W
log

n∑
j=1

|fj ◦ π2|2βj(
n∑
i=1

|fi ◦ π2|2)1−βj

+ 1− χ
W
} )− ε i

2
∂∂̄ log hE′

and that on E ′,

Ω′ = π∗ω+π2
∗( δ

i

2
∂∂̄{χ

W
log

n∑
j=1

|tj|2βj(
n∑
i=1

|ti|2)1−βj +1−χ
W
} )−ε i

2
∂∂̄ log hE′

where χ := χ
W
◦ π2 is a cut-off function in a neighborhood of E ′ ⊂ X ′. Then

locally, Ω′ = i∂∂̄θ where θ is a bounded continuous strictly plurisubharmonic

potential function.

We wish to construct a solution to the following degenerate Monge-Ampère
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equation with respect to Ω′ on X ′.

Lemma 3.7. Let (X ′,Ω0) be the compact Kähler manifold with smooth bound-

ary and let the strictly positive singular Hermitian (1,1) form Ω′ on X ′ be

defined in lemma 3.6.

Then there exists a unique φ ∈ PSH(X ′,Ω′) ∩ L∞(X ′) such that

(Ω′ +
i

2
∂∂̄φ)n = 0 on X ′ (3.25)

φ = 0 on ∂X ′ (3.26)

Moreover, φ ∈ Cα(K ′) for any compact subset K ′ of X ′\E ′ and any constant

0 < α < min
i
{βi}.

Proof. (Existence, a first proof using [PS09][PSS12].)

i) Let

Ω1 := π∗ω + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi ◦ π2|2 + 1− χ} > 0 (3.27)

be a smooth semi-positive (1, 1) form on X ′. From the above, we see

that Ω1 satisfies the following condition

Ω1 −
i

2
∂∂̄ log hE′ = Ω0 > 0
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By [PS09, Theorem 2](or [PSS12, Theorem 14]), there exists a unique

φ1 ∈ PSH(X ′,Ω1) ∩ L∞(X ′) to the following

(Ω1 +
i

2
∂∂̄φ1)n = 0 (3.28)

Ω1 +
i

2
∂∂̄φ1 > 0 (3.29)

φ1|∂X′ = 0 (3.30)

Moreover, φ1 ∈ Cα1(X ′\E ′) for any 0 < α1 < 1.

ii) On X ′, we see that

Ω′ = π∗ω + δ
i

2
∂∂̄{χ log

n∑
j=1

|fj ◦ π2|2βj(
n∑
i=1

|fi ◦ π2|2)1−βj

+ 1− χ} )− ε i
2
∂∂̄ log hE′

= π∗ω + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi ◦ π2|2 + 1− χ}

+ δ
i

2
∂∂̄{χ log

n∑
j=1

|fj ◦ π2|2βj

(
n∑
i=1

|fi ◦ π2|2)βj
} − ε i

2
∂∂̄ log hE′

= Ω1 +
i

2
∂∂̄F

where we have let

Ω1 := π∗ω + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi ◦ π2|2 + 1− χ} > 0
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be a smooth semi-positive (1,1) form on X ′ and

F := δχ log
n∑
j=1

|fj ◦ π2|2βj

(
n∑
i=1

|fi ◦ π2|2)βj
− ε log hE′

Clearly we see that F = 0 on ∂X ′, as χ and log hE′ both vanish away

from a neighborhood of E ′. Let φ := φ1 − F , then φ is a solution to the

degenerate Monge-Ampère equation (3.25). Indeed,

0 =(Ω1 +
i

2
∂∂̄φ1)n

=(Ω1 +
i

2
∂∂̄F +

i

2
∂∂̄φ)n

=(Ω′ +
i

2
∂∂̄φ)n

Since φ1 and F both vanish at ∂X ′, we have φ|∂X′ = 0 and this proves

(3.26).

iii) To show that φ is bounded, it suffices to show that F is bounded on X ′.

Since hE′ > 0 is smooth on X ′, which is compact, it follows that log hE′

is uniformly bounded. To see F is bounded, we notice that

F = δF1 − ε log hE′

where we let

F1 := χ log
n∑
j=1

|fj ◦ π2|2βj

(
n∑
i=1

|fi ◦ π2|2)βj
(3.31)
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F1 is uniformly bounded on X ′, as can be seen from that

n∑
i=1

|fi ◦ π2|2 6 n ·max
i
{|fi ◦ π2|2} and that

−C1 · log n 6 log
n

max
j=1

|fj ◦ π2|2βj

(
n∑
i=1

|fi ◦ π2|2)βj

6 log
n∑
j=1

|fj ◦ π2|2βj

(
n∑
i=1

|fi ◦ π2|2)βj

6 log n

where the uniform constant C1 = max
16i6n

{βi} > 0. Thus we get that

F ∈ L∞(X ′) and that φ = φ1 − F ∈ L∞(X ′).

iv) Fix any compact subsetK ′ inX ′\E ′ and any constant 0 < α < min
16j6n

{βj}.

We have that F1 ∈ Cα(K ′) and thus F ∈ Cα(K ′). Since φ1 ∈ Cα1(X ′\E ′)

for any 0 < α1 < 1, it follows that φ = φ1 − F ∈ Cα(K).

This completes the first proof of the existence part.

(Existence, a second proof using Perron’s envelope method. )

We give a slightly more general proof, where essentially the boundary function

is given by φ1 ∈ PSH(X ′,Ω0), which is continuous near the boundary. We are

allowed to apply the Perron envelope method with respect to Ω′ and boundary

condition φ1. We see that φ = φ1 away from a neighborhood of E ′ in X ′.

Locally in this neighborhood, fix a bounded plurisubharmonic function θ such

that i
2
∂∂̄θ = Ω′. Then by [Wal], φ+ θ is upper semi-continuous and indeed φ

lies in PSH(X ′,Ω′).
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I) Define ω1 = Ω′ and

E(ω1, f) = {ψ : ω1 + i∂∂̄ψ > 0, ψ∗|∂X′ 6 f|∂X′}

to be the Perron’s envelope of subsolutions with respect to ω1 and any

continuous function f defined near ∂X ′. It is easy to see that E(ω1, f)

is not empty. Indeed, it contains constant functions ψ = −C for any

sufficiently large C > 0. Then consider the envelope with the boundary

condition

E(ω1, φ1) = {ψ : ω1 + i∂∂̄ψ > 0, ψ∗|∂X′ 6 φ1}

II) Take the point-wise supreme for all ψ ∈ E(ω1, φ1) and define

φ = sup
ψ
{ψ ∈ E(ω1, φ1)} = sup{ψ : ω1 + i∂∂̄ψ > 0, ψ∗|∂X′ 6 φ1} (3.32)

Now φ ∈ PSH(X ′, ω1) is a globally defined function on X ′ and φ|∂X′ =

φ1|∂X′ = 0.

III) To show that the φ defined above is a solution to the degenerate Monge-

Ampère equation

(ω1 + i∂∂̄φ)n = 0 on X ′

It suffices to show φ is maximal with respect to all subsolutions on any

small neighborhood U .

IV) Pick any point p1 and any small neighborhood U that contains p1, then
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locally in U , ω1 = i∂∂̄θ where θ is a bounded strictly plurisubharmonic

function. We wish to show that (ω1 + i∂∂̄φ)n = i∂∂̄(θ + φ)n = 0 on

U , so it suffices to show that φ + θ ∈ PSH(U) is maximal. Recall that

u is maximal on U iff for any v ∈ PSH(U) satisfying v 6 u outside a

compact subset K of U , we have v 6 u in U . See in Blocki’s book [Bl1].

V) Fix any function v ∈ PSH(U) and compact subset K of U such that

v 6 θ + φ on U\K. Define

ṽ = max(v, θ + φ)

be a plurisubharmonic function on U . Clearly we have ṽ = θ + φ on

U\K. Let

φ̃ = ṽ − θ on U (3.33)

and extend φ̃ to the manifold X ′ by letting φ̃ = φ on X ′\U . Observe

that outside U ,

ω1 + i∂∂̄φ̃ = ω1 + i∂∂̄φ > 0

and in U ,

ω1 + i∂∂̄φ̃ = i∂∂̄θ + i∂∂̄(ṽ − θ) = i∂∂̄ṽ > 0

We obtain that φ̃ ∈ PSH(X ′, ω1).

VI) From the above, we see that φ̃ is in the envelope E(ω1, φ1). And since φ
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is defined in step II) to be the supremum of E(ω1, φ1),

φ̃ 6 φ everywhere in X ′

=⇒ ṽ − θ 6 φ in U

=⇒ v 6 ṽ 6 θ + φ in U

This proves that θ+φ is maximal and therefore (ω1 + i∂∂̄φ)n = i∂∂̄(θ+

φ)n = 0 in U . Since U is any arbitrary small neighborhood on X ′, we

conclude that (ω1 + i∂∂̄φ)n = 0 on X ′.

This completes the second proof of existence.

(Uniqueness. )

Fix any solution φ ∈ PSH(X ′,Ω′) ∩ L∞(X ′) that satisfies (3.25) and (3.26)

and let Ω1 and F be as in (3.27) and (3.31). Notice that on X ′,

Ω1 +
i

2
∂∂̄F +

i

2
∂∂̄φ = Ω′ +

i

2
∂∂̄φ > 0

(Ω1 +
i

2
∂∂̄F +

i

2
∂∂̄φ)n = (Ω′ +

i

2
∂∂̄φ)n = 0

By letting φ1 := φ+F , we have φ1 ∈ PSH(X ′,Ω1). Besides, since F ∈ L∞(X ′)

and F vanishes on the boundary ∂X ′, we have that φ1 = φ+F ∈ L∞(X ′) and

that

φ1|∂X′ = φ|∂X′ = 0

So φ1 is a bounded solution to the following Dirichlet problem for the totally
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degenerate Monge-Ampère equation on X ′

(Ω1 +
i

2
∂∂̄φ1)n = 0 (3.34)

Ω1 +
i

2
∂∂̄φ1 > 0 (3.35)

φ1|∂X′ = 0 (3.36)

Moreover, since Ω1 satisfies the following condition

Ω1 − ε log hE′ = Ω0 > 0 on X ′

By uniqueness part of [PS09, Theorem 2] (or [PSS12, Theorem 14]), φ1 ∈

PSH(X ′,Ω′) ∩ L∞(X ′) is unique. We get the uniqueness of φ, up to the

choice of δ and ε log hE′ .

