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ABSTRACT OF THE DISSERTATION 

Evidence that elephants, bears and sheep  

choose habitat by assessing environmental information 

across multiple spatial scales  
 

By ANDREW F. MASHINTONIO 

Dissertation Director: 

Gareth J. Russell 

 

Understanding the habitat preferences of large mammals is critical for their conservation 

and management. Resource selection functions (RSFs) can be used to assess these 

preferences, but they often only incorporate environmental information, such as percent 

tree cover, at a spatial resolution determined by the source of the data, i.e. satellite 

imagery. Organisms may respond to their surroundings at larger or smaller spatial scales, 

and thus the spatial scale of the data may be biologically irrelevant for the species in 

question. Instead, habitat selection should be assessed on a continuum of spatial scales to 

identify the ones that are most relevant to the organism. This can be accomplished by 

locally averaging, or smoothing, layers of environmental information to generate coarser 

representations of the organism’s surroundings. 

 In Chapter 2, I model habitat preferences of savannah elephants with and without 

multiple spatial scales. Models that incorporated multiple spatial scales performed better 
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and made different predictions regarding the spatial distribution of high-quality habitat 

throughout a landscape. This chapter has been published in PeerJ 

(https://peerj.com/articles/504/). 

 The inclusion of multiple spatial scales for numerous environmental variables can 

lead to problems in model choice, as not all combinations of variables can be evaluated. 

In Chapter 3, I model habitat preferences of brown bears by first using the least absolute 

shrinkage and selection operator (lasso) to order the variables by their importance. I then 

fit models of increasing complexity by adding one variable at a time in reverse order of 

importance. I also incorporate the presence of neighboring individuals to account for the 

possible competitive exclusion of optimal habitat, but this was found not to affect the 

habitat chosen.  

 In Chapter 4, I determine whether individual desert bighorn sheep have different 

habitat preferences when they inhabit two mountain ranges with differing availability of 

freestanding water. For each environmental variable, both a full parameter and a 

‘difference’ parameter are estimated, depending on where the sheep movement occurs. 

Different preferences were found for vegetation at multiple spatial scales, implying that 

bighorn sheep can utilize the moisture found within vegetation to survive when 

freestanding water is not available.  
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Chapter 1 
 

Introduction 
 
 

1.1 Habitat loss 

Animals must consume resources to survive and reproduce. Resources are not often easy 

to acquire, so individuals must be selective when deciding where to obtain them (Manly 

et al. 2002). Habitats can be defined as the areas occupied by animals to acquire 

resources (Garshelis 2000). Some types of habitat may be preferred because they contain 

more resources for a particular species, while others might be avoided due to perceived 

negative qualities, such as the risk of predation (Rettie & Messier 2000). The use or 

nonuse of a habitat can therefore be linked to the quality of the habitat and the fitness it 

confers (Manly et al. 2002). 

 The global human population is growing at an exponential rate and consequently 

alters the environment in a multitude of ways (Roberts 2011). The conversion of the 

natural landscape for use in agriculture and construction is one of the leading causes of 

the degradation and fragmentation of habitat, which is the largest contributor to species 

endangerment and loss of biodiversity (Czech & Krausman 1997; Wilcove et al. 1998; 

Brooks et al. 1999; Chapin et al. 2000; Pimm & Raven 2000; Harcourt, Parks & 

Woodroffe 2001; Kerr & Deguise 2004). Habitat fragmentation reduces gene flow and 

can increase the extinction risk for wide-ranging species (Woodroffe & Ginsberg 1998; 

Tigas, Van Vuren & Sauvajot 2002; Coulon et al. 2004). In addition, urbanization and 

pollution can negatively affect ecosystem functioning and the quality of preferred 

habitats (Freedman 1995; Wilcove et al. 1998; Kerr & Deguise 2004; Lovett et al. 2009).  
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 Human activity can also indirectly reduce available habitat (Walther et al. 2002). 

Global climate change is causing many plant and animal species to shift their geographic 

ranges to higher latitudes or altitudes (Easterling et al. 2000; Parmesan & Yohe 2003; 

Hickling et al. 2006; Chen et al. 2011). This shift can cause a spatial mismatch between 

animals and their resources if some species are not able to shift their ranges as well as 

others (Schweiger et al. 2008). Furthermore, organisms near the poles or in high altitudes 

are limited in their ability to shift their ranges due to shrinking habitat availability 

(Hickling et al. 2006). These anthropogenic impacts are the primary cause of the ongoing 

sixth mass extinction event (Wake & Vredenburg 2008; Barnosky et al. 2011).   

 
1.2 Conservation of large mammals 

Although many plant and animal species are threatened in the wake of these 

anthropogenic changes, large mammals are particularly prone to extinction (Cardillo 

2003; Cardillo et al. 2005; Price & Gittleman 2007; Cardillo et al. 2008; Davidson et al. 

2009; Macdonald et al. 2013). This is in large part due to the life history traits of species 

with large body size, such as lower reproductive rates and slower population growth, that 

lead to smaller population sizes (Purvis et al. 2000; Cardillo 2003; Cardillo et al. 2005; 

Sibly & Brown 2007; Bielby et al. 2007; Cardillo et al. 2008; Jones 2011; Macdonald et 

al. 2013). Larger organisms also need to consume more total resources than smaller 

organisms and thus often have large home ranges to meet their resource requirements 

(McNab 1963; Kelt & Van Vuren 2001; Macdonald et al. 2013). It has been observed 

that extinction risk is positively correlated with the range size of a species (Purvis et al. 

2000; Price & Gittleman 2007; Cardillo et al. 2008). Large home ranges are more likely 

to overlap with those of conspecifics, leading to competition for resources (Burskirk 
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2004; Jetz et al. 2004). Additionally, habitat fragmentation has a larger effect on species 

with small population sizes (Henle et al. 2004) and large area requirements (Tigas et al. 

2002), increasing extinction risk even further. Many large mammal species face the 

added risk of extinction through human hunting, either for food or for sport (Jerozolimski 

& Peres 2003; Johnson et al. 2010; Macdonald et al. 2013). However, sustainable hunting 

has been used as a tool for the conservation of valuable species, such as white rhinos 

(Leader-Williams et al. 2005). 

 The successful conservation of large mammals is important for several reasons. 

Many carnivorous large mammal species can affect the structure of their entire ecosystem 

by controlling the population sizes of herbivores (Estes et al. 1998; Berger et al. 2001; 

Estes et al. 2011). Their loss can thus indirectly reduce plant biomass (Berger et al. 

2001), increase soil nitrogen mineralization (Frank 2008; Estes et al. 2011), and 

transform forests into grasslands through tree recruitment failure (Beschta & Ripple 

2009; Estes et al. 2011). For example, when gray wolves (Canis lupis) and grizzly bears 

(Ursus arctos) were extirpated from the southern Greater Yellowstone ecosystem, the 

moose (Alces alces) population grew rapidly, which caused a decrease in the height and 

density of local willow (Salix spp.) trees (Berger et al. 2001). This in turn reduced the 

diversity and density of the riparian avian community (Berger et al. 2001).  

These top-down trophic effects are widespread (Schmitz, Hamback & Beckerman 

2000), and reintroduction of top predators does not always restore the environment 

(Wolf, Cooper & Hobbs 2007). In Yellowstone National Park, beavers (Castor 

canadensis) use willow for food and building material for their dams, which in turn alters 

the structure of the riparian areas to be suitable for willow establishment (Bigler, Butler 
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& Dixon 2001; Baker & Hill 2003; Westbrook, Cooper & Baker 2006). When wolves 

were extirpated, willow herbivory by elk (Cervus elephus) intensified, thus reducing this 

resource for beavers and ultimately the beaver population (Beschta & Ripple 2006). Wolf 

reintroduction was expected to positively affect willow populations by reducing browsing 

by elk, but the change in structure caused by the reduction of the beaver population and 

their dams precluded the recovery of willow (Singer, Mark & Cates 1994; Wolf, Cooper 

& Hobbs 2007).  

 Large herbivores can alter the vegetation structure of the community, which can 

affect biodiversity and population sizes of other organisms (Rutina, Moe & Swenson 

2005; de Beer et al. 2006; Valeix et al. 2011). Elephants act as ecosystem engineers by 

uprooting trees and large bushes, changing both food availability and visibility (Valeix et 

al. 2011). This may facilitate other smaller herbivores by stimulating higher growth rates 

in heavily browsed plants and providing better visibility to detect approaching predators 

(Fornara & Du Toit 2007; Valeix et al. 2011).  

Despite these benefits of large mammals, there are also many instances of conflict 

between humans and wildlife. Some examples include the destruction of crops, water 

sources, and property by elephants (Hoare 2000; Graham et al. 2010; Baskaran et al. 

2010; Gubbi et al. 2014); predation of livestock by wolves, leopards, and other large 

carnivores (Schiess-Meier et al. 2007; Zarco-Gonzalez, Monroy-Vilchis & Alaniz 2013; 

Caniglia et al. 2013); the raiding of anthropogenic garbage and disturbance of hikers by 

bears (Schirokauer & Boyd 1998; Greenleaf et al. 2009); and injury and death to humans 

(Herrero et al. 2011; Liu et al. 2011; Can et al. 2014). This can lead to lethal responses by 

affected communities and a general lack of sympathy for the offending species (Liu et al. 
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2011; Mijele et al. 2013; Kansky & Knight 2014; Can et al. 2015; Gubbi et al. 2014). 

Successful conservation of these populations hinges on the ability to adequately protect 

human interests as well.  

 Managers and conservationists must be able to accurately identify and predict 

species’ habitat requirements in order to successfully protect and conserve them. To this 

end, models of habitat selection have been developed and fine-tuned to aid in protecting 

the appropriate habitat for a particular species.  

 
1.3 Modeling habitat selection 

Models of habitat selection compare the locations of individuals in a population or 

species of interest with potentially important environmental variables. Locations of 

individually identified organisms may be obtained using radio or satellite telemetry 

(Aarts et al. 2008), leg bands (Robinson et al. 2010), or unique markings on individuals 

(Lubansky 2015). Environmental information is often either measured directly in the field 

(e.g., Anderson et al. 2005) or derived from satellite imagery (Gottschalk, Huettmann & 

Ehlers 2005). This information is stored as a raster layer and can represent vegetation, 

distance to point objects, or terrain features. Vegetation layers can either be categorical, 

where each resource unit is a particular habitat type, or continuous, where each resource 

unit is the proportion of the habitat types found within the unit. Distance from fixed 

features such as bodies of water or roads are created using GIS. Digital elevation models 

(DEMs) provide information on elevation and can be used to derive other measurements 

such as slope and ruggedness. 

When a particular resource unit is used more frequently than would be expected 

given its availability, selection for that resource is inferred (Johnson 1980; Manly et al. 
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2002). This selection can be quantified using a resource selection function (RSF), where 

the values of the resource units are proportional to their probability of use (Manly et al. 

2002). There are two primary designs when developing an RSF: the used/unused design, 

where each resource unit is classified according to whether an organism was observed 

there or not; and the use/availability design, where a sample of used resource units are 

compared to a sample of available resource units (Garshelis 2000; Manly et al. 2002). 

One problem with the used/unused design is that while used locations are known with 

certainty, it is difficult to determine if a location is truly unused or if an individual was 

simply not detected (Keating & Cherry 2004; MacKenzie & Royle 2005; Johnson et al. 

2006; Duchesne et al. 2010). Mistakenly including locations that were actually used can 

bias parameter estimates and reduce the model’s ability to detect selection (Gu & Swihart 

2004; MacKenzie & Royle 2005). Under a use/availability design, available locations 

may include both used and unused locations (Keating and Cherry 2004), but this does not 

affect the estimation of the parameter coefficients unless the proportion of used locations 

is high (Nielson, Manly & Mcdonald 2003; Johnson et al. 2006).  

In the standard design, used resource units are taken from all animals under study 

and compared to available resource units sampled from the entirety of the study area. The 

resulting RSF is often analyzed using logistic regression, particularly if the habitat 

variables are continuous (Thomas & Taylor 2006). However, individuals may not be able 

to reach all areas of their home ranges within the interval between fixes if the interval is 

small (Arthur et al. 1996). To account for differing availability of habitat for each 

individual or across different parts of an individual’s home range, a matched 

use/availability design may be used (McLoughlin et al. 2010). Under this design, each 
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used resource unit is matched to a set of randomly chosen available resource units drawn 

from a circle around the used unit, usually equal to the distance an individual can travel 

between location fixes (Arthur et al. 1996; Cooper & Millspaugh 1999; Hjermann 2000; 

Boyce et al. 2003; Boyce 2006; Duchesne et al. 2010). This RSF can be analyzed using 

conditional logistic regression, which evaluates the likelihood of a pair of locations as an 

independent movement (Fortin et al. 2005; Fortin et al. 2009; Duchesne 2010). Even 

within a small radius, the availability of a particular resource unit is dependent upon its 

distance from the individual’s current location (Hjermann 2000). When the habitat 

quality is relatively equal, individuals are more likely to choose locations that minimize 

travel costs – the time and energy that it takes to move from one location to another 

(Harris et al. 2008). Hjermann (2000) introduced a continuous availability function where 

availability decreased as a function of distance from the individual’s current location. 

Another approach is to explicitly include a coefficient for the distance between the 

current location and each potential destination (Forester, Im & Rathouz 2009). Failure to 

incorporate the travel cost can yield biased estimates of parameter coefficients (Forester, 

Im & Rathouz 2009). 

Every available location within the radius of movement choices can be described 

by a list of potentially important values that correspond to the environmental features at 

that location, such as percent forest cover or elevation. Conditional logistic regression 

calculates the probability of choosing a particular location relative to other available 

locations. Under this model, the relationship between the movement and the 

environmental features is described by a list of unknown parameters to be estimated. For 

each movement, the chosen location is assigned a value of 1, and the non-chosen 
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locations are assigned a value of 0 (McLoughlin, Coulson & Clutton-Brock 2008). The 

probability !! is only evaluated for chosen locations using the following equation:  

!! =
!!!!
!!!!!

 

where !! !is the list of environmental values and β is the list of unknown parameters that 

describe the relationship between the movement and the environmental variables. Thus 

!!!! for the chosen location (where !! != 1) is divided by the sum of !!!! for every 

available location. The log-likelihood of a single movement !! is the logarithm of !!, and 

the log-likelihood of the entire movement dataset is the sum of !! over every movement i. 

The unknown parameters β are estimated after fitting the model using non-linear 

maximization of the log-likelihood. This process is repeated for different combinations of 

environmental variables, and the resulting log-likelihoods are compared using 

information-theoretic approaches such as Akaike’s Information Criterion (AIC; Anderson 

& Burnham 2002; Burnham & Anderson 2002). As more variables are added to a model, 

the fit of the model improves. However, models that are too complex are limited in their 

predictive ability. AIC is a measure of parsimony, or the balance between fit and 

complexity. Every variable added to a model is assessed a penalty term; therefore, the 

improvement in fit must be large enough to justify the additional complexity. The model 

with the combination of variables that produces the most parsimonious AIC score is thus 

chosen (Hirzel & Le Lay 2008).  

 The environmental data used to evaluate habitat selection are usually at a spatial 

scale determined by the source of the data (i.e., satellite imagery). However, organisms 

may respond to their environment at smaller or larger scales, depending on spatial context 
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or the perceptual ability of the organism (Holling 1992; Lima & Zollner 1996; Nams 

2005; De Knegt et al. 2010; Marshal et al. 2011). This scale may even be biologically 

irrelevant to the species in question, limiting model inference and producing misleading 

results (Levin 1992; Boyce 2006; Mayor et al. 2009; Wheatley & Johnson 2009; De 

Knegt et al. 2011). Therefore, habitat preferences should be evaluated on a continuum of 

scales to determine the ones to which an organism is responding (Fisher et al. 2011).  

Preferred habitat is often assumed to correlate with high-quality habitat, but it 

more accurately has a higher probability of being high-quality habitat (Mathewson & 

Morrison 2015). Habitat quality is defined by its ability to provide resources for an 

individual’s survival and reproduction and can only be assessed by measuring the 

demographics of individuals or populations (Garshelis 2000; Railsback, Stauffer & 

Harvey 2003; Johnson 2007; Morrison 2009). Therefore, measures of an area such as 

population density or habitat use may be misleading if that area does not confer a higher 

fitness to the individuals that are found there (Mosser et al. 2009; Mathewson & 

Morrison 2015). Habitat that does not confer high fitness may be used by organisms for a 

variety of reasons. Individuals may be forced to occupy sub-optimal habitat due to 

competitive exclusion or to avoid predators (Mosser et al. 2009; McLoughlin et al. 2010). 

Habitat quality may also change from year to year due to differences in rainfall. 

Identifying preferred habitat can still provide important information regarding the most 

likely movement choices of individuals, but when managers make decisions regarding 

habitat restoration or population management, this information should not be used 

without carefully considering how the available resources within these habitats will affect 

the survival and reproduction of the population. 
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1.4 Objectives 

Habitat selection by animals is a complex process. Despite the improvements made to 

modeling techniques, many challenges remain to accurately identifying preferred habitat. 

The primary objective of this dissertation research was to improve upon models of habitat 

selection of large mammals. This was accomplished by: (1) explicitly incorporating 

spatial scale into RSFs; (2) determining habitat preferences in the presence of 

conspecifics; (3) resolving the issue of too many predictor variables in complex 

landscapes; (4) using unclassified spectral characteristics to represent vegetation in 

habitat selection models in a desert environment; and (5) modeling differences in habitat 

preferences between individuals moving between two separate locations through the use 

of ‘difference’ parameters.  

Objective (1) was completed using location data of savannah elephants found in 

two parks in southern Africa: Etosha National Park and Maputo Elephant Reserve. 

Conservation efforts have led to an increase in the number of individual elephants 

inhabiting the parks, but a high population density can lead to ecosystem degradation and 

reduced biodiversity (Owen-Smith 1996; Whyte, Van Aarde & Pimm 2003; Guldemond 

& Van Aarde 2007; Van Aarde & Jackson 2007; Harris et al. 2008). One solution to this 

problem is to provide elephants with more space (Harris et al. 2008). This is contingent 

on the ability to accurately project preferences to other parts of a landscape to predict 

where elephants are likely to go. Because individuals may have different preferences for 

the same habitat at different scales, extrapolating local preferences can result in 

misleading predictions. For example, elephants may have a fondness for individual trees, 

but an extrapolation of this preference across the landscape would indicate that large 
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contiguous forests are ideal, which may not be the case. We included environmental 

information at multiple spatial scales to account for differing preferences and to improve 

projections of landscape-wide habitat quality. This study has been published in PeerJ 

(https://peerj.com/articles/504/). 

