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DISSERTATION ABSTRACT

Formal Security Analysis of Access Control Models and Their
Spatiotemporal Extensions

By Emre Uzun

Dissertation Directors: Dr. Vijayalakshmi Atluri and Dr. Jaideep Vaidya

Providing restrictive and secure access to resources is a challenging and so-

cially important problem. Today, there exists a variety of formal security mod-

els to meet the wide needs of requirements in specifying access control policies.

These include Discretionary Access Control (DAC) and Role Based Access Con-

trol (RBAC). For every model, it is necessary to analyze and prove that the system

is secure, or in other words, access rights of sensitive data are not leaked to po-

tentially untrusted users (rights leakage), as well as the data itself (data leakage).

Analysis is essential to understand the implications of security policies and helps

organizations gain confidence on the control they have on resources while provid-

ing access, and devise and maintain policies. There is a dire need for such analysis

tools that help security administrators as they make administrative changes to re-

flect changes in policy.

In this dissertation we tackle two major problems: Rights leakage problem

and data leakage problem. For the rights leakage problem, we focus on RBAC
ii



and its temporal and spatiotemporal extensions, since RBAC has been success-

fully incorporated in a variety of commercial systems, and has become the norm

in many of today’s organizations for enforcing security. Towards this end, we first

propose suitable administrative models that govern changes to policies. Then we

develop efficient security analysis techniques and tools, in which we explore a

decomposition strategy, that splits the temporal or spatio temporal security anal-

ysis problems into smaller and more manageable sub-problems which in fact, are

RBAC security analysis problems on which the existing RBAC security analysis

tools can be employed. We then evaluate them from a theoretical perspective by

analyzing their complexity, as well as from a practical perspective by evaluating

their performance using real world and simulated data sets.

For the data leakage problem, we consider two types of data leakages: confi-

dentiality violating and integrity violating. In confidentiality violating data leak-

age, sensitive data in an object can be leaked to potentially untrusted users via

another object that is readable by those users. In integrity violating data leakage,

on the other hand, data can be leaked to an object where the user is not allowed

to write to explicitly. We propose techniques to eliminate these possible leakages

by using three different strategies: Conservative, Proactive and Retrospective. We

then computationally evaluate them to show the running times and restrictiveness

of our proposed methodologies in terms of identifying the possible data leakages

and eliminating them.
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CHAPTER 1

INTRODUCTION

Security in computer systems gains significant importance as more processes in

enterprises become digitized. One of the basic ways to provide security is to im-

pose access control over the resources especially if they are shared among various

different users in a large enterprise. In the literature there are mainly three differ-

ent models – called access control models – to achieve this target: Discretionary

Access Control (DAC), in which the permissions on the objects are assigned to the

users directly and the users have full control over the objects that they own [44].

Mandatory Access Control (MAC), in which objects and subjects are assigned

security labels indicating their clearance levels. Each user can read the objects at

their security level and lower levels, and can write the objects at their security level

and higher levels. Although DAC and MAC provide security in access control, it

is likely for these models to have huge operational costs. For instance in DAC,

when a new user is introduced into the system, all permissions that user requires

must be granted one by one. This operation can be handled in small systems,

but in large systems where the number of permissions are measured in thousands,

even a minor permission update operation is likely to take a huge amount of time.

In MAC, on the other hand, the access control levels are determined solely by

the security labels of the users and objects. Consider a new user (or object) that
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should be in a security level in between two previously defined consecutive secu-

rity levels. Then, for each of these situations a new security level must be created

and the security level of other users and possibly other objects should be updated.

Hence, in order to overcome these type of drawbacks without sacrificing any of

the security properties of DAC and MAC; Role Based Access Control (RBAC)

model is developed. The core of this access control model is based on the for-

mation of roles, or can be called permission groups, which usually represent job

functions in an enterprise. Users in the system are assigned to roles instead of be-

ing directly assigned to the permissions. The underlying reasoning is that, users

are generally assigned to a set of permissions that represent their job function and

the permissions required for a job function rarely change with respect to the users

that perform that particular job [44]. This property immediately reduces the oper-

ational costs of the system, since the number of roles is usually smaller than that

of the permissions. Furthermore, despite being similar to RBAC, there are some

other models proposed like Task Based, Team Based, and Coalition Based Access

Control to address different organizational requirements. [15, 23, 37, 48, 49, 55]

The benefits of RBAC lead to development of some useful extensions. In par-

ticular, researchers preserve the basic idea of having roles in the model and add

some additional layers, like time and space. Temporal RBAC (TRBAC) [11], Gen-

eralized Temporal RBAC [33], Spatio-Temporal RBAC [2] are some examples to

these extensions.
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1.1 Leakage of Rights and Data – Importance of Security Analysis

As providing access control, which is one of the core requirements of security in

computer systems, the security properties of the system must be verified in or-

der to ensure that there would not be any violation of the security policies. By

violation, we mean any activity that causes unauthorized users to gain access

to sensitive data. These violations, which we denote as leakages can be of two

types: The access control rights of a confidential object can be leaked, so that

the unauthorized subjects gain explicit access to these objects (rights leakage), or

the confidential data itself can be leaked to other objects so that the unauthorized

subjects implicitly gain access to these objects (data leakage). In the former case,

the rules of the administrative model, which governs modifications on the access

control rights, are abused to leak the rights of the objects containing sensitive in-

formation, whereas in the latter case, the configuration of access control rights

allows users to leak data from a sensitive object to another object that can be ac-

cessed by users that are not authorized to access the sensitive object. In order to

protect the confidentiality of the data and hence the security of the system, the

access control policies, the administrative model and the data flow within the sys-

tem must be checked thoroughly to decrease the likelihood of any type of leakage.

This process is called security analysis and without which it is highly unlikely to

determine whether the data is protected, because in any access control system,

although each security policy look safe in isolation, their cumulative effect might

create unforeseen violations.
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1.2 Problem Statement and Contributions

There are numerous studies in the literature that seek to provide a good security

analysis. Starting from the earliest study by Harrison, Ruzzo and Ullmann [26],

the security analysis for rights leakage remains undecidable in the most generic

case. Since then, researchers have been seeking to find new methodologies that

would perform the analysis in a more reasonable time frame, while sacrificing

some properties of the generic HRU model. Many of these succeeding studies

propose techniques to decrease this complexity up to the point that it becomes de-

cidable and tractable. Although the results obtained give valuable feedback about

the level of security of an access control configuration up to some extent, the as-

sumptions and reductions needed to achieve these improvements could yield an

analysis that might not completely represent the real conditions as good as the

generic HRU model, and this is obviously not desirable to attain full security.

Hence, the ongoing dilemma between expressive power and computational com-

plexity leads the discussion to the point that there is now a necessity for useful

techniques that are built to perform security analysis with no or as few assump-

tions as possible no matter if the analysis is decidable or undecidable.

In this dissertation, we develop security analysis techniques to address the

rights leakage and data leakage problems. For the Rights Leakage Problem, which

seeks to determine whether a potentially untrusted user will ever get access to con-

fidential objects, we propose security analysis methodologies that work for Tem-

poral and Spatio-temporal extensions of the RBAC model. For the Data Leakage

Problem, more commonly known as the Trojan Horse Problem, which seeks to

identify and prevent any data leakage given the configuration of the access con-
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trol system, we develop security analysis methodologies that work for DAC and

RBAC models. In particular, our goals in this research are as follows: We iden-

tify and formalize the key policies and vulnerabilities in RBAC, including rights

and data leakage, in the presence of temporal and spatio-temporal constraints. We

aim to model the security problems for policies in access control as reachability

problems in transition systems. We provide exact and heuristic strategies Finally

we implement tools that realize the above techniques, and provide administrators

with a usable and useful tool to express policies and automatically find breaches

of their security policies. In summary, we have the following contributions in this

dissertation. For the rights leakage problem,

• We propose an administrative model for Temporal RBAC and Spatio-temporal

RBAC.

• In order to reduce the complexity of the model, we represent time as discrete

and periodic intervals and location groups of physical locations – called

logical locations.

• We develop a flexible security analysis methodology based primarily on

decomposing the TRBAC and STRBAC security analysis problems into

smaller and more manageable RBAC security analysis problems.

For the data leakage problem,

• We investigate both confidentiality and integrity violating data leakages in

DAC and RBAC models focusing on three different data leakage elimination

strategies, namely, conservative, proactive and retrospective.
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• We prove that the transitive closure is not necessary for the data leakage

analysis. Instead, examining data flows among pairs of objects is sufficient

for analysis purposes. This reduces the complexity of the problem signifi-

cantly.

• We show that given an access control configuration obtaining a data leakage

free access control matrix with minimal modification is an NP-Complete

problem.

• We propose an Integer Linear Programming model for the conservative ap-

proach for DAC. We claim that the corresponding model for RBAC is likely

to be non-linear, however it is still decidable.

• We propose more scalable heuristic alternatives for conservative approach.

1.3 Outline

The rest of the dissertation is organized as follows: In Section 2, we briefly sum-

marize the related work done in the literature. In Section 3, we provide back-

ground information necessary to follow the models and analysis strategies pro-

posed in the dissertation. In Section 4 and 5, we provide our research framework

for rights leakage problem and data leakage problem, respectively. In these sec-

tions, more discussion and motivation is provided for the individual problems.

Then, the proposed models and solution methodologies are provided along with

experimental results. Finally in Section 6, we summarize our contributions on this

dissertation and provide our future work.
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CHAPTER 2

RELATED WORK

The pioneering works for the security analysis are done for protection schemes

with Discretionary Access Control, which is usually composed of an access con-

trol matrix and some operators to modify the scheme. The earliest study is done

by Harrison, Ruzzo and Ullmann (HRU) in 1976, which is the source of inspira-

tion to the succeeding studies. The analysis of the HRU model proposed in this

study leads to the first and the hardest obstacle to be overcome by the researchers

in this area, which is the undecidability of the safety problem. The successors of

HRU model, focus mainly on how to obtain a decidable safety analysis with mini-

mum compromise to the original model, and yet none of these studies can provide

a model that covers the full benefits and expressive power of HRU.

2.1 Security Analysis of Rights Leakage Problem on Discretionary Access
Control Model

Harrison et al. [26] propose a formal model for protection systems, which is one

of the earliest models in access control systems. They introduce the concepts of

system configuration, safety problem and the undecidability of the safety prob-

lem. They show that there is an algorithm which decides whether or not a given

mono-operational protection system and initial configuration is unsafe for a given

generic right. However, it is undecidable whether a given configuration of a given
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protection system is safe for a given generic right. It means that there does not

exist any algorithm which can decide on the safety of an arbitrary protection sys-

tem. On the other hand the safety problem is decidable (in polynomial space) for

protection systems without create commands.

In 1978, Harrison and Ruzzo provide additional results on the conditions that

affect the decidability of the HRU model (as depicted in [3]). As a result of this

study, it is shown that safety is undecidable for bi-conditional HRU schemes (the

if statements in the HRU commands have at least two conditions). However, it is

decidable for mono-conditional schemes.

Jones et al. [29] provide a new protection system, called Take-Grant Protec-

tion Model which is based on graphs. This is actually a different representation

of the protection model developed by Harrison et al. [26]. In the analysis, the key

point is that, the access control rule set is not arbitrary, instead it is fixed which is

generally true in computer systems. The main result is that the safety analysis of

whether a user will gain an access right can be answered in linear time. On the

other hand, keeping the rule set fixed is a drawback of the model. There can be

many different types of rules, which should be included in the analysis in order to

reflect the protection systems more clearly.

Sandhu [43] proposes the Schematic Protection Model in order to address

the conflict between two objectives: generality of the access control model and

tractability of the analysis in HRU and TGPM. The conflict is that, HRU is a very

general model that has a high expressive power and covers many instances, but

its analysis is intractable and even undecidable. On the other hand, the TGPM

analysis is tractable but it considers very specific class of simple policies, so that
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it may not be able to represent all possible scenarios. Hence, SPM is proposed

to address these two objectives together to that they can be achievable together.

The paper has two important assumptions related to the distribution of these com-

ponents: (1) Acyclic Can Create: The entity creation operator can create can be

seen as a directed graph, where nodes are entities and edges are the authoriza-

tions. Then, can create is said to be acyclic if there are no cycles in this graph. (2)

Attenuating Create Rules: The child of a subject cannot have more rights than its

parent. One final point is that revocations of rights are not allowed in the system,

which makes it monotonic. Sandhu proves that SPM model has a high expres-

sive power and provides a model whose analysis is both decidable and tractable,

unlike the previously proposed HRU and TGPM, only if the model is acyclic and

attenuating. Although SPM can be reduced to a TGPM and provides a better anal-

ysis than HRU and TGPM, SPM has some drawbacks related to being acyclic and

attenuating, which makes it fail to represent the HRU model completely.

Ammann et al. [3] propose ESPM to address the limitations of SPM. In fact,

the main outcome of the paper is that, it proves that ESPM is equivalent to HRU.

The Extended SPM model is similar to SPM, with the difference of allowing multi

parent creation option, which lacks in SPM. The remainder of the model is exactly

the same as SPM. In the paper, the authors describe the multi parent modifications

on the SPM and provide an algorithm for the security analysis of the acyclic and

attenuating ESPM.

The benefits of having strong typing in the access control schemes as depicted

in SPM model can also be embedded into the basic HRU model. Sandhu proposes

Typed Access Matrix (TAM) model to address this issue and shows that HRU
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is a special case of TAM. The paper applies the notion of strong typing to HRU

schemes and yield the strong expressive power of HRU. It shows that strong typing

is essential to obtain decidable safety analysis.

Soshi et al. [46] point out the deficiency of the TAM model of being decidable

only when the system is monotonic. This assumption is not quite realistic, so that

this model could lead to some problems when implementing to real life access

control systems. Hence, the authors provide an extension of TAM, called Dynamic

TAM (DTAM), in which changes in object types are allowed – therefore the strong

typing assumption is broken. The authors show that allowing a non monotonic

scheme and removing the restriction of strong typing can also provide a decidable

safety analysis under certain conditions. However the algorithm provided is still

intractable, meaning that there is no polynomial time algorithm to evaluate the

safety of the nonmonotonic protection systems.

Overall, we can say that the generic safety question proposed by Harrison et

al., is still undecidable and hence intractable. The monotonicity, strong typing and

other assumptions sacrifice some of the expressive power of HRU, for the cost of

obtaining a decidable safety analysis.

2.2 Security Analysis of Rights Leakage Problem on Role Based Access
Control Model

Although it is structurally optimized to facilitate administration and regarded as

a better alternative than Discretionary Access Control scheme, safety analysis for

RBAC is as hard as DAC. In this section, we cover the most important safety

analysis techniques proposed for RBAC.
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Li and Tripunitara [35, 36] develop the first security analysis on RBAC. They

provide the basics of the states, state transitions and queries that are required for

the analysis. They develop two different classes of security problems for RBAC.

The authors state that a general problem instance is decidable but intractable

(coNP-Hard), whereas, if the query of interest is semi-static, then the problem

can be solved in polynomial time.

Jha et al. [28] present a formal description of the security problem which is

built on the URA97 module of the ARBAC97 administrative model. They define

a Security Analysis Problem as whether there is a particular reachable state for the

untrusted users possible under the current settings. The main result of the paper

is that the security analysis problem on URA with a simple query of whether

a user is a member of a particular role is PSPACE-Complete. Jha et al. [28]

also demonstrate the performance of Logic Programming and Model Checking

as tools to solve the Security Problem on URA. According to their results, the

model checking approach scales better than the logic programming approach. The

authors state that model checking can handle many different security queries in

real life access control systems. The main difference between this paper and the

papers by Li and Tripunitara [35, 36] is that in this paper there are simple queries

and sophisticated state transitions, whereas Li and Tripunitara has sophisticated

queries but simple state transitions.

Stoller et al. [47] considers analyzing the security problem in a parameterized

complexity environment. More specifically, since the former studies about the se-

curity problem usually result in intractable (NP-Complete or PSPACE-Complete)

complexities, fixing the parameter which causes this high complexity might re-
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sult in a polynomial complexity in terms of the remaining variables. Stoller et al.

perform studies on the ARBAC97 variant miniARBAC which only performs op-

erations on URA, i.e. only has can assign and can revoke relations. They assume

Separate Administration, which considers a system with users and administrators,

so that none of the users can gain administrative privileges (i.e., the administrative

roles and the regular roles are disjoint). This algorithm is said to be fixed param-

eter tractable with respect to the number of roles that appear as a positive and

negative preconditions in some policies in the system. Moreover, they provide a

slicing algorithm to further reduce the complexity.

Ferrara et al. [22] propose a set and numerical abstraction based reduction

of ARBAC97 policies into programs, so that a program verification tool can be

used to check the security properties. The most important distinguishing factors

of their analysis is that they do not impose a separate administration assumption,

so that they cover a more general setting; and they allow tracking multiple users

at the same time. The former models can only handle one target user, however

with the lack of separate administration, it is possible for regular users to gain

administrative privileges, and hence they would have the rights to assign roles to

other users. This brings out the necessity to track more than one regular user in

the system to see the possible interactions among them. The analysis proposed in

the paper is an abstraction of the RBAC system, so that this abstraction yields a

sound analysis. In particular, when the analysis results that a specific role is not

reachable in the abstraction, then it is not reachable in the real system. Whereas,

if the analysis results that a role is reachable, than it cannot be concluded that

whether that role is reachable or not in the real system. According to the results
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they obtain, the model scales well to analyze security properties of large ARBAC

policies.

2.3 Security Analysis of Rights Leakage Problem on Spatial and Temporal
Extensions of RBAC Model

Even though RBAC is a powerful scheme to be implemented in various real life

access control systems, it may fail to capture all of the details of a system. For

instance if the access control policies of an enterprise change for different shifts

during a day, then it is impractical to represent this system with an RBAC and

changing the assignments manually in every different shift. Therefore, it is ac-

ceptable to have an additional temporal layer built into the model. Similarly, there

could be some spatial constraints that enforces different access control policies in

different locations. There are some research done for the extensions of RBAC in

temporal and spatial dimensions.

The first model that embeds temporal data to access control is proposed by

Bertino et al.[10] and called the Temporal Authorization Model (TAM). The model

is basically built on the Discretionary Access Control model using discrete time.

The model has temporal notions embedded into access control for both validity of

authorizations and temporal dependencies among the authorizations. The model

also have some basic control of separation of duty with the rules.

The study by Gal and Atluri [5] is another model that embeds the temporal

notion into access control. The motivating factor for this is that every piece of

data has a time which denotes the time that it is captured and the time interval in

which it stays valid. It is a general fact that in real life, many applications require
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this type of temporal notion, such as daily sales data or financial data. In order

to capture this temporal notion, Gal and Atluri propose the Temporal Data Au-

thorization Model (TDAM) that is capable of covering this type of temporal data.

The TDAM model is a complementary model to TAM, since in TAM, administra-

tors should specify the temporal notion in the system. However, TDAM derives

this data directly from the attributes of the data.

The first temporal model developed on RBAC is proposed by Bertino et al.

[11]. They propose Temporal RBAC with periodic role enabling and role triggers,

which cause roles to be enabled and disabled. Furthermore, their model is capable

of handling some run time enabling disabling requests. According to Joshi et al.

[33], the work by Bertino et al. cannot handle some other temporal concepts like

temporal user to role and temporal permission to role assignments. Further, the

state of the roles (enabled - disabled) described by Bertino et al. is not sufficient

to represent the real life situations. Also, one should distinguish between whether

a role is enabled and a role is assumed. In their paper Joshi et al. [33] proposes

Generalized Temporal RBAC model which considers the following in addition to

the Temporal RBAC by Bertino et al.: Temporal constraints on role assignments,

role activations, enabling and disabling constraints (like cardinality constraints),

and temporal role hierarchies and SOD constraints.

Atluri and Chun [4] propose the first study that captures the spatial layer into

the access control. More specifically, they propose an authorization model called

Geo-Spatial Data Authorization Model (GSAM) which is capable of making au-

thorization decisions with respect to the spatial and temporal attributes of the data.

Aich et al. [2] propose STARBAC, which combines spatial and temporal layers
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and embeds them into RBAC. Apart from the work by Atluri and Chun, the model

described in this paper is an RBAC extension. In the paper, role enabling and

disabling processes are controlled by space and time constraints. The space di-

mension is expressed as Logical Locations rather than Physical Locations (as in

[4]), so a more general setting which allows different logical locations at the same

physical location (such as different departments in the same building) is achiev-

able. The paper also provides Role Control Commands which are logic based

formal expressions to write the spatio-temporal access control policies.

Mondal et al. [40] provide a security analysis for Generalized Temporal RBAC

using timed automata. In particular, they show the reduction of the temporal prop-

erties of a GTRBAC model, which include temporal role enabling and activation,

role triggers and constraints, to a timed automata model. They perform an anal-

ysis using the timed automata models to verify the safety and liveness security

properties of a GTRBAC system. This real time verification process is PSPACE-

Complete. The important observation is that the verification process has a state

space explosion for large number of users. In fact, the trade-off is whether to

have large number of temporal constraints, or large number of users, roles and

permissions.

2.4 Security Analysis of Data Leakage Problem

The data leakage problem is referred as the confinement problem or Trojan horse

problem in the literature. The problem arises because of the drawbacks of the

DAC (and RBAC) being incapable of governing the flow of the data, in addition

to access to the data. The problem is defined in slightly different ways by dif-
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ferent researchers. Lampson [34] defines confinement to enforce restrictions on

programs to transmit data only to its caller by means of having total isolation. The

problem, as discussed in [13, 24, 27], is the unauthorized flow of data between

two objects in a computer system that would allow subjects to access sensitive

data they cannot explicitly allowed to access. Gasser [24] also mentions about the

alterations of access control rights as a result of Trojan horse attacks. Further-

more [38, 60] considers the Data Leakage Problem to gain implicit write access

to objects that one does not have explicit write access.

Although there are numerous studies proposed to address this problem, con-

siderably the most famous one is the Mandatory Access Control model (MAC).

MAC is developed to prevent any data leakage from occurring. The most com-

monly known MAC is the Bell-LaPadula Model [9]. In MAC, every subject and

object is attached a security label indicating how confidential the object and how

authorized the subject is. For instance, these labels can be Low, Medium, High,

for both subjects and objects. Then, the access control decisions are given in the

following manner: Any subject has a read access to the objects that are on the

same level or lower levels; a write access to the objects that are on the same or

higher levels. Then, a subject cannot leak data from an object to other objects in

the lower levels, and hence to the subjects in the lower levels.

Most of the remaining other studies in the literature make use of labels to

determine access control. Boebert et al. [12], propose a domain and type based

access control for military purposes. Badger et al. [6] propose a domain and type

based enforcement to UNIX based computer systems to provide containing pro-

tecting and isolating information. Boebert and Kain [13] discuss the drawbacks of
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the previous attempts to MAC and proposes another type based access control that

basically follows the MAC perspective. Mao et al. [38] consider implementing a

MAC-type control over a DAC system. In their model, every subject and object

have a security label, in addition to the traditional DAC access matrix. These la-

bels are updated as read and write operations happen in the system. The access

decisions are made by these labels to prevent any implicit write object access,

which is unauthorized explicitly. Zimmerman et al. [60] have a similar setup, but

with policies that determine any unauthorized write access. Jaume et al. [27] pro-

pose a dynamic label updating procedure that detects if there is any flow of data

that create a leakage.
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CHAPTER 3

PRELIMINARIES

In this section, we cover present definitions and concepts that would be helpful

to understand the primary work presented in this study. We give definitions for

Discretionary Access Control and Role Based Access Control models, their ex-

tensions and the administrative model of RBAC.

Definition 1. (Discretionary Access Control Configuration). A DAC configu-

ration C = 〈S,O,A〉 is a tuple composed of subjects s ∈ S, objects o ∈ O and

access control rights A = AR ∪ AW where AR ⊆ O × S, and AW ⊆ S × O.

We always assume that O and S are disjoint. A pair (o, s) ∈ AR, also denoted

o→r s, is a permission representing that subject s can read object o. Similarly, a

pair (s, o) ∈ AW , denoted s→w o, is a permission representing that subject s can

write into object o1

Definition 2. (Graph Representation of DAC). A DAC can be naturally rep-

resented with a bipartite directed graph. The graph of a DAC C = 〈S,O,A〉,

denoted GC = 〈S ∪ O,A〉 is the bipartite graph whose partition has the vertices

S and O.

In our study, we provide security analysis for RBAC extensions. Here we give

1For the sake of simplicity, we consider only read and write permissions.
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definitions to for RBAC, Administrative RBAC and security analysis of RBAC.

Definition 3. (Role Based Access Control Configuration). An RBAC configu-

ration [19] CR is a tuple 〈U,R, PRMS,UA, PA,RH〉 where U , R and PRMS

are finite sets of users, roles, and permissions, respectively, UA ⊆ U × R is

the user-role assignment relation, PA ⊆ PRMS × R is the permission-role as-

signment relation and RH ⊆ R × R is the role-role assignment (role hierarchy)

relation. A pair (u, r) ∈ UA represents that user u belongs to role r. Similarly,

(p, r) ∈ PA represents that members of role r are granted permission p. A pair

(r1, r2) ∈ RH denotes r1 is superior to r2, so that any user who has r1 assigned,

also has r2 assigned, and hence the permissions that are assigned to r2.

The Administrative RBAC (ARBAC) [42] model specifies rules to modify an

RBAC configuration. It is composed of three modules URA user to role adminis-

tration, PRA permission to role administration, and RRA role hierarchy adminis-

tration.

The URA module allows to make changes to UA by using assignment / re-

vocation rules performed by administrators. Administrators are those users that

belong to administrative roles. We denote the set of administrative roles as AR.

Some policies consider the set AR to be disjoint from the set of roles R. Those

policies are said to meet the separate administration constraint [47]. A user can

be assigned to a role if she satisfies the precondition associated to that role. A

precondition is a conjunction of literals, where each literal is either in positive

form r or in negative form ¬r, for some role r ∈ R. Following [22], we represent

preconditions by two sets of roles Pos and Neg . A user u satisfies a precondition
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(Pos ,Neg) if u is member of all roles in Pos and does not belong to any role of

Neg .

Rules to assign users to roles are specified by the set:

can assign ⊆ AR × 2R × 2R ×R.

A can assign tuple (admin,Pos ,Neg , r) ∈ can assign allows a member of the

administrative role admin to assign a user u to roles r provided that u’s current

role memberships satisfies the precondition (Pos ,Neg).

Rules to revoke users from roles are specified as follows:

can revoke ⊆ AR ×R.

If (admin, r) ∈ can revoke, a member of the administrative role admin ∈ AR,

can revoke the membership of any user from role r ∈ R.

PRA is the module to control the permission-role assignments. The rules are

similar to those in URA. These are defined as follows:

can assignp ⊆ AR× 2R × 2R ×R

can revokep ⊆ AR×R

Finally the ARBAC has RRA component to perform operations on roles and

role hierarchies. The rule defined for this context is the following:

can modify ⊆ AR× 2R
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Using this rule, authorized administrators can create and remove roles and also

they can modify the relationships between the roles.

A URA can be seen as a state-transition system defined by the tuple S =

〈U,R,UA, can assign, can revoke〉. A configuration of S is any user-role as-

signment relation UR ⊆ U×R. A configuration UR is initial if UR = UA. Given

two S configurations c = UR and c′ = UR′, there is a transition (or move) from c

to c′ with rule m ∈ (can assign ∪ can revoke), denoted c τm−→ c′,if there exists

an administrative user ad and administrative role admin with (ad , admin) ∈ UR

and a user u ∈ U , and one of the following holds:

can-assign move: m = (admin, P,N, r), P ⊆ {r′ | (u, r′) ∈ UR}, N ⊆ R\{r′ |

(u, r′) ∈ UR}, and UR′ = UR ∪ {(u, r)};

can-revoke move: m = (admin, r), (u, r) ∈ UR, and UR′ = UR \ {(u, r)}.

A run (or computation) of S is any finite sequence of S transitions π = c1
τm1−−→

c2
τm2−−→ . . . cn

τmn−−→ cn+1 for some n ≥ 0, where c1 is the initial configuration of

S. An S configuration c is reachable if c is the last configuration of a run of S .

Definition 4. Reachability Problem (Rights Leakage Problem) for RBAC:

Given a URA system S over the set of roles R and a role goal ∈ R and a user u,

the role-reachability problem asks whether a configuration c with (u, goal) ∈ c

is reachable in S.