3.5 Proof of Theorem I

We rephrase Theorem 3.1 and reduce it to the singularities near a single interior

point p ∈M . We fix any positive real numbers β1, · · · , βn 6 1.

Theorem 3.8. Let ω be a Kähler metric on compact complex manifold M of

dimension n > 2 and assume ∂M 6= ∅ is smooth. Fix n holomorphic functions

{fj} such that {fj}16j6n are locally defined in a neighborhood of p, with p as

their only common zero in this neighborhood.

Then there exists a small constant δ0 > 0 such that for all 0 < δ < δ0, there
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exists a unique solution G(z; p, f1, · · · , fn) ∈ PSH(M,ω) to the following



G = 0 on ∂M (3.37)

(ω +
i

2
∂∂̄G)n = 0 on M\{p} (3.38)

G = δ log{
n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi|2)1−βj}+ φ near p (3.39)

for some unique φ ∈ L∞(M) that vanishes on the boundary. Moreover, G

and φ lies in Cα(K) for any compact subset K ⊂ M\{p} and any constant

0 < α < min
j
{βj}. The uniqueness is with respect to a given constant δ and a

choice of cut-off function in a small neighborhood near p.

Proof. (Existence)

Fix any constant 0 < α < min
j
{βj}.

i) In lemma 3.3 we applied the iterated blow up map

π : W ′ →M\{p}

with the exceptional divisor E and an n dimensional smooth submanifold

X ′ ⊂ W ′ and an effective divisor E ′ supported in E and away from

π−1(∂M) = ∂X ′.

ii) From lemma 3.6, we have a strictly positive closed singular (1,1) form
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Ω′ defined on X ′ as

Ω′ = π∗(ωδ)− ε
i

2
∂∂̄ log hE′ > 0

= π∗2(π∗1(ωδ))− ε
i

2
∂∂̄ log hE′ > 0

for some smooth metric hE′ on O(−E ′). Here

ωδ = ω + δ
i

2
∂∂̄{ψ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj + 1− ψ}

is the same as that in lemma 3.2.

iii) Now apply lemma 3.7, which showed that there exists a unique solution

Φ ∈ PSH(X ′,Ω′) ∩ L∞(X ′) to the degenerate Monge-Ampère equation

(Ω′ +
i

2
∂∂̄Φ)n = 0 on X ′ (3.40)

Φ|∂X′ = 0 (3.41)

and Φ ∈ Cα(K ′) for any compact subset K ′ in X ′\E ′. Then we see that

on X ′,

( π∗(ωδ)− ε
i

2
∂∂̄ log hE′ +

i

2
∂∂̄Φ )n = 0 (3.42)

π∗(ωδ)− ε
i

2
∂∂̄ log hE′ +

i

2
∂∂̄Φ > 0 (3.43)

iv) Take the composition of Φ− ε log hE′ with π−1, which maps biholomor-
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phically from M\{p} to (π−1)(M\{p}) ⊂ X ′\E ′ and define

φ := (Φ− ε log hE′) ◦ π−1 : M\{p} −→ X ′\E ′ −→ R (3.44)

We get that φ ∈ PSH(M,ωδ)∩L∞(M) and φ ∈ Cα(K) for any compact

subset of K ⊂ M\{p}. Push (3.42) forward from X ′\E ′ to M\{p} via

π, which is a surjective holomorphic map. We have on M\{p},

{ π∗(π∗(ωδ)) +
i

2
∂∂̄( (Φ− ε log hE′) ◦ π−1) }n = 0 (3.45)

(ωδ +
i

2
∂∂̄φ )n = 0 (3.46)

and thus

0 ={ω + δ
i

2
∂∂̄{ψ log

n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj

+ 1− ψ}+
i

2
∂∂̄φ }n

Note that it might seem in the definition of (3.44) that φ depends on the

constant ε, which is given by the −ε log hE′ term in Ω′. However, we can

see from the proof of lemma 3.7 that Φ contains a copy of ε log hE′ , we

conclude that φ = (Φ − ε log hE′) ◦ π−1 is independent of the choice of

ε log hE′ .

v) From (3.46), we extract and define G and normalize by adding a constant
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−δ to ensure the boundary conditions,

G := δ{ψ log
n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj + 1− ψ}+ φ− δ (3.47)

= δ{ψ log
n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi(z)|2)1−βj − ψ}+ φ (3.48)

Clearly G ∈ PSH(M\{p}, ω) ∩ Cα(K) and on M\{p} we have

(ω +
i

2
∂∂̄G)n = 0

vi) On ∂M , as the cut-off function ψ|∂M = 0 and

φ|∂M = (Φ− ε∂∂̄ log hE′) ◦ π−1
|∂M

= (Φ− ε∂∂̄ log hE′)|∂X′ = 0

we see that G|∂M = 0. Moreover, we have that ψ = 1 in a neighborhood

of p and there

G = δ log{
n∑
j=1

|fj(z)|2βj(
n∑
i=1

|fi|2)1−βj}+ φ− δ

On M , φ − δ is bounded and lies in Cα(K) and this proves the log

singularity at p formulated by (3.39).

vii) In order to show that G ∈ PSH(M,ω), it suffices to show that G extends
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over p as a plurisubharmonic function. We can see this by letting

G̃ε = G(z) + ε log |z − p| on M\{p} (3.49)

G̃ε = −∞ on p (3.50)

For fixed ε > 0, G̃ε is ω-plurisubharmonic over M as near p,

lim sup
z→p

G̃ε(z) = lim sup
z→p

(G(z) + ε log |z − p|) = −∞ 6 G̃ε(p)

Then denote u(z) = ( supε>0 G̃ε )∗ and we have u(z) ∈ PSH(M,ω) due

to the general fact that upper semicontinuous regularizations of supre-

mums of plurisubharmonic functions are still plurisubharmonic. See [Dw,

Corollary 5.3]. Moreover, we see that

u(z) = G(z) on M\{p} (3.51)

u(z) = lim sup
z→p

G(z) at p (3.52)

By redefining G as u, we have completed the proof of existence part of

the theorem.

(Uniqueness, we prove it by contradiction.)

viii) Fix G, a solution defined in the existence part. Suppose that there

exists another G1(z; p, f1, · · · , fn) ∈ PSH(M,ω) that vanishes on ∂M
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and satisfies the following

0 = (ω +
i

2
∂∂̄G1)n on M\{p} (3.53)

G1 = δ{ψ1 log
n∑
j=1

|fj|2βj(
n∑
i=1

|fi|2)1−βj − ψ1}+ φ1 near p (3.54)

where φ1 ∈ L∞(M) and vanishes on ∂M . Here the δ in G1 is the same

as that in G and ψ1 is some other cut-off function supported in another

neighborhood U1 of p. Without loss of generality we can replace both

U1 and U by a smaller neighborhood and assume the cut-off function ψ1

is the same as ψ. Then we show G1 = G by showing that φ1 = φ on the

entire M .

On M\p, we have that

φ1 = G1 − δ{ψ log
n∑
j=1

|fj|2βj(
n∑
i=1

|fi|2)1−βj − ψ} (3.55)

= G1 −G+ φ(z) (3.56)

Let the smooth metric hE′ over O(−E ′), and Φ := φ ◦ π + ε log hE′ ∈

PSH(X ′,Ω′), together with the ε log hE′ and φ taken as the same as

those defined in the existence part.

Composing φ1 : M → R with the the iterated blow up map π : X ′ →M

which has been constructed together with E ′ ⊂ X ′ ⊂ W ′, we define a
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Φ1 ∈ PSH(X ′\E ′,Ω′) as

Φ1 := φ1 ◦ π + ε log hE′

Clearly Φ1 ∈ L∞(X ′), for that by assumption we have φ1 ∈ L∞(M).

ix) We wish to show φ1 = φ on M by showing Φ1 = Φ on X ′. Since Φ1

is bounded and E ′ is a subset of a pluripolar set in X ′, we see that

Φ1 extends over E ′ by applying an extension theorem of Demailly. See

([Dem, Theorem 5.24]. Therefore, we have

Φ1 ∈ PSH(X ′,Ω′)

And the boundary condition Φ1|∂X′ = 0 can be seen from that φ1|∂M = 0

and that log hE′ |∂X′ = 0, as log hE′ is supported in a neighborhood of E ′.

Now we claim that

(Ω′ +
i

2
∂∂̄Φ1)n = 0 on X ′ (3.57)

This is true on X ′\E ′, as can be seen from the fact the the restricted

map

π|X′\E′ : X ′\E ′ −→M\{p}

is a holomorphic surjective map. Indeed, since by assumption that on
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M\{p},

0 =(ω +
i

2
∂∂̄G1)n (3.58)

=(ω + δ
i

2
∂∂̄{ψ log

n∑
j=1

|fj|2βj(
n∑
i=1

|fi|2)1−βj + 1− ψ}+
i

2
∂∂̄φ1)n

(3.59)

By pulling back with the map π, we have on X ′\E ′,

0 =(π∗ω + δ
i

2
∂∂̄{χ log

n∑
j=1

|fj ◦ π|2βj(
n∑
i=1

|fi ◦ π|2)1−βj

+ 1− χ}+
i

2
∂∂̄φ1 ◦ π)n

=(π∗ω + δ
i

2
∂∂̄{χ log

n∑
j=1

|fj ◦ π|2βj(
n∑
i=1

|fi ◦ π|2)1−βj

+ 1− χ} − ε i
2
∂∂̄ log hE′ + ε

i

2
∂∂̄ log hE′ +

i

2
∂∂̄φ1 ◦ π)n

=(Ω′ +
i

2
∂∂̄Φ1)n

x) We show that (Ω′ + i
2
∂∂̄Φ1)n = 0 on E ′ as well. Locally we can define a

potential function θ1 such that, Ω′ + i
2
∂∂̄Φ1 = Ω0 + i

2
∂∂̄F1 + i

2
∂∂̄Φ1 =

i
2
∂∂̄θ1, where Ω0 and F1 are defined as in (3.24)(3.31). Since Ω0 is smooth

Kähler form on X ′ and the functions F1 and Φ1 are bounded on X ′, we

see that θ1 is a locally bounded plurisubharmonic function on X ′. Now

consider the general fact that for any locally bounded plurisubharmonic

function the Monge-Ampère measure takes no mass at pluripolar sets
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and their subsets. See [Bl1, Prop 2.2.3, Theorem 3.1].

