

DEVELOPMENT OF A COMPUTATIONAL TOOL FOR

FORENSIC DNA ANALYSIS

By

ANURAG ARNOLD

A thesis submitted to the

Graduate School-Camden

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of Master of Science

Graduate Program in Computer Science

Written under the direction of

 Dr. Desmond S. Lun

And approved by

Dr. Desmond S. Lun

Dr. Suneeta Ramaswami

Dr. Dawei Hong

Camden, New Jersey

January 2016

ii

THESIS ABSTRACT

Development of a Computational Tool for Forensic DNA Analysis

By ANURAG ARNOLD

Thesis Director:
Dr. Desmond S. Lun

Forensic DNA analysis consists of a DNA profiling process by a method called as STR Analysis,

short for Short Tandem Repeats. By using the statistics it provides, various probabilistic

approaches are implemented in a software package to find out DNA profile matches and

individual identifications. This study has contributed in the design, development and integration

of an easy to use and interactive software application to find the number of contributors in a

DNA sample and to find a match against it with another person’s DNA. This research

specifically deals with the (1) design of an algorithm for filtering unfiltered DNA profile samples

to remove bleed-through peaks; (2) design of an interactive interface for MatchIt, where a DNA

sample of a person of interest is tested against a DNA sample to find a match; and (3) data

modeling, design and integration of a database for the software.

iii

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude and appreciation to Dr. Desmond Lun, my

thesis advisor and mentor, for his patience, guidance and encouragement all along. My grateful

thanks to him for giving me an opportunity to work in an excellent atmosphere to work on my

research. I would not have been able reach this point without all the support from my advisor,

committee members, colleagues, friends and family.

My sincere thanks to Dr. Sunil Shende for his guidance and helping me in understanding the

fundamentals of computer science and big data algorithms.

My sincere thanks to Dr. Dawei Hong, Dr. Michael Palis and Dr. J C Birget who helped me to

develop my background in optimization methods, parallel computing and numerical methods.

I would like to thank Dennis Egen who has been a great mentor to me and helped me in

understanding software engineering.

I would like to thank Harish Swaminathan, Abhishek Garg and Lauren E. Alfonse for all their

help and suggestions. My research would not have been possible without their help.

I would like to express my special thanks to Dr. Suneeta Ramaswami for giving me an

opportunity to be a part of Department of Computer Science at Rutgers Camden, and for her

esteemed guidance.

Finally, I would like to thank my family for their support and encouragement throughout my

study.

iv

TABLE OF CONTENTS

Thesis Abstract ………………………………………………………………………….... ii

Acknowledgements……………………………………………………………………….. iii

Table of Contents ... iv

Introduction .. 1

Purpose .. 3

Design and Implementation of Filtering Algorithm ... 4

3.1 Introduction ... 4

3.2 Theory ... 4

3.3 Filtering Algorithm .. 5

3.3.1 Color of Bleed-Through Peak ... 5

3.3.2 Size of Bleed-Through Peak .. 5

3.3.3 Height of Bleed-Through Peak ... 6

3.4 Algorithm Pseudocode ... 7

3.5 Testing and Results.. 8

Development of a Graphical User Interface for MatchIt .. 11

4.1 Introduction ... 11

4.2 Design Pattern .. 11

4.3 Simple and Friendly User Interface .. 12

4.3.1 Input Calibration Data and Person of Interest ... 13

4.3.2 Running the Test ... 15

4.3.3 Displaying Results and Graph ... 16

4.4 Results ... 18

Data Modelling and Integration of a Relational Database ... 19

5.1 Introduction ... 19

5.2 Design and Schema for SQLite Database .. 20

5.3 Database Integration with the Software ... 22

5.3.1 Calibration Interface with Database ... 23

5.3.2 MatchIt with Database ... 27

5.3.3 General Menu Options with Database .. 28

5.4 Screenshots and Results .. 31

Conclusion ... 34

References ... 35

1

 Introduction

Forensic Science has been used extensively for criminal investigation purposes for past three

decades. The recent developments in the field utilizes a technique known as Short Tandem

Repeat Analysis. The STR is a repetitive DNA sequence in the form of 2-5 base pairs of

nitrogenous bases found all through the DNA present in living organisms. These

nitrogenous bases consist of hydrogen bonds with each other connecting the two anti-

parallel strands that form the helix-shaped DNA.

