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ABSTRACT 

Resting state functional MRI (fMRI) studies have demonstrated temporal correlation 

across physically distant voxels (or brain regions) in functionally related regions. Studies 

have shown that these temporal correlations are dominated by low frequency fluctuations 

in the range of approximately 0.01 – 0.1 Hz. While these studies have been widely 

replicated, due to hardware limitation the sampling rate of an fMRI machine has been 

limited to about 1 data point every 2 seconds resulting in a Nyquist sampling rate of 0.25 

Hz, have focused on fMRI signal <025 Hz. Yet various electrophysiological 

measurements like EEG, LFP, and MEG acquire data at much faster rate at up to 200 

times points every second and study neuronal fluctuations in range from 1 ~ 100 Hz. In 

addition, to be limited by the lower sampling rate of fMRI, resting state fMRI studies, are 

primarily focused on sub segment (0.01-0.1 Hz) of the whole frequency bands (0-0.25 

HZ), due to higher power of BOLD signal in this frequency ranges. The goal of the 

current dissertation is to utilize recent advancements in fMRI signal acquisition 

techniques, which can acquire 1 data point in 0.5 seconds, to study functional integration 

between brain regions during resting state fMRI in higher frequency BOLD fluctuations. 

In order to achieve this goal, we obtained resting state fMRI data acquired from healthy 

subjects at higher sampling frequency of 1.5 Hz as well as resting state fMRI data 

acquired from schizophrenic patients at sampling frequency of 0.5 Hz from open-access 

data repositories. Using this open access fMRI data, we performed three distinct studies 

to investigate frequency specific differences in resting state functional connectivity. In 

the first study, we quantified RSFC across five different frequency bands. We 

implemented two of the most widely used methods: independent component analysis and 

seed based correlation to estimate RSFC across frequency bands. Commonly known 
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RSNs such as the default mode, the fronto-parietal, the dorsal attention and the visual 

networks were consistently observed across multiple frequency bands. Significant inter-

hemispheric connectivity was observed between a seed and its contralateral brain region 

across all frequency bands, though overall spatial extent of seed based correlation maps 

decreased in higher frequency BOLD fluctuations (slow-2 and slow-1 frequency bands). 

These results suggest that functional integration between brain regions at rest occurs over 

multiple frequency bands and RSFC is a multi-band phenomenon. These results also 

suggest further investigation of BOLD signal in multiple frequency bands and related 

changes in whole brain network topologies. In lieu of the results from the first study, in 

the second study we investigated changes in whole brain network topologies associated 

with changes in frequency bands based RSFC. We performed graph theory analysis on 

whole brain RSFC in five distinct frequency bands to study the whole brain network 

architecture. We observed significant differences in local connectivity properties across 

frequency bands and corresponding changes in network hubs, modularity and small-

world network index. The brain network topologies at all the frequency bands showed 

small-world topologies though, RSFC network at slow-4 and slow-5 networks showed 

significantly higher small-world indices compared to that of slow-1 and slow-2 networks. 

Lastly, due to differential power distribution of BOLD signal across resting state 

networks observed in the first project, we studied changes in BOLD signal power in 

clinical populations. In this regard, we studied disruptions of BOLD signal power in 

various frequency bands in schizophrenia. We observed significant increase in frontal 

cortex power in psychosis patients compared to healthy controls across slow-2, slow-3 

and slow-4 and opposite effect was observed in posterior brain regions, where controls 
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showed increased BOLD signal power compared to psychosis patients. By performing 

these three coherent studies, we investigated frequency specific changes in RSFC and 

their disruption in psychosis patients, implying neurocognitive importance of resting state 

BOLD signal in higher frequency bands (>0.1 Hz).   
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CHAPTER I 

 

INTRODUCTION 

 

 Since its development in 1990’s functional magnetic resonance imaging (fMRI) 

has been widely used to analyze changes in brain function under influence of various 

levels of cognitive conditions. Functional magnetic resonance imaging based on the 

principal of Nuclear magnetic resonance (NMR) uses the magnetic properties of H+ ions, 

abundantly present in Human body. Ogava and Colleagues based on the observation that 

the magnetic properties of deoxygenated hemoglobin are different than that of 

oxygenated hemoglobin developed an fMRI signal contrast dependent on the level of 

oxygen in the blood. This signal labeled as Blood Oxygen Level Dependent (BOLD) 

signal is based on the hypothesis that neuronal firing in human brain causes underlying 

changes in glucose consumption, further creating changes in blood oxygen level. These 

changes in blood oxygen level causes increase in blood flow, in turn causing changes in 

BOLD signal intensity. Earlier fMRI studies manipulated the level of cognitive load and 

in turn investigated the resulting effect on Blood Oxygen Level Dependent (BOLD) 

signal, and hence are labeled “task-based” fMRI studies. 

 As an alternative to task activation studies, Biswal and colleagues
1
, performed 

BOLD fMRI experiments in the absence of any external explicit task condition, labeled 

as “resting-state” fMRI experiments. By taking a representative voxel’s time course from 

the sensorimotor cortex and correlating with every other voxel time series in the brain, a 

significant pattern of correlation in the sensorimotor cortex, similar to that obtained 

during sensorimotor activation pattern during bilateral finger tapping paradigm was 
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observed. These resting state BOLD fluctuations have been shown to be highly correlated 

across spatially remote though functionally related brain regions predominantly in low-

frequency range (0.01-0.1 Hz) commonly known as ‘low-frequency fluctuations (LFFs) 
1
. 

The correlations of temporally filtered BOLD time series between brain regions are 

thought to represent neuronal level functional integration and have been termed ‘Resting 

State Functional Connectivity’ (RSFC). Due to selective nature of RSFC, the human 

brain can be characterized into multiple networks using approaches such as seed based 

correlation
1
 and independent component analysis (ICA) 

2,3
. Functional integration 

between brain regions and various RSNs has also been established using other imaging 

modalities that doesn’t involve temporal filtering such as Positron Emission Tomography 

(PET) 
4
and structural connectivity

5
 as well as non-imaging modalities that involves some 

kind of temporal processing such as electroencephalography (EEG) 
6
. 

Electrophysiological signals obtained through single cell recordings and EEGs 

during resting state are known to be present across multiple frequency bands, and 

neuronal networks in mammalian brain demonstrate multiple frequency bands spanning 

up to 500 Hz
7,8

. Together, these observations imply that functional integration between 

neuronal processes occurs over a wide range of frequencies. Generally, BOLD fMRI 

fluctuations used to study functional integration between neuronal processes during rest 

are temporally filtered in low-frequency band (LFFs) (0.01-0.1 Hz)
1
, predominantly to 

avoid influence of physiological noises (respiration (~0.2-0.3 Hz) and cardiac signal 

(~1.2 Hz)) present in BOLD fMRI data. This narrow fMRI frequency band overlaps with 

multiple frequency bands defined previously by electrophysiological studies: slow-5 

(0.01-0.027 Hz), slow-4 (0.027-0.073Hz) and part of slow-3 (0.073-0.198 Hz) 
7,9

. In 
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addition, due to hardware limitations preceding recent advances, the sampling rate for 

whole brain fMRI has been limited to about 2 seconds, resulting in a frequency 

bandwidth of fMRI typically between 0-0.25 Hz. This has limited further exploration of 

fMRI signal during resting state in frequencies higher than 0.1 Hz, which may relate to 

corresponding slow-3, slow-2 and slow-1 frequency bands.  

1.1 Statement of the problem 

Although known that, electrophysiological signals obtained through single cell 

recordings and EEGs during resting-state are known to be present across multiple 

frequency bands, and neuronal networks in mammalian brain demonstrate fluctuations in 

multiple frequency bands spanning up to 500 Hz, resting state fMRI signal, has been 

studied in low-frequency range (LFF) (0.01-0.1 Hz). This is based on consideration of 

noise characteristics, due to higher signal power contained in low-frequency range
1
 and 

due to limitations of fMRI scanning protocol that has limited the fMRI bandwidth to 0.25 

Hz. In addition, unlike EEG signal, BOLD signal in LFF is seldom divided and studied in 

multiple frequency bands, due to lower temporal resolution and similar power 

distribution between the frequency bands <0.1 Hz (slow-4 (0.027-0.073 Hz) and slow-5 

(0.01-0.027 Hz)). This has limited exploration of BOLD signal in frequencies > 0.1 Hz as 

well as sub-bands of BOLD fMRI signal and possible role of such frequencies in 

cognition and various brain diseases.  

1.2 Background of the problem 

  Previous studies have explored and quantified resting state fMRI signal and 

resting state functional connectivity in higher frequency bands. In one of the earlier 



19 
 

studies Cordes and colleagues have studied resting state BOLD fMRI signal using a low-

spatial resolution but high temporal resolution data
10

. They showed significant 

differences in functional connectivity patterns across frequency bands. Similarly, Wu and 

colleagues have showed consistent RSFC across frequency bands
11

. These studies 

although, exploring the higher frequency BOLD fluctuations in the range (0.1 to 0.25 

Hz), have not explored BOLD signal in even higher frequencies (than 0.25 Hz). 

Additionally, these studies have not explored the changes in RSFC and related network 

topologies at higher frequency BOLD fluctuations.  

1.3 Objectives of the research 

  The primary goal of this dissertation is to investigate influence of BOLD signals 

frequencies on resting state functional connectivity. We devised three distinct objectives 

to study this primary goal. The first objective of the current research is to utilize recent 

advancements in multiband imaging sequences to quantify RSFC measures in BOLD 

signal frequencies higher than 0.1 Hz. The second objective of the current research is to 

identify and quantify changes in whole brain network topology as a result of changes in 

frequency bands based RSFC. The third and final objective of the current research is to 

study disruption of frequency based neuroimaging parameters in schizophrenia to 

understand the neurocognitive basis of BOLD signal frequencies. 

1.4 Research questions  

  The first objective of the current research is to quantify effect of changes in 

BOLD signal frequencies on RSFC. We identified following research questions to 

accomplish the first objective. 



20 
 

1. Is the power distribution of various frequencies in known resting state networks 

change when considering wider BOLD signal frequency range?  

2. Does the connectivity strength and spatial extent of resting state networks derived 

using Independent Component Analysis (ICA) and seed based correlation depend on 

the frequency band being studied? 

The secondary objective of the current research is to quantify effect of frequency 

specific RSFC changes on whole brain network topologies. We identified two distinct 

research questions to quantify these changes. 

3. Do changes in functional connectivity across frequency bands contribute to large-

scale changes in whole brain network topology?  

4. Do the hubs of whole brain network and corresponding modules of whole brain 

RSFC changes as a function of frequency bands? 

The final objective of the current proposal is to quantify effect of schizophrenia on 

frequency specific resting state parameters. We compared BOLD signal power between 

the schizophrenia populations and healthy controls.  

5. Is the effect schizophrenia on functional connectivity and resting state parameters, 

limited to low-frequency bands or is it consistent at higher BOLD signal frequency 

bands?  

6. Is the difference in BOLD signal power between schizophrenia and healthy controls, 

frequency specifics?  

1.5 Hypothesis 

Based, on the previous literature, we derive following hypothesis with respect to 

each of the research questions. 
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(1)  We hypothesize that power distribution of BOLD signal frequencies will be 

different between each of the known resting state network, though within a 

specific network; higher signal power will be observed in low-frequency BOLD 

fluctuations.  

(2) We hypothesize that RSFC will be observed in frequency bands higher than 0.1 

Hz though; wide scale differences in RSFC will be observed across frequency 

bands. 

(3) We hypothesize significant differences in network topologies will be observed 

across BOLD signal frequencies. We also hypothesize that significant differences 

in whole brain network modules and network hubs will be observed with changes 

in BOLD signal frequencies.  

(4) We expect to see similar disruption of BOLD signal power in schizophrenia in 

higher frequency range, as it has been well documented in low-frequency range. 

However, based on earlier EEG and MEG studies, we hypothesize significant 

interactions between group level differences and frequency band being studied.  
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 Background of Functional Magnetic Resonance Imaging (fMRI) and Blood 

Oxygen Level Dependent (BOLD) signal 

Magnetic Resonance Imaging is a popular, noninvasive imaging modality to study 

anatomy of brain or for that matter, any region with soft tissue. Unlike other imaging 

scanning modalities like CT-Scan or X-ray, it does not use either internal or external 

radiation and therefore does not create any long time radiation effects on subjects. It is a 

very useful tool in neuroimaging studies because of three main reasons. First, it provides 

very high spatial resolution, helpful in imaging minute structures of brain. Second, it 

provides very good tissue contrast by using different type of pulse sequence, which aids 

in automatic segmentation of different brain tissues. Third, as discussed above, is lack of 

radiation effects, which enables longitudinal studies including various clinical 

populations.  

Magnetic Resonance Imaging (MRI) works on principle of Nuclear Magnetic 

Resonance (NMR) that in turn uses magnetization properties of 
1
H ion abundantly 

present throughout the human body. Studies have shown a fundamental concept in 

Functional MRI (fMRI) that deoxygenated hemoglobin shows paramagnetic properties 

while oxygenated hemoglobin shows diamagnetic properties under the presence of 

external magnetic field. Based on prior knowledge that the presence of paramagnetic 

substance in blood, decreases spin de-phasing and thus decreases T2
*
 parameter, Seigi 

Ogava and Colleagues
12

 demonstrated use of this phenomenon to evaluate brain functions 
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based on concentration of deoxygenated hemoglobin present in blood. Increase in 

neuronal activity in specific regions of the brain typically results in increase of metabolic 

consumption that leads to vasodilation. Vasodilation leads to an increase of blood flow 

and the amount of oxygenated red blood cells is much greater than the metabolic need, 

this leads to an increase in concentration of oxygenated hemoglobin compared to the 

concentration of deoxygenated hemoglobin. This increase in blood flow causes decrease 

in concentration of deoxygenated hemoglobin causing net increase in signal from 

particular brain region during T2-T2
* 
weighted imaging.

12,13
 Ogawa and colleagues 

identified this phenomenon of changes in signal intensity in T2-T2
* 
weighted imaging as 

a function of concentration of deoxygenated hemoglobin and oxygen in blood and 

dependent on brain functional activity, and labeled it as “Blood Oxygen Level 

Dependent” (BOLD) signal.  

In the first study of using fMRI, Ogava and colleagues use this Blood Oxygen 

Level Dependent (BOLD) signal to quantify physiological changes occurring in visual 

cortex area during task related activation
12

. Since its development in 1990’s fMRI has 

been widely used to analyze changes in brain’s physiology under various task conditions. 

Bandettini et al
14

 were one of the first groups to propose and develop basic processing 

steps for temporal filtering and for correlating each individual voxel from fMRI dataset to 

reference time series in order to find out activation for particular task. Similarly, 

Kiviniemi and colleagues were one of the first groups to apply blind source separation 

techniques to BOLD fMRI data
2
.  
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2.2 Resting State fMRI and Resting state functional Connectivity in Low-Frequency 

Fluctuations (LFFs) of BOLD signal 

  In 1995, Biswal and colleagues, used fMRI techniques to study healthy subjects in 

the absence of an explicit cognitive task conditions. After filtering the fundamental and 

harmonics of the respiration and heart rates from the data collected using fMRI, they 

demonstrated significant temporal correlation of BOLD signal in low frequency range 

(0.01-0.1 Hz) between pixels in primary sensorimotor cortex (both intra- and inter-hemi 

spherically). These pixels were first identified as active during an independent finger-

tapping paradigm performed in the same session. Only a few pixel time courses (<3%) 

from regions outside the sensorimotor cortex exhibited significant temporal correlation 

with time courses from pixels within the sensorimotor cortex
1
. Friston et al. had 

previously defined functional connectivity as the temporal correlation of a 

neurophysiological index measured in different brain areas
4,15

. These studies by Biswal 

and colleagues supported the hypothesis that low-frequency physiological fluctuations 

constituted such a neurophysiological index. These intra- and inter-hemispheric 

correlations among functionally related regions suggest that synchronous fluctuations 

may be a general cortical phenomenon representing the functional connection of cortical 

areas. Due to this reasons, phenomenon of synchronous low-frequency fluctuations 

between brain regions during rest condition was labeled as Resting State Functional 

Connectivity (RSFC).  

Following, the identification of RSFC, several groups has studied resting state 

functional connectivity in the brain, across human life-span, clinical populations, and 

animal models using various methodologies. One of the most commonly used methods to 
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derive RSFC is seed based correlation analysis that derives the functional integration 

between a single brain region and all the other brain regions. In order to perform a seed 

based correlation analysis, BOLD fMRI signal time series from a brain regions is 

correlated with BOLD signal time series from all the other brain regions and 

corresponding maps are thresholded to derive the RSFC maps for a particular seed 

region. Another widely implemented method to study the functional integration at whole 

brain is Independent Component Analysis (ICA) 
2,3

. ICA is a blind source separation 

technique, which segments the whole brain in sets of regions that show selective frontal 

integration within themselves with little or no correlation with outside brain regions. 

These sets of brain regions are collectively labeled as Resting State Networks (RSNs). 

Recently, studies have segmented the whole brain in to set of brain regions. For each of 

these brain regions, an average rs-fMRI time series is extracted. A Pearson’s correlation 

coefficient is calculated between each of these ROI pairs that describe the RSFC between 

all the possible pairs of ROIs in human brain. This particular method labeled as ROI 

based analysis results in a correlation matrix, which describes the functional connectivity 

on a whole brain level. 

In one of the earlier studies of RSFC, Fox and colleagues using seed based 

correlation analysis identified two distinct brain systems, which showed anti-correlation 

with each other during a resting state scan
16

. Subsequent work by Hampson and Gore has 

also observed pixels within visual and within auditory cortex that behaves similarly 

where as low frequency fluctuations of BOLD signal are correlated within these regions 

but not outside of them
17

. These studies establish the foundation for functional integration 

using fMRI. Following, publication of the initial paper, these results have been replicated 
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and extended by other research groups. Xiong and Fox et al. analyzed resting state 

fluctuations and identified six areas of the motor system that exhibit significant inter-

regional connectivity; primary motor cortex, premotor cortex, secondary somatosensory 

cortex, anterior cingulate cortex, and posterior cingulate
18

. These authors point out that 

analysis of resting-state connectivity reveals many more functional connections than the 

usual task-induced activation analysis. They suggested that task-induced activation maps 

underestimate the size and the number of areas involved in a task and that those are more 

fully revealed by resting-state fluctuation analysis.  