Objectives (2) and (3) were completed using location data of brown bears from 

the Kenai Peninsula, Alaska. This population has declined in recent years in part because 

of increasing human activity on the Peninsula (Suring & Del Frate 2002; Goldstein et al. 

2010). Identifying preferred areas is thus important to minimize human-bear conflict. 

Unlike elephants, however, brown bears do not travel in groups across large areas of the 

landscape, but instead occupy small areas with little overlap with conspecifics. 

Consequently, some individuals might be restricted in their choice of available habitat by 

neighboring bears (Thomas & Taylor 2006). In addition, the Kenai Peninsula is very 

heterogeneous and requires a large number of environmental variables to represent the 

available habitat. Therefore, the incorporation of multiple spatial scales created too many 

predictors to be evaluated using standard model selection via AIC. We instead used the 

least absolute shrinkage and selection operator (lasso) to generate a ranking of important 

predictors that were used to inform model selection.  

Objectives (4) and (5) were completed using location data of desert bighorn sheep 

in Joshua Tree National Park, California. Individual sheep had been tagged within a 

single mountain range to study their use of water guzzlers located on the mountain 

(Longshore et al. 2009). It was observed that two individuals frequently traveled to a 

nearby secondary mountain range that lacked any documented permanent water. Bighorn 

sheep have been shown to require freestanding water for their survival (Blong & Pollard 
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1968; Turner 1970; Broyles 1995; Turner et al. 2004; Oehler et al. 2005; Dolan 2006; 

Sappington et al. 2007; Wehausen 2007; Longshore et al. 2009; Bleich et al. 2010), but 

other studies have indicated that individuals can obtain enough moisture from plant 

succulence alone (Warrick & Krausman 1989; Krausman & Etchberger 1995; Broyles & 

Cutler 1999). Vegetation is thus an important component of sheep habitat, but maps of 

vegetation in desert environments are difficult to create because of the scarcity of 

vegetation and dominance of soil reflectance (Smith et al. 1990). As an alternative, we 

used unclassified spectral imagery to represent the moisture content of the vegetation and 

soil. We hypothesized that individual sheep are able to cross the valley into the secondary 

mountain range because of an increased availability of this variable. To model whether 

these individuals have different habitat preferences within the different mountain ranges, 

we estimated two sets of parameters for each predictor variable, depending on where the 

movement took place: the primary parameter was estimated using all movements by a 

group of sheep, whereas the “difference” parameter was estimated using only sheep 

movements in the secondary mountain range. If individuals do have different preferences 

within the different mountain ranges, the inclusion of this difference parameter will result 

in a better prediction of sheep movements.  
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Chapter 2 
 

Data-driven discovery of the spatial scales of habitat choice 
by elephants 

 
 

2.1 Summary 

Setting conservation goals and management objectives relies on understanding animal 

habitat preferences. Models that predict preferences combine location data from tracked 

animals with environment information, usually at a spatial resolution determined by the 

available data. This resolution may be biologically irrelevant for the species in question. 

Individuals likely integrate environmental characteristics over varying distances when 

evaluating their surroundings; we call this the scale of selection. Even a single 

characteristic might be viewed differently at different scales; for example, a preference 

for sheltering under trees does not necessarily imply a fondness for continuous forest. 

Multi-scale preference is likely to be particularly evident for animals that occupy coarsely 

heterogeneous landscapes like savannahs. We designed a method to identify scales at 

which species respond to resources and used these scales to build preference models. We 

represented different scales of selection by locally averaging, or smoothing, the 

environmental data using kernels of increasing radii. First, we examined each 

environmental variable separately across a spectrum of selection scales and found peaks 

of fit. These ‘candidate’ scales then determined the environmental data layers entering a 

multivariable conditional logistic model. We used model selection via AIC to determine 

the important predictors out of this set. We demonstrate this method using savannah 

elephants (Loxodonta africana) inhabiting two parks in southern Africa. The multi-scale 
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models were more parsimonious than models using environmental data at only the source 

resolution. Maps describing habitat preferences also improved when multiple scales were 

included, as elephants were more often in places predicted to have high neighborhood 

quality. We conclude that elephants select habitat based on environmental qualities at 

multiple scales. For them, and likely many other species, biologists should include 

multiple scales in models of habitat selection. Species environmental preferences and 

their geospatial projections will be more accurately represented, improving management 

decisions and conservation planning. 

 
2.2 Introduction 

Successful species conservation and management requires understanding the resources 

needed for their reproduction and survival (see Roever, Van Aarde & Leggett, 2012; 

Roever et al. 2013; Roever, Van Aarde & Chase, 2013). Because some resources are 

difficult to identify directly, habitat preferences can serve as proxies (Young, Ferreira & 

Van Aarde 2009). They, in turn, are revealed by the locations and movements of 

individuals within their landscape (Manly et al. 2002; Aarts et al. 2008; McLoughlin et 

al. 2010; Fisher, Anholt & Volpe, 2011; Roever et al. 2013). Models of habitat preference 

usually incorporate raster-based information, such as vegetation maps, at a spatial 

resolution determined by the data source (e.g., satellite imagery). This practice assumes 

that animals judge habitats at the same level of detail, or scale. However, organisms may 

respond to more fine-grained variation, or coarser, aggregated qualities, depending on the 

spatial context or their perceptual ability (Holling 1992; Lima & Zollner 1996; Nams 

2005; De Knegt et al. 2010; Marshal et al. 2011). In fact, the resolution of the data may 
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be biologically irrelevant for the species in question, which can limit model inference and 

produce potentially misleading results (Levin 1992; Boyce 2006; Mayor et al. 2009; 

Wheatley & Johnson 2009; De Knegt et al. 2011). 

A priori, biologists rarely know the spatial scale at which species select resources. 

Further, there is evidence that for some organisms, a single “characteristic” scale 

(Holland, Bert & Fahrig 2004; De Knegt et al. 2010) may inadequately characterize an 

environmental response (Mayor et al. 2009; Wheatley & Johnson 2009; Fisher, Anholt & 

Volpe 2011; Shrader et al. 2012). Here, we demonstrate how to identify the most 

important scale(s) of habitat selection by examining relationships between species 

movements and environmental attributes over a continuum of scales. We show that this 

data-driven approach changes the predictions of the amount and distribution of suitable 

areas across the landscape. 

For a human example of multiple preference scales, imagine a suburban family 

that enjoys shopping. In the suburbs, stores are aggregated in a characteristic way, with 

high local concentrations (plazas, malls, etc.) separated by areas with few or no stores. 

Most of the area in Fig. 2.1a, in which dark grid squares represent high store density, has 

the suburban pattern. The path of the family’s travels – the black line – clearly shows that 

shopping areas are frequent targets. An analysis focusing only on the suburbs would 

reveal a preference for high store density. 

Next, consider the area in the lower right corner. Knowing only store data, we 

would rightly guess that this is a city. A naïve extrapolation of the family’s suburban 

movements would predict frequent visits to this city, where stores are abundant. 

However, we would be completely wrong; our hypothetical family avoids cities. They do 
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so because despite attractive qualities, such as high store density, cities have perceived 

disadvantages: crowds, lack of parking, and so on. These attributes only become 

important when store density is assessed at a larger scale than that of a suburban mall. 

The key point is that the data describing store density serves as a proxy for different 

qualities at different scales. To unravel this, we can locally average, or smooth, these data 

with an increasingly larger radius. Fig. 2.1b shows the store data smoothed using a 21-

pixel Gaussian filter. This converts the landscape to a map of large-scale urban density, 

and we can interpret the family’s travels as “avoiding the city.” By including both the 

original density map and the smoothed version in a model, we simultaneously discover 

the preference for isolated stores and the avoidance of large aggregations of stores. Even 

if we did not know exactly why this family avoids high store densities, our predictions of 

their future travels will be more accurate. 

A previous study on savannah elephants from Maputo Elephant Reserve, 

Mozambique and Etosha National Park, Namibia, incorporated travel costs with other 

habitat variables to generate landscape-wide quality maps (Harris et al. 2008). They 

determined habitat preferences using variables at a 500 m resolution, which is very 

detailed given that elephants can move across thousands of square kilometers within a 

year. These models were able to accurately predict local movement choices, that is, the 

places that elephants chose over their immediate neighbors in the areas where they had 

been observed. However, their ability to provide regional predictions might break down 

when extrapolated over a broader landscape, such as the entirety of a reserve (see also 

Roever, Van Aarde & Legget 2013). By analogy to the store example, elephants in more 

open savannah might tend to stay near trees while avoiding large forests. 
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Using the same dataset as the earlier study, we tease apart these scale-dependent 

preferences by smoothing each of the original environmental variables at different radii 

and assessing how well each explains animal movements. (Operationally, we define 

“scale” as the width of the radius used to smooth the original environmental data, so scale 

0 refers to the original data). All of the variables, each at one or more identified optimal 

scales, are then used in a model selection process to generate a final landscape preference 

model. While our multi-scale models agree with the previous findings that elephants 

prefer to occupy areas that are near water, have high vegetation cover, and are far from 

human settlement, they predict local movements much better than models that use only a 

single scale. The multi-scale models can also produce very different predictions of 

landscape-wide habitat quality, potentially improving conservation directives that aim to 

protect essential habitats. 

 
2.3 Methods 

2.3.1 Study sites 

Maputo Elephant Reserve and the Futi River corridor, which extends south of Maputo 

and is also included in the analysis, are located in the subtropical savannahs of southern 

Mozambique. At the time of the study, the reserve (c. 800 km2) was unfenced except for a 

30 km stretch in the northwest (Harris et al. 2008). At least 311 elephants lived in the 

reserve and the corridor when these data were collected (Olivier, Ferreira & Van Aarde 

2009). Etosha National Park (c 23,000 km2) is located in the arid north-central part of 

Namibia. This park was fenced and held approximately 2,000 elephants at the time of the 

study (Etosha Ecological Institute, unpublished data). 
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2.3.2 Location data 

GPS collars provided elephant location data (held by CERU, www.ceru.up.ac.za/). In 

Maputo they provided fixes every two to five hours, with collars active for 24 hours and 

off for 48 hours (Harris et al. 2008). Three males and two females wore collars covering 

the wet seasons (November-March) of 2000 and 2001 and the dry seasons (April-

October) of 2001 and 2002. In Etosha, location data from six females were taken every 

eight hours and encompassed the wet seasons of 2002 and 2003 and the dry season of 

2003 (Harris et al. 2008). Each female that was collared represented the movements of an 

entire herd. The data collection was facilitated through permission from the Namibian 

Ministry of the Environment (Research Permit number 580). 

 Individual movement patterns and habitat selection vary with sex (Stokke & Du 

Toit 2000; Woolley et al. 2009) and season (Wittemyer et al. 2007; Young, Ferreira & 

Van Aarde 2009; Young & Van Aarde 2010). Therefore, we combined location data in 

each reserve separately for males and females during the wet and dry seasons. Analyses 

were seasonal in resolution, so we did not partition movements by time of day. This 

yielded four data sets for Maputo and two for Etosha (for which only females carried 

collars). A pair of x, y coordinates represented the starting and ending location of each 

movement. We considered only those movements within a choice radius of < 5 km, 

because fast, long-distance movements may carry a different signal of habitat selection 

than slower, shorter movements (Morales et al. 2004; Roever et al. 2013). This process 

retained > 80% of the movements in each dataset. 
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2.3.3 Landscape data 

The landscape variables consisted of vegetation, distance to water, and distance to human 

settlement. In Maputo, vegetation data included the proportion of reeds and tree cover. In 

Etosha, the vegetation variables included the proportion of mopane, Acacia nebrownii, 

and Acacia-dominated savannah (henceforth, Acacia). All raster-based variables had a 

cell, or pixel size, of 500 m by 500 m. We standardized each variable to have zero mean 

and unit standard deviation across the entire landscape.  

We created squared versions of each variable and included these in the smoothing 

and model selection process where appropriate (see below). This allows for a variety of 

non-linear preference functions, including those in which an intermediate level of a 

variable is preferred (Johnson, Seip & Boyce 2004; Johnson & Gillingham 2005). This 

possibility is likely to be important if animals integrate their surroundings. For example, 

imagine an animal that likes open spaces in a savannah habitat, a mosaic of trees and 

grassland. At the fine scale, it might show a monotonic preference for open space, but at 

a larger scale, it would prefer the intermediate level of tree cover that characterizes a 

savannah. Expanding on this example, Fig. 2.2 describes possible interpretations of 

different combinations of preference function shapes at different scales. 

2.3.4 Smoothed landscape data 

We created smoothed vegetation variables by averaging each pixel with its neighbors 

within increasing radii up to 20 pixels, i.e., 10 km (Fig. 2.3). The functional form of the 

smoothing kernel should approximate the way an individual integrates its surroundings. 

For example, a flat smoothing kernel, where all pixels are weighted equally within a 

given radius, would be appropriate if an individual’s ability to assess information 
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remained constant within that radius, and then dropped off dramatically (e.g. Holland, 

Bert & Fahrig 2004; De Knegt et al. 2011). Equally plausibly, an individual’s perceptual 

abilities might decline gradually with distance. This could be caused by any number of 

mechanisms, such as diffusion and decay of chemical signals or progressive visual 

obstruction by vegetation. To account for this range of possibilities we included a linear 

decay parameter d, which affects the weight given to each pixel in the average depending 

on its distance from the central pixel. For the flat kernel, d = 0 (Fig. 2.4a). We allowed d 

to increase in steps of 0.1 (Fig. 2.4b) up to a maximum of d = 1, where the smoothing 

kernel declines linearly to 0 at the edge of the radius (Fig. 2.4c). This parameter was 

optimized along with the radius (see below).  

 We did not smooth ‘distance to’ variables because they are intrinsically smooth. 

We did create a squared version of ‘distance to water’ along with a squared version for 

each vegetation variable at each scale. 

 When smoothing, we can treat landscape values outside the spatial extent of the 

available data in one of two ways: either as true zeroes that represent habitat unsuitable 

for the organism (e.g., an ocean for a terrestrial mammal), or as unknown values. There 

may also be physical boundaries, such as fences, within the areas under consideration. In 

the case of a fence, while an animal may be unable to visit a location outside the fence, it 

is unclear whether it will take into account the bordering habitat when choosing a 

location inside the fence. In our study, fences coincided with the border of our landscape 

data in parts of Maputo and all of Etosha. While we may not know the habitat 

immediately bordering the reserve, there is no reason to think it is radically different from 
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what is inside. We therefore smoothed using the average of only those pixels within the 

smoothing radius that are also within each reserve, generating a ‘neutral’ boundary. 

2.3.5 Habitat selection model 

Resource selection functions (RSFs) specify the probability that a particular resource (or 

in this case, habitat) is chosen by an animal (Manly et al. 2002). These functions have 

been increasingly used to assess habitat selection based on movement data (i.e. 

McLoughlin et al. 2010), especially for elephants (Roever, Van Aarde & Legget 2012; 

Roever et al. 2013; Roever, Van Aarde & Chase 2013; Roever, Van Aarde & Legget 

2013). For input they require a set of movement data and a set of landscape variables (or 

‘layers’) describing the environment in which the organism(s) are moving. 

 Except for the most mobile animals, not all habitats can be reached in a given 

time interval, such as the 8 hour GPS fix interval. Therefore, only a subset of habitats 

within a certain radius of an individual are even candidates for being ‘chosen’ (Arthur et 

al. 1996). For any given movement i, each potential destination pixel j has a vector of k 

potential predictor values !!, derived from the landscape raster layers. Included in these 

values is a distance term between the current location and each potential destination 

pixel, which represents the cost of movement (Hjermann 2000; Harris et al. 2008). The 

actual choice !! is represented as a binary response, where the chosen location is given a 

value of 1 and all other locations, or a random subset of them if there are too many, are 

given a value of 0. Thus, the complete dataset for a single movement consists of a matrix 

!! !and a binary column vector !!, in our case covering the chosen destination pixel and 

29 random alternative destinations in a 10-pixel circular neighborhood of the starting 

pixel. 
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 Under the conditional logistic model, the probability !! !that an animal will choose 

a pixel j as its next location is 

!! =
!!!!
!!!!!

 

where β is a k by 1 vector of parameters to be estimated. !!, the log-likelihood of a 

particular movement, is simply the logarithm of the value of !! !for the chosen destination 

pixel (the case where !! != 1). The log-likelihood of the entire data set is the sum of the 

!! !over all movements i. We fit the model using non-linear maximization of log-

likelihood using a quasi-Newton method implemented in the Mathematica software 

package (Wolfram Research 2012), and compared the models’ performance using 

Akaike’s Information Criterion (AIC). 

 Harris et al. (2008) found that the estimated model parameter applying to the 

‘travel distance’ variable was extremely consistent across elephants and varied very little 

with the inclusion of other landscape variables. We followed their suggestion by first 

fitting that term separately and then using the fitted value as a fixed term when 

optimizing the other parameters. 

2.3.6 Choosing optimal smoothing scales 

There are two steps in the model discovery process. The first is the identification of 

candidate smoothing scales for each variable. The second is the inclusion of all the 

candidate variables (original or smoothed) in a model selection process. 

 To identify candidate scales, we smoothed each variable independently within 

increasingly larger radii. The radius extended from 0 pixels (the original data) to a 

maximum of 20 neighboring pixels (10 km), which is twice the radius of the local 
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neighborhood of movement choices. (In initial runs we encountered an issue with over-

smoothing if the radius was too large, which produced unusual results; see Discussion.) 

At each radius we fit three models: one that included only the distance from current 

location, one with distance and the smoothed variable, and one that also included the 

smoothed variable squared. In each case we recorded the AIC score, generating three 

lines of AIC values (one of which, for distance only, is a constant). Candidate scales were 

chosen by looking for minima in the AIC lines. (In the figures, we invert the AIC axis so 

that the best models are peaks.) After identifying the candidate scales, we then optimized 

the decay parameter for each scale.  

 An alternate approach would be to smooth all landscape variables together at the 

same scales, instead of independently (Fisher, Anholt & Volpe 2011). This would be 

appropriate if, for example, a single constraint determined the manner in which 

organisms integrate their environment, such as their perceptual ability or physiology, 

which applied equally to all variables (Lima & Zollner 1996). We tested this but found 

that after the final model selection process (see below), the ‘separate scales’ model 

always equaled or outperformed the ‘same scales’ model, so we did not continue this 

analysis. The reason seems to be that when we smooth all variables together, the 

smoothing profile will typically be dominated by the variable that has most impact on the 

likelihood values. The best scales for the other variables remain hidden. 

