DEVELOPMENT OF A COMPUTATIONAL TOOL FOR
FORENSIC DNA ANALYSIS
By
ANURAG ARNOLD
A thesis submitted to the
Graduate School-Camden
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of Master of Science
Graduate Program in Computer Science
Written under the direction of
Dr. Desmond S. Lun

And approved by

Dr. Desmond S. Lun

Dr. Suneeta Ramaswami

Dr. Dawei Hong

Camden, New Jersey

January 2016

THESIS ABSTRACT
Development of a Computational Tool for Forensic DNA Analysis

By ANURAG ARNOLD

Thesis Directot:
Dr. Desmond S. Lun

Forensic DNA analysis consists of a DNA profiling process by a method called as STR Analysis,
short for Short Tandem Repeats. By using the statistics it provides, vatious probabilistic
approaches are implemented in a software package to find out DNA profile matches and
individual identifications. This study has contributed in the design, development and integration
of an easy to use and interactive software application to find the number of contributors in a
DNA sample and to find a match against it with another person’s DNA. This research
specifically deals with the (1) design of an algorithm for filtering unfiltered DNA profile samples
to remove bleed-through peaks; (2) design of an interactive interface for MatchIt, where a DNA
sample of a person of interest is tested against a DNA sample to find a match; and (3) data

modeling, design and integration of a database for the software.

ii

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude and appreciation to Dr. Desmond Lun, my
thesis advisor and mentor, for his patience, guidance and encouragement all along. My grateful
thanks to him for giving me an opportunity to work in an excellent atmosphere to work on my
research. I would not have been able reach this point without all the support from my advisor,

committee members, colleagues, friends and family.

My sincere thanks to Dr. Sunil Shende for his guidance and helping me in understanding the

fundamentals of computer science and big data algorithms.

My sincere thanks to Dr. Dawei Hong, Dr. Michael Palis and Dr.] C Birget who helped me to

develop my background in optimization methods, parallel computing and numerical methods.

I would like to thank Dennis Egen who has been a great mentor to me and helped me in

understanding software engineering.

I would like to thank Harish Swaminathan, Abhishek Garg and Lauren E. Alfonse for all their

help and suggestions. My research would not have been possible without their help.

I would like to express my special thanks to Dr. Suneeta Ramaswami for giving me an
opportunity to be a part of Department of Computer Science at Rutgers Camden, and for her

esteemed guidance.

Finally, I would like to thank my family for their support and encouragement throughout my

study.

iii

TABLE OF CONTENTS

TRESIS ADSTIACE « oottt ettt ettt ettt ettt e e e e e e i
ACKNOWIEA@EMENTS. ... oiviii 1ii
TADLE Of CONMEENES.cuutetiuirieeirteiiietetrte sttt te et ettt sse e st et sesese s et ssenesseneseseneesenessasesesansesansasenensns v
TOEEOAUCTION 1ottt ettt sttt 1
PUIPOSE .t 3
Design and Implementation of Filtering Algofrithmcccccvuviiiiiiiiiiininiiiiiccccc, 4
3.1 INTEOAUCHON eviviniiriieieieirieieieie sttt ettt ettt ettt sttt sttt seneestesenen 4
3.2 TREOLY ittt ettt 4
3.3 Filtering AlGOfIthim ...cccuiiiiciiiiiciriccc e 5
3.3.1 Color of Bleed-Through Peak..........cccocviiiviiiiiniiiiiiiiiiicccccens 5
3.3.2 Size of Bleed-Through Peak.......ccccccooiiiiiiiiiiiice, 5
3.3.3 Height of Bleed-Through Peak.........cccccooiiiiiiiiiniiiiiicicc, 6

3.4 Algorithm Pseudocode ... 7
3.5 Testing and Results......ccccoviiiiiiiiiiiiiiiiii s 8
Development of a Graphical User Interface for Matchlt ..o, 11
41 INEOAUCHON tetiieiiiiiirieieieic sttt ettt ettt sebesenenennaes 11
4.2 Design PatterN. oo 11
4.3 Simple and Friendly Uset INterfaceoceuvvviieiriniiciiiniicirccieccceceeeneeeennee 12
43.1 Input Calibration Data and Person of INterest.......cccccvvueerrriricrririricrennineennn. 13
432 Running the Test. ..o 15
43.3 Displaying Results and Graph........ccccvviecinniceiiniicccncceeseceeeeenenee 16

A4 RESUILS ottt ee 18
Data Modelling and Integration of a Relational Database..........ccccoocvviiiniiniiiiniiiiinnn, 19
5.1 INEIOAUCHON ovviiiiiiisi ettt nne 19
5.2 Design and Schema for SQLite Database.........ccccccvviiiiiiniiiiiniiiiiicincnens 20
5.3 Database Integration with the Software ..., 22
5.3.1 Calibration Interface with Databaseccovvveeerinininirieeirinreeccenseeeceses 23

532 Matchlt with Databasecccoeiriiiririeirieieere e 27

5.3.3 General Menu Options with Database ... 28

5.4 Screenshots and RESUILS.....covrieeuiiirieieieiecririeee ettt s et 31
CONCIUSION. 1.ttt ettt ettt ettt ettt st e st b et et et st es et e b et et ene et esenbebe st sene st esentesanessanesesenes 34
RELEIEIICES ettt ettt a ettt sttt e et e et e sttt et et et et enesesentesans 35

iv

Introduction

Forensic Science has been used extensively for criminal investigation purposes for past three
decades. The recent developments in the field utilizes a technique known as Short Tandem
Repeat Analysis. The STR is a repetitive DNA sequence in the form of 2-5 base pairs of
nitrogenous bases found all through the DNA present in living organisms. These
nitrogenous bases consist of hydrogen bonds with each other connecting the two anti-

parallel strands that form the helix-shaped DNA.

STR analysis used for the purpose of DNA profiling is based on PCR (Polymerase Chain
Reaction). PCR amplifies a DNA template consisting of the STR sequences which is then
passed through capillary electrophoresis to produce a DNA profile of an individual. The
highly variable repetitive sequences used in DNA profiling called as Variable number tandem
repeats are extremely unlikely to be the same for two individuals. This helps in identifying

and matching a DNA sample against an individual.

The DNA profile, an electropherogram, is used to determine the number of contributors

present in the sample after the preprocessing.

Based on the assumption of number of contributors, a commonly used approach known as

Likelihood Ratio is used to calculate the match statistic.

