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THESIS ABSTRACT 

Development of a computational tool for Forensic DNA Analysis 

By ABHISHEK GARG 

 

Thesis Director  
Dr. Desmond S. Lun 

 

Forensic DNA analysis uses repetitive sequences in the human genome called Short Tandem 

Repeats (STRs) for human identification. This study has contributed to the building, design, 

and development of a fast and easy to use software package to calculate the a posteriori 

probability (APP) on the number of contributors in an STR profile and to calculate the 

likelihood ratio (LR), a statistic that conveys the strength of a match for a given suspect, as well 

as the distribution of the LR over random non-contributors.  This research specifically deals 

with the (1) design and implementation of an algorithm for MatchIt (the component that 

calculates the LR and its distribution); (2) optimization the code to reduce running time; and 

(3) development of a user-friendly interface. 
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 Introduction 

Starting from mid 90s, Short Tandem Repeats (STRs) have been used in the field of human 

identification for forensic purposes [1]. STRs are repetitive sequences that are 1–7 base pairs 

in length and scattered throughout the human genome. An STR DNA profile developed 

from a biological sample (like saliva, semen, blood, etc.) collected at a crime scene is either 

compared with that of a person of interest (POI) or run against a database to check for a 

match. The Scientific Working Group on DNA Analysis Methods (SWGDAM) 

recommends that forensic reports include a statement regarding the assumption made about 

the number, or the minimum number of contributors, to the sample being investigated [2]. 

The number of contributors to a crime scene sample is generally unknown and must be 

estimated by the analyst based on the electropherogram obtained.  

 

An assumption about the number of contributors is needed when determining whether a 

known should be excluded as a contributor to an item of evidence.  Changing the number of 

contributors could lead to different conclusions about whether to include or exclude an 

individual as a contributor to the sample. Further, an assumption about the number of 

contributors to a sample is needed to calculate a match statistic, called the Likelihood Ratio 

[3]. A statistic that is commonly used internationally and is gaining acceptance in the United 

States. 

The Likelihood Ratio (LR) is defined as: 

𝐿𝑅 =
𝑃𝑟(𝐸|𝐻𝑝, 𝑛𝑝)

𝑃𝑟(𝐸|𝐻𝑑 , 𝑛𝑑)
, 
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where 𝐸 is the evidence in the form of the electropherogram (epg); 𝐻𝑝 and 𝐻𝑑 are the 

hypotheses specified by the prosecution and the defense, respectively; and 𝑛𝑝 and 𝑛𝑑 are the 

number of contributors specified by the prosecution and the defense, respectively. The 

numerator is the probability of observing the evidence given the prosecution’s hypothesis 

and the denominator is the probability of observing the evidence given the defense’s 

hypothesis. The evidence shows support for the prosecution’s hypotheses if LR > 1; if LR < 

1 the defense’s hypothesis is supported by the evidence. The calculation of a Likelihood 

Ratio depends upon an assumption about the number of contributors both in the numerator 

as well as the denominator, making it essential to have a good estimate about the number of 

contributors to accurately calculate a statistic that represents the information captured in the 

signal. Thus, utilizing a number of contributors that is not representative of the actual 

number that gave rise to a sample may affect the interpretation of the sample's profile. 

The p-value for the suspect is defined as the probability that a randomly picked person from 

the population would give rise to an LR at least as large as the one observed for the suspect. 

     𝑝 − 𝑣𝑎𝑙𝑢𝑒(𝑠) = (𝐿𝑅(𝑅) ≥ 𝐿𝑅(𝑠))  
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 Purpose 

The purpose of the current study was to develop a software package that estimates the 

number of contributors to an evidence sample and subsequently calculates a LR for person 

of interest based the given DNA sample and the number of contributors in an accurate, 

reliable and efficient manner. This work is specifically focused on the following three aspects 

of mixture interpretation: 

1. Design and implementation of an algorithm for MatchIt  

2. Code optimization to reduce running time 

3. User interface design and development  
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 Design and Implementation of MatchIt Algorithm 

3.1 Introduction 

The software is divided mainly in three parts as 1) Calibration, 2) NOCIt, and 3) MatchIt.  