2.3.7 Choosing the final model 

After identifying the candidate smoothing scales for each variable, we entered the linear 

and/or quadratic versions of these variables, distance from current location, distance from 

water, distance from human settlement (if applicable), and any original variables that had 
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optimal AIC scores into a model selection process. We used AIC to determine the most 

parsimonious model, and to create a parameter-averaged model based on AIC weights 

(Burnham & Anderson 2002). For comparison (see below), we repeated the model 

selection process, only allowing ‘base’ (original, non-smoothed) variables (as per Harris 

et al. 2008). 

2.3.8 Two kinds of predictions 

We created two types of habitat quality maps using the parameter-averaged model. The 

first type of map has quality values given by !!, which measure relative local quality. 

Since this is the basis for the conditional logistic model, these maps illustrate model fit. 

We only show the predictions for the neighborhoods surrounding the start of each 

observed movement. Each map was then overlaid with movement end-points to show 

how well these coincide with predictions of locally optimal locations. 

 We also calculated the mean deviation of the probability value of each chosen 

pixel from all other pixels in its local 10-pixel neighborhood. Large positive values 

indicate that a high-quality pixel (preferred habitat based on model prediction) was 

chosen out of a variety of options, large negative values indicate that a low-quality pixel 

was chosen, and intermediate values mean either that a medium-quality pixel was chosen, 

or that there was very little variation (the landscape was relatively uniform). To assess the 

impact of including multiple scales of preference, we created local prediction maps and 

calculated mean deviations for the base-scale models and compared them to the multi-

scale models using histograms. 

 The second type of map has quality values given by !!!!, a measure of relative 

landscape-wide quality. These values were calculated for the entire landscape (an 
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extrapolation). As above, each map was overlaid with movement end-points, this time to 

assess how well they predict the landscape-wide distribution of the elephants. Equivalent 

maps that do not allow smoothed variables were also created for comparison. Fig. 2.5 

shows the complete process for one dataset: male elephants in Maputo during the dry 

season. 

 
2.4 Results 

2.4.1 Multiple scales and model performance 

For all elephant groups at both reserves, model fit peaked at distinct smoothing radii 

(scales) for different habitat variables when considered individually. In many cases, a 

variable showed multiple peaks at different scales (Fig. 2.6; Table 2.1). After multivariate 

model selection using these scales, in each of our six datasets, the best multi-scale model 

was more parsimonious than the corresponding best base-scale model, according to AIC 

(Table 2.2). The difference in AIC score for Maputo datasets ranged from 31.0 to 48.5. In 

Etosha, the dry season models differed by 15.6, the smallest difference between any two 

models; this is evident in the similarities of the landscape-wide preference maps (see Fig. 

2.8). The difference between the wet season models is 68.9; this also corresponds to the 

most striking difference between the preference maps (see Fig. 2.8). Overall, the results 

indicate that these elephants are using aggregated habitat attributes when deciding where 

to move, but in a different way depending on the season, the reserve, and the sex of the 

elephants. 

2.4.2 The shapes of the relationships 

Each elephant group displayed a quadratic preference relationship with at least one 
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Table 2.1. Candidate scales and decay of each variable chosen for the model selection process for 

each dataset and their estimated parameter values after model fitting.  

Maputo Females, Dry Season Maputo Females, Wet Season

Variable Decay

Best model 
parameter 

value Importance

Parameter-
averaged 

value Variable Decay

Best model 
parameter 

value Importance

Parameter-
averaged 

value

Distance - –1.10 1.00 –1.10 Distance - –0.97 1.00 –0.97

Reeds 4 0.0 0.63 0.97 0.63 Reeds 2 0.0 0.14 0.81 0.32

Reeds 42 0.0 –0.15 0.94 –0.15 Reeds 22 0.0 - 0.58 –0.06

Reeds 20 0.0 2.02 0.80 1.87 Reeds 18 0.0 - 0.39 0.59

Reeds 202 0.0 –2.57 0.99 –2.12 Reeds 182 0.0 - 0.32 –0.24

Trees 1 0.0 0.34 0.64 0.30 Trees 0 - 0.36 1.00 0.34

Trees 12 0.0 –1.00 1.00 –1.08 Trees 02 - –0.25 1.00 –0.24

Trees 8 0.7 –1.80 0.53 –1.11 Trees 14 0.7 –0.72 0.52 –0.65

Trees 82 0.7 - 0.31 –0.30 Trees 142 0.7 –3.20 1.00 –2.94

Trees 14 1.0 1.97 0.43 1.13 Water Distance - –0.35 0.79 –0.33

Trees 142 1.0 - 0.43 –1.05 Water Distance2 - - 0.31 –0.09

Water Distance - - 0.28 –0.03 Settlement Distance - - 0.29 0.04

Water Distance2 - - 0.28 –0.11

Settlement Distance - - 0.37 0.09

Maputo Males, Dry Season Maputo Males, Wet Season

Variable Decay

Best model 
parameter 

value Importance

Parameter-
averaged 

value Variable Decay

Best model 
parameter 

value Importance

Parameter-
averaged 

value

Distance - –1.07 1.00 –1.07 Distance - –1.04 1.00 –1.04

Reeds 4 0.0 0.81 0.98 0.74 Reeds 0 - - 0.33 –0.00

Reeds 42 0.0 –0.34 1.00 –0.33 Reeds 02 - - 0.48 –0.48

Trees 1 0.0 0.52 1.00 0.47 Reeds 3 1.0 - 0.35 0.10

Trees 12 0.0 –0.12 0.84 –0.11 Reeds 32 1.0 –0.06 0.46 –0.06

Trees 10 0.9 –1.41 0.62 –1.25 Trees 2 0.0 0.44 1.00 0.43

Trees 13 0.8 2.35 0.79 1.87 Trees 9 1.0 - 0.43 0.45

Water Distance - 0.32 0.91 0.33 Trees 92 1.0 –0.81 0.99 –0.81

Water Distance2 - –0.18 0.99 –0.18 Trees 15 0.7 - 0.32 –0.51

Settlement Distance - - 0.51 0.11 Trees 20 0.6 3.21 0.99 3.13

Trees 202 0.6 1.06 0.53 1.05

Water Distance - –0.13 0.66 –0.12

Water Distance2 - - 0.32 –0.00

Settlement Distance - - 0.28 –0.01

Etosha Females, Dry Season Etosha Females, Wet Season

Variable Decay

Best model 
parameter 

value Importance

Parameter-
averaged 

value Variable Decay

Best model 
parameter 

value Importance

Parameter-
averaged 

value

Distance - –1.13 1.00 –1.13 Distance - –1.39 1.00 –1.39

Mopane 1 0.0 0.50 1.00 0.50 Mopane 1 0.8 0.16 0.85 0.14

Mopane 7 0.0 0.23 0.91 0.24 Mopane 12 0.8 –0.17 0.97 –0.18

A. nebrownii 1 0.0 0.21 1.00 0.21 Mopane 15 0.0 - 0.35 0.20

A. nebrownii 18 0.0 - 0.30 0.09 A. nebrownii 0 - 0.35 0.98 0.30

A. nebrownii 182 0.0 0.41 1.00 0.40 A. nebrownii 02 - –0.07 0.87 –0.06

Acacia 2 1.0 0.18 1.00 0.18 A. nebrownii 7 0.0 –0.60 0.85 –0.64

Water Distance - –0.21 0.57 –0.24 A. nebrownii 72 0.0 0.23 0.84 0.21

Water Distance2 - 0.18 0.90 0.21 A. nebrownii 14 0.0 –0.71 0.81 –0.72

Acacia 2 0.0 0.57 0.99 0.59

Acacia 10 0.0 1.46 0.52 1.31

Acacia 102 0.0 3.11 0.84 2.72

Acacia 20 0.0 –9.20 1.00 –8.02

Acacia 202 0.0 –11.59 0.99 –9.83

Water Distance - –0.17 0.48 –0.19

Water Distance2 - - 0.30 –0.01



27!

! !

Dataset  Multi-scale  Base-scale  Difference 

Maputo Females, Dry Season  2901.03  2944.45  –43.42 

Maputo Females, Wet Season  2748.15  2779.19  –31.04 

Maputo Males, Dry Season  3472.33  3520.81  –48.48 

Maputo Males, Wet Season  4112.84  4155.37  –42.53 

Etosha Females, Dry Season  11545.80  11561.40  –15.60 

Etosha Females, Wet Season  9439.26  9508.14  –68.88 
 

Table 2.2. AIC scores for the best model in each dataset for both the multi-scale and the base-

scale versions. 

 
habitat attribute at the candidate scales, e.g. Acacia at 20 pixels (Fig. 2.6C). In total, 19 

quadratic variables were chosen in the second, model selection step for the multi-scale 

models, and 8 were chosen for the base-scale models (Table 2.1). By examining the 

shapes of these quadratic functions over the range of habitat occupied by individuals 

(icons on Fig. 2.7), we see that in 10 cases the squared term specifies a curvilinear but 

still essentially monotonic relationship. In 13 cases, a unimodal ‘hump’ is observed (e.g., 

Maputo females during the dry season for tree density at 1 pixel, or 0.5 km). In 4 cases, 

we observed a function with an intermediate minimum (e.g., Etosha females during the 

wet season for A. nebrownii at 7 pixels, or 3.5 km). These fitted functional forms guide 

our interpretation of the behavioral ecology of the elephants (Fig. 2.2). 

2.4.3 Variables and scales describing elephant preferences 

• Distance. The distance parameter was always negative and varied from –0.97 to -

1.39. Taking into account the different numbers of available pixels in different 

distance bands, this corresponds to probabilities of moving 0, 0.5, 1, or > 1 km 

from the original location of 0.15, 0.37, 0.22, and 0.27 (for parameter -0.97) and 
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0.28, 0.44, 0.17 and 0.11 (for parameter -1.39). When elephants move locally they 

prefer to move as little as possible in these reserves. 

• Reeds, Maputo. When smoothing the reed data, for each elephant group except 

males in the wet season, a flat kernel (d = 0) was optimal for reeds regardless of 

scale, indicating that all pixels contributed equally. Males in the wet season had a 

decaying kernel (d = 1.0) for reeds at a scale of 3 pixels, indicating pixel influence 

decreased with distance from the central pixel. The model selection results reveal 

that at small scales, males avoided reeds in the wet season (3 pixels, or 1.5 km) 

but had an intermediate preference (maximum at 38% cover) in the dry season (4 

pixels, or 2 km). Females had a small-scale preference for reeds in both seasons. 

However, only females during the dry season had a preference for reeds at the 

large scale (20 pixels, or 10 km), which was highest at 20% cover. Reeds occur in 

large stretches that appear homogenous from a distance (i.e. larger scale), but 

there are small openings within the beds (i.e. smaller scale) where elephants bathe 

and drink. This may explain why most elephant groups only have a relationship 

with reeds at a small scale. Reeds indicate the presence of consistently wet areas, 

so it is not surprising that reedy areas are more attractive for all elephants in the 

dry season, when water is scarcer elsewhere. 

• Trees, Maputo. For all elephants in Maputo, a flat kernel provided the best fit for 

smoothing of tree cover at small scales (up to 2 pixels, or 1 km). At larger scales 

(> 8 pixels, or 4 km), decaying kernels with d from 0.6 to 1.0 were best (Table 

2.1). This pattern suggests a relatively short perceptual range for tree cover. 

Following model selection, at small scales males in both seasons showed a 
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positive preference for trees, but for females this was a convex quadratic function 

with an intermediate optimal tree density of 19% in the dry season and 28% in the 

wet season. This suggests the base resolution of environmental data used in this 

study (500 m) might be too large and is already blurring the savannah ‘mosaic’ in 

Maputo as perceived by females (see Fig. 2.2, Pattern I). Males in both seasons 

also have a negative relationship with tree density at medium scales (9-10 pixels, 

or 4.5–5 km), although for the wet season there is a slight intermediate peak. This 

becomes a positive preference at even larger scales (> 12 pixels, or 6 km). This 

combination suggests a preference for medium-sized clearings within continuous 

forest (Fig. 2.2, Pattern C). Females in the dry season show this same alternating 

preference for tree density at medium and large scales. However, females in the 

wet season demonstrate a negative relationship for tree density with a slight 

intermediate peak at a large scale (14 pixels, or 7 km). Overall, these results 

suggest that elephants like to be near small clumps of trees within relatively open 

areas, with all groups but females in the wet season willing to venture into more 

continuous forest. 

• Vegetation, Etosha. In both seasons, a flat smoothing kernel was optimal for 

each of the vegetation variables at all scales except in two cases: Acacia at a scale 

of 2 pixels in the dry season and mopane at a scale of 1 pixel in the wet season 

had decaying kernels (d = 1.0 and 0.8, respectively). Because these habitats are 

already at a small scale, this indicates that elephants only consider these 

vegetation types in their immediate vicinity when making habitat choices. 

Following model fitting, we find that female Etosha elephants preferred higher 
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densities of mopane and Acacia at a small scale in both seasons. They also 

showed a preference for higher local densities of A. nebrownii in the dry season, 

but intermediate levels in the wet season (43% cover). At larger scales, in the dry 

season, the elephants favoured mopane at 7 pixels (3.5 km) and A. nebrownii at 

18 pixels (9 km). In the wet season, they had a u-shaped relationship to A. 

nebrownii at 7 pixels (3.5 km) and a negative one at 14 pixels (7 km), indicating 

an avoidance of the edges of large patches of A. nebrownii. They also had a slight 

u-shaped relationship with Acacia at 10 pixels (5 km) but showed a preference for 

an intermediate amount of Acacia at 20 pixels (10 km). This suggests an 

avoidance of Acacia mosaics but a preference for being near the edge of them. 

(Note the full-landscape multi-scale map for the Etosha wet season in Fig. 2.8 

shows a cluster of observations on the edge of the unfavorable blue area, which is 

an Acacia-dominated mosaic.) Seasonal differences in selection scale are also 

evident for these elephants: mopane and Acacia vegetation contributed much 

more strongly at a large scale (> 15 pixels) in the wet season than in the dry 

season (compare Figs 2.6A and C with 2.6D and F). 

• Water. As a ‘distance to’ variable, the water layer is intrinsically smooth, so there 

is only one scale. In all Maputo datasets except one, elephants dislike being far 

from water. Water does not appear at all, however, in the best model for female 

elephants in the dry season, the dataset in which one might expect it to be the 

most important. However, Fig. 2.7 shows that all of our data for this period are 

from the north region of the reserve, which is the region with reeds, a surrogate 

for water (Harris et al., 2008). In the best model, reeds are positively preferred at 
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a small scale (4 pixels, or 2 km) and intermediately preferred at a large scale (20 

pixels, or 10 km), indicating females like to be on the edge of the reedy areas 

(Fig. 2.2, Pattern E). Given that, we propose that water does not add much 

explanatory power compared to when elephants are further south, near the Futi 

corridor. We note that in the respective base-scale model, which does not allow a 

large-scale relationship with reeds, water is important as expected. In Etosha, 

elephants stay close to water during the wet season but have a u-shaped 

relationship during the dry season. For a point resource like a water hole, this 

suggests individuals are alternately moving to and away from it (Roever, Van 

Aarde & Legget 2013; Fig. 2.2, Pattern K). This is because in the dry season, 

vegetation near water holes is rapidly denuded, forcing elephants to travel farther 

away from water to forage (De Beer et al. 2006). The respective base-scale model 

demonstrates the same relationship to water. 

• Human settlement, Maputo. Elephants appear to pay little attention to human 

settlements in any dataset when fitting multi-scale models, but are important in 

the base-scale model for females in Maputo during the dry season. In all models 

in which ‘distance to human settlement’ appears, even models of low rank, its 

parameter is positive, indicating that, however mildly, these elephants avoided 

human settlements. 

2.4.4 Comparison with base-scale models 

For the most part, the vegetation variables that appeared in the best base-scale model for 

a particular dataset were the same as those that were in the best multi-scale model at a 

small scale. For example, for males in Maputo during the wet season, the best multi-scale 
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model included reeds at 3 pixels and trees at 2 pixels; both reeds and trees were included 

in the best base-scale model. In one case, however, the shape of the relationship changed: 

females in Maputo during the dry season showed a positive preference for reeds at 4 

pixels in the multi-scale model, but had a negative preference for reeds in the base-scale 

model. Additionally, there were two cases where the two types of models had different 

variables: reeds in Maputo for females during the wet season and males during the dry 

season were included in the multi-scale models (at 2 and 4 pixels, respectively) but not in 

the base-scale models. 

2.4.5 Local relative quality predictions 

These predictions form the basis of the model fit. Fig. 2.7 demonstrates that the main 

difference between the multi-scale and base-scale models is that low-quality pixel errors 

– the left tail of each histogram – are much reduced when smoothed variables are 

incorporated (white bars) compared to when they are not (black bars). Without 

smoothing, many parts of these landscapes are locally heterogeneous, with high-quality 

and low-quality locations closely adjacent. Even when elephants cluster in areas with 

many high-quality pixels, they are inevitably sometimes found in the interspersed low-

quality pixels, perhaps because they are moving between high-quality areas. When 

smoothing is allowed, these pixels increase in probability of occupation by virtue of their 

high-quality surroundings. 

2.4.6 Landscape-wide relative quality predictions 

The landscape-wide relative quality maps generated from the best multi-scale models are, 

in some cases, strikingly different from those based only on base-scale models (Fig. 2.8). 

As well as reducing low-quality pixel errors (see above), these maps sometimes reduce 
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the total area predicted to be high quality that does not contain elephants. Whether 

elephants are intentionally avoiding these areas, or are present but not being observed, 

will require further data to test. 

 For Maputo, the landscape-wide maps that include smoothed variables show the 

regional distribution of elephants better than maps with only base-scale variables, as 

indicated by the areas of red pixels. Interestingly, the maps for males show their 

attraction to the north-south ‘tree corridor’ along the western side of the reserve, whereas 

the best models for females, when extrapolated into southern regions, suggest they would 

stay to the east. This difference arises mainly from their different relationships to tree 

density at various scales. 

 One exception to the pattern of multi-scale models making better predictions is 

for Maputo males in the wet season, when individuals sometimes venture into the 

northeast region of the reserve. This general area is assessed as relatively poor by the 

multi-scale model, whereas the base-scale model shows it as of medium quality with 

pockets of high quality. The multi-scale model does well elsewhere, where most 

observations occur, so presumably fit in those regions was favored. 

 For Etosha, the multi-scale and base-scale maps are similar in the dry season, and 

both classify regions where female elephants occur as high quality. The multi-scale map 

reduces the more minor of the two errors: there are fewer high-quality regions without 

elephants. For the wet season, the maps are very different. The base-scale map has mixed 

performance, with individuals found in regions classified from low quality (north-central 

and southern tip) through high quality. There are also extensive ‘high quality’ regions 

with no records of elephant presence. Overall, the base-scale map does not reflect the 
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observed presence of elephants well. But once we allow smoothing the situation changes, 

and the multi-scale model indicates that a) elephants seem to avoid the two Acacia-

dominated regions (even though they like Acacia on a local basis), and b) within the rest 

of the reserve, many large areas are suitable, allowing females to roam widely in a way 

that isn’t observed during the dry season. 