The Likelihood Ratio is defined as:

_ Pr(E|Hy,mp)

LR = :
PT(ElHd, nd)

where, E is the evidence in the form of the electropherogram (epg); Hp and Hy are the
hypotheses specified by the prosecution and the defense, respectively; and n, and ng are the
number of contributors specified by the prosecution and the defense, respectively. The
numerator is the probability of observing the evidence given the prosecution’s hypothesis
and the denominator is the probability of observing the evidence given the defense’s
hypothesis. The evidence shows support for the prosecution’s hypotheses if LR > 1;if LR <
1 the defense’s hypothesis is supported by the evidence. The calculation of a Likelihood
Ratio depends upon an assumption about the number of contributors both in the numerator
as well as the denominator, making it essential to have a good estimate about the number of
contributors to accurately calculate a statistic that represents the information captured in the
signal. Thus, utilizing a number of contributors that is not representative of the actual
number that gave rise to a sample may affect the interpretation of the sample's profile.

The p-value for the suspect is defined as the probability that a randomly picked person from

the population would give rise to an LR at least as large as the one observed for the suspect.
p — value(s) = (LR(R) = LR(s))

Using the above approach to find the number of contributors in a DNA sample and match
it against that of a person of interest, we need an efficient and interactive software solution
that works with the underlying algorithms on the data, and assists in generating and
visualizing test results. This project contributes in the development of a concise solution for

the challenges faced in designing a software for DNA analysis.

Purpose

The purpose of my thesis project has been to contribute in the design, development, and
integration of the various components of a computational software tool for Forensic DNA
Analysis. The first part of my thesis consists of an implementation of a Filtering Algorithm
to filter testing samples to remove the bleed-through and extraneous peaks of alleles
resulting from misreading during electrophoresis detection. The testing samples are used for
generating a calibration file that is used in the algorithms used for the finding the number of
contributors in a DNA sample and matching it against a person of interest’s DNA sample.
The part of the application that refers to finding the number of contributors is called as
NOCit. And the third part of the software is called Matchlt that tries to find a match
between a DNA sample and a person of interest. The bleed-through peaks of alleles need to

be removed from the DNA data before being analyzed in NOCit and Matchlt.

Next, I have designed a user interface for the Matchlt algorithm, which matches a suspect’s
DNA sample against the one found at a crime scene. This interface has been integrated with
the rest of the software. Thirdly, I have designed a schema for a relational database and

integrated it with the various components of the software to assist with the data being used.
My work can be summarized as,

1. Designing and implementing a Filtering Algorithm.
2.Developing a simple and user-friendly user interface for Matchlt.

3.Data modelling, designing and integrating a Relational Database with the software.

Design and Implementation of Filtering Algorithm

3.1 Introduction

DNA profiling for forensic purposes starts with a sample of the DNA being amplified at
specific STR loci using Polymerase Chain Reaction (PCR). The next step is to pass the
resulting DNA fragments through an electrophoresis process. This is the preprocessing stage
wherein the DNA profile of the person is generated. The data present in the profile is then
used for further analysis. Before the analysis, however, there can be some noise that is
present in the profile. These are in the form of spurious peaks in the electropherogram, and

they need to be filtered out.

3.2 Theory

After the DNA has been collected, we use Polymerase Chain Reaction to amplify specific
STR loci. The amplification results in copies of the DNA at the loci so that they can then be
detected during electrophoresis. The fragments of DNA produced are separated and
detected by capillary electrophoresis technique. During this process, fluorescent tags
attached to the DNA emit light in the visible spectrum when they are passed through the

capillary in UV light.

The PCR technique is carried out using the Identifiler Plus kit that produces fifteen known
set of loci with their set of alleles present in them. During electrophoresis, the detector
detects the color emitted by the fragments of DNA and categorizes the alleles for each loci
with their size and height accordingly. A screenshot of a sample file produced is shown in

Figure 3.1.

Sometimes due to the misreading of the detector, there may be false allele peaks present in a

particular dye color. There are several ways in which the peaks appear in a dye color channel
they do not belong to. For example, the detector for the color green might also detect some
of the portions emitting at the adjacent color, yellow, in the spectrum. These extraneous
peaks are known as the bleed-through peaks. Before analyzing and processing the DNA
data, it is important to remove all these bleed-through peaks. A three-step process

implemented in the filtering algorithm for this has been described in the next section.

3.3 Filtering Algorithm

An unfiltered sample file consists of the size and height of all the alleles at a specific dye
color channel present at each locus, along with more data from the preprocessing such as the
run name and the amount of the DNA sample. The filtering algorithm is designed for the
unfiltered sample files with bleed-through peaks to get filtered for the calibration data to be
generated, and also for filtering the NOCit and Matchlt testing sample files. It is basically
comprised of a three-step process, and the algorithm has been integrated with the user

interface as well.

3.3.1 Color of Bleed-Through Peak

This is the first step in identifying the bleed-through peaks. The first restriction is that the
dye color of the bleed-through peak cannot be the same as that of the true peak as the bleed-
through appears in a color channel they are not supposed to. We check all the pairs of alleles
having different dye colors. The algorithm uses a Java Collections Hashmap to arrange the
peaks and checks and considers only the ones that are different in color from the other

peaks. So once this criteria is satisfied, the second criteria is considered.

3.3.2 Size of Bleed-Through Peak

The second criteria checks the pairs of different colored peaks for the absolute value of their

size difference. The size represents the distance between two base pairs present in the STR
loci. If the difference of sizes of the two alleles is less than or equal to a threshold of 0.3, the
criteria gets satisfied and the third criteria will be checked for the peaks. The threshold of 0.3

can be changed by the user in the software through an interface.

3.3.3 Height of Bleed-Through Peak

The third constraint is to check that if the ratio of the peak heights of the two allele pairs are
less than 5%. If this check is passed, then the first peak gets removed as the bleed-through.
The same procedure is carried out for all the pairs of the alleles present in different dye

colors.

3.4 Algorithm Pseudocode

The algorithm takes in a HashTable as input, hashed with the colors, Red, Blue, Green and

Yellow, containing a List of (Size, Height) pairs for each color.

For every peak in one color, we have to find if there are any peaks in other colors whose
difference in size and height ratio is less than the threshold. If there is a peak whose height is
less than a corresponding peak’s height and their size difference less than the size threshold,

then this peak is removed.