The reachability problem, seeks to answer certain questions including and not

limited to the following [36]:
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• Simple Safety: Is there a reachable state in which user u belongs to a user

set Us ⊆ U? Eventually, this can also be stated as: Can user u ever get

access to the roles assigned to users that belong to set Us?

• Simple Availability: In each reachable state, does a user u always belong

to a user set Us ⊆ U? Hence this analysis questions whether user u will

lose his/her privileges in the future.

• Bounded Safety: In each reachable state, is the user set Us ⊆ U always

bounded by {u1, u2, ..., un}?

• Liveness: In every reachable state, does user set Us ⊆ U always have at

least one user?

• Containment: In every reachable state, does a user set Us1 always cover

user set Us2 .

Temporal RBAC: The basis of the temporal RBAC models in the literature

relies on a Calendar definition, which is a periodic and duration expression given

in terms of some calendars as follows [10]:

P =
n∑
i=1

Oi · Ci . r · Cd

This expression is composed of two different calendar expressions split by ..

The first part is the periodic expression which denotes the starting points of the

time intervals represented by the expression. Each Ci, Ci v Ci−1 is a calendar

represents a different unit time (days, weeks, minutes) so that for each Ci v Ci−1

Ci−1 can be covered by a finite number of intervals ofCi (for instance 24 hours is 1
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day). TheOi’s are the frequency components associated with the calendars, which

are defined as O1 = all, Oi ∈ 2N ∪ {all}. The second part of the expression is

the duration constraint which describe the time interval that the expression covers

once stared with the periodic expression given in the first part. Here, r = N and

Cd v Cn, meaning that the duration cannot exceed the maximum periodic time

interval. An example for this expression is that all.Y ears + {3, 7}.Months .

2.Months means a two month interval that starts every year at the beginning of

the third and the seventh months.

The TRBAC model [11] supports role enabling, which is a tuple 〈r, P 〉 com-

posed of roles and calendar expression. In GTRBAC model [33], user to role and

permission to role assignments are also proposed to be temporal with the calendar

expression.

Previous studies propose temporal role hierarchies [31, 32, 33] that focus on

the permission and activation inheritance in the presence of temporal constraints

on role enabling and disabling. Particularly, the role hierarchy is still static, but

the other temporal components of the system have a governing effect on whether

the hierarchies will provide inheritance relationship at a given time. These studies

propose three different types of hierarchies for temporal domain:

1. Inheritance-Only Hierarchy (≥): In this relationship, the permissions in the

junior role can be acquired by any user who activated a senior role, without

activating the junior role. This hierarchy becomes restricted, if the enabling

times of the roles are taken into account.

There are two types of restrictions possible: Weak and Strong. When a
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hierarchy is weakly restricted, then the permission acquisition through the

junior role is possible regardless of that role being enabled at that time.

However, in the case of strongly restricted hierarchy, the junior role must be

enabled to perform permission acquisition.

2. Activation-Only Hierarchy (�): In this relationship, a user who activated a

senior role can activate a junior role even if she is not explicitly assigned to

it. This hierarchy becomes restricted, if the enabling times of the roles are

taken into account.

Similar to the Inheritance-Only case, there are two types of restrictions pos-

sible: Weak and Strong. When a hierarchy is weakly restricted, then the role

activation of the junior role is possible regardless of that role being enabled

at that time. However, in the case of strongly restricted hierarchy, the junior

role must be enabled in order to be activated through the senior role.

3. Inheritance and Activation (General Inheritance) Hierarchy (�): This re-

lationship is a combination of above two hierarchies. Senior roles can acti-

vate junior roles or just inherit some of the permissions of them.

Lastly, a Hybrid Hierarchy exists when the pairwise relations among differ-

ent roles are of different types. Hence, there can be an inheritance only re-

lation between two roles, and an activation only relation between two other

roles in the same hierarchy.
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CHAPTER 4

ANALYSIS OF RIGHTS LEAKAGE PROBLEM

The rights leakage problem for RBAC is well-studied and many different security

analysis methodologies have been proposed. Hence, in this chapter, our purpose is

to study the rights leakage problem for Temporal and Spatio-temporal extensions

of RBAC, and propose a security analysis methodology that is scalable to large

datasets. The chapter is organized as follows: We first focus on the Temporal

RBAC model and its security analysis for rights leakage problem. We provide the

methodologies and the experimental results. Later in the chapter, we extend the

security analysis of temporal RBAC to the Spatio-temporal RBAC and provide

the security analysis experiments for this extension. 1

4.1 Overview and Challenges of the Rights Leakage Problem in TRBAC

The rights leakage problem in temporal domain requires determining how the time

is embedded into the model and which components of the model are affected by

this. Furthermore, an administrative model is necessary to allow certain changes

in the these components. Then, a security analysis is possible for the TRBAC

model. In this section, we first discuss on how temporal constraints can be applied

to user-role assignment, permission-role assignment, role enabling and role-role

1The contributions in this chapter were published in [50, 51, 52]
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assignment (role hierarchy) relations. Next, we present the administrative model

that governs modifications to these relations which leads us to our proposed secu-

rity analysis for TRBAC model.

In the RBAC models with temporal components proposed earlier in the lit-

erature, the majority of them focus extensively on benefits of having temporal

constraints on the temporal user-role assignment relation and role enabling. In

this study, we do not limit ourselves to cover only these two relations, and focus

on the two other relations, namely, permission-role assignment and role hierar-

chies, as well. Since the benefits of having temporal user-role assignment and

role enabling have been discussed extensively by earlier studies, we now discuss

potential benefits of having temporal permission-role assignments and temporal

role hierarchies.

Temporal permission-role assignments capture the changes in PAwith respect

to time, hence, a role can have different permission assignments in different time

intervals. This concept, although look similar to temporal UA, can have different

applications in a TRBAC model, including reducing the number of roles. Let us

explain this with an example:

Example 1. Consider a manufacturing company has two different production

plants in different cities, one also has the headquarters of the company. The com-

pany has a CEO and a General Manager (GM) who works at both the plants;

an Accounting Manager (AM), a Manufacturing Manager (MM), and a Human

Resources Manager (HR) for each plant. Although the CEO works at the head-

quarters, GM works in both of the plants in different days of the week. When he

is present at a plant, he manages the operations and audits the actions of the AM
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of that plant. However, when he is away (at the other plant), MM has the respon-

sibility to audit the operations of AM without completely assuming the GM role,

which is considered to have many additional permissions. In this case a TRBAC

model without Temporal PA must have two different roles for each MM: Regu-

lar MM and Extended MM, and in Temporal UA the necessary assignments are

done. However, presence of Temporal PA allows the model to have only one MM

role that has different permission assignments that captures the auditing process

whenever necessary.

In the Temporal RBAC model, role hierarchies can also be temporal in nature,

in other words, they may change with respect to temporal constraints. Although

role hierarchies in prior temporal extensions of RBAC have been specified, they

do not allow temporal constraints to be specified on them that not only restrict the

time during which the hierarchy is valid, but also change its structure by shifting

the position of the roles in the hierarchy. An immediate effect of this is that

permission inheritance does not always hold. Essentially this means that a senior

level role cannot always inherit the permissions of a junior level role. Furthermore,

a role may change its level in the hierarchy, for example, a junior level role may

be elevated to a higher level role during certain time periods.

Although enterprises usually specify a static hierarchy, a dynamic temporal

role hierarchy (DTRH) comes into play in some temporary or periodical excep-

tional situations that are required for operational purposes. In the following, we

provide such a motivating example.

Example 2. Consider once again the manufacturing company given in the previ-
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Figure 4.1. The Role Hierarchy of the Manufacturing Company

ous example. The auditing tasks of MM can be modeled with DTRH, if the tasks

required for auditing can be acquired through the role hierarchy given in Figure

4.1. A policy which makes the Manufacturing Manager move to the second level,

on top of the Accounting Manager only on the days when the General Manager is

away will provide permissions needed for auditing the AM to MM.

Nevertheless, it is still possible to represent the scenario in the example above

using a static role hierarchy. However, lack of temporal role hierarchies will force

the system administrators to create a dummy role, like “Manager and Auditor”,

that is only enabled when necessary. Also, this role should have the required

permission and hierarchy assignments that Manufacturing Manager needs. This

newly created role does not essentially represent a regular job function since the

Manufacturing Manager cannot assume this role all the time. Moreover, the Man-

ufacturing Manager should be assigned to two separate roles which are enabled

and disabled in regular time intervals. The situation might get even more com-

plicated in the case of temporary changes in the system. Suppose that this au-

diting position is applied only when the General Manager is on vacation. Then

the newly created dummy role and the necessary permission assignments are per-

formed just for a single and temporary occurrence. Even worse, the administrators

must undo the changes in the system, by revoking and deleting this role when the
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General Manager returns. Skipping this step would create serious safety problems.

Clearly, creation of these redundant dummy roles increases the administrative bur-

den [25].

Role delegation, which has been studied extensively in the literature [1, 7,

8, 17, 30, 54, 58, 59], is another way of handling scenarios like this. Users are

delegated to the necessary roles of the users that are away. Even though our ex-

ample scenario can be modeled using role delegation without imposing significant

overhead, using temporal role hierarchies has still an advantage in terms of per-

forming security analysis. Whether handling the temporal role hierarchies is done

using the specification of DTRH, using dummy roles or delegation, none of the

prior work on safety analysis considers RBAC models with temporal constraints

on role hierarchies.

4.2 TRBAC and its Administrative Model

Although Temporal RBAC models have been proposed in the literature, none of

them addresses the security analysis of policies. The temporal dimension of the

model makes it even harder to perform security analysis, which is already proved

to be intractable for the non-temporal case. Therefore, while preserving the core

idea of having the temporal notion embedded into the RBAC components as in

[11, 33], we simplify the model to allow for a manageable security analysis. Al-

though, our simplified model does not completely represent the previous temporal

models, such as TRBAC or GTRBAC as a whole, we call this model Tempo-

ral RBAC (or TRBAC, in short) for notational simplicity. Therefore, the model

referred as TRBAC for the remainder of this chapter represents our simplified
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model, unless otherwise noted. Now, we explain our TRBAC model in detail. We

first define how the time is represented in the model:

Let TMAX be a positive integer. A time slot of Times is a pair (a, a+1), where

a is an integer, and 0 ≤ a < a + 1 ≤ TMAX . A time slot (a, a + 1) represents

the set of all times in the set [a, b), i.e., {t | a ≤ t < b}. We use a time interval,

consisting of a pair (a, b) where a, b are two integers and 0 ≤ a < b ≤ TMAX , to

represent the set of corresponding time slots {(a, a+1), (a+1, a+2), . . . (b−1, b)}

succinctly. A schedule over TMAX is a set of time slots.

For instance, consider a hospital that works for 24 hours with three shifts

(between 9 am and 5 pm, between 5 pm and 1 am, and between 1 am and 9

am). If we want to have the precision of hours, we choose TMAX = 24, and

a schedule s that covers shifts 9 am–5 pm and 5 pm–1 am is represented as

s = {(9, 10), (10, 11) . . . , (23, 24), (24, 1)}. The schedule definition is a sim-

plified version of the Calendar definition in Bertino et al. [11], where we have

simpler periodic constraints and do not have duration constraints.

We assume that the system is periodic, thus the schedules repeat themselves

after any TMAX ; in the hospital example above, time intervals are repeated each 24

hours. Given a schedule s over TMAX and an real number t, we say that t belongs

to s, denoted t ∈ s, if there is a time interval (a, b) ∈ s such that t′ ∈ [a, b), where

t′ = t mod TMAX .

Definition 5. (TRBAC Configuration). Let S be the set of all possible schedules

over TMAX . A TRBAC configuration over TMAX is a tuple M = 〈U,R,PRMS ,

TUA,TPA,
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RS ,DTRH 〉 where U , R and PRMS are finite sets of users, roles, and permis-

sions, respectively, TUA ⊆ (U × R× S) is the temporal user to role assignment

relation, TPA ⊆ (PRMS ×R×S) is the temporal permission to role assignment

relation, RS ⊆ (R × S) is the role-status relation and DTRH is the dynamic

temporal role hierarchy relation.

A tuple (u, r, s) ∈ TUA represents that user u is a member of the role r only

during the time intervals of schedule s. During the life time of the system, a

role can be either enabled or disabled. A tuple (r, s) ∈ RS imposes that role r is

enabled only during the time intervals of s (and therefore it can be assumed to be a

member of r only at these times), and disabled otherwise. A tuple (p, r, s) ∈ TPA

means that permission p is associated to role r only in the time intervals denoted

by s. Thus, a user u is granted permission p at time t ∈ [0, TMAX ] provided that

there exists a role r ∈ R such that (u, r, s1) ∈ TUA, (r, s2) ∈ RS, (p, r, s3) ∈ PA,

and t ∈ (s1 ∩ s2 ∩ s3), for some time intervals s1, s2 and s3.

We assume that relation RS for each role r ∈ R contains always exactly one

pair with first component r. Similarly, the relation TUA contains exactly one

tuple for each pair in U × R. Thus, if a role r is disabled in any time interval, we

require that RS relates r with the empty schedule. Similarly, if a user u does not

belong to a role r in any time interval, the pair (u, r) is associated to the empty

schedule by the relation TUA.

Permission inheritance and role activation through role hierarchies require ad-

ditional definitions. In our model, DTRH is represented as a collection of dy-

namic temporal role hierarchy policies, which are tuples consisted of a pair of
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roles associated with a schedule that denotes the time slots that the policy is valid.

In our model, we have dynamic temporal role hierarchy for inheritance only re-

lation DTRHI , for activation only relation DTRHA and for general inheritance

relation DTRHIA, all comprises as DTRH = DTRHI ∪DTRHA ∪DTRHIA.

Definition 6. A dynamic temporal role hierarchy policy (r1 ≥s,weak r2) ∈ DTRHI

between roles r1 and r2 is an inheritance-only weak temporal hierarchy relation,

that is valid in the time slots specified by a schedule s. Under this policy, a user u

who can activate r1 can inherit permissions of r2 at time t if (1) (u, r1, s1) ∈ TUA

(2) (r1, s2) ∈ RS and (3) t ∈ (s1 ∩ s2 ∩ s), provided that there exists schedules

s1 and s2 that determine the time slots that u is assigned to r1 and r1 is enabled,

respectively.

Definition 7. A dynamic temporal role hierarchy policy (r1 �s,weak r2) ∈ DTRHA

between roles r1 and r2 is an activation-only weak temporal hierarchy relation,

that is valid in the time slots specified by a schedule s. Under this policy, a user

u can activate r2 at time t if (1) (u, r1, s1) ∈ TUA (2) (r2, s2) ∈ RS and (3)

t ∈ (s1 ∩ s2 ∩ s), provided that there exists schedules s1 and s2 that determine the

time slots that u is assigned to r1, and r2 is enabled, respectively.

Definition 8. A dynamic temporal role hierarchy policy (r1 �s,weak r2) ∈ DTRHIA

between roles r1 and r2 is a general weak temporal hierarchy relation, that is valid

in the time slots specified by a schedule s. Under this policy, a user u can activate

r2 at time t, or inherit permissions of r2 if (1) (u, r1, s1) ∈ TUA (2) (r2, s2) ∈ RS

and (3) t ∈ (s1 ∩ s2 ∩ s), provided that there exists schedules s1, and s2 that

determine the time slots that u is assigned to r1 and r2 is enabled, respectively.
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In the above three definitions, the relations become strong, (i.e: r1 ≥s,strong

r2) ∈ DTRHI , (r1 �s,strong r2) ∈ DTRHA and (r1 �s,strong r2) ∈ DTRHIA),

when (2) is replaced with (r1, s2), (r2, s3) ∈ RS and (3) is replaced with t ∈

(s1 ∩ s2 ∩ s3 ∩ s) where s3 is the schedule that determine the time slots that r2 is

enabled.

Presence of more than one type of relation makes DTRH a hybrid hierarchy.

Dynamic temporal role hierarchy policies (r1 ≥s,weak r2) ∈ DTRH satisfy

the following properties for a given schedule s:

1. Reflexive: (r1 ≥s,weak r1) ∈ DTRH

2. Transitive: If (r1 ≥s,weak r2), (r2 ≥s,weak r3) ∈ DTRH , then (r1 ≥s,weak

r3) ∈ DTRH .

3. Asymmetric: If (r1 ≥s,weak r2) ∈ DTRH then (r2 ≥s,weak r1) 6∈ DTRH .

These properties apply for both strong and the other types of relations (�

,�) as well.

Different policies among different roles create derived relations. As discussed

in [32] derived relations determine the scope of activation or inheritance privileges

upon activating a role. We adopt these derived relations to the case of dynamic

temporal role hierarchies as follows:

Definition 9. A derived relation among roles x, y1, y2, ..., yn, z ∈ R holds under

any of the following conditions:

1. (x〈F〉s0,typey1)∧(y1〈F〉s1,typey2)∧...∧(yn−1〈F〉sn−1,typeyn)∧(yn〈F〉sn,typez)→

(x〈F〉s,typez) if F ∈ {≥,�,�} ∧ s = s0 ∩ ... ∩ sn,
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2. (x ≥s0,type y1)∧(y1〈F〉s1,typey2)∧...∧(yn−1〈F〉sn−1,typeyn)∧(yn〈F〉sn,typez)→

(x ≥s,type z) if F ∈ {≥,�} ∧ s = s0 ∩ ... ∩ sn,

3. (x�s0,type y1)∧(y1〈F〉s1,typey2)∧...∧(yn−1〈F〉sn−1,typeyn)∧(yn〈F〉sn,typez)→

(x〈F〉s,typez) if F ∈ {≥,�} ∧ s = s0 ∩ ... ∩ sn,

4. (x�s0,type y1) ∧ (y1 �s1,type y2) ∧ ... ∧ (yn−1 �sn−1,type yn) ∧ (yn �sn,type

z)→ (x �s,type z) if s = s0 ∩ ... ∩ sn.

The other rules stated in [32] hold as in the above definition provided that

s = (s1 ∩ s2 ∩ ... ∩ sn) 6= ∅.

According to Definition 9, if all of the linked hierarchy policies are of same

type, the derived policy is also of the same type. If the first policy is an inher-

itance only relation, then regardless of the other linked policies being activation

only or general inheritance hierarchy, the derived relation will be an inheritance-

only policy. Similarly, if the first policy is a general inheritance relation and the

remaining policies are activation-only, the derived relation is an activation-only

policy. Finally, if the first policy is a general inheritance relation and the other

linked policies being activation only or general inheritance relations, the derived

relation will be of the type of linked policies.

Now, we can present our administrative model that allows administrators to

make changes to the role-status relation RS ,temporal user to role assignment rela-

tion TUA, temporal permission to role assignment relation TPA and the dynamic

temporal role hierarchy relation DTRH by using enable / disable, assignment /

revocation and modify rules, respectively. The goal of these rules is to update the

time intervals of the schedule s associated to the corresponding relation.
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In the analysis of the TRBAC model, we assume that the analysis for TPA

can be made separately, since it is not directly related to the analysis of other

components in terms of the security questions in consideration. More specifically,

the security questions ask whether it is possible for a user to get access to a role,

which requires determining whether it is possible for the goal role to be assigned

to the target user directly, or indirectly via the role hierarchy in a time interval and

if the role is enabled during any portion of this time interval. On the other hand,

the analysis for TPA is needed to discover if there is a possibility for a permission

to appear in a particular goal role. Therefore, we define the Temporal URA and

Temporal PRA systems separately to observe the state transitions.

Definition 10. (Temporal User to Role Administration). A TURA system is a tu-

ple S
T
= 〈M, can enable, can disable, t can assign, t can revoke, t can modify〉

where M = 〈U,R,PRMS ,TUA,TPA,RS ,DTRH 〉 is a TRBAC policy over

TMAX , and can enable, can disable, t can assign, t can revoke ⊆ (R ×

S× 2R× 2R×S×R) and t can modify ⊆ (R×S× 2R× 2R× 2R× 2R×S×

R×R× {strong, weak} × {≥,�,�}).

Definition 11. (Temporal Permission to Role Administration). A TPRA system

is a tuple S
T
= 〈M, t can assignp, t can revokep〉whereM = 〈U,R,PRMS ,TUA,

TPA,RS ,DTRH 〉 is a TRBAC policy over TMAX , and t can assignp, t can revokep ⊆

(R × S × 2R × 2R × S ×R).

A configuration of S
T

for TURA is a triple (RS, TUA,DTRH), which is ini-

tial if RS = RS0, TUA = TUA0 and DTRH = DTRH0. Similarly, a config-

uration of S
T

for TPRA is a singleton (TPA), which is initial if TPA = TPA0.
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Given two S
T

configurations c = (RS, TUA,DTRH) and c′ = (RS ′, TUA′, DTRH ′)

for TURA’ and c = (TPA) and c′ = (TPA′) for TPRA, we describe below

the conditions under which there is a transition (or move) from c to c′ at time

t ∈ N with rule m ∈ MALL = (can enable ∪ can disable ∪ t can assign ∪

t can revoke ∪ t can modify ∪ t can assignp ∪ t can revokep), denoted

c
(τm,t)−−−→ c′.

Before defining the transition relation, we first describe the components of

move m = (admin, srule , Pos ,Neg , srole , r). Move m can be executed only by a

user, say ad , belonging to the administrative role admin ∈ R.

The times t in which ad can execute m are all those in which ad is assumed to

be a member of role admin, and furthermore, t must also belong to the schedule

srule which denotes the time intervals when m can be fired (or we say valid): t ∈

(sad ∩sadmin ∩srule) where (ad , admin, sad) ∈ TUA and (admin, sadmin) ∈ RS.

In the rest of the section we say thatm can be executed at time twhenever t fulfills

the above condition. The component srole is used to update the schedule of a role,

or the membership of a user to a role, depending on the kind of rule ofm. The pair

of disjoint role sets (Pos ,Neg) is called the precondition of m whose fulfillment

depends by the kind of the rule m.

The fulfillment of the precondition of a can-enable and can-disable rule de-

pends on the current status of the other roles. Let ŝ ⊆ srole . A can-enable or

can-disable rule m = (admin, srule ,Pos ,Neg , srole , r) satisfies its precondition

(Pos ,Neg) w.r.t. candidate schedule ŝ, if for every time slot α ∈ ŝ, if (1) for every

role pos ∈ Pos , α ⊆ spos where (pos , spos) ∈ RS, (2) for every role neg ∈ Neg ,

α ∩ sneg = ∅, where (neg , sneg) ∈ RS, and (3) α satisfies all preconditions. In
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other words, a candidate schedule ŝ ⊆ srole satisfies a precondition only if each

time slot α ∈ ŝ satisfies the precondition individually. Let (r, s) ∈ RS .

Enabling Rules: A can-enable rule adds a new schedule to a specific role. A

tuple (admin, srule , Pos , Neg , srole , r) ∈ can enable allows to update the tuple

(r, s) ∈ RS to (r, s ∪ ŝ) for some schedule ŝ, provided that m can be executed at

time t and also satisfies its precondition. Formally, rule m is executable at time t,

m satisfies its precondition (Pos ,Neg) w.r.t. schedule ŝ, RS ′ = (RS \ {(r, s)})∪

{(r, s ∪ ŝ)}, and TUA′ = TUA.

Disabling Rules: A can-disable rule removes a schedule from a designed role.

A tuple m = (admin, srule , Pos , Neg , srole , r) ∈ can disable allows to update

the tuple (r, s) ∈ RS to (r, s \ ŝ), for some schedule ŝ, provided that m can be

executed at time t, and satisfies its precondition. Formally, m is executable at

time t, m satisfies its precondition (Pos ,Neg) w.r.t. schedule ŝ, RS ′ = (RS \

{(r, s)}) ∪ {(r, s \ ŝ)}, and TUA′ = TUA.

The next two rules are similar to those given above with the difference that

we now update the schedules associated to each element of the user to role as-

signment relation. Another difference is that can-assign and can-revoke rules

have a different semantics to fulfill their preconditions. A user u ∈ U satis-

fies a precondition (Pos ,Neg) w.r.t. a schedule ŝ if for every time slot α ∈ ŝ,

(1) for every (u, pos , spos) ∈ TUR with pos ∈ Pos , α ⊆ spos , (2) for every

(u, neg , sneg) ∈ TUA with neg ∈ Neg , α ∩ sneg = ∅, and (3) α satisfies all pre-

conditions. Let (u, r, s) ∈ TUA.
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Assignment Rules: A tuple (admin, srule ,Pos ,Neg , srole , r) ∈ t can assign

allows to update the user to role assignment relation for the pair (u, r) as follows.

Let ŝ be a schedule over TMAX with ŝ ⊆ srole . Then, if m can be executed at time

t, and user u satisfies the precondition (Pos ,Neg) w.r.t. schedule ŝ, then the tuple

(u, r, s) is updated to (u, r, s∪ŝ), i.e. TUA′ = (TUA\{(u, r, s)})∪{(u, r, s∪ŝ)},

and RS ′ = RS.

Revocation Rules: A tuple (admin, srule ,Pos ,Neg , srole , r) ∈ t can revoke al-

lows to update the user to role assignment relation for the pair (u, r) as follows.

Let ŝ be a schedule over TMAX with ŝ ⊆ srole . Then, if m can be executed at time

t, and user u satisfies the precondition (Pos ,Neg) w.r.t. schedule ŝ, then the tuple

(u, r, s) is updated to (u, r, s\ ŝ), i.e. TUA′ = (TUA\{(u, r, s)})∪{(u, r, s\ ŝ)},

and RS ′ = RS.

The rules for updating the permission to role assignment is again similar

to the user to role assignments rules, with the difference of assigning permis-

sions and preconditions checked against the assigned permissions. The struc-

ture of the move definition is similar to the existing model, but the assignment

semantics for permissions are different. Hence, the existing move definition,

m = (admin, srule , Pos ,Neg , srole , r) remains the same, but it applies to per-

missions rather than users.

Intuitively, a precondition in the permission level is a verification procedure

of the existing role assignments of a given permission. For instance, a positive

precondition (negative, resp.) can state a permission can only be added to a given

role if it has already been (has not been, resp.) assigned to another role. More

formally, a permission p ∈ PRMS satisfies a precondition (Pos ,Neg) w.r.t. a
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schedule ŝ if for every time slot α ∈ ŝ, (1) for every (p, pos , spos) ∈ TPA with

pos ∈ Pos , α ⊆ spos , (2) for every (p, neg , sneg) ∈ TPA with neg ∈ Neg ,

α ∩ sneg = ∅, and (3) α satisfies all preconditions. Let (p, r, s) ∈ TPA.

Assignment Rules: A tuple (admin, srule ,Pos ,Neg , srole , r) ∈ t can assignp

allows to update the permission to role assignment relation for the pair (p, r) as

follows. Let ŝ be a schedule over TMAX with ŝ ⊆ srole . Then, ifm can be executed

at time t, and permission p satisfies the precondition (Pos ,Neg) w.r.t. schedule ŝ,

then the tuple (p, r, s) is updated to (p, r, s∪ ŝ), i.e. TPA′ = (TPA\{(p, r, s)})∪

{(p, r, s ∪ ŝ)}, TUR′ = TUR and ER′ = ER.

Revocation Rules: A tuple (admin, srule ,Pos ,Neg , srole , r) ∈ t can revokep

allows to update the permission to role assignment relation for the pair (p, r) as

follows. Let ŝ be a schedule over TMAX with ŝ ⊆ srole . Then, ifm can be executed

at time t, and permission p satisfies the precondition (Pos ,Neg) w.r.t. schedule ŝ,

then the tuple (p, r, s) is updated to (p, r, s \ ŝ), i.e. TPA′ = (TPA \ {(p, r, s)})∪

{(p, r, s \ ŝ)}, TUR′ = TUR and ER′ = ER.

The rule structure for t can modify is different from the other rules. This rule

updates the valid time slots of the dynamic temporal role hierarchy policies. Also,

in contrast to precondition structures that have been proposed in the literature for

other administrative rules (like can assign), it has two sets of preconditions, one

for senior and one for junior role in order to protect the integrity of the hierarchy.