 
2.5 Discussion 

We use the data-driven smoothing approach presented here to identify the spatial scales 

at which an organism selects habitats. By smoothing each variable independently, we 

were able to identify its optimal scale(s) and improve model fit (Fisher, Anholt & Volpe 

2011). We add support to the proposition that organisms select habitat variables within 

the landscape at varying scales (Bowyer & Kie 2006; Mayor et al. 2009). Selection 

depends on the spatial context of the variables (Duchesne, Fortin & Courbin 2010). 

 Including squared values for variables in the model selection process allows for 

situations where an organism prefers an intermediate value of a particular variable (such 

as tree cover), or where it is moving towards and away from point features and/or 

avoiding edges of vegetation. These relationships occurred in our models, emphasizing 

the importance of using flexible resource selection functions in habitat analyses. 

 The predictions made by our base-scale models are in general agreement with 

those of Harris et al. (2008): elephants prefer to be close to water, within forage, and 

away from people. In the previous paper, the distance variables were the only smooth 

variables, possibly giving them greater predictive power compared to the other base-scale 

variables. In our multi-scale models, the signal of water preference is lost in some 

datasets, likely due to the inclusion of other, smoothed variables (like proportion of 
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reeds) that signify water availability and possibly other landscape qualities. In two 

instances, distance to water is added to the best multi-scale model: males in Maputo and 

females in Etosha during the wet season. This is not evident in the landscape-wide quality 

maps, but there is still local variation in the quality of the habitat that is partly dependent 

on the distance to water. 

 Some habitat variables operate on multiple scales in opposing fashion, such as 

Acacia for females in Etosha during the wet season being selected positively at a small 

scale (2 pixels, or 1 km) but preferred in intermediate amounts at larger scales (20 pixels, 

or 10 km; Fig. 2.7). This indicates that individuals avoid regions dominated by Acacia 

(only selecting the edges) but favor isolated Acacia patches within other regions (Fig. 2.2, 

pattern E). But even at the smallest scale (for our study, a 500 m x 500 m area), the 

selection of a variable may be due to its association with a resource preferred at finer 

scales not captured by our data (e.g., presence of water). Additionally, in Maputo, males 

in both seasons and females in the dry season have a similar relationship to trees: positive 

preference at a small scale (intermediate preference for females), negative preference at a 

medium scale and positive preference again at a large scale (Fig. 2.7). Since the tree 

variable in Maputo is the proportion of closed woodland, and not divided into types, 

elephants might select certain tree types against others. For instance, elephants may 

prefer one type of tree at a small scale but select for clearings within another type, 

resulting in the opposing preference patterns at medium and large scales (see Fig. 2.2). 

 We also discovered that over-smoothing is a potential problem in performing 

these analyses. We initially extended the smoothing radius to > 100 pixels (50 km), and 

found that there were often peaks (or even steadily improving) AIC values in this region. 
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When smoothing occurs at this scale, environmental data tend to change monotonically 

across the entire landscape. In that case, there is a risk that any slight bias in the mean 

movement (i.e., any drift in the overall locations of animals), whatever the cause, will 

likely show up as a preference for, or avoidance of, that variable. This reflects the general 

truth that the spatial autocorrelation inherent in smoothed data will increase the degree of 

apparent correlations between variables, meaning that one must be very careful about 

assigning cause and effect. As our suburb/city example illustrates, when considering 

large-scale preferences, variables may act as proxies for something else. Because of these 

potential problems, we suggest using a maximum smoothing radius no more than twice 

the size of the choice radius of local movements. Smoothing only up to the choice radius 

precludes individuals from perceiving the environment at distances greater than they can 

travel. 

 We expected to see differing responses between male and female elephants, since 

females are typically part of a mixed herd containing juveniles that are less mobile than 

adults, while males are often solitary and can move larger distances (Smit, Grant & 

Whyte 2007). However, while our data on males covers a greater spatial extent, 

differences in preference are quite small – even when males occupy regions for which we 

have no female data, their preferences remain similar. This suggests that our findings are 

reasonably robust, even though the elephant movements in this analysis do not 

encompass the entirety of each reserve’s landscape. 

 This study demonstrates that incorporating multiple spatial scales improves 

predictions of species habitat preferences, and as a consequence may dramatically alter 

landscape-wide maps of habitat quality. Discovering these habitat preferences helps 
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identify the resources required by the species, at the correct scale, allowing wildlife 

managers to provide or restore them. The habitat preference maps help conservation 

planners ensure that enough habitats remain available, and accessible, for the target 

populations.  For elephants, this is especially critical, given proposals that would allow 

protected populations greater freedom to roam (Van Aarde, Jackson & Ferreira 2006; 

Van Aarde & Jackson, 2007). 
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Chapter 3 
 

Understanding habitat preferences of brown bears in a 
complex landscape by using lasso to inform model 
selection 

 
 

3.1 Summary 

Understanding the selection and use of habitat by animals is important for their 

conservation and management. This becomes challenging when individuals are faced 

with different habitat choices due to the presence of neighboring individuals and/or the 

finely heterogeneous nature of their surrounding environment. Additionally, individuals 

may perceive their environment at different spatial scales than that of the data source, e.g. 

satellite imagery. In this study, we expand upon a previously developed method of 

incorporating multiple spatial scales into habitat selection models to identify habitat 

preferences and generate habitat quality maps for brown bears (Ursus arctos) on the 

Kenai Peninsula, Alaska. Because of the complexity of the landscape, the process of 

generating multiple spatial scales resulted in too many predictor variables to be able to fit 

all model combinations. Instead, we used the least absolute shrinkage and selection 

operator (lasso) to rank each predictor variable in order of importance. We then fit 

models of increasing complexity and compared them using AICc. We included a 

parameter that describes the distance between the available habitat and the nearest 

neighboring bear to assess the influence of neighbors on habitat selection. We 

successfully identified the appropriate spatial scales and habitat variables used by brown 

bears within different parts of the landscape. The inclusion of the neighbor distance 
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parameter did not alter the relative importance of any predictor variable but did improve 

model fit for some groups of bears, namely those inhabiting the higher-elevation 

mountain ranges. The resulting habitat preference maps identified regions of high-quality 

habitat and can be used to reduce bear-human conflict on the Peninsula. This method is 

widely applicable to any study in which there are a large number of predictor variables, 

and it is particularly useful given the recent emphasis on the inclusion of multiple spatial 

scales in habitat selection studies. 

 
3.2 Introduction 

Understanding the complex process of how and why animals move throughout a 

landscape is a challenge. In some cases it is also a matter of pressing importance. The 

population of brown bears (Ursos arctos) on the Kenai Peninsula of Alaska has been 

given ‘special concern’ status due to declining numbers and increased human 

development (Suring & Del Frate 2002; Goldstein et al. 2010). By using their movements 

to discover which aspects of their landscape bears value most, we can minimize human-

bear conflicts.  

 Individuals utilize specific habitats within their landscape to obtain resources. 

Resource selection functions (RSFs) are often used to determine which habitats 

individuals prefer over others (Manly et al. 2002). RSFs provide the relative probability 

of use of different habitat types by an animal and can be evaluated using conditional 

logistic regression (Manly et al. 2002; Duchesne, Fortin & Courbin 2010). In addition to 

the presence of resources, interactions such as competitive exclusion can also affect the 

quality of a particular habitat patch. In this population on the Kenai Peninsula, individual 

bears may be constrained in their movement by neighboring bears. Consider the simplest 
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case, where a single bear is present on the Peninsula and has access to every part of the 

landscape. The preferences of this individual bear could be obtained straightforwardly 

with an RSF. However, consider the other extreme, where the entire Peninsula is 

saturated with brown bears, and each bear stays within a box-shaped home range that is 

bordered on all sides by the home ranges of other bears. In this case, each bear is limited 

in its choice of available habitat, so preferences for each bear can only be determined 

within its home range (Thomas & Taylor 2006). In addition, this distribution may prevent 

some individuals from selecting optimal habitat that occurs within the home range of a 

neighboring bear (Fretwell 1972).  Therefore, it is difficult to determine the general 

preferences of all individuals in the population because each is faced with different 

habitat choices. The actual population of brown bears on the Kenai Peninsula lies 

somewhere between these two extremes. Most individual bears stay within a small area 

of the landscape for much of the year, and their home ranges do not greatly overlap with 

those of other bears. Therefore, each individual’s habitat choices are potentially restricted 

by the presence of their neighbors.  

 Complex landscapes, which can be very finely heterogeneous and have a 

multitude of different habitat types, can also limit individuals in their habitat choices and 

make it difficult to determine habitat preferences. Each prominent environmental feature 

that is potentially important to bear movement, such as coniferous forest cover or 

elevation, must be mapped; the resulting landscape-wide maps are used as predictor 

variables when assessing habitat selection. When the number of predictor variables is 

small, all possible combinations can be evaluated (as in Whittingham et al. 2006). The 

best model(s) containing the most important variables can then be identified using 
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information-theoretic approaches such as Akaike’s Information Criterion (AIC; Anderson 

& Burnham 2002; Burnham & Anderson 2002). Recent techniques have begun to 

incorporate environmental information on a continuum of spatial scales to identify those 

that an organism is choosing (De Knegt et al. 2011; Fisher et al. 2011; Mashintonio et al. 

2014). When this is applied to complex landscapes, which already have a multitude of 

predictor variables, the number of model parameters becomes even greater, making it 

computationally difficult to compare all models. Often, when the number of predictors is 

high, only a subset of all possible models is selected for evaluation (McLoughlin, 

Coulson, & Clutton-Brock 2008). Candidate models may be chosen following a 

preliminary analysis to identify correlation among variables (Compton, Rhymer, & 

McCollough 2002; Roever, Van Aarde & Leggett 2012) or by using ecological 

knowledge (Gustine et al. 2006). However, the additional spatial scales of a single 

environmental feature are derived from the original landscape map, making it difficult to 

decide a priori which combinations of predictor variables should be included for model 

selection. 

The selection of the correct predictor variables has not traditionally been 

considered a problem in habitat selection studies, but it is a common issue in other fields, 

i.e. when assessing risk factors of pharmacological drug use (Avalos et al. 2011), or for 

selecting important genes out of large genome datasets (Li et al. 2011). One approach for 

determining the important predictor variables out of a large set is the least absolute 

shrinkage and selection operator (lasso). Similar to model selection via AIC, this method 

also provides a model with the optimal number of predictor variables (Reid & Tibshirani 

2014). For our application, however, this proved problematic; optimal models varied 
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from one to dozens of predictors, which limited their application to the understanding of 

bear preferences. We therefore used a hybrid approach in which the rankings of predictor 

variables provided by the lasso method determined the sequence of variables entered into 

a model selection process based on AIC corrected for small sample size and a large 

number of predictors (AICc; Hurvich & Tsai 1989). We implemented this technique to 

understand the habitat preferences of brown bears from the Kenai Peninsula, Alaska. This 

study expands our methodology for incorporating spatial scale that was first introduced in 

Mashintonio et al. (2014). Unless stated otherwise, all analyses were performed using 

Mathematica software (Wolfram Research 2012).  

 
3.3 Methods 

3.3.1 Study site 

The Kenai Peninsula (c 23,000 km2), located in south-central Alaska (Fig. 3.1a), is 

bordered by Prince William Sound to the east, the Gulf of Alaska to the south, and Cook 

Inlet to the west (Goldstein et al. 2010). The eastern two-thirds of the peninsula is 

dominated by the Kenai Mountain Range, which rises to 1,990 m (Goldstein et al. 2010; 

Fig. 3.1b). The western portion of the peninsula is the Kenai lowlands landform, a 

glaciated plain with numerous lakes and streams (Goldstein et al. 2010; Fig. 3.1b). 

During the time of this study there were between 250 and 300 brown bears on the 

Peninsula (Suring & Del Frate 2002). 

3.3.2 Location data 

Bear location data were provided by GPS collars, which took fixes every six hours. 

Thirty-three females were collared between 1997 and 2004. Each movement was 
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represented by a pair of starting and ending x, y coordinates. We only considered 

movements that ended greater than 10 pixels (5 km) away from frequently visited streams 

because of the potentially confounding effects of bears’ oscillatory movements towards 

and away from streams. During these movements, bears may visit streams without regard 

to the habitat through which they are passing, making it more difficult to discern their 

preferences elsewhere. We further restricted movements to those that ended less than 5 

km from the starting location because we wanted to analyze only shorter movements in 

the “encamped” mode (which we infer as local foraging) as opposed to faster, long-

distance movements in the “exploratory” mode (movement to distant fishing spots, etc.) 

(Morales et al. 2004; Roever et al. 2013; Mashintonio et al. 2014).  

 Differing resource availability throughout the year can lead to seasonal variation 

in habitat selection (Dahle et al. 1998; Persson et al. 2001; Nielsen et al. 2002; Nielsen et 

al. 2003; Martin et al. 2013). Therefore, we partitioned each year of bear data into three 

seasons and computed separate RSFs for each (McLoughlin et al. 2010): spring (den 

emergence – 15 June), summer (16 June – 15 August), and fall (16 Aug – den return). 

After den emergence in the spring, bears typically consume large amounts of new 

herbaceous vegetation and old berries (Dahle et al. 1998; Persson et al. 2001; Suring et al. 

2006). Salmon begin to return to streams to spawn in mid-June and are an important food 

source for brown bears (Hilderbrand et al. 1999; Jacoby et al. 1999; Belant et al. 2006; 

Suring et al. 2006). Prior to returning to their winter denning sites, bears eat large 

amounts of berries and roots to prepare for hibernation (Dahle et al. 1998; Munro et al. 

2006; Suring et al. 2006; Nielsen et al. 2010). 
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3.3.3 Environmental data 

We used raster layers of vegetation and elevation as predictors of bear movement. The 

vegetation layers included the proportions of alpine vegetation (alpine), wetland 

vegetation (wetlands), coniferous forest (conifer), deciduous forest (deciduous), mixed 

forest, alder and willow trees (alder/willow), and spruce trees (spruce). All layers had a 

pixel size of 500 m by 500 m. These layers had the highest proportions throughout the 

Peninsula and were thus chosen out of a much larger set. We standardized each variable 

to have zero mean and unit standard deviation. We did not use principal component 

analysis (PCA) to further reduce the number of variables for reasons discussed below.  

3.3.4 Cluster analysis 

Due to the complex, finely heterogeneous nature of the landscape and the localized 

movement of individual bears, each bear’s choice of habitat may be markedly different 

depending on the area that it inhabits. This can limit our ability to make generalized 

predictions across the entire landscape. To account for this, we performed a cluster 

analysis to partition the Peninsula into regions of relatively similar vegetation makeup 

(Steinley 2006). We only included areas within 50 pixels of a known bear location to 

prevent the inclusion of habitat that may have been different from the habitats visited by 

bears in this study. We wanted to achieve relatively contiguous spatial regions so that the 

movements of a given bear would generally fall within one region, so we first smoothed 

the vegetation variables using a 10-pixel radius kernel to remove local heterogeneity and 

reveal regional patterns. We then constrained a K-means clustering algorithm to produce 

no more than five clusters. This produced four relatively homogenous clusters with clear 

spatial contiguity, two in the lowlands and two in the highlands, and a fifth cluster 
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holding rare and marginal vegetation mixtures (Fig. 3.1c). Each individual bear 

movement was grouped according to the region in which it was located, and any 

movements that ended within the fifth cluster were discarded.  

3.3.5 Conditional logistic model 

Each individual movement i is influenced by the values of all possible destination pixels 

j, each of which has a vector of k potential predictor values !!  derived from the 

environmental raster layers. A distance term between the current location and each 

potential destination pixel was included in these values to represent the cost of movement 

(Hjermann 2000; Harris et al. 2008). The choice !!!was represented as a binary response 

in which the chosen destination was assigned a value of 1, and all other locations within a 

small radius of the start location were assigned a value of 0. The complete dataset for a 

single movement was stored as a matrix !! !and a binary column vector !! that included 

the destination pixel and all pixels within a 10-pixel (5 km) radius of the starting pixel.  

Under the conditional logistic model, the probability !! that an animal chooses a 

pixel j as the next location is 

!! =
!!!!
!!!!!

 

where β is a k by 1 vector of parameters to be estimated. The log-likelihood of an 

individual movement !! ! is simply the logarithm of the value of !!  for the chosen 

destination pixel (where !! = 1), and the log-likelihood of the entire dataset is the sum of 

the !! !over all movements i. We used conditional logistic regression to fit all models of 

habitat selection. We illustrated model fit by using the pixel values given by !!  to 

generate relative local quality preference maps for each dataset (see Fig. 3.2 for example; 
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Mashintonio et al. 2014). The parameter estimates were applied to the local 

neighborhoods around each starting location. Fit was visually assessed by overlaying 

each map with movement end-points to determine how well our models predicted 

movement choices.  

3.3.6 Choosing optimal smoothing scales 

RSFs have been increasingly used to incorporate spatial scale into the study of an 

individual’s habitat preferences (Boyce 2006; De Knegt et al. 2011; Fisher et al. 2011; 

Mashintonio et al. 2014). However, researchers often only select a few scales at which to 

analyze animal movement. This can limit model inference and lead to mismanagement of 

targeted species if the chosen scales are not biologically relevant for the species in 

question (Levin 1992; Boyce 2006; Mayor et al. 2009; Wheatley & Johnson 2009; De 

Knegt et al. 2010; De Knegt et al. 2011). Instead, habitat selection should be assessed on 

a continuum of scales to identify the ones that an organism is choosing (Fisher et al. 

2011; Mashintonio et al. 2014).  

To generate multiple spatial scales, we smoothed each vegetation variable 

individually by averaging each pixel with its neighboring pixels within an increasing 

radius, up to 20 pixels (10 km; Mashintonio et al. 2014). We included squared versions of 

each variable at each radius, or scale, to allow for non-linear preference functions, 

particularly those in which an intermediate level of a variable is preferred (Johnson et al. 

2004; Johnson & Gillingham 2005; Mashintonio et al. 2014). Pixels representing non-

habitat (i.e., ocean) were not included in the average (Mashintonio et al. 2014).  