Input: HashTable, H
H[Color] is a List of (Size, Height) pairs,

for colors: ‘R’, ‘G’, ‘B’ and ‘Y’

IF 3 (Sizel, Heightl) pair in H[Coloril]

AND (Size2, Height2) pair in H[Color2]
WHERE, |Sizel - Size2| < Size Threshold

AND Heightl < Height2 * Height Threshold
THEN, REMOVE (Sizel, Height1l)

Output: HashTable, H
H[Color] is a List of (Size, Height) pairs, with the peaks

removed.

3.5

Testing and Results

During the calibration process, the application has checkboxes for the user to select whether

the samples being used for calibration need to be filtered or not. The following snapshot in

Figure 3.1 shows a snippet of the sample data file with the peaks. The letters B, G, Y and R

represent the dye colors in the Dye columns, referring to Blue, Green, Yellow and Red

respectively.

Sample File

[Run Name

A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa
A04-RD12-0002-07d3-0.1251P-001.10sec.fsa

RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;
RD12-0002{052212CMG;

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
RD12-0002{052212CMG)

Marker
D851179
D21511
D75820
CSF1PO
D351358
THO1
D135317
D165539
D251338
D195433
VWA
TPOX
D18551
AMEL
D55818
GA

=

Figure 3.1: Screenshot of a sample file.

Dye Allele1
B oL

B oL

B 5
B 7
G 14
G oL

G oL

G 7
G 18
Y 11
Y 13
Y oL

Y 7
R X

R 7
R oL

Size 1

111.81
191.51
250
306.46
118.15
167.81
204.26
253.77
316.73
107.93
159.92
214.31
261.1
105
132.86
204.41

2

20L

20L
10

Heightl Allele 2

El

11.2

11
18

Size 2

125.67
192.99
250.77
310.36
122.22
176.49

204.8
267.18
320.91
109.83
168.04
223.73

272.1

109.1

148.8
217.47

Height2 Allele 3
24 10
2 27
2 5.2
467 9
71 16
£l 9
20L
26 10
571 20
15 12
31 16
6 7
11 10
8
24 12
6 19.2

Size 3

129.72
154.32
251.78
314
126.24
180.47
208.47
271.23
324.96
111.88
172.07
224.51
273.3

152.85
222.8

527
23
10L
3 0L
716
367

Height3 Alleled

11
27.2

19
10

11
21
122

13
21

Size 4

133.74
196.18
260.08

315.4
138.82
184.59
216.36.
275.21
328.98
114.07
174.81
228.56.
280.16

156.39
229.19

Height4

50
47
18

43

51

Also, with a Menu option in Settings, shown in Figure 3.2, the user can set the thresholds for

the size difference and the height ratios to be used for filtering the peaks in the step 2 and 3.

£ x
I

Bleed-through Filter Height Ratio % Minus-A Filter Height Ratio 70 %

Bleed-through Filter Size Range 0.6 +/- Minus-A Filter Size Range 0.6 +/-
| Default File Directory | Browse ‘
POl Samples 1000

Save and Close

Figure 3.2 Interface for setting the thresholds for the size difference and peak height ratio of alleles.

Unfiltered testing samples were filtered and compared to the ones not unfiltered in regards

to the Calibration data generated, and on the NOCit results.

Figures 3.3 and Figure 3.4 show a comparison of the results between a Calibration data of

unfiltered samples and filtered samples.

x
File Edit View
| Calibrate | noct | Matchit|
Calibration: test
Parameters
Formula a b c RA2 oars
DEs1178 axsb 26102375 95602 - 0.0889 i 0450
D351358 ax+b 20092629 13.5696 - 09828 o4z
» True Standard Deviation axsb 1000 50 - 0974 z:gg
» Noise Mean ax-b 50 5 - 0935 A |
¥ Noise Standard Deviation axeb 100 0 - 0929 0325
» Reverse Stutter Mean sefbisc 0 -50 0 0915 0300
» Reverse Stutter Standard Deviation setbxsc O -50 0 0.659 M (B
v Forward Stutter Mean sefbesc 0 -50 o 0876 2 Z;:
D75820 aetbxec 12356 200577 00445 09325 -
VWA sefbxec 03367 201781 00229 09783 EE *
FGA sefbec 03532 171927 0.0089 09261 0150
TPOX aetbec 02431 133442 00052 05639 o125 5
D195433 sefbxec 04139 455949 00458 09735 U o0
3 323 09818 oo A5
0050 SRS T
AMEL - - - - - 0025 * .
D251338 sefbec 0234 -23.9234 00147 0.8409 s
D21511 asetbxec 02575 330068 00086 0.9483 0000 0025 0030 0075 0100 0425 0450 Q75 0200 0225 0250 0275

DNA mass

Calculate | | Reset | @ Curve FitMean FStut @ Probability of Mean FStut

= e

Figure 3.3 Sample graph for a locus from unfiltered sample files.

10

File Edit ew

| catibrate | NOCIE | Matchit |

Calibration: test

Parameters

Formula a b < R*2 omrs
P True Mean ax+b 3000 30 - 0992 0450
» True Standard Deviation axth 1000 50 - 0974 o4z
» Noise Mean ax-b 50 5 - 0935 o
0s7s
¥ Noise Standard Deviation axeb 100 0 - 0929 -
» Reverse Stutter Mean aefbasc 0 -50 0 0915 e
P Reverse Stutter Standard Deviation aefbx+c o -50 o 0.66 0300
¥ Forward Stutter Mean sefbisc 0 -50 0 0876 azrs
D7s820 setbxec 12356 200577 00445 02325 2 2;:
VWA sefbxec 03335 27651 00222 09754 -
FGA aefbaec 03527 170535 0.0087 0927 oo
TPOX setbxec 02482 -12.9761 0 0.574 @D
D195433 sefbeec 04161 455701 00457 o125
0100
L : : : : : oo7s
0050
D251338 sefbec 0234 -23.9234 00147 0.8409 o
D21511 eefbxrc 02575 -33.0479 00087 09481 G

THOT sefbeec 01128 145844 0 08573 0000

Calculate | [[Reset |
‘ Back ‘ | Save |

0025

0050 0075 0100 0125 0450 0475 0200 0225 0250
DNA mass

@ Curve Fit Mean FStut @ Probability of Mean FStut

0275

Figure 3.4 Sample graph for a locus from the filtered sample files.

