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THESIS ABSTRACT 

Real Time Big Data Mining 

By JIMIT PATEL 

 
Thesis Director: 

Dr. Michael A. Palis 

 
 
 
 
This thesis presents a parallel implementation of data streaming algorithms for 

multiple streams. Thousands of data streams are generated in different industries 

like finance, health, internet, telecommunication, etc. The main problem is to 

analyze all these streams in real time to find correlation between streams, standard 

deviation, moving average, etc. There are efficient algorithms available to analyze 

multiple streams. However, we can still improve the performance of a system to 

analyze multiple streams through parallel implementation. This thesis specifically 

focuses on: 1) design and implementation of a parallel system for multiple streams 

to find Discrete Fourier Transform (DFT), Most Correlated Pair, Singular Value 

Decomposition, Standard Deviation, Moving Average, and Aggregated Average; 

2) performance analysis of multiple threaded application versus single threaded 

application; and 3) visualization of archived data.  
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Chapter 1 Introduction 
 

1.1 Problem statement 

Consider the problem of monitoring tens of thousands of time series data 

streams online and making decisions based on them. In addition to single stream 

statistics such as average and standard deviation, we also want to find the most 

highly correlated pairs of streams especially in a sliding window method. A stock 

market trader might use such a tool to spot arbitrage opportunities. There has been 

extensive research to find efficient algorithms to calculate these statistics. We 

discuss all these algorithms. However, these algorithms have not been 

implemented in parallel. We would like to analyze thousands of real time series in 

a parallel way so that we can increase performance. To my knowledge, this has 

not been done. The objective of this work is to parallelize all these methods. Can 

we actually implement a system using multi-threading? How much improvement 

we can get in the performance if we use multi-threading? Will there actually be an 

increase in the performance or will performance drop with the use of multi-

threading? These are the questions we want to answer. Hence, we decide to make 

an application to analyze thousands of real time series in parallel, then compare 

the performance between single threaded and multi-threaded applications.  

 

1.2 Motivation 

 There are so many areas where multiple data streams have been used. For 

example: 



2 
 

 
 

1) NASA’s Space Shuttle generates data at a rate of 1 sec approximately for 

20,000 sensors to Mission Control at Johnson Space Center, Houston [17]. 

2) Every second up to 10,000 quotes and trades are generated. We want to 

analyze thousands of trading time series in real time. Traders would like to 

find correlation, pattern, moving average, standard deviations on the fly. 

They do not really have enough time to calculate all these values. Things 

are changing however with the introduction of “Data Stream Management 

Systems” [18].  

3) There are applications in telecommunication. For example, AT&T collects 

approximately 300 million records per day from its 100 million customers 

[19]. 

4) Comcast Cable, a cable company, produces millions of data streams from 

millions of customer devices. They want to analyze all these data streams 

in real time because they need to find faults, usage patterns, and unusual 

activities in progress. This leads to analysis of traffic and fault data in real 

time [20].  

5) This is applied in astronomy. The MACHO project investigates the dark 

matter in the halo of Milky Way [21]. In this process, they monitor several 

million stars that generate data at the rate of GBytes per night. 

6) Credit card fraud analytics needs to process real time data stream on the 

fly to predict if a given transaction is fraudulent [15].  
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7) A wireless sensor network (WSN) is a special kind of adhoc network that 

has the capacity of sensing and processing, which can be applied to many 

fields, such as environmental, industrial, military, and agriculture.  
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Chapter 2 Background and Related Work 

 

More efficient methods for doing analytics over multiple streams based on 

Discrete Fourier Transform and a three level time interval hierarchy have been 

discussed in [23]. The algorithm described in [1] beats the direct computation 

approach by several orders of magnitude. The algorithm is incremental, has fixed 

response time, and can monitor the pairwise correlations of 10,000 streams on a 

single PC. 

Functional contributions of this thesis are: 

1. Computing multi-stream statistics such as synchronous as well as time 

delayed correlation and vector inner-product in a continuous online fashion. 