Characterization of the peak heights is done by using single source calibration profiles with 

known genotypes obtained from samples amplified from a wide range of input DNA 

masses. Absolute DNA (extracted from 28 individuals) quantification was performed using 

real-time PCR and the Quantifiler® Duo™ Quantification kit according to the manufacturer’s 

recommended protocol and one external calibration curve [4, 5]. The extracted DNA was 

amplified using the manufacturer’s recommended protocol for AmpFℓSTR® Identifiler® 

Plus Amplification Kit (Life Technologies, Inc.) [6]. A fragment analysis was performed 

using GeneMapper IDX v1.1.1 (Life Technologies, Inc.) and an RFU threshold of one. A 

threshold of 1 RFU was used in order to capture all peak height information (i.e., the allelic 

peaks, baseline noise and stutter peaks) in the signal. Known artifacts such as pull-up, spikes, 

-A, and artifacts due to dye dissociation were manually removed while generating the sample 

data. Refer to figure 1 for a sample electropherogram with peak heights at each allele. For a 

detailed description of how the calibration samples were created, refer to [7].  
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Figure 1 Sample electropherogram with peak heights at each allele 

NOCIt is a computational tool that calculates the APP on the number of contributors to a 

DNA sample [7]. 

MatchIt uses single source samples with known genotypes and calculates a LR and a p-value 

for a specified POI on a question sample. It is a fully continuous method that works by 

modeling the peak heights observed in a calibration data set consisting of single source 

samples with known genotypes. It accounts for dropout and stutter (both reverse and 

forward), two common artifacts observed in low template samples [8]. Additionally, MatchIt 

also computes a p-value for the LR by sampling a large number of random genotypes from 

the population.  

3.2 MatchIt Algorithm 

The Likelihood Ratio (LR) is defined as: 

𝐿𝑅 =
𝑃𝑟(𝐸|𝐻𝑝, 𝑛𝑝)

𝑃𝑟(𝐸|𝐻𝑑 , 𝑛𝑑)
. 
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In practice, 𝑛𝑝 and 𝑛𝑑 can be chosen by the prosecution and the defense to maximize their 

respective probabilities and there is no necessity for 𝑛𝑝 to be equal to 𝑛𝑑 . However, we have 

developed MatchIt to use the same number of contributors in both the numerator and 

denominator to calculate the LR. It should be noted that the method could be extended to 

work on different assumptions on the number of contributors. Moving forward, we omit the 

notation 𝑛 for the sake of brevity.  We note that for purposes of this work, 𝑛𝑝 = 𝑛𝑑 in all 

cases presented herein, and we use the known, and thus the true 𝑛 to test the capabilities of 

MatchIt. 

For this study, we use the following hypotheses for 𝐻𝑝 and 𝐻𝑑 : 

𝐻𝑝:The evidence is a mixture of the genotype profile of a suspect (𝑠) and the profiles of 𝑛 −

1 other unknown, unrelated contributors, whom we term for the purpose of this paper as 

“the interference contributors”. 

𝐻𝑑: The evidence is from 𝑛 unknown individuals unrelated to the suspect. 

In most cases, the value of the LR is very large (or very small) and it is easier to work with 

log(LR). Hence we have: 

log(𝐿𝑅(𝑠)) = log(𝑃𝑟(𝐸|𝑅 = 𝑠, 𝑈𝑛−1)) − log(Pr(𝐸|𝑈𝑛)), 

where 𝑈𝑖 = {𝑈1, … , 𝑈𝑖} are the random genotypes of 𝑖 contributors and 𝑅 is the random 

genotype of a single contributor, whether it be a true contributor, or non-contributor. 