11

Development of a Graphical User Interface for Matchlt

4.1 Introduction

As important as it is to have an efficient algorithm, it is equally important to have a simple
user interface and experience in using the software. In designing the Matchlt interface for
our software tool, it was important to make the features and flow of work similar to the
other parts of the software. Also important was to make sure the user experience is smooth
and interactive at every step, for example during the time the calculations are being carried

out and at the end, the results that need to be show with a proper graph.

4.2 Design Pattern

The design pattern used in the project is a layer approach called MVC, short for Model-
View-Controller. The MVC is an architectural pattern used in the design of User Interfaces.
The code and the structure is organized in such a way that the Controller sends commands
to the Data Model layer and also to the View Layer for updating any events triggered in the
interface by the user like accepting input data, with the click of a button. The Model layer
contains all the algorithmic data coupled with the database backend. It has all the behavioral
aspects of the application and is independent of the user interface. The View layer has all the
UI components like the style sheets and FXML files that hold the whole structure of the
application. It contains the views for all the three interactive sections of the application

including the graphs generated.

Figure 4.1 shows the screenshot of the code organization with the help of a class diagram.

12

]
<=Java Package==

edu.rutgers.NOCIt.Control |._
- I'y' T o
3 zalava Packagess

edu.rutgers.NOClt.Data

[ceememm
<<Java Package== &
edu.rutgers.NOCIt [=--eeee.

SettingsController

UlController |~

ﬁGemem ELAllele| [Aele]

Cﬂlibrationﬁles

|CalibrationPﬁojectHandler |

POIGenotype

N
IFf_e_g"i’ﬂb]’ﬂ'ﬂxlﬁettingstonstants |

| DegradedCatibrationPeaks |

"FL_ocus
| Sét_tii’lquactof?|.__| F'é'al_(‘| |MixRatios |

| thre:hd RandomPathJob | e . -
Freqrable| | |Quei’¥§bl]stﬂnts | |dbe|3AndReadF|le |
: : =
{1

i STRAllele | |T|rr-|eEIapsed |

|Callable_threadcalcPOIProbJ ob_object| barse SarrgFe

parseSampleFile |

|callable_threadRandomPathJob_object|

E: PosTwoBxpFuncti

| ThreadSimsJobLocilmpSampling

Callable_object_MCSampling |

| ThreadSims.JobLociMCSamplingConstMR | | ThreadsimsJobLociMCSamplingVarMR | | Callable_object_ImpSampling |

Figure 4.1: Class diagram showing all the class relationships in the MVC design pattern.

The first package consisting of the UI Controller classes has all the UI components, and the
Control package contains the backend controller logic that accepts input and sends data to

the Model-Database, which is in the third package, Data.

4.3 Simple and Friendly User Interface

As the software workflow is divided into three sections, namely Calibration of data, NOCit
for finding out the number of contributors in a DNA sample, and Matchlt for matching the
DNA sample with the suspect’s DNA. I have worked on designing and developing the
Matchlt interface with a similar user experience as in NOCit. This includes a section for

input data with validation and integrity checks against the database, calculations and results

13

display with a histogram plot.

4.3.1 Input Calibration Data and Person of Interest

The Input section has nine columns for Graph display checkbox, Sample file chooser, Filter
checkbox for filtering the sample file, DNA Input in nanograms, Population Name
dropdown selection, NOC, Calibration files saved earlier, Person of Interest genotype

sample chooser, and Output file destination selection for the pdf report that gets generated.

Figure 4.2 shows a screenshot of the input section of the interface with no input data yet.

File Edit View

Calibrate | NOCIt | Matchit

-

Graph Sample Filter DNA Input (ng) Population Name NOC Calibration Person Of Interest Output

<Choose> <Choose> <Choose> «Choose> <Choose> «Default>

Start Cancel Time Elapsed:

Figure 4.2: Matchlt interface with a table for all the inputs.

Figure 4.3 shows the same section when all input data has been accepted and is ready to be

validated

File Edit View

Calibrate | NOCIt | Matchit

4 -

Graph Sample Filter DNAInput (ng) Population Name NOC Calibration Person Of Interest Output
v CAUsers\anuragarnold\Documents\Thesi.. v 0625 US Caucasian 1 test u CAUsers\anuraga...
Start Cancel Time Elapsed:

Figure 4.3: Matchlt interface with all the input parameters.

14

Also added is the context menu options that are consistent with the design in the first

section of the software where Calibration Genotypes are displayed. Figure 4.4 shows the

NOCit -8
File Edit View
Calibrate | NOCIt | Matchit
| - = x
Graph Sample Filter Genotype ID Calibration Person Of Interest Output
v CAUsers\anuragamold\DocumentsiThesi.. v test 29 CAUsers\anuraga...
Locus Allelet Allele2
D75820 3 10 A
WA 15 18
FoA 25 25
TPOX 2 9
Start Cancel D195433 |14 162 Time Elapsed:
Dss818 11 1
AMEL X x

D2513238 2 23

D21511 28 332

THO1 6 93

D18s51 13 14

D168529 9 10 M

Save and Close Cancel

Figure 4.4: Pop-up interface for viewing and editing the genotype file for the person of interest.

After the input data is accepted it is validated against two conditions, first whether all the
required data is present in the specified format and against the database for the loci, allele

and frequency values for the selected population type.

Figure 4.5 shows a screenshot that checks for a valid DNA input. For the validation checks

against database, see section 5.3.3.

NOCit -8
File Edit View

Calibrate | NOCIt | Matchit

Graph Sample Filter DNAInput (ng) Population Name NOC Calibration Person Of Interest Output
Ci\Users\anuragarmold\DocumentsiThesi.. vh US Caucasian 1 test u <Default>

Start Cancel Time Elapsed:

Please make sure each DNA Mass value is a valid decimal
B number.

Figure 4.5: Validation check warning for a valid DNA input.

4.3.2 Running the Test

Once all the data has been validated and input files uploaded, the Matchlt algorithm and
calculations start when the Start button is clicked. There is a progress bar with a timer that
signifies the running of the algorithm. The smaller the Number of Contributors, the less
time is taken to calculate the results. This step has been added with a multi-threaded
approach so that the software functions in parallel and shows the results when the
calculations end. The multi-threading has been implemented using the JDK 8 Thread APL
Without parallelism, the software running on a single thread would freeze until the

calculations complete.