STR analysis used for the purpose of DNA profiling is based on PCR (Polymerase Chain

Reaction). PCR amplifies a DNA template consisting of the STR sequences which is then

passed through capillary electrophoresis to produce a DNA profile of an individual. The

highly variable repetitive sequences used in DNA profiling called as Variable number tandem

repeats are extremely unlikely to be the same for two individuals. This helps in identifying

and matching a DNA sample against an individual.

The DNA profile, an electropherogram, is used to determine the number of contributors

present in the sample after the preprocessing.

Based on the assumption of number of contributors, a commonly used approach known as

Likelihood Ratio is used to calculate the match statistic.

The Likelihood Ratio is defined as:

𝐿𝑅 =
𝑃𝑟(𝐸|𝐻𝑝, 𝑛𝑝)

𝑃𝑟(𝐸|𝐻𝑑 , 𝑛𝑑)
,

2

where, 𝐸 is the evidence in the form of the electropherogram (epg); 𝐻𝑝 and 𝐻𝑑 are the

hypotheses specified by the prosecution and the defense, respectively; and 𝑛𝑝 and 𝑛𝑑 are the

number of contributors specified by the prosecution and the defense, respectively. The

numerator is the probability of observing the evidence given the prosecution’s hypothesis

and the denominator is the probability of observing the evidence given the defense’s

hypothesis. The evidence shows support for the prosecution’s hypotheses if LR > 1; if LR <

1 the defense’s hypothesis is supported by the evidence. The calculation of a Likelihood

Ratio depends upon an assumption about the number of contributors both in the numerator

as well as the denominator, making it essential to have a good estimate about the number of

contributors to accurately calculate a statistic that represents the information captured in the

signal. Thus, utilizing a number of contributors that is not representative of the actual

number that gave rise to a sample may affect the interpretation of the sample's profile.

The p-value for the suspect is defined as the probability that a randomly picked person from

the population would give rise to an LR at least as large as the one observed for the suspect.

 𝑝 − 𝑣𝑎𝑙𝑢𝑒(𝑠) = (𝐿𝑅(𝑅) ≥ 𝐿𝑅(𝑠))

Using the above approach to find the number of contributors in a DNA sample and match

it against that of a person of interest, we need an efficient and interactive software solution

that works with the underlying algorithms on the data, and assists in generating and

visualizing test results. This project contributes in the development of a concise solution for

the challenges faced in designing a software for DNA analysis.

3

 Purpose

The purpose of my thesis project has been to contribute in the design, development, and

integration of the various components of a computational software tool for Forensic DNA

Analysis. The first part of my thesis consists of an implementation of a Filtering Algorithm

to filter testing samples to remove the bleed-through and extraneous peaks of alleles

resulting from misreading during electrophoresis detection. The testing samples are used for

generating a calibration file that is used in the algorithms used for the finding the number of

contributors in a DNA sample and matching it against a person of interest’s DNA sample.

The part of the application that refers to finding the number of contributors is called as

NOCit. And the third part of the software is called MatchIt that tries to find a match

between a DNA sample and a person of interest. The bleed-through peaks of alleles need to

be removed from the DNA data before being analyzed in NOCit and MatchIt.

Next, I have designed a user interface for the MatchIt algorithm, which matches a suspect’s

DNA sample against the one found at a crime scene. This interface has been integrated with

the rest of the software. Thirdly, I have designed a schema for a relational database and

integrated it with the various components of the software to assist with the data being used.