 At each radius for each variable we fit four models: one with the distance from 

current location as the only parameter, one with distance and the variable, one with 
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distance and a squared version of the variable, and one with distance and both the linear 

and squared versions of the variable (Mashintonio et al. 2014). We compared models of 

differing complexity using AIC. We generated four lines of AIC values, one for each 

model, over every smoothing radius. Candidate scales were chosen by looking for local 

minima in the AIC scores, but in the figures we inverted the y-axis so that we instead 

were looking for peaks (Fig. 3.3a; Mashintonio et al. 2014).  

Each variable at the selected scale was then further optimized by the addition of 

the linear decay parameter d, which determines how heavily each pixel should be 

weighted in the average depending on its distance from the central pixel (Mashintonio et 

al. 2014). This takes into account differences in the way an individual integrates its 

surroundings, such as declining perceptual abilities due to obstructing vegetation (Harris 

et al. 2008; Mashintonio et al. 2014). For a flat smoothing kernel, all pixels are weighted 

equally within the given radius (d = 0). We ranged d from 0 to 1 in steps of 0.1 

(Mashintonio et al. 2014).  

The smoothing process resulted in a large number of predictor variables for each 

dataset. PCA can be used to reduce the number of variables by transforming them into 

new variables, which are ordered so that the first variable captures most of the variation 

present in the data (Jolliffe 2002). One drawback of PCA is that the new variables can be 

harder to interpret; in our case, this technique also interfered with the smoothing process. 

It was often the case that layers of the same variable at different scales were reduced 

together into a principal component, thus counteracting the effect of smoothing. We 

therefore maintained all of the selected scales throughout the model fitting process. 
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3.3.7 Interpreting combinations of scales 

Individuals may have a positive or negative preference for a particular habitat variable at 

any scale; the inclusion of squared terms also allows for non-linear preferences. 

However, when individuals have different relationships to the same habitat variable at 

different scales, it can be unclear what their true preferences are. Mashintonio et al. 

(2014) interpreted different combinations of preference function shapes as they pertained 

to elephants; the same interpretations can apply here. Individuals with a negative 

preference for a habitat variable at one scale but a positive preference at a larger scale are 

inferred to prefer clearings within that habitat roughly equal to the size of the radius of 

the smaller scale smoothing kernel. Individuals with a positive preference for a habitat 

variable at one scale but a negative preference at a larger scale prefer isolated clumps of 

the habitat roughly equal to the size of the radius of the smaller scale smoothing kernel. 

When there is a hump-shaped preference function for a habitat variable at a small scale, it 

is possible that the scale of the raw data is already too coarse to determine an accurate 

preference, or that individuals may like a mosaic of the habitat or the edge of the habitat 

rather than continuous cover. A u-shaped function at larger scales suggests an avoidance 

of the edge of the habitat, or a preference to be either within or outside of that patch of 

habitat. For point or linear features coded as a ‘distance from’ layer, a hump-shaped 

function indicates that individuals keep a fixed distance from the feature, and a u-shaped 

function means they alternate moving towards and away from the feature. 

3.3.8 Neighbor distance 

It was observed from the movement data that most individual bears on the Kenai 

Peninsula only occupy a small part of the landscape and do not travel much beyond this 
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area for most of the year. Furthermore, the ranges of many individuals appear to be 

bordered by ranges of nearby conspecifics (Fig. 3.1d). When organisms select habitat, it 

is assumed that the habitat selected is of high quality and increases individual fitness 

(DeCesare et al. 2014). However, neighboring bears may potentially constrain an 

individual from selecting high-quality habitat that occurs outside of its range and force it 

into sub-optimal habitat (Fretwell 1972).   

 To incorporate this effect we created a ‘distance to nearest neighbor’ layer by 

computing the distances from each potential destination pixel within a local 

neighborhood of movement choices to the nearest GPS location of another individual. 

We only considered fixes taken +/- 24 hours of the fix of the focal individual as potential 

neighbors; movements where there were no neighboring individuals within that interval 

were not included in the analysis. This layer was used as a predictor variable along with 

distance from current location, elevation, and the optimally chosen scales of vegetation 

layers to determine if it changed the model parameters and improved model performance 

compared to models that did not include this layer.  

3.3.9 Lasso and model selection 

We used conditional logistic regression with lasso penalties to fit models of habitat 

preference. Model complexity is controlled by the regularization parameter λ; as ! → ∞, 

no variables are in the model (all parameter estimates are 0), and when ! = 0, all 

variables are in the model (Avalos et al. 2011). As ! increases from 0, the parameter 

estimates begin to shrink; those of the less important variables will shrink to 0 before 

those of the more important variables. This process produces a relative ranking of 

importance for the entire set of predictor variables.  
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The first model fit for each dataset was at the smallest λ value where all parameter 

estimates were zero (Reid & Tibshirani 2014). Models were then fit at 300 additional λ 

values that decreased logarithmically to the minimum λ, which was found by multiplying 

the first λ by 0.000001 (Fig. 3.3b). All lasso fits were performed in R using the package 

‘clogitL1’ (Reid & Tibshirani 2014).  

 We initially performed K-folds cross validation to determine the optimal λ value 

and thus the important variables and their parameter estimates (Reid & Tibshirani 2014). 

Under this approach, all movement strata were partitioned into K = 10 folds, and one fold 

was randomly selected to be left out over every value of λ. The conditional logistic 

regression model was then fit to the remaining strata, and its deviance was compared to 

the deviance of a model fit using the left-out strata (Reid & Tibshirani 2014). The graph 

of the difference in deviance between the two models at each λ value is drawn with two 

vertical lines: the leftmost at the λ with the minimum deviance, and the other at the λ 

value one standard deviation away from the minimum (Fig. 3.3b). Within this standard 

deviation, the model with fewer parameters (larger λ value) is considered better. 

However, this occasionally resulted in a model in which only one parameter, distance 

from current location, was included, and all other parameter estimates were zero. This 

type of result was unable to provide insight into the preferred habitat of brown bears.  

Alternatively, we used the results of the lasso fit to determine which combinations 

of variables to enter into a model selection process. We began by fitting a model that only 

included the most important variable, which was always distance from current location. 

We subsequently added a single variable to each model in order of importance as 

determined by lasso; this resulted in a number of models equal to the number of predictor 
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variables for each dataset. Models were compared using AICc. We expected a plot of 

AICc scores to follow a u-shaped pattern, where initially the addition of important 

predictor variables increases model performance, and then the addition of nuisance 

variables decreases model performance. The model with the minimum AICc score most 

accurately described bear preferences. 

 To assess the effect of neighboring individuals on habitat selection, we repeated 

our analysis and included the neighbor distance layer. This layer was added prior to the 

lasso stage to allow it to change the ranking of the other predictor variables, and hence 

the model sequence evaluated using AICc. We had two expectations: 1) models with 

neighbor distance would have lower AICc scores than models with the same number of 

model parameters but without neighbor distance, and 2) the best model overall as selected 

by AICc would include neighbor distance. Fig. 3.3 shows the entire process of scale 

selection, lasso, and cross validation for a reduced dataset.  

3.3.10 Preference maps 

We created habitat preference maps for each landscape cluster in each season using the 

parameter estimates for the environmental variables from the model with the lowest AICc 

score. Pixel values were given by !!!!  to illustrate relative landscape-wide quality 

(Mashintonio et al. 2014). We began by interpolating these preferences to pixels in the 

cluster that had variable values within the distribution of the values chosen by bears; this 

was to prevent extrapolation to pixels with extremely small or large amounts of a 

particular variable that bears did not encounter within their local neighborhood of 

movement choices. When included, these extreme pixels can skew the distribution of the 

quality of the remaining pixels. This process often removed a large percentage of the 
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pixels within the cluster, so we extrapolated preferences to pixels with values closest to 

the largest and smallest chosen values until at least 65% of the pixels were included. 

Movement end-points were overlaid onto the map to assess their ability to predict the 

landscape-wide distributions of bears.  

 The landscape-wide maps include a 10-pixel buffer around frequently visited 

streams. We did not use movements within this buffer, so our models do not apply to 

them. Habitat within these buffers may be considered low quality by our model and yet 

still have a high density of bears that are only there to visit the stream. To test this, we 

compared the extrapolated quality of movement end-points within these buffers to those 

from the surrounding landscape.  

 
3.4 Results 

3.4.1 Landscape cluster analysis 

Of the five cluster regions, two were located primarily in the Kenai Mountain Range and 

two in the western lowlands. The fifth consisted of various less common vegetation 

combinations, most of which were located on the periphery of the other regions. The 

“Highland Valleys” region is located within the valleys of the mountain range and is 

composed primarily of conifer and alder/willow with some alpine, mixed forest and 

spruce. The “Highland Peaks” region is dominated by alpine, alder/willow, and some 

conifer and includes one higher elevation mountaintop within the lowlands. The 

“Lowland Coast” region contains deciduous, mixed forest, spruce, and wetlands. The 

“Lowland Plains” region has less deciduous, with mixed forest, spruce, and wetlands 

being joined by alder/willow.  
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3.4.2 Bear preferences 

• Distance. The distance parameter was negative in all datasets and ranged from  

-0.94 to -1.43 in the best models. This corresponds to probabilities of 0.29 and 

0.10, respectively, of moving >1 km per 6-hour interval. Bears therefore select 

habitat that is close to their current location.   

• Elevation. Bears in the Highland Valleys are found across a wide range of 

elevations, but most often between 400–600 m in the spring and 0–200 m in the 

summer and fall. In all seasons, bears consistently select areas that are lower in 

elevation than their current location (i.e., while foraging, they are more likely to 

go down than up). Bears in the Highland Peaks also cover a range of elevations, 

and in the spring may be found as low as 300 m, but in the summer and fall they 

generally stay between 700–800 m and 500–600 m, respectively. These bears also 

select areas that are lower in elevation than their current location in the spring and 

summer but select intermediate levels of elevation in the fall. Bears from the 

highlands thus separate the most during the summer. Lowland Coast bears are 

found between elevations of 0–500 m in the spring and prefer to move upwards. 

In the summer they are found between elevations of 0–120 m. During the fall, 

these bears select intermediate levels of elevation, with a peak around 80–100 m. 

Lowland Plains bears only have a relationship with elevation in the summer, 

where they are found ranging from 20–180 m and are moving downwards (Fig. 

3.4).  

• Habitat, Highland Valleys. During the spring, bears inhabiting Highland Valleys 

prefer alder/willow locally, clumps of alpine, clearings within conifer, and local 
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mosaics of deciduous, mixed forest, and wetlands. During the summer, these 

bears select spruce locally, clumps of alpine, local mosaics of deciduous and 

mixed forest, and large-scale regions of alder/willow while avoiding wetlands and 

conifer. During the fall, they like alder/willow at multiple scales and the edge of 

alpine but generally avoid conifer, mixed forest, spruce and wetlands locally (Fig. 

3.4).  

• Habitat, Highland Peaks. Bears inhabiting Highland Peaks avoid wetlands at 

various scales in all seasons. During the spring, these bears select alder/willow 

and conifer at small scales, clumps of mixed forest, and the edges of alpine but 

avoid spruce and deciduous. In the summer, individuals prefer clearings within 

alder/willow, mixed forest at multiple scales, and clumps of alpine, conifer, 

deciduous, and spruce. During the fall, these bears prefer alder/willow at a small 

scale, deciduous at multiple scales, clumps of alpine, conifer and mixed forest, 

and clearings within spruce (Fig. 3.4).  

• Habitat, Lowland Coast. During the spring, bears in the Lowland Coast select 

conifer and spruce locally, clearings within deciduous, and clumps of mixed 

forest, and they avoid wetlands locally and large-scale alder/willow. During the 

summer, these bears like alder/willow, alpine, and wetlands at various scales, 

clumps of deciduous and mixed forest, and mosaics of conifer and spruce; they 

also avoid large regions of spruce. In the fall, individuals prefer alder/willow and 

alpine locally, clumps of conifer, and clearings within deciduous, mixed forest, 

spruce, and wetlands (Fig. 3.4).  
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• Habitat, Lowland Plains. In the spring, individual bears in the Lowland Plains 

select alder/willow, mixed forest, spruce and conifer at various scales but avoid 

wetlands locally. In the summer, bears prefer mixed forest and spruce at small 

scales. In the fall, they like spruce, a local mosaic of alder/willow, and clearings 

within deciduous and wetlands (Fig. 3.4).  

• Neighbor distance. The neighbor distance parameter was negative for all datasets 

and ranged from -0.01 to -0.12 when it was present in the best model. When this 

parameter improved model fit, the ∆AICc score between the best model and the 

best model without neighbor distance was between 1.5 and 20.4 (Fig. 3.4). For 

bears inhabiting Highland Valleys, the inclusion of neighbor distance improved 

model performance during the summer and fall, but not in the spring. The 

inclusion of neighbor distance also improved model performance for bears in the 

Highland Peaks in all seasons and the Lowland Coast in the fall. Neighbor 

distance did not improve model performance for bears from the Lowland Plains in 

any season. Despite improving model fit, no predictor variables were added or 

removed to the best model when neighbor distance was present. 

3.4.3 Habitat quality predictions 

In all maps, pixels were scaled from red (high quality) to blue (low quality). Darkly 

shaded pixels had landscape values that were too extreme to be included in the 

extrapolation. The landscape-wide relative quality maps predict broad areas within each 

region that are expected to represent the quality of the habitat based on the preferences of 

brown bears in each season (Fig. 3.5). In the spring, the best of the highland regions are 

composed of alpine vegetation, particularly when it also includes alder and willow, and 
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the conifer and spruce dominated valleys. Areas with a high proportion of spruce and 

mixed forest were the highest quality habitat in the lowland regions. During the summer, 

the majority of the valleys have reduced pixel quality compared to the spring, but the 

higher elevation alpine habitat is of similar quality. High-quality habitat is less 

widespread in the lowlands during this season but is still composed of spruce and mixed 

forest as well as some patches of wetlands along the coast. The highland regions in the 

fall have similar areas of high-quality habitat in the summer. The lowlands contain more 

widespread high-quality habitat than during the summer, including areas with a high 

proportion of mixed forest but not areas with wetlands or deciduous forest.  

In all seasons, the quality of the most frequently chosen locations within the 10-

pixel radius of frequently visited streams (Fig. 3.6, black bars) was lower than those 

chosen away from streams (Fig. 3.6, white bars). Bears away from streams more 

frequently chose locations with a pixel quality greater than 0.7 in all seasons. Bears near 

streams most frequently chose locations with a pixel quality between 0.3 and 0.6 in the 

summer and fall; during the spring, they chose higher quality pixels with increasing 

frequency, peaking between 0.7 and 0.8.  

 
3.5 Discussion 

This study successfully incorporates multiple spatial scales for a large number of 

predictor variables into models of habitat selection by brown bears. Fitting all possible 

models and comparing them via AICc to determine the important habitat types and scales 

would be computationally unmanageable. However, we used the rankings of the predictor 

variables generated by the lasso method to determine which variables to enter into model 

selection via AICc. This reduced the number of models to fit while still maintaining the 
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variables that were expected to be important for bears. We recommend this hybrid 

approach when the number of parameters is too high to fit all possible models.  

 Local alpine vegetation is important for all highland bears in every season except 

during the spring for bears in the Highland Peaks, when vegetation at this altitude may 

not have yet emerged and individuals instead prefer to be on the edges of alpine regions. 

Lowland Plains bears did not select alpine habitat during any season, but Lowland Coast 

bears did prefer alpine vegetation during the summer and fall. The importance of this 

variable increased and the scale decreased from summer to fall, which may indicate the 

bears’ transition towards winter denning sites in higher altitudes. 

 Despite its widespread distribution throughout the Highland Valleys, bears in this 

region avoid coniferous forest in all seasons at varying small to medium scales. These 

bears instead prefer mosaics of both mixed and deciduous forests at similar scales. Even 

though conifers are less widespread, bears in the Highland Peaks prefer coniferous forests 

locally in all seasons as well as local clumps of mixed and deciduous forests. The 

importance of local deciduous forests for these bears is surprising, given that this habitat 

is almost nonexistent throughout the Highland Peaks. Similarly, local coniferous forest is 

also very important for bears in the lowlands during the spring despite its rarity within 

this region. These rare habitats may be an important source of old berries prior to the 

emergence of new herbaceous vegetation in the spring, while deciduous forests continue 

to be important throughout the year for their vegetative understories.  

Highland bears only seem to prefer spruce habitat during the summer; bears found 

in the valleys and on the peaks either have no preference or actively avoid spruce during 

the other seasons. Summer is when salmon are most abundant within streams, so bears 
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that are not found near streams during this season may utilize the resources found within 

stands of spruce as an alternative. In contrast, all lowland bears prefer spruce habitat at 

varying scales during all seasons except for the fall, when Lowland Coast bears select 

clearings within spruce forest. The majority of the spruce habitat is found throughout the 

lowlands, so it is unsurprising that it is more important for bears within this region.   

  Wetlands occur throughout the lowlands of the Kenai Peninsula, but they are 

only preferred locally during the summer by bears in the Lowland Coast. This habitat is 

actively avoided in the spring, and lowland bears select clearings within wetland regions 

in the fall. Sedges are an important component of bears’ summer diet and are most 

abundant in association with tidal wetlands [check McCarthy 1989]. Bears that are not 

found near streams may instead visit wetlands to obtain resources like sedges, along with 

small mammals such as voles. There are some wetlands found in the highlands as well, 

primarily within the valleys. Here, it is preferred during the spring but avoided in the 

summer and fall. Wetlands may provide a source of new spring growth that is not found 

elsewhere, leading to its selection during the early portion of the year.  

Cross-validation of conditional logistic regression fit using lasso penalties to 

determine the optimal ! appears to be too conservative in some cases, particularly when it 

calculates a large standard deviation that reduces the best model to a single variable. In 

two of 12 datasets, the !  with the lowest deviance plus one standard deviation 

corresponded to a model with one variable: distance from current location. This was the 

most important parameter in all datasets and is generally a strong and consistent predictor 

of animal movements. We used AICc to find a final model that was less restrictive of 

parameter inclusion. AICc revealed that several landscape variables with parameter 
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estimates that were reduced to zero in the best lasso model were actually highly important 

in understanding bear habitat.  

In each dataset, most of the candidate predictors were variables smoothed at 

spatial scales larger than that of the original environmental layers. In the final models, at 

least one variable in all but two datasets were selected or avoided at more than one spatial 

scale. These results support the proposition that organisms select habitat at multiple 

spatial scales (Bowyer & Kie 2006; Mayor et al. 2009; Mashintonio et al. 2014).  