Example of code snippet:

final BackendController backendControllerMit = this;
Thread matchitThread = new Thread() {
public synchronized void run() {
synchronized (uiControllerMit) {

try {
MatchIt matchit = new MatchIt(calibration);

16

matchit.runMatchIt(outputFile, frequencyFile, sampleFile,
dnaMass, maxNOC, genotypepoi, calculationsProgressBar, poiSamples, kitName, popName);
backendControllerMit.MatchItThreadFinished(this,
matchit.graphBarChart(outputFile), matchit.getMatchItResultsString(), outputFile,
count);
} catch (final Exception e) {
Platform.runLater(new Runnable() {
@Override
public void run() {
Logger.error(Constants.RUN_MATCHIT_THREAD_ERROR_LOG_MESSAGE, e);

}
1)

}
s
matchitThread.start();
threadListMit.add(matchitThread);
this.threadCount++;

The above code starts a new Thread by calling the Thread API in Java. It locks the monitor
on the uiControllerMit object and calls the runMatchlt function in the Matchlt.java class.
This code resides in the BackendController.java class, and once the Matchlt calculations are
finished, the backendController object calls the functions that generate the Matchlt

Histogram plot along with the printed result output.

From the architectural point of view, as the user clicks on the Start button for the Matchlt,
the event generated will be accepted by the UlController that passes all the data to the
backend controller, which calls the backend code for the Matchlt data processing. All the
constants and algorithms implemented reside in the layer as the Matchlt class. When the
results are generated, they are passed back to the backend controller which passes it to the

UlController. The UIController sends the data to the respective nodes in the user interface.

4.3.3 Displaying Results and Graph
After the calculations are over, the results get displayed in the bottom and the third pane of

the interface, and depending on the Graph display option ticked in the input section, it

17

visualizes the results as a Histogram Plot. The result set includes the sample details that were
given as input, with the True Likelihood Ratio for the Person of Interest, Log (POI LR). The
histogram plots the frequency values for all the Log (POI LR) values less than the True
Likelihood Ratio as yellow in color, and the ones greater than True Likelithood Ratio as

Green in color.

A screenshot of the results that is displayed with the histogram in the application is shown in
Figure 4.6

Start Cancel Time Elapsed: 00:06 ... Done

Matchlt: \\6.csv-0.0625-1-test-14_Matchedit.pdf

Less than Log{POI LR} W Greater than or equal to Lag(POI LR)

SE ||
2556 222 4834 1548 1212 275708 54 3722040361

200 3sed 2228 28

Frequency

Log(POI LR)

Figure 4.6: Matchlt results shown in the application with a histogram plot.

18

4.4 Results

A screenshot of the pdf report generated and saved in the user’s disk is shown in Figure 4.7

Sample File: C:\Users\anuragarmold\Documents\Thesis_FINAL\etc\calibration samples - 10s\5.csv
Sample DNA input: 0.0625ng

Number of contributors: 1

Time taken: 0.04 minutes

p value samples: 1000.0
Log(POI LR): -22.21742888565913
P value: 0.27727694169924794

P value, P[LR > POI LR | Hd): 0.27655310621242485
P value, P[LR > 1| Hd): 0.001002004008016032

Matchlt: C:\Users\anuragarnold\Documents\Thesis_FINAL\test.pdf
Less than Log(POI LR) B Greater than or equal to Log(POI LR)

| ||I
. IIIII_
22 278-2586 12-190-168-146-124.102 80 -58 -36

E20-498 -476-454-432-410-3B8-3

Frequancy
o

14 08 30

Log(POI LR)

Figure 4.7: Screenshot of the pdf generated with the Matchlt results.

19

Data Modelling and Integration of a Relational Database

5.1 Introduction

Any application with data processing needs to store data persistently and in a structured
manner. The data in this application consists of a Kit, and a set of Loci for a specific Kit.
Each Locus is composed of a set of Alleles and specifies a location or position of a DNA
sequence present on a chromosome. The Kit used here refers to the PCR amplification that
produces a set of fifteen known Loci and is known as Identifiler Plus. The Alleles
representing a variation of the DNA sequence at each locus, are in turn associated with a
specific Population type with their relative Population frequencies. For each different
Population type and for a specific Kit, the Alleles will have different frequencies at their
respective Locus values. The whole data model can be visualized as consisting of a nested
structure with Kit containing Loci containing Alleles, the Alleles also being associated with a
specific Population type with their different Frequencies, with the Frequencies adding up to

1.0 for all the Alleles at a Locus.

For storing this data in a database it needed to be first modeled with all the relations,
compositions and associations between each of them. A UML diagram in the Section 5.2
shows the data model. The process from Calibration to NOCit and Matchlt in the
application uses a lot of this data that needed to be organized, edited and retrieved when

needed.

The problem of having all the sample files in their formats for different types of Kits and
Populations to be used by the application was solved with the help of a Relational Database.

Being a light and easy to use database management system, SQLite was the best choice.

20

The database consists primarily of the set of Loci belonging to the kind of Kit selected,
Alleles present in the Loci with their frequencies for the different Population Types. One of
the Kits that is used is called as Identifiler Plus, which consists of a set of fifteen known
Loci. Identifiler Plus is a PCR Amplification kit that uses Short Tandem Analysis technique
and amplifies the STR Loci and Amelogenin in a single tube. The database schema has been

designed and normalized using UML modelling techniques shown in the next section.

5.2 Design and Schema for SQLite Database

The technique used for the data modelling and designing the schema for the database is
UML, short for Unified Modelling Language. A UML diagram is a general purpose

modelling language to visualize the design of a database system.

The UML diagram consisting of two compositions and associations between the data is
shown in Figure 5.1. Kit is composed of Locus and Locus in turn is composed of Allele.

The Allele has an association with the Population related by its Frequency.

Kit

Locus

kitName |-

Population

PopulationName| *

LocusiD

Allele

Frequency

AllelelD

AlleleFrequency

Figure 5.1: UML diagram for the database schema design.

21

The UML data models were transformed into relations by breaking down the compositions

and the associations within it. After normalization, the relational schema designed consisted

of five tables namely,

Kit (KitName), with KitName as Primary Key

Locus (LocusID, KitName), with Primary Keys as LocusID, KitName and Foreign Key

22
referencing KitName in Kit Table
Allele (AlleleID, LocusID), with AlleleID, LocusID as Primary Keys
Population (PopulationName), with PopulationName as Primary Key

Frequency (PopulationName, LocusID, AlleleID, Frequency), with PopulationName,
LocusID, AlleleID as Primary Keys and Foreign referencing the PopulationName in

Population Table and LocusID, AlleleID in Allele Table.