My work can be summarized as,

1. Designing and implementing a Filtering Algorithm.

2. Developing a simple and user-friendly user interface for MatchIt.

3. Data modelling, designing and integrating a Relational Database with the software.

4

 Design and Implementation of Filtering Algorithm

3.1 Introduction

DNA profiling for forensic purposes starts with a sample of the DNA being amplified at

specific STR loci using Polymerase Chain Reaction (PCR). The next step is to pass the

resulting DNA fragments through an electrophoresis process. This is the preprocessing stage

wherein the DNA profile of the person is generated. The data present in the profile is then

used for further analysis. Before the analysis, however, there can be some noise that is

present in the profile. These are in the form of spurious peaks in the electropherogram, and

they need to be filtered out.

3.2 Theory

After the DNA has been collected, we use Polymerase Chain Reaction to amplify specific

STR loci. The amplification results in copies of the DNA at the loci so that they can then be

detected during electrophoresis. The fragments of DNA produced are separated and

detected by capillary electrophoresis technique. During this process, fluorescent tags

attached to the DNA emit light in the visible spectrum when they are passed through the

capillary in UV light.

The PCR technique is carried out using the Identifiler Plus kit that produces fifteen known

set of loci with their set of alleles present in them. During electrophoresis, the detector

detects the color emitted by the fragments of DNA and categorizes the alleles for each loci

with their size and height accordingly. A screenshot of a sample file produced is shown in

Figure 3.1.

Sometimes due to the misreading of the detector, there may be false allele peaks present in a

5

particular dye color. There are several ways in which the peaks appear in a dye color channel

they do not belong to. For example, the detector for the color green might also detect some

of the portions emitting at the adjacent color, yellow, in the spectrum. These extraneous

peaks are known as the bleed-through peaks. Before analyzing and processing the DNA

data, it is important to remove all these bleed-through peaks. A three-step process

implemented in the filtering algorithm for this has been described in the next section.

3.3 Filtering Algorithm

An unfiltered sample file consists of the size and height of all the alleles at a specific dye

color channel present at each locus, along with more data from the preprocessing such as the

run name and the amount of the DNA sample. The filtering algorithm is designed for the

unfiltered sample files with bleed-through peaks to get filtered for the calibration data to be

generated, and also for filtering the NOCit and MatchIt testing sample files. It is basically

comprised of a three-step process, and the algorithm has been integrated with the user

interface as well.

3.3.1 Color of Bleed-Through Peak

This is the first step in identifying the bleed-through peaks. The first restriction is that the

dye color of the bleed-through peak cannot be the same as that of the true peak as the bleed-

through appears in a color channel they are not supposed to. We check all the pairs of alleles

having different dye colors. The algorithm uses a Java Collections Hashmap to arrange the

peaks and checks and considers only the ones that are different in color from the other

peaks. So once this criteria is satisfied, the second criteria is considered.

3.3.2 Size of Bleed-Through Peak

The second criteria checks the pairs of different colored peaks for the absolute value of their

6

size difference. The size represents the distance between two base pairs present in the STR

loci. If the difference of sizes of the two alleles is less than or equal to a threshold of 0.3, the

criteria gets satisfied and the third criteria will be checked for the peaks. The threshold of 0.3

can be changed by the user in the software through an interface.

3.3.3 Height of Bleed-Through Peak

The third constraint is to check that if the ratio of the peak heights of the two allele pairs are

less than 5%. If this check is passed, then the first peak gets removed as the bleed-through.

The same procedure is carried out for all the pairs of the alleles present in different dye

colors.

7

3.4 Algorithm Pseudocode

The algorithm takes in a HashTable as input, hashed with the colors, Red, Blue, Green and

Yellow, containing a List of (Size, Height) pairs for each color.

For every peak in one color, we have to find if there are any peaks in other colors whose

difference in size and height ratio is less than the threshold. If there is a peak whose height is

less than a corresponding peak’s height and their size difference less than the size threshold,

then this peak is removed.