3.2.1 LR numerator calculation 

Our algorithm assumes a constant mixture ratio at all the loci. The mixture ratio specifies the 

proportion of the total template mass contributed by each contributor to the sample. The 
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underlying mixture ratio of an evidence sample is unknown and needs to be described by a 

model in order to compute a continuous LR. A constant mixture ratio model assumes that 

the mixture ratio is the same at all the markers, whereas a variable mixture model accounts 

for the possibility of the mixture ratio being different at the various markers. Both models 

are reasonable and are used in existing continuous methods to compute the LR.  Perlin et al 

[9] assign a uniform prior probability for the template mixture weight and construct its 

probability distribution by drawing individual locus weights using a multivariate normal 

distribution. Cowell et al [10] and Puch-Solis et al [11] use a constant mixture ratio model 

and implement a discrete approximation over the interval (0,1) by assigning a uniform prior. 

Taylor et al [12] use the variable model and assume the mixture weights to be independent 

across the loci. Since we adopt the constant mixture ratio approach, we integrate over all 

possible mixture ratios to calculate the probability of observing the evidence:  

Pr⁡(𝐸|𝑅 = 𝑠, 𝑈𝑛−1) = ∫ 𝑃𝑟(𝐸|𝛩 = 𝜃, 𝑅 = 𝑠, 𝑈𝑛−1)
𝜃∈𝛥𝑛−1

𝑓𝛩(𝜃), 

where 𝛩 is the vector with components 𝛩𝑖, the mixture proportion of each contributor 𝑖 ∈

{1,… , 𝑛max}; 𝛥
𝑛−1 = {(𝛩1, … , 𝛩𝑛) ∈ 𝑅𝑛| ∑ 𝛩𝑖 = 1𝑛

𝑖=1 , 𝛩𝑖 > 0∀𝑖} is the unit 𝑛 − 1 

simplex; and 𝑓𝛩 is the probability density function of 𝛩, which we assume to be uniform 

over 𝛥𝑛−1. For 𝑛 = 1, 𝛥𝑛−1 consists of the single element {1}. For mixtures, we implement 

the integration over 𝛥𝑛−1 by dividing it into equal-sized subsets and representing each subset 

with its centroid, resulting in a discrete sum.  

To do this, we performed k-means clustering in Python (Python Software Foundation, 

Beaverton, Oregon). k-means clustering is an algorithm used to partition observations into a 

set of clusters by repeated minimization of the distance from an observation to the centroid 
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of its cluster [13]. For 𝑛 = 2, the space was divided into 9 equally sized clusters, while for 𝑛 

= 3, 12 clusters were used.  

Let 𝐿 be the set of all loci in the evidence sample, 𝐸𝑙 be the evidence at locus 𝑙,𝑈𝑙
𝑛−1 be the 

genotype of the interference contributors at locus 𝑙 and 𝑠𝑙 be the genotype of the suspect at 

locus 𝑙. The STR loci used for forensic DNA analysis are assumed to be in linkage 

equilibrium and independent of each other [14]. Hence we obtain: 

Pr⁡(𝐸|𝛩 = 𝜃, 𝑅 = 𝑠, 𝑈𝑛−1) = ∏𝑃𝑟(𝐸𝑙|𝛩 = 𝜃, 𝑅𝑙 = 𝑠𝑙, 𝑈𝑙
𝑛−1)

𝑙∈𝐿

. 

The prosecution’s hypothesis states that the profile is made of the suspect’s contribution 

plus the contribution from 𝑛 − 1 other random, unrelated contributors. Since there are 

many possibilities for the genotype of these interference contributors at each locus and going 

over each case would take a large amount of time, we calculate 

𝑃𝑟(𝐸𝑙|𝛩 = 𝜃, 𝑅𝑙 = 𝑠𝑙 , 𝑈𝑙
𝑛−1) using importance sampling.  