This means that if a statistic holds at time t, that statistic will be reported at 

time t + v, where v is a constant independent of the size and duration of the 

stream. 

2. For any pair of streams, each pair-wise statistic is computed in an 

incremental fashion and requires constant time per update. This is done 

using a Discrete Fourier Transform approximation. 

3. The approximation has a small error under natural assumptions. 

4. Even when the data streams over sliding windows are monitored, no 

revisiting of the expiring data streams is needed. 

In [1], how to compute DFT coefficients incrementally is also discussed. To 

find out the pairs that are most likely to be correlated, the grid structure discussed 

in [24] is used in [1]. Then among the filtered pairs, correlation between the streams 

is found using first n DFT coefficients. Sketches (random projections) which 
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include different techniques like sketches, convolution, grid structures, structures 

random vectors, combinatorial design and bootstrapping are discussed in [1]. 

These techniques have been used to find windowed correlation for uncooperative 

data streams which do not have concentrated energy over few frequency 

components. Uncooperative data streams cannot be approximated using data 

reduction techniques like DFT, Fast Fourier Transform, SVD, Wavelet Transform, 

etc. Hence, to find correlation between these kinds of data streams with high 

performance, the sketched approach is used. This approach is discussed in more 

detail in [26]. 

 One can find great information about models and algorithms for data 

streams in [14]. The book talks about online algorithms for data stream analysis. 

Models can be learned from time changing streams without using sliding windows 

and this is discussed in [25]. In [10], algorithms are developed for interactive 

visualization of big data. First, scalable visual summaries using data reduction 

techniques like sampling or binned aggregation were discussed. After that, 

algorithms for interactive querying like brushing and linking with the use of 

multivariate data tiles and parallel query processing have been developed. Datar 

et. al [26] find statistics over a sliding window. An algorithm to monitor statistics 

over sliding windows at every time point which makes use of a limited memory has 

been proposed. However, accuracy was compromised. In [27] also, calculating 

statistics over multiple data streams is discussed. The paper is more focused in 

calculating correlated aggregates which we are not really interested in finding. The 

paper presents the summary of correlated aggregates using histogram. For 



6 
 

 
 

example, finding the percentage of international calls that last longer than the 

average value of domestic calls. AT&T has designed a system called Hancock [28] 

to find signatures from massive data streams. An algorithm to make a decision tree 

has been proposed in [29] whereas [30] develops an algorithm to make clusters 

for data streams.    

 Agrawal et al. [31] transforms the time series into the frequency domain with 

the help of DFT. Then, the first few DFT coefficients using multidimensional index 

were indexed. Basic goal was to find whole sequence matching. This technique 

later on was improved to allow sub sequence matching [32]. In [1], finding 

similarities among multiple real time series was the main focus. Correlation 

coefficients were used to find the similarity [33]. There are some other techniques 

proposed as well to find similarity. For example, [34] discusses about Discrete 

Wavelet Transform (DWT) and [35] discusses Singular Value Decomposition 

(SVD). It depends on the dataset as to which technique will work best. 

 We are mainly focused on proposing an algorithm to use parallelism to find 

correlation, SVD, standard deviation, DFT, and moving average. 
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Chapter 3 Summary of Contributions 
 

1. Design and implementation of a system to analyze multiple streams in parallel 

have been our main contribution in this thesis. We discussed different papers 

about analysis of multiple data streams. However, analysis of multiple data 

streams in parallel has not been discussed. That is where we contribute. We 

make a system that works on parallelizing the analysis of multiple data streams. 

2. A parallel radix 2 Decimation in time algorithm to find FFT has been proposed 

and implemented. Time complexity of the algorithm to find FFT of w points 

window is O(log w) with O(w) parallel threads giving speed up of w. In real 

applications, we do not achieve speed up of w. We used this algorithm to find 

FFT of w points window for n data streams by allocating O(m) threads to n data 

streams. Thus, we parallelized FFT calculation as well as the calculation for 

each stream. However, we did not get the speed up in this case due to thread 

creation overhead. Hence, we propose to use O(m) threads to parallelize 

calculation for n data streams and single thread for FFT computation. This 

results in time complexity of O(n/m * w * log w).     