Input: HashTable, H

H[Color] is a List of (Size, Height) pairs,

for colors: ‘R’, ‘G’, ‘B’ and ‘Y’

IF ∃ (Size1, Height1) pair in H[Color1]

 AND (Size2, Height2) pair in H[Color2]

WHERE, |Size1 – Size2| < Size Threshold

 AND Height1 < Height2 * Height Threshold

THEN, REMOVE (Size1, Height1)

Output: HashTable, H

H[Color] is a List of (Size, Height) pairs, with the peaks

removed.

8

3.5 Testing and Results

During the calibration process, the application has checkboxes for the user to select whether

the samples being used for calibration need to be filtered or not. The following snapshot in

Figure 3.1 shows a snippet of the sample data file with the peaks. The letters B, G, Y and R

represent the dye colors in the Dye columns, referring to Blue, Green, Yellow and Red

respectively.

Figure 3.1: Screenshot of a sample file.

Also, with a Menu option in Settings, shown in Figure 3.2, the user can set the thresholds for

the size difference and the height ratios to be used for filtering the peaks in the step 2 and 3.

9

Figure 3.2 Interface for setting the thresholds for the size difference and peak height ratio of alleles.

Unfiltered testing samples were filtered and compared to the ones not unfiltered in regards

to the Calibration data generated, and on the NOCit results.

Figures 3.3 and Figure 3.4 show a comparison of the results between a Calibration data of

unfiltered samples and filtered samples.

Figure 3.3 Sample graph for a locus from unfiltered sample files.

10

Figure 3.4 Sample graph for a locus from the filtered sample files.

11

 Development of a Graphical User Interface for MatchIt

4.1 Introduction

As important as it is to have an efficient algorithm, it is equally important to have a simple

user interface and experience in using the software. In designing the MatchIt interface for

our software tool, it was important to make the features and flow of work similar to the

other parts of the software. Also important was to make sure the user experience is smooth

and interactive at every step, for example during the time the calculations are being carried

out and at the end, the results that need to be show with a proper graph.

4.2 Design Pattern

The design pattern used in the project is a layer approach called MVC, short for Model-

View-Controller. The MVC is an architectural pattern used in the design of User Interfaces.

The code and the structure is organized in such a way that the Controller sends commands

to the Data Model layer and also to the View Layer for updating any events triggered in the

interface by the user like accepting input data, with the click of a button. The Model layer

contains all the algorithmic data coupled with the database backend. It has all the behavioral

aspects of the application and is independent of the user interface. The View layer has all the

UI components like the style sheets and FXML files that hold the whole structure of the

application. It contains the views for all the three interactive sections of the application

including the graphs generated.

Figure 4.1 shows the screenshot of the code organization with the help of a class diagram.

12

Figure 4.1: Class diagram showing all the class relationships in the MVC design pattern.

The first package consisting of the UI Controller classes has all the UI components, and the

Control package contains the backend controller logic that accepts input and sends data to

the Model-Database, which is in the third package, Data.

4.3 Simple and Friendly User Interface

As the software workflow is divided into three sections, namely Calibration of data, NOCit

for finding out the number of contributors in a DNA sample, and MatchIt for matching the

DNA sample with the suspect’s DNA. I have worked on designing and developing the

MatchIt interface with a similar user experience as in NOCit. This includes a section for

input data with validation and integrity checks against the database, calculations and results

13

display with a histogram plot.

4.3.1 Input Calibration Data and Person of Interest

The Input section has nine columns for Graph display checkbox, Sample file chooser, Filter

checkbox for filtering the sample file, DNA Input in nanograms, Population Name

dropdown selection, NOC, Calibration files saved earlier, Person of Interest genotype

sample chooser, and Output file destination selection for the pdf report that gets generated.

Figure 4.2 shows a screenshot of the input section of the interface with no input data yet.

Figure 4.2: MatchIt interface with a table for all the inputs.

Figure 4.3 shows the same section when all input data has been accepted and is ready to be

validated

Figure 4.3: MatchIt interface with all the input parameters.

14

Also added is the context menu options that are consistent with the design in the first

section of the software where Calibration Genotypes are displayed. Figure 4.4 shows the

screenshot.