5.3 Database Integration with the Software

SQLite database has been connected by using the Java JDBC library. The database had to be
integrated at various points in the application. After identifying the sections and their
specific queries needed for the events triggered by a user, the code was divided into basic

CRUD Operations for Create, Retrieve, Update, and Delete.

Example of code snippet for establishing Database Connection:

public static Connection connect() {

try {
Class.forName (DRIVER);

SQLiteConfig config = new SQLiteConfig();

config.enforceForeignKeys(true);

Connection c¢ = DriverManager.getConnection(DB_URL, config.toProperties());

return c;
} catch (Exception e) {

Bialegs.create()

.title(Constants.DATABASE ERROR)

.message("Error connecting to the Frequency Database.")

.showError();
System.exit(0);
return null;

In the above code, Class.forName() function loads the JDBC driver class which contains the

23

code for driver registration in a static block, using the Reflection API (java.lang.reflect). The
next two lines switched on the Foreign Keys in SQLite as it needs to be manually done on
every connection with a SQLite database. A connection is then returned by the
getConnection method that gets the Database URL as its parameter. This connection is then
returned to the code calling this function. This gets called from the UIController class that

initiates the process when the application starts.

5.3.1 Calibration Interface with Database
For the Calibration, the first step is to select the Kit. The Kits present in the database are
populated in the dropdown. There is a context menu attached with the Kit selection that is

shown in Figure 5.2.

7] £
File Edit View

Calibrate | NOCIt | Matchlt

Calibration

Calibration Name

Kit Identifiler Plus

Load Sample File(s)

Create Kit copy 3

View/Edit Kit

Figure 5.3: Kit edit context menu.

The Create Kit Copy creates a Duplicate of the Kit with all its Loci, Allele and Frequency
values and inserts into the database. The dropdown for the kit auto-populates and shows the

newly kit added as shown in Figure 5.3.

24

I File Edit View

Calibrate | NOCIt | Matchit

Calibration

Calibration Name

Kit | <Choose> - l

Browse

(o Sl Fieta) <Add New> |

| A New Kit

Identifiler Plus
Edit Values m

Figure 5.3: Dropdown menu for Kit selection.

The second option pops up a simple interface to edit the Kit name and the Loci present it
the Kit. A context menu for each of the Loci present provides another interface to edit the
Alleles present in the specific Locus. There are validation checks for all the values for Loci,
Alleles, and Kit names before being saved to the database, including whether the kit has

locus and alleles or not.

Figure 5.4 shows the Kit editor interface, which allows the user to view all the Loci present

for the Kit with a context menu for viewing the Alleles present at each Locus.

File Edit View

Calibrate | NOCIt | Matchit

Calibration
‘Calibration Name
Kit

Load Sample File(s)

Edit Values

File Name

Identifiler Plus - Copy -

Browse

Toggle Filter

Sample Name

NOCit

Identifiler Plus - Copy

Locus
D8s1179
Dz21511
D75820
CSF1PO
D351358
THO1
D135317
D165539
D251338
D195433
VWA
TPOX

Save and Close Cancel

Next

25

DNA Mass (ng) Known Genotype

Figure 5.4: Pop-up interface for viewing the Kit and the Loci and editing the Loci and their Alleles.

Figure 5.5 shows the interface for editing the Alleles inside each Locus on top of the edit Kit

interface.

File Edit View

Calibrate | NOCIt | Matchit

Calibration
Calibration Name
Kit

Load Sample File(s)

Edit Values

File Name

Identifiler Plus - Copy -

Browse

Toggle Filter

Sample Name

NOCit

AllelelD

Save and Close Cancel

Next

DNA Mass (ng) Known Genotype

Figure 5.5: Pop-up interface for viewing and editing the Alleles present at each Locus for the Kit.

Figure 5.6 shows the interface for adding a new Kit, which is the first option in the

dropdown.

File Edit View

Calibrate | NOCIt | Matchit
Calibration
Calibration Name
Kit
Load Sample File(s)
Edit Values

File Name

<Choase> -

Browse

Toggle Filter

Sample Name

NOCit

Locus

Save and Close Cancel

Next

Figure 5.6: Pop-up interface for adding a new Kit.

Once the Kit has been selected, the user is supposed to select the Folder where all the

DNA Mass (ng)

Known Genotype

26

sample files for calibration exist. All the sample files are validated against the Loci present in

the database for the selected kit. Once the samples have been imported, the kit selection

becomes un-editable. The same validation checks are in place for the bulk import of

Genotypes (see Section 5.3.3).

27

5.3.2 Matchlt with Database

The various use cases that originate depending on the Kit selected or edited and if new one
is added, the frequencies for the alleles in the kit are addressed in the Matchlt and NOCit
interface when they are started. The algorithm checks for the presence of frequencies for all
the alleles in the loci present in the kit selected, and if they are missing, then a similar
interface pops up for the user to enter the missing frequencies. The validation checks for the
frequencies whether they add up to 1.0 and for their acceptable value in float. A consistent
looking pop up is also used if the user clicks on the Add New Population in the Matchlt or

NOCit.

Figure 5.7 shows the interface for entering the missing frequencies for the selected

Population type.
NOCit -8
File Edit View
Calibrate | NOCIt | Matchit
+ [- = x
Graph Sample Filter Population Name Calibration Person Of Interest Qutput
v CAUserstanuragamold\Documents\MVT. test 2% <Default>
Locus AllclelD | Frequency
ABC alleleabc 1
A8C alleleabc 2
DEF slleledef 1
DEF alleledef 2
Start Cancel Time Elapsed:

Save and Close Cancel

Figure 5.7: Pop-up interface for entering the allele frequencies for the selected population in MatchlIt.

28

5.3.3 General Menu Options with Database

Another problem that needed to be addressed was, even though there is a very simple way to
enter the genotype sample data for each locus, it would take a long time for a user to input a
lot of genotypes at once. So I designed an algorithm for a bulk import of all the Calibration
Genotypes and Person of Interest Genotypes from an external csv file, through the Menu

Option under File. These two imports have their own viewers in the View Menu Option.

Figure 5.8 shows the simple and elegant viewer for the Calibration Genotypes that have been

imported by a user. A similar viewer is for the Person of Interest Genotypes as well.