The rule is composed of eight parameters that should be satisfied to execute the

rule. Three of these parameters are similar to the above mentioned moves, namely,

admin, srule and shierarchy which is declared as srole in other rules defined above,

but has similar semantics. Let t be the time slot that the rule is required to be
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executed.

• type ∈ {strong, weak} denotes the type of the hierarchy relation.

• rsr is the senior role of the hierarchy policy.

• rjr is the junior role of the hierarchy policy.

• SR(Pos,Neg) denotes the positive and negative preconditions of the senior

role rsr. The preconditions are satisfied in the following way: Let ŝ denote

the time slots that are intended to be modified by the rule (ŝ ⊆ shierarchy).

For each r ∈ Pos, there must be a role hierarchy policy (r ≥ŝ,type rsr) ∈

DTRH and for each r ∈ Neg, there must not be a hierarchy policy (r ≥ŝ,type

rsr) ∈ DTRH .

• JR(Pos,Neg) denotes the positive and negative preconditions of the junior

role rjr. The preconditions are satisfied in the following way. Let ŝ denote

the time slots that are intended to be modified by the rule (ŝ ⊆ shierarchy).

For each r ∈ Pos, there must be a role hierarchy policy (rjr ≥ŝ,type r) ∈

DTRH and for each r ∈ Neg, there must not be a hierarchy policy (rjr ≥ŝ,type

r) ∈ DTRH .

Modification Rule: Under these parameters, a tuple: (admin, srule , SR(Pos,Neg),

JR(Pos,Neg), shierarchy , rsr, rjr, type) ∈ t can modify allows to update the

role hierarchy relation rsr ≥s,type rjr as follows: Let ŝ be a schedule over TMAX

with ŝ ⊆ shierarchy . Then, if this rule can be executed at time t, and the precon-

ditions are satisfied w.r.t. schedule ŝ, then the tuple rsr ≥s,type rjr is updated to
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rsr ≥s∪ŝ,type rjr or rsr ≥s\ŝ,type rjr, depending on the intended modification. This

definition is for inheritance only hierarchies, but it also applies to activation only

and general inheritance hierarchies, by replacing ≥ with � and�.

Example 3. Let us now consider an example of a TRBAC system deployed in

a hospital. Assume that there are 7 different roles, namely, Employee (EMP ),

Day Doctor (DDR), Night Doctor (NDR), Practitioner (PRC ), Nurse (NRS ),

Secretary (SEC ) and Chairman (CHR). Hospital works for 24 hours and there

are three different shifts (time slots) from 8 am to 4 pm (Time Slot 1), 4 pm to

12 am (Time Slot 2) and 12 am to 8 am (Time Slot 3). Only the Chairman role

(CHR) has administrative privileges.

1. (CHR, {(0, 2)}, {DDR}, ∅, {(0, 1)}, PRC )∈ can enable: At time slots 1

and 2, a chairman can enable the role Practitioner for the first time slot if

the role Day Doctor is also enabled during this time slot.

2. (CHR, {(0, 3)}, {EMP , NDR}, {(2, 3)}, NRS ) ∈ can disable: At time

slots 1, 2 and 3, a chairman can disable the role Nurse for the third time slot

if the roles Employee and Night Doctor are enabled at this time slot.

3. (CHR, {(0, 2)}, {EMP}, {NRS}, {(0, 2)}, DDR) ∈ t can assign: At

time slots 1 and 2, a chairman can assign the role Day Doctor for the first

and the second time slots to any user that has Employee role and does not

have Nurse role during these time slots.

4. (CHR, {(0, 3)}, ∅, ∅, {(0, 3)}, SEC ) ∈ t can revoke: At time slots 1, 2

and 3,a chairman can revoke the role Secretary for all time slots of any user

that has Secretary role assigned in these slots.
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5. (CHR, {(2, 3)}, {EMP}, {NRS}, {(2, 3)}, NDR) ∈ t can assignp: At

time slot 3, a chairman can assign a permission to the role Night Doctor

for the third time slot if that permission is also assigned to Employee not

assigned to Nurse role during this time slot.

6. (CHR, {(0, 2)}, ∅, ∅, {(0, 3)}, NRS ) ∈ t can revokep: At time slots 1

and 2, a chairman can revoke a permission from the role Nurse for all time

slots.

7. (CHR, {(0, 2)}, {DDR}, ∅, {(0, 1)}, PRC )∈ t can assign: At time slots

1 and 2, a chairman can assign the role Practitioner for the first time slot of

any user that has Day Doctor role during this time slot.

8. (CHR, {(0, 3)},{NDR}, ∅, {(2, 3)}, PRC )∈ t can assign: At time slots

1, 2 and 3, a chairman can assign the role Practitioner for the third time slot

to any user that has Night Doctor role during this time slot.

Reachability problems: A run (or computation) of S
T

is any finite sequence of S
T

transitions π = c1
(τm1 ,t1)−−−−→ c2

(τm2 ,t2)−−−−→ . . . cn
(τmn ,tn)−−−−−→ cn+1 for some n ≥ 0, where

c1 is an initial configuration of S
T

, t1 = 0, and ti ≤ ti+1 for every i ∈ [n − 1].

An S
T

configuration c is reachable within time t, if there exists a run π in which

cn+1 = c and tn ≤ t. Furthermore, c is simply reachable if c is reachable within

time t, for some t ≥ 0.

Let S
T

be a TURA system over TMAX , u and r be a user and a role of S
T

,

respectively, and s be a schedule over TMAX . Given a time t, the timed reachability

problem for (S
T
, u, r, s, t) asks whether there is a reachable configuration within

time t of S
T

in which user u is a member of role r in the schedule s either explicitly
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or implicitly through the role hierarchy. Similarly, the reachability problem for

(S
T
, u, r, s) is defined as above where there is no constraint on time t. In all of the

time slots of s, r must also be enabled.

For a TPRA system over TMAX which is identified by S
T

, and p and r are a

permission and a role of S
T

, respectively, and s be a schedule over TMAX . Given

a time t, the timed reachability problem for (S
T
, p, r, s, t) asks whether there is a

reachable configuration within time t of S
T

in which user u is a member of role r

in the schedule s. Similarly, the reachability problem for (S
T
, u, r, s) is defined as

above where there is no constraint on time t.

In our analysis, we assume Separate Administration, in which there is an ad-

ministrative user who is assigned to the required administrative roles which are

enabled all the time. Hence, the times to fire a rule is only restricted by srule.

Given an initial configuration c0, rules of an administrative model,MALL and

the target user u, who is being analyzed against the security questions of interest,

our proposed security analysis methodology provides answers to various security

questions outlined in Section 4.3.

4.3 TRBAC Security Analysis

In Temporal RBAC, the security problem is slightly different than that of RBAC.

The model can have two different ranges of temporal coverage: Safety until a

given period of time (or called short term safety), and the ultimate safety (or called

long term safety). In short term safety, we are only interested in the safety of the

system until a given fixed time. Practically, this type of an analysis is useful to
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track users that will have temporary presence in the system. Whereas, the long

term safety is more concerned about the regular users which are likely to be active

in the system for relatively longer periods of time. This analysis will yield an

ultimate safety of the system in the long run. Furthermore, changes allowed in the

role hierarchy require additional security questions related to implicit assignments

that are possible in the future. There is no problem of this sort in the case of static

role hierarchies, however a simple manipulation in the hierarchy could create a

security breach, and should be detected in advance to prevent any such occurrence.

Considering these definitions, some example security questions for the temporal

domain can be stated as follows:

1. Safety:

(a) (Explicit Assignment - Short Term) Will there be no reachable state in

which a user u is assigned to a role r at time t?

(b) (Explicit Assignment - Long Term) Will a user u ever get assigned to a

role r?

(c) (Role Enabling - Long Term) Will an enabled role r eventually be dis-

abled?

(d) (Implicit Assignment - Short Term) Will a user u get implicitly assigned

to role r at time t?

(e) (Implicit Assignment - Long Term) Will a user u ever get implicitly

assigned to role r in the future?

(f) (Permission Assignment - Long Term) Will a permission p ever get

assigned to role r in the future?
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2. Liveness:

(a) (Role Enabling - Short Term) Will an enabled role remain enabled at

time t?

(b) (Implicit Assignment - Short Term) Will a user u lose privileges of any

role that he is implicitly assigned until time t?

(c) (Explicit Assignment - Long Term) Will a user u ever lose any role that

he is assigned in the future?

(d) (Permission Assignment - Short Term) Will a permission p remain as-

signed to role r at time t?

3. Mutual Exclusion:

(a) (Explicit Assignment - Long Term) Will a user u be assigned to roles

r1 and r2 at the same time (i.e., do the time intervals during which u is

assigned to roles r1 and r2 overlap?

(b) (Implicit Assignment - Short Term) Will users u1 and u2 get implicitly

assigned to role r at the same time slot until time t?

Regarding these security questions, our aim is to analyze TRBAC model to

verify that the configuration is safe in terms of the questions stated above.

Our security analysis depends on a customizable three stage decomposition

strategy. First we decompose the problem into four steps based on the temporal

relation that is modified (TUA,RS ,TPA,DTRH). Then, we further decompose

each of these subproblems into smaller ones using the time dimension in which

we have two different strategies to address different security questions – Rule
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Schedule and Role Schedule. Finally, combining the results obtained from each

of these decomposed problems provide the complete analysis.

4.3.1 Stage 1: Relation Based Decomposition

The TURA and TPRA systems are composed of a set of different type of rules that

are used to generate new configurations for a security analysis. The interactions

among these rules, however, have certain properties. Consider the rules grouped

according to the relations that they modify, i.e, t can assign, t can revoke;

can enable, can disable; t can assignp, t can revokep; and t can modify

are the four groups of rules that modify different relations in TRBAC. Assuming

that the administrator role and rule schedule requirements are satisfied, the exe-

cution of roles of each group is determined by the relations that they modify. For

instance, the preconditions to satisfy for t can assign and t can revoke are

checked against the current status of TUA, whereas, it is TPA for t can assignp,

t can revokep,RS for can enable, can disable andDTRH for t can modify.

Therefore, the execution rules of different groups are independent of each other.

However, this property does not imply that the relations that are modified with

these rules are also independent semantically. For instance, role assignments and

revocations can be performed for a user, but these assignments are useful only

if the roles are enabled. Similarly, an inheritance through the role hierarchy is

only possible if the senior role of the policy is enabled. Therefore, we perform

independent analysis on four different components of the TRBAC model and then

we combine the results obtained from each of these four sub-analysis problems in

order to interpret them correctly in Stage 3.
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Hence, regarding this property, our security analysis procedure is composed

of four steps (Table 4.1). In each of these steps, the state configurations and the

administrative rule sets of the analysis problems are shaped with different rela-

tions.

Table 4.1. Subproblems, Initial Configurations and the Relations Used
Analysis State Configuration Initial Configuration

Performed Represented By of the Analysis
1. User Assignment TUA TUA Relation of the target user

2. Role Enabling RS RS Relations of all roles
XExplicit Role Assignment Analysis is complete.

3. Role Hierarchy DTRH DTRH policies
XImplicit Role Assignment Analysis is complete.

4. Permission Assignment TPA TPA Relation of the target role
XFull Analysis is complete.

For each different analysis, the rule set is composed of the following rules:

1. User Assignment: t can assign, t can revoke

2. Role Enabling: can enable, can disable

3. Role Hierarchy: t can modify

4. Permission Assignment: t can assignp, t can revokep

This four step procedure depicted in Table 4.1 might be customized with re-

spect to the scope of the security analysis. At the end of first step, the analysis gen-

erates all possible configurations for the target user under the administrative rules.

The second step declares the time slots that the roles can get enabled. Combining

the results of the first and the second step produces the analysis that answers the

security questions related to explicit role assignments. If the implicit assignments
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are also considered, the third step should be performed. In the third step, possible

role hierarchy relations are generated. Combining these results with the ones from

the earlier steps will determine the possibility of an implicit assignment to a role.

Finally, the fourth step determines the possible permission assignments to a role

(or roles), which could also be conducted as an independent analysis determining

whether there is a possibility for a set of permissions to appear in a role. In sum-

mary, one can choose different combinations of the steps outlined in Table 4.1.

For example one can choose to carry out steps 1 and 2, steps 1, 2 and 3, steps 1, 2

and 4, or steps 1, 2, 3 and 4, based on the analysis they would like to perform.

4.3.2 Stage 2: Time Based Decomposition

Time Based Decomposition further simplifies the decomposed analysis problems

in the first stage. Since the time dimension is discrete, we decompose each of

the four security analysis problems above into multiple subproblems, so that each

instance can be treated similar to an RBAC model. We employ two different al-

ternative decomposition strategies – the rule schedule strategy and the the role

schedule strategy. These strategies, although can analyze the same problem, pro-

vide answers to different security questions. Rule schedule strategy provides anal-

ysis for short term reachability, whereas role schedule strategy provides analysis

for long term reachability. Each of the four steps of Stage 1 can be analyzed by

these strategies under the state configuration and administrative rule settings de-

picted in Table 4.1. The time based decomposition strategies provide flexibility so

that different RBAC analysis procedures can be employed as given in Table 4.2.

2Details given in Section 4.3.2
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Table 4.2. Time Based Decomposition and Available Analyzers
Analysis Rule Role

Performed Schedule Schedule
User Assignment SA Any RBAC Analyzer

Role Enabling SA Any RBAC Analyzer
Role Hierarchy MSA 2 MSA

Permission Assignment SA Any RBAC Analyzer

Before we provide details of these two strategies, we give the steps for each

stage to be performed for some of the example security questions that we discuss

in Section 4.3 in Table 4.3.

Table 4.3. The steps of analysis to be performed for different security questions
given in Section 4.3

Security Question Stage 1 Stage 2
1-a 1,2 Rule Schedule
1-c 2 Role Schedule
1-d 1,2,3 Rule Schedule
1-f 4 Role Schedule
2-c 1,2 Role Schedule
3-b 1,2,3 Rule Schedule

Rule Schedule Strategy

Rule Schedule Strategy is a state space exploration approach utilizing rule sched-

ules (srule) to decompose the analysis into smaller problems and analyze them

serially with respect to time. In this strategy, we use the RBAC analysis approach

by Stoller et al. [47] extensively to explore potential states reachable in different

time instances.

Letm ∈Mc ⊆M be a subset of the rules in the analysis problem. A constant

region C(a, b,Mc) is a bounded time interval between t = a and t = b, a ≤ b

such that ∀m ∈ Mc, (a, b) ⊆ smrule and 6 ∃m′ 6∈ Mc such that sm′rule ⊆ (a, b).
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Informally, if a rule m is included in a constant region C then it should be valid

in all time slots α ∈ (a, b), and there should not be any other rule m′ that is valid

in some but not all of the time slots of (a, b). In the rule schedule approach, we

split the timeline from 0 to TMAX into non overlapping constant regions Ci w.r.t

the srule of the roles.

In the analysis, we trace constant regions C1, C2, ... serially with respect to

time. These regions can be seen as separate RBAC systems. However, Ci+1 de-

pends on Ci,∀i, which implies the output of an RBAC reachability analysis at Ci is

an input (or initial configuration) to Ci+1. Since an RBAC analysis could result in

multiple configurations, then, in each constant region, a separate RBAC analysis

should be performed for each configuration generated by the analysis done in the

previous constant region.

Rule 6

Rule 7

Rule 8

Rule 3

Rule 4

Rule 5

0 1 2 3

Rule 1

Rule 2

Figure 4.2. Rule Schedules

Example 4. Now, let us consider the hospital example given in Section 4.2. There

are eight different administrative rules with different valid periods as depicted in

Figure 4.2, where the bars indicate their respective rule schedules. As can be seen

from the figure, the set of valid rules does not change in interval (0,2) C1 and (2,3)

(C2). More specifically, the valid rules for C1 are 1, 2, 3, 4, 6, 7, 8 and the valid
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rules for C2 are 2, 4, 5, 8. Essentially, we decompose the analysis problem of

TRBAC into two subproblems which are similar to RBAC problems pertaining to

these constant regions.

There are other issues related to role schedules that are assigned by the rules.

Recall that all of the rules have a role schedule which denotes the time intervals

that the role can be assigned. But, according to the rule definitions, the adminis-

trators are free to choose a sub schedule of the role schedule and assign / revoke,

enable / disable and modify the role (hierarchy) schedules only for some of the

designated time intervals. This further complicates the reachability analysis, since

in a serial fashion, one should keep all of the possible schedule combinations for

the subsequent time intervals. Therefore we make the following assumption to

simplify the analysis:

Sub-schedule Assumption: For each rule, the role (or hierarchy) schedule modi-

fication operations are performed using the entire schedule srole (shierarchy, resp.).

This means that an administrator may use a rule to assign the associated role r

to a user u all of the subsets of the schedule srole (as long as the preconditions

are satisfied). In our analysis, we assume that srole (shierarchy, resp.) is assigned

or revoked completely - no sub schedule assignments are allowed. Hence, this

assumption ensures that a rule can only generate at most one (new) configuration.

Here we provide a sketch of the algorithm. The TRBAC reachability analysis

starts with an initial configuration c0 and constant region C1. The state space is

expanded using Stoller et al.’s algorithm [47] (we refer this algorithm as SA) and
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the rules that are valid at time t = 0 3. At the end of this step, a set of reachable

configurations, S1 = {c1, c2, ..., cm} are obtained. Afterwards, the analysis moves

to C2. For each distinct configuration obtained so far, SA is used to expand these

configurations using the valid rules in this constant region. At the end of this step,

we obtain an updated set of reachable configurations S2 ⊇ S1. The algorithm then

moves to C3 and the trace goes in this fashion for a specified number of cycles P

of length TMAX (The algorithm returns to C1 whenever TMAX is reached). Since

TURA tuple ST is finite and since the iterations are bounded by the number of

cycles, the algorithm is guaranteed to terminate. However since this approach is a

greedy heuristic, we are not guaranteed to get an optimal solution.

Role Schedule Strategy

In this approach, we split the TRBAC security analysis problem into smaller

RBAC security analysis subproblems using the role schedules of the rules. The

main idea is to generate subproblems T (α,Ms) for each time slot α ∈ (0, TMAX )

with nontemporal administrative rules, so that the system can be treated like an

RBAC.

Example 5. Consider Figure 4.3, which shows the role schedules of the rules in

the hospital example given in Section 4.2. Here, we have three distinct time slots

(Time Slot 1: (0,1), Time Slot 2: (1,2), Time Slot 3: (2,3)) with different rules.

The rules for Time Slot 1 are Rule 1, 3, 4, 6, and 7; for Time Slot 2 are Rule 3, 4

and 6; for Time Slot 3 are Rule 2, 4, 5, 6, and 8.

3For the analysis of Dynamic Temporal Role Hierarchies, certain modifications are required as
given in Section 4.3.2
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Figure 4.3. Role Schedules

In order to achieve nontemporal administrative rules, (and hence an RBAC

system for each time slot), we need to remove two components: Rule Schedules

and Role Schedules (Hierarchy Schedules) and we need to show the inter-time

slot independency. The removal of the role schedules follows the definition of

subproblems T (α,Ms). For the rule schedules, we observe the Long Run Behav-

ior property of the administrative model that we propose.

Long Run Behavior: In the long run, rule schedules of the rules can be neglected,

if the system is periodic.

Here we give the intuition of this result. Rule schedules restrict the times that a

particular rule can be fired. This means that if a rule m is valid in at least one time

slot and if the assignment/revocation (or enabling/disabling) operation that is go-

ing to be performedm is necessary for the other rulesm′, one can wait untilm be-

comes valid, and perform the necessary operation. The other rules m′ can be fired

next time when the system periodically repeats itself. For example, suppose that

we have two roles, r1 and r2 and two t can assign rules (..., (4, 10), {}, r1, ...)

and (..., (1, 3), {r1}, r2, ...). The first rule states that we can use it only within

(4, 10); the second rule states that we can only use it within (1, 3). Notice that
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if the rules are serially applied with respect to time, then since the second rule

has a precondition of r1, we cannot fire second rule if we do not have r1 already

assigned. It means that first we need to wait until first rule becomes valid (until

t = 4) and assign r1. Then we should wait until the system restarts from t = 0

(since it is periodic) to fire second rule. Then the Long Run Behavior property

ensures that for the reachability analysis purposes, if one waits sufficient amount

of time then the effects of these kind of rule conflicts can safely be neglected. This

property allows us to treat all of the rules valid on the entire time line. Hence, the

srule restrictions can be relaxed from the rules.

In order to handle the independency issues among different time slots, we need

to consider preconditions. Recall that we define the preconditions as (Pos ,Neg)

relations to be satisfied in order to execute a rule. Now consider a rule m ∈ M

which belongs to T (α,M), and ŝ = α. In order to execute m, the precondition

relations declared by (Pos ,Neg) of m must be satisfied for ŝ. For each role pos ∈

Pos (neg ∈ Neg , resp.) ŝ ⊆ spos (ŝ ∩ spos = ∅, resp.) must be satisfied, which

simply depends on the corresponding (single) time slot in spos (sneg , resp.). Then

it is sufficient to check the schedule only for time slot α for each rule. This implies

that the preconditions do not depend on other time slots, hence the time slots are

independent.

So, using the Long Run Behavior property and the independency of time slots,

one can perform an RBAC reachability analysis using the rules m ∈ M for time

slot α. Then, the whole TRBAC system can be analyzed by a series of indepen-

dent RBAC systems Ti traced separately. This reduction provides usability of any

RBAC reachability analysis procedure proposed in the literature.
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The computational complexity of the algorithm depends on the RBAC ana-

lyzer. Suppose that the RBAC analyzer has the complexity O(·) then our ap-

proach yields a complexity of O(TMAX ·) since we utilize the RBAC analyzer for

each time slot (Totally we have TMAX of them). Since the algorithm runs for

TMAX iterations and given that the RBAC analyzer terminates, our algorithm is

guaranteed to terminate.

Modified SA for Hierarchy Analysis

The RBAC Analysis algorithm proposed by Stoller et al. [47] is a state space

exploration algorithm which is proved to be fixed parameter tractable. In our de-

composition approach, the subproblems obtained by the decomposition can be

analyzed by SA for Role Enabling, User to Role and Permission to Role assign-

ment relations. However, due to the precondition structure and SA not capable of

handling the can modify rule, SA is unable to analyze the Temporal Role Hier-

archy subproblem. In this section, we make certain modifications on SA to fit the

requirements of the role hierarchy analysis strategy that we propose for a TURA

analysis instance. We call this modified algorithm as MSA, which is still a state

space exploration algorithm, specifically designed for role hierarchies. The pur-

pose of MSA is to generate different possible static role hierarchies given a set of

t can modify rules. This algorithm can be used in both Rule Schedule and Role

Schedule strategies.

The state space is composed of the TRBAC configurations c, represented by

DTRH , generated by moves m, and authorized by the rulesM. In the configura-

tions, the precondition statements are crucial to determine the relationship among
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different rules. A role is hierarchy negative, if it appears negated in either junior

or senior preconditions of a t can modify rule. The other roles are called hier-

archy non-negative. A role is hierarchy positive, if it appears positive in either

junior or senior preconditions of a t can modify rule. The other roles are called

hierarchy non-positive. Any move m related to a DTRH policy with hierarchy

non-negative or hierarchy non-positive roles is called an invisible transition, the

others are called visible transition. Any invisible transition that creates a conflict

with the anti-symmetric property of DTRH in Section 4.2 generates a new state.

Any visible transition that creates a conflict with the anti-symmetric property of

DTRH in Section 4.2 is prohibited.

In the analysis for role hierarchies, there is no goal state to be achieved, rather

all possible hierarchy configurations are constructed to be used to interpret the

implicit role assignments of the other steps of the analysis.

4.3.3 Stage 3: Interpretation of the Results

The final step of the security analysis is to interpret the results obtained to con-

clude whether the access control configuration is vulnerable based on the analysis

of interest. In our analysis methodology, each step of the four step analysis pro-

cedure outputs results for a different relation in TRBAC. However, these results

are not sufficient individually to answer the security questions. The results of dif-

ferent steps of the analysis should be utilized together to obtain the correct result.

For instance, Role Assignment analysis could state that the goal role would be as-

signed to the target user, but that role might not get enabled at that time instance,

meaning that it is not possible for that particular user to exercise the goal role.
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Algorithm 1 The Modified Stoller et al.’s Algorithm (MSA)
1: Input: Rules m ∈MALL and initial state c0
2: Output: SP
3: Set ST = {c0} as temporary ,SP = ∅ as permanent set
4: Determine the non-positive and non-negative roles
5: while ST 6= ∅ do
6: Get a state c ∈ ST
7: Create a temporary state ctemp = c
8: for all Rules m ∈ ST that generate an invisible transition do
9: Check for hierarchy conflicts in ctemp

10: if There exists any violation then
11: Create a new state c′

12: Apply rule m on c′

13: Set ST = ST ∪ c′
14: else
15: Apply rule m on ctemp
16: end if
17: end for
18: Set c = ctemp
19: for all Rules m ∈ ST that generate a visible transition do
20: Create a new state c′

21: Check for hierarchy conflicts in c′

22: if There exists any violation then
23: Discard c′

24: else
25: Set ST = ST ∪ c′
26: end if
27: end for
28: Set ST = ST \c
29: Set SP = SP ∪ c
30: end while
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This step is crucial to interpret the security properties correctly.

Suppose that all four steps of the analysis is done. Each step outputs a set of

state configurations denoted as C1, C2, C3 and C4 respectively for the four steps.

Each configuration c ∈ C1 is composed of TUA, c ∈ C2 is composed of RS,

c ∈ C3 is composed of DTRH and c ∈ C4 is composed of DTRH policies.

For notational simplicity, we denote the relations as configurations. Under these

settings a given TRBAC policies and rules create a security violation if they satisfy

the following criteria for different security questions of interest:

• Explicit Role Assignment: ∃TUA ∈ C1, RS ∈ C2 : (u, r, s1) ∈ TUA ∧

(r, s2) ∈ RS ∧ s1 ∩ s2 6= ∅.

• Implicit Role Assignment: ∃TUA ∈ C1, RS ∈ C2, DTRH ∈ C3 : (u, r1, s) ∈

TUA∧(r1〈F〉si1r2), ..., (rn〈F〉sinr) ∈ DTRH∧(r1, sj1), (r2, sj2), ..., (r, sjn) ∈

RS ∧ s ∩ si1 ∩ ... ∩ sin ∩ sj1 ∩ ... ∩ sjn 6= ∅ 4

• Role Enabling ∃RS ∈ C2 : (r, s) ∈ RS ∧ s 6= ∅

• Permission Assignment ∃TPA ∈ C4 : (p, r, s) ∈ TPA ∧ s 6= ∅

• Liveness for Explicit Role Assignment: ∀s1, s2, 6 ∃TUA ∈ C1, RS ∈ C2 :

(u, r, s1) 6∈ TUA ∨ (r, s2) 6∈ RS.

• Mutual Exclusion for Explicit Role Assignment: ∃TUA ∈ C1, RS ∈ C2 :

(u1, r, s1) ∈ TUA ∧ (u2, r, s2) ∈ TUA ∧ (r, s3) ∈ RS ∧ s1 ∩ s2 ∩ s3 6= ∅

4Depending on the type of role hierarchy, role enabling criteria must satisfy the DTRH prop-
erties given in Definitions 6,7,8,9.
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4.4 TRBAC Computational Experiments

We have performed computational experiments for the analysis of TRBAC using

Rule and Role Schedule Approaches. In our experiments we demonstrated the

performance of the Role Assignment (Step 1) and Role Hierarchy (Step 3), since

the other steps are analogous to Step 1. In the experiments we employ SA and

MSA for Role Assignment and Role Hierarchy components.

We implement our algorithm with C programming language and run it on a

computer with 3 GB RAM and Intel Core2Duo 3.0 GHz processor running Debian

Linux operating system. In the experiments, the initial state is set to be an empty

state (meaning that there are no role assignments), and the rules and the goal are

created randomly by the code with respect to the corresponding parameter values

for the number of rules, number of roles, number of time slots and the number of

cycles. As we discussed before, we assume separate administration. Also, for role

hierarchies, we assume a general hierarchy relation. The parameter settings are

shown on Table 4.4. 10 replications are done for each parameter setting and their

average is reported. The results are in Figure 4.4(a),4.4(b) and 4.4(c).