One of the system consisting posterior cingulate cortex, lateral parietal cortex and 

medial prefrontal cortex, showed decreased in signal intensity in response to cognitive 

task and hence were labeled as task-negative / default-mode network (DMN). The 

regions showing positive activation with response to the cognitive tasks mainly consisted 

of bilateral inferior parietal sulcus, pre-central/post central gyrus and were labeled as part 

of various task positive networks
16

. Following discovery of group of brain regions 

showing higher correlation of resting state BOLD signal with each other and very little 

correlation with other brain regions, these groups of regions were identified as resting 

state networks (RSNs). Beckmann and colleagues, implemented ICA on low-frequency 

resting state BOLD signal to divide whole brain in to set of resting state networks 

namely, visual network, higher visual network etc
3
.  

In one of the first papers, studying the robustness and reliability of RSFC, 

Shehzad and colleagues, implemented Inter-class Correlation Coefficient (ICC) and 

observed very high intersession and intersession reliability of RSFC
19

. In one of the first 

large-scale neuroimaging studies, Biswal and colleagues used resting state data acquired 



27 
 

from 12 different institutions across the world to study the reliability of resting state
20

. 

One of the major limitations of these studies has been the low-temporal resolution of the 

fMRI due to hardware limitation of MRI. In addition, these studies have focused on low-

frequency fluctuations (LFFs) of BOLD signal (0.01-0.1 Hz) due to the studies by Biswal 

and colleagues that have showed that the LFFs have highest power in BOLD signal and 

are least affected by cardiac and respiratory fluctuations.  

2.3 Resting State Functional Connectivity in High Frequency Fluctuations (HFFs) of 

BOLD signal 

As discussed in previous section, several researchers have studies functional 

integration between brain regions, during resting state fMRI. One common factor 

amongst most of these resting state fMRI studies is their focus on low-frequency 

fluctuations of BOLD signal (0.01-0.1 Hz). The primary reasons for the rs-fMRI studies 

to have focused on low-frequency BOLD is the observation that BOLD signal power is 

highly concentrated in the low-frequency of BOLD fluctuations by Biswal and 

colleagues
1
. The secondary reason for the focus on low-frequency fluctuations has been 

to minimize the effect of high frequency cardiac and respiratory noises on BOLD 

signal
21

. The tertiary reason for the focus on low frequency of BOLD fluctuations has 

been the temporal resolution of whole brain fMRI, which has limited the exploration of 

BOLD signal in frequency bands higher than 0.25 Hz. Despite of these limiting factors, 

previous studies have investigated resting state BOLD signal and RSFC in frequency 

bands higher than 0.1 Hz.  
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In one of the first studies of high frequency BOLD signal in resting state fMRI, 

Cordes and colleagues scanned healthy controls at a higher sampling frequency to 

investigate presence of RSFC at higher frequencies. Due to hardware limitations, Cordes 

and colleague didn’t acquire the rs-fMRI data at whole brain level, rather acquiring it 

over only 4 slices in the area of motor cortex. They reported significantly higher 

contribution (~90%) of LFFs to the RSFC of the auditory, the visual and the sensory 

motor networks compared with 0.1 to 1.1 Hz
10

. In the same study, contribution of high 

frequency BOLD fluctuations to RSFC of auditory, visual and motor network, although 

smaller than LFF, was consistently significant. Additionally, in motor cortex, high-

frequency BOLD fluctuations in range of 0.1-0.5 Hz, contributed ~20% to the correlation 

strength. These results suggest presence of RSFC at high-frequency BOLD fluctuations, 

as well as variable though significant contribution of high frequency BOLD fluctuations 

to RSFC between various brain regions. 

 Although, Cordes and colleagues explored the presence of RSFC at higher 

frequency BOLD fluctuations, the results were limited to motor cortex, auditory cortex 

and visual cortex, due to lower field of view acquired during the scanning session. In 

order to further investigate the RSFC in high-frequency BOLD fluctuations at whole 

level, Wu and colleagues acquired rs-fMRI data at whole brain level at the sampling rate 

of 1 image every two second (TR-2s, sampling frequency =0.5 Hz). This enabled 

investigation of RSFC in frequency bands from 0.1 to 0.25 Hz in various cortical brain 

networks, including default mode network, visual network, sensory motor network and 

limbic network including amygdala network and hippocampus network 
11

. Wu and 

colleagues observed significant presence of RSFC in both cortical and limbic networks 
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across frequencies ranging from 0.01-0.25 Hz, though spatial extent of RSFC showed 

significant differences across networks. Additionally, significant differences were 

observed in frequency specific RSFC in cortical networks, compared to limbic networks, 

where limbic networks showed littler variations in RSFC compared to cortical networks. 

These results further validated the presence of frequency specific differences in RSFC as 

well as provided further information about subject specific variability in RSFC at higher 

frequency BOLD fluctuations. These studies although, investigating the whole brain 

RSFC across frequency bands, are limited in respect to the frequency band being studied, 

which remains smaller than that of other neuroscience techniques (EEG, MEG).  

Recent advancements in data acquisition sequences and multi-band imaging 

techniques 
22–24

 have enabled whole brain fMRI scanning at sub-second temporal 

resolution. These advancements have significantly increased fMRI bandwidth from 0-

0.25 Hz to 0-1Hz. Using similar acquisition methods, Lee and colleagues acquired whole 

brain rs-fMRI data at the temporal resolution of 100 ms to study the RSFC at frequency 

bands up to 1Hz. Lee and Colleagues observed sustained inter-hemispheric connectivity 

in the sensory motor cortex from BOLD fluctuations in higher frequency ranges 

(>0.25Hz) than traditionally used in resting state fMRI studies (0.01-0.1 Hz )
25

. In the 

same study, similar results were obtained in visual network, implying consistency of 

RSFC at higher frequency BOLD fluctuations. In a very recent study, Boubela and 

colleagues have shown the presence of the default mode and frontal-parietal networks by 

applying independent component analysis to BOLD fMRI data acquired at higher 

sampling rate (TR=354 ms, sampling frequency = 2.82 Hz)
26

. Although, these studies 

have described presence of different RSNs in higher frequency bands than LFFs (>0.1 
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Hz), these were mainly performed using a single approach to study RSNs 
25,26

. Moreover, 

these reports focused on specific networks rather than on the entire collection of RSNs 

25,26
. Finally, the BOLD signal frequencies >0.1 Hz were generally combined in a single 

frequency band to derive RSNs 
25,26

. 

2.4 Graph theoretical properties of whole brain RSFC in LFFs and HFFs 

A network can be described as a collection of nodes and connections between them. 

Some of the examples of real life networks are power grid lines, airport/airline 

distribution network. In terms of power grid lines, the power plants and houses are 

considered nodes of a network, while the cables connecting are considered connections 

between them, which are an example of physical connections between nodes. Similarly, 

the airline network is an example of a network where airports are considered nodes, while 

the airline routes are an example of virtual connections between the nodes. In addition, to 

consisting of virtual or physical connections, networks vary respect to topologies. 

Network topologies can be defined by studying the distance between nodes, the number 

of connections passing through a node, total number of connections, amongst other 

variables. One of the main properties to define a network topology is to quantify the 

measure of local integration. The measure of local integration is defined as clustering 

coefficient C. C  is the average of the nodal clustering coefficients 
i

C  over all nodes in a 

network, where 
i

C  of the i
th

 node is defined as the number of existing connections among 

the neighbor nodes divided by all their possible connections, i.e. 
1

1

N

i

i

C N C

=

= å . The 

clustering coefficient provides a measure of local structure, and quantifies resistance to 

failure and the extent of the local density or cliquishness of the network. Similarly, Path 
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Length (L) defines the measure related to the connection length between the nodes. The 

characteristic path length L  is the average of the local shortest path lengths 
i

L  over all 

nodes, where 
i

L  of i
th 

node is the average of the minimum number of edges 
ij

d  that have 

to be traveled to go from node i to other nodes j, i.e. 

1 , ,

1 1 ( 1)

N

i ij

i i j N i j

L N L N N d

= Î ¹

= = -å å . Thus L  represents the extent of average 

connectivity or global routing efficiency of a network.  

 

Figure 1: Types of Graph (reproduced from Watts and Strogratz et al., 27) 

In one of the earliest studies of network topologies, Watts and Strogatz described 

three different types of various network topologies, a regular network, a random network 

and a small-world network. As described in figure 1 reproduced from the study by Watts 

and Strogatz
27

, a regular network has higher clustering coefficient and higher path length. 

Increased clustering coefficient is associated with higher number of connections between 

each node and its immediate nodes. This causes a higher local integrations and increased 
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resistance to failure. In a regular network, absence of long-distance connections between 

nodes causes increased connection length between two nodes, resulting in increased path 

length. Increased path length is related to decrease in global efficiency. Random network 

topology is an opposite of regular network, with random long distance edges between two 

distance nodes. A random network can be described by decreased clustering coefficient 

and decreased path length. This types of network, although having high global efficiency 

and shorter connection length between two distant nodes has little local efficiency. Watts 

and Strogatz
27

 defined a network topologies consisting of very high local connectivity 

with presence of a few long distance edges between the nodes. This type of network 

showed high local connectivity and local efficiency due high number of local connections 

as well as increased global efficiency and decreased connection length due to presence of 

long distance connections. Watts and Strogatz defined this type of network as “small-

world network”, where the network has higher local connectivity compared to random 

network and similar connection distance between two nodes as a random network. A 

small world network can also be described as having higher clustering coefficient than a 

random network and having equal path length as a random network. 

Human brain is intrinsically organized in to large number of brain regions and 

even larger number of axonal connections between them only confined by the size of the 

cranium. In human brain, different brain regions in grey matter can be modeled as nodes 

in the network, while white matter tracts between these regions can be modeled as edges. 

This has enabled researchers to study the brain network topologies. Various researchers 

have observed small-world topological properties of structural brain connectivity. In one 

the first studies of Diffusion tensor imaging applied to human brain data, Iturria and 
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Colleagues identified brain regions as nodes and while matter tracts identified between 

regions using DTI as edges of the network. They observed a small-world architecture in 

the whole brain structural connectivity
28,29

. Figure 2 reproduced from the study by Sporns 

and Bullmore
30

 describes various brain network topologies with respect to cost of 

connections and the efficiency of information transfer. As discussed earlier a lattice 

network topology that is representative of regular network topology as low- connection 

cost, combined with low- efficiency of global information transfer. On the contrary, a 

random brain topology has higher connection cost, along with higher global efficiency of 

information transfer. Sporns and colleagues described the brain network topologies as a 

complex topology, been constrained by the connection cost, and still wired to produce 

high global efficiency of information transfer similar to a small-world network
31

. 

 

Figure 2: Examples of brain network topology (reproduced from Bullmore et al.,
30

) 

 

In addition to the structural connectivity defined by axonal projections between 

brain regions 
32

, temporal correlations between blood oxygen level dependent (BOLD) 

signals of brain regions are thought to represent intrinsic functional connectivity between 
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brain regions is termed as resting state functional connectivity (RSFC)
1
. One of the 

striking features of resting state functional connectivity is the selectivity whereas a set of 

brain regions shows high temporal dependencies of low-frequency BOLD fluctuations 

(LFF-0.01-0.1 Hz) with each other compared to other brain regions (such as left-right 

pre-central gyrus
1
, posterior cingulate gyrus to Medial prefrontal cortex(MPFC)

16
 ). This 

selective functional connectivity between brain regions allows brain to be represented as 

a large-scale parsimoniously connected graph, where brain regions acts as nodes and the 

functional integration measures between them are described as edges
30,33–35

. These 

parsimoniously connected graphs of the brain are shown to have higher clustering 

coefficient and shorter path-length than a randomly connected graph with the same 

number of nodes and edges. Subsequently, numerous studies have described the benefits 

of brains small-world architecture with respect to global energy consumption
36,37

, 

Information transfer
38

, resistance to targeted node attacks
39

, to name a few. In addition, 

this small-world network architecture of the brain has also been shown to be disrupted in 

the various neurological and psychiatric disorders implying importance of network 

architecture in healthy brain functions 
40–42

. 

Although, numerous studies have described brain as a small-world network, one 

of the major limiting factors of these studies has been the definition of edge between the 

nodes. In most of the graph theoretical studies of whole brain RSFC, the edges of the 

brain network are defined as the Pearson’s correlation between BOLD signal time series 

of two distinct region in the low-frequency range (0.01-0.1 Hz) 
43

 as a whole or sub-

segments of the low-frequency range
39,44

. On the contrary, earlier EEG and MEG studies 

have focused on different brain network topologies across frequency bands in healthy 
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controls 
45,46

, though BOLD fMRI studies showing differential network topologies across 

frequency bands are sparse. In one of the earlier studies by Achard and colleagues have 

shown the presence network topologies across multiple frequency bands in an fMRI 

study where the higher frequency networks were found to be similar to the random 

network compared to the low-frequency networks
39

. Similarly in a very recent study 

Sasai and colleagues have shown differential network topological properties across 

various frequency bands, though the maximum frequency band studied by sasai and 

Colleagues is in the range 0.25 Hz
44

. 

2.5 Resting state fMRI and schizophrenia 

 Schizophrenia is a chronic, severe, and disabling mental disorder characterized by 

deficits in thought processes, perceptions, and emotional responsiveness (NIMH). 

According to an estimate, approximately 1.1% of U.S populations have the disorder that 

has profound effect on one’s psychological and social behavior. Behavior symptoms of 

schizophrenia are broadly classified in three categories. “Positive” symptoms are defined 

as symptoms that are present/elevated in schizophrenia patients compared to controls (e.g. 

auditory and visual hallucinations). Negative symptoms are defined as psychotic 

behaviors that are absent/ deprecated in schizophrenic patients compared to healthy 

populations (e.g. empathy, day to day interactions). While positive and negative 

symptoms of schizophrenia can fluctuate, cognitive deficits remain relatively stable, and 

are already apparent in first-episode patients who have never received antipsychotic 

medicines
47,48

. In this regard, schizophrenia has largely been associated deficits in 

attentional, working memory, executive functions as well as auditory and visual 

hallucinations. These functions require acquisition, integration and analysis of complex 
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contextual information. These complicated cognitive tasks are related various brain 

networks comprised of multiple brain regions, which are thought to show disruptions at 

both regional level and in terms of integration between them.  

 Earlier studies on schizophrenia have characterized these disruptions at regional 

level specifically using anatomical MRI and CAT images. Schizophrenia has been 

characterized by large scale reductions in gray matter volume observed in medial 

temporal lobe, superior temporal gyrus, planum temporal pole (see Shenton et al. 2001 

for a comprehensive review) 
49

. These brain regions are known to be associated to 

auditory processing and specifically, simulations to the regions in superior temporal 

gyrus are known to result in auditory and hallucinations, hallmark symptoms of 

schizophrenia. In addition, studies have also shown abnormalities in frontal lobe of 

human brain, though these findings have not been consistent
49

. Anatomically these brain 

regions are thought to be part of heteromodal association cortex (HAC) that are thought 

be comprised of inferior parietal lobule, prefrontal cortex, planum temporal pole and 

broca’s area
50

.  

In recent years, functional imaging studies have provided new insights regarding 

disruptions of functional integration between brain regions in schizophrenia and 

psychosis. There is now considerable evidence from resting state functional magnetic 

resonance imaging (rs-fMRI) studies that schizophrenia and associated psychotic 

disorders may be characterized by neurodevelopmental abnormalities involving loss of 

segregated systems and increased coherence between systems by young adulthood
51

. 

Several studies have reported disrupted functional integration in wide-spread brain areas, 

including, decreased connectivity amongst insular cortex, temporal lobe, prefrontal lobe 
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as well as increased connectivity between cerebellum and other brain regions
52

. 

Researchers have also studied the disruption of default mode network (DMN) in 

schizophrenia though the results are highly variable. Most of the studies have shown 

decreased connectivity of default mode network compared in schizophrenia patients 

compared to controls
53,54

, while there has also been report of increased functional 

connectivity and activity of DMN in schizophrenic subjects and in first-degree relatives 

55
. In addition, studies have also shown deficits in lower visual and auditory functioning 

in schizophrenic populations
56,57

 that are known to be associated with auditory and visual 

hallucinations observed in schizophrenic populations. Similar to fMRI studies, EEG 

studies have also observed differential power distribution across brain regions and related 

disruptions in connectivity pattern in schizophrenic populations. Patients with 

schizophrenia are shown to have greater theta power during resting state conditions in 

frontal regions, but lower theta power in the frontal regions during attentional task 

performance 
58

. Similarly, studies have also shown the presence of cross-frequency 

bindings between EEG rhythm and various resting state networks associated with 

schizophrenia that could conceivably disturb self-attentional processes
59

. In lieu of these 

results, the working hypothesis of neural network in schizophrenia is disintegrations 

between brain regions. 