Importance sampling is a Monte Carlo sampling algorithm in which, instead of sampling 

directly from the target distribution, samples are generated from a different distribution that 

is easier to sample from [15]. To take into account the fact that the samples have come from 

the ‘wrong’ distribution, weights are introduced to adjust the ‘importance’ of each sample. 

For the problem at hand, instead of sampling using the allele frequency distribution, we 

generate samples of the interference genotypes using the peak height distribution observed 

at the locus. The reason for sampling from the peak height distribution is that this method is 

faster and requires fewer samples for convergence than the method that samples from the 

allele frequency distribution. 
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Let 𝐽 be the number of interference samples used. Now we obtain: 

𝑃𝑟(𝐸𝑙|𝛩 = 𝜃, 𝑅𝑙 = 𝑠𝑙, 𝑈𝑙
𝑛−1) =

∑ 𝑃𝑟⁡(𝐸𝑙|𝑈𝑙𝑖
𝑛−1 = 𝑢𝑙𝑖

𝑛−1, 𝛩 = 𝜃, 𝑅𝑙 = 𝑠𝑙)𝑤𝑖
𝐽
𝑖=1

∑ 𝑤𝑖
𝐽
𝑖=1

, 

where 𝑤𝑖 = 𝑃 (𝑈𝑙𝑖
𝑛−1) 𝑄⁄ (𝑈𝑙𝑖

𝑛−1) is the weight of sample 𝑖; 𝑃(𝑈𝑙𝑖
𝑛−1) is the probability of 

the interference genotypes under the allele frequency distribution; and 𝑄(𝑈𝑙𝑖
𝑛−1) is the 

probability of the interference genotypes under the peak height distribution. Since 𝑢𝑙𝑖
𝑛−1 and 

𝑠𝑙 establish the true peaks in the signal (and by extension the stutter and noise peaks), 

𝑃𝑟⁡(𝐸𝑙 ∨ 𝑈𝑙𝑖
𝑛−1 = 𝑢𝑙𝑖

𝑛−1, 𝛩 = 𝜃, 𝑅𝑙 = 𝑠𝑙) is calculated using the parameters from the 

calibration data. 

3.2.2 LR distribution and p-value calculation 

Since the denominator of the LR is the same for all the random genotypes 𝑅, it is sufficient 

if we compare the numerator of the LR for 𝑅 and 𝑠.  

𝑝-𝑣𝑎𝑙𝑢𝑒(𝑠) = 𝑃𝑟(𝑃𝑟(𝐸|𝑅, 𝑈𝑛−1) ≥ 𝑃𝑟(𝐸|𝑅 = 𝑠, 𝑈𝑛−1)). 

During testing of MatchIt, we observed that because of floating-point precision, 𝑃𝑟⁡(𝐸 ∨

𝑅, 𝑈𝑛−1) evaluated to 0 for many of the random genotypes 𝑅 that fit the data poorly. As a 

result, we were able to eliminate those genotypes from the p-value calculation as a 

preliminary step. Formally, let 𝑅 be the set of all genotypes. We define 𝑅1 = {𝑟 ∈ 𝑅 ∨

𝑃𝑟(𝐸𝑙|𝑅𝑙 = 𝑟𝑙) ≄ 0⁡for⁡all⁡loci⁡𝑙} and 𝑅2 = {𝑟 ∈ 𝑅 ∨ ∃⁡locus⁡𝑙⁡s.t.𝑃𝑟(𝐸𝑙|𝑅𝑙 = 𝑟𝑙) ≃ 0}, 

where ≃ 0 means “evaluates to 0 using double-precision 64-bit floating-point arithmetic”. 

Thus, we have 𝑅 = 𝑅1 ∪ 𝑅2 ∧ 𝑅1 ∩ 𝑅2 = ∅. We see that for all 𝑟 ∈ 𝑅2, 𝑃𝑟(𝐸|𝑅 = 𝑟) ≃ 0. 