Table 4.4. Parameter Settings
Number of Roles |R| 100, 500, 900

Number of Rules |MALL| 100, 500, 900
Number of Time Slots TMAX 100, 500, 900

Number of Cycles P 30 for all cases

Although in the experiments we demonstrate the time complexity of our ap-

proaches with respect to changes in the system parameters, we were unable to

obtain real-life data sets. As outlined by Schaad et al. [45], in a real-life large
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Figure 4.4. Rule Schedule Approach for Role Assignment
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enterprise, the average ratio of roles to users is about 3.2% with an average num-

ber of roles being around 1300. Also as presented by Ferrara et al. [21], ARBAC

policies for the Hospital dataset has 13 roles and 37 rules, University has 32 roles

and 449 rules and a typical Bank has around 500 to 1300 roles and 2000 to 8000

rules. As demonstrated in our experiments below, our approaches are scalable to

cover systems of this magnitude.

4.4.1 User to Role Assignment Experiments

The complexity of the rule schedule approach algorithm depends not only on

the number of roles and rules but also depends on the number of time slots, and

the schedules (rule-role) that are assigned to the roles. The state space that is

generated by this algorithm tends to be exponential in the worst case since it is a

brute force state space exploration algorithm.

According to the results obtained for the rule schedule approach, the run time

performances of the algorithms do not tend to be exponential, especially for the

number of roles. A possible explanation to this situation is that the datasets are

generated randomly. Hence there does not exist any “pattern” among the rules.

We mean pattern in the sense that, the components that determine the usability

of the rules, i.e., all of the precondition relations, rule and role schedules of the

moves are generated randomly – so it might become probabilistically harder to

satisfy all of these conditions. Nevertheless, the results give some insight about

how the algorithm is likely to behave under different parameter settings.

The effect of number of rules while all other parameters are constant is more

significant and tends to be an increasing relationship as number of rules increases
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(See Figure 4.4(b)). Moreover, the increasing tendency becomes more significant

as the number of roles and number of time slots increase. Furthermore, there is

a noticeable group formation between the fixed parameters (number of roles and

number of time slots). The groups are formed by different number of time slots

values indicating that the effect of number of roles is comparably smaller. Finally,

Figure 4.4(c) denotes the relationship between different values of number of time

slots parameter when the other two parameters are kept constant. The results show

that for the majority of the cases, there is a linearly increasing relationship with

the increasing number of rules.

For the role schedule approach, we use SA. According to the results ob-

tained, there is a linear and increasing relationship with 100, 500 and 900 roles

in the system while all other parameters are constant (See Figure 4.5(a)). The

effect of number of rules while all other parameters are constant is very similar to

the effect of roles. There is an increasing relationship in the running time as the

number of rules increases (See Figure 4.5(b)).

Finally, Figure 4.5(c) denotes the relationship between different values of

number of time slots parameter when the other two parameters are kept constant.

The results show that there is a linearly increasing behavior as the number of

time slots increase. This result is expected since the complexity of the algorithm

linearly depends on this parameter.

4.4.2 Role Hierarchy Experiments

In the role hierarchy experiments, we observe that the running times of both of

the approaches increased significantly. Especially for higher parameter settings
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for Rule Schedule Approach, running times of 10000 seconds, as opposed to a

maximum of 12 seconds for User to Role Assignment experiments are observed.

The underlying reasoning for this drastic increase is the fact that the state space

consists of a pair of roles. Moreover, the process of determining whether an in-

tended update in any of the role hierarchy pairs require examining the existing

role hierarchy pairs to make sure that the newly imposed changes will not create

a conflict.

When the run time performances of rule schedule and role schedule approaches

are compared, a similar pattern as in the User to Role Assignment experiments is

observed. Role Schedule approach is significantly faster than the Rule Sched-

ule approach due to the fact that the Rule Schedule approach is an exponential

state space exploration algorithm. The experimental results are given in Figures

4.6(a),4.6(b) and 4.6(c) for Rule Schedule and Figures 4.7(a),4.7(b) and 4.7(c) for

Role Schedule approach.

4.5 Spatio-temporal RBAC Extension

Spatio-temporal RBAC model imposes an additional dimension to the TRBAC,

which is the location information, and the access decisions are made considering

not only the time and assignments but also the location from which the access re-

quest is submitted. This adds another layer of complexity on the TRBAC model,

as though location layer could also be simplified in a similar manner that is used

for the temporal dimension. In this section, we extend our proposed model and

security analysis for TRBAC to handle rights leakage problem in STRBAC. As a

result of the security analysis in STRBAC, the following potential security ques-
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tions could be addressed:

1. Safety:

(a) Will there be no reachable state in which a user u is assigned to a role

r at location l?

(b) Will an enabled role r eventually be disabled at location l?

(c) Will a user u ever assigned to a role r at any location?

2. Liveness:

(a) Will an enabled role remain enabled at location l?

(b) Will a user u eventually be assigned to a role r at location l?

3. Mutual Exclusion: Will a user u be assigned to roles r1 and r2 at the same

location?

In our extended model, we embed spatial data to user-role assignment, permission-

role assignment and role status relations. Next, we make necessary definitions

towards this end, and propose our extended model.

4.5.1 Spatio-temporal RBAC and its Administrative Model

In modeling STRBAC, the primary challenge is to determine how the location

dimension is embedded. There are two distinct ways that the locations can be rep-

resented. The locations could either be physical, which means the longitudes and

latitudes based on a GPS location, or they could be logical locations semantics

of the location is used, like the name of the building, department, the names of
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the cross streets of an intersection. Logical locations can be considered as labels

attached to certain places. Depending on the granularity of the access control de-

cisions, either one could be implemented. However we choose to implement the

logical locations because of the following reasons. First, the physical location are

very fine grained so that this granularity would be considered too excessive for

many practical purposes. For example, the approximately 1984 physical locations

coincide with the location of the Rutgers Business School at 1 Washington Park,

Newark, NJ, 07102, USA5. Second, as the security analysis of RBAC with only

the temporal dimension is not scalable itself (See Rule Schedule approach), it is

intuitive that using a very large set of physical locations will also be not scalable.

Therefore, we utilize logical locations in our analysis. Before we define the log-

ical locations, let us first define the physical locations as tuples of longitudes and

latitudes 〈lon, lat〉 and let P = {〈lon, lat〉} is the set of physical locations.

Definition 12. (Logical Locations) LetL be a bounded set of labels l̂1, l̂2, l̂3, ..., l̂n.

The mapping function f : P → L is defined as a many-to-one labeling of physi-

cal locations into logical locations. Any subset l ⊆ L is defined as a collection of

locations.

The definition of the mapping function f , i.e. mapping which physical loca-

tions to which logical locations, depends solely on the locations that a particular

STRBAC is authorized to control. Therefore it varies among different companies

and access control systems. But the structure of the function being a many-to-one

is common for all applications.

5Reference: Google Maps at http://maps.google.com/
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The mapping function will reduce the amount of locations considerably since a

subset of physical locations will be mapped into a single logical location. Without

loss of generality, this mapping also satisfies the situation of a logical location for

a physical location.

The logical locations are embedded into the model using the spatial-schedules,

defined as follows:

Definition 13. (Spatial Schedules) The schedules with spatial dimension is a pair

〈s, l〉 ∈ SL that is belongs to the set of spatial schedules SL ⊆ S × L.

The any pair 〈s, l〉 ∈ SL can be represented shortly as sl ∈ SL. A pair of

time slot t and label l̂, written as 〈t, l̂〉 is an element of 〈s, l〉 (〈t, l̂〉 ∈ 〈s, l〉 = sl).

Now we can make the definition for a Spatio-temporal RBAC configuration.

Definition 14. STRBAC Configuration. Let SL be the set of all possible spa-

tial schedules over TMAX and |L|. An STRBAC configuration over is a tuple

M = 〈U,R,PRMS , STUA, STPA, SRS 〉 where U , R and PRMS are finite sets

of users, roles, and permissions, respectively, STUA ⊆ (U×R×SL) is the spatio-

temporal user to role assignment relation, STPA ⊆ (PRMS × R × SL) is the

spatio-temporal permission to role assignment and the relation, SRS ⊆ (R×SL)

is the spatial-role-status relation.

A tuple (u, r, sl) ∈ STUA represents that user u is a member of the role r

only during the time intervals and at the locations depicted by the spatial schedule

sl. A role can be either enabled or disabled. A tuple (r, sl) ∈ SRS imposes that

role r is enabled only during the time intervals and at the locations provided by
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sl, and disabled otherwise. A tuple (p, r, sl) ∈ STPA means that permission p

is associated to role r only in the time intervals and at the locations denoted by

sl. Thus, a user u is granted permission p at time t ∈ [0, TMAX ] and location l̂

provided that there exists a role r ∈ R such that (u, r, sl1) ∈ STUA, (r, sl2) ∈

RS, (p, r, sl3) ∈ SPA, and 〈t, l̂〉 ∈ (sl1 ∩ sl2 ∩ sl3), for some spatial schedules

sl1, sl2 and sl3.

We assume that relation SRS for each role r ∈ R contains always exactly one

pair with first component r. Similarly, the relation STUA contains exactly one

tuple for each pair in U ×R. Thus, if a role r is disabled in any time interval for a

location l̂, we require that SRS relates r with the empty schedule for l̂. Similarly,

if a user u does not belong to a role r in any time interval at a given location l, the

pair (u, r) is associated to the empty schedule for l̂ by the relation STUA.

Now, we can present our administrative model that allows administrators to

make changes to the spatial role-status relation SRS , spatio-temporal user-role

assignment relation STUA, spatio-temporal permission-role assignment relation

STPA by using enable / disable, and assignment / revocation rules, respectively.

The goal of these rules is to update the intervals of the spatial schedule sl associ-

ated to the corresponding relation.

Similar to the analysis of TRBAC model, in the analysis of the STRBAC

model, we assume that the analysis for STPA can be made separately, since it

is not directly related to the analysis of other components in terms of the secu-

rity questions in consideration. Therefore, we define the spatio-temporal URA and

spatio-temporal PRA systems separately to observe the state transitions.
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Definition 15. (Spatio Temporal User to Role Administration). A STURA

system is a tuple S
T

= 〈M, s can enable, s can disable, st can assign,

st can revoke〉 where M = 〈U,R,PRMS , STUA, STPA, SSRS 〉 is an STR-

BAC policy over SL, and s can enable, s can disable, st can assign, st can revoke ⊆

(R × SL× 2R × 2R × SL×R).

Definition 16. (Spatio Temporal Permission to Role Administration). A STPRA

system is a tuple S
T

= 〈M, st can assignp, st can revokep〉 where M =

〈U,R,PRMS , STUA, STPA, SRS 〉 is an STRBAC policy over SL, and st can assignp,

st can revokep ⊆ (R × SL× 2R × 2R × SL×R).

A configuration of S
T

for STURA is a tuple (SRS, STUA), which is initial

if SRS = SRS0, and STUA = STUA0. Similarly, a configuration of S
T

for

STPRA is a singleton (STPA), which is initial if STPA = STPA0. Given two

S
T

configurations c = (SRS, STUA) and c′ = (SRS ′, STUA′) for STURA’ and

c = (STPA) and c′ = (STPA′) for STPRA, we describe below the conditions

under which there is a transition (or move) from c to c′ at time t ∈ N with rulem ∈

MALL = (s can enable∪s can disable∪st can assign∪st can revoke∪

st can assignp ∪ st can revokep), denoted c
(τm,t)−−−→ c′.

Before defining the transition relation, we first describe the components of

move m = (admin, slrule , Pos ,Neg , slrole , r). Move m can be executed only by

a user, say ad , belonging to the administrative role admin ∈ R.

The times t and locations l̂ in which ad can execute m are all those in which

ad is assumed to be a member of role admin, and furthermore, 〈t, l̂〉 must also

belong to the schedule slrule which denotes the time intervals and locations when
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m can be performed (or we say valid): 〈t, l̂〉 ∈ (slad ∩ sladmin ∩ slrule) where

(ad , admin, slad) ∈ STUA and (admin, sladmin) ∈ SRS. In the rest of the

section we say that m can be executed at time t and location l̂ whenever 〈t, l̂〉

fulfills the above condition. The component slrole is used to update the schedule

of a role, or the membership of a user to a role, depending on the kind of rule of

m. The pair of disjoint role sets (Pos ,Neg) is called the precondition of m whose

fulfillment depends by the kind of the rule m.

The fulfillment of the precondition of a spatial can-enable and spatial can-

disable rule depends on the current status of the other roles. Let ŝl ⊆ slrole . A spa-

tial can-enable or spatial can-disable rule m = (admin, slrule ,Pos ,Neg , slrole , r)

satisfies its precondition (Pos ,Neg) w.r.t. candidate spatial schedule ŝl, if for

every time-location pair α ∈ ŝl, if (1) for every role pos ∈ Pos , α ⊆ slpos

where (pos , slpos) ∈ RS, (2) for every role neg ∈ Neg , α ∩ slneg = ∅, where

(neg , slneg) ∈ RS, and (3) α satisfies all preconditions. In other words, a candi-

date schedule ŝl ⊆ slrole satisfies a precondition only if each time-location pair

α ∈ ŝ satisfies the precondition individually. Let (r, sl) ∈ SRS .

Enabling Rules: A spatial can-enable rule adds a new spatial schedule to a spe-

cific role. A tuple (admin, slrule , Pos , Neg , slrole , r) ∈ s can enable allows to

update the tuple (r, sl) ∈ SRS to (r, sl∪ ŝl) for some spatial schedule ŝl, provided

that m can be executed at time t, at location l̂ and also satisfies its precondition.

Formally, rule m is executable at time t and location l̂, m satisfies its precondition

(Pos ,Neg) w.r.t.spatial schedule ŝl, SRS ′ = (SRS \ {(r, sl)}) ∪ {(r, sl ∪ ŝl)},

STPA′ = STPA and STUA′ = STUA.

Disabling Rules: A spatial can-disable rule removes a spatial schedule from a



73

designed role. A tuple m = (admin, slrule , Pos , Neg , slrole , r) ∈ s can disable

allows to update the tuple (r, sl) ∈ SRS to (r, sl\ŝl), for some spatial schedule ŝl,

provided that m can be executed at time t, at location l̂ and satisfies its precondi-

tion. Formally,m is executable at time t and location l̂,m satisfies its precondition

(Pos ,Neg) w.r.t. spatial schedule ŝl, SRS ′ = (SRS \ {(r, sl)}) ∪ {(r, sl \ ŝl)},

STPA′ = STPA and STUA′ = STUA.

The next two rules are similar to those given above with the difference that we

now update the spatial schedules associated to each element of the spatial user-role

assignment relation. Another difference is that spatio-temporal can-assign and

spatio-temporal can-revoke rules have a different semantics to fulfill their precon-

ditions. A user u ∈ U satisfies a precondition (Pos ,Neg) w.r.t. a spatial schedule

ŝt if for every time-location pair α ∈ ŝl, (1) for every (u, pos , slpos) ∈ STUR

with pos ∈ Pos , α ⊆ slpos , (2) for every (u, neg , slneg) ∈ STUAwith neg ∈ Neg ,

α ∩ slneg = ∅, and (3) α satisfies all preconditions. Let (u, r, sl) ∈ STUA.

Assignment Rules: A tuple (admin, slrule ,Pos ,Neg , slrole , r) ∈ st can assign

allows to update the spatio temporal user-role assignment relation for the pair

(u, r) as follows. Let ŝl be a spatial-schedule over SL with ŝl ⊆ slrole . Then,

if m can be executed at time t, and location l̂, and user u satisfies the precondi-

tion (Pos ,Neg) w.r.t. spatial schedule ŝl, then the tuple (u, r, sl) is updated to

(u, r, sl ∪ ŝl), i.e. STUA′ = (STUA \ {(u, r, sl)})∪ {(u, r, sl ∪ ŝl)}, STPA′ =

STPA and SRS ′ = SRS.

Revocation Rules: A tuple (admin, slrule ,Pos ,Neg , slrole , r) ∈ st can revoke

allows to update the spatio-temporal user-role assignment relation for the pair
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(u, r) as follows. Let ŝl be a schedule over SL with ŝ ⊆ srole . Then, if m can be

executed at time t, and location l̂ and user u satisfies the precondition (Pos ,Neg)

w.r.t. spatial schedule ŝl, then the tuple (u, r, sl) is updated to (u, r, sl \ ŝl), i.e.

STUA′ = (STUA\{(u, r, sl)})∪{(u, r, sl\ŝl)}, STPA′ = STPA and SRS ′ =

SRS.

The rules for updating the spatio-temporal permission-role assignment is again

similar to the user-role assignment rules. A permission p ∈ PRMS satisfies a

precondition (Pos ,Neg) w.r.t. a spatial schedule ŝl if for every time-location pair

α ∈ ŝl, (1) for every (p, pos , slpos) ∈ STPA with pos ∈ Pos , α ⊆ slpos , (2) for

every (p, neg , slneg) ∈ STPA with neg ∈ Neg , α ∩ slneg = ∅, and (3) α satisfies

all preconditions. Let (p, r, sl) ∈ STPA.

Assignment Rules: A tuple (admin, slrule ,Pos ,Neg , slrole , r)∈ st can assignp

allows to update the spatio-temporal permission-role assignment relation for the

pair (p, r) as follows. Let ŝl be a spatial schedule with ŝ ⊆ srole . Then, if

m can be executed at time t, and location l̂ and permission p satisfies the pre-

condition (Pos ,Neg) w.r.t. spatial schedule ŝl, then the tuple (p, r, sl) is up-

dated to (p, r, sl ∪ ŝl), i.e. STPA′ = (STPA \ {(p, r, sl)}) ∪ {(p, r, sl ∪ ŝl)},

STUA′ = STUA and SRS ′ = SRS.

Revocation Rules: A tuple (admin, slrule ,Pos ,Neg , slrole , r)∈ st can revokep

allows to update the spatio-temporal permission-role assignment relation for the

pair (p, r) as follows. Let ŝl be a spatial schedule over SL with ŝl ⊆ slrole .

Then, if m can be executed at time t, and location l̂ and permission p satisfies

the precondition (Pos ,Neg) w.r.t. spatial schedule ŝl, then the tuple (p, r, sl) is



75

updated to (p, r, sl \ ŝl), i.e. STPA′ = (STPA \ {(p, r, sl)}) ∪ {(p, r, sl \ ŝl)},

STUA′ = STUA and SRS ′ = SRS.

Example 6. Consider once again the hospital example given in Section 4.2. Sup-

pose that the hospital has two different locations, called LOC-1 and LOC-2, where

LOC-1 is the headquarters and LOC-2 is a branch. Assume that there are 7 differ-

ent roles, namely, Employee (EMP ), Day Doctor (DDR), Night Doctor (NDR),

Practitioner (PRC ), Nurse (NRS ), Secretary (SEC ) and Chairman (CHR). Hos-

pital works for 24 hours and there are three different shifts (time slots) from 8 am

to 4 pm (Time Slot 1), 4 pm to 12 am (Time Slot 2) and 12 am to 8 am (Time

Slot 3). Only the Chairman role (CHR) has administrative privileges. Different

administrative rules are deployed for these locations.

1. (CHR, {(0, 2)} − {LOC − 1}, {DDR}, ∅, {(0, 1)} − {LOC − 1, LOC −

2}, PRC )∈ can enable: At time slots 1 and 2, and location LOC-1, a

chairman can enable the role Practitioner for the first time slot of locations

LOC-1 and LOC-2 if the role Day Doctor is also enabled during this time

slot and the respective locations.

2. (CHR, {(0, 3)}−{LOC−1, LOC−2}, {EMP , NDR}, {(2, 3)}−{LOC−

1, LOC − 2}, {LOC − 1}, NRS ) ∈ can disable: At time slots 1, 2 and

3, and locations LOC-1 and LOC-2 a chairman can disable the role Nurse

for the third time slot of locations LOC-1 and LOC-2 if the roles Employee

and Night Doctor are enabled at this time slot and the respective locations.

3. (CHR, {(0, 2)} − {LOC − 1}, {EMP}, {NRS}, {(0, 2)} − {LOC − 1},

DDR) ∈ t can assign: At time slots 1 and 2, and location LOC-1 a chair-
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man can assign the role Day Doctor for the first and the second time slots of

location LOC-1 to any user that has Employee role and does not have Nurse

role during these time slots and location.

4. (CHR, {(0, 3)}−{LOC−1, LOC−2}, ∅, ∅, {(0, 3)}−{LOC−1, LOC−

2}, SEC ) ∈ t can revoke: At time slots 1, 2 and 3, and locations LOC-

1 and LOC-2 a chairman can revoke the role Secretary for all time slots

and locations of any user that has Secretary role assigned in these slots and

respective locations.

5. (CHR, {(2, 3)} − {LOC − 1}, {EMP}, {NRS}, {(2, 3)} − {LOC − 1},

NDR) ∈ t can assignp: At time slot 3, and location LOC-1 a chairman

can assign a permission to the role Night Doctor for the third time slot of

LOC-1 if that permission is also assigned to Employee not assigned to Nurse

role during this time slot and location.

6. (CHR, {(0, 2)} − {LOC − 1}, ∅, ∅, {(0, 3)} − {LOC − 1}, NRS ) ∈

t can revokep: At time slots 1 and 2, and location LOC-1 a chairman

can revoke a permission from the role Nurse for all time slots of location

LOC-1.

7. (CHR, {(0, 2)}−{LOC − 1}, {DDR}, ∅, {(0, 1)}−{LOC − 1}, PRC )∈

t can assign: At time slots 1 and 2, and location LOC-1 a chairman can

assign the role Practitioner for the first time slot at LOC-1 to any user that

has Day Doctor role during this time slot and location.

8. (CHR, {(0, 3)}, {LOC − 1},{NDR}, ∅, {(2, 3)}, {LOC − 1}, PRC )∈

t can assign: At time slots 1, 2 and 3, and location LOC-1 a chairman
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can assign the role Practitioner for the third time slot of location LOC-1 to

any user that has Night Doctor role during this time slot and location.

4.5.2 Spatio-temporal RBAC Security Analysis

The analysis strategies for TRBAC discussed earlier in this chapter can also be uti-

lized for spatio-temporal RBAC in the sense that, each sl ∈ SL can be handled as

a separate RBAC security analysis problem and each separate analysis performed

on these time and location pairs can be combined to obtain the complete security

analysis for the system. Therefore we use the three stage decomposition strategy

proposed in Section 4.5.1 for STRBAC.

In the Relation Based Decomposition, we split the STRBAC security analy-

sis into three separate and independent analysis (Table 4.5). In each of these steps,

the state configurations and the administrative rule sets of the analysis problems

are shaped with different relations.

Table 4.5. Subproblems, Initial Configurations and the Relations Used
Analysis State Configuration Initial Configuration

Performed Represented By of the Analysis
1. User Assignment STUA STUA Relation of the target user

2. Role Enabling SRS SRS Relations of all roles
XRole Assignment Analysis is complete.

3. Permission Assignment STPA STPA Relation of the target role
XFull Analysis is complete.

For each different analysis, the rule set is composed of the following rules:

1. User Assignment: st can assign, st can revoke

2. Role Enabling: s can enable, s can disable
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3. Permission Assignment: st can assignp, st can revokep

In the Time Based Decomposition the STRBAC subproblems are further sim-

plified into RBAC security analysis problems that could be handled much easily.

Although we employ two different alternative decomposition strategies – the rule

schedule strategy and the role schedule strategy for the TRBAC, for STRBAC we

employ only the role schedule strategy due to two reasons. First, since the rule

schedule strategy is not scalable for TRBAC, and hence it will be not scalable for

STRBAC, as well. Second, the short term reachability becomes more complex

with the location dimension. In the TRBAC case, the analysis is done for a single

location starting from an initial state and using the constant regions and the valid

administrative rules, new states are generated. However, in the STRBAC case,

handling constant regions requires a more detailed approach as traveling between

different locations also take time. As the short term reachability questions fo-

cus on the reachability precisely at a given time, analysis requires computation of

the actual distances between the logical locations and the time required to travel

them. Hence, we leave this as our future work (Discussed in Section 6.2). Now

we discuss the (spatial) role schedule strategy adapted to STRBAC analysis.

In the role schedule strategy, we split the STRBAC security analysis problem

into smaller RBAC security analysis subproblems using the role schedules of the

rules. The main idea is to generate subproblems T (α,Msl) for each unit time-

location pair α ∈ 〈s, l̂〉 with nontemporal administrative rules, so that the system

can be treated like an RBAC.

Example 7. Consider Figure 4.8, which shows the role schedules of the rules in
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the hospital example given in Section 4.2. Here, we have six distinct time slots

and location pairs (Pair 1: (0,1)-(LOC-1), Pair 2: (1,2)-(LOC-2), Pair 3: (2,3)-

(LOC-1), Pair 4: (0,1)-(LOC-2), Pair 5: (1,2)-(LOC-1), Pair 6: (2,3)-(LOC-2))

with different rules. The rules for Pair 1 are Rule 1, 3, 4, 6 and 7 ; for Pair 2 are

Rule 3, 4 and 6; for Pair 3 are Rule 2, 4, 5, 6, and 8; for Pair 4 are Rule 1 and 4;

for Pair 5 is Rule 4 and finally for Pair 6 are Rule 2 and 4.

(a) Role Schedule for Location LOC-1

(b) Role Schedule for Location LOC-2

Figure 4.8. Role Schedules for Example 7

The long run behavior and the independency of the time-location pairs enables

us to perform an analysis using the Role Schedule approach. The long run behav-

ior holds for spatial schedules, as well, provided that the system is periodic with

respect to time and also the locations are visited periodically. Hence, in the long

run, rule schedules of the rules can be neglected.
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The time-location pairs are also independent of each other. To show this

we need to consider preconditions. Recall that we define the preconditions as

(Pos ,Neg) relations to be satisfied in order to execute a rule. Now consider a

rule m ∈ M which belongs to T (α,M), and ŝl = α. In order to execute m,

the precondition relations declared by (Pos ,Neg) of m must be satisfied for ŝl.

For each role pos ∈ Pos (neg ∈ Neg , resp.) ŝl ⊆ slpos (ŝl ∩ slpos = ∅, resp.)

must be satisfied, which simply depends on the corresponding unit time-location

pair in slpos (slneg , resp.). Then it is sufficient to check the spatial-schedule only

for time-location pair α for each rule. This implies that the preconditions do not

depend on other time slots, hence the time slots are independent.

So, using the Long Run Behavior property and the independency of time slots,

one can perform an RBAC reachability analysis using the rules m ∈M for time-

location pair α. Then, the whole TRBAC system can be analyzed by a series of

independent RBAC systems Ti traced separately. This reduction provides usability

of any RBAC reachability analysis procedure proposed in the literature.

The computational complexity of the algorithm depends again, on the RBAC

security analyzer. Suppose that the RBAC analyzer has the complexity O(·) then

our approach yields a complexity of O(TMAX |L|·) since we utilize the RBAC an-

alyzer for each time-location pair (Totally we have TMAX |L| of them). Since the

algorithm runs for TMAX |L| iterations and given that the RBAC analyzer termi-

nates, our algorithm is guaranteed to terminate.

In the final stage, which is the Interpretation of the Results, we examine the

results obtained to conclude whether the access control configuration is vulnerable

to rights leakage based on the analysis of interest. In our analysis methodology,
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each step of the three step analysis procedure outputs results for a different relation

in STRBAC. However, these results are not sufficient individually to answer the

security questions. The results of different steps of the analysis should be utilized

together to obtain the correct result. For instance, Role Assignment analysis could

state that the goal role would be assigned to the target user, but that role might

not get enabled at that location instance, meaning that it is not possible for that

particular user to exercise the goal role. This step is crucial to interpret the security

properties correctly.

Suppose that all three steps of the analysis is done. Each step outputs a set of

state configurations denoted as C1, C2, C3 and C4 respectively for the four steps.

Each configuration c ∈ C1 is composed of STUA, c ∈ C2 is composed of SRS,

c ∈ C3 is composed of STPA policies. Under these settings a given STRBAC

policy and rules create a security violation if they satisfy the following criteria for

different security questions of interest:

• Role Assignment: ∃STUA ∈ C1, SRS ∈ C2 : (u, r, sl1) ∈ STUA ∧

(r, sl2) ∈ SRS ∧ sl1 ∩ sl2 6= ∅.