Despite the implications of such work, few studies to date have investigated 

different frequency bands within the low-frequency band of .01 to .1 Hz using rs-fMRI in 

schizophrenia, while no study has investigated BOLD frequency bands >0.1 Hz. In one of 

the earlier studies of BOLD signal power in schizophrenia, Hoptman et al 
60

 reported 

lower BOLD signal power in LFFs compared to matched healthy volunteers, in the 
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lingual gyrus, cuneus, and precuneus. They also observed greater BOLD signal power in 

the left parahippocampal gyrus within the sub-bands of LFFs (0.01-0.1 Hz). Similarly, 

Turner and colleagues observed, decreased BOLD signal power in posterior section of 

the brain in psychosis population and increased BOLD signal power in the frontal cortex 

regions compared to healthy volunteers, in a multisite psychosis study
61

. In contrast, 

Huang et al
62

 reported that compared to healthy volunteers, antipsychotic drug-naïve 

first-episodic schizophrenia patients demonstrated significantly lower BOLD signal 

power within the range of 0.01–0.08 Hz in the medial prefrontal cortex and concomitant 

increases within the right and left putamen. More recently, Yu and colleagues 
63

 

examined resting state fMRI activity in 3 different frequency bands including (1) slow-5 

(0.01–0.027 Hz); (2) slow-4 (0.027–0.08 Hz); and (3) the standard band of 0.01–0.08 Hz 

in 69 patients with schizophrenia and 62 healthy controls. They reported that low 

frequency fluctuations in slow-4 were higher overall in the basal ganglia, cingulate cortex 

and fusiform gyrus, but lower overall in the middle temporal gyrus, lingual gyrus, inferior 

frontal gyrus and ventromedial frontal gyrus within slow-5. Moreover, these authors 

noted that several brain regions demonstrated significant frequency band x group 

interactions suggesting that spontaneous neural activity might be frequency dependent 

among patients with schizophrenia. Although, the results of these studies are somewhat 

consistent regarding the brain regions implicated in psychosis, they are inconsistent 

regarding the direction of the effect. 

Summary 

Based on the extensive literature review, we can establish that resting state 

functional magnetic resonance imaging is a well-established, reliable, robust and widely 
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used neuroimaging method to study changes in human brain function across various 

neuroclinical populations. One of the limiting factors of resting state fMRI is the focus on 

low-frequency (0.01-0.1 Hz) BOLD signal fluctuations, due to limitations of temporal 

resolution of fMRI. This has resulted in a knowledge gap with respect to possible neuro-

cognitive implications of resting state BOLD signal in frequencies >0.1 Hz, its effects on 

whole brain network topologies as well as frequency band specific implications of resting 

state fMRI in neuro-clinical populations such as psychosis. Recent advancements in 

parallel imaging sequences, have drastically improved the temporal resolution of fMRI 

and there remains a unique opportunity to use this advancements to explore the frequency 

based resting state functional connectivity and its neurocognitive implications. 
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CHAPTER III 

 

METHODOLOGY 

In order to investigate presence of RSFC in higher frequency BOLD fluctuations, 

and to understand its effect on whole brain network topologies and in neuropsychiatric 

diseases, we designed three distinct projects pertaining to each of the research goals. In 

the first project, we aim to use the recently acquired, open-access, high temporal 

resolution data to estimate and quantify frequency specific RSFC at whole brain level. 

Based on the results obtained in the first project, we aim to study the effect of frequency 

specific RSFC on whole brain network topologies. In the third project, we aim to use the 

voxel-vise properties of BOLD signal power to study the effect of psychosis on resting 

state parameters across various frequency bands. By combining results from these three 

cohesive projects, we aim to establish a framework for interpretation of RSFC in 

frequency bands higher than 0.1 Hz. 

3.1 Estimating and quantifying frequency specific RSFC 

3.1.1 Subject recruitment 

In order to study the resting state BOLD signal in the frequency bands higher than 

0.1 Hz, one needs to acquire the whole brain resting state fMRI data at very high 

sampling frequency. Due to recent advancements in the parallel imaging procedures
22

, it 

is possible to acquire the whole brain fMRI data with the temporal resolution of 500 ms. 

In the current study, we obtained these data from an open-access data sharing repository, 
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Enhanced Nathan Kline Institute-Rockland (NKI) Sample. Enhanced Nathan Kline 

Institute-Rockland (NKI) Sample
64

 is an endeavor headed by Dr. Michael Milham (MD, 

PhD) aimed at creating a large-scale (N>1000) community sample of neuroimaging data 

across the human life-span from the participants of Rockland county in the state of New 

York. For this study, we used the resting state data and the anatomical MPRAGE data 

acquired from these subjects. The scanning parameters for Resting state scan are, 

sampling time/Time of Repetition (TR) =645 ms, field of view (FOV) =240x240 mm
2
, 

matrix size/image size = 74 x 74, number of slices = 40, Time of Echo (TE) = 30 ms, 

number of time points/number of volumes = 900, with a spatial resolution of 3mm 

isotropic voxel. These scanning parameters resulted in resting state fMRI scan of ~10 

minutes. For each of the subjects, a high-resolution T1–weighted magnetically prepared 

gradient echo (MPRAGE) image was also obtained (FOV=250x250 mm
2
, TR=1900ms, 

TE=2.52ms, # of slices =176, voxels size=1x1x1 mm). Further information about subject 

scanning can be obtained from project website 

(http://fcon_1000.projects.nitrc.org/indi/enhanced/). We acquired a total of 129 subjects 

from the first release of NKI-Enhance Rockland sample. In order to create a homogenous 

sample from the community sample, we applied multiple selection criterion to the 

subjects obtained from the first release (further discussed in the results section).  

3.1.2 Data processing 

 In the current study, we implemented a processing pipeline that was developed 

using AFNI 
65

, FSL
66

 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) and in-house developed 

MATLAB (MATLAB, 7.14, The MathWorks Inc., Natick, MA, 2000) programs 
67

. 

Figure 3 displays various data processing steps and corresponding output filename. Data 

http://fcon_1000.projects.nitrc.org/indi/enhanced/
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pre-processing steps included discarding the first 20 time points (~13 s) to account for T1 

relaxation effects, rigid body motion correction with respect to mean image and skull 

removal for anatomical MPRAGE images. For each of the subjects, motion parameters 

were calculated to reflect head motion in six directions with respect to the mean image. 

First order derivative of the motion parameters were also calculated. High resolution 

MPRAGE image were segmented into gray matter (GM), white matter (WM) and 

cerebral spinal fluid (CSF) and probability maps were created representing each of the 

three tissue types. Each of the subject's segmented probability images were down-

sampled to match BOLD fMRI data and thresholded at p > 0.95 to create subject specific 

masks for CSF and WM. These masks were used to extract time-series from CSF/WM 

from pre-processed resting state BOLD fMRI data. Principal component analysis was 

performed on time-series extracted from CSF and WM masks. The first 5 principal 

components were extracted that may reflect signals due to physiological and thermal 

noises
68,69

. A total of 22 regressors time series (6 motion parameters, 6 first-order 

derivatives of motion parameters, first 5 principal components of CSF and WM signal) 

were regressed out from the BOLD fMRI data using a linear regression model. Prior to 

independent component analysis and seed based correlation; the resting-state functional 

images were normalized into MNI standard space using non-linear registration 

implemented using FSL-FNIRT. Subsequent data processing included spatial smoothing 

with 6 mm FWHM Gaussian blur. 
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Figure 3: Data processing steps and corresponding output information  

Following data pre-processing, BOLD fMRI data was temporally filtered into five 

distinct frequency bands in order to study frequency specific functional integration. These 

frequency bands were (1) slow-5 (0.01-0.027 Hz) (2) slow-4 (0.027-0.073 Hz) (3) slow-3 

(0.073-0.198 Hz) (4) slow-2 (0.198-0.5 Hz) and (5) slow-1 (0.5-0.75 Hz), coinciding with 

frequency bands defined using electrophysiological 
7,9

 and fMRI studies
70

. The frequency 

bands slow-5 and slow-4 mainly represents the frequency range (0.01-0.073 Hz) widely 

employed in resting state BOLD fMRI studies. Slow-3 represented combination of both 

frequencies from classic frequency band (0.073-0.1 Hz) and from frequency band 

discarded through temporal filtering (0.1-0.198 Hz); while slow-2 represented BOLD 

fMRI fluctuations that were generally considered highly contaminated with respiration 

signal. Classically, slow-1 frequency band is defined by a bandwidth of 0.5-1.5 Hz but 
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due to limitation of sampling frequency in the current fMRI study, we have restricted 

slow-1 band between 0.5-0.75 Hz. In addition, pre-processed BOLD fMRI data without 

temporal filtering (though the series were demeaned, leaving the bandwidth as 0.01-0.75 

Hz) were also used in subsequent analysis and will be referred as noFILT. 

3.1.3 Data Analysis 

Group Independent Component Analysis 

The relative contributions of each frequency band to different RSNs, as well as 

frequency-specific characteristics of a given network, were studied using a data driven 

approach. To analyze the former, first probabilistic group ICA, using temporal 

concatenation approach in MELODIC software
3
, was performed on unfiltered BOLD 

fMRI data. RSNs derived using this approach pertains to whole-frequency band (0.01-

0.75 Hz). 40 independent components were derived. Spatial correlation was conducted 

between these group level IC maps and 1000-Functional Connectome Project (FCP) IC 

maps to identify and compute spatial overlap with RSNs
67

. For each of the identified 

RSNs, a corresponding group IC time series was obtained. Fast Fourier transformation 

(FFT) was performed on the group IC time series of each of the RSNs. The relative 

power contribution of each frequency band to the IC time series was calculated as the 

ratio of the power in the given frequency band to the total power contained in the entire 

bandwidth (0.01-0.75 Hz) (Figure 5). In order to study frequency specific characteristics 

of various RSNs, group ICA was also performed on each of the five sets of temporally 

filtered BOLD fMRI data. Similar to above mentioned analysis, spatial correlation 
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followed by visual comparison with group IC maps from FCP-1000 dataset was used to 

identify RSNs (figure 6). 

Seed based correlation 

 We conducted seed based correlation using the seven seed regions as defined by 

Fox et al., 
16

, Wu et al.,
11

and Biswal et al.,
20

 Seed regions from the frontal eye field (FEF; 

25, -13, 50 MNI space), inferior parietal sulcus (IPS; -25,-57, 46), middle temporal gyrus 

(MTG; -45, -69, 2) and pre-central gyrus (PCG; -45,-9,39) were selected from task 

positive networks, while seed regions lateral parietal cortex (LPC; -45,-67,36), medial 

prefrontal cortex (MPF; -1, 47, -4), posterior cingulate cortex (PCC; -5, -49, 40) were 

from task negative networks. For each seed, a 5mm sphere was created in Montreal 

Neurological Institute (MNI) standard space. The average time series of each seed region 

was extracted and correlated with all brain voxels to derive subject-level, seed based 

correlation maps for a specific seed. This map was converted into z-score values using 

Fisher’s r-z transformation. MELODIC mixture modeling was also applied to z-score 

images in order to account for the temporal smoothness and increased degrees of freedom 

introduced due to use of multiband imaging sequence
22

. Group level correlation maps 

were calculated for each of the seven seed regions by performing one-sample t-tests 

(p<0.05, FDR corrected). This process was repeated for each of the five frequency bands 

and for each of seven seed regions resulting in 35 group level correlation maps. This group 

level correlation maps were visualized with the BrainNet Viewer
71

 

(http://www.nitrc.org/projects/bnv/) (figure 7). In order to quantify spatial extent for each 

of this group level correlation maps, a spatial extent fraction for each of the maps was 

http://www.nitrc.org/projects/bnv/


46 
 

defined as number of GM voxels passing the statistical threshold (p<0.05, FDR 

corrected) divided by total number of GM voxels in MNI space (figure 8). 

Functional connectivity strength for each seed region was calculated on first level 

subject specific maps. To avoid biases due to differences in spatial extent observed across 

frequency bands, RSFC strength was calculated from a set of ROIs defined based on 

FCP-1000
20

 group level connectivity maps. FCP-1000 group level connectivity maps 

included six out of seven seed regions used in current study with exception of PCG, 

hence group level IC map representing motor network from FCP-1000 was used for PCG. 

Each of the group level seed based correlation map/IC maps from FCP-1000 project was 

divided in to brain regions that showed positive and negative correlation with the seed 

region. MNI coordinates of the voxels showing maximum positive/negative correlation 

were extracted from this brain regions and 5 mm sphere was created surrounding this 

coordinates in MNI space. Mean positive and negative connectivity strength was 

calculated from each of these ROIs for a subject and for a specific frequency band. This 

process was repeated for each of the seven seed regions for each of the 5 frequency bands 

across 21 subjects. Group level RSFC strength was calculated by taking mean across 

subjects for each of the frequency bands and for all the seven seed regions. Table 1 lists 

the ROI coordinates derived for positive and negative connectivity strength. Figure 4 

displays the ROIs on the glass brain surface. 
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Table 1: MNI coordinates (LPI) for the ROIs defined for calculation of connectivity 

strength. 

Seed Name X Y Z ROI Name 

Lateral Parietal Sulcus (LPC)     

Positive connectivity     

 3 42 33 Left Cingulate Gyrus/ BA 31 

 45 66 36 Left Angular Gyrus 

 39 -18 48 Left Superior Frontal Gyrus/ BA 8 

 -51 63 36 Right Angular Gyrus 

Negative connectivity     

 -42 -9 -3 Right Insula/ BA 13 

 -6 -15 36 Right Cingulate Gyrus 

 42 -6 0 Left Insula 

 -63 30 27 Right Inferior Parietal Lobule / BA 40 

 12 90 30 Left Cuneus / BA 19 

 60 30 21 Left Superior Temporal Gyrus 

     

Medial Prefrontal Gyrus (MPF) 

Positive connectivity     

 -3 -48 -3 Right Medial Frontal Gyrus/ BA 32 

 0 21 36 Left Cingulate Gyrus 

Negative connectivity     

 -21 69 51 Right Precuneus 

 21 66 51 Left Precuneus / Left BA 7 

 54 63 -9 Left Middle Occipital Gyrus/ BA37 

 -54 57 15 Right Superior Temporal Gyrus/ BA22 

 -51 -9 30 Right Inferior Frontal Gyrus 

 48 -6 24 Left Inferior Frontal Gyrus 

 -27 0 60 Right Middle Frontal Gyrus/ BA 6 

Posterior Cingulate Cortex (PCC)  

Positive connectivity     

 6 48 39 Left Cingulate Gyrus 

 51 60 27 Left Middle Temporal Gyrus / BA 39 

 -51 57 27 Right Superior Temporal Gyrus 

Negative connectivity     

 -42 -3 0 Right Insula 

 42 -3 0 Left Insula /BA 13 

 -60 27 48 Right Post-central Gyrus 

 -6 -9 51 Right Superior Frontal Gyrus/ BA 6 
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 -48 -45 3 Right Inferior Frontal Gyrus 

 -54 60 -12 Right Fusiform Gyrus / BA 37 

 57 33 51 Left Post-central Gyrus 

 51 69 -9 Left Middle Occipital Gyrus 

Frontal Eye Field (FEF) 

Positive connectivity     

 -24 12 51 Right Pre-central Gyrus 

 24 9 57 Left Middle Frontal Gyrus 

Negative connectivity     

 0 42 36 Left Cingulate Gyrus 

 51 60 42 Left Inferior Parietal Lobule/ BA 39 

 -51 54 36 Right Supramarginal Gyrus 

 -33 -63 3 Right Superior Frontal Gyrus/ BA 10 

 36 -63 3 Left Middle Frontal Gyrus/ BA 10 

Inferior Parietal Sulcus (IPS) 

Positive connectivity     

 24 57 45 Left Superior Parietal Lobule/ BA 7 

 24 57 45 Left Brodmann area 7 

 -27 60 48 Right Superior Parietal Lobule 

 51 60 -12 Left Fusiform Gyrus / BA 37 

 48 -6 27 Left Inferior Frontal Gyrus / BA 9 

 -51 54 -15 Right Fusiform Gyrus / BA 37 

 27 0 51 Left Middle Frontal Gyrus 

Negative connectivity     

 0 -57 3 Left Middle Frontal Gyrus 

 -6 51 27 Right Cingulate Gyrus 

 -57 60 30 Right Supramarginal Gyrus 

 57 63 33 Left Supramarginal Gyrus / BA 39 

Middle Temporal Gyrus (MTG) 

Positive connectivity     

 45 69 -3 Left middle occipital gyrus 

 -48 66 -6 Right middle occipital gyrus 

 -24 60 54 Right Superior Parietal lobule 

 27 54 57 Left Superior parietal lobule 

 Negative Connectivity     

 0 -39 33 Left middle frontal gyrus 

 0 36 36 Left Cingulate gyrus 

 -51 60 45 Right inferior parietal lobule 

 51 57 45 Left inferior parietal lobule 

 -42 -21 45 Right middle frontal gyrus 

 45 -18 45 Left middle frontal gyrus / BA 8 
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Pre-central gyrus (PCG) 

Positive connectivity     

 -60 9 33 Right pre-central gyrus 

 57 9 33 Left pre-central gyrus 

 3 6 54 Left medial frontal gyrus / BA 6 

 0 18 54 Left medial frontal gyrus 

 -27 30 60 Right post-central gyrus / BA 3 

 30 30 60 Left pre-central gyrus 

Negative Connectivity     

 -39 78 33 Right superior occipital gyrus 

 0 75 48 Left precuneus 

 57 45 42 Left inferior parietal lobule/ BA 40 
 

 

Figure 4: Regions of interests implemented for connectivity analysis overlaid on the glass 

brain surface. 

 

Inter-subject covariance of BOLD signal power 

In a recent study, Taylor and Colleagues
67

 have shown that brain regions in a 

given network, has high synchronicity of amplitude of BOLD signal in low-frequency 
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bands. Using a large-scale resting state fMRI data (n=198 subjects), they observed 

significant correlation between amplitude of BOLD signal power, between regions of 

resting state networks across subjects, though these results were only pertaining to low-

frequency BOLD fluctuations. In order to study the inter-subject covariance of power of 

BOLD signal fluctuations in different frequency bands, we calculated measure called 

similar to the index, ‘Amplitude of Low-frequency Fluctuations’ as defined by Zhang and 

Colleagues
72

. We define ‘Amplitude of Frequency Fluctuations (AFF)’ as a generalized 

term representing BOLD signal amplitude in a particular frequency band. For each of the 

subject, pre-processed BOLD fMRI data was temporally filtered in one of the five-

different frequency bands (slow-1 to slow-5). Fast Fourier transformation was applied to 

this temporally filtered time series to derive voxel-vise power spectrum for the given 

frequency band. Square root of this power spectrum was calculated to derive voxel-vise 

amplitude measure. Average amplitude was calculated to derive voxel-vise map of 

amplitude measures pertaining to each frequency band. Amplitude value at each of the 

voxel was divided by whole brain average amplitude measure. This process was repeated 

for each of the five-frequency bands. 