3. We use Pearson correlation coefficient to find correlation between streams. We 

find the most correlated pair among all pairs in n data streams by comparing 

the Pearson correlation coefficient for each pair. We parallelize this algorithm 

using O(n) threads and find the most correlated pair from n data streams in O(w 

* n) time. 

4. We find moving average of w points window in O(b) time where b = size of 

basic window and max of w points window in O(w) time with O(n) threads for n 
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data streams. We also compute aggregated average of all data streams by 

taking average of the average value of each data stream. This is done in O(n) 

time with O(n) threads. We find max of the max value of each data stream in 

O(n) time with O(n) threads. We show that it is better to use a single thread for 

moving average as thread creation overhead is greater than computation time. 

Hence, it is not worth parallelizing the calculation for each stream. 

5. We compute standard deviation of w points window in O(w) time. For n data 

streams, this calculation becomes O(n*w). We parallelize this computation by 

allocating each thread to each stream. 

6. We compute SVD for w points window using LAPACK (Linear Algebra 

package). This has been calculated in parallel for n data streams with O(n) 

threads. It is shown that parallelizing SVD calculation for n streams improves 

performance of the system. 

7. We derive in the thesis that we get maximum speed up when we run our 

program on nodes closely located to each other and when we create threads 

equal to number of cores. In addition, we conclude that multiple threads only 

improve the performance of the task when thread creation overhead is 

negligible compare to actual computation time. 

8. We also implement a system to visualize archived data. This system can also 

be useful to visualize data streams. 
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Chapter 4 Model and Functions 
 

4.1 Data streams 

An important aspect of real time series analysis is the data stream. There 

are many industries that generate real time data streams. For example, stock 

exchange data streams, traffic sensor data streams, weather data streams, 

network data streams, biological data streams, etc. All these data streams share 

same characteristics like time stamps and data value. For example, for stock 

market data streams, data is generated at the rate of milliseconds. Every 

millisecond, a trade happens. So we have time stamp, ticker of the trade, and the 

value of that ticker. 

The thesis intends to analyze the performance of real time data stream 

analysis. This thesis does not focus on any particular domain. This system is very 

generic and can be used to analyze any real time data stream. In order to make 

this system generic, we are synthetically generating the real time data stream. This 

synthetically generated data stream will possess all necessary properties like time 

stamps, tag and value. 

 This system generates data streams similar to the real time series. This 

data stream has three properties: 

1. Time stamp: Each data point that we receive in data stream has a time 

stamp associated with it. For example, in stock data, we have time when 

the stock was traded. 
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2. Tag: This is the tag of generated data. Again, for different kind of data 

streams, this can be different as well. For stock market data, it is ticker like 

IBM or Google. For the cable industry, it can be customer id. Some data 

streams may not have tags. Like traffic censor data, this does not have any 

tags. These data streams are mainly used to find correlation between 

streams.  

3. Value: This is the actual value of the generated data. For, stock market data 

streams, it is the value of the trade. For, cable industry, it is the network 

traffic. 

The data stream generation rate can be tuned to our convenience. We can change 

the rate to measure the performance. Speed can be changed by adding delay. 

4.2 Models 
 

We have utilized the data stream model that has been discussed in [1]. 

The data stream is divided in to three time periods: 

 timepoint - the smallest unit of time over which the system collects data, e.g. 

second. 

 basic window - a consecutive subsequence of timepoints over which the 

system maintains a digest incrementally, e.g., a few minutes. 

 sliding window - a user defined consecutive subsequence of basic windows 

over which the user wants statistics. 