• Role Enabling ∃SRS ∈ C2 : (r, sl) ∈ SRS ∧ sl 6= ∅

• Permission Assignment ∃STPA ∈ C3 : (p, r, sl) ∈ STPA ∧ sl 6= ∅

• Liveness for Role Assignment: ∀sl1, sl2, 6 ∃STUA ∈ C1, SRS ∈ C2 :

(u, r, sl1) 6∈ STUA ∨ (r, sl2) 6∈ SRS.
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4.5.3 Spatio-temporal RBAC Computational Experiments

We tested the STRBAC extension of our algorithm with C programming language

and run it on a computer with 3 GB RAM and Intel Core2Duo 3.0 GHz processor

running Debian Linux operating system. In order to stay consistent with the TR-

BAC experiments, we set the initial state to be an empty state (meaning that there

are no role assignments) for all of the locations, and the rules and the goal are

created randomly by the code with respect to the corresponding parameter values

for the number of rules, number of roles, number of time slots and the number of

locations. We assume separate administration. The parameter settings are shown

on Table 4.6. 10 replications are done for each parameter setting and their average

is reported.

Table 4.6. Parameter Settings
Number of Roles |R| 100, 500, 900

Number of Rules |MALL| 100, 500, 900
Number of Locations |L| 100, 500, 900

Number of Time Slots TMAX 100 for initial experiments, 100, 500, 900 for
comprehensive experiments

We first isolate the effect of locations in the STRBAC experiments. To accom-

plish this, we fix the number of time slots to be 100 for all experiments. According

to the results obtained, there is a similar linear and increasing relationship with

100, 500 and 900 roles in the system while all other parameters are constant (See

Figure 4.9(a)). The effect of number of rules while all other parameters are con-

stant is very similar to the effect of roles. There is an increasing relationship in the

running time as the number of rules increases (See Figure 4.9(b)). Finally, Figure

4.9(c) denotes the relationship between different number of locations when the
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(a) Effect of Number of Roles

(b) Effect of Number of Rules

(c) Effect of Number of Locations

Figure 4.9. Experimental Results for STRBAC
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other three parameters are kept constant. The results show that there is a linearly

increasing behavior as the number of locations increase. Although these results

are similar to the TRBAC experiments, the amount of time required to run the

experiments is increased significantly. For example, for 900 roles, 900 rules and

100 time slots requires approximately 0.018 seconds in TRBAC experiments. In

STRBAC with 900 roles, 900 rules, 100 time slots ans 100 locations this amount

rises up to about 3 seconds. We can also state from the slopes of the lines in each

of the three graphs, the parameter that affects the running time the most is the

number of locations and the least is number of rules.

We also have comprehensive experiments, in which we show the effect of both

number of time slots and the number of locations when the number of roles and

number of rules kept constant. The result is given in Figure 4.10. We can state

that the time required for running experiments is amplified as the number of roles

and rules increase.

Figure 4.10. Effect of Number of Time Slots and Locations
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4.6 Discussion

In this chapter we presented our methodologies to address the rights leakage prob-

lem in TRBAC and STRBAC. In summary, we have the following major contri-

butions. We propose administrative models to control the temporal and spatio-

temporal components of TRBAC and STRBAC. These models are required to

perform a security analysis. Also, in the light of the earlier works related to tem-

poral RBAC, we decide to use discretized time and location in order to simplify

security analysis.

Our proposed security analysis is a very powerful decomposition based method-

ology that allows customization to address various different potential security

questions. Also, our methodology is flexible enough to work with any RBAC se-

curity analyzer that has been proposed before. If a more efficient RBAC analyzer

is proposed in the future, this RBAC analyzer could be utilized in our methodol-

ogy to provide more efficient TRBAC and STRBAC analysis.

In the remainder of this section, we present some discussion about different

ways achieve more efficient implementation of our security analysis methodology

for TRBAC and STRBAC.

4.6.1 Temporal Role Hierarchies Execution Model

The dynamic temporal role hierarchy definition theoretically allows the access

control system to have a different hierarchy at each different time slot, hence

users can potentially acquire a totally different set of roles and permissions in

each of these slots. Recall that, the role hierarchy set is composed of role hier-
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archy policies. In fact, these policies create a tree structure with roles as nodes

and the policies as the directed edges. So, the hierarchy can also be represented

as a tree. In an application perspective, it is necessary to determine exactly how

the temporal role hierarchies are represented in the system. There are two dif-

ferent ways: (1) A separate complete hierarchy tree for each time slot. Then,

the role / permission acquisition at each time slot can be determined by tracing

the complete role hierarchy tree of that particular time slot. (2) Retaining the

Hierarchy Policies with embedded schedules, and the role / permission acquisi-

tion decisions are made on demand. Both of these approaches are useful under

different circumstances. Now, we provide an insight about when to use which

representation to answer a query asking whether a role is senior to another role

in a given time slot. Having a separate complete role hierarchy at each time slot

provides faster response to any query that checks for an implicit assignment. A

simple search (like depth-first search) done on this tree will provide an efficient

answer inO(|R|log|R|) time. On the other hand, a search in the partial hierarchies

require an exponential O(|DTRH||DTRH|) time. However, the partial hierarchies

can be beneficial if the system faces many alterations in the role hierarchies. In

this case a policy change for a single time slot requires O(|DTRH|) time for the

partial hierarchies, but O(|R|log|R|) for separate complete hierarchy.

4.6.2 Incremental Security Analysis for TRBAC

Our proposed security analysis is a complete procedure that starts with an initial

state and builds all possible state configurations based on the rules of the admin-

istrative model. Now suppose that we are interested in any change in terms of
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security violations in the access control system when we add a new rule or a

modification in one of the TUA,RSTPA or DTRH policies. More specifically,

how will the output of any existing security analysis change if we perform certain

modifications in the policies or rules.

We examine this problem under the user to role assignment perspective. The

output of a TUA analysis (Step 1), results a set of configurations C1 that are

composed of configurations c represented by TUA. Suppose that we have the set

C1 already populated before. We have three cases to examine:

1. The initial state c0 now has role r∗ assigned with a schedule s∗. Then the

existing state configuration space is updated as follows:

If there exists a t can revoke ∀c ∈ C1, (u, r∗, s ∪ s∗) ∈ TUA unless the

rule m that generated the state does not have r∗ ∈ Neg and srole/caps∗ 6=

∅. Then, all rules m that has r∗ 6∈ Neg are executed in all states c ∈ C1

generating new configurations based on whether the transition is visible or

invisible.

2. The initial state c0 now has role r∗ revoked. Then the existing state config-

uration space is updated as follows: ∀c ∈ C1, (u, r∗, s) 6∈ TUA. Then, for

any state c ∈ C1 that is generated by a rule m that has r∗ ∈ Pos is removed

with any of its child states. Afterwards, all rules m are run on all remaining

states in C1 to generate new configurations.

3. The rule set now has a new rule. Then the existing state space is updated

as follows: ∀c ∈ C1, m is executed first on all of the states, and then the

remaining rules are further executed on any newly generated state.
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This procedure can be applied to reduce the cost of doing a full state space

exploration that will generate similar states as it would do in the absence of the

modifications done.
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CHAPTER 5

ANALYSIS OF DATA LEAKAGE PROBLEM

Data leakage problem is similar to the rights leakage problem, since sensitive data

is accessed by unauthorized users. In data leakage, the object permissions are

not altered, so every object access is legal and authorized by the access control

system. However, the data itself is leaked from one object to another, so that

the unauthorized users would gain access to the data itself rather than directly

accessing the object that has it. Therefore, examining the read and write actions

of users is crucial in the process of detecting the data leakages. 1

5.1 Overview and Challenges of the Problem

It is well known that both DAC and RBAC models suffer from their inability

to prevent data leakages to unauthorized users through malware, or malicious or

complacent user actions. This problem, also known as a Trojan Horse attack, may

lead to an unauthorized data flow that may cause either a confidentiality or an

integrity violation.

More specifically, (i) a confidentiality violating flow is the potential flow of

sensitive information from trusted users to untrusted users that occurs via an illegal

read operation, and (ii) integrity violating flow is the potential contamination of a

1The contributions in this chapter is in submission.



90

Table 5.1. Example Access Control Matrix
Subject o1 o2 o3 o4 o5 o6 o7

s1 r r w w w
s2 r r w w w
s3 r r r w w
s4 r r r w w
s5 r

sensitive object that occurs via an illegal write operation by an untrusted user. We

now give an example to illustrate these two cases.

Example 8. Consider a DAC policy represented as an access control matrix given

in Table 5.1 (r represents read , and w represents write).

Confidentiality violating flow: Suppose s3 wants to access data in o1. s3 can

simply accomplish this (without altering the access control rights) by exploiting

s1’s read access to o1. s3 prepares a malicious program disguised in an application

(i.e., a Trojan Horse) to accomplish this. When run by s1, and hence using her

credentials, the program will read contents of o1 and write them to o3, which s3

can read. All this is done without the knowledge of s1. This unauthorized data

flow allows s3 to read the contents of o1, without explicitly accessing o1.

Integrity violating flow: Suppose s1 wants to contaminate the contents of o6,

but she does not have an explicit write access to it. She prepares a malicious

program. When this is run by s3, it will read from o3, that s1 has write access

to and s3 has read access, and write to o6 using s3’s credentials, causing o6 to be

contaminated by whatever s1 writes to o3. This unauthorized flow allows s1 to

write to o6 without explicitly accessing o6.

Such illegal flows can occur in the many of the most common systems that
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we use today because they employ DAC policies. For example, in UNIX, the

key system files are only readable by root, however, the access control rights of

the other files are determined solely by the users. If the root user’s account is

compromised, the data in the system files, such as the user account name and

password hashes (/etc/passwd or /etc/shadow) could be leaked to some other users.

As another example, a similar flow might occur in Social Networks as well. For

instance, Facebook offers fine grained privacy settings. However they are still

under the user’s discretion. The third party Facebook applications that the users

grant permission to access their profile could violate the user’s privacy settings

and access confidential information.

The first step for eliminating occurrences like the ones depicted in the exam-

ple above is to perform a security analysis. To date, existing solutions to address

such problems give the impression that such unauthorized flows could only be

efficiently prevented in a dynamic setting (i.e., only by examining the actual oper-

ations), while preventing them in a static setting (i.e., by examining the authoriza-

tion specifications) would require the computation of the transitive closure of the

access permissions, and therefore be very expensive. However, in this chapter, we

show that a transitive closure is not needed for the static case and less expensive

analyses can be used to solve this problem in the dynamic cases. More precisely,

we have discovered that merely identifying and then restricting a single step data

flow, as opposed to the entire path, is sufficient to prevent the unauthorized flow.

This new insight has significantly changed the dimensions of the problem and al-

lows us to offer a variety of strategies and solution techniques that fit different

situational needs.
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Consider the following situations which have differing solution requirements.

For example, in embedded system environments complex monitors cannot be de-

ployed due to their computation or power requirements. Similarly, there are so-

lutions for cryptographic access control[16, 20], where accesses are not mediated

by a centralized monitor and therefore easily offer distributed trust. In such cases,

the access control policy needs to be correct by design. In other situations, when

there are no special computational or power constraints, a monitor can be used,

and therefore can be utilized to prevent data leakages. However, there may also

be situations where access needs to be granted even if a data leakage may occur

and then audited after the fact. This would happen in emergencies, which is why

break-glass models exist[14, 39, 41]. It also happens, for example, in a hospital

environment, where doctors, nurses, and even clerical staff need access to patient

records to provide clinical care. While some may abuse their access, it is not fea-

sible to deny access initially since that may hamper patient care. In such cases, the

access requests are satisfied, but will likely be audited later to identify problems,

which should then be fixed to eliminate future vulnerabilities.

In this chapter, we develop several different solution strategies to address both

the confidentiality and integrity violations in DAC and RBAC. Specifically, we

propose a conservative approach that analyzes the access control model to iden-

tify “potential” unauthorized flows and eliminates them by revoking necessary as-

signments such as read and write permissions, or permission to role assignments.

Since this eliminates all potential unauthorized flows, regardless of whether they

actually occur or not, this could be considered too restrictive. However, it is per-

fectly secure in the sense that no data leakages can ever occur. We also develop a



93

o1

s1

o2 o3 o4 o5 o6 o7

s2 s3 s4 s5

Figure 5.1. Graph representation of the DAC given in Table 5.1

proactive approach, in which object accesses are tracked dynamically at each read

and write operation. Thus, any suspicious activity that could lead to an unautho-

rized data flow can be identified and prevented at the point of time that it occurs.

Thus, this approach only restricts access if there is a signal for an unauthorized

data flow. Finally, we also develop a retrospective approach, that logs all allowed

operations and then utilizes the conservative approach as a subroutine to iden-

tify and eliminate violations that have occurred and prevent them from occurring

again.

Although all three approaches stated above can be applicable to both DAC and

RBAC, the way they are implemented slightly differs. In DAC, our application

strategies are focused more on utilizing Integer Linear Programming (ILP) models

to obtain the optimal solution, whereas the complexity of RBAC forces us to use

heuristic based solution strategies instead. We propose these approaches with

detailed and customized definitions given in the following two sections.

5.2 Analysis of Data Leakage Problem in DAC

In our analysis for DAC, we make use of the graph representation, defined in

Chapter 3. As an example, Figure 5.1 shows the graph representation of the DAC
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shown in Table 5.1. Utilizing the graph representation, we first define the flow and

vulnerability paths.

Definition 17. (Flow Paths) In an access control system C, a flow path from

object o to object o′, denoted o  o′, is a path in GC from o to o′, which points

out the possibility of copying the content of o into o′.

The length of a flow path corresponds to the number of subjects along the

path. For example, o1 →r s1 →w o3 (denoted as o1  o3) is a flow path of length

1, while o1 →r s1 →w o3 →r s3 →w o6 (denoted as o1  o6) is a flow path of

length 2 of the DAC shown in Figure 5.1. In all, there are 12 flow paths of length

1, while there are 4 flow paths of length 2 in the DAC shown in Figure 5.1.

Definition 18. (Confidentiality Vulnerability) A DAC, C has a confidentiality

vulnerability, if there are two objects o and o′, and a subject s such that o o′ →r

s (confidentiality vulnerability path or simply vulnerability path), and o 6→r s.

A confidentiality vulnerability, shows that subject s (the violator) can poten-

tially read the content of object o through o′, though s is not allowed to read di-

rectly from o. We represent confidentiality vulnerabilities using triples of the form

(o, o′, s). For example, the DAC depicted in Figure 5.1(a) has the confidentiality

vulnerability (o1, o3, s3) since o1  o3 and o3 →r s3 but o1 6→r s3. Similarly,

(o2, o6, s5) is another confidentiality vulnerability since o2  o6 and o6 →r s5 but

o2 6→r s5. In total, there are 15 confidentiality vulnerabilities, given below.

c1 : (o1, o3, s3), c2 : (o1, o3, s4), c3 : (o1, o4, s3), c4 : (o1, o4, s4),
c5 : (o1, o5, s3), c6 : (o1, o5, s4), c7 : (o2, o3, s3), c8 : (o2, o3, s4),
c9 : (o2, o4, s3), c10 : (o2, o4, s4), c11 : (o2, o5, s3), c12 : (o2, o5, s4),
c13 : (o5, o6, s5), c14 : (o1, o6, s5), c15 : (o2, o6, s5).
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Definition 19. (Integrity Vulnerability) A DAC,C has an integrity vulnerability,

if there exist a subject s, and two objects o and o′ such that s →w o, o  o′ (in-

tegrity vulnerability path or simply vulnerability path) and s 6→w o
′. An integrity

vulnerability, shows that subject s (the violator) can indirectly write into o′ using

the path flow from o to o′, though s is not allowed to write directly into o′.

We represent integrity vulnerabilities using triples of the form (s, o, o′). For

example, the DAC depicted in Figure 5.1 has the integrity vulnerability (s1, o3, o6)

since o3  o6 and s1 →w o3 but s1 6→w o6. In total, there are 12 integrity

vulnerabilities, given below.

i1 : (s1, o3, o6), i2 : (s1, o3, o7), i3 : (s1, o4, o6), i4 : (s1, o4, o7),
i5 : (s1, o5, o6), i6 : (s1, o5, o7), i7 : (s2, o3, o6), i8 : (s2, o3, o7),
i9 : (s2, o4, o6), i10 : (s2, o4, o7), i11 : (s2, o5, o6), i12 : (s2, o5, o7).

When a DAC has either a confidentiality or an integrity vulnerability, we sim-

ply say that C has a vulnerability, whose length is that of its underlying vulner-

ability path. Thus, for the DAC depicted in Figure 5.1, there are 15 + 12 = 27

vulnerabilities.

A vulnerability in an access control system does not necessarily imply that a

data leakage (confidentiality or integrity violation) occurs. Rather, a leakage can

potentially happen unless it is detected and blocked beforehand, using for example

a monitor. Before we define this notion formally, we first develop the necessary

formalism.

Definition 20. A run of a DAC,C is any finite sequence π = (s1, op1, o1) . . . (sn, opn, on)

of triples (or actions) from the set S × {read ,write} × O such that for every

i ∈ [1, n] one of the following cases holds:



96

[Read] opi = read , and oi →r si;

[Write] opi = write, and si →w oi.

A run π represents a sequence of allowed read and write operations executed

by subjects on objects. More specifically, at step i ∈ [n] subject si accomplishes

the operation opi on object oi. Furthermore, si has the right to access oi in the opi

mode.

A run π has a flow from an object ô1 to a subject ŝk provided there is a flow path

ô1→r ŝ1→w ô2 . . . ôk and ôk →r ŝk such that (ŝ1, read , ô1)(ŝ1,write, ô2) . . . (ŝk,

read , ôk) is a sub-sequence of π. Similarly, we can define flows from subjects to

objects, objects to objects, and subjects to subjects.

Definition 21. (Confidentiality Violation) A run π of a DAC, C has a confi-

dentiality violation, provided there is a confidentiality vulnerability path from an

object o to a subject s and π has a flow from o to s. A DAC C has a confidentiality

violation if there is a run of C with a confidentiality violation.

Thus, for example, in the DAC depicted in Figure 5.1, a confidentiality viola-

tion would occur if there was a sequence (s1, read , o1)(s1,write, o3)(s3, read , o3)

which was a sub-sequence of π.

Definition 22. (Integrity Violation) A run π of a DAC C has an integrity viola-

tion, provided there is an integrity vulnerability path from a subject s to an object

o and π has a flow from s to o. A DAC C has an integrity violation if there is a

run of C with an integrity violation.
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As above, in the DAC depicted in Figure 5.1, a integrity violation would oc-

cur, for example, if there was a sequence (s2,write, o4)(s3, read , o4)(s3,write, o7)

which was a sub-sequence of π.

A DAC has a data leakage if it has either a confidentiality or an integrity

violation.

From the definitions above it is straightforward to see that the following prop-

erty holds.

Proposition 1. An access control system is data leakage free if and only if it is

vulnerability free.

The direct consequence of the proposition above suggests that a vulnerability

free access control system is data leakage free by design, hence it does not require

a monitor to prevent data leakages.

We now prove a simple and fundamental property of DAC that constitutes one

of the building blocks for our approaches for checking, preventing, and eliminat-

ing vulnerabilities / data leakages as shown later in this chapter.

Theorem 1 (FUNDAMENTAL THEOREM). Let C be an access control system. C

has a vulnerability only if C has a vulnerability of length one.

Proof. The proof is by contradiction. Assume that ρ = o0 →r s0 →w o1 . . .

sn−1 →w on is vulnerability path. Without loss of generality, assume that ρ is of

minimal length. Thus, n is greater than one by hypothesis.
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Figure 5.2. Framework for the analysis of data leakage in DAC

We first consider the case of confidentiality vulnerability. Let s be the violator.

Since ρ is of minimal length, all objects along ρ except o0 can be directly read by

s (i.e., oi →r s for every i ∈ [1, n]), otherwise there is an confidentiality vulnera-

bility of smaller length. Thus, o0 →r s0 →w o1 is a confidentiality vulnerability

of length one, as s can read from o1 but cannot read from o0. A contradiction.

We give a similar proof for integrity vulnerabilities. Again, since ρ is of min-

imal length, all objects along ρ, except o0, can be directly written by s0, i.e.,

s0 →w oi for every i ∈ {1, . . . , n}. But, this entails that o0 →r s0 →w on is

an integrity vulnerability of length one (as s can write into o0 but cannot directly

write into on). Again, a contradiction.

The FUNDAMENTAL THEOREM suggests that a data leakage analysis using

the transitive closure is not necessary. Instead, an analysis done on the vulnerabil-

ity paths of length 1 is sufficient. This strong result enables more efficient solution

strategies to handle data leakage problem. We now present three alternative strate-

gies for preventing data leakages, which fit different environments, as discussed

above (See Figure 5.2.
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5.2.1 Exact Methods for Conservative Approach

When a monitor is not possible or even doable the only solution to get an access

control that is free of data leakages is that of having the DAC free of vulnerabilities

(see Proposition 1). In this section, we propose an automatic approach that turns

any DAC into one free of vulnerabilities by revoking permissions.

This can be naively achieved by removing all read and write permissions.

However, this would make the whole approach useless.

Instead, it is desirable to minimize the changes to the original access control

matrix so as not to disturb the users’ ability to perform their job functions, unless

it is not absolutely needed. Furthermore, the removal of these permissions should

take into account the fact that some of them may belong to trusted users (i.e.

subjects), such as system administrators, and therefore we want to prevent the

removal of these permissions.

We show that this problem is NP-complete. Therefore, an efficient solution is

unlikely to exist (unless P=NP).

To circumvent this computational difficulty, we propose a compact encoding

of this optimization problem into integer linear programming (ILP) by exploiting

Theorem 1. The main goal is that of leveraging efficient solvers for ILP, which

nowadays exist. We show this approach is promising in practice in Section 5.2.5.

Definition 23. (Maximal Data Flow Problem) Let C = 〈S,O,AR ∪ AW 〉 be

an access control system, and T = (AtR, A
t
W ) be the sets of trusted permissions

where AtR ⊆ AR and AtW ⊆ AW . A pair Sol = (Asol
R , Asol

W ) is a feasible solution
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of C and T , if AtR ⊆ Asol
R ⊆ AR, AtW ⊆ Asol

W ⊆ AW and C ′ = 〈S,O,Asol
R ∪

Asol
W 〉 does not have any vulnerability. The size of a feasible solution Sol , denoted

size(Sol), is the value |Asol
R |+ |Asol

W |.

The Maximal Data Flow Problem (MDFP for short) is to maximize size(Sol).

Maximal Data Flow Problem is NP-complete. We first define the decision prob-

lem corresponding to MDFP, and then prove that this problem is NP-complete.

Given an instance I = (C, T ) of MDFP and a positive integer K, the decision

problem associated to MDFP, called D-MDFP, asks whether there is a feasible

solution of I of size greater of equal to K. We now show that D-MDFP is NP-

complete.

NP-membership. Let Sol = (A′R, A
′
W ) such that A′R, A

′
W ⊆ S × O. To check

whether Sol is a feasible solution of I , we need to check that (1) AtR ⊆ A′R ⊆ AR,

(2) AtW ⊆ A′W ⊆ AW , (3) |A′R| + |A′W | ≥ K, and more importantly, (4) that

〈S,O,A′R ∪A′W 〉 is a DAC that does not contain any vulnerability. The first three

properties are easy to realize in polynomial time. Concerning the last property, we

exploit Theorem 1. To check that there is no confidentiality vulnerability, we build

all sequences of the form o0 →′r s0 →′w o1 →′r s1 and then verify the existence

of the read permission o0 →′r s1. Similarly, for integrity vulnerability we build

all sequences such that s0 →′w o0 →′r s0 →′w o1 and then check the existence

of the write permission s0 →′w o1. Note that, all these sequences can be built in

O(O2 · S2) and these checks can all be accomplished in polynomial time. This

shows that D-MDFP belongs to NP.
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NP-hardness. For the NP-hardness proof, we provide a polynomial time reduction

from the edge deletion transitive digraph problem (ED-TD for short) to D-MDFP.

The ED-TD asks to remove the minimal number of edges from a given directed

graph such that the resulting graph corresponds to its transitive closure. ED-TD

problem is known to be NP-complete (see [56] Theorem 15, and [57]).

The reduction is as follows. Let G = (V,E) be a directed graph with set of

nodes V = {1, 2, . . . n} and set of edges E ⊆ (V × V ). We assume that nodes of

G do not have self-loops. We now define the instance IG = (CG, TG) of D-MDFP

to which G is reduced to. Let CG = 〈S,O,AR ∪ AW 〉 and TG = (AtR, A
t
W ).

CG has a subject si and an object oi, for each node i ∈ V . Moreover, there is

a read permission from oi to si, and a write permission from si to oi, for every

node i ∈ V . These permissions are also trusted, i.e., belonging to AtR and AtW ,

respectively; and no further permissions are trusted. Furthermore, for every edge

(i, j) ∈ E, there is a read permission from oi to sj , and a write permission from

si to oj . Formally,

S = {si | i ∈ V } and O = {oi | i ∈ V };

AtR = {(oi, si) | i ∈ V };

AtW = {(si, oi) | i ∈ V };

AR = →t
r ∪ {(oi, sj) | (i, j) ∈ E};

AW = →t
w ∪ {(si, oj) | (i, j) ∈ E}.

Before we prove that the transformation defined above is a reduction from

ED-TD to D-MDFP, we give the following lemma.
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Lemma 1. Let G be a directed graph with nodes V = {1, 2, . . . , n}, and Sol =

(A′R, A
′
W ) be a feasible solution of IG. For any i, j ∈ V with i 6= j, oi →′r sj if

and only if si →′w oj .

Proof. The proof is by contradiction. Consider first the case when oi →′r sj and

si 6→′w oj . Observe that, si →′w oi and sj →w oj exist as both of them are trusted

permissions of IG. Thus, si →′w oi →′r sj →w oj is an integrity vulnerability,

leading to a contradiction. The case when oi 6→′r sj and si →′w oj is symmetric,

and we omit it here.

We now show that the transformation defined above from G to IG is indeed a

polynomial reduction from ED-TD to D-MDFP. The NP-hardness directly follows

from the following lemma.

Lemma 2. Let G be a directed graph with n nodes. G contains a subgraph G′

with K edges whose transitive closure is G′ itself if and only IG admits a feasible

solution Sol of size 2 · (n+K).

Proof. Let G = (V,E) with V = {1, 2, . . . , n}, G′ = (V,E ′), IG = (CG, TG)

where CG = (S,O,AR, AW ) and TG = (AtR, A
t
W ), and Sol = (A′R, A

′
W ).

“only if” direction. Assume thatG′ is the transitive closure of itself and |E ′| =

K. We define Sol as follows:

A′R = AtR ∪ {oi →r sj | (i, j) ∈ E ′}

and

A′W = AtW ∪ {si →w oj | (i, j) ∈ E ′}.
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From the definition of IG, it is straightforward to see that size(Sol) = 2 · (n+K).

To conclude the proof we only need to show that Sol is a feasible solution of IG.

Since AtR ⊆ A′R and AtW ⊆ A′W we are guaranteed that Sol contains all trusted

permissions of TG. We now show that C ′ = (S,O,AR ∪ AW ) does not contain

any vulnerability. Assume that there is a vulnerability in C ′. By Theorem 1, there

must be a vulnerability of length one. If it is a confidentiality vulnerability, then

oi →′r sk →′w oz →′r sj and oi 6→′r sj , for some i, k, z, j ∈ V with i 6= j. From the

definition of IG, it must be the case that there is a path from node i to node j in G′

and (i′, j) /∈ E which leads to a contradiction. The case of integrity vulnerabilities

is symmetric.

“if” direction. Assume that Sol is a feasible solution of IG of size 2 · (n+K).

We define E ′ = {(i, j) | i 6= j ∧ oi →′r sj}. Note that, in the definition of E ′

using permission si →′w oj rather than oi →′r sj would lead to the same set of

edges E ′ (see Lemma 1). By the definition of IG and Lemma 1, it is direct to

see the G′ is a subgraph of G and |E ′| = K. We now show that the transitive

closure of G′ is again G′. By contradiction, assume that there is a path from node

i to node j in G′ and there is no direct edge from i to j. But this implies that in

the access control system (S,O,A′R ∪A′W ) there is a sequence of alternating read

and write operations from object oi to subject sj and oi 6→′r sj , which witnesses

a confidentiality vulnerability. This is a contradiction as Sol is a feasible solution

of IG.