These voxel-wise BOLD signal amplitude measures were further used to study 

functional covariance networks as a means of deriving functional integration between 

brain regions using voxel-vise measure. Briefly, covariance networks identify a set of 

brain regions that display higher inter-subject variance specific to a BOLD signal 

parameter
67

. In the current study, signal amplitude in five different frequency bands was 

used a voxel-vise measure. For a given frequency band, average BOLD signal amplitude 

was calculated for 23 ROI masks as defined by group ICA (Table 1). These average 
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amplitude measure is treated as a variable while the individual subjects are treated as 

observations. Pearson’s correlation coefficient was calculated for each of the 253 ROI 

pairs (n*(n-1)/2, n=23 ROIs). These resulted in a 23x23 dimension symmetrical 

correlation matrix. Significant inter-subject correlation were identified (p<0.1, FDR 

corrected) and displayed on a whole-brain surface maps using BrainNet Viewer 
71

 (figure 

9). This method was repeated for each of the five frequency bands (slow-1 to slow-5) to 

derive frequency specific covariance matrices across subjects for each frequency band.  

Time-frequency analysis for BOLD signal 

 Recent studies have shown that resting state BOLD signal, although studied as a 

stationary signal, has time varying characteristics. Chang and Glover used wavelet 

analysis to study changes in BOLD signal power across the scanning duration
73

. In order 

to study the changes in frequency content of BOLD signal across the scanning time, we 

performed time frequency analysis on seven different seed regions time series as 

mentioned earlier. We extracted mean time series from each of the seven seed regions for 

each of the subjects using unfiltered resting state BOLD fMRI data. We performed time-

frequency analysis on this seed regions time series using the wavelet analysis toolbox as 

performed by Chang et al
73

(figure 10). In addition, we also implemented cross-wavelet 

coherence analysis to study the presence of coherence between seed regions across 

different frequency bands (figure 11). 
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3.2 Effects of frequency based RSFC on whole brain network topology 

3.2.1 Subject recruitment 

 Similar to the project 1, studies of frequency based changes in RSFC and their 

effect on whole brain network topology requires resting state BOLD fMRI data collected 

at high temporal resolution. To this end, we use the same online data repository as used in 

the first project. In the second project, we obtained the data from the second release of 

NKI-enhanced Rockland sample that contained a total of 170 subjects’ resting state 

BOLD fMRI and anatomical MPRAGE data. The scanning parameters for Resting state 

scan are, TR =645 ms, field of view (FOV) =240x240 mm
2
, matrix size/image size = 74 x 

74, number of slices = 40, TE = 30 ms, number of time points/number of volumes = 900, 

with a spatial resolution of 3mm isotropic voxel. These scanning parameters resulted in 

resting state fMRI scan of ~10 minutes. For each of the subjects, a high-resolution T1–

weighted magnetically prepared gradient echo (MPRAGE) image was also obtained 

(FOV=250x250 mm
2
, TR=1900ms, TE=2.52ms, # of slices =176, voxels size=1x1x1 

mm). Further information about subject scanning can be obtained from project website 

(http://fcon_1000.projects.nitrc.org/indi/enhanced/). In order to create a homogenous 

sample from the community sample, we applied multiple selection criterion to the 

subjects obtained from the first release (further discussed in the results section).  

3.2.2 Data processing  

  A data processing scheme similar to the one implemented in our earlier 

publication was implemented
74,75

. For each of the subjects, first 20 time-points (~13 s) 

were removed to account for T1- relaxation effects. In the next step, motion correction 

http://fcon_1000.projects.nitrc.org/indi/enhanced/
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was performed on each of the functional images by registering functional images to the 

mean image using ‘realign’ function in SPM. Later, each of the functional images was 

co-registered to the anatomical MPRAGE image. Anatomical images were segmented in 

to three different tissue probability maps GM, WM and CSF using ‘new segment’ tool in 

spm8 and corresponding deformation fields were derived. In the next step, these 

deformation fields were used in normalization process to transform each of the functional 

images in to MNI standard space. The tissue probability maps derived in the 

segmentation step were thresholded at probability level 0.95 and binary mask 

representing CSF and WM were created. These binary maps were used to extract BOLD 

time series from resting state fMRI data and principal components analysis was 

performed on these CSF/WM time-series. A general linear model based regression 

analysis was performed on the BOLD fMRI data to minimize the effect of physiological 

noises. The regression model consisted of 34 regressors time series containing 5 principal 

components of WM, 5 principal components of CSF, and 24 motion time series based on 

Friston 24-model
76,77

 (6 raw motion time series defining subjects motion during the 

resting state scan, 6 quadratics of raw motion time series, 6 auto regressive time series of 

motion parameter and 6 quadratics of the auto regressive motion time series). Following 

linear regression, the residual time-series were temporally filtered in to five distinct 

frequency bands, slow-1 (0.5-0.75 Hz), slow-2 (0.198-0.5 Hz), slow-3 (0.073-0.198 Hz), 

slow-4 (0.027 Hz -0.073 Hz) and slow-5 (0.01-0.027 Hz) using 3dBandPass function in 

AFNI. Each of the filtered BOLD fMRI dataset was spatially smoothed using 6mm 

FWHM Gaussian kernel. 
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3.2.3 Data analysis 

 Graph-theoretical analysis 

A graph typically consists of a set of nodes and connections between them 

defined as edges. In order to study whole brain graph theoretical analysis, 160 nodes were 

defined in the brain based on coordinates defined by Dosenbach and colleagues
78

. Edges 

between any 2 nodes were defined as Pearson’s correlation between the filtered resting 

state BOLD time series of the specific nodes. For each of the nodes, 6 mm sphere was 

created around the center coordinate defined by Dosenbach and colleagues in MNI 

standard space. For each of the ROIs the average BOLD time series was extracted from 

filtered BOLD fMRI data. A 160x160 symmetric correlation matrix was calculated by 

performing Pearson’s correlation between average time series of each of the 12720 ROI 

pairs. This process was repeated for each of the subjects and for each of the five 

frequency bands resulting in 135 unique connectivity matrices. Each of these matrices 

was converted in to Z score using fisher’s r to z transformation and absolute values were 

derived to study whole brain connectivity. In order to study, differences in graph 

theoretical properties of whole brain functional connectivity across frequency bands, 

graphs were created at both subject level and also at group level. In order to create group 

level graphs, the average correlation matrix was calculated across subjects for each of the 

five frequency bands (figure 12). 

In order to create binary, un-directed graphs, each of the correlation matrices was 

thresholded at fix sparsity values that ranged from 0 to 1 (0-100%) with interval of 0.01. 

Sparsity can be defined as the ratio of number of edges in the adjacency matrix to the 
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total number of edges in the network. Although, earlier studies have mentioned small-

world range to be present between sparsity 0.1 to 0.5, in the current study we have 

implemented the sparsity from 0-1 to completely review the changes in graph theoretical 

properties for whole brain connectivity across frequency bands. By applying sparsity 

threshold to each of the correlation matrices, we created binary, un-directed graphs for 

each of the subjects at each of the frequency band across all the sparsity values. These 

graphs although may have different Pearson’s threshold across different subjects, have 

the same number of connections at a particular sparsity value. 

For each of the graphs, we calculated graph theoretical properties using two 

openly available toolboxes, (1) Brain connectivity toolbox (BCT)
79

and (2) gephi 

(GEPHI)
80

. In the first step, we aim to determine whether the whole brain network 

displayed small –world properties across different frequency bands. To this end, we 

calculated a set of global parameters that describes the small-world properties of the 

whole brain network. These global parameters included clustering coefficient (Corig, 

clustering_coef_bu.m, BCT), characteristic path length (Lorig, charpath.m, BCT), global 

efficiency (Eglob, efficiency_bin.m, BCT) and local efficiency (Elocal, efficiency_bin.m, 

BCT). In addition, we also calculated a total of 100 random networks preserving the same 

number of nodes, edges, and degree distribution as the real networks at each of the 

sparsity range (randmio_und.m, BCT). For each of the random networks, we calculated 

clustering coefficient (Crand) and characteristic path length (Lrand) describing whole brain 

network architecture. Normalized clustering coefficient (γ) was calculated by taking ratio 

of Corig to Crand (Corig / Crand) and normalized path length (λ) was calculated by taking ratio 

of Lorig to Lrand (Lorig / Lrand) at each of the sparsity values. A network is said to be small-
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world network at a sparsity value if the Gamma is higher than 1 and Lambda is equal to 

1
27

. We calculated the ratio of gamma to lambda (gamma/lambda) across the 100 sparsity 

values to determine the sparsity range where each of the networks showed small-world 

properties. We observed that the whole brain functional connectivity displayed small 

world properties at sparsity range from 0.1 to 0.5. Based on this result, further analysis 

was focused in this narrow 0.1-0.5 sparsity range (figure 13 and figure 14). 

Synchonizability 

In order to calculate synchonizability parameter, similar to the one used by Basset 

and colleagues
81

, we created a subject-wise adjacency matrix at sparsity 30 and also 

calculated degree for each of the nodes in the network at the same sparsity value. We 

derived a normalized Laplacian matrix by replacing edge between nodes i and j by the 

value M where  

𝑀 =
−1

√(𝐷𝑖×𝐷𝑗)
 Where Di and Dj are the degrees of node j and i respectively. 

We replaced the diagonal in the Laplacian matrix by 1. We calculated Eigen values of 

this Laplacian matrix for each of the five frequency bands across all the subjects. We 

calculated the ratio of the second smallest eigenvalue and the highest Eigen values to 

derive synchonizability (S) for each of the frequency bands. 

Nodal properties 

In addition, we also calculated a set of nodal parameters, describing graph 

theoretical properties for each of the nodes. For each of the node, we calculated degree 

(D, degrees_und.m, BCT); between centrality (BC, betweenness_bin.m, BCT) and Eigen 
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vector centrality (EC, eigenvector_centrality_und.m, BCT) across the sparsity range 0.1-

0.5. One of the aims of the current study was to identify differences in the nodal 

properties across frequency bands and to identify whether network architecture 

differences observed across the frequency bands are centered on specific brain regions. 

To this end, we identified hubs of a given brain network based on three different nodal 

properties. 

In order to determine the hubs of the whole brain network, we used subject based 

connectivity matrices. We use three different nodal properties of degree, between 

centrality and eigenvector centrality for deriving hubs in the whole brain network. We 

calculated hubs at the sparsity of 30. For a given nodal property Xnode, in the first step, we 

derived nodal property at the sparsity of 0.3 for each of the subjects. This results in 160 

distinct values for each of the node for each of the subject (X node_s30). In the next step, we 

calculated mean of Xnode_s30 across subjects resulting 160 mean nodal properties for each 

of the node in network (Xmean_node_s30). Each of this mean nodal property (Xmean_node_s30) 

was converted in to z scores. A specific node was identified as hubs if the z score of the 

particular node was higher than 1.5. Based on this analysis, we identified three different 

sets of hubs pertaining to degree, betweeness centrality and Eigen centrality (figure 15-

18). 

Modularity architecture 

One of the important aspects of network architecture is the group of nodes that 

show higher number of connections to nodes within the group compared to the nodes 

outside the group. These groups of nodes are referred as modules. In order to study 
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differences in modularity architecture between the frequency bands, we calculated the 

modularity using the average correlation matrix for each of the frequency bands. For each 

of the five distinct correlation matrixes, we calculated modularity quotient (Q) using the 

Louvain algorithm (modularity_louvain_und.m, BCT) across the whole sparsity range. In 

order to display the modular architecture, we extracted the graph for each of the five 

frequency bands at sparsity of 30. This graph was further analyzed with the open source 

software (GEPHI) to derive and display the modular architecture across the frequency 

bands. In order to display, the nodes belonging to each of the module distinctly, each 

node was color coded to a specific module and displayed using the BrainNet Viewer 

(figure 21)
71

. 

In order to assess the effect of distance between two regions on the frequency 

specific RSFC strength, we calculated Pearson’s correlation between the Euclidian 

distances between the two ROIs and the RSFC strength (defined as correlation of BOLD 

signal in specific frequency bands). Euclidian distance between the two ROIs was 

defined as  

𝐷𝑖𝑗 = √(𝑋𝑖 − 𝑋𝑗)2 + (𝑌𝑖 − 𝑌𝑗)2 + (𝑍𝑖 − 𝑍𝑗)2 

Where (Xi, Yi, Zi) and (Xj, Yj, Zj) represent the three-dimensional MNI coordinates for 

ROI j, and i respectively. 

 In order to avoid cross-hemispheric connections that may underestimate the actual 

distance between two ROIs, Euclidian distance was calculated for left and right 

hemisphere separately. Euclidian was calculated for each of the 12720 ROI pairs and 
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correlated with mean RSFC strength between each of the ROI pairs for each of the 

frequencies (figure 22). 

3.3 Disruption of frequency specific BOLD signal power in schizophrenia 

3.3.1 Subject recruitment 

In order to study the disruptions of frequency band specific power in psychosis, it 

is very important to acquire the high temporal resolution resting state BOLD fMRI data 

in such population. Unfortunately, there is no publicly available data of psychosis 

patients using multi-band imaging sequences. In this regard, we use the open-access data 

repository- The Center of Biomedical Research Excellence (COBRE) to acquire data 

from schizophrenia patients and corresponding healthy controls. A total of 98 subjects’ 

BOLD fMRI and anatomical MPRAGE data was acquired from this repository. The 

scanning parameters for the rs-fMRI scan were TR=2.0s, TE: 29 ms, matrix size=64x64, 

32 slices, voxel size=3x3x4 mm
3
, and an anatomical MPRAGE scan was obtained with 

TR/TE/TI = 2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900 ms, matrix = 256x256x176, voxel size 

=1x1x1 mm. Individuals were instructed to keep their eyes open during the scan. Further 

information about the specific scanning paradigm for the COBRE dataset can be obtained 

from http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html. Similar to previous 

projects, we applied multiple selection and motion thresholding criteria to create a 

homogeneous sample of subjects (further discussed in results sections 4.3.1). 

3.3.2 Data processing 

Data processing was the same for all individuals regardless of disease condition 

and used SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/), FSL 5.0 
66

, 
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(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and AFNI 
65

 (http://afni.nimh.nih.gov/afni/). In the 

first step the first 5 time-points (10s) were removed from the rs-fMRI data to eliminate 

T1-relaxation effects. In the second step, we performed motion correction using SPM’s 

realign function to align each individual’s BOLD fMRI data to the mean of the images. 

During motion correction, head movement was recorded in 6 directions and used to 

exclude individuals with significant motion (as defined above) and to regress out the 

effects of motion on BOLD signal. Following motion correction, individuals’ rs-fMRI 

data were coregistered to the anatomical image. Each anatomical image was later 

segmented into GM, WM and CSF probability maps using the ‘New Segment’ function 

in SPM8 while deriving a deformation field. Following segmentation individuals’ BOLD 

fMRI data were transformed to MNI standard space using the deformation field derived 

during the segmentation step. For all individuals, probability maps for cerebrospinal fluid 

and white matter were thresholded at p>0.95 to create CSF and WM masks respectively. 

Using these masks the BOLD time series was extracted from the resting state dataset and 

the first five principal components were derived. A COMPCORR and friston-24 based 

GLM model was implemented to reduce the effect of physiological noise and motion 

time series from the BOLD fMRI data using FSL. The GLM model thus included a total 

of 34 regressor time-series (5 principal components of white matter, 5 principal 

components of cerebrospinal fluid, 6 motion parameters, 6 autoregressive motion 

parameters, and 12 quadratic models of the motion parameters). Residual time-series 

were extracted for each voxel following regression and used in subsequent analyses. 
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3.3.3 Data analysis 

Following regression, each individual’s BOLD time-series was temporally band-

pass filtered in low- frequency bands (0.01-0.1 Hz) using AFNI’s 3dBandPass program. 

Following temporal filtering, group independent component analysis was performed 

using a temporal concatenation approach available in FSL melodic and 20 independent 

components were extracted. Each of the 20 independent components was compared with 

the independent components derived from FCP-1000 maps
20

 using software developed 

in-house
67

 to identify 14 meaningful resting state networks. Each of the 14 resting state 

networks in this study was segmented in to 1-7 noncontiguous clusters using AFNI 

program 3dClustSim (see figure 23). For each of the cluster, the peak voxel coordinates 

were derived. A 6 mm sphere was placed around the peak coordinates to create the 

regions-of-interest. A total of 47 regions-of-interest (see Table 2) were used in this study. 

For each of the region-of-interest we extracted power in the BOLD signal for each 

individual in each of the 3 frequency bands as described below.  

Frequency-Specific Amplitude of BOLD Signal Fluctuations 

We segmented the overall BOLD frequency band from 0.0-0.25 Hz (TR-2 s, 

sampling frequency-0.5 Hz) into 3 distinct frequency bands including slow-2 (0.199-0.25 

Hz), slow-3 (0.072-0.198 Hz) and slow-4 (0.027-0.073 Hz) based on earlier studies 
70,74

. 