NOCit g
7 x
GenotypeD ~ AMEL CSFIPO D135317 D165539 D18Ss1 D195433 D21S11 D251338 D3S1358 D5SB18 D7S820 D8S1179 FGA THO1 TPOX WA

o1d Xy 10,12 1214 89 15,16 13,13 2729 7 16,18 12,12 812 13,14 224 78 9,10 17,19 =
o141 Xy 10,12 1214 89 15,16 1313 2729 17 16,18 12,12 812 1314 224 78 9,10 17,19

o1a3 | dNew Genotype 12,14 89 15,16 13,13 2729 717 16,18 12,12 812 13,14 22,24 78 9,10 17,19

02d Create Kriown Genolipe Copy b1 91 1417 1,13 30302 2224 15,182 11 89 14,14 223 793 88 1517

0d1 13 911 1,17 13 30302 24 15182 Mm 89 14714 22 793 88 15,17

o2z || DeleteGenctype |13 911 1417 IRE! 30302 224 15,182 i 89 14,14 23 793 88 1517

02d3 Xy 12,12 n1 9,11 14,17 13 0302 24 1582 Mm 89 1474 22 793 88 15,17

03d XY 12 1213 n12 16,17 12,14 232 22 115 12,12 13,13 12,13 2024 69 911 16,17

03d1 Xy 12 1213 12 16,17 12,14 232 a3 1415 12,12 13,13 1213 2024 69 911 16,17

03d2 Xy 12 1213 n12 1617 12,14 232 22 1415 12,12 13,13 12,13 2024 69 911 16,17

033 XY 12 1213 12 16,17 12,14 232 223 1415 12,12 13,13 12,13 2024 69 911 16,17

od Xy 1012 912 10,10 1820 13 232 23 1517 812 810 12 2224 68 610 17,17

o4d1 Xy 10,12 912 10,10 1820 1,13 832 22 1517 812 810 12 224 68 610 7,17

o042 Xy 1012 912 10,10 1820 113 8332 223 1517 812 810 12 224 68 610 1717

0a3 Xy 10,12 912 10,10 18.20 13 8332 22 1517 812 810 12 224 68 610 17,17

05d XX 12 912 1013 17,18 132142 2832 1925 1617 1,12 910 1416 2128 67 68 16,17

0541 XX 12 912 1013 17,18 1B2142 832 1925 16,17 112 910 1416 2128 67 68 16,17

052 XX 12 912 1013 17,18 132142 2832 1925 1617 1,12 910 1416 2128 67 68 16,17

053 XX 12 912 1013 17,18 132142 28312 1925 16,17 112 910 14,16 2128 67 68 1617

06d XX 1212 813 n12 1720 12,13 2830 1920 1617 913 810 1213 1924 89 811 15,18

0641 XX 12,12 813 12 1720 12,13 2830 1920 1617 913 810 12,13 1924 89 811 15,18

Save and Close Cancel
Next

Figure 5.8: Interface for viewing all the Calibration genotypes or the POI genotypes.

All the allele values are editable in the Genotype Viewer. The values of 2 alleles are validated

against the values present in the database.

The second problem that was addressed was to have the option to view and edit the Kits

present in the database all at once. The whole kit can be deleted from the database through

29

the context menu option present in the interface. The dropdown for kit selection auto
populates after the deletion. Of course the option will not be able to delete if the kit is being

used.

The View Kits option in the View Menu Option can be seen in the Figure 5.9.

A New Kit Identifiler Plus Identifiler Plus 2
Das1179 ABC
L2151 DEF
D75820 D75820
CSF1PO CSF1PC
0351358 0351358
THN THON
0135317 0135317
D165539 165539
0251338 0251338
0195433 0195433
vilWa VWA
TPCX
18551
D55818
FGA

| Close |

Figure 5.9: Pop-up interface for viewing all the kits with their loci.

The screenshot shows the columns as the individual Kits present in the database, with their
loci as their rows. The user has the option to hide the kit columns or see all of them as

wanted.

30

A similar problem for Population view was also analyzed and implemented with the help of
a Population Frequencies viewer through the View Menu Option. Figure 5.10 shows the

screenshot of the Population Viewer.

Population Name | U5 Caucasian

Locus AllelelD Frequency
Das1179 10,0 0.096
0851179 11.0 0.0594
Das1179 12.0 0.1384
0851179 13.0 0.3207
Das1179 14.0 0.2105
0851179 15.0 0.0975
0851179 16.0 0.0268
0851179 17.0 0.0029
0851179 18.0 0.0069
0851179 19.0 0.0069
0851179 8.0 0.0226
0851179 9.0 0.0113

Save and Close | | Cancel |

Figure 5.10: Interface for viewing the frequency data for each population with the context menu option

for deleting any population as well.

The frequencies are editable in the interface for population viewer, for each of the

population type present in the dropdown.

31

5.4 Screenshots and Results

The overall process from start to finish consists of the Calibration as the first step.

Figure 5.11 shows the first calibration tab where in the user selects the kit and inputs the
sample data files and genotype files with all the parameters that are required to generate

calibration file and its graphs.

rd %
File Edit View

Calibrate | NOCIt | Matchit

Calibration

Calibration Name test

Kit el s 2 -

Load Sample File(s) C:\Users\anuragarnold\Docum Browse

Edit Values

File Name Sample Name Filter DNA Mass (ng) Known Genotype
Tesv DO1-RD12-0002-04d-0.06251P-004.10sec.fsa v 0.0625 04d -
10.csv £04-RD12-0002-04d3-0.01561P-001.10sec.fsa v 00156 04d3
100.csv H03-RD12-0002-0143-0.25IP-004.10sec fsa v 025 0142
10.csv HO4-RD12-0002-024-0.1251P-004.10secsa v 0125 02d
102.csv HO5-RD12-0002-02d1-0.125IP-004.10sec.fsa v 0125 02d1
103.csv HOG-RD12-0002-02d2-0.06251P-004.10secsa v 00625 02d2
104.csv HOT-RD12-0002-0243-0.06251P-004.10secfsa v 0.0625 0243
105.csv H11-RD12-0002-0343-0.03121P-004.10secfsa v 00313 0342
106csv AO2-RD12-0002-07d1-0.251P-001.10sec s v 025 0741
107csv AD3-RD12-0002-07d2-0.1251P-001.10secsa v 0125 07d2
108csv AD4-RD12-0002-07d3-0.1251P-001.10secsa v 0.125 0742
109csv A05-RD12-0002-08-0.06251P-001.10sec.fsa v 00625 g
e £05-8N17-0002-054-0 11561911 1Near fea i nnise N5 -

Next

Figure 5.11: First Calibration Tab

After the user clicks on the Next button, the user is supposed to click Calculate button to
generate the calibration data in tabular form and, plots on the right side for each of the

corresponding parameters from the tree table.