So we get that (∂∂̄θ1)
n

= 0 on E ′ and therefore (Ω′ + i
2
∂∂̄Φ1)n = 0 on

entire X ′. We now apply the uniqueness part of lemma 3.7 and consider

Φ and Φ1 are two functions both satisfying (3.25)(3.26), so we must have

Φ = Φ1. This shows that φ = (Φ−ε log hE′)◦π−1 = (Φ1−ε log hE′)◦π−1 =

φ1 on M . Thus G = G1 and the uniqueness part is proved.
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4 Case II

In this section we give an answer to Question 3 in Theorem 4.8, and as a

corollary we give an immediate answer to Question 1. The same proof as that

of case I applies to this setting, with slight modifications that deals with the

singularities in the (1,1) forms. For completeness, we give a proof that starts

from scratch and include all intermediate steps. Most lemmas from section 3

still hold true here.

4.1 Theorem II

Now fix any positive integer Γ and we have our theorem 4.1, which prescribes

a second type of singularity at isolated interior points. Note that the following

theorem is a generalization of [PS12, Theorem 1], where Nγ = n and βγ,11 =

βγ,22 = · · · = βγ,nn = 2 for every γ 6 Γ.

Theorem 4.1. Let ω be a Kähler form on compact complex manifold M of

dimension n > 2 and assume ∂M 6= ∅ is smooth. Fix Γ interior points

{p1, · · · , pγ, · · · , pΓ} in M. Given any Γ·n holomorphic functions {fγ,j}γ6Γ,j6n,

any Γ positive integers {Nγ > n : 1 6 γ 6 Γ} and any finite set of constants

{0 6 βγ,ij 6 2 : 1 6 γ 6 Γ, 1 6 i 6 Nγ and 1 6 j 6 n} that satisfies

a) For each γ fixed, fγ1, · · · , fγ,n are locally defined in a neighborhood of pγ,

such that pγ is their only common zero and that the function
Nγ∑
i=1

n∏
j=1

|fγ,j|βγ,ij

has pγ as its only zero locus in this neighborhood.

b) For each γ fixed and every 1 6 i 6 Nγ, βγ,i1 + · · ·+ βγ,in = 2
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Then there exists a constant δ0 such that for any Γ positive numbers smaller

than δ0, i.e. any Γ-tuple (δ1, · · · , δΓ) in

{(δ1, · · · , δΓ) : 0 < δγ < δ0 for every 1 6 γ 6 Γ}

there exists a unique function

G(z; p1, · · · , pΓ) ∈ PSH(M,ω) ∩ Cα(K)

for any compact subset K of M\{p1, · · · , pN} and any constant 0 < α <

min{βγ,ij : βγ,ij > 0} with the following properties



G = 0 on ∂M (4.1)

(ω +
i

2
∂∂̄G)n = 0 on M\{p1, · · · , pΓ} (4.2)

G = δγ log

Nγ∑
i=1

n∏
j=1

|fγ,j|βγ,ij +O(1) near pγ (4.3)

With an iteration of Γ times, each of which deals with the singularity at an

isolated point, say pγ, and yields an exceptional divisor Eγ, we may reduce to

the case of Γ = 1 which will be shown in theorem 4.8 in Section 4.5. Indeed,

we can start the iteration by defining M0 = M and ω0 = ω. Suppose that

right before the γ-th step, we have E1, · · · , Eγ−1 ⊂ Mγ−1 and ωγ−1 on Mγ−1.

On the γ-th step, we can construct the γ-th blow up space Mγ and a singular

(1,1) form ωγ on Mγ with respect to ωγ−1 on Mγ−1, pγ ∈Mγ−1 and Eγ ⊂Mγ.

And since the γ-th blow up map πγ : (Mγ, Eγ, ωγ) −→ (Mγ−1, pγ, ωγ−1) is a

biholomorphism away from the particular point pγ, the boundary gets mapped



73

to the new boundary (which is the biholomorphic image under the γ-th blow

up map) in the γ-th blow up space Mγ and the isolated points pγ+1, · · · , pΓ,

which were in the interior of the first γ − 1 blow up spaces, stay isolated in

the interior of the γ-th blow up space. Moreover, they stay away from the

exceptional divisors Eγ and E1, · · · , Eγ−1.

Then continue with the process for pγ+1, · · · , pΓ
. Eventually, we solve for a

bounded and continuous solution to the Monge-Ampère equation in the Γ-

th blow up space MΓ with respect to EΓ and the singular (1,1) form ωΓ.

Then pull the solution back by π1
−1 ◦ · · · ◦ πΓ

−1 from MΓ to MΓ−1\{pΓ} , to

MΓ−2\{pΓ−1, pΓ}, · · · , and eventually to M\{p1, · · · , pΓ−1
, p

Γ
}.

From now on, we reduce to the case of Γ = 1 and consider M near p with

the given data of (M, p, fi), the constants {0 6 βij 6 2 : 1 6 i 6 N and 1 6

j 6 n} satisfying that βi1 + · · · + βin = 2 for each fixed 1 6 i 6 N and that
N∑
i=1

n∏
j=1

|fj|βij has p as its only zero point.

4.2 Singular (1,1) form on X(M, p, f1, · · · , fn)

Now we consider M near p with the given data (M, p, fi). Same as in lemma

3.2, we first construct a singular (1,1) form on the blow up space X =

X(M, p, fi), which might not be smooth, in some ambient space W .

Lemma 4.2 (Singular Hermitian (1,1) form on X(M, p, f1, · · · , fn) ).

Given (M, p, fi) the data of a compact Kähler manifold (M,ω), an interior

point p, n local holomorphic functions fi, 1 6 i 6 n with p as their only
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common zero. Fix any constants {0 6 βij 6 2 : 1 6 i 6 N and 1 6 j 6 n}

satisfying that βi1 +· · ·+βin = 2 for each fixed 1 6 i 6 N and that
N∑
i=1

n∏
j=1

|fj|βij

has p as its only zero point.

Then there exists a complex analytic space X = X(M, p, fi) and a biholomor-

phism π1 : X\X0 → M\{p}, sending X0 → p for some X0 biholomorphically

equivalent to Pn−1 with following property:

The form ωδ defined on M\{p} as

ωδ = ω + δ
i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj|βij + 1− ψ} (4.4)

has the pull back π∗1ωδ on X\X0 that extends to a closed strictly positive sin-

gular (1,1) form on X.

Proof. i) Fix ε0 > 0 and since p is the only common zero of the local holo-

morphic functions f1, · · · , fn for some small open neighborhood U ⊂M ,

i.e.
n∑
j=1

|fi|2 6= 0 on U\{p}. Fix U and choose another open neighborhood

U0 ⊂⊂ U and define

Uε0 := U0 ∩ {z :
n∑
j=1

|fi(z)|2 < ε0
2

4
}

We blow up Uε0 with center p and denote as Vε0 ,

Vε0 := BL<f1,··· ,fn>Uε0

= {((z1, · · · , zn), [t1, · · · , tn]) ∈ Uε0 × Pn−1 : tifj(z) = tjfi(z)}
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Set theoretically gluing Vε0 with M\{p} on Vε0\{p} defines space X by

X := (Vε0 ∪M\{p})/ ∼: q1∈M\{p}∼(q2,[t])∈Vε0⇐⇒q1=q2

Uε0\{p} is covered by n open subsets {z : fj(z) 6= 0} ∩ Uε0 and Vε0 is

covered by n open subsets

{(z, [t]) : tj 6= 0} ∩ Vε0

The surjection proj1 : Vε0 ⊂ Uε0 × Pn−1 → Uε0 defines X0 as the inverse

image of p, thus X0 is biholomorphic to Pn−1.

ii) Now construct a complex manifold W such that X is locally an an-

alytic subset of W . Perturb the holomorphic functions f1, · · · , fn by

ξ ∈ B ε0
2

(0) ⊂ Cn in the following way. Let the graph of the map

(f1, · · · , fn) over Uε0 be

Z = {(z, ξ) ∈ Uε0 ×B ε0
2

: ξi = fi(z) for all 1 6 i 6 n}

Note that Z ⊂M×Bε0 is a smooth compact submanifold of dimension n

and the image of Z under the projection map proj1 : Z → U0 is a subset

of U0 and is thus compactly supported in U . Define local holomorphic

functions g1(z, ξ), · · · , gn(z, ξ) over U0 ×Bε0 as

gi(z) := fi(z)− ξi for 1 6 i 6 n
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By the triangle inequality,
n∑
j=1

|gj(z)|2 < ε0
2 on Uε0 × B ε0

2
. Clearly in

U0 ×Bε0 , we have

Z = {g1 = · · · = gn = 0} ∩ Uε0 ×B ε0
2

and there, Z has an neighborhood T , defined as

T := {(z, ξ) ∈ U0×Bε0 : min
(z′,ξ′)∈Z

{
n∑
j=1

|fj(z)− fj(z′)|2 + |ξj−ξ′j|2 <
ε0

2

5
} }

we have that T ⊂⊂ U0 ×Bε0 ⊂M ×Bε0

iii) Let W ε0
2

be the blow up of Uε0 ×B ε0
2

with center Z, denoted as

W ε0
2

: = BL<g1,··· ,gn> (Uε0 ×B ε0
2

)

= { (z, ξ, [t]) ∈ Uε0 ×B ε0
2
× Pn−1 : ti gj(z, ξ) = tj gi(z, ξ) }

Let W be the set theoretically union of W ε0
2

and (M ×Bε0)\Z, glued

via the canonical surjection

proj1 : W ε0
2
−→ Uε0 ×B ε0

2

(z, ξ, [t]) 7−→ (z, ξ)

As Z ⊂ M × Bε0 is a smooth submanifold, we see that W is a smooth

manifold by lemma 2.30. The exceptional divisor Eg is locally the inverse
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image of Z under the blow up map, which is denoted as

π1 : W = BL<g1,··· ,gn> (M ×Bε0 ) −→M ×Bε0

Eg 7−→ Z

On W , let Wε0 := π1
−1(U0 ×Bε0) and we see that locally near Eg, Eg ⊂

π1
−1(T ) ⊂⊂ Wε0 . Clearly Wε0 is covered by n open subsets

Wε0,j = {(z, ξ, [t]) ∈ Wε0 : tj 6= 0 or gj(z, ξ) 6= 0} ∩Wε0

With the same construction as in (2.4) in section 2.2, we see that Wε0,j

admits a local holomorphic chart τj : Wε0,j → Cn that glues biholo-

morphically on the overlap with one another. Away from Eg, W\Eg is

biholomorphic to (M ×Bε0)\Z.

iv) Since Z is a compact submanifold of M ×Bε0 , blowing up Z in M ×Bε0

and applying constructions similar to lemma 2.30, we get a singular

metric hEg on O(−Eg) over W as the following.