For each of these three distinct frequency bands, we computed power of the BOLD signal 

based on methods defined by Zhang and colleagues
72

 using the “3dRSFC” AFNI 

command 
82

. Briefly, we computed voxel-level fast Fourier transformations for 

individuals’ BOLD fMRI time-series across the whole frequency band to derive power at 
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each frequency. The square-root of power at each frequency band was obtained to derive 

frequency specific amplitude measures. This frequency specific amplitude was averaged 

across the frequency bands slow-2, slow-3 and slow-4 to derive voxel-level frequency 

band specific amplitude measures. For each individual, amplitude at each voxel was 

normalized by mean amplitude across the whole brain to derive a measure similar to 

mALFF for each frequency band. These measures are similar to the ones used in earlier 

studies describing frequency based amplitude differences in schizophrenia 
60,63

. In 

contrast to earlier studies that focused on BOLD fluctuations in traditional low-frequency 

bands (<0.1 Hz), we also investigated the power of BOLD fluctuations in higher 

frequency bands. As the term ALFF traditionally applies to the power of BOLD 

fluctuations in only low-frequency bands (<0.1 Hz), here we define AFF (Amplitude of 

Frequency Fluctuations) as a general term to describe the amplitude of various BOLD 

frequency fluctuations. Additionally, we did not utilize fractional measures given that 

fALFF measures traditionally calculate the ratio of power in low-frequency bands to the 

power in the whole BOLD frequency band 
83

. Thus, to calculate a fAFF (Fractional 

Amplitude of Frequency fluctuation) measure similar to fALFF for the current study, one 

needs to divide AFF in any given frequency band with the combination of other 

frequency bands. This implies that decreased fAFF in one of the brain regions can be due 

to either decreased AFF of numerator frequency band or increased AFF of either one or 

both of the denominator frequency bands. Similarly, increased fAFF can be attributed to 

either increased AFF of numerator or decreased AFF of denominator or both. In addition, 

if the psychosis groups and the healthy volunteer groups differ in terms of network x 
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frequency interaction, in combination with the above mentioned mechanism would lead 

to a confound in the interpretation of study results. 

ROI analyses  

For each of the 14 networks, we calculated average mAFF by taking the mean 

across the respective ROIs for a given network in each of the 3 frequency bands. Average 

mAFF scores for the 14 networks were imported into SPSS (version 16) and we used 

repeated measures ANCOVA to specifically test the group x region x frequency 

interaction with alpha set to < .05. The between subjects factors included group (patient, 

healthy volunteer) and sex. The within subjects factor was network score (14 networks) 

and mAFF for the three frequency bands (Slow-2, Slow-3, and Slow-4). Age and site 

were included as statistical covariates. Given the assumption of sphericity was violated 

we used Greenhouse-Geisser correction to adjust degrees of freedom. Post-hoc 

investigation of specific frequency ranges that were significant between groups was 

conducted using alpha set at .05.  

Table 2: List of Independent Components and Corresponding ROIs and MNI coordinates 

    

 

X Y Z Name 

IC01 Lingual Gyrus ROI01 -12 67 7 Right Cuneus 

IC03 Salience network ROI02 -6 -23 31 Right Cingulate Gyrus  

    ROI03 30 -41 31 Left Superior Frontal Gyrus 

    ROI04 -30 -44 28 Right Superior Frontal Gyrus 

    ROI05 -33 -17 4 Right Insula 

    ROI06 33 -17 1 Left Insula / Left BA 47  

IC05 Left FPN ROI07 45 -20 34 Left Pre-central Gyrus /Left BA 9  

    ROI08 36 67 49 Left Superior Parietal Lobule 

    ROI09 39 -50 -2 Left Middle Frontal Gyrus 

    ROI10 9 -29 46 Left Superior Frontal Gyrus 

IC06 Insular Cortex ROI11 36 19 1 Left Claustrum  

    ROI12 -45 10 1 Right Insula 

IC07 Right FPN ROI13 -39 -17 52 Right Superior Frontal Gyrus/BA 8 
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    ROI14 -51 49 46 Right Inferior Parietal Lobule 

    ROI15 -39 -53 -5 Right Middle Frontal Gyrus 

    ROI16 -6 -29 46 Right Medial Frontal Gyrus/ BA 8  

    ROI17 48 55 46 Left Inferior Parietal Lobule/BA40 

IC08 Basal Ganglia ROI18 -15 -5 7 Right Lentiform Nucleus  

    ROI19 18 -2 7 Left Lentiform Nucleus/ Putamen  

IC09 DMN ROI20 6 64 34 Left Precuneus / BA 7 

    ROI21 36 64 46 Left Superior Parietal Lobule/BA 7 

IC10 Temporal Gyrus ROI22 -57 49 16 Right Superior Temporal Gyrus  

    ROI23 54 55 22 Left Superior Temporal Gyrus  

    ROI24 6 52 40 Left Precuneus  

    ROI25 3 -53 28 Left Superior Frontal Gyrus/ BA 9 

    ROI26 -54 -26 7 Right Inferior Frontal Gyrus/BA45 

    ROI27 -9 -29 61 Right Superior Frontal Gyrus 

    ROI28 51 -23 10 Left Inferior Frontal Gyrus/ BA 45 

IC12 Fusiform gyrus ROI29 33 61 -14 Left Declive  

    ROI30 -33 58 -14 Right Declive  

    ROI31 24 -5 -14 Left Subcallosal Gyrus / BA 34 

    ROI32 -24 -8 -17 Right Inferior Frontal Gyrus/BA47  

IC13 Higher vis cortex ROI33 -21 94 1 Right Cuneus 

    ROI34 21 94 1 Left Cuneus 

IC16 Dorsal Attention ROI35 -39 37 64 Right Post central Gyrus  

    ROI36 48 28 40 Left Post central Gyrus/ BA 2  

    ROI37 48 64 -2 Left Inferior Temporal Gyrus  

IC17 Middle Front. Gyr. ROI38 6 -47 10 Left Medial Frontal Gyrus/ BA 10 

    ROI39 9 -29 58 Left Superior Frontal Gyrus 

IC19 Motor Cortex ROI40 -57 4 28 Right Pre-central Gyrus 

    ROI41 57 4 25 Left Precentral Gyrus 

IC20 Inf Front. Gyrus ROI42 -48 -17 25 Right Inferior Frontal Gyrus/ BA 9 

    ROI43 -33 -26 -8 Right Inferior Frontal Gyrus 

    ROI44 45 -17 25 Left Inferior Frontal Gyrus / BA 46  

    ROI45 33 -26 -11 Left Inferior Frontal Gyrus 

    ROI46 -33 55 49 Right Superior Parietal Lobule 

    ROI47 -3 -20 55 Right Superior Frontal Gyrus/ BA 6 

 

Voxel-wise analysis  

We also used voxel-wise analysis to complement the region-of-interest analyses. 

We compared all patients vs. healthy volunteers to investigate frequency specific group 

level differences. Primary analyses focused on comparing all patients compared to 
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healthy volunteers with ancillary analyses focused on the comparison of first-episode and 

chronic patients with healthy volunteers and group comparisons by site. To reduce any 

residual effect of motion on mAFF differences we included individuals mean frame-wise 

displacement in the group level analysis as a covariate
77,84,85

. Group level statistics maps 

were thresholded at p<0.01 with correction for multiple comparisons performed using 

“3dClustSim.” These group level differences were overlaid onto the surface level maps 

using BrainNetviewer
71

 (figure 26).  
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CHAPTER IV 

 

RESULTS 

 

4.1 Estimating and quantifying frequency specific functional connectivity 

 

4.1.1 Subject exclusion results 

 

We applied multiple selection criteria to create a homogeneous sample from a 

total of 129 subjects available in the first release of NKI-RS. First, we excluded those 

with known history of neurological, psychological and physiological disorders (e.g. high 

or low blood pressure) yielding a remaining sample size of 84. Then, only subjects 

between the ages of 18 to 35 years were included (n=31). Lastly, we discarded subjects 

with large head motion (> one voxel edge) in any direction. In total, 21 subjects (mean: 

24 years, std: 4 years, 12 female) were included for further analyses. 

4.1.2 Hypothesis test results 

 In the first project, we aim to answer the first three research questions and test 

corresponding hypothesis. 

Independent component analysis 

 12 different RSNs were identified in the group ICA output. Each of the 12 spatial 

IC maps, along with the corresponding (total) power spectrum, is shown in Figure 5: 

visual networks (VIS1-3, figure 5A-C), the default mode network (DMN1, figure 5D), 

the left-frontal parietal network (LFP, figure 5E), the dorsal attention network (DAN, 

figure 5F), the right-frontal parietal network (RFP, figure 5G), the default mode network 



67 
 

(DMN2, figure 5H), the superior temporal gyrus (STG, figure 5I), the salience network 

(SAL, figure 5J), the pre-central gyrus (PCG1, figure 5K) and the inferior frontal gyrus 

(figure 5L). Figure 5 also displays the relative contribution of power in each of the five 

frequency bands to the total power for each of the identified RSN. In 9 out of 12 

identified RSNs, frequency band slow-4 (0.027-0.073) represented highest power (~30%) 

compared with other frequency bands. Slow-3 frequency band displayed highest power in 

the temporal gyrus (33%), the higher visual cortex (30%) and the inferior frontal gyrus 

(38%) while the slow-5 band accounted for highest power in the default mode network. 

Slow-2 accounted for ~5% power across all the RSNs with highest relative contribution 

observed in the salience network (15%). The (partial) slow-1 frequency band studied here 

(0.5-0.75 compared to 0.5-1.25 Hz) represented relatively less (<5%) of the total power 

in frequency band across all the RSNs. The contribution of slow-4 and slow-3 frequency 

bands was found to be highly similar across all the RSNs (figure 5N). 

Figure 6 displays various RSNs derived using group ICA performed on filtered 

BOLD fMRI data in five different frequency bands. All the RSNs were consistently 

observed across 3 different frequency bands (slow-5, slow-4 and slow-3) though 

frequency band specific differences can be observed for each of the networks. Spatial 

maps representing the motor networks, the IFG and the DMN showed decreased spatial 

extent in frequency band slow-2 though the left/right frontal-parietal network (figure 6E, 

G) and the temporal gyrus were consistently present. Group ICA performed on slow-1 

frequency band resulted in noisy maps for various RSNs.  
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Figure 5: Power spectrum analysis on group level independent component time series 

from 13 resting state networks (A-C) Visual cortex (VIS 1-3), (D) default mode network 

(DMN) (E) Left frontal-parietal network (LFP), (F) dorsal attention network (DAN), (G) 

right frontal parietal network (RFP), (H) anterior default mode network (a-DMN), (I) 

superior temporal gyrus (STG), (J) Salience network (SAL), (K) pre-central gyrus (PCG), 

(L) Inferior Frontal gyrus (IFG). Bar plot represents percentage of power explained by 

each of the frequency bands for various networks. 

The results obtained from these analysis supports the hypothesis that power 

distribution of BOLD signal in across resting state networks is heavily tailored towards 

low-frequency fluctuations (slow-4 and slow-5), though higher BOLD signal frequencies 

specifically, represented by slow-3 and slow-2 contribute significantly to BOLD signal 

power across various RSN. In addition, the RSFC pattern derived across RSN was found 

to be quite similar supporting the hypothesis at RSFC is present at multiple frequency 

bands and is not limited to LFFs. 
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Figure 6: Group Independent Component Analysis maps from 1000 FCP project and 

corresponding group ICA maps derived from different frequency bands (LF- HF6) where 

IC01-IC03 (visual network), IC06 (default mode network), IC08 (left frontal parietal 

network), IC11 (right frontal parietal network), IC16 (Temporal Gyrus), IC17 (salience 

network), IC19 (motor network). 

 

Seed based correlation 

 Figure 7 displays group level seed based correlation maps derived using seven 

different seed regions for each of the five frequency bands (slow-5 to slow-1) (p<0.05, 

FDR corrected). Known patterns of RSNs for each of the seed regions were observed 

across all the frequency bands, though frequency specific differences in spatial extent 

were observed. With an increase in BOLD signal frequency band from slow-5 to slow-1, 

little difference was observed in positively correlated brain regions while negatively 

correlated brain regions decreased across all the group level correlation maps. 

Specifically, connectivity patterns in slow-5, slow-4 and slow-3 bands were quite similar 
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for all the seed regions with the exception of the FEF. Across different frequencies, 

consistent inter-hemispheric connectivity was observed between a seed regions and 

corresponding brain region on contralateral side (Figure 7). The Spatial extents of MTG, 

LPC and MPF regions were found to be highly similar in slow-3 frequency band (0.073-

0.198 Hz) and slow-4 frequency bands, while other seed regions displayed highest spatial 

extent in slow-4 frequency band (0.027-0.073 Hz). Spatial extent at slow-3 frequency 

bands was found to be higher than slow-5 frequency band for all the seed regions. Spatial 

extent of group level maps for all the seed regions, although decreased considerably at 

slow-2 and slow-1 frequency band, significant correlation was observed between a seed 

region and the corresponding brain region on contralateral side. Group level correlation 

maps for FEF displayed largest differences in spatial extent across frequency bands while 

IPS and MPF displayed smallest differences (figure 8). 

Similar to spatial extent, frequency specific differences were also observed in 

mean positive/negative connectivity strength across various seed regions. LPC and MPF 

displayed stronger positive connectivity in slow-3 frequency band compared to other 

frequency bands while FEF, IPS and MTG displayed stronger positive connectivity in 

slow-4 frequency band. 



71 
 

 

Figure 7: Group level seed based correlation maps for each of the 5 specific frequency 

bands slow-5, slow-4, slow-3, slow-2 and slow-1 for 7 different seed regions, FEF 

(Frontal eye field), IPS (Inferior parietal sulcus), LPC (Lateral parietal sulcus), MPF 

(Medial prefrontal gyrus), MTG (Middle temporal gyrus), PCC (Posterior cingulate), 

PCG (Pre-central gyrus). One-sample t-test results are thresholded at p<0.05 with FDR 

correction. 

Positive connectivity strength for slow-2 and slow-1 frequency bands was highly 

similar across seed regions and was found to be weaker than low-5 frequency band at all 

the seed regions except for MPF and PCG. Connectivity strength at slow-4 and slow-3 

frequency bands was found to be higher than slow-2 and slow-5 frequency bands.  
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Figure 8: Frequency specific effects on spatial extent of group level seed based 

correlation maps (top panel), mean positive connectivity strength (middle panel) and 

mean negative connectivity strength (lower panel) for 7 different seed regions, FEF 

(Frontal eye field), IPS (Inferior parietal sulcus), LPC (Lateral parietal sulcus), MPF 

(Medial prefrontal gyrus), MTG (Middle temporal gyrus), PCC (Posterior cingulate), 

PCG (Pre-central gyrus). One-sample t-test results are thresholded at p<0.05 with FDR 

correction. 
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Compared to positive connectivity strength, negative connectivity strength was 

found to be consistent and weaker across all the frequency bands for each of the seven 

seed regions. Negative connectivity was found to be stronger in slow-3 frequency bands 

for PCG, MTG, and LPC while IPS and PCC displayed stronger negative connectivity in 

slow-4 frequency band. In summary, using ICA and seed based correlations; although 

slow-4 and slow-5 frequency bands largely affect RSNs, BOLD fluctuations in slow-3, 

slow-2 and slow-1 frequency bands also contribute significantly to RSFC (figure 8).  

Compared to group ICA, frequency bands specific differences in seed based 

connectivity were widespread and mainly affected the spatial extent of the RSNs. In 

addition, we observed consistent negative correlation between brain regions belonging to 

two different types of networks across multiple frequency bands implying possible 

importance of these higher frequency BOLD fluctuations on inter-network 

communications. These results support the hypothesis that changes in BOLD signal 

frequency has larger effect on RSFC derived using seed based correlation analysis. In 

addition, these results also provides proof regarding possible role of higher frequency 

BOLD fluctuations in between network communications. 

Figure 9 displays inter-subject correlation for each of the five frequency bands. 

Only significant connectivity pairs are reported (p<0.1, FDR corrected). Connectivity 

between ROIs belonging to same networks is displayed by dotted edges. Hot colored 

edges represent significant positive inter-subject correlation in BOLD signal amplitude 

while cold colored edges represent negative correlation. Higher number of connections 

was observed in high frequency BOLD fluctuations (slow-1 and slow-2) compared to 

low-frequency BOLD fluctuations (slow-3 to slow-5). Left-right, pre-central gyrus 
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displayed consistent positive inters-subject correlation of BOLD signal amplitude across 

all the frequency bands except in the slow-1 frequency bands. Part of left and right frontal 

parietal networks displayed positive correlation with DAN ROIs in slow-4 and slow-3 

frequency bands while positive connectivity between lingual gyrus ROIs was consistently 

present at all the frequency bands except slow-5.  

 

Figure 9: Inter-subject correlations for BOLD signal amplitude contained in specific 

frequency band for ROIs defined using group level ICA (A) slow-1 (B) slow-2 (C) slow-

3 (D) slow-4 (E) slow-5. Results are thresholded at p<0.1 with FDR correction.  

 

Highest number of connections was observed in slow-2 (0.198-0.5 Hz) frequency 

band followed by slow-1 frequency band. Regions of interest from default mode network, 

dorsal attention network, visual network and salience network displayed higher stronger 

correlation within the network in slow-2 frequency band. Right frontal-parietal network 

ROI displayed stronger positive correlation with default mode, dorsal attention, left 
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frontal parietal network and negative correlation with pre/post central gyrus. Pre/post 

central gyrus displayed strong negative correlation with ROIs from DMN and DAN 

network. 

 

Figure 10: Time-frequency analyses on the un-filtered resting state time series from 7 

distinct seed regions, Frontal Eye Field (FEF), Inferior parietal sulcus (IPS), Lateral 

parietal cortex (LPC), Medial prefrontal cortex (MPF), Middle temporal gyrus (MTG), 

Posterior cingulate cortex (PCC), pre-central gyrus (PCG). 

Figure 10 displays the wavelet spectrogram for one representative subject for each 

of the seven seed region. The x-axis displays the scanning time in seconds while y-axis 

displays the period of the signals. Seed regions belonging to task negative networks, such 

as medial prefrontal cortex, posterior cingulate cortex, and lateral parietal cortex showed 

higher power in low-frequency range while regions from task positive regions such as 
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inferior parietal sulcus, frontal eye filed and middle temporal gyrus showed higher power 

in relatively higher frequency range. 