Figure 4.4: Pop-up interface for viewing and editing the genotype file for the person of interest.

After the input data is accepted it is validated against two conditions, first whether all the

required data is present in the specified format and against the database for the loci, allele

and frequency values for the selected population type.

Figure 4.5 shows a screenshot that checks for a valid DNA input. For the validation checks

against database, see section 5.3.3.

15

Figure 4.5: Validation check warning for a valid DNA input.

4.3.2 Running the Test

Once all the data has been validated and input files uploaded, the MatchIt algorithm and

calculations start when the Start button is clicked. There is a progress bar with a timer that

signifies the running of the algorithm. The smaller the Number of Contributors, the less

time is taken to calculate the results. This step has been added with a multi-threaded

approach so that the software functions in parallel and shows the results when the

calculations end. The multi-threading has been implemented using the JDK 8 Thread API.

Without parallelism, the software running on a single thread would freeze until the

calculations complete.

Example of code snippet:

final BackendController backendControllerMit = this;
 Thread matchitThread = new Thread() {
 public synchronized void run() {
 synchronized (uiControllerMit) {
 try {
 MatchIt matchit = new MatchIt(calibration);

16

 matchit.runMatchIt(outputFile, frequencyFile, sampleFile,
dnaMass, maxNOC, genotypepoi, calculationsProgressBar, poiSamples, kitName, popName);
 backendControllerMit.MatchItThreadFinished(this,
matchit.graphBarChart(outputFile), matchit.getMatchItResultsString(), outputFile,
count);
 } catch (final Exception e) {
 Platform.runLater(new Runnable() {
 @Override
 public void run() {
logger.error(Constants.RUN_MATCHIT_THREAD_ERROR_LOG_MESSAGE, e);
 }
 });
 }
 }
 }
 };
 matchitThread.start();
 threadListMit.add(matchitThread);
 this.threadCount++;

The above code starts a new Thread by calling the Thread API in Java. It locks the monitor

on the uiControllerMit object and calls the runMatchIt function in the MatchIt.java class.

This code resides in the BackendController.java class, and once the MatchIt calculations are

finished, the backendController object calls the functions that generate the MatchIt

Histogram plot along with the printed result output.

From the architectural point of view, as the user clicks on the Start button for the MatchIt,

the event generated will be accepted by the UIController that passes all the data to the

backend controller, which calls the backend code for the MatchIt data processing. All the

constants and algorithms implemented reside in the layer as the MatchIt class. When the

results are generated, they are passed back to the backend controller which passes it to the

UIController. The UIController sends the data to the respective nodes in the user interface.

4.3.3 Displaying Results and Graph

After the calculations are over, the results get displayed in the bottom and the third pane of

the interface, and depending on the Graph display option ticked in the input section, it

17

visualizes the results as a Histogram Plot. The result set includes the sample details that were

given as input, with the True Likelihood Ratio for the Person of Interest, Log (POI LR). The

histogram plots the frequency values for all the Log (POI LR) values less than the True

Likelihood Ratio as yellow in color, and the ones greater than True Likelihood Ratio as

Green in color.

A screenshot of the results that is displayed with the histogram in the application is shown in

Figure 4.6

Figure 4.6: MatchIt results shown in the application with a histogram plot.

18

4.4 Results

A screenshot of the pdf report generated and saved in the user’s disk is shown in Figure 4.7

Figure 4.7: Screenshot of the pdf generated with the MatchIt results.

19

 Data Modelling and Integration of a Relational Database

5.1 Introduction

Any application with data processing needs to store data persistently and in a structured

manner. The data in this application consists of a Kit, and a set of Loci for a specific Kit.