 The inclusion of the neighbor distance parameter improved model fit for all but 

one of the highland bear datasets but only one of the lowland bear datasets. Additionally, 

bears in the Highland Valleys had the largest ∆AICc score of any datasets, indicating that 

the inclusion of this parameter had the greatest positive effect. Highland bears are more 

constrained in their movements because of the steeper elevational gradient and because of 

their overlapping ranges with other bears. Highland Valley bears in particular had less 

contiguous habitat than bears in the other regions, requiring these individuals to actively 

avoid each other more so than in any other group. Lowland bears had more continuous 

habitat through which to travel and were not found as close to each other, so they did not 

need to select habitat that was locally farther from their neighbors. 

Despite improving model fit in these datasets, including neighboring bears did 

little to impact the other parameters of the best models. When another variable’s ranking 

or importance did change, it was not enough to be included in the best model. The lack of 

change among the important variables implies that it is possible to determine the correct 

habitat preferences of individuals in this habitat, even if they have unknown neighbors. 
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The presence of conspecifics should still be incorporated into models of habitat selection 

if there is the possibility that they can affect an individual’s habitat choices.  

Bear movements within 5 km of frequently visited streams were not included in 

the fitting process; we did not expect these movements to carry a strong signal of habitat 

selection due to their nature of being stream-directed. Extrapolation of our models to the 

locations chosen near-stream revealed that they were generally of lower quality than 

locations chosen away from streams, which was expected (Fig. 3.6). However, bears 

found near streams during the spring chose higher-quality locations with more frequency 

than during either the summer or the fall. Salmon have not yet returned to the streams to 

spawn during the spring, so individuals may be somewhat selective of their habitat at this 

time. Alternatively, bears are more commonly found in mid-quality habitat during the 

summer and fall, when salmon are an important component of their diets (Ben-David, 

Titus & Beier 2004; Belant et al. 2010). Therefore, the quality of the chosen habitat does 

not seem to be as important to these individuals as simply being near a stream. 

Habitat preference maps can be useful tools for conservationists and managers of 

threatened species. These maps must accurately reflect the preferences of individuals to 

correctly predict areas of high use. The incorporation of spatial scale has been shown to 

improve habitat preference maps for elephants (Mashintonio et al. 2014). By applying the 

same methodology to identify the relevant scales of bear preferences, we created bear 

preference maps across the Kenai Peninsula in each season that indicate high-quality 

habitat, which may reflect the most likely areas that bears can be found. However, these 

maps were created using the data available to us and may not be indicative of every bear 

on the Peninsula. Furthermore, the quality of the habitat was scaled from 0 to 1, so the 
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maps should be interpreted as the relative probability of encountering a bear; it may be 

that areas indicated as low-quality may still have a high bear encounter rate that is only 

slightly lower than that of high-quality areas. Therefore these maps should be used only 

as guides to help managers make decisions to reduce human-bear conflict, and not as 

definitive visual references for avoiding bears. 
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Chapter 4 
 

Why does the sheep cross the valley? Using unclassified 
spectral layers to explain bighorn sheep movements  

 
 

4.1 Summary 

As habitat availability in the southwestern United States declines, it is becoming more 

important to understand the habitat requirements of resident animal populations, 

particularly populations of desert bighorn sheep (Ovis canadensis). Ten individual 

bighorn sheep were captured and tagged within the Wonderland of Rocks and Queen 

Mountain region in Joshua Tree National Park to study the effectiveness of artificial 

water sources in maintaining their habitat (Longshore, Lowrey & Thompson 2009). It 

was observed that two individuals made routine trips to the nearby Pinto Range that did 

not have any documented permanent water, which is thought to be necessary for their 

survival. We hypothesized that differences in habitat availability, particularly the 

availability of moisture through plant succulence, allowed these individuals to travel 

freely between mountain ranges. Because traditional measures of vegetation cover can be 

inaccurate in desert environments, we accounted for differences in vegetation between 

the two mountain ranges by using unclassified spectral layers derived from satellite 

imagery, which were reduced via PCA into a single variable. We compared models of 

sheep movements within the primary mountain range and between both mountain ranges 

using AIC to identify differences in preferences between sheep that did and did not cross 

the valley. We then created habitat preference maps by projecting these preferences 

across the landscape to visualize any differences in perceived habitat quality between the 
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two groups of sheep. We found that differences in habitat preference were primarily in 

relation to vegetation and freestanding water. Sheep were found to select regions of 

higher vegetation when they did not have a relationship with freestanding water. In the 

east range, where there was no documented freestanding water, sheep preferred to move 

into and out of regions of high vegetation. Despite these differences, the projections of 

available high-quality habitat across the landscape were similar among all groups of 

sheep movement. Therefore, the Pinto Range may offer suitable habitat for all bighorn 

sheep and can be used to expand bighorn sheep habitat.  

 
4.2 Introduction 

Land use change in the southwestern United States has led to an increase in aridity, which 

is expected to continue to increase throughout the rest of the century (Jenerette & Wu 

2001; Seager et al. 2007). These changes are caused by urbanization and agricultural 

expansion, which adds more fragmentation and complexity to a naturally fragmented 

landscape (Jenerette & Wu 2001; Scanlon et al. 2005; Grimm et al. 2008). This can lead 

to decreased precipitation, extended drought, and reduced soil moisture, which all change 

the distribution and composition of the vegetation (Jenerette & Wu 2001; Seager et al. 

2007; Davies & Hall 2010; Munson et al. 2013). These impacts on desert habitat features 

can cause herbivores to change their behavior to meet water and foraging requirements 

(Brown, Valone & Curtin 1997; McKinney, Smith & DeVos Jr. 2006; Hoglander et al. 

2015). Wildlife managers are concerned about the viability of many desert populations in 

the wake of these changes, particularly those of the desert bighorn sheep (Ovis 

canadensis) (Krausman 2000; Singer, Bleich & Gudorf 2000; Papouchis, Singer & Sloan 

2001). Their populations are declining throughout the southwest, making it critical to 
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understand their resource requirements (Papouchis, Singer & Sloan 2001; Harris, Smythe 

& Henry 2009; Hoglander et al. 2015).  

Bighorn sheep typically inhabit escape terrain, which include steep, rugged slopes 

that allow individuals to detect predators from large distances (Bailey 1980; Singer, 

Bleich & Gudorf  2000; McKinney, Boe & DeVos Jr. 2003). Suitable areas of escape 

terrain are widespread but only occur as islands within the higher elevation mountain 

ranges (Wehausen 2007). Therefore, populations are isolated between long stretches of 

unsuitable habitat on the desert floor (Bleich, Wehausen & Holl 1990; Singer, Bleich & 

Gudorf 2000). However, these seemingly isolated populations are connected by some 

individuals, usually rams, traversing the desert valleys between mountain ranges, which 

results in a metapopulation structure (Witham & Smith 1979; Hanski 1998; Wehausen 

2007).  

Bighorn sheep, particularly females, have been shown to be dependent on 

freestanding water (Blong & Pollard 1968; Turner 1970; Broyles 1995; Turner et al. 

2004; Oehler et al. 2005; Dolan 2006; Sappington, Longshore & Thompson 2007; 

Wehausen 2007; Longshore, Lowrey & Thompson 2009; Bleich, Marshal & Andrew 

2010). Models of bighorn sheep habitat have shown that the presence of freestanding 

water is an accurate predictor of sheep locations (Turner et al. 2004; Sappington, 

Longshore & Thompson 2007; Longshore, Lowrey & Thompson 2009; Bleich, Marshal 

& Andrew 2010). However, other studies have indicated that sheep can obtain enough 

succulence from vegetation alone and do not rely on freestanding water (Warrick & 

Krausman 1989; Krausman & Etchberger 1995; Broyles & Cutler 1999). The dependence 

of bighorn sheep populations on freestanding water likely varies with several factors, 
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such as climate, terrain, forage availability, and the presence of predators and competitors 

(Cutler 1996).  

Joshua Tree National Park (JOTR), located in southern California, has had 12 

permanent water guzzlers added to mitigate the loss of perennial water sources over time 

(Douglas 1975). Ten adult female bighorn sheep were captured and tagged within the 

Wonderland of Rocks and Queen Mountain region of the park to study the effectiveness 

of these artificial water sources in maintaining bighorn sheep habitat (Longshore, Lowrey 

& Thompson 2009). It was observed that two of these sheep made routine trips to the 

nearby Pinto Range that lacks any documented permanent water sources, which was 

unusual given that female bighorn sheep usually remain near freestanding water and 

rarely cross low elevation valleys (Witham & Smith 1979; Dolan 2006). The objective of 

this study was to compare the movements of the two groups of sheep to determine why 

some individuals crossed the valley between mountain ranges. We hypothesized that this 

behavior was caused by differences in habitat availability and/or differences in individual 

habitat preferences, particularly in regards to the availability of vegetation.  

 
4.3 Methods 

4.3.1 Study site 

Our study took place within the northwestern portion of JOTR, California (34°N, 116°E; 

Fig. 4.1). In the Wonderland of Rocks and Queen Mountain region, elevation ranges from 

680 m to 1775 m. Dominant vegetation consists of Larrea tridentata-Ambrosia dumosa 

associations at lower (<1000 m) elevations, Yucca schidigera, Y. brevifolia, and 

Coleogyne ramosissima associations at mid-elevations (900-1400 m), and Juniperus 
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californica associations at higher (>1100 m) elevations (Leary 1977). The Pinto Range 

reaches a maximum of 950 m. During our study, summer temperatures reached upwards 

of 47°C and winter temperatures were as low as -6°C. Average rainfall was 

approximately 13 cm/year, with two peaks occurring during the early spring and the late 

summer (temperature and precipitation data from Twentynine Palms [34° N, 116° W] 

National Climatic Data Center weather station). Sheep population size was estimated to 

be 54 individuals (95% C.I. 39-68) in 2003 and 59 individuals (95% C.I. 28-89) in 2004 

(Thompson et al. 2007). 

4.3.2 Location data 

Sheep locations were provided by ARGOS satellite uplink capability collars (TGW-3580 

store-on-board units, Telonics Inc., Mesa AZ). These collars were fitted to ten female 

adult bighorn sheep captured 29-30 October 2002 within the Wonderland of Rocks and 

Queen Mountain region of JOTR (Longshore, Lowrey & Thompson 2009). Location 

fixes were obtained three times daily (at 0500, 1200, and 2000 h) for each individual. We 

restricted our analysis to movements that ended within 1 km (33 pixels) of their starting 

locations, as this was considered a reasonable distance to travel between location fixes.  

 We labeled each movement as occurring within the “main” (Wonderland of 

Rocks/Queen Mountain) or the “east” (Pinto Range) region. We excluded the few 

movements that occurred within a smaller peak between the two primary mountain 

ranges. We separated the sheep data within the main mountain range between sheep that 

cross the valley at least once (transient) and those that do not (non-transient). To more 

accurately compare local habitat preferences, we only studied the five non-transient sheep 

that had overlapping ranges with the two transient sheep. We further divided all 
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movements into three seasons: spring (February – May), summer (June – September), 

and winter (October – January). Summer habitat is dependent upon the availability of 

permanent water sources, since this is when it is most limiting for bighorn sheep 

populations (Bleich, Bowyer & Wehausen 1997; Andrews, Bleich & August 1999; 

Turner et al. 2004; Sappington, Longshore & Thompson 2007; Longshore, Lowrey & 

Thompson 2009). Peak lambing season occurs during the spring months (Rubin, Boyce & 

Bleich 2000), which may influence the selection of habitat in comparison to the winter 

months. Transient sheep crossed the valley numerous times during the spring (21 crosses) 

and winter (18 crosses), but only infrequently during the summer (3 crosses).  

4.3.3 Environmental data 

We used elevation, slope (proportional scale from 0 to 1), ruggedness (Vector 

Ruggedness Measure ranging from 0 to 1; Sappington, Longshore & Thompson 2007), 

and distance from permanent water source (in km) as potential habitat predictors of sheep 

movement. Elevation was obtained from a digital elevation model, which was also used 

to calculate slope and the Vector Ruggedness Measure. This measure of ruggedness, 

which more effectively decouples terrain ruggedness from slope, was calculated with a 

script in ArcView using a 3 x 3 moving window (Sappington, Longshore & Thompson 

2007). All habitat variables had a pixel size of 30 m by 30 m. We standardized each 

variable to have zero mean and unit standard deviation. 

 Vegetation is also an important component of sheep habitat (Krausman & 

Leopold 1986). Vegetation maps are commonly used as predictor variables to help 

determine available habitat for a species of interest (McDermid, Franklin & LeDrew 

2005; Xie, Sha & Yu 2008). However, it is difficult to create traditional vegetation maps, 
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such as percent cover of a species of interest, in desert environments because of the 

relatively sparse vegetation in comparison to the dominance of the background soil 

(Smith et al. 1990). Alternative measures of vegetation such as the normalized difference 

vegetation index (NDVI) can also be affected by high relief, shadows, and the moisture 

content of the background soil (Huete & Jackson 1988; Kremer & Running 1993; Peters 

& Eve 1995; Sesnie et al. 2011; Yang, Weisberg & Bristow 2012). Instead, we used 

unclassified spectral images of the landscape as predictors of sheep movement. Images 

for each season were obtained from Landsat 4-5 TM and coincided with the dates of 

sheep movement. Images were processed in QGIS and exported to Mathematica. 

Principal Component Analysis (PCA) was performed on the six non-thermal spectral 

bands of each image to reduce the number of predictors while still maintaining most of 

the variation in the data. Only Principal Component 1 was used to represent vegetation 

further, as this layer captured more than 90% of the variation in each image. This 

variation is mostly in the short-wave IR1 spectral band, in which low reflectance is 

indicative of higher moisture content in the soil and vegetation (USGS 2013). 

4.3.4 Fitting the model 

We used conditional logistic regression to fit each movement i to different combinations 

of our k environmental layers. These layers inform the potential predictor values !! !of 

every possible destination pixel j, which influence each movement. We included the 

distance between the current location and each potential destination pixel as an additional 

predictor to represent the cost of movement (Hjermann 2000). For each choice !!, the 

chosen pixel was assigned a value of 1 and 40 random pixels within a 33 pixel radius 

(density of 1 pixel per 78 km2) were assigned a value of 0. Under the conditional logistic 
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model, the probability !! that an animal chooses a pixel j as the next location is 

    !! = !!!!

!!!!!
     [1] 

where β is a k by 1 vector of parameters to be estimated. We took the logarithm of each 

chosen pixel !! (where !! = 1) to find the log-likelihood !! !of each movement, and we 

summed the !! !over all movements to find the log-likelihood of the entire movement 

path. We compared models of differing complexity using Akaike’s Information Criterion 

(AIC). We calculated the importance of each parameter by summing the weights of the 

models in which the parameter appears.  

4.3.5 Smoothing the environmental data 

The spatial scale at which an organism responds to its surroundings may differ from the 

scale at which the data is measured (Holling 1992; Lima & Zollner 1996; Nams 2005; De 

Knegt et al. 2010; Marshal et al. 2011). Therefore, the spatial scale(s) chosen for study 

can be biologically irrelevant for the species in question (Levin 1992; Boyce 2006; 

Mayor et al. 2009; Wheatley & Johnson 2009; De Knegt et al. 2011). We implemented 

the smoothing process described in Mashintonio et al. (2014) to generate multiple spatial 

scales to identify the one(s) being used by the sheep. This was done for two variables: 

vegetation and ruggedness. Fig. 4.2 displays the vegetation layer at the original 

(unsmoothed) scale and smoothed with a 23-pixel radius kernel. These layers were 

overlaid with spring transient sheep movement segments to visually assess how 

individuals moved across this habitat. Smoothing the ruggedness layer is equivalent to 

creating a Vector Ruggedness Measure with a larger moving window and may more 
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accurately represent sheep preferences. The ‘distance to the nearest permanent water’ 

layer is intrinsically smooth. 

 To smooth these variables, we averaged each pixel with its neighboring pixels 

within an increasing radius, up to 66 pixels (~ 2 km, or twice the radius of available 

movement choices; Mashintonio et al. 2014). Due to the computational intensity of fitting 

66 separate models for each dataset, along with the fact that individual scales of the same 

variable become more correlated at larger radii, we did not fit models at each individual 

radius; instead, we fit models at 13 different radii that increased logarithmically from 0. 

We included squared versions of each variable at each radius to allow for non-linear 

preference functions (Johnson et al. 2004; Johnson & Gillingham 2005; Mashintonio et 

al. 2014).  

 At each radius for each variable, we fit models using the original raster layer, the 

squared version of the raster layer, and both the linear and squared versions of the raster 

layer (Mashintonio et al. 2014). Each model also included the distance from current 

location parameter; furthermore, we included a distance-only model as a null comparison 

(Mashintonio et al. 2014). Models were compared using AIC. We chose candidate scales 

by looking for local minima in the AIC scores, but we inverted the y-axis so that optimal 

models would be shown as peaks (Mashintonio et al. 2014). These candidate scales were 

used as predictor variables, along with the other environmental layers, in the full model 

selection process. 

4.3.6 Modeling sheep preferences 

We first determined whether transient sheep and non-transient sheep have similar habitat 

preferences within the Wonderland of Rocks/Queen Mountain region. We used AIC to 



71!

! !

compare models fit using transient and non-transient sheep movement data separately and 

combined. We summed the AIC scores of the best models for transient and non-transient 

sheep separately and compared it to the AIC score of the best model for combined sheep. 

A lower summed AIC score for the separately fit data indicates that the two groups of 

sheep should be modeled separately to capture differences in their preferences within this 

region. 

Once it was determined that the transient sheep had different preferences than the 

non-transient sheep within the main range, we assessed whether the transient sheep 

themselves had different preferences when they inhabited different mountain ranges. We 

used the same predictor variables as above (for transient sheep) to fit models of all 

transient sheep movements, regardless of mountain range. For movements that occurred 

within the main mountain range, parameters were estimated using equation [1]. To 

identify whether these sheep displayed different preferences when moving in the east 

range, we estimated an additional “difference” parameter for each predictor variable such 

that the probability an animal chooses a pixel j as the next location is now  

   !! = !!!!!!"#$$%&%'(%

!!!!!!"#$$%&%'(%!
             [2]. 

Models included either the primary parameter only or both the primary and the difference 

parameters for each predictor variable. If the estimate of the difference parameter was 

small compared to the primary parameter, the preference for that habitat variable was 

considered similar across both mountain ranges. If it was large, however, and the 

difference parameter had a high measure of importance, individual sheep likely had 

different preferences for the same variable when in different mountain ranges. In this 

case, the parameter estimates for the sheep movements occurring only in the east range 
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were obtained by adding the difference parameter to the primary parameter; these were 

then compared to the parameter estimates for the sheep movements occurring only in the 

main range, which were obtained in the first analysis. 