We omit the notation on 𝑈𝑛−1 for the sake of brevity. We have: 
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𝑝-𝑣𝑎𝑙𝑢𝑒(𝑠) = 𝑃𝑟(𝑅 ∈ 𝑅1) ∑ 𝑃𝑟(Pr(𝐸|𝑅 = 𝑟) | ≥ Pr(𝐸|𝑅 = 𝑠))𝑃𝑟(𝑅 = 𝑟|𝑅 ∈ 𝑅1)⁡

𝑟∈𝑅1

 

   +⁡𝑃𝑟(𝑅 ∈ 𝑅2)∑ 𝑃𝑟(𝐸|𝑅 = 𝑟) ≥ (𝑃𝑟(𝐸|𝑅 = 𝑠)𝑃𝑟(𝑅 = 𝑟|𝑅 ∈ 𝑅2)𝑟∈𝑅2  

We see that the second term is 0, provided 𝑃𝑟⁡(𝐸 ∨ 𝑅 = 𝑠) is greater than 0. Hence we get: 

𝑝-𝑣𝑎𝑙𝑢𝑒(𝑠) = 𝑃𝑟⁡(𝑅 ∈ 𝑅1) ∑ 1(𝑃𝑟⁡(𝐸|𝑅 = 𝑟) ≥ 𝑃𝑟⁡(𝐸|𝑅 = 𝑠))𝑃𝑟(𝑅 = 𝑟|𝑅 ∈ 𝑅1)

𝑟∈𝑅1

, 

where 

1(𝑃𝑟(𝐸|𝑅 = 𝑟) ≥ 𝑃𝑟(𝐸|𝑅 = 𝑠)) = {
1,if⁡𝑃𝑟(𝐸|𝑅 = 𝑟) ≥ 𝑃𝑟(𝐸|𝑅 = 𝑠),

0,otherwise.
  

We have: 

𝑃𝑟(𝑅 ∈ 𝑅1) = ∏ ∑ 𝑃𝑟(𝑅𝑙 = 𝑟𝑙).

𝑟𝑙∈{𝑟|𝑃𝑟(𝐸𝑙|𝑅𝑙 = 𝑟)≄0}𝑙∈𝐿

 

We compute the 𝑝-𝑣𝑎𝑙𝑢𝑒 using Monte Carlo simulation. We generate 𝑀 random genotypes 

𝑟1, … , 𝑟𝑀 according to the distribution 𝑃𝑟(𝑅 ∨ 𝑅 ∈ 𝑅1) and calculate the p-value as: 

𝑝-value(𝑠) = 𝑃𝑟(𝑅 ∈ 𝑅1)
∑ 1𝑀
𝑖=1 (𝑃𝑟⁡(𝐸|𝑅 = 𝑟𝑖) ≥ 𝑃𝑟⁡(𝐸|𝑅 = 𝑠))

𝑀
 

Increasing the value of 𝑀 increases the accuracy of the p-value computed, but this also 

increases the run time and a hence a tradeoff has to be achieved between the two. In this 

study, we have used 1 billion or 109 random genotypes to compute the p-value. 

In order to facilitate the computation of the p-value, as an initial step 

𝑃𝑟(𝐸𝑙|𝛩 = 𝜃, 𝑅𝑙 = 𝑔𝑙 , 𝑈𝑙
𝑛−1) is computed for all possible genotypes 𝑔𝑙 at all loci 𝑙 for all 
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values of 𝜃. Once this is done, for the p-value computation, 109 genotypes 𝑟𝑖 are generated 

based on the allele frequencies. Since we know 𝑃𝑟(𝐸𝑙|𝑅𝑙 = 𝑟𝑙
𝑖) for all loci 𝑙, we can 

compute 𝑃𝑟⁡(𝐸|𝑅 = 𝑟𝑖) as: 

𝑃𝑟(𝐸|𝑅 = 𝑟𝑖) = ∫ ∏𝑃𝑟(𝐸𝑙|𝛩 = 𝜃, 𝑅𝑙 = 𝑟𝑙
𝑖, 𝑈𝑙

𝑛−1)

𝑙𝜃∈𝛥𝑛−1
𝑓𝛩(𝜃). 