Each Locus is composed of a set of Alleles and specifies a location or position of a DNA

sequence present on a chromosome. The Kit used here refers to the PCR amplification that

produces a set of fifteen known Loci and is known as Identifiler Plus. The Alleles

representing a variation of the DNA sequence at each locus, are in turn associated with a

specific Population type with their relative Population frequencies. For each different

Population type and for a specific Kit, the Alleles will have different frequencies at their

respective Locus values. The whole data model can be visualized as consisting of a nested

structure with Kit containing Loci containing Alleles, the Alleles also being associated with a

specific Population type with their different Frequencies, with the Frequencies adding up to

1.0 for all the Alleles at a Locus.

For storing this data in a database it needed to be first modeled with all the relations,

compositions and associations between each of them. A UML diagram in the Section 5.2

shows the data model. The process from Calibration to NOCit and MatchIt in the

application uses a lot of this data that needed to be organized, edited and retrieved when

needed.

The problem of having all the sample files in their formats for different types of Kits and

Populations to be used by the application was solved with the help of a Relational Database.

Being a light and easy to use database management system, SQLite was the best choice.

20

The database consists primarily of the set of Loci belonging to the kind of Kit selected,

Alleles present in the Loci with their frequencies for the different Population Types. One of

the Kits that is used is called as Identifiler Plus, which consists of a set of fifteen known

Loci. Identifiler Plus is a PCR Amplification kit that uses Short Tandem Analysis technique

and amplifies the STR Loci and Amelogenin in a single tube. The database schema has been

designed and normalized using UML modelling techniques shown in the next section.

5.2 Design and Schema for SQLite Database

The technique used for the data modelling and designing the schema for the database is

UML, short for Unified Modelling Language. A UML diagram is a general purpose

modelling language to visualize the design of a database system.

The UML diagram consisting of two compositions and associations between the data is

shown in Figure 5.1. Kit is composed of Locus and Locus in turn is composed of Allele.

The Allele has an association with the Population related by its Frequency.

21

Figure 5.1: UML diagram for the database schema design.

The UML data models were transformed into relations by breaking down the compositions

and the associations within it. After normalization, the relational schema designed consisted

of five tables namely,

Kit (KitName), with KitName as Primary Key

Locus (LocusID, KitName), with Primary Keys as LocusID, KitName and Foreign Key

22

referencing KitName in Kit Table

Allele (AlleleID, LocusID), with AlleleID, LocusID as Primary Keys

Population (PopulationName), with PopulationName as Primary Key

Frequency (PopulationName, LocusID, AlleleID, Frequency), with PopulationName,

LocusID, AlleleID as Primary Keys and Foreign referencing the PopulationName in

Population Table and LocusID, AlleleID in Allele Table.

5.3 Database Integration with the Software

SQLite database has been connected by using the Java JDBC library. The database had to be

integrated at various points in the application. After identifying the sections and their

specific queries needed for the events triggered by a user, the code was divided into basic

CRUD Operations for Create, Retrieve, Update, and Delete.

Example of code snippet for establishing Database Connection:

public static Connection connect() {

 try {
 Class.forName(DRIVER);
 SQLiteConfig config = new SQLiteConfig();
 config.enforceForeignKeys(true);
 Connection c = DriverManager.getConnection(DB_URL, config.toProperties());
 return c;
 } catch (Exception e) {
 Dialogs.create()
 .title(Constants.DATABASE_ERROR)
 .message("Error connecting to the Frequency Database.")
 .showError();
 System.exit(0);
 return null;

 }
 }

In the above code, Class.forName() function loads the JDBC driver class which contains the

23

code for driver registration in a static block, using the Reflection API (java.lang.reflect). The

next two lines switched on the Foreign Keys in SQLite as it needs to be manually done on

every connection with a SQLite database. A connection is then returned by the

getConnection method that gets the Database URL as its parameter. This connection is then

returned to the code calling this function. This gets called from the UIController class that

initiates the process when the application starts.

5.3.1 Calibration Interface with Database

For the Calibration, the first step is to select the Kit. The Kits present in the database are

populated in the dropdown. There is a context menu attached with the Kit selection that is

shown in Figure 5.2.

Figure 5.3: Kit edit context menu.