We are now ready to claim one of the main results of this section.

Theorem 2. D-MDFP is NP-complete.
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ILP Formulation. Here we define a reduction from MDFP to integer linear pro-

gramming (ILP). In the rest of this section, we denote by I = (C, T ) to be an

instance of MDFP, where C = (S,O,AR ∪ AW ) and T = (AtR, A
t
W ).

The set of variables V of the ILP formulation is:

V = {ro,s | o ∈ O ∧ s ∈ S ∧ o→r s} ∪ {ws,o | s ∈ S ∧ o ∈ O ∧ o→r s}

The domain of the variables in V is {0, 1}, and the intended meaning of these

variables is the following. Let ηI : V → {0, 1} be an assignment of the variables

in V corresponding to an optimal solution of the ILP formulation. Then, a solu-

tion for I is obtained by removing all permissions corresponding to the variables

assigned to 0 by ηI . Formally, SolηI = (Asol
R , Asol

W ) is a solution for I , where

Asol
R = { (o, s) | o ∈ O ∧ s ∈ S ∧ o→r s ∧ ηI(ro,s) = 1 }

and

Asol
W = { (s, o) | s ∈ S ∧ o ∈ O ∧ s→w o ∧ ηI(ws,o) = 1 }.

The main idea on how we define the ILP encoding, hence its correctness,

derives straightforwardly from Theorem 1: we impose that every flow path of

length one, say o→r ŝ→w o
′, if these permissions remain in the resulting access

control system C ′ = (S,O,Asol
R , Asol

W ), then it must be the case that for every

subject s ∈ S

• if s can read from o′ in C ′, s must also be able to read from o in C ′ (CON-

FIDENTIALITY), and
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• if s that can write into o in C ′, s must be also able to write into o′ in C ′

(INTEGRITY).

Formally, the linear equations of our ILP formulation is the minimal set containing

the following.

Confidentiality Constraints: For every sequence of the form o →r ŝ →w ô →r s,

we add the constraint

ro,ŝ + wŝ,ô + rô,s −G ≤ 2

where G is ro,s in case o→r s, otherwise G = 0.

For example, for the sequence o1 →r s1 →w o3 →r s2, in the DAC depicted

in Figure 5.1, we add the constraint

ro1,s1 + ws1,o3 + ro3,s2 − 0 ≤ 2

Integrity Constraints: For every sequence of the form s →w o →r ŝ →w ô, we

add the constraint

ws,o + ro,ŝ + wŝ,ô −G ≤ 2

where G is ws,ô in case s→w ô, otherwise G = 0.

As above, for the sequence s2 →w o4 →r s3 →w o7, in the DAC depicted in

Figure 5.1(a), we add the constraint

ws2,o4 + ro4,s3 + ws3,o7 − 0 ≤ 2
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max
∑
v∈V

v

subject to

ro,ŝ + wŝ,ô + rô,s − ro,s ≤ 2, ∀ o→r ŝ→w ô→r s, o→r s

ro,ŝ + wŝ,ô + rô,s ≤ 2, ∀ o→r ŝ→w ô→r s, o 6→r s

ws,ô + rô,ŝ + wŝ,o − ws,o ≤ 2, ∀ s→w ô→r ŝ→w o, s→w o

ws,ô + rô,ŝ + wŝ,o ≤ 2, ∀ s→w ô→r ŝ→w o, s 6→w o

ro,s = 1, ∀ o→t
r s

ws,o = 1, ∀ s→t
w o

v ∈ {0, 1}, ∀v ∈ V

Figure 5.3. ILP formulation of MDFP.

Trusted Read Constraints: For every o→t
r s, we have the constraint

ro,s = 1.

Trusted Write Constraints: For every s→t
w o, we have the constraint

ws,o = 1.

It is easy to see that any variable assignment η that obeys all linear constraints

defined above leads to a feasible solution of I .

Objective Function: Now, to maximize the number of left permissions (or equiv-

alently, minimize the number of removed permissions) we define the objective

function of the ILP formulation as the sum of all variables in V . Compactly, our

ILP-FORMULATION(C, T ) is as shown in Figure 5.3.

We now formally state the correctness of our ILP approach, which is entailed

from the fact that we remove the minimal number of permissions from C resulting
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in a new DAC that does not have any vulnerability of length one, hence from

Theorem 1 does not have any vulnerability at all.

Theorem 3. For any instance I of MDFP, if ηI is an optimal solution of ILP-

FORMULATION(I) then SolηI is an optimal solution of I .

It is worth noting that while the composite formulation that includes both con-

fidentiality and integrity constraints (as shown in Figure 5.3) gives the optimal

solution, solving two subproblems (one for confidentiality followed by the one

for integrity each of which only include the relevant constraints) does not give an

optimal solution.

For example, for the DAC depicted in Figure 5.1, if we only eliminate the

15 confidentiality vulnerabilities, the optimal solution is to revoke 5 permissions

(o1 →r s1, o2 →r s1, o1 →r s2, o2 →r s2, and o6 →r s5). This eliminates all

of the confidentiality, while all of the original integrity vulnerabilities still exist.

No new vulnerabilities are added. Now, if the integrity vulnerabilities are to be

eliminated, the optimal solution is to revoke 4 permissions (s3 →w o6, s3 →w

o7, s4 →w o6, s4 →w o7). Thus, the total number of permissions revoked is

9. However, if both confidentiality and integrity vulnerabilities are eliminated

together (using the composite ILP in Figure 5.3), the optimal solution is to simply

revoke 6 permissions (o3 →r s3, o4 →r s3, o5 →r s3, o3 →r s4, o4 →r s4,

o5 →r s4), which is clearly lower than 9.

Compact ILP Formulation. We now present an improved encoding that extends

the ILP formulation described above by merging subjects and objects that have



108

the same permissions. This allows us to get a much reduced encoding, in terms of

variables, with better performances in practice (see Section 5.2.5 for an empirical

evaluation).

Equivalent Subjects: For an instance I = (C, T ) of MDFP with C = (S,O,AR ∪

AW ) and T = (AtR, A
t
W ), two subjects are equivalent if they have the same per-

missions. Formally, for a subject s ∈ S, let read I(s) (respectively, read tI(s))

denote the set of all objects that can be read (respectively, trust read) by s in C,

i.e., read I(s) = {o ∈ O | o →r s} (respectively, read tI(s) = {o ∈ O | o →t
r s}).

Similarly, we define writeI(s) = {o ∈ O | s →w o} and writetI(s) = {o ∈ O |

s→t
w o}. Then, two subjects s1 and s2 are equivalent, denoted s1 ≈ s2, if

read I(s1) = read I(s2),

read tI(s1) = read tI(s2),

writeI(s1) = writeI(s2), and

writetI(s1) = writetI(s2).

For every s ∈ S, [s] is the equivalence class of s w.r.t. ≈. Moreover, S≈ denotes

the quotient set of S by ≈. Similarly, we can define the same notion of equivalent

objects, with [o] denoting the the equivalence class of o ∈ O, and O≈ denoting the

quotient set of O by ≈.

Given a read relation AR ⊆ O×S and two subjects s1, s2 ∈ S, AR[s1/s2] is a

new read relation obtained from→r by assigning to s2 the same permissions that

s1 has in AR:

AR[s1/s2] = (→r \ (O × {s2}) ) ∪ {(o, s2) | o ∈ O ∧ o→r s1}.



109

Similarly,

AW [s1/s2] = (→w \ ({s2} ×O) ) ∪ {(s2, o) | o ∈ O ∧ s1 →w o}.

A similar substitution can be defined for objects.

The following lemma states that for any given optimal solution of I it is always

possible to derive a new optimal solution in which two equivalent subjects have

the same permissions.

Lemma 3. Let I = (C, T ) be an instance of the MDFP problem, s1 and s2 be two

equivalent subjects of I , and Sol ′ = (Asol
R , Asol

W ) be a optimal solution of I . Then,

Sol ′′ = (Asol
R [s1/s2], A

sol
W [s1/s2]) is also an optimal solution of I .

Proof. Assume that S and O are the set of subjects and the set of objects of C, re-

spectively. Let C ′ = 〈S,O,Asol
R , Asol

W 〉 and C ′′ = 〈S,O,Asol
R [s1/s2], A

sol
W [s1/s2]〉.

We first prove (by contradiction) that Sol ′′ is a feasible solution of I . Assume

that C ′′ has a vulnerability. This vulnerability is witnessed by a flow path, say ρ,

that must contain s2. If ρ does not involve s2 then ρ would also be a vulnerability

in C ′, which cannot be true as Sol ′ is a feasible solution of I . Now, observe that

s2 can always be replaced by s1 along any flow path of C ′′, as s2 and s1 have the

same neighbor in GC′′ . Thus, the flow path obtained by replacing s2 with s1 along

ρ, also witnesses a vulnerability in C ′. Again a contradiction. Therefore, Sol ′′ is

a feasible solution of I .

We now prove that Sol ′′ is also optimal (that is, size(Sol ′) = size(Sol ′′)) by

showing that s1 and s2 have the same number of incident edges in GC′ . Let n1
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(respectively, n2) be the number of incident nodes of s1 (respectively, s2) in GC′ .

By contradiction, and w.l.o.g., assume that n1 > n2. Since C ′′ is obtained from C ′

by removing first the permissions of s2 and then adding to s2 the same permissions

of s1, it must be the case that size(Sol ′′) > size(Sol ′). This would entail that Sol ′

is not an optimal solution, which is a contradiction.

The following property is a direct consequence of Lemma 3.

Corollary 1. Let I = (C, T ) with C = 〈S,O,AR ∪ AW 〉 be an instance of

the MDFP problem that admits a solution. Then, there exists a solution Sol =

(Asol
R , Asol

W ) of I such that for every pair of equivalent subjects s1, s2 ∈ S, s1 and

s2 have the same permissions in C = 〈S,O,Asol
R ∪ Asol

W 〉.

Lemma 3 and Corollary 1 also hold for equivalent objects. Proofs are similar

to those provided above and hence we omit them here.

Compact ILP formulation. Corollary 1 suggests a more compact encoding of the

MDFP into ILP. From C, we define a new DAC C≈ by collapsing all subjects and

objects into their equivalence classes defined by ≈, and by merging permissions

consequently (edges of GC). Formally, C≈ has S≈ as set of subjects and O≈ as

set of objects, where the read and write permission sets are defined as follows:

A≈R = { ( [o], [s] ) | o ∈ O ∧ s ∈ S ∧ o→r s },

A≈W = { ( [o], [s] ) | s ∈ S ∧ o ∈ O ∧ s→w o }.
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[o1]

[s1]

(4)

[o3] [o6] [o7]

[s3] [s5]

(6)
(6)

(2)
(2)

(1)

Figure 5.4. Graph representation of the reduced DAC given in Table 5.1

Similarly, we define the trusted permissions of C≈ as T≈ = (AtR
≈
, AtW

≈
) where

AtR
≈

= { ( [o], [s] ) | o ∈ O ∧ s ∈ S ∧ o→t
r s },

AtW
≈

= { ( [o], [s] ) | s ∈ S ∧ o ∈ O ∧ s→t
w o }.

We now define a new ILP encoding, COMPACT-ILP-FORMULATION(I), for

MFDP on the instance (C≈, T≈), which is similar to that of Figure 5.3 with the

difference that now edges may have a weight greater than one; the weight of an

edge will capture the number of edges of C it represents in C≈. More specifically,

each edge from a node x1 to x2 in GC≈ represents all edges from all nodes in [x1]

to all nodes in [x2], i.e., its weight is |[x1]|·|[x2]|. Figure 5.4 represents the compact

representation of Figure 5.1, where the edges have the appropriate weights.

Figure 5.5 shows COMPACT-ILP-FORMULATION(I) over the set of variables

V≈. The set of linear constraints is the same as those in Figure 5.3 with the dif-

ference that now they are defined over C≈ rather than C. Instead, the objective

function is similar to that of Figure 5.3, but now captures the new weighting at-

tributed to edges in GC≈ .

Let η≈I : V → {0, 1} be a solution to the ILP instance of Figure 5.5. Define
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Ŝolη≈I = (ÂR
sol
, ÂW

sol
) where

ÂR
sol

= { (o, s) ∈ O × S | o→r s ∧ η≈I (r[o],[s]) ≥ 1 },

ÂW
sol

= { (s, o) ∈ S ×O | s→w o ∧ η≈I (w[s],[o]) ≥ 1 }.

We now prove that Solη≈I is an optimal solution of I .

Theorem 4. For any instance I of MDFP, if η≈I is an optimal solution of COMPACT-

ILP-FORMULATION(I) then Ŝolη≈I is an optimal solution of I . Furthermore, if I

admits a solution then η≈I also exists.

Proof. Let I = (C, T ), Ŝolη≈I = (ÂR
sol
, ÂW

sol
), C ′ = 〈S,O, ÂR

sol
∪ ÂW

sol
〉, and

C≈ = 〈S≈, O≈, A≈R ∪ A≈W 〉.

We first show that Ŝolη≈I is a feasible solution of I . Assume by contradiction

that C ′ has a (one-step, see Theorem 1) confidentiality vulnerability, say

o →sol
r ŝ →sol

w o′ →sol
r s ∧ o 6→sol

r s.

It is easy to see that

[o]→≈r [ŝ]→≈w [o′]→≈r [s] ∧ [o] 6→≈r [s]

holds, but this is not possible since COMPACT-ILP-FORMULATION(I) contains a

constraint that prevents that these relations hold conjunctly. A similar proof exists

for integrity vulnerabilities. Therefore, Ŝolη≈I is a feasible solution of I .

Now, we show that Ŝolη≈I is also optimal. Assume by contradiction that Ŝolη≈I

is not optimal, and Sol = (Asol
R , Asol

W ) is an optimal solution of I where all equiv-

alent subjects/objects have the same permissions. The existence of Sol is guaran-

teed by Corollary 1. Now, we reach a contradiction showing that ηI is not optimal
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for COMPACT-ILP-FORMULATION(I). For every s ∈ S, o ∈ O, η(r[o],[s]) = 1

(respectively, η(w[s],[o]) = 1) if and only if o→sol
r s (respectively, s→sol

w o) holds.

Notice that η is well defined because all subjects/objects in the same equivalent

class have the same permissions in Sol . It is straightforward to prove that η allows

to satisfy all linear constraints of COMPACT-ILP-FORMULATION(I), and more

importantly leads to a greater value of the objective function. Note that, for the

variable assignment η the objective function Figure 5.5 has a value nη = size(Sol)

whereas has value nηI = size(Ŝolη≈I ) for the assignment η≈I . Now, nη > nηI , and

it cannot be true because η≈I is an optimal assignment.

The definition of η and the fact that it satisfy all linear constraints shows that

if I admits a solution then it shows that COMPACT-ILP-FORMULATION(I) admit

a solution. Therefore, η≈I also exists.

max
∑

[o]→≈r [s]

(
| [o] | · | [s] | · r[o],[s]

)
+

∑
[s]→≈w [o]

(
| [s] | · | [o] | · w[s],[o]

)
subject to

r[o],[ŝ] + w[ŝ],[ô] + r[ô],[s] − r[o],[s] ≤ 2, ∀ [o]→≈r [ŝ]→≈w [ô]→≈r [s] ∧ [o]→r [s]

r[o],[ŝ] + w[ŝ],[ô] + r[ô],[s] ≤ 2, ∀ [o]→≈r [ŝ]→≈w [ô]→≈r [s] ∧ [o] 6→r [s]

w[s],[ô] + r[ô],[ŝ] + w[ŝ],[o] − w[s],[o] ≤ 2, ∀ [s]→≈w [ô]→≈r [ŝ]→≈w [o] ∧ [s]→w [o]

w[s],[ô] + r[ô],[ŝ] + w[ŝ],[o] ≤ 2, ∀ [s]→≈w [ô]→≈r [ŝ]→≈w [o] ∧ [s] 6→w [o]

r[o],[s] = 1, ∀ [o]→t
r [s]

w[s],[o] = 1, ∀ [s]→t
w [o]

v ∈ {0, 1}, ∀v ∈ V≈

Figure 5.5. ILP formulation of MDFP based on equivalence classes.
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5.2.2 Heuristic Methods for Conservative Approach

Although the Compact ILP formulation given in Section 5.2.1 reduces the problem

significantly, there could still be instances where the Compact ILP formulations

fails to generate a solution in a reasonable amount of time. In order to address

this issue, we provide a fast heuristic method that is composed of two phases:

(1) Identification of confidentiality vulnerability paths and integrity vulnerabil-

ity paths and (2) Elimination of confidentiality vulnerability paths and integrity

vulnerability paths by greedy revocations.

In particular, the identification phase takes the DAC configuration C as an

input and outputs the flow paths that could cause a vulnerability. Following The-

orem 1, we propose an algorithm that outputs any confidentiality and integrity

vulnerability of length one. We define TC to be the set of vulnerability paths of

length one that could cause a confidentiality violation and TI to be the set of

vulnerability paths of length one that could cause an integrity violation. A confi-

dentiality vulnerability path of length one o →r s →w o′ →r s
′ where o 6→r s

′

is denoted as (o, s, o′, s′) ∈ TC similarly an integrity vulnerability path of length

one s′ →w o →r s →w o′ where s′ 6→w o′ is denoted as (s′, o, s, o′) ∈ TI . In

Algorithm 2, we provide the pseudocode for identifying the confidentiality vul-

nerability paths. The algorithm for the integrity vulnerability paths is very similar

and therefore omitted here.

Upon the identification phase, the sets TC and TI will be populated with the

vulnerability paths. In the elimination phase, these vulnerability paths are elimi-

nated by revoking permissions. However, permission revocations could generate
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Algorithm 2 Algorithm to Identify Confidentiality Vulnerability Paths of Length
One

1: Input: C
2: Output: TC
3: Construct the Graph Representation of DAC, GC = ({S ∪O}, E)
4: for all Pairs of object nodes o, o′ ∈ O and subjects s′ ∈ S such that there

exists a directed path (o, s′)(s′, o′) ∈ E do
5: for all Subject node s ∈ S, such that ∃(o′, s) ∈ E do
6: if 6 ∃(o, s) ∈ E then
7: TC ← (o, s′, o′, s)
8: end if
9: end for

10: end for

new confidentiality and integrity vulnerabilities, so the sets TC and TI might be-

come incomplete. Towards this end, we first clarify how a new vulnerability path

might be created as DAC is updated.

1. A new o∗ →r s
∗ is introduced into DAC. Then, there is a possibility for a

new confidentiality vulnerability path (o∗, s∗, o, s), if s∗ →w o, o →r s and

o∗ 6→r s.

2. A new s∗ →w o∗ is introduced into DAC. Then there is a possibility for a

new confidentiality vulnerability path (o, s∗, o∗, s), if o→r s
∗, o∗ →r s and

s 6→r o .

3. An existing o∗ →r s
∗ is revoked from DAC. Then there is a possibility

for a new confidentiality vulnerability path (o∗, s, o, s∗), if o∗ →r s, s →w

o, o→r s
∗.

4. A new s∗ →w o∗ is introduced into DAC. Then, there is a possibility for

a new integrity vulnerability path (s∗, o∗, s, o), if o∗ →r s, s →w o and

s∗ 6→w o.
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5. A new o∗ →r s
∗ is introduced into DAC. Then there is a possibility for

a new integrity vulnerability path (s, o∗, s∗, o), if s →w o∗, s∗ →w o and

s 6→w o.

6. An existing s∗ →w o
∗ is revoked from DAC. Then there is a possibility for

an new integrity vulnerability path (s∗, o, s, o∗), if s∗ →w o, o →r s, s →w

o∗.

On the other hand, revoking write (resp. read) permissions does not gen-

erate a new confidentiality (resp. integrity) vulnerability other than eliminating

the existing vulnerability. More specifically, if a confidentiality vulnerability path

(o, s, o′, s′) is eliminated by revoking s →w o′, then this flow is removed and a

new unauthorized data flow will not be generated. Thus, there is no need to per-

form a new identification again. In order to generalize this result, we provide the

next theorem.

Theorem 5. Eliminating an confidentiality (resp. integrity) vulnerability path by

revoking write (resp. read) permission does not generate a new confidentiality

(resp. integrity) vulnerability path.

Proof. The proof follows from the definition of vulnerability paths. In order to

have a new confidentiality (resp. integrity) vulnerability path, there has to be a

subject s that cannot read (resp. write to) an object o (resp. o′). Since revoking

write (resp. read) permission does not change any previous read (resp. write)

access, no new confidentiality (resp. integrity) vulnerability path can be generated.
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Next, we show that performing write permission revocations for confiden-

tiality vulnerabilities (respectively, read permissions for integrity vulnerabilities)

will not generate new integrity (respectively, confidentiality) vulnerabilities.

Theorem 6. Eliminating confidentiality vulnerability paths by only revoking write

permissions do not create new integrity vulnerability paths.

Proof. Suppose to the contrary that the statement is false. Then eliminating a

confidentiality vulnerability with a write permission could create a new integrity

vulnerability. Suppose that there is a confidentiality vulnerability path o →r

s →w o′ →r s′ in a DAC. Eliminating this vulnerability path is by revoking

(s, writeo′) could create a new integrity vulnerability, if there exists another flow

path s →w o′′ →r s
′′ →w o′. Clearly, using this path s could write into o′ via

subject s′′. However, o′′ →r s
′′ →w o

′ implies there has been other confidentiality

vulnerabilities in the DAC:

• If (s, write, o′′) and s′′ cannot read o, then there is already a confidentiality

vulnerability o→r s→w o
′ →r s

′ and in order to eliminate it, (s, write, o′′)

must be revoked. Hence s→w o
′′ →r s

′′ →w o
′ will not exist.

• If (s, write, o′′) and (s′′, read, o), then there is already a confidentiality vul-

nerability o →r s
′′ →w o

′ →r s
′ and in order to eliminate it (s′′, write, o′)

must be revoked. Hence s→w o
′′ →r s

′′ →w o
′ will not exist.

Hence, eliminating confidentiality vulnerabilities by revoking only write per-

missions will not generate new integrity vulnerabilities.



118

Corollary 2. Eliminating integrity vulnerabilities by revoking read permissions

will not create new confidentiality vulnerabilities.

Theorems 5, 6 and Corollary 2, imply a very strong result that there is no need

to perform multiple identification phases as the permissions are revoked. When

the sets TC and TI are populated once, the elimination phase will eliminate all

vulnerability paths, without generating any new vulnerability paths. Hence in the

elimination phase, the following actions are taken:

• ∀(o, s, o′, s′) ∈ TC , revoke s→w o
′

• ∀(s′, o, s, o′) ∈ TI , revoke o→r s

Finally, Lemma 3 and Corollary 1 imply that it is possible to run the heuristic

approach over the C≈ in order to obtain a data leakage free C. In this case, for any

equivalent subject AW [s1/s2] if s1 →w o
′ is revoked for C≈, then s2 →w o

′ will

also be revoked for C. Similarly, for any equivalent subject AR[s1/s2] if o→r s1

is revoked for C≈, then o →r s2 will also be revoked for C. This reduction

provides huge benefits as the heuristic will be able to handle large datasets, which

otherwise could not be run without any reduction. This is demonstrated in the

Experimental Results for DAC section.

5.2.3 Proactive Approach

The conservative strategies are static in the sense that they are utilized only once

to fix all inference problems before the system is actually used. While this en-

sures complete security, it can potentially impact utility since many actions are
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revoked due to the potential of leakage, even if in actuality the situation never

occurs. Thus, to reduce the restrictiveness, we now propose a proactive strategy

that revokes permissions only if the actions that could cause an unauthorized data

flow actually happen. In this approach, we continuously monitor read and write

actions only on the identified source and destination objects in TC and TI that

could potentially cause an unauthorized flow. More specifically, a confidentiality

vulnerability (o, so′, s′), can be prevented by revoking any one of the o →r s,

s →w o
′ or o′ →r s

′. However, we choose to revoke o′ →r s
′, whenever o →r s

and s →w o′ occur in this order. Similarly an integrity vulnerability (s′, o, s, o′),

can be prevented by revoking any one of the o→r s, s→w o
′ or s′ →w o, and we

choose to revoke s→w o
′, whenever s′ →w o and o→r s occur in this order. This

way, we revoke permissions, only if a suspicious chain of events occur. Hence,

when compared to the conservative approach, the number of revoked permissions

is expected to be smaller.

As discussed previously in this chapter, revoking read (write, resp.) permis-

sion, might invalidate TC (TI , resp.) that has been computed in the identification

phase using in Algorithm 2. For example, revoking a read permission means

a subject that could read an object before, will not be able to read it anymore.

This means there is a possibility that this subject and object could create a new

confidentiality vulnerability path. Therefore, the set TC (TI , resp.) should be re-

populated whenever a read (write, resp.) permission is revoked.

The sequence of the events that cause unauthorized data flow is also important.

A preventative action is only meaningful if a read operation precedes a write for

confidentiality vulnerabilities and a write operation precedes a read operation
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for integrity vulnerabilities. Furthermore, we impose a windowing approach, stat-

ing that, if the succeeding event occurs after a predefined time window of size θ

units, then the preceding event is considered to be outdated, so it is assumed that

a data flow will not be unauthorized. Setting θ =∞ will eventually make the ac-

cess configuration read-only for each destination object involved in a vulnerability

path.

The proactive approach begins with the identification algorithm (Algorithm

2) to populate TC and TI . Later, the identified source and destination objects for

confidentiality vulnerabilities (i.e. for all (o, s, o′, s′) ∈ TC the objects o and o′),

are monitored for read and write operations (o is monitored for read, o′ is mon-

itored for write). If the subject s reads o and writes into o′ within θ amount of

time, then o′ →r s
′ is revoked. Likewise the identified source objects for integrity

vulnerabilities (i.e. for all (s, o, s′, o′) ∈ TI the object o), are monitored for read

and write operations. If the subject s writes into o and subject s′ reads o within θ

amount of time, then s′ →w o
′ is revoked. The procedure for confidentiality vul-

nerabilities is given in Algorithm 3, which requiresO(|TC||S|) time for prevention

and O(|O|2|S|) time for recomputing TC .

To show the behavior of the proactive approach, consider again the access

control system shown in Table 5.1, along with the potential sequence of operations

shown in Table 5.2. Table 5.2 shows the behavior of the proactive approach for

each operation in the sequence. Note that the proactive approach revokes a total

of six permissions (2 each on operations (2), (3), and (5)).
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Algorithm 3 Algorithm for Proactive Strategy
1: Input: TC .
2: Set the read file indicatorRs

o = 0,∀s ∈ S, o ∈ O.
3: Set δ as the current timestamp.
4: Monitor the access control actions done on the objects on vulnerability paths

identified in (o, s, o′, s′) ∈ TC - Use (Alg 2)
5: if o is read by s then
6: SetRs

o = δ.
7: end if
8: if o′ is written by s and δ −Rs

o ≤ θ then
9: Revoke read permission o′ →r s

′

10: Redo identification algorithm (Alg 2) to recompute TC .
11: end if

Table 5.2. Sample Sequence of Actions and Monitor’s Behavior
User’s Operation Monitor’s Action

1 s1, r, o1
2 s1, w, o3 Monitor will revoke o3 →r s3 o3 →r s4 to remove the confi-

dentiality vulnerabilities
3 s1, w, o4 Monitor will revoke o4 →r s3 o4 →r s4 to remove the confi-

dentiality vulnerabilities
4 s2, w, o5
5 s4, r, o5 Monitor will revoke s4 →w o6 and s4 →w o7 to remove the

integrity vulnerability
6 s3, r, o3 Access denied
7 s4, w, o7 Access denied
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5.2.4 Retrospective Approach

In the prior sections, we have described a process to create a data leakage free

access control matrix by design as well as a proactive approach that implements

on-demand decision making to readjust the permissions that cause unauthorized

flows. Although both of these accurately eliminate any unauthorized flow, there

are several situations where neither of this is appropriate. For example, consider

a hospital environment, where the access policy gets updated often, and access

needs to typically be granted at the time it is requested, though it can be audited

afterwards. It might also be cost prohibitive to implement the proactive approach

especially in large computer systems with potentially large number of identified

source and destination objects, since the additional overhead to the access evalua-

tion request might not be acceptable.