3.2.3 LR denominator calculation 

Let 𝑅́ be the genotype of an unknown contributor in the defense’s hypothesis. The 

denominator of the LR can be written as: 

𝑃𝑟(𝐸|𝑈𝑛) = ∑𝑃𝑟⁡(𝐸|𝑅̅ = 𝑟̅, 𝑈𝑛−1)𝑃𝑟⁡(𝑅̅ = 𝑟̅)

𝑟́

 

Since the number of possible values that 𝑅̅ can take is large and summing over all of them is 

computationally intensive, we utilize the random genotypes 𝑟𝑖 that are sampled for the p-

value computation to compute the denominator of the LR as follows:  

𝑃𝑟(𝐸|𝑈𝑛) = 𝑃𝑟⁡(𝑅1)
∑ 𝑃𝑟⁡(𝐸|𝑅 = 𝑟𝑖)𝑀
𝑖=1

𝑀
. 

 

3.3 Testing and Results  

The method was tested on 597 1-, 2- and 3-person profiles with total DNA template mass 

ranging from 0.016 to 0.25 Nano grams and an injection time of 10 sec. Calculated 

calibration data is then displayed in the software in graphical form. Few sample graphs are 

shown in the following figure 2, figure 3 and figure 4. 
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Figure 2 Calibration data of true peak mean at locus D7S820, distribution ax+b, R square value .9929 

 

 

Figure 3 Calibration data of reverse stutter peak mean at locus D7S820, distribution a*ebx +c, R square value 

.9956 
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Figure 4 Calibration data of dropout at locus D7S820, distribution a*ebx , R square value .9946 mass 

 

We found that the amount of template DNA from the contributor had an impact on the LR 

– small LRs were associated with contributors having low template amounts and high levels 

of dropout and stutter. Since we used 109 samples to calculate the p-value, the lowest 

possible p-value that can be achieved is 109, and this was obtained in all the cases where the 

LR was greater than 108.  

 

All the graphs shown below in Figure 5, 6 and 7 were tested for various sample files with 

varying DNA mass. Each sample was tested for actual contributors and 3 other non-

contributors. And results were more or less as expected, which is for actual contributor p-

value is -9 (as we are considering one billion samples) and for non-contributors it is close to 

zero. 
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Figure 5 Graph showing results for MatchIt using 1p samples 

 

 

Figure 6 Graph showing results for MatchIt for 2p sample 
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Figure 7 Graph showing results for MatchIt for 3p sample 

 

As the number of contributors increases chances of deflection in the correct also increases. 

This could also be seen in Figure 7, but the values are clear enough and do not hinder the 

integrity of the result.
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 Code Optimization using various techniques 

4.1 Introduction 

In general, a software could be optimized in three different aspects 1) reduce the running 

time, 2) use less memory or resources, and 3) draw less power [16]. In this paper our main 

focus was to reduce the running time of the software. As other two aspects are not that 

relevant in correspondence to the software. Memory or resources requirements and power 

usage for this software are as less as to what a personal computer is equipped with these 

days, which could also be phrased as – 2.3 GHz central processing unit, 1GHz RAM. 

Software requirements are - windows 7 or later, macintosh X or later, java version 8. There is 

a widely accepted “rule of thumb”[17] in speed optimization known as the Pareto Principle 

[18] phrasing that almost 90% of the execution time is spend executing only 10% of the 

code.  