The Create Kit Copy creates a Duplicate of the Kit with all its Loci, Allele and Frequency

values and inserts into the database. The dropdown for the kit auto-populates and shows the

newly kit added as shown in Figure 5.3.

24

Figure 5.3: Dropdown menu for Kit selection.

The second option pops up a simple interface to edit the Kit name and the Loci present it

the Kit. A context menu for each of the Loci present provides another interface to edit the

Alleles present in the specific Locus. There are validation checks for all the values for Loci,

Alleles, and Kit names before being saved to the database, including whether the kit has

locus and alleles or not.

Figure 5.4 shows the Kit editor interface, which allows the user to view all the Loci present

for the Kit with a context menu for viewing the Alleles present at each Locus.

25

Figure 5.4: Pop-up interface for viewing the Kit and the Loci and editing the Loci and their Alleles.

Figure 5.5 shows the interface for editing the Alleles inside each Locus on top of the edit Kit

interface.

Figure 5.5: Pop-up interface for viewing and editing the Alleles present at each Locus for the Kit.

26

Figure 5.6 shows the interface for adding a new Kit, which is the first option in the

dropdown.

Figure 5.6: Pop-up interface for adding a new Kit.

Once the Kit has been selected, the user is supposed to select the Folder where all the

sample files for calibration exist. All the sample files are validated against the Loci present in

the database for the selected kit. Once the samples have been imported, the kit selection

becomes un-editable. The same validation checks are in place for the bulk import of

Genotypes (see Section 5.3.3).

27

5.3.2 MatchIt with Database

The various use cases that originate depending on the Kit selected or edited and if new one

is added, the frequencies for the alleles in the kit are addressed in the MatchIt and NOCit

interface when they are started. The algorithm checks for the presence of frequencies for all

the alleles in the loci present in the kit selected, and if they are missing, then a similar

interface pops up for the user to enter the missing frequencies. The validation checks for the

frequencies whether they add up to 1.0 and for their acceptable value in float. A consistent

looking pop up is also used if the user clicks on the Add New Population in the MatchIt or

NOCit.

Figure 5.7 shows the interface for entering the missing frequencies for the selected

Population type.

Figure 5.7: Pop-up interface for entering the allele frequencies for the selected population in MatchIt.

28

5.3.3 General Menu Options with Database

Another problem that needed to be addressed was, even though there is a very simple way to

enter the genotype sample data for each locus, it would take a long time for a user to input a

lot of genotypes at once. So I designed an algorithm for a bulk import of all the Calibration

Genotypes and Person of Interest Genotypes from an external csv file, through the Menu

Option under File. These two imports have their own viewers in the View Menu Option.

Figure 5.8 shows the simple and elegant viewer for the Calibration Genotypes that have been

imported by a user. A similar viewer is for the Person of Interest Genotypes as well.

Figure 5.8: Interface for viewing all the Calibration genotypes or the POI genotypes.

All the allele values are editable in the Genotype Viewer. The values of 2 alleles are validated

against the values present in the database.

The second problem that was addressed was to have the option to view and edit the Kits

present in the database all at once. The whole kit can be deleted from the database through

29

the context menu option present in the interface. The dropdown for kit selection auto

populates after the deletion. Of course the option will not be able to delete if the kit is being

used.

The View Kits option in the View Menu Option can be seen in the Figure 5.9.

Figure 5.9: Pop-up interface for viewing all the kits with their loci.

The screenshot shows the columns as the individual Kits present in the database, with their

loci as their rows. The user has the option to hide the kit columns or see all of them as

wanted.

30

A similar problem for Population view was also analyzed and implemented with the help of

a Population Frequencies viewer through the View Menu Option. Figure 5.10 shows the

screenshot of the Population Viewer.

Figure 5.10: Interface for viewing the frequency data for each population with the context menu option

for deleting any population as well.

The frequencies are editable in the interface for population viewer, for each of the

population type present in the dropdown.

31

5.4 Screenshots and Results

The overall process from start to finish consists of the Calibration as the first step.