 

Figure 11: Cross-coherences analysis between all the pairs for 7 distinct seed region time-

series, Frontal Eye Field (FEF), Inferior parietal Sulcus (IPS), Lateral parietal cortex 

(LPC), Medial Prefrontal Cortex (MPF), Middle Temporal Gyrus (MTG), Posterior 

Cingulate Cortex (PCC), Pre-central Gyrus (PCG) 

Based on the results obtained in wavelet analysis, we performed a wavelet 

coherence analysis to determine interaction between brain regions as a function of time 

and frequency. Figure 11 displays the wavelet coherence maps for each of the 21 

different seed pairs (n*(n-1)/2, n=7 seed regions. Similar to results obtained in figure 8, 

seed regions belonging to same type of network (task positive or task negative) showed 

higher power in low-frequency band while regions belonging to two different types of 
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networks (task positive or task negative) showed higher power in higher frequency range. 

Figure 11 A1 shows cross wavelet coherence analysis maps for each of the ROI pair 

while figure 11A2 shows only one of the coherence maps representing the axis. Figure 

11B shows the structure of the correlation matrix of where each cell represents a cross-

wavelet coherence map. These results support the hypothesis that frequency specific 

power distribution in BOLD fMRI signal changes across scanning session length. The 

results obtained in cross wavelet analysis further support the claim that functional 

integration between brain regions from distinct network is high in high-frequency bands 

compared to low-frequency bands and is dependent on the networks being studied. 

4.2 Effects of frequency based RSFC on whole brain network topology 

 

4.2.1 Subject exclusion results 

We applied multiple selection criteria to create a homogeneous sample from a 

total of 170 subjects available in the second release of NKI-Enhanced Rockland Sample. 

First, we excluded those with known history of neurological, psychological and 

physiological disorders (e.g. high or low blood pressure) yielding a remaining sample 

size of 100. Then, only subjects between the age range of 18 to 35 years were included 

(n=40). Lastly, we discarded subjects with large head motion (> one voxel edge) in any 

direction. In total, 27 subjects (mean: 25 years, std: 3 years, 14 female) were included for 

further analyses. 

4.2.2 Hypothesis test results 

Figure 12 displays the group level mean correlation matrices for each of the five 

frequency bands. As visible from figure, the correlation matrices across frequency bands 
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show distinct RSFC connectivity pattern. The RSFC at slow-4 and slow-5 frequency 

bands is more segregated in to multiple networks compared to the slow-1 and slow-2 

frequency bands. In addition, as can be seen adjacent frequency bands display similar 

patterns of connectivity across ROI pairs (slow-1and slow-2, slow-4 to slow-5), though 

connectivity pattern between slow-1 to slow-4 and slow-5 was different.  

 

Figure 12: Mean Functional Connectivity matrix derived from a total of 27 subjects, 

across 5 different frequency bands. The six different network studied are: CBN- 

cerebellum network, CON-cingular-opercular network, DMN- default mode network, 

FPN-frontal-parietal network, OCN- occipital network, and SMN-sensory motor 

network. 
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Global properties of graph theoretical analysis 

In the current study, our first goal was determine differences in graph theoretical 

properties of whole brain RSFC across different frequency bands. To this end, we 

calculated global graph theoretical properties (clustering coefficient and path length) 

across the whole sparsity range (0-1) for both the real networks and matched random 

networks for each of the subjects. We observed similar trends of clustering coefficient 

and path length across frequency bands. Clustering coefficient (CC) at frequency bands 

slow-1 and slow-2 was high similar and was lower compared to CC at slow-3, slow-4 and 

slow-5 bands. In addition, slow-1 and slow-2 displayed the minimal path length 

compared to slow-3, slow-4 and slow-5 (figure 13).  
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Figure 13: Graph theoretical properties of clustering coefficient, local efficiency, path 

length and global efficiency for five distinct frequency bands (slow-1, slow-2, slow-3, 

slow-4 and slow-5) 

We also observed that global efficiency across the frequency bands was quite 

similar while the local efficiency was quite different. Local efficiency was found to be 

similar in slow-4 and slow-5 frequency bands and was higher compared to other 

frequency bands slow-1 and slow-2. Slow-3 frequency bands displayed local efficiency 

higher than slow-1, 2 but lower than slow-4, and slow-5.  

As seed in figure 14, we observed that gamma was higher than 1 across the 

sparsity range 0-50, for each of the frequency bands while lambda was found to be equal 

to 1 across the sparsity range 10-50 for all the five frequency bands. These results imply 

that functional brain connectivity across all the frequency bands represent a small-world 

architecture, where the clustering coefficient for the brain network is higher than random 
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network while the global path length is quite similar to that of random network. Whole 

brain RSFC at each of the frequency band was organized in to small-world architecture, 

but small-world indices for slow-4 and slow-5 frequency bands were higher compared to 

slow-3, slow-2 and slow-1 frequency bands in that order. 

 

Figure 14: Normalized clustering coefficient (gamma) and normalized path length 

(lambda) for five distinct frequency bands (left side) and small-world index (sigma = 

ration of gamma to lambda) for five distinct frequency bands (right side). 

Nodal properties of RSFC across frequency bands and hubs of the networks 

Hubs of global brain connectivity: In order to derive the hubs of functional brain 

topology across frequency bands, we calculated each of the nodal properties of degree, 

betweenness centrality and Eigen vector centrality at the sparsity of 30. Figure 15 

displays the distribution of these three different nodal properties. For each of the nodal 

properties, hubs were defined as brain regions showing higher than 1.5 SD distance from 
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the mean. As seen in figure 15, the hubs of slow-1 and slow-2 frequency bands were 

located in the posterior section of the brain and mostly contained posterior cingulate 

cortex and visual regions. On the contrary, the hubs of slow-5 and slow-4 network were 

located near the central sulcus of the brain and mostly consisted of pre-/post-central 

gyrus, inferior frontal gyrus and posterior cingulate cortex. 

 

Figure 15: Distribution of degree, betweenness and Eigenvalue centrality of all the brain 

regions at the sparsity of 30. Glass brain figures display the hubs of the brain identified 

using three distinct nodal measures for five frequency bands 

Differences in nodal properties across frequency bands 

In order to study differences nodal graph theoretical properties for each of the 

nodes, we first studied changes in distribution of each of the nodal properties across 

frequency bands. We observed significant differences in the nodal distribution across 

frequency bands for each of the three nodal measures. Due to differential degree 

distribution observed between the frequency bands for each of the nodal properties, hubs 

of brain network were defined by extracting the top 5% (8 ROIs) for each of the nodal 

properties across the frequency bands. Figure 15 displays the fitted histogram for each of 
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the nodal distribution and corresponding hubs for each of the frequency bands and each 

of the nodal properties. Increased in the variability of nodal properties was observed in 

higher frequency bands (slow-1 and slow-2) compared to the low frequency bands (slow-

4 and slow-5).  

We observed the degree distribution to be narrower in slow-4 and slow-5 

frequency bands while for slow -1 and slow-2 frequency bands the degree distribution 

was wider and skewed towards higher degree. Hubs for slow-1 and slow-2 frequency 

bands were mainly located in occipital and parietal cortex while no hub ROIs were 

located in frontal cortex. Comparatively, slow-3 displayed hubs in occipital cortex, insula 

and in supplementary motor area. The hub ROIs for slow-4 and slow-5 frequency bands 

were located in the motor cortex and basal ganglia regions (figure 16). 

 

Figure 16: Nodes with in top 5, 10 and 20 percentiles degree across five frequency bands 

 

We observed differential betweenness centrality distribution across frequency 

bands. The hubs ROIs for slow-1 frequency bands were mainly located in parietal cortex 
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while one of the hubs was also located in medial pre-frontal cortex. The hub ROIs were 

quite similar between slow-1 and slow-2 frequency bands. The hub ROIs for slow-3 

frequency bands were located in temporal cortex and basal ganglia regions. Slow-4 hubs 

ROIs were mainly situated in ACC and frontal regions while the hubs in slow-5 

frequency bands were mainly situated in temporal gyrus and insula. We also observed 

presence of at least one of the occipital ROIs as hubs across all the frequency bands 

(figure 17). 

 

Figure 17: Nodes with in top 5, 10 and 20 percentiles betweenness centrality across five 

frequency bands 

 

The distribution of Eigen vector centrality was found to be very similar across the 

frequency bands. The hubs for slow-4 and slow-5 frequency bands were mainly located 

along the pre-central and post-central gyrus. While hubs for slow-1, slow-2 and slow-3 

frequency bands were quite similar to the hub regions identified using nodal degree 

(figure 18). 
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Figure 18: Nodes with in top 5, 10 and 20 percentiles Eigenvector centrality across five 

frequency bands  

 

In order to further classify, the similarities and differences in hub architecture 

between the frequency bands, we also derived regions showing degree in top 10 

percentile. Based on these regions, we identified the brain regions showing consistently 

higher degree across the frequency bands and the regions showing high degree in one of 

the unique frequency bands. Figure 19 displays the brain regions showing higher degree 

across all the frequency bands and mainly consist of regions in posterior cingulate cortex, 

temporal gyrus and insula. In addition, SMA is also one of the regions showing higher 

degree across frequency bands. Figure 20 displays the brain regions showing uniquely 

higher degree across frequency bands. We observed higher number of unique hubs in 

slow-5 frequency bands compared to other frequency bands, additionally, all the hubs in 

slow-5 bands were located in the central sulcus of the brain. In addition, the hubs of slow-

1 and slow-2 frequency bands were located in the posterior section of the brain. 
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Figure 19: Nodes of the whole brain network that show consistently higher degree across 

frequency bands and hence are important irrespective of the frequency bands studied. 

Modularity 

We observed significant decrease in modularity as slow-1 and slow-2 frequency 

bands compared to slow-3, slow-4 and slow-5 frequency bands. Frequency band slow-4 

displayed highest modularity while slow-1 displayed lowest modularity. Across all the 

frequency bands, we observed three distinct modules that represented frontal lobe, 

parietal/temporal lobe and occipital lobe thought connectivity between these modules 

varied significantly across frequencies. The three modules in slow-1 frequency bands we 

highly inter-connected (figure 21A). The Frontal module also had connections in PCC 

and superior parietal regions, while the occipital and cerebellar ROIs formed a distinct 

module. The modules at slow-2 frequency bands displayed similar connectivity pattern as 

seen in slow-1 frequency band though higher number of ROIs in temporal and parietal 

lobe showed increased connectivity the frontal module (figure 21B). With decrease in 
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frequency bands, slow-3 displayed highly modular network structure, where the 

connectivity within modules was stronger compared to between network modules.  

 

Figure 20: Nodes of the whole brain networks that show consistently higher degree in any 

one of the bands but not in any other frequency band 

 

As seen in the surface level maps, the spatial distribution of modular architecture 

was highly intertwined with ROIs in default mode network were represented in the same 

module. We also observed similar modularity property for slow-4 frequency band, where 

the higher visual cortex regions formed a complete module (figure 21D, red), one module 

resembles default mode network (figure 21D, blue) and the green module represented 

motor/ attention network. Similarly, in the frequency band slow-5 the ROI modules were 

highly segregated compared to slow-1 and slow-2 frequency bands but showed less 
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segregation compared to slow-4 and slow-5, thought the ROIs resembled similar modular 

architecture as seen in slow-4 frequency band (figure 21). 

 

Figure 21: Modularity for five distinct frequency bands across the sparsity range (central 

figure). The modules identified at sparsity of 0.3 are displayed to explain interaction 

between them and to associate which module each of the ROI belongs. 

In addition, to understand whether the differences in the modularity can be 

associated with Euclidian distance between the brain regions, we calculated Euclidian 

distance between for each of the 12720 ROI pairs. The distance was calculated separately 

for left and right hemisphere to avoid the inter-hemispheric connectivity. Figure 22 

displays the scatterplots between Euclidian distance and functional connectivity between 

brain regions. As expected, we observed a negative relationship between RSFC strength 

between two regions and Euclidian distance between two regions, although the 

relationship was stronger in slow-5 and slow-4 frequency bands compared to slow-1 and 

slow-2 frequency bands. 
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Figure 22: Relationship between functional connectivity in different frequency bands and 

the Euclidian distance between the two ROIs. Euclidian distance is calculated separately 

for left (red dots) and right hemisphere (black dots) 

 These results obtained from graph theoretical analysis shed light on the changes in 

the whole brain network topologies across various frequency bands and describe the 

effect of frequency based RSFC changes on whole brain network topologies. 

Specifically, we observed that brain network topologies at slow-2 and slow-1 is more 

similar to random network topology that supports high global efficiency of information 

transfer. In addition, these slow-2 and slow-1 networks showed significantly higher 

synchonizability implying the network being in the critical dynamic state that may 

support the wide scale changes in network topologies in response to external stimuli. 

Additionally, we observed that although network hubs of the whole brain connectivity 

frequency dependent, brain regions in temporal gyrus, sensory motor network and 

posterior cingulate cortex have higher degrees, irrespective of the frequency bands. These 
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results support the hypothesis that large-scale changes in brain network topologies are 

observed across various BOLD signal frequency bands. 

4.3 Disruption of frequency specific BOLD signal power in schizophrenia 

4.3.1 Subject exclusion results 

We used several motion thresholding criteria to reduce its effect on the BOLD 

fMRI data. First, consistent with our prior study, we only included individuals 

demonstrating < 1 voxel maximum motion in any direction
74

. In addition, for each 

subject we computed frame-wise displacement as defined by Jenkinsons and colleagues
86

 

and only individuals demonstrating mean frame wise displacement less than 0.5 mm were 

included in the analysis. The exclusion of individuals based on frame-wise displacement 

is a relatively recent technique that has been more widely implemented due to recent 

studies demonstrating a relationship between micro-movements (<1mm) and resting state 

functional connectivity. In the current study, our goal was to study changes in BOLD 

signal power at frequencies higher than 0.1 Hz, which imply faster changes in this signal. 

Although no studies to date have examined the relationship between frame-wise 

displacement and BOLD signal power higher than 0.1 Hz, based on results of low 

frequency fluctuations
84

, higher frame-wise displacement could conceivably affect 

BOLD signal power >0.1 Hz. We therefore implemented a stricter frame-wise 

displacement threshold in the current study. A total of 31 patients (mean age = 36.0; std = 

14.1; 24M/7F) with schizophrenia and 50 healthy controls (mean age = 33.8; std = 11.4; 

34M/16F) survived the motion threshold and hence were used in further analysis. 
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4.3.2 Hypothesis test results 

Group independent component analysis 

There were no significant differences between patients and healthy volunteers in 

distributions of age, sex and motion. Based on comparison with the FCON-1000 ICA 

maps, we identified 14 independent components. Figure 23 displays the group level 

independent component maps and the corresponding regions-of-interest derived for this 

study are highlighted in the figure. The resting state networks in this study included (A) 

visual cortex, (B) salience network, The resting state networks in this study included: (A) 

visual cortex; (B) salience network; (C) left-frontal parietal network; (D) insular Cortex; 

(E) right frontal-parietal network; (F) basal ganglia network; (G) default-mode network 

(posterior part); (H) default mode network (Anterior section); (I) fusiform gyrus; (J) 

higher visual network; (K) dorsal attention network; (L) frontal gyrus; (M) motor 

network and (N) inferior frontal gyrus. Table 2 lists the MNI coordinates for all regions-

of-interest and corresponding resting state networks. 
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Figure 23: Group IC maps and corresponding ROIs. (A) IC01: visual, (B) IC03: salience, 

(C) IC05: left frontal parietal network, (D) IC06: insular cortex, (E) IC07: right frontal 

parietal network, (F) IC08: basal ganglia, (G) IC09: default-mode network (posterior 

section), (H) IC10: default-mode network (anterior section), (I) IC12: fusiform gyrus, (J) 

IC13: higher visual network, (K) IC16: dorsal attention network (L) IC17: frontal gyrus, 

(M) IC19: pre-central gyrus and (N) IC20: inferior frontal gyrus and anterior cingulate 

cortex. 

Repeated measures ANCOVA revealed a significant interaction of group by IC (F 

= 4.98, DF = 6.39, p < .001). Post-hoc analyses indicated significant main effects of 

group for visual cortex (F = 9.11, DF = 76, p = .003), dorsal attention (F = 7.76, DF = 76, 

p = .006) and motor cortex (F = 8.89, DF = 76, p = .003) such that healthy volunteers had 

higher scores compared to patients across the 3 frequency ranges. Significant main 

effects of group were also evident for the salience (F = 4.03, DF = 76, p = .046) and 

frontal gyrus (F = 5.75, DF = 76, p = .017) networks such that psychosis patients had 

higher mAFF scores compared to healthy volunteers across the 3 frequency ranges. Bar-

plots illustrating mAFF for each of these 5 resting state networks within each frequency 

band are provided in figure 24. 
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Figure 24: Group by frequency interaction for AFF value for five distinct networks 

 

In addition, the group x IC x frequency interaction was significant (F = 1.75, DF = 13.53, 

p = .042) and thus, we investigated group x frequency interactions for each of the ICs in 

post-hoc analyses. There was a significant group x frequency interaction for visual cortex 

(F = 3.57, df = 1.72, p = .038) with significant group differences evident in slow-2 (t = 

2.20, df = 79, p = .023; partial eta-squared = .023) and slow-3 (t = 2.24, df = 79, p = .024; 

partial eta-squared = .024), but with the greatest effect size in slow-4 (t = 3.20, df = 79, p 

= .002; partial eta-squared = .047). In addition, the group x frequency interaction was 

significant for the motor cortex (t = 4.10, DF = 1.63, p = .025) with the largest effect size 

evident in slow-3 (t = 3.33, DF = 79, p =0.001; partial eta-squared = .051) and to a lesser 

extent slow-4 (t = 2.38, DF = 79, p = .018; partial eta-squared = .027).  