An optimization technique known as “Profile-guided optimization technique” [19] has been 

used to find the part of code, which is consuming maximum running time. This optimization 

technique is based on profiling the code, where a dynamic program analysis is done to 

measure the space (memory), running time of a program, or frequency and duration of 

function calls [20]. Software was run using a code profiler called “JProfiler” to analyze the 

running time (CPU cycles) of each class, routine, and line of code during the execution of 

the software. Then, various optimization techniques (mentioned in Appendix_A) were 

applied to the code, prioritizing the functions that had longer running times. Changes were 

accepted if they resulted in an improvement in the runtime performance and discarded 

otherwise.  
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4.2 Example of one code snippet  

The following function was called around 100,000 times in the software in one execution. 

public double[] calcSlopeValue(String locusName,double massValue, 

HashMap<String,double[]> meanSlope, HashMap<String,double[]> stdDevSlope) {     

            try { 

  double a_mean = meanSlope.get(locusName)[0]; 

  double b_mean = meanSlope.get(locusName)[1];        

  double a_stddev = stdDevSlope.get(locusName)[0];         

  double b_stddev = stdDevSlope.get(locusName)[1];  

  double mean = (a_mean * massValue)+b_mean; 

  double stddev = (a_stddev * massValue)+b_stddev; 

  return new double[] {mean, stddev}; 

            } catch (Exception e) { 

                return null; 

            } 

} 

We changed the input parameters from HashMaps to Arrays, which saved approximately 2% 

of the total running time (CPU cycles). Code became easy to understand and simple to use. 

Modified code snippet is as follows: 
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public double[] calcSlopeValue(double[] aMean,double[] aStdDev, double massValue) {     

 try { 

  double mean = (aMean[0] * massValue)+aMean[1]; 

  double stddev = (aStdDev[0] * massValue)+aStdDev[1];    

  return new double[] {mean, stddev}; 

  } catch (Exception e) { 

   return null; 

  } 

 } 

4.3 Results 

Created Allele class which saved 70% of auto-boxing conversions from primitive 
data type to Wrapper class.  After this implementation, saved 21.5% in running 
time. 
 
Converted few HashMaps(get function) to Arrays which reduced overall running 
time by 14.2%. 
 
Converted few HashMaps(put function, indexing) to ArrayLists which reduced 
overall running time by 7%. 
 
Changed the implementation of two base methods (calcTwoExpValue and 
calcSlopeValue and calcExpValue), which had HashMap parameters. This technique 
implementation saved 10% of the overall running time. 
 
 
Histogram shown in Figure 8 shows the reduction in time for the core calculation of the 

program after each optimization technique mentioned in the Table 1. There is an 

approximately 40% improvement in the overall running time for the core calculation.   
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Figure 8 Reduction in running time of base code snippet with each optimization 

 
Graph shown in Figure 9 shows the percent gain in the overall run time of the software. 

 

 

Figure 9 Software efficiency percent gain in different versions 

 

0

200

400

600

800

1000

1200

1400

1600

1800

original version 1 version 2 version 3 version 4

R
u

n
n

in
g

 t
im

e
(s

e
cs

)

Software Version after each optimzation

0

5

10

15

20

25

1 2 3 4

P
e

rc
e

n
t 

g
a

in

Version of Software

Percent gain in efficiency of overall software

Series2

Percent gain



   20 

 

 User interface design and development 

5.1 Introduction 

Having an interface, which makes it easier for the user to handle the software, is an 

important part of a software package. For example, in calculating curve fitting data during 

the calibration process (see Section 3.2), it is important to develop a user interface that 

allows users to easily see the results of the calibration and to modify it interactively.  One 

part of this work was to come up with such an easy-to-use interface for the software, and to 

display calculated calibration data in a proper manner.  

5.2 Design and Implementation 

Various versions of the software were developed, paying attention to several principles in 

user design [21].  The software interface is divided in three different tabs: (1) Calibration, (2) 

NOCIt, and (3) MatchIt. The calibration tab helps the user to input the data files and 

parameters. The next window of the calibration tab can be used to input the parameters used 

for curve fitting. After the calculation, the user can easily navigate using a tree table on the 

left, and can see the data in an easy to read graphical form on the right side of the window. 