Figure 5.11 shows the first calibration tab where in the user selects the kit and inputs the

sample data files and genotype files with all the parameters that are required to generate

calibration file and its graphs.

Figure 5.11: First Calibration Tab

After the user clicks on the Next button, the user is supposed to click Calculate button to

generate the calibration data in tabular form and, plots on the right side for each of the

corresponding parameters from the tree table.

32

Figure 5.12 shows the second tab for the Calibration process.

Figure 5.12: Second Calibration tab with graphs and tree table

After the Calibration data has been generated, the user has the option of clicking on Save

button to save the Calibration file for it to be later used in NOCit and MatchIt.

The NOCit and MatchIt Tabs are the next two tabs where the top section is used by the user

to set up the input data, and the bottom pane is where the results with the graph are

displayed once the calculations are done.

Figures 5.13 and 5.14 show the NOCit and MatchIt Tabs after the results have been

generated.

33

Figure 5.13: NOCit Tab and Interface

Figure 5.14: MatchIt Tab and Interface.

34

 Conclusion

This work comprises of three parts, starting with the implementation of a filtering algorithm,

user interface design for MatchIt and integration of a relational database with the software

application.

The filtering algorithm is a small subset of the underlying algorithms, yet an integral part of

the preprocessing stage for generating the calibration file before NOCit and MatchIt

calculations. The user interface design for MatchIt has contributed in making the software

use a smooth, consistent and user-friendly experience. The various interfaces connecting to

the backend database make the application feature-rich with user options. This has also

helped in attaining a concise way to structure and store the data used in the application in an

organized manner.

With this work we have contributed substantially to the development of a number of

components of the continuing research pipeline for forensic DNA analyses.

35

 References

Butler, J.M. (2009). Fundamentals of forensic DNA typing, first ed., Associated Press.

Butler, J.M. (2014). Advanced Topics in Forensic DNA Typing: Interpretation, first ed., Academic
Press.

DNA profiling, (n.d.). In Wikipedia. Retrieved October, 2015, from

https://en.wikipedia.org/wiki/DNA_profiling

Murphy, Erin (2015). Inside the Cell: The Dark Side of Forensic DNA, Nation Books.

Riley, Donald E. (2005). DNA Testing: An Introduction for Non-Scientists, University of
Washington.

STR analysis, (n.d.). In Wikipedia. Retrieved October, 2015, from

https://en.wikipedia.org/wiki/STR_analysis

Swaminathan, H., Grgicak, C.M., Medard, M., Lun, D.S. (2015). NOCIt: A computational

method to infer the number of contributors to DNA samples analyzed by STR genotyping,
Forensic Sci Int Genet. 16 172-180. DOI: 10.1016/j.fsigen.2014.11.010.

SWGDAM Interpretation Guidelines for Autosomal STR Typing

http://swgdam.org/Interpretation_Guidelines_January_2010.pdf

https://en.wikipedia.org/wiki/DNA_profiling
https://en.wikipedia.org/wiki/STR_analysis

	Introduction
	Purpose
	Design and Implementation of Filtering Algorithm
	3.1 Introduction
	3.2 Theory
	3.3 Filtering Algorithm
	3.3.1 Color of Bleed-Through Peak
	3.3.2 Size of Bleed-Through Peak
	3.3.3 Height of Bleed-Through Peak

	3.4 Algorithm Pseudocode
	3.5 Testing and Results

	Development of a Graphical User Interface for MatchIt
	4.1 Introduction
	4.2 Design Pattern
	4.3 Simple and Friendly User Interface
	4.3.1 Input Calibration Data and Person of Interest
	4.3.2 Running the Test
	4.3.3 Displaying Results and Graph

	4.4 Results

	Data Modelling and Integration of a Relational Database
	5.1 Introduction
	5.2 Design and Schema for SQLite Database
	5.3 Database Integration with the Software
	5.3.1 Calibration Interface with Database
	5.3.2 MatchIt with Database
	5.3.3 General Menu Options with Database

	5.4 Screenshots and Results

	Conclusion
	References