Suppose Wε0 is covered by a finite collection of neighborhoods {Wα}α in

W . Choose a family of cut-off functions χ
Wα

with respect to π−1
1 (T ) and

Wε0 such that χ
Wα
∈ C∞(Wε0), 0 6 χ

Wα
6 1 and

χ
W

:=
∑
α

χ
Wα

= 1 on π−1
1 (T )

Let Tα := π1(Wα) and thus T ⊂⊂ ∪αTα. Moreover, each Wα is covered
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by n open subsets

Wα,j = {(z, ξ, [t]) ∈ Wα : tj 6= 0 or gj(z, ξ) 6= 0}

For a section f in O(−Eg), since f|Eg = 0, we may assume that locally

f = gj · f̃ in the neighborhood Wα,j for some holomorphic function f̃ .

Define |f |2hEg on Wα,j as

=
|f |2∑

α

χ
Wα
{
N∑
i=1

n∏
k=1

|gk|βik}+ 1− χ
W

(4.5)

=
|gj · f̃ |2∑

α

χ
Wα
{|gj|2

N∑
i=1

n∏
k=1

|gk
gj
|βik}+ 1− χ

W

on Wα,j\Eg (4.6)

=
|f̃ |2∑

α

χ
Wα
{
N∑
i=1

n∏
k=1

|gk
gj
|βik}+ 1− χ

W

on Wα,j\Eg (4.7)

=
|f̃ |2∑

α

χ
Wα
{
N∑
i=1

n∏
k=1

| tk
tj
|βik}+ 1− χ

W

on Wα,j (4.8)

We see from (4.5) that hEg defined in this way glues well for all α and

j. It is a globally well defined smooth(resp. singular) Hermitian metric

on O(−Eg) if N = n, and all βii = 2 or 0 (resp. N > n and some 0 <

βij < 2). See [Dem2]. With hEg , we can define a Kähler form(resp.

singular Hermitian form) on W later in step vii).

v) Define X to be the subset of W where ξ1 = · · · = ξn = 0, and locally
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near X0, X is given by

Xε0 := {(z, 0, [t]) ∈ Uε0 ×B ε0
2
× Pn−1 : ti fj(z) = tj fi(z)}

which is an analytic subspace of the smooth manifold W . Note that

X might not be smooth in general, for which case we apply Hironaka’s

theorem with iterated blow ups later in next lemma. Now we see that

this defines a map π : X →M which is a biholomorphism between X\X0

and M\{p}, where X0 = π−1(p) is biholomorphically equivalent to Pn−1.

And near X0, X is covered by its n open subsets

Xε0,j = {(z, 0, [t]) ∈ Xε0 : tj 6= 0 or fj(z) 6= 0}

vi) By letting U1 := proj1(T ), we have a small open neighborhoods U1 near

p on M satisfying U1 ⊂⊂ U0. Choose any cut-off function ψ ∈ C∞(U)

such that

ψ ◦ proj1 ◦ π1 = χ
W

: Wε0 −→ R

then clearly

ψ|U1
≡ 1 and ψ|U\U0

≡ 0

Indeed, consider the projection map proj1 : U0×Bε0 → U0 and the blow

up map π1 : Wε0 → U0 × Bε0 , the image of proj1 ◦ π1 lies in U0. The

composition of proj1 and ψ gives

χ
T

:= ψ ◦ proj1 : π1(Wε0) −→ U0 −→ R
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which is a cut-off function χ
T

in U0 × Bε0 near T , such that χ
T
≡ 1 on

T .

vii) We wish to define a positive closed singular (1,1) form on X in the sense

of currents. We do so by first constructing a singular (1,1) form on W ,

the ambient manifold where X lies in. Given ω the Kähler metric on

M, we extend it naturally to a Kähler metric on M × Bε0 , denoted as

ω′ := ω+ω0, where ω0 is the standard Euclidean metric on Bε0 . Choose

the cut-off functions χ
W

, χ
T

given in step iv) and vi), we define a singular

(1,1) form ω′′δ on W\Eg,

ω′′δ := π∗1ω
′ + δ

i

2
∂∂̄{χ

W
log

N∑
i=1

n∏
k=1

|fk − ξk|βik + 1− χ
W
} (4.9)

Thus on (M ×Bε0)\Z, which is biholomorphically equivalent to W\Eg

ω′′δ := ω′ + δ
i

2
∂∂̄{χ

T
log

N∑
i=1

n∏
k=1

|fk − ξk|βik + 1− χ
T
} (4.10)

In a small neighborhood near Eg in W , we have χ
W

= 1 and define the

singular (1,1) form ω′′δ as

ω′′δ := π∗1ω
′ + δ

i

2
∂∂̄{ log

N∑
i=1

n∏
k=1

|tk|βik} (4.11)

In step viii) we will show that ω′′δ defined in (4.9)(4.11), is strictly positive

closed (1,1) current with locally bounded potential function on W, in the

sense of currents. But first we need to show that the two definitions are
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coherent on the overlap of a neighborhood away from Eg and the open

set {χ
W

= 1}◦, which is near Eg. To see this, first notice that away

from Eg, gj(z, ξ) = fj(z) − ξj 6= 0 for some 1 6 j 6 n. Without loss of

generality, we may assume that g1(z, ξ) = f1(z)− ξ1 6= 0. Then we must

have t1 6= 0 and gi
g1

= ti
t1

, for all 1 6 i 6 n and hence

ω′′δ = π∗1ω
′ + δ

i

2
∂∂̄{χ

W
log

N∑
i=1

n∏
k=1

|fk − ξk|βik + 1− χ
W
}

= π∗1ω
′ + δ

i

2
∂∂̄{log

N∑
i=1

n∏
k=1

|fk − ξk|βik}

= π∗1ω
′ + δ

i

2
∂∂̄{log

N∑
i=1

n∏
k=1

|gk|βik}

= π∗1ω
′ + δ

i

2
∂∂̄{ log

N∑
i=1

n∏
k=1

|gk
g1

|
βik
}+ δ

i

2
∂∂̄ log |g1|2

= π∗1ω
′ + δ

i

2
∂∂̄{ log

N∑
i=1

n∏
k=1

|gk
g1

|
βik
}

= π∗1ω
′ + δ

i

2
∂∂̄{ log

N∑
i=1

n∏
k=1

|tk
t1
|
βik

}

= π∗1ω
′ + δ

i

2
∂∂̄{ log

N∑
i=1

n∏
k=1

|tk
t1
|
βik

}+ δ
i

2
∂∂̄ log |t1|2

= π∗1ω
′ + δ

i

2
∂∂̄{ log

N∑
i=1

n∏
k=1

|tk|βik}

viii) To show ω′′δ > 0 on W , first notice that π∗1ω
′ is strictly positive on

W\Eg ' (B×M)\Z as it is the pull back of ω′ by a biholomorphic map.

On Eg, we have π∗1ω
′ > 0 and in order to show ω′′δ > 0 and it only
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remains to prove that the (1,1) form in (4.11) denoted as

Ω(β, t) :=
i

2
∂∂̄{ log

N∑
i=1

n∏
k=1

|tk|βik}

is strictly positive.

If N = n and all β11 = · · · = βnn = 2, Ω(β, t) = ω
FS

, is the Fubini-Study

metric on the projective space Pn−1 and hence is strictly positive. Since

Z is compact, we can get strict positivity of ω′′δ for any sufficiently small

constant δ. In fact, ω′′δ is a smooth Kähler form on W in this case. See

[PS12].

For general βij and N > n, we claim that for the function
N∑
i=1

n∏
j=1

|fj|βij

which has p as its unique zero point in the neighborhood U on M , there

exists n indices 1 6 i1 < i2 < · · · < in 6 N such that

βi11 = βi22 = · · · = βinn = 2

We prove the claim by contradiction. Suppose that the claim is false for

some k, say k = 1, i.e. βi1 < 2 for all 1 6 i 6 N , which is equivalent

to say
N

max
i=1
{βi1} < 2. By assumption of the lemma, for each fixed i,

n∑
j=1

βij = 2. Thus we must have
N∑
j=2

βij > 0 for all 1 6 i 6 N . Pick a

sufficiently small coordinate ball U1 ⊂ U on M that contains p. Clearly
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on U\{f1 = 0},

N∑
i=1

n∏
j=1

|fj|βij (4.12)

=|f1|β11 · · · |fn|β1n + · · ·+ |f1|βN1 · · · |fn|βNn (4.13)

=|f1|2 · |f1|−2 ·
N∑
i=1

n∏
j=1

|fj|βij (4.14)

=|f1|2 ·
N∑
i=1

n∏
j=1

|fj
f1

|βij (4.15)

=|f1|2 · { |
f2

f1

|β12 · · · |fn
f1

|β1n + · · ·+ |f2

f1

|βN1 · · · |fn
f1

|βNn} (4.16)

The above term (4.16) vanishes on the uncountable subset U1 ∩ {f2 =

· · · = fn = 0} of U . This contradicts the fact that p is the only zero

point of (4.12) in U .

Now that the claim is true, we may assume without loss of generality

that

i1 = 1, i2 = 2, · · · , in = n

and therefore β11 = · · · = βnn = 2. So we have on W\Eg,

i

2
∂∂̄ log

N∑
i=1

n∏
k=1

|gk|βik

=
i

2
∂∂̄ log{ |g1|2 + |g2|2 + · · ·+ |gn|2 +

N∑
i=n+1

n∏
k=1

|gk|βik}
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and near Eg,

Ω(β, t) =
i

2
∂∂̄ log

N∑
i=1

n∏
k=1

|tk|βik (4.17)

=
i

2
∂∂̄ log{

n∑
i=1

n∏
k=1

|tk|βik +
N∑

i=n+1

n∏
k=1

|tk|βik} (4.18)

=
i

2
∂∂̄ log{|t1|2 + |t2|2 + · · ·+ |tn|2 +

N∑
i=n+1

n∏
k=1

|tk|βik} (4.19)

Define un, {ui : i > n+ 1} and Θ as

un := log(|t1|2 + |t2|2 + · · ·+ |tn|2),

ui := log
n∏
k=1

|tk|βik

=
n∑
k=1

βik
2

log |tk|2 ,

Θ(un, un+1, · · · , uN) := log(eun + eun+1 + · · ·+ euN )

= log{ |t1|2 + |t2|2 + · · ·+ |tn|2 +
N∑

i=n+1

n∏
k=1

|tk|βik} .