 Similarly, for the NOCIt and MatchIt tabs, the user can input parameters for the 

calculation and select the corresponding calibration data generated in the previous step. 

Based on the parameters, the result is displayed in an easy to understand graphical form, 

which is displayed in the lower window of the respective tab. 

5.3 Results 

Calibration is the tab from which our software starts with, as it is usually the first step in the 
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whole process. Figure 8 shows start of the software where user can input the parameters and 

data files required to generate calibration data. 

 

Figure 10 First tab of software - Calibration 

After inputting the parameters on first window of the calibration tab, user is supposed to 

click on the “Next” button. This button will take the user to next window of calibration tab 

as shown below in Figure 9.  

User can select parameters and values associated with each of the marked fields in the table 

and then have to click on the “Calibrate” button to start the calculation. After a few seconds, 

calculated calibration data will be displayed in a tabular form. User can select any row from 

the displayed tree table which will display the corresponding graph on the right. 
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Figure 11 Second window of Calibration tab with the resuling data 

Once the calibration data is generated, user can either save it or can directly go to any of the 

next two tabs NOCIt and MatchIt. Below Figure 10 shows the NOCIt tab of the software 

where user can select any number of rows, each with the appropriate parameters to start 

NOCIt calculation. Result will be shown as a histogram on the bottom of the window. 

 

Figure 12 NOCit tab with the result 
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MatchIt tab is very similar to NOCIt tab where user can select various rows with appropriate 

parameters and will get the result in the form of a histogram on the bottom of the window. 

Figure 11 shows the MatchIt tab without a result. 

 

Figure 13 MatchIt tab
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 Appendix A 

Optimization Technique Example 
Reason and 
Improvement 

Common sub-expression 
elimination 

a = b * c + g; 

d = b * c * e; 

To 

tmp = b * c; 

a = tmp + g; 

d = tmp * e; 

Saves various 
operations 

Code motion for(int x : array) 

     value += func(3) * x; 

To 

tmp = func(3); 

for(int x : array) 

      value += tmp * x; 

Saves multiple 
function calls 

Use arrays instead of HashMaps HashMap<Integer,Double> 
valueMap = new HashMap<>(); 

To 

double[] valueMap = new 
double[size]; 

Saves 
conversion 
from primitive 
data-type to 
corresponding 
object. Overall 
calculation 
becomes much 
more efficient. 

Unrolling loops for (int j=0; j< 2-l; j++) { 

    s = "0"+s; 

   } 

TO 

for (int j=0; j< 2-l; j+=2) { 

Saves multiple 
integer 
operations 
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    s = "0"+s; 

    s = "0"+s; 

   } 

Removal of dead or unreachable 
code 

Helps in decreasing memory 
utilization 

Saves 
unnecessary 
memory loads  

Constant folding x = 2.0 * x * 4.0 to x=8 * x  Saves a floating 
point operation 

Loop invariant optimization While x>0  

        x = x – (y+z); 

to  

t = y+z; 

while (x>0) 

       x = x – t; 

Saves multiple 
integer addition 
operations 

Dead-variable elimination Checked, analyzed and removed 
unnecessary dead variables 

Saves a 
memory 
operation 

Changed 
LinkedinHashMap<Integer,Integer> 
to ArrayList<Integer> 

LinkedinHashMap<Integer,Integer> 
value = new 
LinkedinHashMap<>(); 

To 

ArrayList<Integer> value = new 
ArrayList<>(); 

Saves 
conversion 
from primitive 
data-type to 
corresponding 
object. Overall 
calculation 
becomes much 
more efficient. 

Changed ArrayLists to Arrays ArrayList<Integer> value = new 
ArrayList<>(); 

To 

int[] value = new int[size]; 

Saves 
conversion 
from primitive 
data-type to 
corresponding 
object. Overall 
calculations 
becomes much 
more efficient. 
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