4.3.7 Preference maps 

We used the parameter estimates for non-transient sheep movements and transient sheep 

movements in both mountain ranges to create habitat preference maps. These maps 

display the relative quality of each pixel given by !!!! .!We first compared maps created 

using parameter estimates of transient and non-transient sheep in the main mountain 

range. These maps were overlaid with individual movement vectors to assess the map’s 

ability to predict the quality of the habitat selected as well as to display the direction of 

sheep movement. We then projected the parameter estimates for each of these groups of 

sheep movement onto the east range and overlaid this projection with sheep movement 

end-points to assess how well they each predicted movements. We created additional 

maps using parameter estimates of the transient sheep in the east range to compare to the 

projected habitat quality. We also used these parameter estimates to project preferences 

back to the main range. For all maps, we visualized habitat quality within a 66-pixel 

radius of all sheep locations. We did not include the parameter estimate for water 

distance in these maps because it often had a large value that dominated the projection of 

pixel quality.   

 
4.4 Results 

4.4.1 Optimal spatial scales 
Ruggedness. Both transient and non-transient sheep movements indicated a 

preference for the ruggedness layer at a scale greater than that of the original layer (30 m 
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cell size). Most sheep preferred ruggedness smoothed with a 3-pixel radius kernel (210 m 

cell size), including transient sheep in the spring and summer and non-transient sheep in 

the summer. In the winter, transient sheep selected ruggedness smoothed with a 1-pixel 

radius kernel (90 m cell size) and non-transient sheep selected ruggedness smoothed with 

a 6-pixel radius kernel (390 m cell size); non-transient sheep in the spring also selected 

ruggedness smoothed to 1 pixel. When the sheep movement data was combined, the 

optimal smoothing radius always coincided with that of the non-transient sheep 

movements, which were greater in number than the transient sheep movements.  

Vegetation. Both transient and non-transient sheep movements in the spring had a 

relationship with the vegetation layer at two scales: the original layer (30 m cell size) and 

the layer smoothed with a 23-pixel radius kernel (1.41 km cell size; Fig. 4.3). In the 

summer, transient sheep movements maintained a relationship at two scales: the original 

layer and the layer smoothed with a 16-pixel radius kernel (990 m cell size; Fig. 4.3). 

Non-transient sheep movements only had a peak when smoothed to 1 pixel (Fig. 4.3). In 

the winter, both groups of sheep movements again responded to vegetation at two scales: 

the original layer and the layer smoothed to 16 pixels for transient sheep and 32 pixels for 

non-transient sheep (Fig. 4.3). The scales chosen for the combined data again matched 

those for the non-transient data.  

 In some cases, the curve of the AIC score continued to increase at large 

smoothing radii without peaking. We did not consider these scales to be ecologically 

important, since this result may be an artifact of the data. For instance, when smoothed at 

a very large scale, any movements towards or away from a slight environmental gradient 
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would be detected as selection for that variable at that scale, regardless of the reason for 

the movement (Mashintonio et al. 2014).  

4.4.2 Same-location models 

In all seasons, the ‘separate models’ AIC score was lower than the ‘combined models’ 

AIC score, demonstrating that it is better to model sheep movements separately (Table 

4.1). This is in part due to the different spatial scales chosen for ruggedness and 

vegetation by the two groups of sheep, since only one of the scales was present in the 

combined dataset. In addition, some variables were important for both groups of sheep, 

but the relationships to that variable were different (e.g., slope; Fig. 4.4). Therefore, 

combining the sheep data precluded us from identifying opposing preferences for the 

same variable and different scales of selection. 

4.4.3 Different-location models 

In the spring, the importance value of every difference parameter was nearly identical to 

the corresponding primary parameter, even when neither parameter was important (Table 

4.2). In the summer, the importance values of the difference parameters were always 

much lower than their corresponding primary parameters, particularly when the primary 

parameter had a high importance value (> 0.8; Table 4.2). The lower importance of the 

difference parameters in the summer was likely due to the small number of movements 

made in the east range during this season. In the winter, the importance values of the 

difference parameters were only slightly lower than their corresponding primary 

parameters, never by more than 0.02 (Table 4.2). 
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 Transient Non-Transient Total Combined 
Spring 3,652.33 13,301.58 16,953.91 16,991.1 
Summer 3,651.12 11,527.22 15,178.34 17,017.9 
Winter 2,965.56 11,991.80 14,957.36 15,001.1 
 
Table 4.1. AIC scores for transient and non-transient sheep inhabiting the Wonderland of Rocks 

and Queen Mountain region in each season. Transient and non-transient sheep were modeled 

separately, and the sum of their AIC scores was compared to the AIC score of a model fit to the 

combined sheep data. In all cases, the ‘separate sheep’ AIC score (bold) was better than the 

‘combined sheep’ score. 

 
4.4.4 Sheep preferences 

The shapes of the relationships for each of the predictor variables in the best model are 

shown in Fig. 4.4. These were derived using the parameter estimates of the important 

variables. All sheep in every season preferred higher elevations and rugged terrain, but 

some groups displayed a slightly hump-shaped relationship with ruggedness, where 

preference declined if the terrain was too rugged.  

• Spring. Transient sheep preferred steep slopes in the main range but preferred 

intermediate slopes in the east range. Non-transient sheep avoided steep slopes. 

Transient sheep preferred locations that were close to permanent water while in 

the main range, but non-transient sheep did not consider distance from water 

important. Transient sheep in the main range also preferred regions of low 

vegetation, but in the east range they moved into and out of regions with high 

vegetation (u-shaped relationship). Non-transient sheep preferred regions of high 

vegetation.  

• Summer. Non-transient sheep preferred steep slopes, but transient sheep did not 

consider slope important. Both transient and non-transient sheep moved into and 
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out of areas close to permanent water (u-shaped relationship). Transient sheep 

preferred intermediate amounts of local vegetation, while non-transient sheep 

preferred low and high amounts of local vegetation (u-shaped relationship).  

• Winter. Transient sheep preferred steep slopes in the main range but avoided 

steep slopes in the east range. Non-transient sheep preferred intermediate slopes. 

Transient sheep kept a fixed distance (hump-shaped relationship) from permanent 

water in the main range, while non-transient sheep did not consider distance from 

water important. Transient sheep preferred a mosaic (hump-shaped relationship) 

of vegetation in the main range and again moved into and out of regions of high 

vegetation in the east range. Non-transient sheep selected small patches of low 

vegetation within regions of high vegetation.  

4.4.5 Habitat preference maps 

Although there were differences in parameter estimates between transient and non-

transient sheep in the main mountain range, the habitat preference maps predicted similar 

high-quality areas in all seasons (Fig. 4.5, main range). However, during the summer and 

fall, the high-quality areas are more extensive for transient sheep than non-transient 

sheep. Despite this, the projection of habitat quality in the east range is nearly identical 

for all datasets (Fig. 4.5, east range). None of these projections predict the southern 

portion of habitat along the ridge to be high quality despite several sheep movements in 

this area. Preference maps created using east-range movements did identify this area as 

being high quality in addition to extending the other high-quality areas (Fig. 4.6, east 

range). When applied to the main range, even more habitat is projected to be high quality 

(Fig. 4.6, main range).  
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 Spring Summer Winter 
Elevation (difference) 1.0     (1.0)  1.0   (0.56)   1.0   (0.98) 
Elevation Sq (difference) 0.51   (0.51) 0.99  (0.56)  1.0   (0.98) 
Slope (difference) 0.98   (0.98) 0.37  (0.23) 0.14  (0.14) 
Slope Sq (difference) 0.82   (0.82) 0.23  (0.09) 0.56  (0.55) 
Ruggedness (difference) 1.0     (1.0)  1.0   (0.56)  1.0   (0.98) 
Ruggedness Sq (difference) 1.0     (1.0)  1.0   (0.56) 0.98  (0.96) 
Water Distance (difference)* 0.71  (-----) 0.89  (-----) 0.94  (-----) 
Water Distance Sq (difference)* 0.68  (-----) 0.87  (-----) 0.94  (-----) 
Vegetation- local (difference) 0.57  (0.57) 0.22  (0.08) 0.20  (0.19) 
Vegetation- local Sq (difference) 0.40  (0.40) 0.93  (0.52) 0.31  (0.30) 
Vegetation- regional (difference) 0.65  (0.65) 0.19  (0.08) 0.41  (0.40) 
Vegetation- regional Sq (difference) 0.99  (0.99) 0.24  (0.12) 0.99  (0.97) 
*Importance values calculated using parameter estimates of main-range only transient sheep movements. 
 
Table 4.2. Importance values for parameter estimates of transient sheep movements in each 

season. The importance of the primary parameters was determined using all transient sheep 

movements; the importance of the difference parameters was determined using only the transient 

movements in the east range. Variables with importance values greater than 0.8 (bold) are 

considered important for determining sheep movements.  

 
4.5 Discussion 

The transient sheep that inhabit the Wonderland of Rocks and Queen Mountain region of 

JOTR have slightly different habitat preferences than the non-transient sheep that inhabit 

the same area. The transient sheep also select different habitat when they leave the main 

mountain range and travel to the Pinto Range. The different availability of certain habitat 

in the Pinto Range is likely due to the lower elevation and the resulting changes in 

vegetation composition, which was captured in our PC1 layer. This layer is primarily 

composed of the short-wave IR1 spectral band, which discriminates the moisture content 

of the soil and vegetation, so it is possible that these transient sheep are able to obtain 

water from other sources when in the Pinto Range.  



78!

! !

 The importance of freestanding water to bighorn sheep populations likely varies 

with several factors, including season, climate, terrain, forage availability, and the 

presence of predators and competitors (Cutler 1996). Freestanding water is most limiting 

during the dry summer months (Turner 1970; Campbell & Remington 1979; Broyles 

1995; Bleich, Bowyer & Wehausen 1997; Andrews, Bleich & August 1999; Turner et al. 

2004; Oehler et al. 2005; Sappington, Longshore & Thompson 2007), which explains 

why most movements between the two mountain ranges occur during the spring and 

winter. During the summer, both transient and non-transient sheep move in and out of 

areas near permanent water. This may be to avoid competition for use of the water 

guzzlers (Boyce et al. 2003; Ostermann-Kelm et al. 2008; Whiting et al. 2011; Simpson, 

Stewart & Bleich 2011) or to avoid predators that may hunt opportunistically near 

permanent water sources (Rosenstock, Ballard & DeVos Jr. 1999; DeStefano, Schmidt & 

DeVos Jr. 2000; Simpson, Stewart & Bleich 2011). During the other seasons, non-

transient sheep do not have a preference for water distance but select large-scale regions 

of vegetation (Fig. 4.4). Transient sheep have similar relationships between water 

distance and regional vegetation in each of the other seasons: during the spring, they 

prefer short distances to water and low vegetation, whereas during the winter, they 

maintain a fixed, intermediate distance from water and prefer an intermediate amount of 

vegetation. When transient sheep were in the Pinto Range and far from permanent water, 

they avoided the edges of large regions of vegetation, instead preferring to be either 

outside this area or within. This relationship is evident in their movement patterns in the 

Pinto Range, where smoothed vegetation is found as a ring around the peak of the 

mountain (Fig. 4.2, bottom). Individuals are usually found within this ring, but otherwise 
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are at higher elevations with lower amounts of vegetation. They may behave this way 

because too much vegetation cover can inhibit the sheep’s ability to detect approaching 

predators, but it also allows individuals to fulfill their water requirements when there are 

no nearby sources of freestanding water (McCutchen 1981; Risenhoover & Bailey 1985; 

Warrick & Krausman 1989; Krausman & Etchberger 1995; Sesnie et al. 2011; 

Harkleroad & Krausman 2014).  

 The use of difference parameters revealed that the transient sheep themselves 

have different preferences in each of the mountain ranges. This indicates that there are no 

inherent habitat preferences of some individual sheep that cause their attraction to the 

east range. Moreover, the projections of the preferences of transient and non-transient 

sheep movements in the main range to the east range both predicted the presence of high-

quality habitat. Therefore, there is suitable habitat for both groups of sheep in the east 

range despite their differing preferences, and it is not unusual for some individuals to 

travel to this range. Maps of the east range made using east-only movements revealed 

more extensive high-quality habitat, both in the east range and when projected to the 

main range. Therefore, when in the east range, sheep appear to have a broader range of 

suitable habitat.  

 Habitat preference maps created using the parameters of all transient movement 

data closely mirrored the maps created using only the main-range transient movements 

(not shown). The prediction of habitat quality in the east range was therefore more 

similar to the projected quality (Fig. 4.5) than the actual quality (Fig. 4.6). This is because 

only a small subset of all transient movements occurred in the east range, the removal of 

which was not enough to cause a drastic change in the parameter estimates between the 
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main-range movements and all movements. This pattern was also true for comparisons 

between the transient and non-transient sheep movements in the main range, the latter of 

which comprised the majority of the combined sheep movements. This highlights the fact 

that there are differences in habitat preference among individuals, and that combining 

movement data from multiple individuals can mask this variation. Maps created using 

parameters for the full dataset can fail to identify the full extent of high-quality habitat. 

There are certainly differences in habitat preferences among the five non-transient sheep 

used in this study, but we expect these differences to be smaller than the differences 

between all non-transient sheep and the transient sheep. Likewise, the preferences 

identified by transient sheep movements in the east range would be overlooked without 

the use of difference parameters, but these movements occur within a separate mountain 

range with different habitat availability and thus were expected to differ from movements 

in the main range.  

 The smoothing analysis indicated that bighorn sheep had a relationship with the 

vegetation layer at multiple spatial scales, even though the final models for all but one 

dataset ultimately included vegetation at only a single spatial scale. Each analysis 

included a peak at a local scale, usually the original 30 m raster layer, and at a regional 

scale. This regional scale was consistent for all sheep during the spring (23 pixel radius 

kernel) and all transient sheep in the summer and fall (16 pixel radius kernel). 

Additionally, the optimal scale for ruggedness was always larger than the original raster 

layer, indicating that the window size we used for the VRM was not large enough. This 

layer was consistently selected at a one- or three-pixel radius kernel in all but one dataset, 

indicating an inherent scale of selection for this species in a particular environment. The 
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consistent peaks at these specific smoothing radii may have been the result of only using 

a few selected radii instead of the full continuum, which was not computationally feasible 

with the size of each pixel (30 m) and the maximum radius (66 pixels). Nevertheless, we 

show that habitat preferences are better evaluated by including environmental 

information at multiple spatial scales (Bowyer & Kie 2006; Mayor et al. 2009; 

Mashintonio et al. 2014).  

 In this study we used unclassified spectral layers to represent vegetation. To have 

a manageable number of predictor variables, we reduced the six spectral bands to one 

principal component, which captured more than 90% of the variability in the bands. 

Although this makes it harder to interpret the characteristics of the landscape to which 

sheep are responding, we have shown that bighorn sheep do in fact respond to this layer 

at varying spatial scales. Further analyses on the individual spectral bands and ground-

truth surveys will help to identify more specific landscape features that the sheep are 

responding to.  

Individual bighorn sheep may cross the valley into the Pinto Range for several 

reasons beyond inherent differences in the quality of the habitat or major differences in 

habitat preferences. The Pinto Range has more of this vegetation variable, likely making 

it possible for individuals to travel far from freestanding, permanent water. According to 

the habitat preference maps, all non-transient sheep included in this study would also find 

high-quality habitat within the Pinto Range, so there is no inherent biological reason why 

these individuals do not cross. The frequency of the trips made by the transient sheep 

indicates that the valley may not be particularly difficult to cross. Their attraction to the 

Pinto Range may have more to do with the lack of predators and competitors for water. 
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We did not have access to mountain lion movement data, but the Pinto Range may 

represent a haven from predators that live near the Wonderland of Rocks/Queen 

Mountain region. Because of the decline in available habitat for bighorn sheep 

throughout the southwestern US, particularly in JOTR (Longshore, Lowrey & Thompson 

2009), these findings may represent an opportunity to expand the range of bighorn sheep 

that inhabit this region. 
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Chapter 5 

Conclusions  

Individuals of different species interact with each other and their environment in different 

ways, making it difficult to implement a single modeling framework for all species. This 

dissertation explored these differences in habitat selection as it relates to spatial scale in 

three distinct ecological systems. It is evident that for all three species under study – 

savannah elephants, brown bears, and desert bighorn sheep – the spatial context of the 

environment matters to individuals and can alter what we know about their habitat 

requirements.  

 Because of differences in the structure of the landscapes and the behavior of the 

species, smoothed environmental data were incorporated into models of habitat selection 

in different ways for each system. When all individuals within a group are expected to 

have similar habitat preferences and the number of predictor variables requiring 

smoothing is small, model fitting and selection can be done for all combinations of 

variables. This was the approach taken for the elephant data. Although the number of 

predictors was also small for the bighorn sheep data, individuals were expected to have 

different preferences within different mountain ranges. We still were able to fit all 

combinations of variables but included a difference parameter for each predictor variable, 

which allowed us to determine if there were any differences in preference. Finally, 

because of the complexity of the Kenai Peninsula, smoothing the environmental variables 

resulted in too many predictor variables to fit all models of bear preference. For this 

situation, we determined a relative ranking of the variables to fit specific combinations.  
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When individuals roam widely throughout a landscape they all face similar 

habitat choices. Therefore, movements of individuals with similar characteristics, such as 

age, sex, or season of movement, can provide an accurate measure of selection when 

combined. We expected elephants to have different habitat preferences between males 

and females and between the wet and dry seasons, but individuals within these groupings 

likely have similar preferences. Alternatively, individuals maintaining small ranges that 

cover only a small portion of the landscape may display vastly different habitat 

preferences if the available habitat differs for each of them. This was the case for the 

Kenai Peninsula, in which bears inhabit both the high-elevation mountains as well as the 

glaciated lowlands. This division in the landscape means that the habitat available to 

bears in the highlands, such as alder and willow, is not always available to bears in the 

lowlands, and thus these movements must be analyzed separately. We partially accounted 

for this by clustering the landscape into regions of similar habitat makeup and combining 

bear movements within each region. These clusters were created using the environmental 

layers smoothed with a 10-pixel radius kernel, which resulted in a coarsely heterogeneous 

landscape structure. Individuals within each region are thus faced with more similar 

habitat choices than individuals in different regions. Within each region, however, there 

are still local neighborhoods of finely heterogeneous habitat that may be different from 

other neighborhoods elsewhere in the region, leading to different preferences between 

individuals. These different scales of landscape heterogeneity are directly related to the 

scales at which individuals make habitat choices. Assessing habitat selection across a 

range of spatial scales thus allows us to identify the degree to which individuals perceive 

landscape heterogeneity.  
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Although the structure of the landscape can influence the habitat chosen by 

individuals, there may also be inherent individual variation in habitat preferences. This 

has been incorporated into models of habitat selection through the use of random 

coefficients, which are applied to the parameter estimates in the logistic regression 

equation (Gillies et al. 2006). However, this term can only be applied to a single variable 

in an RSF at a time, which precluded its use in our bear analysis (Gillies et al. 2006; 

Duchesne, Fortin & Courbin 2010; Roever, Van Aarde & Leggett 2012). Individual 

habitat preferences have been modeled separately (Roever, Van Aarde & Leggett 2012), 

but after separating each individual’s movement by season and region, some datasets 

were too small to further subdivide by individual. This would also make it more difficult 

to interpret regional trends in habitat quality, especially since each individual could 

perceive a particular habitat variable at slightly different spatial scales. Therefore, our 

predictions represent the habitat quality for the average individual bear and not 

necessarily the best habitat for every bear.  