Also, observing a read on the source object followed by a write on the destina-

tion object still does not imply that the unauthorized access will actually happen

unless the destination object is read by the subject who does not have access to

the source object.

To address the above issues, in this section, we propose to eliminate (future)

data leakages through auditing. This is a retrospective strategy that allows all

requested operations (thus, enabling some unauthorized data flows to also occur),

while logging all of the read and write operations. Periodically, the log to date is

analyzed to determine whether an unauthorized data flow has actually happened.

If so, we revoke the necessary permissions to block the data flow channels so that

they will not be utilized for this purpose in the future.
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The unauthorized flows found in the log can be straightforwardly removed

using the approach developed in Section 5.2.1. Essentially, it is sufficient to realize

that a log of actions L is equivalent to the notion of a run π. Furthermore, each

run π creates a projection of the DAC C, denoted C ′ which includes all of the

subjects that have appeared in the run, along with all of the objects for which

any appearing subject has either a read or write permission. Now, we can create

the appropriate ILP formulation as given in Figure 5.3 (or in Figure 5.5) for C ′.

The solution to this will optimally remove all of the confidentiality and integrity

violations existing in the log L and ensure that they cannot reoccur.

Consider again, the log of operations given in Table 5.2. In the retrospective

approach, when auditing is done, based on the operations, a project of the original

access control matrix (depicted in Table 5.1) is built, containing only the requisite

subjects and objects. This projection is shown below:

o1 o3 o4 o7
s1 r w w
s2 r w w
s3 r r w
s4 r r w

When the corresponding ILP is run, the optimal solution is to revoke 4 per-

missions (for example, revoking s1 →w o3, s1 →w o4, s2 →w o3, and s2 →w o4),

which is better than the 6 revoked by the monitor based approach. However, 2

data leakages have now occurred (s3 manages to read o1 and s2 manages to write

to o7), which would have been prevented by the monitor based approach.
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5.2.5 Experimental Results for DAC

We now present the experimental evaluation which demonstrates the performance

and restrictiveness of all of the three proposed approaches. We utilize eight real

life access control data sets with users and permissions – namely, (1) fire1, (2)

fire2, (3) domino, (4) hc, (5) apj, (6) emea, (7) americas small and (8) americas

large that are publicly available [18]. Note that these data sets encode a simple

access control matrix denoting the ability of a subject to access an object (in any

access mode). Thus, these data sets do not have the information regarding which

particular permission on the object is granted to the subject. Therefore, we assume

for all of the datasets that each assignment represents both a read and a write

permission on a distinct object.

For the conservative approaches, we use the reduced access control matrices

obtained by collapsing equivalent subjects and objects, as discussed in Section

5.2.1. The number of subjects and objects in the original and reduced matrices are

given in Table 5.3. Note that collapsing subjects and objects significantly reduces

the sizes of the datasets (on average the dataset is reduced by 93.82%). Here, by

size, we mean the product of the number of subjects and objects. Since the number

of constraints is linearly proportional to the number of permissions which depends

on the number of subjects and objects, a reduction in their size leads to a smaller

ILP problem. On the other hand, we use the original datasets for the proactive and

retrospective approaches. Note here that due to hardware constraints we can only

report the results for first four datasets for the optimal conservative, proactive and

retrospective approaches. Since our proposed heuristic is more scalable, we test

larger datasets and report the results.
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Table 5.3. Dataset Details
Original Size Reduced Size Percentage

Dataset Name Subjects Objects Subjects Objects Reduction
1 fire1 365 709 90 87 96.97 %
2 fire2 325 590 11 11 99.94 %
3 domino 79 231 23 38 95.21 %
4 hc 46 46 18 19 83.84 %
5 apj 2044 1164 564 578 86.29 %
6 emea 35 3046 34 263 91.61 %
7 americas small 3477 1587 259 349 98.36 %
8 americas large 3485 10127 432 1354 98.34 %

Table 5.4. Results for Optimal Data Leakage Free Access Matrix
Data Orig. CPLEX Red. CPLEX # Perm. # Perm. %
Set Time (s) Time (s) Vulnerabilities Init. Assn. Revoked Revoked
1 - 2582 34240 63902 14586 22.83 %
2 - 0.225 514 72856 12014 16.49 %
3 8608.15 6.01 3292 1460 421 28.84 %
4 1262.82 0.27 1770 2972 980 32.97 %

We implement all four solution approaches described in this section. For

the optimal conservative approach (Section 5.2.1), we create the appropriate ILP

model as per Figure 5.5. The ILP model is then executed using IBM CPLEX (v

12.5.1) running through callable libraries within the code. For the heuristic con-

servative approach (Section 5.2.2), we use the identification algorithm along with

the described permission revocations. For the proactive approach (Section 5.2.3),

the identification and monitoring algorithm is implemented. For the retrospective

approach (Section 5.2.4), a reduced access control matrix is created from the log

and the conservative approach is used as a subroutine to identify the permissions

to revoke. The algorithms are implemented in C and run on a Windows machine

with 16 GB of RAM and Core i7 2.93 GHz processor.

Table 5.4 presents the experimental results for the optimal conservative ap-



126

Table 5.5. Results for Data Leakage Free Access Matrix with Heuristic
Data Identification # Perm. # Perm. %
Set Time (s) Vulnerabilities Init. Assn. Revoked Revoked
1 0.05 34240 63902 31295 48.98 %
2 0.004 514 72856 29367 40.30 %
3 0.05 3292 1460 692 47.39 %
4 ≈ 0 1770 2972 1360 45.76 %
5 0.145 18458 13682 4913 35.90 %
6 0.115 121656 14440 5282 36.57 %
7 0.79 412058 210410 57237 27.20 %
8 7.959 2464092 370588 127857 34.50 %

proach. The column “Orig. CPLEX Time”, shows the time required to run the

ILP formulation given in Figure 5.3, while the column “Red. CPLEX Time”

gives the time required to run the compact ILP formulation given in Figure 5.5.

As can be seen, the effect of collapsing the subjects and objects is enormous. fire1

and fire2 could not be run (CPLEX gave an out of memory error) for the original

access control matrix, while the time required for hc and domino was several or-

ders of magnitude more. Since we use the reduced datasets, as discussed above,

the column “Vulnerabilities” reflects the number of vulnerabilities in the reduced

datasets to be eliminated. The next three columns depict the amount of permission

revocation to achieve a data leakage free access matrix. Note that, here we list the

number of permissions revoked in the original access control matrix. On average,

25.28 % of the permissions need to be revoked to get an access control system

without any data leakages.

In Table 5.5, we provide experimental results for our heuristic approach. Here,

the column “Identification Time” shows the time to run Algorithm 2. Note that

time to revoke the permissions from the DAC is negligible and hence not given in

the table. The heuristic approach clearly broadens the limits of the conservative
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approach to much larger datasets which would not run in the exact methods. On

the other hand the number of permissions revoked is 45% more in average for the

first four datasets. Although this may not be favorable in real world applications,

this heuristic is useful to obtain a data leakage free DAC for large datasets that

cannot be handled by the ILP model.

When we have a proactive approach, as discussed in Section 5.2.3, revocations

can occur on the fly. Therefore, to test the relative performance of this approach,

we have randomly generated a set of read/write operations that occur in the order

they are generated. The proactive approach is run and the number of permissions

revoked is counted. Since the number of flows can increase as more operations

occur, and therefore lead to more revocations, we actually count the revocations

for a varying number of operations. Specifically, for each dataset, we generate on

average 100 operations for every subject (i.e., we generate 100 ∗ |S| number of

random operations). Thus, for hc, since there are 46 subjects, we generate 4600

random operations, where as for fire1 which has 365 subjects, we generate 36500

random operations. Now, we count the number of permissions revoked if only

10% ∗ |S| operations are carried out (and similarly for 50% ∗ |S|, 100% ∗ |S|,

1000% ∗ |S|, 5000% ∗ |S|, and finally 10000% ∗ |S|). Table 5.6 gives the results.

Again, we list the number of permissions revoked in the original access control

matrix. As we can see, the number of permissions revoked is steadily increasing,

and in the case of fire1 and hc the final number of permissions revoked is already

larger than the permissions revoked in the conservative method. Also, note that in

the current set of experiments, we have set a window size of 1000 – this means

that if the gap between a subject reading an object and then writing to another
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object is more than 1000 operations, then we do not consider a data flow to have

occurred (typically a malicious software would read and then write in a short dura-

tion of time) – clearly, the choice of 1000 is arbitrary, and in fact, could be entirely

removed, to ensure no data leakages. In this case, the number of permission revo-

cations would be even larger than what is reported, thus demonstrating the benefit

of the conservative approach when a large number of operations are likely to be

carried out.

Table 5.6. Results for Monitor based approach
Data # Perm. Number Permissions Revoked % Finally
Set Init. Assn. 10% 50% 100% 1000% 5000% 10000% Revoked
1 63902 0 140 532 14221 24031 26378 41.28 %
2 72856 0 13 26 3912 8129 9025 12.39 %
3 1460 0 36 41 130 283 364 24.93 %
4 2972 0 0 0 557 1123 1259 42.36 %

We evaluated the retrospective approach similar to the proactive approach,

by using the same set of random operations generated for the monitor based ap-

proach. The log after every 2000 read/write operations is audited and the number

of permissions revoked is counted. As expected, the retrospective approach re-

vokes less permissions than the monitor based approach. For example, with fire2,

after all of the operations have taken place, finally 5518 permissions (7.57%) are

revoked in the retrospective approach, where as 9025 permissions (12.39%) are

revoked by the monitor based approach. This is due to two reasons – first, in

the retrospective approach, the optimal revocations are found using the ILP for-

mulation; secondly, in the proactive approach revocations are done to eliminate

the possibility of a violation from taking place, where as in the retrospective ap-

proach, the violation has already taken place. Table 5.7 gives the final number of
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revoked permissions for all of the real datasets. It is worth noting that for all 4

of the datasets, the retrospective approach revokes significantly less permissions

than the proactive approach to prevent future leakages (of course, the proactive

approach prevents all leakages which have been already been allowed by the ret-

rospective approach, though no new leakages of the same type will be allowed by

either).

Table 5.7. Results for Retrospective Approach
Data # Perm. # Perm % Finally
Set Init. Assn. Revoked Revoked
1 63902 18428 28.84 %
2 72856 5518 7.57 %
3 1460 159 10.89 %
4 2972 980 32.97 %

5.3 Analysis of Data Leakage Problem in RBAC

RBAC is also prone to unauthorized flows just like DAC, and preventative mea-

sures are required to eliminate any such flow. On the one hand, the presence

of roles makes RBAC standout in administrative efficiency. On the other hand,

they complicate the unauthorized flow detection and prevention. Although, simi-

lar strategies can be utilized, it is vital to determine whether a role to be revoked

from a user, or a permission to be revoked from a role. Due to the complexity of

the RBAC model, we cannot utilize ILP models as extensive as we use them in

DAC. Therefore, our methodologies primarily depend on heuristic algorithms that

provide different levels of restrictiveness.

In order to stay consistent throughout this chapter, we call users as subjects,

and permissions as objects for RBAC. Hence, without loss of generality we as-
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sume the following: S is a finite set of subjects, O is a finite set of objects,

SA ⊆ S × R as Subject-Role assignment, OA = OAR ∪ OAW is the Object-

Role assignment where OAR ⊆ O × R and OAW ⊆ R×O. A pair (s, r) ∈ SA,

also denoted s ↔ r, is a subject-role assignment representing that subject s is

assigned role r. A pair (o, r) ∈ OAR, denoted o →r r, is an assignment repre-

senting that object o can be readable using role r, whereas (r, o) ∈ OAW denoted

by r →w o, is an assignment representing that object o can be writable using role

r.

Similar to DAC, RBAC can also be represented by graphs. We define the

graph representation of RBAC as follows:

Definition 24. (Graph Representation of RBAC) The graph of an RBAC, CR =

〈S,O,R, SA,OA〉, denoted GCR
, is the tripartite graph (S ∪ O ∪ R, SA ∪ OA)

whose partition has the parts S, R, and O,where the set SA denotes the edges

between S and R and OA denotes the edges between R and O.

Figure 5.6 shows the graph representation of the RBAC shown in Tables 5.8

and 5.9.

Table 5.8. Example Subject-
Role Assignment

r1 r2 r3 r4
s1 1
s2 1 1
s3 1
s4 1
s5 1

Table 5.9. Example Object-Role
Assignment

r1 r2 r3 r4
o1 r
o2 r
o3 w r
o4 w r
o5 w
o6 w r
o7 w
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o1

s1

o2 o3 o4 o5 o6 o7

s2 s3 s4 s5

r1 r3r2 r4

Figure 5.6. Graph representation of RBAC configuration given in Tables 5.8 and
5.9

Definition 25. (Vulnerability Paths in RBAC) In an RBAC,CR, a flow path from

object o to object o′, denoted o  o′, is a path in GCR
from o to o′ via a subject

s and roles r′, r′′, which points out the possibility of copying the content of o into

o′.

The length of a flow path corresponds to the number of subjects along the

path. For example, o1 →r r1 → s1 → r2 →w o3 (denoted as o1  o3) is a flow

path of length 1, while o1 →r r1 → s1 → r2 →w o3 →r r3 → s3 → r3 →w o6

(denoted as o1  o6) is a flow path of length 2 of the RBAC shown in Figure 5.6.

In all, there are 12 flow paths of length 1, while there are 4 flow paths of length 2

in the RBAC shown in Figure 5.6.

Definition 26. (Confidentiality Vulnerability in RBAC) An RBAC, CR has a

confidentiality vulnerability, if there are two objects o and o′, a subject s and a

role r such that o  o′ →r r ↔ s (confidentiality vulnerability path or simply

vulnerability path), and either 6 ∃r′ such that s ↔ r′ and o →r r
′ or ∀r′ ↔ s

o 6→r r
′ o 6→r s. A confidentiality vulnerability, shows that subject s (the violator)

can potentially read the content of object o through o′, though s is not allowed to
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read directly from o. We represent confidentiality vulnerabilities using quadruples

of the form (o, o′, r, s).

For example, the RBAC depicted in Figure 5.6 has 10 confidentiality vulnera-

bilities, given below.

c1 : (o1, o3, r3, s3), c2 : (o1, o3, r3, s4), c3 : (o1, o4, r3, s3),
c4 : (o1, o4, r3, s4), c5 : (o2, o3, r3, s3), c6 : (o2, o3, r3, s4),
c7 : (o2, o4, r3, s3), c8 : (o2, o4, r3, s4), c9 : (o1, o6, r4, s5),
c10 : (o2, o6, r4, s5).

Definition 27. (Integrity Vulnerability) An RBAC, CR has an integrity vulnera-

bility, if there exist a subject s, a role r and two objects o and o′ such that s ↔ r,

r →w o, o  o′ (integrity vulnerability path or simply vulnerability path) and

either 6 ∃r′ such that s ↔ r′ and r′ →w o′ or ∀r′ ↔ s, r′ 6→w o. An integrity

vulnerability, shows that subject s (the violator) can indirectly write into o′ using

the path flow from o to o′, though s is not allowed to write directly into o′. We

represent integrity vulnerabilities using quadruples of the form (s, r, o, o′).

For example, the RBAC depicted in Figure 5.6 has 8 integrity vulnerabilities,

given below.

i1 : (s1, r2, o3, o6), i2 : (s1, r2, o3, o7), i3 : (s1, r2, o4, o6),
i4 : (s1, r2, o4, o7), i5 : (s2, r2, o3, o6), i6 : (s2, r2, o3, o7),
i7 : (s2, r2, o4, o6), i8 : (s2, r2, o4, o7),

When an RBAC has either a confidentiality or an integrity vulnerability, we

simply say that CR has a vulnerability, whose length is that of its underlying

vulnerability path. Thus, for the RBAC depicted in Figure 5.6, there are 10 + 8 =

18 vulnerabilities.
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Data Leakages in RBAC. As it is similar to DAC, a vulnerability in an RBAC also

does not necessarily imply that a data leakage (confidentiality or integrity viola-

tion) occurs. A run of an RBACCR is any finite sequence π = (s1, r1, op1, o1) . . . (sn, rn, opn, on)

of quadruples (or actions) from the set S × R × {read ,write} × O such that for

every i ∈ [1, n] one of the following cases holds:

[Read] opi = read , and oi →r ri ↔ si;

[Write] opi = write, and si →w↔ oi.

A run π represents a sequence of allowed read and write operations executed by

subjects on objects. More specifically, at step i ∈ [n] subject si accomplishes the

operation opi on object oi via role ri. Furthermore, ri has the right to access oi in

the opi mode.

A run π has a flow from an object ô1 to a subject ŝk provided there is a

flow path ô1 →r r̂1 → ŝ1 → r̂2 →w ô2 . . . ôk and ôk →r r̂k → ŝk such that

(ŝ1, r̂1, read , ô1)(ŝ1, r̂2,write, ô2) . . . (ŝk, r̂k, read , ôk) is a sub-sequence of π. Sim-

ilarly, we can define flows from subjects to objects, objects to objects, and subjects

to subjects.

Definition 28. (Confidentiality Violation in RBAC) A run π of an RBACCR has

a confidentiality violation, provided there is a confidentiality vulnerability path

from an object o to a subject s and π has a flow from o to s. An RBAC CR has a

confidentiality violation if there is a run of CR with a confidentiality violation.

Thus, for example, in the RBAC depicted in Figure 5.6, a confidentiality viola-

tion would occur if there was a sequence (s1, r1, read , o1)(s1, r2,write, o3)(s3, r3, read , o3)
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which was a sub-sequence of π.

Definition 29. (Integrity Violation in RBAC) A run π of an RBAC CR has an

integrity violation, provided there is an integrity vulnerability path from a subject

s to an object o and π has a flow from s to o. An RBAC CR has an integrity

violation if there is a run of CR with an integrity violation.

As above, in the RBAC depicted in Figure 5.6, a integrity violation would oc-

cur, for example, if there was a sequence (s2, r2,write, o4)(s3, r3, read , o4)(s3, r3,write, o7)

which was a sub-sequence of π.

An RBAC has a data leakage if it has either a confidentiality or an integrity

violation.

Using the definitions above, the following proposition holds for RBAC mod-

els.

Proposition 2. An RBAC is data leakage free if and only if it is vulnerability free.

The direct consequence of the proposition above suggests that a vulnerability

free access control system is data leakage free by design, hence it does not require

a monitor to prevent data leakages.

The Fundamental Theorem (Theorem 1) also applies to RBAC data leakages.

Here we provide the modified version of the theorem and its proof tailored specif-

ically for RBAC model.

Theorem 7 (FUNDAMENTAL THEOREM FOR RBAC). Let CR be an RBAC con-

figuration. CR has a vulnerability only if CR has a vulnerability of length one.
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Proof. The proof is by contradiction. Assume that ρ = o0→r r0→ s0→ r1→w

o1 . . . sn−1→ rn→w on is vulnerability path. Without loss of generality, assume

that ρ is of minimal length. Thus, n is greater than one by hypothesis.

We first consider the case of confidentiality vulnerability. Let s be the violator.

Since ρ is of minimal length, all objects along ρ except o0 can be directly read by

s (i.e., oi →r rj → s for every i ∈ [1, n] and corresponding j ∈ [1,m]), otherwise

there is an confidentiality vulnerability of smaller length. Thus, o0→r r0→ s0→

r1→w o1 is a confidentiality vulnerability of length one, as s can read from o1 but

cannot read from o0. we reach a contradiction.

We give a similar proof for integrity vulnerabilities. Again, since ρ is of min-

imal length, all objects along ρ, except o0, can be directly written by s0, i.e.,

s0 → rj →w oi for every i ∈ [1, n] and corresponding j ∈ [1,m]. But, this entails

that o0 →r r1 → s0 → rn →w on is an integrity vulnerability of length one (as

s can write into o0 but cannot directly write into on). We reach a contradiction

again.

As a result of the Fundamental Theorem for RBAC, we can provide similar

data leakage identification and elimination approaches that utilize only vulnera-

bilities of length one. In the next sections, we discuss these approaches. Although

the main idea behind the solution strategies are similar, the way we handle them

differs due to the complexity of the RBAC model. Figure 5.7 outlines the frame-

work we use to address data leakage problem in RBAC.
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Data Leakage in RBAC

Conservative Proactive Retrospective

Exact Methods Heuristic Methods

Productive Non-Productive

Productive Non-Productive

Figure 5.7. Framework of the analysis of data leakage problem in RBAC

5.3.1 Exact Methods for Conservative Approach

A data leakage free RBAC configuration is a more challenging task than designing

a DAC configuration. In RBAC, not only is there an additional layer of complexity

– the roles – to consider during the design, but also it is crucial to determine which

relation – SA or OA or both – to modify. There could be many different ways of

achieving a data leakage free RBAC configuration, though serious emphasis must

be made on any unnecessary revocations to non-vulnerability paths. In particular,

revoking a role from a user implicitly revokes one or more permissions (object

accesses). For instance, given a role, if there is only a single permission, that

grants an object access, is identified as a part of a vulnerability path, revoking this

role will not only eliminate this vulnerability path, but also will eliminate many

other paths that may or may not be identified as a vulnerability path. In contrast,

if the permission is revoked from the role, then the non-vulnerability paths will

not be affected. However, the users who are not on this vulnerability path will

unnecessarily lose an object access.

For example, consider the RBAC configuration given in Figure 5.6. In this

configuration there is a confidentiality vulnerability (o1, o3, r3, s3). This confiden-

tiality vulnerability can be eliminated by revoking r2 →w o3. However, s1 will
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lose write access to o3 even if s1 is not on the vulnerability path.

In order to address this problem, we develop a mathematical representation

that not only minimizes the number of user-role and role-permission assignments

revoked, but also it minimizes the number of assignments revoked unnecessar-

ily. First, we define the decision variables. In the model, there are three sets of

decision variables:

VR = {sas,r | s ∈ S ∧ r ∈ R ∧ s↔ r} ∪ {oarr,o | r ∈ R ∧ o ∈ O ∧ o→r r} ∪

{oawr,o | r ∈ R ∧ o ∈ O ∧ r →w o} (5.1)

Since the objective of the model is slightly different than that of the ILP for-

mulation for DAC, a simple sum of decision variables, as in the case of the DAC,

does not reflect the number of revoked object accesses. Therefore, the objective

function is defined as follows:

Z =
∑

∀s↔r,r→wo,o→rw

sas,roarr,o + sau,roawr,o

The multiplication of sa and oar-oaw variables in the objective function counts

in the effect of revoking multiple object accesses by revoking a role from a user.

Now, we give the mathematical formulation.

The structure of the constrains are similar to the ILP model given in Figure

5.3. The first two constraints are to eliminate confidentiality vulnerabilities and

the latter two is for integrity vulnerabilities. Due to the complexity of the RBAC
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max Z

subject to

sas,r′ + oarr′,o + sas,r′′ + oawr′′,ô+ ∀ s↔ r′, o→r r
′, s↔ r′′,

saŝ,r′′′ + oarr′′′,ô − (saŝ,r′′′′oarr′′′′,o) ≤ 5, r′′ →w ô, ŝ↔ r′′′, ô→r r
′′′, ŝ↔ r′′′′, o→r r

′′′′

sas,r′ + oarr′,o + sas,r′′ + oawr′′,ô+ ∀ s↔ r′, o→r r
′, s↔ r′′,

saŝ,r′′′ + oarr′′′,ô ≤ 5, r′′ →w ô, ŝ↔ r′′′ô→r r
′′′

saŝ,r′ + oawr′,o + sas,r′′ + oarr′′,o+ ∀ ŝ↔ r′, r′ →w o, s↔ r′′,

sas,r′′′ + oawr′′′,ô − (saŝ,r′′′′oawr′′′′,ô) ≤ 5, o→r r
′′, s↔ r′′′, r′′′ →w ô, ŝ↔ r′′′′, r′′′′ →w ô

saŝ,r′ + oawr′,o + sas,r′′ + oarr′′,o+ ∀ ŝ↔ r′, r′ →w o, s↔ r′′,

sas,r′′′ + oawr′′′,ô ≤ 5, o→r r
′′, s↔ r′′′, r′′′ →w ô

sas,r, oawr,o, oarr,o ∈ {0, 1}, ∀s↔ r, r →w o, o→r r

model structure, a confidentiality vulnerability can be eliminated by either revok-

ing the role r′ that the subject s uses to read from the source object, or revoking

the read permission to that object from r′, or the role r′′ that the subject s uses

to write to the destination object, or revoking the write permission to that object

from r′′, or revoking role r′′′ that the subject ŝ reads from the destination object,

or revoking the read permission to that object from role r′′′. At least one of these

conditions must be satisfied unless the subject ŝ is assigned to a role r′′′′ that has

a read permission to the source object. The integrity constraints have a similar

structure.

Although this model will eliminate the vulnerability paths completely in an

optimal way to generate a data leakage free RBAC configuration, it is clear that

the model is non-linear due to multiplication of decision variables in the objective

function and also in the constraints. Although they are decidable, solving non-

linear mathematical programs is a significantly challenging task to tackle, hence
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we provide an alternative procedure to alleviate this issue.

Proposed Procedure: Our proposed procedure that will provide a data leak-

age free RBAC configuration comprises of (1) converting the RBAC into DAC,

(2) utilizing the ILP formulation for DAC, and (3) using a Role Mining approach

to decompose the DAC back into an RBAC configuration. This approach will

optimally eliminate the vulnerability paths in the cost of creating an RBAC con-

figuration with a possibly different set of roles.

5.3.2 Heuristic Methods for Conservative Approach

We propose a heuristic approach that provides a data leakage free RBAC con-

figuration. Our proposed heuristic is a two phase procedure: (1) Identification

of confidentiality and integrity vulnerability paths and (2) Elimination of confi-

dentiality and integrity vulnerabilities. Although this procedure seems alike to

the heuristic approach that we propose for DAC, additional challenges have to be

overcome. Particularly, the way that the vulnerabilities are eliminated are tailored

specifically for RBAC model to address the issue of whether to revoke a user from

a role or revoke a permission from a role.

In the first phase, we present our identification algorithm for confidentiality

and integrity vulnerabilities. We define T RC to be the set of vulnerability paths

of length one that could cause a confidentiality violation and T RI to be the set of

vulnerability paths of length one that could cause an integrity violation. A confi-

dentiality vulnerability path of length one o→r r
′ → s→ r′′ →w o

′ →r r
′′′ → s′

where s′ cannot read o is denoted as (o, r′, s, r′′, o′, r′′′, s′) ∈ T RC similarly an in-

tegrity vulnerability path of length one s′ → r′′′ →w o →r r
′ → s → r′′ →w o

′
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Algorithm 4 Algorithm to Identify Confidentiality Vulnerability Paths of Length
One in RBAC

1: Input: RBAC
2: Output: T RC
3: Construct the Graph Representation of RBAC, GCR

= ({S ∪ R ∪ O}, SA ∪
OA)

4: for all Object node pairs o, o′ ∈ O, roles r′, r′′ ∈ R, subjects s ∈ S such that
there exists a directed path (o, r′), (r′, s), (s, r′′), (r′′, o′) do

5: for all Subject node s′, such that ∃(o′, r′′′), (s′, r′′′) ∈ E do
6: if 6 ∃r′′′′ such that (s′, r′′′′), (o, r′′′′) ∈ E then
7: T RC ← (o, r′, s, r′′, o′, r′′′, s′)
8: end if
9: end for

10: for all Subject node s′, such that ∃(r′′′, o), (s′, r′′′) ∈ E do
11: if 6 ∃r′′′′ such that (s′, r′′′′), (r′′′′, o′) ∈ E then
12: T RI ← (s′, r′′′, o, r′, s, r′′, o′)
13: end if
14: end for
15: end for

where s′ cannot write into o′ is denoted as (s′, r′′′, o, r′, s, r′′, o′) ∈ T RI . In Al-

gorithm 4, we provide the pseudocode for identifying the confidentiality and in-

tegrity vulnerability paths to populate sets T RC and T RI .