Clearly we have DiΘ > 0, and that ui is plurisubharmonic for all i >

n + 1 and since i∂∂̄un = i∂∂̄ log(|t1|2 + |t2|2 + · · · + |tn|2), un is strictly

plurisubharmonic. Therefore Θ(un(t), · · · , uN(t) ) is plurisubharmonic

by [Dem, Theorem 5.6], and Ω(β, t) = i∂∂̄Θ > 0.

To show that Ω(β, t) is strictly positive, it suffices to show that ξpξq∂p∂qΘ >

λ · ξξ for some positive constant λ and any vector ξ ∈ Cn. This can be
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seen from

ξpξq∂p∂qΘ(un, · · · , uN)

=ξpξq∂p(
N∑
j=n

DjΘ · ∂quj)

=ξpξq(
N∑
j=n

DjΘ · ∂p∂quj +
N∑
i=n

N∑
j=n

(DiDjΘ) · ∂pui∂quj )

=
N∑
j=n

DjΘ( ξpξq∂p∂quj ) +
N∑
i=n

N∑
j=n

(DiDjΘ)( ξp∂pui )( ξq∂quj )

>
N∑
j=n

DjΘ( ξpξq∂p∂quj )

>λ0 · ξξ

where λ0 is a local constant depending on the smallest eigenvalue of

( ∂k∂̄lun ). And λ0 > 0, as un is strictly plurisubharmonic.

ix) Now we have a singular (1,1) form on M\{p} as

ωδ := ω + δ
i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− ψ} (4.20)

where ψ is the cut-off function given in step vi). On W , we have con-

structed a strictly positive singular (1,1) form

ω′′δ = π∗1ω
′ + δ

i

2
∂∂̄{χ

W
log

N∑
i=1

n∏
j=1

|fj(z)− ξj|βij + 1− χ
W
}

On X, we get a positive closed singular (1,1) form ω′δ by restricting ω′′δ
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from W to X and letting ξ1 = · · · = ξn = 0,

ω′δ : = ω′′δ |ξ=0
(4.21)

= π∗1ω + δ
i

2
∂∂̄{χ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− χ} (4.22)

χ := χ
W |ξ=0

. As a result of the restriction, π1
∗ω′ = π1

∗(ω+ω0 ) changed

into π1
∗ω and χ

W
into χ.

Moreover, we have that ω′δ is strictly positive and that on X\X0, ω′δ is

the same as π1
∗ωδ, the pull back of ωδ from M\{p}.

To summarize, π∗1ωδ, the pull back of ωδ from M\{p} to X\X0, extends

to entire X, as can bee seen from that fact that ψ ◦ π1 = χ
W

= 1 near

X0 in a neighborhood of the exceptional divisor Eg in W and that

ω′δ |X0
= π∗1ω + δ

i

2
∂∂̄{χ

W
log

N∑
i=1

n∏
j=1

|tj|βij + 1− χ
W
}

= π∗1ω + δ
i

2
∂∂̄{χ

W
log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− χ
W
}
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4.3 Singular (1,1) form on iterated blow up space X ′

The X given in a local way in section 4.2 is an analytic subspace of W and

X is in general not smooth. To get a smooth manifold X ′, we can apply the

iterated blow up technics[PS12] by applying a deep theorem of Hironaka to

revolve the singularities Xsing within the ambient space W . Their idea is to

blow up W finite times and resolve the singularities of X. From there we get

an iterated blow up space W ′, a smooth manifold X ′ which lies inside W ′ and

a strictly-positive closed (1,1) current Ω′ on X ′

Lemma 4.3 (Hironaka’s Theorem on iterated blow-ups, see [H][PS12]).

Let W be a complex manifold and X ⊂ W be a complex analytic space. Then

there exists an iterated blow up π2 : W ′ → W with the exceptional divisor

E ⊂ W ′ that resolves the singularities of X in the following way: let

X ′ = π−1
2 (X)\E ⊂ W ′ (4.23)

Then X ′ is a smooth manifold and π2 : X ′ → X, the restriction of the map π2

to X ′, is surjective. Moreover, we have a divisor in X ′

E ′ = E ∩X ′ = π−1(Xsing) (4.24)

which is a divisor with normal crossings and an isomorphism on X ′\E ′

π : X ′\E ′ → Xreg (4.25)
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From lemma 4.3, the singularities in Xsing ⊂ X are resolved by the blow up

map π2 : W ′ −→ W and the construction of E ′ ⊂ X ′ ⊂ W ′. Now we wish to

give a closed, strictly-positive (1,1) form Ω′ on X ′.

Lemma 4.4 (Existence of hE′ and Ω′ on X ′).

Let ω′δ = π∗1ω+ δ i
2
∂∂̄{χ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− χ} as in lemma 4.2, E ⊂ W ′

and E ′ ⊂ X ′ as above.

There exists a closed, singular strictly positive (1,1) form Ω′ on X ′, defined as

Ω′ = π∗2(ω′δ)− ε
i

2
∂∂̄ log hE′ > 0 (4.26)

for some smooth metric hE′ on O(−E ′), where E ′ is some effective divisor on

X ′.

Proof.

i) Recall that in lemma 4.2, we constructed a strictly positive singular

Hermitian (1, 1) form ω′′δ on W , together with π∗(ωδ) as its restriction

to X. Apply lemma 4.3 and get E ′ ⊂ X ′ ⊂ W ′ and π2 : X ′ → X that

resolves the singularities Xsing which lies in X0 ⊂ Eg ⊂ W . Here Eg is

the compact smooth submanifold of W defined in lemma 4.2.

ii) Choose a finite collection of small neighborhoods {Uα}α that covers Eg.

Since ω′′δ is strictly positive and locally in Uα we have

ω′′δ = i∂∂̄φα



89

where φα is a strictly plurisubharmonic function in Uα. This means that

locally in Uα, there exists a small positive constant λα such that for all

ξ ∈ Cn,

i∂i∂j̄φα ξ
iξj > λα |ξ|2

Fix a smooth Kähler form ω
δ,W

on W as in (4.29). Then locally in Uα,

ω
δ,W

= gij̄(x) dzi ∧ dzj. Let λ(x) be the largest eigen value of (gij̄(x))

and

Λ := max
α
{ sup
x∈Uα

λ(x)}

Choose any large positive constant A, such that 1
A
6

min
α
λα

Λ
. We see that

ω′′δ >
ω
δ,W

A
in the neighborhood ∪αUα of Eg.

iii) Now apply [PS12, lemma 7] to the Kähler form
ω
δ,W

A
. It follows that

there exists an effective divisor E1 on W ′ supported on E(i.e. locally

E1 =
∑
ν

mνEν for some integers mν and some divisors Eν in E), together

with a smooth metric hE1 on O(−E1) such that

π∗2(
ωδ,W
A

)− ε i
2
∂∂̄ log hE1 > 0

is a Kähler form on W ′ for ε sufficient small.

Define

ΩW ′ := π∗2(ω′′δ )− ε i
2
∂∂̄ log hE1

Then we claim that ΩW ′ is a strictly positive singular Hermitian (1,1)

form on W ′.
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Indeed, the strict positivity can be seen from that π∗2(ω′′δ ) is semi-positive

on W ′ and strictly positive away from the exceptional divisor E. And

near E, in the neighborhood π2
−1(∪αUα), we have that π∗2(ω′′δ ) >

π∗2(ω
δ,W

)

A

and thus

π∗2(ω′′δ )− ε i
2
∂∂̄ log hE1 >

π∗2(ω
δ,W

)

A
− ε i

2
∂∂̄ log hE1 > 0

iv) Since we have that X ′ ⊂ W ′ is a resolution of singularity of X ⊂ W

with the exceptional divisor E ′ ⊂ X ′. Then we restrict the divisor E1

to X ′ to get an effective divisor E2 supported in E ′ ⊂ X ′ and restrict

the metric hE1 on the line bundle O(−E1) over W ′ to a smooth metric

hE2 on O(−E2) over X ′. Then we define a strictly positive singular (1,1)

form Ω′ on X ′ as

Ω′ := π∗2(ω′δ)− ε
i

2
∂∂̄ log hE2 > 0 (4.27)

Here the positivity can be seen from the fact that Ω′ is the restriction of

ΩW ′ from W ′ to its submanifold X ′ and that ΩW ′ defined in step iii) is

strictly positive.

Remark 4.5.

Notice that for the special case where N = n and β11 = · · · = βnn = 2,
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Phong-Sturm showed in [PS12] that the smooth Kähler forms

ω
δ,X

:=π∗1ω + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi(z)|2 + 1− χ} (4.28)

ω
δ,W

:=π∗1ω + δ
i

2
∂∂̄{χ

W
log

n∑
i=1

|fi(z)− ξi|2 + 1− χ
W
} (4.29)

pull back to π∗2(ω
δ,X

) and π∗2(ω
δ,W

), which are smooth semi-positive (1,1) forms

on X ′ and W ′. Thus we see that by defining

Ω0 := π∗2(π∗1(ω) + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi|2 + 1− χ})− ε i
2
∂∂̄ log hE2 > 0

we have a smooth Kähler form Ω0 on X ′. So one can see that X ′ is a smooth

Kähler manifold with Ω0, which happens to be same as Ω′ for the case where

N = n and all β11 = · · · = βnn = 2. As a generalization (N > n and

0 6 βij 6 2, for all i 6 N, j 6 n) to their result, the Ω′ defined in (4.27) is a

family of positive closed (1,1) currents {Ω′β} on X ′.