Figure 5.12 shows the second tab for the Calibration process.

File Edit View

Calibrate | NOCIt | Matchit

Calibration: test

Parameters
Formula a b [R"2

P True Mean ax+b 3000 30 0.994
» True Standard Deviation ax+b 1000 50 0981
P Noise Mean ax+b 50 5 0.957
P Noise Standard Deviation ax+b 100 0 - 0.946
» Reverse Stutter Mean ae’bx+c 0 -50 0 0957
¥ Reverse Stutter Standard Deviation aebx+c 0 50 0 0.846

D75820 -28.5201 00113

wWA aebx+c 0.098 -21.0573 0.0181 0.8671

FGA ae’bx+c 03385 -167.2554 0.0279 09113

TPOX ae’bx+c 1.988 -210.848 00331 09771

D195433 aebx+c 02739 -156.9966 0.0272 0911

D3s818 ae’bx+c 1.7469 -282.8065 00277 0.9599

AMEL

D251338 ae’bx+c 0.1088 -5.7151 0 02243

pz1s11 ae’bx+c 01234 -18.0465 0.0107 0619

THO1 aebx+c 0.0606 -24.6595 0.0065 0.9241

D18551 ae’bx+c 1.267 -182.0748 00374 0.9604

Reset
Back

0000 0025 0050 0075 0100 0125 0150 0175 0200 0225 0250
DNA mass

@ Curve Fit Std Dev RStut @ Probability of Std Dev RStut

Save

32

Figure 5.12: Second Calibration tab with graphs and tree table

After the Calibration data has been generated, the user has the option of clicking on Save

button to save the Calibration file for it to be later used in NOCit and MatchlIt.

The NOCit and Matchlt Tabs are the next two tabs where the top section is used by the user

to set up the input data, and the bottom pane is where the results with the graph are

displayed once the calculations are done.

Figures 5.13 and 5.14 show the NOCit and Matchlt Tabs after the results have been

generated.

33

File Edit View

| calibrate | NOCIt | Matehtt |
=

Graph Sample Filter DNA Input (ng) Population Name Max NOC Calibration Output
¥} @ THESL. O 0625 US Caucasian 1 test <Default>

NOCit: \\6.csv-0.0625-1-test.pdf i

Prabability

NOC

| K] >

Figure 5.13: NOCit Tab and Interface

File Edit View

| Calibrate | NOCIt | Matchit

Graph Sample Filter DNA Input (ng) Population Name NOC Calibration Person Of Interest Output
v CA\Users\anuragamold\Documents\MVT... O 0625 US Caucasian 1 test 14 <Default>
Start H Cancel ‘ Time Elapsed: 00:06 ... Done
Matchlt: \\6.csv-0.0625-1-test-14_Matchedit.pdf m
Less than Log{POI LR) W Greater than or equal to Log(POI LR)
120-
110
100
0
=0
z
%r s
&= 50
s
'S
& .
390 3564 3228 2882 2556 222 1884 1548 1212 -876-708 54 372204036132 30
Log(PCI LR) 2

Figure 5.14: Matchlt Tab and Interface.

34

Conclusion

This work comprises of three parts, starting with the implementation of a filtering algorithm,
user interface design for Matchlt and integration of a relational database with the software

application.

The filtering algorithm is a small subset of the underlying algorithms, yet an integral part of
the preprocessing stage for generating the calibration file before NOCit and Matchlt
calculations. The user interface design for Matchlt has contributed in making the software
use a smooth, consistent and user-friendly experience. The various interfaces connecting to
the backend database make the application feature-rich with user options. This has also
helped in attaining a concise way to structure and store the data used in the application in an

organized manner.

With this work we have contributed substantially to the development of a number of

components of the continuing research pipeline for forensic DNA analyses.

35

References

Butler, J.M. (2009). Fundamentals of forensic DNA typing, first ed., Associated Press.

Butler, .M. (2014). Adpanced Topics in Forensic DNA Typing: Interpretation, first ed., Academic
Press.

DNA profiling, (n.d.). In Wikipedia. Retrieved October, 2015, from
https://en.wikipedia.org/wiki/DNA profilin

Murphy, Erin (2015). Inside the Cell: The Dark Side of Forensic DN.A, Nation Books.

Riley, Donald E. (2005). DNA Testing: An Introduction for Non-Scientists, University of
Washington.

STR analysis, (n.d.). In Wikipedia. Retrieved October, 2015, from
https://en.wikipedia.org/wiki/STR analysis

Swaminathan, H., Grgicak, C.M., Medard, M., Lun, D.S. (2015). NOCIz: A computational
method to infer the number of contributors to DINA samples analyzed by STR genotyping,
Forensic Sci Int Genet. 16 172-180. DOI: 10.1016/j.fsigen.2014.11.010.

SWGDAM Interpretation Guidelines for Autosomal STR Typing
http://swgdam.org/Interpretation Guidelines January 2010.pdf

https://en.wikipedia.org/wiki/DNA_profiling
https://en.wikipedia.org/wiki/STR_analysis

	Introduction
	Purpose
	Design and Implementation of Filtering Algorithm
	3.1 Introduction
	3.2 Theory
	3.3 Filtering Algorithm
	3.3.1 Color of Bleed-Through Peak
	3.3.2 Size of Bleed-Through Peak
	3.3.3 Height of Bleed-Through Peak

	3.4 Algorithm Pseudocode
	3.5 Testing and Results

	Development of a Graphical User Interface for MatchIt
	4.1 Introduction
	4.2 Design Pattern
	4.3 Simple and Friendly User Interface
	4.3.1 Input Calibration Data and Person of Interest
	4.3.2 Running the Test
	4.3.3 Displaying Results and Graph

	4.4 Results

	Data Modelling and Integration of a Relational Database
	5.1 Introduction
	5.2 Design and Schema for SQLite Database
	5.3 Database Integration with the Software
	5.3.1 Calibration Interface with Database
	5.3.2 MatchIt with Database
	5.3.3 General Menu Options with Database

	5.4 Screenshots and Results

	Conclusion
	References