The behavioral differences between our two groups of sheep – those that crossed 

the valley between the mountain ranges and those that did not – indicated the possibility 

of inherent differences in habitat preferences because all individuals had equal access to 

the entire landscape. Although there was enough movement data for each individual to be 

analyzed separately, we did not expect there to be noteworthy differences in their 

preferences within the behavioral groups. One approach for testing this could be to 

analyze the variation between individuals’ differing preferences within each group and 

compare it between groups. This would reveal whether individuals within each group 

have more similar preferences compared to individuals in the other group. 
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Despite the differences in the structure of the landscapes and the behavior of the 

organisms, there were some similarities between all three studies. The parameter 

describing the distance from an individual’s current location was consistently negative 

for all three species, implying that organisms prefer locations that are close over those 

that are far. Both elephants and bears had a similar range of parameter estimates: -0.97 to 

-1.39 for elephants and -0.94 to -1.43 for bears. The probability of movement was highest 

for a distance of 0.5 km, or 1 pixel, and ranged from 0.36 to 0.44. The parameter 

estimates for bighorn sheep were much closer to zero, ranging from -0.14 to -0.19, which 

indicates that the distance to the chosen location has a lesser influence on sheep 

movements. However, the maximum distance of any sheep movement was restricted to   

< 1 km, and the probability of moving was highest for distances of 270 m (for -0.14) and 

180 m (for -0.19). Sheep therefore moved even less than elephants or bears despite the 

smaller parameter estimates. This discrepancy between sheep and the other species is 

likely due to the size of the pixels for the sheep data (30 m vs. 500 m). This smaller pixel 

size allows sheep to choose locations that are more pixels away from their current 

locations compared to elephants and bears, even though this is a smaller distance within 

the landscape. This resulted in the lower parameter estimate for sheep because the 

distance parameter is evaluated in pixels, not meters. It is possible that more fine-scale 

environmental information for elephants and bears would reveal a higher preference for 

moving distances even less than the 0.5 km indicated here. Nevertheless, it is evident that 

all three species prefer shorter local movements. 

In each study, spatial scales larger than that of the original data were identified as 

important for animal movement. For most datasets, different habitat variables were 



87!

! !

important at different scales, and some variables were important at multiple scales. The 

scales that were selected formed patterns for some groups of organisms. For example, 

elephants appeared to select most habitat variables at smaller scales in the dry season 

compared to the wet season, when individuals are not restricted in their movements to 

locations near water. All sheep groups (with one exception) were consistent in their 

patterns of selection for smoothed habitat variables: a single, small scale for ruggedness 

and both a small and large scale for vegetation. Alternatively, bears selected habitat 

across a wide range of spatial scales with little consistency between regions and seasons. 

This is likely due to the solitary nature of bears and the complexity of their landscape. 

Individual bears and elephants selected habitat at scales as large as 9.5 km and 10 km, 

respectively, and as small as 500 m (base scale). This scale may even be too coarse for 

some variables, as evidenced by the hump-shaped relationship that individuals had with 

these variables. Sheep had a much smaller maximum chosen scale of 960 m, which 

coincides with their smaller choice radius of movements (1 km). They also selected 

habitat at the base scale, which in this case is 30 m.   

These differences highlight the fact that different organisms respond to their 

environments at different scales, and that a single resolution of environment data may not 

be appropriate for all species. In addition, these species all integrate aspects of their 

environment across multiple spatial scales, further stressing the importance of smoothing 

the environmental data to find the optimal scales. Researchers who analyze preferences 

across too few scales risk missing the true scales at which individuals select habitat 

(Jackson & Fahrig 2014). This can be problematic for determining high-quality habitat 

across large regions and can lead to incorrect assumptions about habitat preferences. 
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Recent studies have begun to assess selection across multiple spatial scales and have 

identified important scales for different species (e.g. De Knegt et al. 2010; De Knegt et 

al. 2011; Fisher et al. 2011). Understanding the correct scales at which threatened species 

perceive their surroundings can lead to better conservation and management. 
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Figure 2.1. Example of how spatial scale can affect preference. (a) Hypothetical store 

density map of a city and surrounding suburbs, where dark grid squares represent high 

store density, overlaid with the movement path of a suburban family. Local movements 

indicate a preference for stores, but this preference does not extend to the city, where 

shopping opportunities are abundant. (b) Store density map after smoothing with a 21-

pixel Gaussian filter. Now, it is apparent that the family selects against store density at a 

larger scale, even though it selects for store density at a smaller scale. 
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Figure 2.2. Possible interpretations of certain combinations of selection functions at 

small, medium, and large scales. Small-scale refers to smoothing <5 pixels, medium-

scale refers to smoothing up to the choice radius (10 pixels), and large-scale refers to 

smoothing greater than the choice radius. Point and linear features are coded as ‘distance 

to…’ arrays, which are intrinsically smooth at scales up to the typical distance between 

features, and so are analyzed without further smoothing.  

 

 

 

 

 

 

 

Pattern
Small-scale
preference

Medium-scale
preference

Large-scale
preference

Interpretation

A Likes x at all scales

B Likes small clearings in x

C Likes medium clearings in x

D or Likes a mosaic of x Hnot necessarily x itselfL
E or Likes the edge of x Hnot necessarily x itselfL
F Likes medium clumps of x

G Likes small clumps of x

H Doesn't like x at any scale

I Smallest data scale is too coarse

J or Avoids edges of x

K NêA NêA Moves in and out Hpoint or linear featureL
L NêA NêA Keeps a fixed distance Hpoint or linear featureL
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Figure 2.3. Proportion of reeds in Maputo smoothed at increasing scales. The original 

(base-scale) landscape is on the left, followed by landscapes smoothed at 1, 5, 10, and 20 

pixels.  
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Figure 2.4. Smoothing kernels with varying decay. (a) A flat smoothing kernel, where all 

pixels within the radius are averaged equally. (b-c) Decaying smoothing kernels, where 

pixels closest to the central pixel are weighted more heavily in the average than pixels 

that are farther away.  
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Figure 2.5. Process of model selection with multiple scales. (a) Identify smoothing radii. 

The smoothing radii for the variables ‘reeds’ and ‘tree cover’ were optimized separately 

for three models: ‘distance from current location’ only (flat solid line), distance and 

(a)

(b)

(c)

(d) (e)
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habitat variable (jagged solid line), and distance with both the linear and quadratic 

variables (dashed line). Each of the peaks of model fit at the various radii is indicated. (b) 

Identify smoothing decay. The decay was optimized for each of the optimal radii in (a). 

The optimal decay for each radius is indicated. (c) Create landscape variables. Maps were 

created for each of the variables at the optimal radius and decay. Each map is a composite 

of the linear and quadratic values. (d) Find best model. The overall model choice uses 

‘distance from current location’, each of the selected variables at the optimal radius and 

decay, ‘distance to water’, and ‘distance to human settlement’ (if applicable) as input 

parameters. The best model was chosen as the combination of model parameters with the 

lowest AIC score; in this case, the score was 3,472.33. The importance of the parameter 

is measured from the weights of the models in which it appears, and the parameter-

averaged value is the value of the parameter averaged across all models. (e) Final 

predictions. The local relative quality map was created using the parameter-averaged 

values for all of the model parameters and applied to the 10-pixel radius of local 

movement choices for each start point (top). The map was overlaid with the endpoint of 

each movement to assess elephant choice. The landscape-wide relative quality map was 

created using the parameter-averaged values for all of the model parameters and applied 

to the entire landscape (bottom). The map was overlaid with the endpoint of each 

movement to assess elephant choice.  
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Figure 2.6. Habitat selection by female elephants in Etosha for the variables ‘mopane’, 

‘A. nebrownii’, and ‘Acacia’ in both the wet and dry seasons. (a-c) During the wet 

season, when water is not limiting, individuals utilize more of the landscape and select 

habitat variables at larger scales more strongly than in the dry season. (d-f) During the 

dry season, when individuals are more restricted in their movements to areas near water, 

habitat variables are typically selected more strongly at a smaller scale than at a larger 

scale. Each variable is fit to three models: ‘distance from current location’ only (straight 

solid line), distance and the linear habitat variable (jagged solid line), and distance with 

both the linear and quadratic values (dashed line). Each of the peaks of model fit is 

indicated. A single asterisk indicates that only the linear value was chosen, and a double 

asterisk indicates that both the linear and quadratic values were chosen. An asterisk in 

parentheses indicates that the variable was not included in the best overall model.  
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Figure 2.7. Local relative quality maps. The maps were overlaid with the endpoint of 

each movement for all elephant datasets, representing the composite of all variables 

present in the best multi-scale model and the original, base-scale variables only. The 

histograms show the comparison between the mean deviation of the probability values of 

the multi-scale maps (white) and base-scale maps (black). The variables at their optimal 

scale(s) are shown with the shape of the elephant’s relationship to each variable.  
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Figure 2.8. Landscape-wide relative quality maps. The maps were overlaid with the 

endpoint of each movement for all elephant datasets, representing the composite of all 

variables present in the best multi-scale model and the original, base-scale variables only.  
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Figure 3.1. (a) Outline of the state of Alaska, indicating the position of the Kenai 

Peninsula. (b) Map of the Kenai Peninsula. The eastern two-thirds is dominated by the 

high elevation Kenai Mountain Range, and the western one-third is a glaciated plain with 

numerous lakes and streams. Blue areas represent stream locations that were frequently 

visited by brown bears. (c) Clusters that the landscape was partitioned into based on the 

makeup on the habitat. The four primary clusters are labeled; the fifth cluster (green 

coloring) included pixels that did not fit well into any of the other four clusters and thus 

was not used for the analysis. (d) Movement paths of a group of collared bears during 

(a)

(d)

(b)

(c)

Kenai 
Peninsula

Highland Valleys

Highland Peaks

Lowland Coast

Lowland Plains



119!

! !

1997. For the most part, each individual occupies a different area of the landscape and 

does not overlap much with neighboring individuals. 
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Figure 3.2. Sample relative local quality habitat preference map, overlaid with the 

endpoint of each movement in the lowlands regions during the summer. The map was 

created using the parameter estimates from the best model applied to a 10-pixel radius 

surrounding each movement start point. Each pixel is scaled from blue (low quality) to 

red (high quality). Chosen locations are more often in high-quality pixels than low-

quality pixels. 
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Figure 3.3. Process of model selection for a reduced dataset, used for illustrative 

purposes. (a) Optimization of the smoothing radius. Each of the seven vegetation 

variables (alder/willow, alpine, conifer, deciduous, mixed forest, spruce, and wetland) 

was smoothed independently to discover the optimal scale(s). Four models were fit at 

each radius: distance from current location only (flat solid line), distance and vegetation 

variable (jagged solid line), distance and vegetation variable squared (dotted/dashed line), 

and distance with both the linear and squared vegetation variable (dashed line). The 

chosen scales are indicated above the peaks. Each chosen scale was further optimized to 

find the appropriate level of drop-off of the smoothing kernel, or decay (not shown). (b) 

Parameter estimation and cross-validation using conditional logistic regression with lasso 

penalties, which uses each of the vegetation variables at their chosen scales from (a), 

‘distance from current location’, and elevation as input parameters. ‘Distance from 
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nearest neighbor’ was later included as an additional parameter. At the lowest value of 

the regularization parameter !, all variables are in the model (left). As ! increases, the 

parameter estimates shrink towards zero. The variables that shrink first are less important 

to the model than those that shrink later. In this example, ‘distance from current location’ 

would be the most important variable, followed by alder/willow 1, conifer 3, conifer 3 

squared, conifer 14, and finally elevation. Cross validation was initially used to determine 

the optimal model (right). The leftmost vertical line is at the ! where deviance is 

minimized, and the other is at the ! one standard deviation away from the minimum. In 

this example, the best model would have five parameters if the minimum deviance is 

used but only one parameter- ‘distance from current location’- if the minimum plus one 

standard deviation is used. 
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Figure 3.4. The important predictor variables and their functional shapes for each data 

set. For variables that were smoothed, the optimal scale (radius of smoothing kernel) is 

indicated. Distance from current location was present and negative in all data sets (not 

 
Dataset Elevation Alder/ 

Willow 
Alpine Conifer Deciduous Mixed 

Forest 
Spruce Wetland Neighbor 

distance 
  ΔAICc 

Spring, 
Highland 
Valleys    1  

  4  

  8  

  3  

14  
  2    1  

___ 
   0  

___ 
 0.2 

Summer, 
Highland 
Valleys 

 
  1  

12  

  1  

  5  

10  

  6    1    1    3    3        
-19.4 

Fall, 
Highland 
Valleys  

  4  

12  

  0  

11  
  4  

___ 
   5    2  

  0  

  2  
      

-20.4 

Spring, 
Highland 
Peaks 

   5  15    3  
  0  

  3  

  0  

  2  

12  

  9    9        
-5.0 

Summer, 
Highland 
Peaks 

 

  0  

  3  

  6  

  2  

11  

  3  

12  

  0  

13  

  0  

16  

  3  

  9  

12  

  0  

  7  

13  

      
-8.2 

Fall, 
Highland 
Peaks    2  

  0  

14  

  1  

10  

  3  

  9  

  9   

13  

  2  

11  

  2  

  6  
      

-5.7 

Spring, 
Lowland 
Coast  10  

___ 
   4  

  1  

  4  

  2  

  5  
  0    0  

___ 
 0.7 

Summer, 
Lowland 
Coast 

___ 
   4    6    6  

  0  

13  

  2  

19  

  6  

15  

  0  

  4  

___ 
 1.0 

Fall, 
Lowland 
Coast 

   3    4  
  2  

  6  

  3  

  5  

16  

  4  

10  

15  

  4  

14  

19  

  5  

13  
      

-1.5 

Spring, 
Lowland 
Plains 

___ 
   6  

___ 
   1  

___ 
   7    8    0  

___ 
 3.0 

Summer, 
Lowland 
Plains  

___ 
 

___ 
 

___ 
 

___ 
   4    1  

___ 
 

___ 
 2.0 

Fall, 
Lowland 
Plains ___ 

   1  
___ 

 
___ 

 

   

  0  

  5  

___ 
   9  

  0  

  3  

___ 
 N/A* 

*Not enough movements had neighbors to fit a model. 
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shown). ΔAIC measures the difference in AIC score between the best model with and 

without the neighbor distance parameter. 
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Figure 3.5. Absolute quality habitat preference maps in all four regions for each season. 

The maps were created using the parameter estimates from the best model. Pixels are 

scaled from blue (low quality) to red (high quality). Pixels within a 10-pixel radius of 

frequently visited streams are shaded gray, and pixels with landscape values outside of 

the acceptable extrapolation range are shaded black. Movement endpoints that were used 

to fit the models are shown in white.  
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Figure 3.6. Histograms of the relative quality of the pixels chosen by bears during each 

season. Black bars represent pixels chosen within a 10-pixel radius of streams, and white 

bars represent pixels chosen outside of this radius.  
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Figure 4.1. Outline of the state of California, indicating the location and topography of 

the study site within Joshua Tree National Park (JOTR). 
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Figure 4.2. Vegetation layer, original (top) and smoothed with a 23-pixel radius kernel 

(bottom). Both maps were overlaid with transient sheep movement segments during the 
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spring; black points represent the end-point of each movement. This variable is higher in 

the eastern mountain range. 
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Figure 4.3. Selection of the vegetation variable at multiple spatial scales for transient and 

non-transient sheep in each season. At each scale, the movement data is fit to four 

models: distance from the current location only, distance and the vegetation variable, 

distance and the vegetation variable squared, and distance with the linear and squared 

versions of the vegetation variable. Of the models that included the vegetation variable, 

only the one with the lowest AIC score is shown, along with the distance-only model 

(straight line), which was constant across all scales. Each of the peaks of model fit is 
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indicated. In all but one case (non-transient sheep during the winter smoothed at 32 

pixels), the optimal scale included the squared version of the variable. 
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Figure 4.4. Predictor variables and their functional shapes for each dataset. The shape of 

the relationship is only shown for variables that were present in the best model. The 

optimal scale (radius of smoothing kernel) is indicated for ruggedness and vegetation. 

Distance from current location was present and negative in all datasets (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  
!

 Elevation Slope Ruggedness Water 
Distance* 

Vegetation 
(local) 

Vegetation 
(regional) 

Spring, Transient Main 
  3   

___ 
23  

Spring, Transient East 
  3  

___ ___ 
23  

Spring, Non-Transient 
  1  

___ ___ 
23  

Summer, Transient Main 
 

___ 
3   0  

___ 

Summer, Transient East** ___ ___  ___ ___ ___ ___ 
 

Summer, Non-Transient 
  3   1  

___ 

Winter, Transient Main 
  1   

___ 
16  

Winter, Transient East 
  1  

___ ___ 
16  

Winter, Non-Transient 
  6  

___ 
0  32  

*No permanent water present in east range. 
**Too few data points to accurately determine sheep preferences.  
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Figure 4.5. Habitat preference maps created using the parameter estimates for transient 

sheep (white) and non-transient sheep (yellow) movements in the main mountain range in 

each season. These parameter estimates were applied to the main range, which were 

overlaid with movement segments to demonstrate the quality of the pixels that were 

selected. The parameter estimates were then projected to the east range, which was 

overlaid with movement end-points of transient sheep to assess how well movements in 

Pixel Quality

0 0.2 0.4 0.6 0.8 1.0
-6-4-20
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the main range predict high-quality habitat in the east range. Blue triangles indicate 

locations of permanent water. 
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Figure 4.6. Habitat preference maps created using the parameter estimates for transient 

sheep (white) movements in the east mountain range in the spring and the winter (there 
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were not enough movements during the summer to project accurate preferences). These 

parameter estimates were applied to the east range, which was overlaid with movement 

segments to demonstrate the quality of the pixels that were selected. The parameter 

estimates were then projected to the main range, which was overlaid with transient 

(white) and non-transient (yellow) movement end-points to assess how well movements 

in the east range predict high-quality habitat in the main range. Blue triangles indicate 

locations of permanent water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 