As a summary to this section, we have the following lemma

Lemma 4.6. Given (M, p, fi) the data of a compact Kähler manifold (M,ω)

with smooth boundary ∂M , an interior point p, and local holomorphic functions

fi, 1 6 i 6 n with p as their only common zero. Same as in lemma 4.2, fix

the singular (1,1) form on M

ωδ = ω + δ
i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj|βij + 1− ψ}
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Then there exists a compact complex manifold X ′ = X ′(M, p, fi) with Kähler

form Ω0 and a holomorphic map π : X ′ −→M , sending ∂X ′ −→ ∂M with the

following properties:

a) There is a closed, strictly positive singular (1,1) form Ω′ on X ′, given as

Ω′ := π∗(ωδ)− ε
i

2
∂∂̄ log hE′ > 0

for some effective divisor E ′ in X ′, some smooth metric hE′ on O(−E ′)

and any ε > 0 sufficiently small.

b) The restriction π|X′\E′ defines a surjective holomorphic map

π : X ′\E ′ →M\{p}

and

π∗Ω
′ = ω + δ

i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− ψ} − ε i
2
∂∂̄(log hE′ ◦ π−1)

Proof. i) We have a closed positive singular (1,1) form ωδ on M\{p}, where

ωδ = ω + δ
i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− ψ}

Apply lemma 4.2 and we have the analytic subspaceX = X(M, p, f1, · · · , fn)

in the ambient spaceW together with a biholomorphic map π1 : X\X0 →

M\{p} such that π∗1(ωδ) extends to a singular (1,1) form ω′δ on X.
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ii) Since X ⊂ W is only an analytic subspace with X0 ⊂ Eg ⊂ W , where Eg

is the exceptional divisor in W = BLZ(M × Bε0) over Z = {g1(z, ξ) =

· · · = gn(z, ξ) = 0} ⊂M ×Bε0 and

X0 = Eg ∩ {ξ1 = · · · ξn = 0}

We see that Xsing ⊂ X0 and X\X0 ⊂ Xreg.

iii) Then apply lemma 4.3(Hironaka’s theorem, [PS12]) to get an iterated

blow up space π2 : W ′ → W , which is a smooth manifold with the

exceptional divisor E ⊂ W ′ and a smooth submanifold X ′ ⊂ W ′ such

that the restricted map

π2|X′ : X ′ → X

is surjective and that

π2|X′\E′ : X ′\E ′ → Xreg

is biholomorphic. Here E ′ = E ∩X ′ = π2
−1(Xsing) ∩X ′.

iv) Given π1
∗(ωδ), which extends to the positive closed singular (1,1) form ω′δ

on X and the blow up map π2|X′ : X ′ → X that resolves the singularity

Xsing with exceptional divisor E ′, we apply lemma 4.5 to get a smooth

metric hE′ on the line bundle O(−E ′) over X ′, such that π2
∗(π∗1(ωδ))−

ε i
2
∂∂̄ log hE′ > 0 for sufficiently small ε > 0. Set Ω′ = π2

∗(π∗1(ωδ)) −

ε i
2
∂∂̄ log hE′ and this proves a).
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v) Now we prove b). First notice that since Xreg = X\Xsing ⊃ X\X0, so

the map

π1 : Xreg →M\{p}

is surjective. Taking its composition with the biholomorphism

π2 : X ′\E ′ → Xreg

defines a surjective holomorphic map

π = π1 ◦ π2 : X ′\E ′ →M\{p}

Clearly π sends ∂X ′ to ∂M and π is a biholomorphism between M\{p}

and its inverse image, which is

π−1(M\{p}) = π−1
2 (X\X0) ⊂ X ′\E ′

So we can push forward Ω′ to M\{p} and get

π∗Ω
′
|M\{p}

=ω + δ
i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− ψ} − ε i
2
∂∂̄(log hE′ ◦ π−1)

Here ψ(z) is the cut off function supported in the neighborhood U0 ⊂⊂

U , where ψ, U0 and U defined in lemma 4.2.
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4.4 A solution φ ∈ PSH(X ′,Ω′)

Through the iterated blow up procedures, we constructed E ⊂ W ′ with ΩW ′

and E ′ ⊂ X ′ with Ω′, a strictly positive singular Hermitian form on X ′. And

as shown in remark 4.5 (See [PS12]), there is a Kähler metric on X ′, defined

as

Ω0 := π∗2(π∗1(ω) + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi|2 + 1− χ})− ε i
2
∂∂̄ log hE2 > 0 (4.30)

Note that on X ′\E ′ we have

Ω′ = π∗2(π∗1ω + δ
i

2
∂∂̄{χ

W
log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− χ
W
} )− ε i

2
∂∂̄ log hE′

= π∗ω + δ
i

2
∂∂̄{χ log

N∑
i=1

n∏
j=1

|fj ◦ π2|βij + 1− χ} )− ε i
2
∂∂̄ log hE′

and that on E ′,

Ω′ = π∗ω + π2
∗( δ

i

2
∂∂̄{χ log

N∑
i=1

n∏
j=1

|tj|βij + 1− χ} )− ε i
2
∂∂̄ log hE′

where χ = χ
W
◦π2 is a cut-off function in a neighborhood of E ′ ⊂ X ′. Then lo-

cally Ω′ = i∂∂̄θ, where θ is some continuous bounded strictly plurisubharmonic

potential function.

We wish to construct a solution to the following degenerate Monge-Ampère

equation with respect to Ω′ on X ′.
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Lemma 4.7. Let (X ′,Ω0) be the compact Kähler manifold with smooth bound-

ary and the strictly positive singular Hermitian (1,1) form Ω′ on X ′ be defined

as above.

Then there exists a unique φ ∈ PSH(X ′,Ω′) ∩ L∞(X ′) such that

(Ω′ +
i

2
∂∂̄φ)n = 0 on X ′ (4.31)

φ = 0 on ∂X ′ (4.32)

Moreover, φ ∈ Cα(K ′) for any compact subset K ′ of X ′\E ′ and any constant

0 < α < min
βij 6=0
{βij}.

Proof. (Existence, a first proof using [PS09][PSS12].)

i) Let

Ω1 := π∗ω + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi ◦ π2|2 + 1− χ} > 0 (4.33)

be a smooth semi-positive (1, 1) form on X ′. From the above, it satisfies

the condition

Ω1 −
i

2
∂∂̄ log hE′ = Ω0 > 0

By [PS09, Theorem 2](or [PSS12, Theorem 14]), there exists a unique

φ1 ∈ PSH(X ′,Ω1) ∩ L∞(X ′)
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such that

(Ω1 +
i

2
∂∂̄φ1)n = 0 (4.34)

Ω1 +
i

2
∂∂̄φ1 > 0 (4.35)

φ1|∂X′ = 0 (4.36)

Moreover, φ1 ∈ Cα1(X ′\E ′) for any 0 < α1 < 1.

ii) On X ′,

Ω′ = π∗ω + δ
i

2
∂∂̄{χ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− χ} − ε i
2
∂∂̄ log hE′

= π∗ω + δ
i

2
∂∂̄(χ log{ |f1 ◦ π2|2 + · · ·+ |fn ◦ π2|2 +

N∑
i=n+1

n∏
k=1

|fk ◦ π2|βik}

+ 1− χ )− ε i
2
∂∂̄ log hE′

= π∗ω + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi ◦ π2|2 + 1− χ}

+ δ
i

2
∂∂̄{χ log(1 +

N∑
i=n+1

n∏
k=1

|fk ◦ π2|βik

n∑
k=1

|fk ◦ π2|2
)} − ε i

2
∂∂̄ log hE′

= Ω1 +
i

2
∂∂̄F

Here we have let

Ω1 = π∗ω + δ
i

2
∂∂̄{χ log

n∑
i=1

|fi ◦ π2|2 + 1− χ} > 0
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be a smooth semi-positive (1,1) form on X ′ and

F := δχ log(1 +
N∑

i=n+1

n∏
k=1

|fk ◦ π2|βik

n∑
k=1

|fk ◦ π2|2
)− ε log hE′ (4.37)

We see that F = 0 on ∂X ′, as χ = 0 and log hE′ = 0 away from a

neighborhood of E ′. Let φ := φ1 − F , then on X ′

(Ω′ +
i

2
∂∂̄φ)n = (Ω1 +

i

2
∂∂̄F +

i

2
∂∂̄(φ1 − F ))n

= (Ω1 +
i

2
∂∂̄φ1)n

= 0

thus φ is a solution to the degenerate Monge-Ampère equation (4.31).

Since φ1 and F both vanishes at ∂X ′, we have φ|∂X′ = 0 and this proves

(4.32).

iii) To show that φ is bounded, it suffices to show F is bounded on X ′.

Since hE′ > 0 is smooth on X ′, which is compact, we have that log hE′

is bounded on X ′. It only remains to show that

F1 := χ log(1 +
N∑

i=n+1

n∏
k=1

|fk ◦ π2|βik

n∑
k=1

|fk ◦ π2|2
) is uniformly bounded on X ′
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This can be seen from that

0 6
n∏
k=1

|fk ◦ π2|βik 6 max
k
{|fk ◦ π2|2} and that

0 6 log( 1 +
N∑

i=n+1

n∏
k=1

|fk ◦ π2|βik

n∑
k=1

|fk ◦ π2|2
)

6 log(1 +
N∑

i=n+1

maxk{|fk ◦ π2|2}
n∑
k=1

|fk ◦ π2|2
)

6 log(1 +N − n)

Thus F is bounded on X ′ and φ = φ1 − F ∈ L∞(X ′).

iv) For any compact subset K ′ of X ′\E ′ and any fixed constant 0 < α <

min
βij 6=0
{βij}. We have that F1 ∈ Cα(K ′) and hence F ∈ Cα(K ′). Since

φ1 ∈ Cα1(X ′\E ′) for any 0 < α1 < 1, it follows that φ = φ1 − F ∈

Cα(K ′).

This completes the first proof of the existence part.

(Existence, a second proof using Perron’s envelope method )

We give a slightly more general proof, where essentially the boundary function

is given by φ1 ∈ PSH(X ′,Ω0), which is continuous near the boundary. And

we see that φ = φ1 away from a neighborhood of E ′ in X ′. Locally in this

neighborhood, fix potential function θ such that i
2
∂∂̄θ = Ω′. Then by [Wal],

φ+ θ is upper semi-continuous and φ lies in PSH(X ′,Ω′).
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I) Define ω1 = Ω′ and

E(ω1, f) = {ψ : ω1 + i∂∂̄ψ > 0, ψ∗|∂X′ 6 f|∂X′}

to be the Perron’s envelope of subsolutions with respect to ω1 and any

continuous function f defined near ∂X ′. It is easy to see that E(ω1, f)

is not empty. Indeed, it contains constant functions ψ = −C for any

sufficiently large C > 0. Then consider the envelope with zero boundary

condition

E(ω1, φ1) = {ψ : ω1 + i∂∂̄ψ > 0, ψ∗|∂X′ 6 φ1}

II) Take the point-wise supreme for all ψ ∈ E(ω1, φ1) and define

φ = sup
ψ
{ψ ∈ E(ω1, φ1)} = sup{ψ : ω1 + i∂∂̄ψ > 0, ψ∗|∂X′ 6 φ1} (4.38)

Now φ ∈ PSH(X ′, ω1) is a globally defined function on X ′ and φ|∂X′ =

φ1|∂X′ = 0.