There were also significant main effects of frequency for the dorsal attention (F = 

23.17, DF = 1.57, p < .001) and motor (F = 6.63, DF = 1.57, p = .003) networks such that 
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slow-4 was significantly higher than slow-3, which, in turn, was significantly higher than 

slow-2. A significant (F = 9.49, DF = 1.57, p < .001) main effect of frequency for frontal 

gyrus was evident, but there were no significant differences in frequency across groups. 

Neither the main effect of sex nor interactions with sex were statistically significant. 

 

Figure 25: Frequency specific differences in mAFF across frequency bands 

 

Figure 25 provides the group level comparisons for voxel wise analyses in each of 

the frequency bands (p<0.01, corrected for multiple comparisons using 3dClustSim). 

Consistent with the significant interaction effects from the region-of interest analyses we 

observed lower mAFF in the slow-3 frequency band within the bilateral motor cortex in 

all patients compared to healthy volunteers with the most robust effects observed in slow-

3. We also observed significantly lower mAFF in the visual cortex in all patients 

compared to healthy volunteers within the slow-2, slow-3 and slow-4 frequency bands 

that were most robust in slow-4 again consistent with the region-of-interest analyses. 

These results support the hypothesis of disruption of BOLD signal power in both low and 

high frequency BOLD signal in psychosis populations. The results from significant group 

x frequency interactions also suggest, significantly higher effect of psychosis on high 
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frequency BOLD fluctuations in slow-3 and slow-2 compared to low-frequency 

fluctuations in slow-4. 
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CHAPTER V 

 

DISCUSSIONS 

5.1 Estimating and quantifying frequency specific RSFC 

5.1.1 Interpretation of the findings 

In the current study, we used whole brain resting state functional MRI data 

acquired using short repetition time (645 ms) to investigate functional integration 

between brain regions during rest at multiple frequency bands. Various RSNs that have 

been commonly derived by BOLD signal in frequency bands slow-5 and slow-4 were 

consistently present at other BOLD frequency bands: slow-3, slow-2 and slow-1. These 

slow-3 to slow-1 frequency bands represent higher frequencies (0.073-0.75 Hz) compared 

with near-standard “low-frequency fluctuations” (0.01-0.073 Hz) represented by slow-4 

and slow-5. Although, earlier studies have derived the default-mode, the fronto-parietal, 

the sensory motor and the visual networks using BOLD fluctuation in high-frequency 

range (>0.1 Hz)
11,25,26

; the current work expands this notion to multiple other RSNs 

including the dorsal attention, the salience and the higher visual networks. Consistent 

significant connectivity between a seed region and its contra lateral hemispheric ROIs 

was also observed at all the frequency bands (slow-5 to slow-1). In addition, connectivity 

within regions from task-positive networks varied considerably across frequency bands 

while connectivity between regions from task-positive and task-negative networks was 

similar across frequency bands. 
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Electrophysiological studies have suggested that the human brain operates over a 

wide range of frequencies, characterized as ‘slow’ bands (<1.5 Hz), EEG bands (1.5 to 80 

Hz) and ‘fast’ bands (80-600 HZ)
9,87

. Even though EEG and fMRI signals represent 

different aspects of underlying neuronal activity (e.g., direct v/s indirect measures 

respectively), studies have associated multiple RSNs as identified by fMRI with one or 

more EEG rhythms
88–90

. In the current study, RSNs were derived based on BOLD fMRI 

signals temporally filtered in the each of the “slow” frequency bands as defined in 

electrophysiological studies. Current reports of consistent RSFC between network ROIs 

at various frequency bands along with results from previous fMRI and EEG studies imply 

that RSFC is a multi-frequency band phenomenon. The frequency band definitions used 

in the current study were based on the study by Penttonen and colleagues, who argued 

that different frequency bands in brain oscillations follow a natural logarithmic function
9
. 

Helps and colleagues on the other hand have suggested that these distinct frequency 

bands might not represent the frequency bands of natural neuronal oscillations
91

. This can 

imply that BOLD signal when studied in specific frequency bands may represent 

addition/subtraction effects of individual neuronal fluctuations and not a single process. 

In addition, earlier studies have shown that multiple neuronal processes can co-exist in 

the same cortical areas and that slower neuronal processes may modulate faster 

processes
7
. Thus, studying BOLD signal in specific frequency bands can relate to 

studying integration between these individual neuronal processes. Study and 

interpretation of each individual neuronal process would require deeper understanding of 

underlying neurophysiological mechanism and better methods to represent these neuronal 

fluctuations. 
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Spatial extent of ICA-derived RSNs was found to be highly variable across 

frequency bands. RSNs such as the default mode, the visual and the sensory motor 

networks displayed greatest spatial extent in slow-4 frequency band (0.027-0.073 Hz), 

while other RSNs such as the dorsal attention, the left-right frontal parietal and the 

salience networks displayed highest spatial extent in slow-3 and slow-2 frequency bands. 

Decrease in spatial extent of the visual and the sensory motor network in slow-3 to slow-

1 frequency bands (>0.1 Hz) has been reported in earlier studies
11,25

; in the current work, 

this property was extended to several other networks. Moreover, this is the first study to 

display frequency specific differences in spatial extent and RSFC strength of different 

RSNs. These frequency specific differences in spatial extent can imply presence of some 

common neuronal oscillations in the regions of the same networks that are specific to a 

particular network. Earlier electrophysiological studies have shown significant 

correspondence between a specific RSN and specific EEG rhythms
90,91

; supporting the 

claim that connectivity within a RSN may be tailored to a specific frequency band. 

Alternatively, frequency specific differences in spatial extent with ICA could also be 

attributed to non-homogeneous presence of physiological noise across the brain in the 

specific frequency bands that are also known to reduce power of RSFC between brain 

regions
21

. 

Intra-network RSFC strength derived based on seed based correlation analysis for 

both task positive and task negative seed regions was found to be positive across all the 

frequency bands. Seed regions from task-positive network are known to be positively 

correlated with other task-positive brain regions and task-negative seed regions are 

known to be positively correlated with other task-negative regions in low-frequency band 
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(0.01-0.1 Hz)
16

. Similarly, in the current study, this positive connectivity within task 

positive and task-negative networks was observed at each of the frequency bands, though 

it was highly variable across seed regions and across frequency bands. Consistent 

positive inter-hemispheric connectivity between task-positive regions such as the 

left/right pre-central gyrus and visual cortex in BOLD frequencies higher than LFFs has 

been reported earlier using sliding-window approach
25

 which is similar to the consistent 

positive connectivity observed for PCG in current study for all the frequency bands. In 

addition, task-positive seed regions (FEF, IPS, and MTG) displayed stronger positive 

connectivity in slow-4 frequency band while task-negative seed regions (LPC, MPF, and 

PCC) displayed stronger connectivity in slow-3 frequency band. This distinct 

connectivity pattern for task positive and task negative networks may suggest presence of 

two distinct neuronal processes represented by these networks. Earlier ‘resting’ EEG 

studies have observed presence of a ‘default mode-like network’ in slow-3 frequency 

bands
91

 which is consistent with higher connectivity observed in slow-3 frequency band 

for task-negative network seed regions in current study. The same study also reported 

stronger associations between the EEG power in the slow-3 frequency band and self-

reported inattention in ADHD patients compared to controls within ‘DMN’ network but 

no differences were observed outside the network. This suggests that the frequency band 

specific differences observed in the current study for task-positive and task-negative 

networks may reflect underlying cognitive states and needs to be studied in detail with 

neurobehavioral measures. 

 Task-positive and task-negative networks are known to be anti-correlated
16

. While 

in a particular class of cases this strong negative correlation is likely attributed to data 
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processing methodology that involves global signal regression
92

, other studies have 

confirmed presence of anti-correlated networks in human brain
77

. In the current work, no 

global signal regression was implemented, hence as expected connectivity between task 

positive and task negative networks was found to be weaker compared to connectivity 

within network. In addition less variation in negative connectivity strength was observed 

across different frequency bands compared to positive connectivity for all the seed 

regions. These results suggest that, unlike within-network functional integration that may 

be frequency band specific, between-network functional integration may occur over a 

wider range of frequencies. Earlier studies have shown significant effects of 2-choice RT 

task v/s rest conditions on EEG power both within a ‘default mode like network’ (task 

negative) and outside of a ‘default mode like network’ (task-positive)
91

. Specifically, 

EEG power within default mode network channels has been shown to be higher in ‘rest’ 

compared to ‘task’ condition in slow-3 and slow-2 frequency band while channels outside 

the default mode network displayed the inverse pattern associated with task-switching. 

This implies a coupling between task-positive and task-negative network associated with 

rest/task switching process for goal directed behavior to be present across multiple 

frequency bands. In combination with earlier EEG studies, current results of consistent 

negative correlation observed between task positive and task negative network brain 

regions imply functional integration between networks to be present at wider-frequency 

band.  

In the analyzed data, resting state BOLD signal was found to have significant 

power contribution from each of the frequency bands with exception of slow-1 frequency 

band. This is expected because sampling frequency used in the current study although 
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higher than tradition fMRI sampling frequency (1.5 Hz compared to 0.5 - 0.33 Hz in 

tradition MRI), cannot cover the whole–frequency band of slow-1 fluctuation (0.5-1.5 

Hz). In the current study, resting state BOLD fluctuations from slow-5 (0.01-0.027 Hz), 

slow-4 (0.027-0.073 Hz) and slow-3 (0.073-0.198 Hz) frequency bands accounted for 

similar amount of power in the BOLD signal across various networks. Although, 

traditional fMRI bandwidth can measure BOLD fluctuations in slow-3 frequency band, 

resting state fMRI studies have temporally filtered BOLD signal in slow-5 and slow-4 

frequency bands to avoid effects of respiratory signal in RSFC analysis and due to power 

contained in this frequency band
1
. This respiration signal, known to be present at ~0.3 Hz 

21
 may overlap with hemodynamic response due to underlying neuronal fluctuations in 

slow-3/slow-2 frequency band. This implies that regressing CSF/WM signals out from 

the data (thought to be highly contaminated by respiration signal) may also reduce the 

power of BOLD signal in slow-3/slow-2 frequency bands. In addition, the BOLD signal 

is known to be inherently low frequency signal due to slow hemodynamic response to 

neuronal firings acting as a low-pass filter. This implies that multi-frequency band 

neuronal oscillations in the brain will be low-pass filtered with higher power in low-

frequency band and decreased power in high-frequency band. This could explain limited 

power contained in slow-2 frequency band (0.198-0.5 Hz). The results from the current 

study show that the BOLD signal in higher-frequency bands even though not sampled 

completely (slow-1) and be attenuated through hemodynamic response (slow-3, slow-2 

and slow-1), is still highly correlated across brain regions and displayed RSNs similar to 

BOLD fluctuations in low-frequency range (slow-5, slow-4). This implies that these 

BOLD fluctuations in slow-3, slow-2 and slow-1 frequency bands has significant 
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presence of neuronal fluctuations and may provide more information about functional 

integration in brain.  

The noise sources in the BOLD signal are typically thought to comprise of the 

respiration signal (0.2-0.3 Hz) and cardiac signal (1 Hz). Using a high temporal sampling 

rate that results in higher frequency resolution, we have been able to correctly sample the 

main respiration signal, though the aliasing of the cardiac signal could not be avoided. 

Earlier studies have used RETROICOR to remove effects of physiological noises from 

BOLD fMRI data, which requires explicitly recording cardiac and respiratory signal
93

. 

Due to the lack of physiological measurements for subjects in current study data, 

RETROICOR could not be implemented. Other studies have also used the regression of 

time series from CSF/WM as a means of removing effects of physiological signals from 

resting state fMRI data. In a recent study, Chai and colleagues used five principal 

components from CSF/WM time series to regress effects of physiological noises from the 

data 
68

. Here, similar to this method we have used principal components of CSF/WM 

time series and derivatives of motion parameters to regress effects physiological noises 

and head motion effects out from the data. Future studies involving specifically recorded 

physiological signals would help improve the robustness and reliability of RSFC in 

multiple frequency bands. 

5.1.2 Limitations and future directions 

One of the major limitations of current study is the lack of higher sampling 

frequency that can cover the whole slow-1 frequency band. It may be possible that with 

further technical advancement, the sampling rate can be increased, then one can study the 
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whole ‘slow’ frequency band (up to 1.5 Hz). This may enhance similarities between 

findings from electrophysiological studies focusing on ‘fast’ neuronal processes and 

fMRI studies focusing on ‘slow’ neuronal processes. In addition, current study used 

regression of CSF/WM time series to reduce the effect of physiological noises from 

BOLD signal. Future studies using direct measurements of physiological noises source 

(respiratory signal and cardiac signal) can improve reliability and robustness of the 

results obtained in current study. It may be possible that by using higher sampling 

frequency and by greatly reducing effect of physiological noises sources, one can better 

define this functional integration between brain regions leading to other resting state 

networks, which may reflect equally, or more important neuronal processes. 

5.2 Effects of frequency based RSFC on whole brain network topology 

5.2.1 Interpretation of findings 

In the current study, we investigated network topological properties of resting 

state functional connectivity across multiple frequency bands ranging from 0.01 to 0.75 

Hz, using a multiband high temporal resolution (TR=645 ms) open-access data. This is 

the first study to systematically investigate network properties across multiple frequency 

bands higher than the low-frequency range (0.01-0.1 Hz). We observed that functional 

brain connectivity across various frequency bands is organized in small world 

architecture, though large-scale differences are observed in small world parameter, 

modularity index and hub distribution, across frequency bands. On the contrary global 

efficiency of information transfer was found to be quite similar across the frequency 

bands.  
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In the current study, we segmented the whole frequency band from 0-0.75 Hz in 

to five distinct frequency bands based the studies by Buzsaki and Colleagues
7,87

. 

Although, these studies are based on the EEG and LFP, in a recent study by Achard and c 

colleagues
39

, using wavelet transform on BOLD fMRI data, found similar frequency 

bands. In addition, recent studies have shown the presence RSFC in these very distinct 

frequency bands (slow-1 to Slow-5) implying that these slow-1- to slow-5 frequency 

bands representative of underlying neuronal fluctuations. 
74,94

 This implies that the BOLD 

signal fluctuations can also be studied in the frequency bands defined using EEG and 

LFP literature and share a common underlying neuronal mechanism. Additionally, 

similar to the current results, MEG studies have shown similar pattern of changes in 

clustering coefficients across frequency bands
95

 implying that various MEG frequency 

bands that are related to different cognitive functions are representative of various 

network connectivity pattern. In addition, connectivity properties in only part of EEG 

bands show small-world architecture implying that small-world properties are highly 

dependent on synchronization and cognitive functions rather than power in given signal. 

Although, in the current study the small world architecture was observed across all the 

frequency bands, changes in clustering coefficient, small-world coefficient and 

modularity point to differential connectivity pattern across frequency bands that may be 

based on cognitive roles of each of this frequencies and needs to be studied in detail. 

 The RSFC at slow-4 and slow-5 frequency bands was found to be stronger than 

the RSFC at slow-1 and slow-2 bands. In accordance with our hypothesis, whole brain 

resting state functional connectivity was organized in small world architecture in 

frequency bands higher than low-frequency range (0.01-0.1 Hz). In addition, small world 
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indices were found to be frequency dependent where as small world indices decreased 

with increase in frequency bands. Functional connectivity pattern at higher bands were 

found to be closer to random network patterns compared to slow-4 and slow-5 implying 

that the higher frequency bands have large number of high-density local connections 

while the lower frequency bands have stronger long-range connections. Earlier studies 

have shown that strength of synchronized oscillations in a neuronal network is increased 

by inclusion of long distance axonal projections, which mediate global topological 

shortcuts between spatially remote oscillators
7
 which are in accordance with stronger 

functional connectivity observed in the current study in the low-frequency range. In an 

earlier study by Basset and colleagues, similar pattern of the functional connectivity 

topology has been observed
81

, where lower frequency bands show higher small world 

indices compared to higher frequency bands, although in the MEG setup. These results 

imply that the differential small world architecture across frequency bands observed in 

the current study is based on underlying neuronal fluctuations as observed in earlier MEG 

/EEG studies.  

Studies have shown that the brain metabolic costs are very high but are kept as 

low-as possible for a function and much of the metabolic costs are attributed to 

maintaining the electro chemical gradient required to support signaling and coordination 

between neuronal activity between distinct brain regions
36,37

. A common consensus in 

neuroscience literature exists that brain networks are often functionally reconfigured less 

expansively in order to reduce metabolic costs in response to external stimuli. In addition, 

topology of brain networks is thought to be in critical state that enables rapid and robust 

large-scale reconfiguration of functional networks between regular and random networks 
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in response to external stimuli 
34,81,96

. MEG studies have shown that the brain networks 

remain in a critical state, close to phase transition between regular and random networks, 

and are reconfigured in response to the task paradigm with high efficiency and higher 

long distance inter-modular edges which are rapidly reconfigured (in the order of 

milliseconds) to higher clustering and higher modularity networks 
34,96

. Specifically, 

Basset and colleagues in MEG data have shown that finger-tapping task is associated 

with long-range stronger connections at higher frequencies and that task performance is 

associated with reconfiguration of high-frequency networks to favor long distance 

connections. Basset and Colleagues propose that brain networks are topologically and 

dynamically contained in a narrow window of permissible global parameters but diversity 

functions are supported by the reconfiguration of set of interregional connections from 

the global network architecture. Basset and colleagues used the measure of 

synchonizability to define a brain networks that are in on the verge of critical dynamics 

that would favor rapid, adaptive reconfiguration in the face of change demands. 

Synchonizability of high frequency networks was found to be much higher than low 

frequency networks in MEG network. In the current study, we observed that 

synchonizability of whole brain network is higher at high-frequency BOLD networks 

(slow-1 and slow-2) compared to low-frequency BOLD networks (slow-4 and slow-5). 

These results imply that similar to MEG studies, the high-frequency BOLD networks are 

on the verge of critical dynamics that would favor adaptive reconfiguration in presence of 

external stimuli and needs to be studied in detail.  