Next, the vulnerabilities in T RC and T RI are eliminated in order to obtain a data

leakage free configuration. Theorems 5, 6 and Corollary 2, implies the following

elimination strategy for RBAC:

• ∀(o, r′, s, r′′, o′, r′′′, s′) ∈ TRC , eliminate the path s→ r′′ →w o
′

• ∀(s′, r′′′, o, r′, s, r′′, o′) ∈ TRI , eliminate the path o→r r
′ → s

Here, eliminating paths s → r′′ →w o′ for confidentiality vulnerabilities and

o →r r
′ → s for integrity vulnerabilities require more attention as though re-

voking s → r′′ or r′ → s may implicitly revoke some permissions that could
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yield new confidentiality vulnerabilities or integrity vulnerabilities. For instance,

while eliminating the confidentiality vulnerabilities if a role is revoked, then some

read permissions that are assigned to this role will also be revoked alongside

the write permission that is intended to be revoked. Hence, this could gener-

ate new confidentiality vulnerabilities, which require identification algorithm to

be run multiple times. Towards this end, we present two elimination strategies

that assure no read permission is revoked for confidentiality vulnerabilities and

no write permission is revoked for integrity vulnerabilities. Therefore, a single

run of the identification algorithm is guaranteed only if the following elimination

strategies are implemented.

• Productive Elimination: Productive elimination focuses on splitting the

existing roles such that users will not lose access to any object that is not

on a vulnerability path. More specifically a confidentiality vulnerability

(o, r′, s, r′′, o′, r′′′, s′) ∈ T RC , is eliminated by splitting the role r′′ into two

roles r′′ and r′′(C) with the following assignments: r′′ 6→w o
′, r′′(C) →w o

′,

∀ŝ ∈ S\{s} such that ŝ ↔ r′′, assign ŝ ↔ r′′(C). Likewise an integrity

vulnerability (s′, r′, o, r′′, s, r′′′, o′) ∈ T RI , is eliminated by splitting the role

r′′ into two roles r′′ and r′′(C) so that o 6→r r
′′, o →r r

′′(C), ∀ŝ ∈ S\{s′}

such that ŝ ↔ r′′, assign ŝ ↔ r′′(C). At the end of the splitting, a role

merging process traces the newly generated roles and merges the ones that

are assigned to the same set of users.

• Non-Productive Elimination: Non-productive elimination performs revo-

cations only on OA in order to preserve the number of roles. More specif-
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ically a confidentiality vulnerability (o, r′, s, r′′, o′, r′′′, s′) ∈ T RC , is elimi-

nated by revoking r′′ →w o
′ and an integrity vulnerability (s′, r′, o, r′′, s, r′′′, o′) ∈

T RI , is eliminated by revoking o→r r
′′.

Both of these elimination strategies guarantee that no new vulnerability paths

will be generated as a result of the actions taken. Note that there is one com-

mon case that must be handled the same for both of the strategies stated above.

If a role itself is capable of performing the flow (i.e. o →r r and r →w o′)

then it means any user who is assigned to this role is capable of performing the

flow without requiring assignment to any other role. In this case, role splitting

does not make sense, since the newly generated role will not have any users as-

signed. Hence, for any confidentiality vulnerability (o, r′, s, r′′, o′, r′′′, s′) ∈ T RC ,

where r′ = r′′, r′′ →w o′ is revoked. Similarly for any integrity vulnerability

(s′, r′, o, r′′, s, r′′′, o′) ∈ T RI , where r′′ = r′′′, o →r r
′′ is revoked. Now, we

give the pseudocodes of the Productive (Algorithm 5) Non-productive (Algorithm

6) Elimination Strategies for confidentiality vulnerabilities. The algorithms for

integrity vulnerabilities are similar and therefore omitted here.

For example consider the RBAC configuration given in Figure 5.6. Concern-

ing only the confidentiality vulnerabilities, the productive elimination strategy will

output the configuration given in Figure 5.3.2, whereas the non productive elim-

ination strategy will output the configuration given in Figure 5.3.2. In the pro-

ductive elimination, we observe that r2 is split into two roles in order to preserve

s1’s write access to objects o3 and o4. Therefore, the number of roles increase by

1. On the other hand, s1 loses its access to these objects in the non-productive
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Algorithm 5 Heuristic Algorithm for Productive Elimination
Input: RBAC Configuration and TRC
Output: Data Leakage Free RBAC Configuration
for all (o, r′, s, r′′, o′, r′′′, s′) ∈ TRC do

if r′ = r′′ then
Revoke r′′ →w o

′

end if
if r′ 6= r′′ then

if 6 ∃r ∈ R such that r →w o
′ is the only assigned permission then

Create a new role, r∗ ∈ R and set r∗ →w o
′.

end if
Mark r′′ →w o

′ to be revoked from r′′.
Mark s not to be assigned to r∗.

end if
end for
for all r ∈ R do

if There is a permission r →w o marked to be revoked then
Revoke r →w o
Locate the role r∗ where r∗ →w o is the only assigned permission
for all Subjects s not marked to be assigned to r∗ do

Set s↔ r∗

end for
end if

end for
for all r1, r2 ∈ R do

if 6 ∃u such that (s↔ r1 and s 6↔ r2) or (s 6↔ r1 and s↔ r2) then
Copy the permission assigned to r2
Delete role r2

end if
end for

Algorithm 6 Heuristic Algorithm for Non-Productive Elimination
Input: RBAC Configuration and TRC
Output: Data Leakage Free RBAC Configuration
for all (o, r′, s, r′′, o′, r′′′, s′) ∈ TRC do

Revoke r′′ →w o
′

end for
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o1

s1

o2 o3 o4 o5 o6 o7

s2 s3 s4 s5

r1 r3r2 r4rc2

Figure 5.8. The output of the productive elimination strategy performed on RBAC
given in Figure5.6

o1

s1

o2 o3 o4 o5 o6 o7

s2 s3 s4 s5

r1 r3r2 r4

Figure 5.9. The output of the non-productive elimination strategy performed on
RBAC given in Figure5.6

elimination. In this case, the total number of lost accesses is 2 objects. Note that,

r3 is not split because it can perform both read and write operations by itself.

5.3.3 Proactive Approach

As in DAC, the conservative strategies are static for RBAC. Although, this en-

sures complete security, it can potentially impact utility, since many permissions

are revoked due to the potential of a leakage, even if in actuality the situation

never occurs. In order to provide a less restrictive approach, we now propose a

proactive strategy that follows the productive elimination described in Algorithm
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5. Although it is technically possible to have a non-productive elimination, we do

not propose it for the proactive approach because for each elimination, in contrast

to conservative approach where write permissions are revoked; read permissions

are revoked in proactive approach. As in the case of non-productive elimination

some subjects lose access to objects unnecessarily. We assume that losing a read

access to an object is more crucial than losing a write access and hence we do not

propose a non-productive elimination.

The proactive approach revokes permissions only if the actions that could

cause an unauthorized data flow actually happen. So, we continuously monitor

read and write operations on the identified source and destination objects in T RC

and T RI that could potentially cause an unauthorized flow.

A confidentiality vulnerability (o, r′, s, r′′, o′, r′′′, s′) ∈ T RC , is prevented by

splitting the role r′′′ into two roles r′′′ and r′′′(C) so that o′ 6→r r
′′′, o′ →r r

′′′(C),

∀ŝ ∈ S\{s′} such that ŝ ↔ r′′′, assign ŝ ↔ r′′′(C). Likewise an integrity vulner-

ability (s′, r′, o, r′′, s, r′′′, o′) ∈ T RI , is prevented by splitting the role r′′′ into two

roles r′′′ and r′′′(C) so that r′′′ 6→w o
′, r′′′(C) →w o

′, ∀ŝ ∈ S\{s} such that ŝ↔ r′′′,

assign ŝ↔ r′′′(C).

We again observe the fact that altering SA and OA, might invalidate T RC or

T RI that has been computed via the identification algorithm given in Algorithm 4.

Hence, T RC (T RI , resp.) is recomputed if a read (write, resp.) permission is used

for the split.

The order of the read, write actions that cause unauthorized data flow is also

important. A elimination is only meaningful if a read operation precedes a write
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for confidentiality vulnerabilities and a write operation precedes a read operation

for integrity vulnerabilities. Furthermore, we impose a windowing approach, stat-

ing that, if the succeeding event occurs after a predefined time window of size θ

units, then the preceding event is considered to be outdated, so it is assumed that

a data flow will not be unauthorized. Setting θ =∞ will eventually make the ac-

cess configuration read-only for each destination object involved in a vulnerability

path. .

The procedure for proactive approach for confidentiality vulnerabilities is given

in Algorithm 7, which requiresO(|T RC ||R|2|S|) time for elimination andO(|O|2|R|3|S|2)

time for recomputing T RC .

To show the behavior of the proactive approach, consider again the RBAC

configuration shown in Tables 5.8 and 5.9, along with the potential sequence of

operations shown in Table 5.10. Table 5.10 shows the proactive action for each

operation in the sequence. Note that the proactive approach revokes a total of six

permissions (2 each on operations (2), (3), and (5)).

Table 5.10. Sample Sequence of Actions and the behavior of Proactive Approach
User’s Operation Proactive Action

1 s2, r, o1
2 s2, w, o3 Split role r3 into r3 and r(C)

3 so that r3 →w o6, r3 →w o7,
o4 →r r3, o3 →r r

(C)
3 .

3 s2, w, o4 Split role r3 into r3 and r(C
′)

3 so that r3 →w o6, r3 →w o7,
o4 →r r3, o3 →r r

(C′)
3 . Merge r(C)

3 to r(C
′)

3 since they share
the same user assignment.

4 s1, w, o4
5 s3, r, o3 Access denied
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Algorithm 7 Algorithm for Proactive Strategy for RBAC
1: Input: T RC
2: Set the read file indicatorRs

o = 0,∀s ∈ S, o ∈ O.
3: Set δ as the current timestamp.
4: Monitor the access control actions done on the objects on vulnerability paths

identified in (o, r′, s, r′′, o′, r′′′, s′) ∈ T RC - Use (Algorithm 4)
5: if o is read by s then
6: SetRs

o = δ.
7: end if
8: if o′ is written by s and δ −Rs

o ≤ θ then
9: if 6 ∃r ∈ R such that o′ →r r is the only assigned permission then

10: Create a new role, r∗ ∈ R and set o′ →r r
∗.

11: for all ŝ ∈ S\{s} such that ŝ↔ r′′′ do
12: Set ŝ↔ r∗.
13: end for
14: end if
15: for all r1, r2 ∈ R do
16: if 6 ∃s such that (s↔ r1 and s 6↔ r2) or (s 6↔ r1 and s↔ r2) then
17: Copy the permission assigned to r2
18: Delete role r2
19: end if
20: end for
21: Merge roles that have common subject assignments
22: Redo identification algorithm (Algorithm 4) to recompute T RC .
23: end if
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5.3.4 Retrospective Approach

A retrospective approach is also possible for RBAC. As discusses earlier in this

chapter, the purpose of the retrospective approach is to eliminate (future) data

leakages through auditing the access logs. This strategy is important especially

when blocking access to certain files would cause significant consequences such

as in a hospital. In this strategy, object read/write operations are logged and pe-

riodically, the log to date is analyzed to determine whether an unauthorized data

flow has actually happened. If so, necessary permissions are revoked to block the

data flow channels so that they will not be utilized for this purpose in the future.

In RBAC, due to the limitations of the ILP model, building an optimal strategy

is not possible unless a similar approach discussed in Section 5.3.1 is utilized.

Although, converting the RBAC into a DAC; utilizing the ILP model only with

the constraints corresponding to the data flow channels; and finally using a Role

Miner to obtain an RBAC decomposition would satisfy the requirements of the

retrospective approach, performing these operations each time when the logs are

audited can be costly to implement. Therefore, we utilize the heuristic approaches

discussed in Section 5.3.2 instead.

The retrospective approach for RBAC requires the identification of potential

vulnerabilities (Algorithm 4) as an initial step. Then, for every identified vulner-

ability (o, r′, s, r′′, o′, r′′′, s′) ∈ T RC , if ∃t1 : o →r r
′ → s, t2 : s → r′′ →w od,

t3 : o′ →r r
′′′ → s′ ∈ L where t − θ < t1 < t2 < t3 < t, spanning a time

window of size θ, t1, t2, t3 represent the timestamp of the logs and t represents

the current timestamp, then (o, r′, s, r′′, o′, r′′′, s′) ∈ T ′RC , where T ′RC is the set of
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vulnerabilities to be removed. We provide this procedure in Algorithm 8, which

requires O(|L||T RC |) time.

Algorithm 8 Algorithm for Retrospective Strategy
1: Input: T RC , and the log L related to tuples in T RC
2: Output: T ′RC .
3: Set the read file indicator Rs

o = 0 and write file indicator Ws
o = 0,∀s ∈

S, o ∈ O and T ′RC = ∅.
4: for all Logs t : o→r s and t : s→w o ∈ L traced in sequence in the interval

(δ − θ, δ) do
5: if (t, s, o, read) and ∃(ô, r′, ŝ, r′′, ô′, r′′′, ŝ′) ∈ T RC such that (ô = o∧ ŝ = s)

or (ô′ = o ∧ ŝ′ = s) then
6: SetRs

o = t
7: if ô′ = o andRŝ

ô <W ŝ
ô′
< t then

8: T ′RC ← (ô, r′, ŝ, r′′, ô′, r′′′, ŝ′)
9: end if

10: end if
11: if t : s →w o and ∃(ô, r′, ŝ, r′′, ô′, r′′′, ŝ′) ∈ TC such that ô′ = o ∧ ŝ = s

then
12: SetWs

o = t
13: end if
14: end for
15: Eliminate all vulnerabilities in T ′RC .

The elimination is handled using either a (1) productive or (2) non-productive

in Algorithms 5 and 6, respectively, with the inputs replaced with T ′RC and T ′RI

so that among all of the identified vulnerabilities, only the ones that have been

utilized in a data leakage are eliminated.

Consider once again, the log of operations given in Table 5.10. In the retro-

spective approach, when auditing is done, based on the read and write actions, a

data leakage is detected at item 5, where the actions (s2, r, o1), (s2, w, o3), (s3, r, o3)

is a confidentiality violation. The productive retrospective strategy will split the

role r2 into r2 and r(C)
2 so that r2 6→w o3, r

(C)
2 →w o3, s1 ↔ r

(C)
2 . Hence, the num-
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ber of roles increases by 1. On the other hand, the non-productive retrospective

strategy will simply revoke r2 →w o3 causing s1 to lose write access to o3.

5.3.5 Experimental Results for RBAC

We now present the experimental results to demonstrate the performance and re-

strictiveness of all of the proposed approaches for RBAC. We utilize four of the

eight real life access control data sets with users and permissions – namely, (1)

fire1, (2) fire2, (3) domino, (4) hc, since we were unable to run larger datasets due

to hardware limitations. As before, these data sets encode a simple access control

matrix denoting the ability of a subject to access an object (in any access mode).

Thus, not only are these datasets for DAC, but also they do not have the informa-

tion regarding which particular permission on the object is granted to the subject.

So, we first perform a role mining operation on these datasets using the DEMiner

[53] algorithm to obtain the SA and OA relations. Then, we assume that for all of

the datasets that each assignment inOA represents both a read and a write permis-

sion on a distinct object. Due to the more complex nature of RBAC, we provide

results for elimination of confidentiality vulnerabilities only, since the integrity

vulnerabilities can be eliminated separately without affecting any confidentiality

vulnerability (See Theorems 6 and Corollary 2).

The number of subjects and objects in the datasets along with the initial num-

ber of roles, vulnerabilities and number of assignments in SA and OA relations

are given in Table 5.11.

For the optimal conservative approach (Section 5.3.1), we utilize the cor-

responding DAC solution methodology with the ILP model as per Figure 5.5.
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Table 5.11. Dataset Details
Data Size Init Init

Set Sub. Obj. Roles Vulnerabilities |SA| |OA|
1 365 709 86 185863 3843 1418
2 325 590 11 115792 1261 1180
3 79 231 38 18359 249 462
4 46 46 19 1117 433 92

Table 5.12. Results for Optimal Data Leakage Free Access RBAC
Data CPLEX DE Miner Final % Final % Final %

Set Time Time |R| Change |SA| Change |OA| Change
1 67.866 0.5 91 0.06 3527 -0.08 1280 -0.10
2 0.075 0.256 13 0.18 1500 0.19 1024 -0.13
3 0.32 0.047 42 0.11 286 0.15 116 -0.75
4 0.24 0.02 21 0.11 461 0.06 92 0.00

The ILP model is again executed using IBM CPLEX (v 12.5.1) running through

callable libraries within the code. Note that the ILP model is modified slightly

to have constraints only for the confidentiality vulnerabilities (Constraints 1 and

2 in Figure 5.3). Then, DEMiner is utilized once again to decompose the DAC

into RBAC. For the heuristic conservative approach, we use the identification al-

gorithm (Algorithm 4) along with the described permission revocations. For the

proactive approach, the identification and monitoring algorithm is implemented(Algorithm

7). For the retrospective approach, we use Algorithm 8. The algorithms are im-

plemented in C and run on a Windows machine with 16 GB of RAM and Core i7

2.93 GHz processor.

Table 5.12 presents the experimental results for the Optimal Conservative ap-

proach. The column “CPLEX Time”, shows the time required to run the ILP

formulation given in Figure 5.5, whereas the column “DEMiner Time” reflects

the time required to obtain an RBAC decomposition after running the ILP model.
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Table 5.13. Results for Data Leakage Free RBAC with Productive Heuristic
Data Iden. Elm. Final % Number of Final % Final %

Set Time Time |R| Change Splits |SA| Change |OA| Change
1 7.23 46.35 166 48.19 395 17575 357.33 1103 -22.21
2 0.95 16.34 21 90.91 327 1391 10.31 863 -26.86
3 0.08 0.68 65 71.05 131 441 77.11 358 -22.51
4 0.01 0.50 38 100 46 1177 171.82 65 -29.35

Table 5.14. Results for Data Leakage Free RBAC with Non-Productive Heuristic
Data Iden. Elm. Number of Final % Final %

Set Time Time Lost Access |SA| Change |OA| Change
1 7.26 0.05 27826 3843 0.00 1023 -27.86
2 0.98 0.01 9288 1261 0.00 853 -27.71
3 0.09 0.004 346 249 0.00 331 -28.35
4 0.01 ≈ 0 619 433 0.00 46 -50.00

The column “Final |R|” provides the updated number of roles as a result of the

ILP model and the “% Change” column shows the percentage change in the num-

ber of roles. The next two columns depict the amount of change in SA after the

ILP model and the last two columns depict the amount of change in OA after the

ILP model. On average, there is a 7.83% increase in the number of assignments

in SA and 24.46% decrease in the number of assignments in OA. Overall, there

is a 8.32% decrease in the total number of assignments.

In Table 5.13, we provide experimental results for our heuristic approach with

productive elimination for the conservative strategy. Here, the column “Iden.

Time” shows the time to run Algorithm 4, on the other hand the column “Elm.

Time” shows the time required to run Algorithm 5. The column “Number of

Splits” reflects the number of times a role is split due to a possible vulnerabil-

ity. When the results are examined, we see that there is an average increase of

154.14% in the number of assignments in SA, whereas there is an average de-
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crease of 25.23% in the number of assignments in OA. Hence the overall average

increase in the total number of assignments is 64.45%. Moreover there is an aver-

age of 77% increase in the number of roles as a result of productive elimination.

In Table 5.14, the results for the nonproductive elimination for the conserva-

tive strategy, so here the column “Elm. Time” shows the time required to run Al-

gorithm 6. The column “Number of Lost Accesses” depict the number of subject-

object pairs so that the subject loses access to a particular object unnecessarily

due to a permission revoked from a role to eliminate a vulnerability caused by an-

other subject. The results show that there is a decrease of 33.48% in the number

of assignments in OA on the average. The number of roles and the number of

assignments in SA remain unchanged as expected.

We run experiments for the proactive approach, as discussed in Section 5.3.3,

and the eliminative actions occur on the fly. To test the relative performance of this

approach, we have randomly generated a set of read/write operations that occur in

the order they are generated. Similar to the case of DAC, we generate on average

100 operations for every subject (i.e., we generate 100 ∗ |S| number of random

operations). Then, we count the number of splits so far at the predefined intervals

10% ∗ |S|, 50% ∗ |S|, 100% ∗ |S|, 1000% ∗ |S|, 5000% ∗ |S|, and finally 10000% ∗

|S|. Table 5.15 gives the results. As we can see, the number of splits is steadily

increasing but, they fall shy of that of the conservative method. However, we

anticipate that as more object accesses occur, the number of splits in the proactive

approach is likely to exceed that of the conservative approach. When we examine

the results, we see that there is an average increase of 23.11% in the number

of assignments in SA, whereas there is an average decrease of 24.82% in the
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number of assignments inOA. In total, the overall average decrease in the number

of assignments is 0.85%. Moreover there is an average of 37% increase in the

number of roles as a result of productive elimination. Also, note that in the current

set of experiments, we have set a window size of 1000 – this means that if the gap

between a subject reading an object and then writing to another object is more than

1000 operations, then we do not consider a data flow to have occurred. This choice

is clearly arbitrary and could be entirely removed, to ensure no data leakages.

Table 5.15. Results for Proactive approach
Data Final % Final % Final % Number of Splits %

Set |R| Chg. |SA| Chg. |OA| Chg. 10 50 100 500 1000 10000
1 150 42.67 6269 38.70 1202 -15.23 0 5 14 171 252 279
2 18 38.89 1635 29.66 880 -25.42 0 1 4 104 246 307
3 54 29.63 271 8.84 377 -18.40 0 1 1 15 73 101
4 31 38.71 499 15.24 55 -40.22 0 2 4 41 44 46

We evaluate the retrospective approach similar to the proactive approach, by

using the same set of random operations generated for the proactive approach.

The log after every 2000 read/write operations is audited and the sizes of SA and

OA is computed along with the number of splits (for the productive retrospective

approach). As expected, the retrospective approach makes fewer eliminative ac-

tions than the proactive approach. For example when we compare the productive

retrospective approach to proactive approach, we see that the average number of

splits is 79.25% for retrospective approach. This amount is 183% for the proac-

tive approach. The average decrease in the number of assignments in OA is 15%

for retrospective approach, whereas the same metric is 24.82% for the proactive

approach, implying that the retrospective approach preserves more assignments,

as expected. Finally, the non-productive retrospective approach revokes 17.12%
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of the assignments in the OA. The results are on Tables 5.16 and 5.17.

Table 5.16. Results for Productive Retrospective Approach
Data Final % Final % Final % Number of Splits %

Set |R| Chg. |SA| Chg. |OA| Chg. 10 50 100 500 1000 10000
1 122 29.51 5492 30.03 1279 -9.80 0 0 0 49 153 166
2 19 42.11 2417 91.67 1113 -5.68 0 0 0 17 63 74
3 55 30.91 308 23.69 446 -3.46 0 0 0 0 13 25
4 33 42.43 710 63.97 52 -43.48 0 0 0 0 41 52

Table 5.17. Results for Non-Productive Retrospective Approach
Data Number of Final % Final %

Set Lost Access |SA| Change |OA| Change
1 0 3843 0.00 1267 -10.65
2 0 1261 0.00 1100 -6.78
3 2 249 0.00 437 -5.41
4 0 433 0.00 50 -45.65

5.4 Discussion

In this chapter, we presented our proposed approaches to solve the data leakage

problem. Now, we outline our major contributions. We show that there is no

need to compute the transitive closure of the data flows in a DAC or RBAC. In

this chapter, we show that considering only the single step confidentiality and

integrity vulnerabilities is sufficient enough to capture the all of the vulnerabilities

in a given DAC or RBAC configuration. This important observation reduces the

size of the ILP model and the number of objects monitored significantly.

Another interesting result is that a conservative approach might not always be

the most restrictive. All other proposed approaches to handle the data leakage

problem in the literature utilize a monitor to track users actions. Although it is

intuitive to think that this approach is less restrictive than an approach that cuts all
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possible potential data leakage channels, a long term object access monitoring and

blocking on-the-fly might yield a more restricted system. We can see this observa-

tion clearly from the experimental results as the proactive approach revokes more

permissions than the conservative approach after a certain number of read and

write operations. Also a hybrid approach can be built to handle different sections

of an access control system using a different strategies with different restrictive-

ness. For example a conservative approach is useful for system files, whereas a

proactive approach could make more sense for user’s personal files.

In retrospective approach, at first, can be considered as useless since it allows

for the leakages to happen before restricting them for future use. However, it

provides significant advantages especially under the situations when access to data

is crucial. Note that although this approach is the least restrictive as a result of the

experiments, a long run usage beyond shown in the experiments might invalidate

this observation.

Our proposed methodology has the following limitations. Addition of new

subjects/objects or addition of new permissions might invalidate the actions taken

by the proposed approaches in this chapter. Hence, the ILP model, or the identi-

fication algorithms (Algorithm 2,4) should be run again to restore validity of the

proposed approaches. Also, because of the nature of DAC being discretionary, all

data leakage identification/prevention approaches including the ones proposed in

the literature are prone to a “denial-of-service” type of an attack where a user in-

tentionally creates an object and gives permissions to another user for the purpose

of leaking data.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary of Contributions

In this dissertation, our major contribution is developing security analysis method-

ologies for the rights and data leakage problems. In particular, for the rights

leakage problem, we propose an administrative model for Temporal RBAC and

Spatio-temporal RBAC. In order to reduce the complexity of the model, we repre-

sent time as discrete and periodic intervals and locations as logical locations. We

develop a flexible security analysis methodology based primarily on decomposing

the TRBAC and STRBAC security analysis problems into smaller and more man-

ageable RBAC security analysis problems. For the data leakage problem we inves-

tigate both confidentiality and integrity violating data leakages in DAC and RBAC

models focusing on three different data leakage elimination strategies, namely,

conservative, proactive and retrospective. We prove that the transitive closure is

not necessary for the data leakage analysis. Instead, examining data flows among

pairs of objects is sufficient for analysis purposes. This reduces the complexity

of the problem significantly. We show that given an access control configuration

obtaining a data leakage free access control matrix with minimal modification is

an NP-Complete problem. We propose an Integer Linear Programming model for

the conservative approach for DAC. We claim that the corresponding formulation
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for RBAC is not likely to be linear, however it is decidable. We also propose more

scalable heuristic alternatives for conservative app.

6.2 Future Work

Our proposed models for both rights leakage problem and data leakage problem

point to many new problems to be tackled as a future work. These problems

vary from minor additions to our existing models to standalone problems that will

require new models.

Rule Schedule Strategy for STRBAC: Recall that our solution methodology for

STRBAC utilizes the decomposition strategies that we propose for TRBAC. We

use the role schedule strategy for the time and location based decomposition. The

major assumption that we make to perform the role schedule strategy is the long

run behavior of the system. More specifically, if the system is periodic in terms

of time and one visits each location periodically, then the rule schedules of the

rules can be omitted safely without loss of generality. However, we could not

utilize the rule schedule approach for STRBAC because of the location dimension

creating a more complex problem to handle. Not only is the time required for

the constant regions taken into account, but also the time needed to travel among

different locations should be known.

At this point we underline the difference between the time and the location

dimensions. Although the time dimension is not at users’ control, i.e., no one

can change the time, the location dimension is indeed at users’ control. This

is important because an organized path of location changes could reduce the time

required to fulfill the requirements of the goal state for the rights leakage problem,
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making the goal state reachable faster. This observation is crucial to answer the

short term safety questions. Therefore a more complex strategy that addresses this

problem should be proposed to handle the rule schedule strategy for STRBAC.

Role Hierarchies for STRBAC: Role hierarchies for STRBAC model is also a

part of our future work. The dynamic temporal role hierarchies can be defined

for the spatial dimension so that the structure of the hierarchy and the permission

inheritance properties will not only be determined by the temporal constraints but

also with the spatial constraints.

Content Analysis in Data Leakage Identification and Elimination: The major

drawback of our proposed data leakage methodologies is the fact that the actual

data that is read or written is not taken into account. This means that even if a sub-

ject reads from an object and writes into another object, both identified as source

and destination of a confidentiality violation path, a confidentiality violation will

not happen if the data that is written to the destination object does not match with

any part of the source object. Essentially, this means that our data leakage elimina-

tion strategies, including the least restrictive ones are, in fact, perform redundant

eliminations due to the lack of content analysis. Although content analysis will

reduce the efficiency of our proposed methodologies, it should be performed not

to have any redundant eliminations and to preserve as many assigned permissions

as possible.
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