III) To show that the φ defined above is a solution to the degenerate Monge-

Ampère equation

(ω1 + i∂∂̄φ)n = 0 on X ′

It suffices to show that φ is maximal with respect to all subsolutions on

any small neighborhood U .
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Pick any point p1 and any small neighborhood U that contains p1, then

locally in U we have ω1 = i∂∂̄θ, where θ is a bounded strictly plurisub-

harmonic function. We wish to show that (ω1+i∂∂̄φ)n = i∂∂̄(θ+φ)n = 0

on U , so it suffices to show that φ + θ ∈ PSH(U) is maximal. Recall

that u is maximal on U iff for any v ∈ PSH(U) satisfying v 6 u outside

a compact subset K of U , we have v 6 u in U . See in Blocki’s book

[Bl1].

IV) Fix any function v ∈ PSH(U) and compact subset K of U such that

v 6 θ + φ on U\K. Define

ṽ = max(v, θ + φ)

be a plurisubharmonic function on U . Clearly ṽ = θ + φ on U\K. Let

φ̃ := ṽ − θ on U (4.39)

and extend φ̃ to the manifold X ′ by letting φ̃ = φ on X ′\U . Observe

that outside U ,

ω1 + i∂∂̄φ̃ = ω1 + i∂∂̄φ > 0

and in U ,

ω1 + i∂∂̄φ̃ = i∂∂̄θ + i∂∂̄(ṽ − θ) = i∂∂̄ṽ > 0

We obtain that φ̃ ∈ PSH(X ′, ω1).

V) From the above, φ̃ is in the envelope E(ω1, φ1). And since φ is defined
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in step II) to be the supremum of E(ω1, φ1), we have

φ̃ 6 φ everywhere in X ′

=⇒ ṽ − θ 6 φ in U

=⇒ v 6 ṽ 6 θ + φ in U

This proves that θ+φ is maximal and therefore (ω1 + i∂∂̄φ)n = i∂∂̄(θ+

φ)n = 0 in U . Since U is any arbitrary small neighborhood on X ′, we

conclude that (ω1 + i∂∂̄φ)n = 0 on X ′.

(Uniqueness. )

Fix any solution φ ∈ PSH(X ′,Ω′) that satisfies (4.31) and (4.32) and let Ω1

and F be as in (4.33) and (4.37). Notice that we have on X ′,

Ω1 +
i

2
∂∂̄F +

i

2
∂∂̄φ = Ω′ +

i

2
∂∂̄φ > 0

(Ω1 +
i

2
∂∂̄F +

i

2
∂∂̄φ)n = (Ω′ +

i

2
∂∂̄φ)n = 0

By letting φ1 := φ+F , we have φ1 ∈ PSH(X ′,Ω1). Besides, since F ∈ L∞(X ′)

and vanishes on the boundary ∂X ′, we have φ1 = φ+ F ∈ L∞(X ′) and that

φ1|∂X′ = φ|∂X′ = 0

So φ1 is a bounded solution to the following Dirichlet problem for the totally
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degenerate Monge-Ampère equation on X ′

(Ω1 +
i

2
∂∂̄φ1)n = 0 (4.40)

Ω1 +
i

2
∂∂̄φ1 > 0 (4.41)

φ1|∂X′ = 0 (4.42)

Moreover, since Ω1 satisfies the following condition

Ω1 − ε log hE′ = Ω0 > 0 on X ′

By uniqueness part of [PS09, Theorem 2] (or [PSS12, Theorem 14]), we see

that φ1 is unique. The uniqueness of φ ∈ PSH(X ′,Ω′) ∩ L∞(X ′) is up to the

choice of δ and ε log hE′ .
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4.5 Proof of Theorem II

We rephrase Theorem 4.1 and reduce it to the case when Γ, the number of

isolated points {pγ}, equals 1.

Theorem 4.8. Let ω be a Kähler metric on compact complex manifold M of

dimension n > 2 and assume ∂M 6= ∅ is smooth. Fix n local holomorphic

functions {fj}16j6n that are defined in a neighborhood of p, with p as their

only common zero in this neighborhood and constants {0 6 βij 6 2 : 1 6 i 6

N and 1 6 j 6 n} satisfying that βi1 + · · ·+ βin = 2 for each fixed 1 6 i 6 N

and that
N∑
i=1

n∏
j=1

|fj|βij has p as its only zero point.

Then there exists a small constant δ0 > 0 such that for all 0 < δ < δ0, there

exists a unique solution G(z; p, f1 · · · , fn) ∈ PSH(M,ω) to the following



G = 0 on ∂M (4.43)

(ω +
i

2
∂∂̄G)n = 0 on M\{p} (4.44)

G(z; p, f) = δ log{
N∑
i=1

n∏
j=1

|fj(z)|βij}+ φ near p (4.45)

for some unique φ ∈ L∞(M) that vanishes on the boundary. Moreover, G

and φ lies in Cα(K) for any compact subset K ⊂ M\{p} and any constant

0 < α < min
βij 6=0
{βij}. The uniqueness is up to the constant δ and a choice of

cut-off function in a small neighborhood near p.

Proof. (Existence)

Fix any constant 0 < α < min
βij 6=0
{βij}.
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i) In lemma 4.4, we constructed the iterated blow up map

π : W ′ →M\{p}

with the exceptional divisor E and an n dimensional smooth submanifold

X ′ ⊂ W ′ and an effective divisor E ′ supported in E ∩X and away from

π−1(∂M) = ∂X ′.

ii) From lemma 4.6, we have a strictly positive closed singular (1,1) form

Ω′ defined on X ′ as

Ω′ = π∗(ωδ)− ε
i

2
∂∂̄ log hE′ > 0

= π∗2(π∗1(ωδ))− ε
i

2
∂∂̄ log hE′ > 0

for some smooth metric hE′ on O(−E ′). Here

ωδ := ω + δ
i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj|βij + 1− ψ}

is the same as that in lemma 4.2.

iii) Now apply lemma 4.7, which showed that there exists a unique solution

Φ ∈ PSH(X ′,Ω′) ∩ L∞(X ′) to the degenerate Monge-Ampère equation

(Ω′ +
i

2
∂∂̄Φ)n = 0 on X ′ (4.46)

Φ|∂X′ = 0 (4.47)
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Moreover, Φ ∈ Cα(K ′) for any compact subset K ′ in X ′\E ′. Then we

see that on X ′,

( π∗(ωδ)− ε
i

2
∂∂̄ log hE′ +

i

2
∂∂̄Φ )n = 0 (4.48)

π∗(ωδ)− ε
i

2
∂∂̄ log hE′ +

i

2
∂∂̄Φ > 0 (4.49)

iv) Take the composition of Φ− ε log hE′ with π−1, which maps biholomor-

phically from M\{p} to (π−1)(M\{p}) ⊂ X ′\E ′ and define

φ := (Φ− ε log hE′) ◦ π−1 : M\{p} −→ X ′\E ′ −→ R (4.50)

We get that φ ∈ PSH(M,ωδ)∩L∞(M) and φ ∈ Cα(K) for any compact

subset K in M\{p}. Push (4.48) forward with π from X ′\E ′ to M\{p}

and since π is a surjective holomorphic map, we have that on M\{p}

{ π∗(π∗(ωδ)) +
i

2
∂∂̄( (Φ− ε log hE′) ◦ π−1) }n = 0 (4.51)

(ωδ +
i

2
∂∂̄φ )n = 0 (4.52)

{ω + δ
i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− ψ}+
i

2
∂∂̄φ }n = 0 (4.53)

Note that it might seem in the definition of φ in (4.50) that φ depends on

the constant ε, which is determined by the −ε log hE′ term in Ω′. But we

can see from the proof of lemma 4.7 that Φ contains a copy of ε log hE′ ,

thus φ = (Φ− ε log hE′) ◦ π−1 is independent of the choice of ε log hE′ .
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v) From the (4.53), we extract and define G and normalize by adding a

constant −δ to ensure the boundary conditions,

G(z, p, f1, · · · , fn) = δ{ψ log
N∑
i=1

n∏
j=1

|fj(z)|βij + 1− ψ}+ φ− δ (4.54)

= δ{ψ log
N∑
i=1

n∏
j=1

|fj(z)|βij − ψ}+ φ (4.55)

Clearly G ∈ PSH(M\{p}, ω) ∩ Cα(K).

vi) From (4.53), we have that (ω + i
2
∂∂̄G)n = 0 on M\{p}. To see that G

vanishes on ∂M , it suffices to check that the cut-off function ψ|∂M = 0

and that

φ|∂M = (Φ− ε log hE′) ◦ π−1
|∂M

= (Φ− ε log hE′)|∂X′ = 0

we see that G|∂M = 0. Moreover, we have that ψ = 1 in a neighborhood

of p,

G = δ{log
N∑
i=1

n∏
j=1

|fj(z)|βij}+ φ− δ

and φ− δ ∈ L∞(M). This proves the log singularity at p formulated by

(4.45).

vii) In order to show that G ∈ PSH(M,ω), it suffices to show that G extends

over p as a plurisubharmonic function.
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We can see this by letting

G̃ε = G(z) + ε log |z − p| on M\{p} (4.56)

G̃ε = −∞ on p (4.57)

For fixed ε > 0, G̃ε is ω-plurisubharmonic over M as near p,

lim sup
z→p

G̃ε(z) = lim sup
z→p

(G(z) + ε log |z − p|) = −∞ 6 G̃ε(p)

Then denote u(z) = ( supε>0 G̃ε )∗ and we have u(z) ∈ PSH(M,ω)

because of the general fact that upper semicontinuous regularizations

of supremums of plurisubharmonic functions are still plurisubharmonic.

See [Dw, Corollary 5.3]. Moreover, we see that

u(z) = G(z) on M\{p} (4.58)

u(z) = lim sup
z→p

G(z) at p (4.59)

By redefining G as u, we have completed the proof of existence part.