In the current study, we observed highly segregated network with long-range 

connection at slow-4 and slow-5 but less segregation and short ranged network in slow-1 
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to slow-2. Higher small-world values at slow-4 and slow-5 frequency bands implies that 

the whole brain RSFC is more segregated in small communities with long range 

connections between them, while lower small world coefficient for slow-1 and slow-2 

frequency bands imply, higher clustering coefficient and bigger communities and short 

range connections among them. This implies that functional brain connectivity in high 

frequency band consists of higher number of connections to be reorganized. It can be 

argued that the cost associated with building, maintain and the speed of signal 

transmission increases with increases with length of the distance between inter-neuronal 

connections
97,98

. In addition, high frequency connections are less energy efficient 

compared to low-frequency connections, implying that inclusion of low-frequency long-

range connections may decrease the brain’s metabolic costs. In a recent study, Salvador 

and colleagues have shown that that inter-hemispheric connectivity between same brain 

regions is higher at low frequencies while the functional coherence between asymmetric 

ROI pairs is higher at high frequency 
99

. This can imply that the functional connectivity 

within a particular network is modulated by low-frequency fluctuations while the 

functional connectivity between any two networks is modulated by high frequency 

fluctuations. In the same study, higher frequency graphs were found to be locally 

connected with short edges while lower-frequency graph were globally connected with 

long-distance edges in the network. These results are consistent with the higher number 

of long range connections observed in the current study for the low-frequency networks 

compared to the lower number of long range connections observed at higher frequency 

bands. This results could suggest a neural efficiency hypothesis where long-distance 

connections are maintained at low-frequency for energy perseverance while short 
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distance between network connections are maintained at higher frequency to allow rapid 

task switching 
81

 but needs to be studied in detail in various task conditions. 

In the current study, we observed large-scale changes in network hubs for various 

frequency bands. Specifically, OCN and CBN network has high correlation across bands 

and have hub ROIs across slow-1 to slow-3. SMN has stronger connectivity in slow-4 

and slow-5 and has hub ROIs in the motor cortex. In addition, nodal property distribution 

(Eigen value centrality, betweenness centrality and degree distribution) varies across 

bands, where slow-1 and slow-2 lower peak and longer tails compared to short tailed 

distribution observed for slow-4 and slow-5 frequency bands. These results imply that the 

hubs identified in current analysis are ROIs that are important to whole network 

organization irrespective of analysis methods. At slow-4 and slow-5 narrow distribution 

with shorted tails, imply each ROI are tailored to different type of connection. For 

example, higher Eigen vector centrality in SMN in slow-4 and slow-5 mean that these 

ROIs are connected to other important ROIs (in SMN,) similarly higher degree and 

betweenness centrality in visual ROIs in slow-1 and slow-2 imply higher number of 

connection for those brain regions. Studies have shown that targeted node attacks on 

network hubs may cause large-scale disruptions in the functional connectivity topology. 

This implies that low-frequency brain networks that are highly segregated and have fewer 

number of regions as hubs are more susceptible to the target node attack. The functional 

connectivity topology of high frequency connectivity on the other hand can have more 

networks and thus may have higher resilience to the targeted node attack as there are 

more regions with higher degree and highly connected in the higher frequency bands 

compared to low-frequency bands, though further studies are needed to understand the 
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effect of targeted node attacks on network topological properties at high-frequency bold 

fluctuations. 

Community structure of brain can be defined as hierarchy of modules that consists 

of highly connected nodes sharing the functional specialization. One of the major 

frequency based differences were observed in the modular architecture observed for 

various frequency bands which was in accordance with the small-world results obtained 

in the current study. Earlier studies have shown the similar effect but only in the low-

frequency fluctuations but the current study expand this notion to higher frequency bands 

100
. Modularity was found to be significantly lower in slow-1and slow-2 compared to 

slow-3 to slow-4 and slow-5 frequency bands. Specifically the whole brain network was 

divided in to three major components mainly (frontal, parietal and occipital) though inter-

connection between three major modules was different across frequency bands. In the 

current study we used the 160 regions of interest defined by Dosenbach and colleagues, 

which have been categorized in to 6 different networks, though the results of modularity 

analysis revealed presence of three major modules across the frequency bands. 

Specifically, functional connectivity of the ROIs in cerebellum and visual network were 

part of the same modules in the slow-1, slow-2 and slow-3 frequency bands while in 

slow-4 and slow-5 frequency bands the ROIs in cerebellum were part of the module that 

contained DMN ROIs as well. DMN ROIs were organized in a single module in the low-

frequency bands (slow-4 and slow-5) compared to higher bands (slow-1, slow-2, slow-3). 

In addition, we observed that the ROIs from frontal parietal network were mostly split in 

to two different modules where parietal ROIs were in the same module as motor network 

ROIs. Studies have suggested that brain regions show higher clustering owning to higher 
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number of connections to neighborhood ROIs who have similar functional specifications 

and often belong to the same module. In the current study, ROI belonging to known 

resting state networks were found to be associated with ROIs from other RSNs as a 

function of frequency bands, where the association was higher at low-frequency bands 

compared to higher frequency bands. In addition, ROIs involved in lower level cognitive 

processes such as visual, motor and auditory processing were found to be in the same 

module across the frequency bands compared to higher level cognitive processes such as 

executive and default mode network that were found to be distinctively present in lower 

frequency bands. These results imply that resting state networks defined as clusters of 

brain regions are dependent on BOLD frequency fluctuations. These results also imply 

that the functional and cognitive specialization of a set of brain regions, often described 

by their association with known brain networks is frequency dependent.  

5.2.2 Limitations and future directions 

One of the major limitations of results obtained in this project is the lack of 

neurocognitive testing scores or task-based fMRI data. With inclusion of such data, one 

can associate differences in network topological properties with task performance, which 

may provide novel insights in to the cognitive basis of BOLD signal fluctuations in 

various frequency bands. In addition, in the current study, the functional connectivity 

between brain regions defined as Pearson’s correlation between filtered BOLD signal 

time series was converted in to absolute values. Negative correlations of BOLD signal of 

various brain regions, may imply inhibition mechanism, and though separate studies of 

positive and negative RSFC between brain regions and their effect on network topologies 

is out of the scope of current work. 
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5.3 Disruption of frequency specific BOLD signal power in schizophrenia 

5.3.1 Interpretation of findings 

The results of this study provide new data regarding the role of frequency bands 

in rs-fMRI abnormalities in the neurobiology of psychosis. Specifically, we assessed 

power in 3 distinct frequency bands including slow-4 (0.027 - 0.073 Hz), slow-3 (0.074 - 

0.198 Hz) and slow-2 (0.199 - 0.25 Hz), between patients with psychosis and healthy 

volunteers within 14 resting state networks. We observed a significant group x frequency 

interaction for the visual and motor cortical networks, with the most robust group 

differences (patients < healthy volunteers) assessed from effect size measures in slow-4 

and slow-3, respectively. Moreover, main effects of group were evident in the visual 

cortex, dorsal attention and motor cortex networks such that healthy volunteers had 

higher mAFF compared to patients across the 3 frequency bands with opposite effects 

(patients > controls) observed within the salience and frontal gyrus networks. Our 

findings also support the hypothesis that the interaction and main effects were evident in 

patients with psychosis and expand prior findings to the investigation of higher frequency 

bands (slow-3, slow-2). Strengths of the current study include the use of large cohorts, 

highly stringent motion criteria applied in the analysis and investigation of higher 

frequency BOLD fluctuations not investigated previously. 

We identified higher overall rs-fMRI activity across the 3 frequency bands in 

visual cortex, dorsal attention, and motor cortex networks compared to healthy 

volunteers, but the opposite pattern (patients > controls) was observed in the salience and 

frontal gyrus networks. The identification of lower visual cortex activity and higher 

frontal cortex activity across frequency bands was particularly robust in the current study. 
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In this regard our findings are highly consistent with the results from 
60,61

. Specifically, 

Hoptman et al
60

 (2010) reported lower ALFF in patients compared to healthy volunteers 

in occipital regions within slow-4, and Turner et al 
61

(2013) reported that patients 

demonstrated higher rs-fMRI low frequency power in frontal cortical regions, but less 

power in posterior regions than healthy volunteers, albeit in the narrower frequency 

bands (0.01–0.08Hz) compared to the current study. Our results are also consistent with 

those from Huang et al 
62

 who reported lower power of bold signal fluctuations in the 

low-frequency range in patients with schizophrenia compared to healthy controls in 

posterior brain regions, but stand in contrast to their report of lower ALFF within the 

range of 0.01–0.08 Hz in the medial prefrontal region and those of Lui et al 
101

 who 

reported that antipsychotic drug-naïve patients with first-episode schizophrenia 

demonstrated lower ALFF values in ventral medial frontal regions, although it should be 

acknowledged that the precise regions showing higher AFF in the current study are 

different. These observed differences may be due, in part, to different data processing 

methods. For example, in the current study we implemented a linear regression model to 

better characterize and reduce effects of physiological noise from the data whereas both 

Lui and Colleauges
101

 and Huang and Colleagues
62

 have not implemented such 

regression. 

  In contrast to the current findings, He et al 
102

 reported lower fALFF in the medial 

prefrontal and orbital frontal cortex in patients compared to healthy volunteers. It should 

be acknowledged, however, that the current study analyzed the amplitude of frequency 

fluctuations in 3 distinct frequency bands, while the fALFF measure used by He and 

colleagues was derived by taking ratios of power in the low-frequency band (0.01-0.08 
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~slow-4 (0.028-0.073)) to the overall frequency band (slow-2, slow-3 and slow-4). Thus 

a decreased fALFF in psychosis observed by He and Colleagues could be attributed to 

either the decreased amplitude in low- frequency bands (0.01 -0.1 Hz~slow-4) or 

increased amplitude in the high frequency bands (>0.1 Hz ~slow-2 + slow-3). There also 

exists a possibility that BOLD signal power is significantly increased in the patient 

populations compared to controls, though larger changes are observed in the high 

frequency bands compared to low frequency bands. In addition, in our prior work, we 

have shown that various frequency bands contribute different amount of power to known 

resting state networks 
74

. Specifically, the combination of slow-2 and slow-3 frequency 

bands represents similar amount of power as slow-4 in default mode network, salience 

network and visual network. Thus, a direct comparison between increased mAFF 

observed in the frontal cortex of the brain in current study and decreased fALFF observed 

by He and Colleagues is not feasible. Further studies that cover the whole frequency band 

of slow fluctuations (0-1.2 Hz) are required to study how increased mAFF in one 

frequency band can affect the fAFF values across the brain.  

The identification of lower rs-fMRI activity in the visual cortex and higher rs-

fMRI activity in the frontal cortex has now been reported in multiple studies and across 

different frequency ranges 
60,61

 and thus appears to be a relatively robust finding in the 

literature. Similarly, Anticevic et al 
103

 reported higher rs-fMRI activity in the prefrontal 

cortex in early course schizophrenia, which predicted symptom severity. In addition, 

using the amplitude of low-frequency fluctuation Zou and colleagues 
104

 reported that 

frontal regions predicted working memory task activation and deactivation, which was 

most pronounced at the highest working memory loads suggesting that intrinsic 
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prefrontal rs-fMRI activity can predict “efficiency” of brain functioning. The 

identification of rs-fMRI abnormalities in occipital regions in patients with schizophrenia 

is consistent with reports of visual processing deficits in patients in the identification of 

visual contours
105

 (Feigenson et al 2014), motion perception
106

 and smooth pursuit eye 

movements 
107

. Moreover, abnormalities in occipital regions were observed using voxel-

mirrored homotopic connectivity rs-fMRI analysis in patients with schizophrenia 

compared to healthy volunteers 
108

 and disturbances in rs-fMRI activity within primary 

sensory areas could have potential downstream effects including visual hallucinations 
109

. 

It should also be noted that integrated dysfunction between frontal and occipital pathways 

has been reported in the neurobiology of psychosis 
110,111

, which have been linked to 

positive symptoms among individuals with nonclinical psychosis 
112

. 

Our findings are also broadly consistent with the results of EEG studies, which 

have demonstrated power distribution differences in schizophrenia. Patients with 

schizophrenia have greater theta power during resting state conditions in frontal regions, 

but lower theta power in the frontal regions during attention task performance 
58

. Taken 

together, these results suggest that failures to increase oscillatory activity while 

performing a cognitive task may be influenced by high oscillatory activity while in a 

resting state. Along these lines Winterer and colleagues
113

 have shown greater “noise” in 

patients with schizophrenia compared to controls where noise was defined as the 

proportion of EEG activity not time-locked to an event. In the current study, we also 

observed a higher power of bold signal fluctuations during the rs-fMRI in the frontal 

cortex of the brain, which may imply higher ‘noise’ in patients. Similarly, studies have 

also shown the presence of cross-frequency bindings between EEG rhythms and various 
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resting state networks associated with schizophrenia that could conceivably disturb self-

attention processes 
59

.  

Few studies to date have investigated possible interaction effects between 

frequency bands ranging from .01 to .1 Hz using rs-fMRI in psychosis and associated 

disorders and thus, it is difficult to compare our findings with prior work. In the study by 

Yu and colleagues
63

 rs-fMRI activity was assessed in 3 different frequency bands 

including slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.08 Hz) and the standard band of 

0.01–0.08 Hz with significant interactions of region-by-frequency band. Specifically, 

these authors reported significantly larger ALFF in the slow-4 band compared to the 

slow-5 bands in the cingulate cortex, fusiform gyrus, basal ganglia, and midbrain regions. 

In contrast, they observed larger ALFF in slow-5 (compared to slow-4) in the lingual 

gyrus, middle temporal gyrus, inferior frontal gyrus and ventromedial frontal gyrus. It is 

also noteworthy that in the current study, we also identified significant main effects of 

frequency for the dorsal attention and motor networks such that slow-4 was significantly 

higher than slow-3, which, in turn, was significantly higher than slow-2. To our 

knowledge such a “gradient effect” of decreased power from lower to higher frequencies 

has not been reported previously in the literature. Higher power in lower bands compared 

to higher bands could conceivably be related to differential energy consumption among 

brain regions, although further studies using a higher sampling rate are required to study 

a wider frequency distribution. 
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5.3.2 Limitations and future directions 

There were a number of study limitations that should be acknowledged that 

preclude firm conclusions. Although we did not examine functional integration among 

brain regions across frequency bands, differential patterns of AFF across brain regions, 

imply difference in frequency of neuronal fluctuations across regions that may give rise 

to disruptions in functional integration between brain regions. In the current study, we 

combined data across 2 sites and thus differences in machine manufacturer as well as task 

instructions
104

 (Zou et al 2015) could affect study findings. We did, however, include site 

as a covariate in the analyses and additionally conducted separate analyses by site. 

Additionally, in the current study, we didn’t include the frequency bands (slow-1 (0.5-1.2 

Hz)) and slow-5 (0.01-0.027 Hz), given our inability of examine frequency higher than 

0.25 HZ (TR-2s, sampling frequency-0.5 Hz) and to effectively remove slow scanner 

drifts that may resemble the slow-5 frequency bands fluctuations 
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CHAPTER VI 

 

SUMMARY AND CONCLUSIONS 

 In conclusion, the work presented in this dissertation is intended to provide 

evidence of presence of resting state functional connectivity in BOLD fMRI signal in 

frequencies higher than traditionally studied range of 0.01 to 0.1 and to quantify these 

RSFC in higher frequency bands. In order to accomplish this goal, we acquired multiband 

fMRI data with high temporal resolution (TR=0.645 s) compared to generally acquired 

fMRI data with temporal resolution of 2s. In order to systematically study the presence of 

RSFC across various frequencies, we segmented the whole frequency bands of resting 

state BOLD signal in to five distinct frequency bands, slow-1 (0.5-0.75 Hz), slow-2 

(0.198-0.5 Hz), slow-3 (0.073-0.198 Hz), slow-4 (0.027-0.073 Hz) and slow-5 (0.01-

0.027 Hz) based on earlier EEG and LFP studies. In order to estimate RSFC in each of 

this frequency bands, we implemented independent component analysis and seed based 

correlation as two distinct methods to determine RSFC. RSFC was found to be present in 

all the five frequency bands, including slow-3, slow-2 and slow-1 that included BOLD 

signal in higher frequencies than traditionally studies using resting state fMRI. In 

addition, we observed significant differences in spatial extent and RSFC strength of 

various networks across frequency bands. We also observed significant differences in 

BOLD signal power distribution across all the RSNs. 

In order to further classify the differences observed in RSFC strength across 

frequency bands, we performed graph theoretical analysis on whole brain RSFC on each 

of the frequency bands. As expected, we observed large-scale differences in network 
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topologies across frequency bands, where RSFC in slow-1 and slow-2 frequency bands 

showed lower local connectivity compared to slow-4 and slow-5 frequency bands. 

Although different, network topologies across all the frequency bands showed small-

world architecture. This small-world architecture of brain has been observed in earlier 

studies of RSFC, though we are the first study to show this phenomenon in high-

frequency BOLD fluctuations. Lastly, to identify neurocognitive basis of this BOLD 

signal fluctuations in slow-1, slow-2 and slow-3 bands, we studied effect of psychosis on 

BOLD signal power disruption. We implemented a new measure as, Amplitude of 

Frequency Fluctuations, (AFF) to characterize this disruption in BOLD signal power. 

Earlier studies have reported disruption of AFF in slow-4 frequency bands in psychosis 

patients, with increased AFF observed in frontal cortex of brain while decreased AFF 

observed in posterior section of the brain with respect to healthy controls. In the current 

study, we extend these results to slow-2 and slow-3 frequency bands, and observed 

similar differences in AFF value across groups, implying that the effect of psychosis has 

a wide spread effect on BOLD signal power.  

In summary, through this dissertation, we show neuronal basis and cognitive 

importance of high frequency resting state BOLD signal fluctuations in human brain 

functions.  
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