(Uniqueness ) We prove it by contradiction.

viii) Let G be a solution defined in the existence part. Suppose that there

exists another

G1(z; p, f1 · · · , fn) ∈ PSH(M,ω)
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such that

G1 = 0 on ∂M (4.60)

(ω + i∂∂̄G1)n = 0 on M\{p} (4.61)

G1 = δ{ψ1 log
N∑
i=1

n∏
j=1

|fj(z)|βij − ψ1}+ φ1 near p (4.62)

where φ1 ∈ L∞(M) and vanishes on ∂M . Here the δ in G1 is the same

as that in G and ψ1 is some other cut-off function supported in another

neighborhood U1 of p. Without loss of generality we can replace both U1

and U by a smaller neighborhood, and assume the cut-off function ψ1 is

the same as ψ. Then we show G1 = G by showing that φ1 = φ.

On M , we have that

φ1 = G1 − δ{ψ log
N∑
i=1

n∏
j=1

|fj(z)|βij − ψ} (4.63)

= G1 −G+ φ(z) (4.64)

Let the smooth metric hE′ over O(−E ′), and Φ ∈ PSH(X ′,Ω′) as before,

i.e. Φ := φ ◦ π + ε log hE′ where the ε log hE′ and φ are taken to be the

same as that defined in the existence part.

Compose φ1 : M → R with the iterated blow up map π : X ′ →M which

has been constructed together with E ′ ⊂ X ′ ⊂ W ′. Define

Φ1 := φ1 ◦ π + ε log hE′
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Then Φ1 ∈ PSH(X ′\E ′,Ω′). And since by assumption φ1 ∈ L∞(M), we

have

Φ1 ∈ L∞(X ′)

ix) We wish to show φ1 = φ on M by showing Φ1 = Φ on X ′. Since Φ1

is bounded and E ′ is a subset of a pluripolar set in X ′, we see that

Φ1 extends uniquely over E ′ by applying an extension theorem of De-

mailly(See [Dem, Theorem 5.24]). Therefore, Φ1 ∈ PSH(X ′,Ω′) and the

boundary condition Φ1|∂X′ = 0 can be seen from that φ1|∂M = 0 and that

log hE′ |∂X′ = 0, as log hE′ is supported in a neighborhood of E ′.

Now we claim that

(Ω′ +
i

2
∂∂̄Φ1)n = 0 on X ′ (4.65)

This is true on X ′\E ′, as can be seen from the fact the the restricted

map

π|X′\E′ : X ′\E ′ −→M\{p}

is holomorphic and surjective. Since by assumption that on M\{p}

0 = (ω +
i

2
∂∂̄G1)n (4.66)

= (ω + δ
i

2
∂∂̄{ψ log

N∑
i=1

n∏
j=1

|fj(z)|βij + 1− ψ}+
i

2
∂∂̄φ1)n (4.67)
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By pulling back with the map π, we have that on X ′\E ′,

0 =(π∗ω + δ
i

2
∂∂̄{χ log

N∑
i=1

n∏
j=1

|fj ◦ π|βij + 1− χ}+
i

2
∂∂̄φ1 ◦ π)n

(4.68)

=(π∗ω + δ
i

2
∂∂̄{χ log

N∑
i=1

n∏
j=1

|fj ◦ π|βij + 1− χ} − ε i
2
∂∂̄ log hE′

(4.69)

+ ε
i

2
∂∂̄ log hE′ +

i

2
∂∂̄φ1 ◦ π)n (4.70)

=(Ω′ +
i

2
∂∂̄Φ1)n (4.71)

x) We show that (Ω′ + i
2
∂∂̄Φ1)n = 0 on E ′ as well. Locally we can define a

potential function θ1 such that, Ω′ + i
2
∂∂̄Φ1 = Ω0 + i

2
∂∂̄F1 + i

2
∂∂̄Φ1 =

i
2
∂∂̄θ1, where Ω0 and F1 are defined as in (4.30)(4.37). Since Ω0 is smooth

Kähler form on X ′ and the functions F1 and Φ1 are bounded on X ′, we

see that θ1 is a locally bounded plurisubharmonic function on X ′. Now

apply the general fact that for any locally bounded plurisubharmonic

function the Monge-Ampère measure takes no mass at pluripolar sets

and their subsets. See [Bl1, Prop 2.2.3, Theorem 3.1]. So we see that

(∂∂̄θ1)
n

= 0 on E ′ and therefore (Ω′ + i
2
∂∂̄Φ1)n = 0 on entire X ′.

We now apply the uniqueness part of lemma 4.7 and consider Φ and Φ1

are two functions both satisfying (4.31)(4.32), so we must have Φ = Φ1.

This proves the uniqueness part of the theorem.
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4.6 Applications

As a direct application of Theorem 4.8, we give an answer to Question 1 in

the case where β1, · · · , βn are all positive rational numbers. We first assume

that all β’s are equivalent, i.e. β1 = · · · = βn = β = r
k
> 0, where r and k are

relatively prime positive integers.

Corollary 4.9. Let ω be a Kähler metric on compact complex manifold M of

dimension n > 2 and assume ∂M 6= ∅ is smooth. Fix any positive rational

number β = r
k
> 0 and any local holomorphic functions {fj}16j6n that are

defined in a neighborhood of p, with p as their only common zero in this neigh-

borhood.

Then there exists a small constant δ1 > 0 such that for all 0 < δ < δ1, there

exists a unique solution G(z; p, f1 · · · , fn) ∈ PSH(M,ω) to the following


G = 0 on ∂M (4.72)

(ω + i∂∂̄G)n = 0 on M\{p} (4.73)

G(z; p, f) = δ · ψ log(|f1|β + · · ·+ |fn|β)}+ φ near p (4.74)

where G ∈ Cα(K) and φ ∈ L∞(M) ∩ Cα(K) for any compact subset K ⊂

M\{p} and any constant 0 < α < 1
k
. The uniqueness is with respect to a

given choice of δ and a choice of a cut-off function ψ supported in a small

neighborhood near p.

Proof. i) Fix any positive integer k, a neighborhood U sufficiently small

such that p is the only common zero of f1, f2, · · · , fn and some local

coordinate system (z1, z2, · · · , zn) on U .
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We look at the following function

g0 = 2k log(|f1|
1
k + · · ·+ |fn|

1
k )

= log(|f1|2 + |f2|2 + · · ·+ |fn|2 +
∑

i1+i2+···+in=2k
i1<2k,··· ,in<2k

|f1|
i1
k |f2|

i2
k · · · |fn|

in
k )

Clearly g0 satisfies the homogeneity condition and the single point van-

ishing condition that are required by theorem 4.8, and therefore there

exists a small δ0 > 0 such that for all δ < δ0, there exists a unique

pluricomplex Green’s function G0 ∈ PSH(M,ω), such that

G0 = ψ · δ g0 + φ0 (4.75)

= ψ · δ 2k log(|f1|
1
k + · · ·+ |fn|

1
k ) + φ0 (4.76)

in a neighborhood U0 of p. Here ψ is some cut-off function supported

in the neighborhood U0 and without loss of generality, we still denote it

as U . Moreover, φ0 is unique in L∞(M) and G0, φ0 are in Cα(K) for

compact subset K of M\{p} and any constant 0 < α < 1
k
.

ii) By taking δ1 = 2k · δ0 and letting g1 = log(|f1|
1
k + · · · + |fn|

1
k ), we see

that for all δ < δ1, there exists a unique pluricomplex Green’s function

G1 ∈ PSH(M,ω), such that

G1 = ψ · δg1 + φ1 (4.77)

= ψ · δ log(|f1|
1
k + · · ·+ |fn|

1
k ) + φ1 (4.78)
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in the neighborhood U of p and G1 vanishes at the boundary ∂M . Here

φ1 has the same properties of φ0.

iii) Observe that we have such existence and uniqueness of G1 for any

choices of {f1, · · · , fn}, provided that p is the only common zero of

f1, f2, · · · , fn. Now pick any other positive integer r > 0, clearly p is the

only common zero of the holomorphic functions f1
r, f2

r, · · · , fnr. Replace

{f1, f2, · · · fn} by {f1
r, f2

r, · · · , fnr} and we conclude that for all δ < δ1,

there exists a unique pluricomplex Greens function G ∈ PSH(M,ω),

such that

G = ψ · δ log(|f1|
r
k + · · ·+ |fn|

r
k ) + φ (4.79)

in the neighborhood U of the p and G vanishes at the boundary. Here φ

has the same properties of φ1. This proves the corollary.

The same argument in the corollary 4.9 works for all positive rational numbers

β1, · · · , βn, not necessarily equivalent. Now fix positive rational numbers β1 =

r1
k1
, · · · , βn = rn

kn
. We will have α-Hölder continuity, for any 0 < α < 1

k1·k2····kn .

Corollary 4.10.

Let M,ω, p, f1, · · · , fn be the same as Corollary 4.9 and β1, · · · , βn be n positive

rational numbers as above.

Then there exists a small constant δ1 > 0 such that for all 0 < δ < δ1, there
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exists a unique solution G(z; p, f1, · · · , fn) ∈ PSH(M,ω) to the following


G = 0 on ∂M (4.80)

(ω + i∂∂̄G)n = 0 on M\{p} (4.81)

G(z; p, f) = δ · ψ log(|f1|β1 + · · ·+ |fn|βn)}+ φ near p (4.82)

where G ∈ Cα(K) and φ ∈ L∞(M) ∩ Cα(K) for any compact subset K ⊂

M\{p} and any constant 0 < α < 1
k1·k2····kn . The uniqueness is with respect to

a given choice of δ and a choice of a cut-off function ψ supported in a small

neighborhood near p.

Proof. Fix D := k1 ·k2 · · · kn, any constant 0 < α < 1
D

and any compact subset

K in M\{p}. For each 1 6 i 6 n, let Ri := ri · Dki . Define n holomorphic

functions

F1 := f1
R1 , · · · , Fn := fn

Rn

which clearly have p as the only vanishing locus. Then apply Corollary 4.9

to F1, · · · , Fn and we see that there exists a δ1 such that for all δ < δ1, there

exists a unique pluricomplex Green’s function G ∈ PSH(M,ω)∩Cα(K) such

that

G = ψδ log(|F1|
1
D + · · ·+ |Fn|

1
D ) + φ (4.83)

= ψδ log(|f1|
r1
k1 + · · ·+ |fn|

rn
kn ) + φ (4.84)

in a neighborhood U of p. Here ψ is some cut-off function supported in the

neighborhood U and φ is a unique function in L∞(M) ∩ Cα(K).
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