The basic window yields three advantages: 

1. Results of user queries need not be delayed more than the basic window time.  
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2. Maintaining stream digests based on the basic window allows the computation 

of correlations over windows of arbitrary size, not necessarily a multiple of basic 

window size, as well as time-delayed correlations with high accuracy. 

3. A short basic window gives fast response time but fewer time series can then 

be handled. 

To start, the framework subdivides the sliding windows equally into shorter 

windows, which we call basic windows, in order to facilitate the efficient elimination 

of old data and the incorporation of new data. 

 

Figure 4.1 Sliding windows and basic windows 

 

Table 4.1 Symbols 

 

𝑤 the size of a sliding window 

𝑏 the size of a basic window 

𝑘 the number of basic windows within a sliding window 

𝑛 the number of data streams 
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We keep digests for both basic windows and sliding windows. For example, the 

running sum of the time series values within a basic window and the running sum 

within an entire sliding window belong to the two kinds of digests respectively. 

Figure 4.1 shows the relation between sliding windows and basic windows. 

Let the data within a sliding window be s[t - w + 1..t]. Suppose w = kb, where b is 

the length of a basic window and k is the number of basic windows within a sliding 

window.  Let S[0], S[1],…,S[k - 1] denote a sequence of basic windows, where S[i] 

= s[(t - w) + ib + 1..(t - w) + (i + 1)b]. S[k] will be the new basic window and S[0] is 

the expiring basic window. The j-th value in the basic window S[i] is S[i;j]. Table 

4.1 defines the symbols that are used in the rest of the chapter. 

4.3 Functions 

 

4.3.1 Moving Average and Max 

 

This function is used to calculate the moving average value of the data 

stream. To calculate the moving average, we need to maintain sum of the data 

values which are there in the data stream. Then, we can continuously find the 

average of the streams by dividing it to number of data points we have seen so far 

in the data stream. In a sliding window method, we find moving average for the 

window w = kb. When a new basic window arrives, the sliding window gets updated 

and we again find the new average of the window. Information to be maintained 

for the moving average is ∑(𝑠[𝑡 − 𝑤 + 1. . 𝑡]). For each basic window S[i], we 

maintain the digest ∑(𝑆[𝑖]) = ∑ 𝑆[𝑖; 𝑗]𝑏
𝑗=1 . After b new data points from the stream 
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become available, we compute the sum over the new basic window S[k]. The sum 

over the sliding window is updated as follows: 

 

∑(𝑠) =  ∑(𝑠) + ∑ 𝑆[𝑘] −  ∑ 𝑆[0]  

 

where 𝑠[𝑡 −  𝑤 +  1. . 𝑡] is a sliding window of w data points, ∑(𝑠) is the sum over 

a new sliding window, and ∑(𝑠) is the sum over an old sliding 

window. 

In terms of run time complexity, we can find the moving average in O(b) 

time. We maintain the sum over the sliding window. When new basic window 

arrives, we find sum of data points in the new basic window which takes O(b) time. 

Updating the sum of the new sliding window takes constant time as we already 

have the sum of the old sliding window. We just need to remove the sum of the 

expiring basic window and add the sum of the new basic window. Hence, total time 

complexity becomes O(b) to find moving average of the data stream. 

The max of the window can be found by comparing each value of the 

window. The max value of each basic window needs to be maintained. When a 

new basic window arrives, first, max of the new basic window is computed by 

comparing each data point in the basic window which takes O(b). Then we update 

max of the sliding window. Updating max of the sliding window is done by 

comparing max of each basic window. Hence, moving max can be found in O(k*b 

= w) time. 

new old 

new 

old 
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4.3.2 Moving Average and Max for multiple streams 
  

 We find moving averages of multiple data streams using the same sliding 

window technique. Above, calculating moving average of only one stream is 

shown. The same way we find moving average for all the streams. We maintain 

the sum of the sliding window for each data stream. For n data streams, total 

runtime complexity becomes O(b*n). This can be optimized by using multiple 

threads. Allocate each thread to find the moving average of each stream. Hence, 

our time complexity becomes O(b*n/m) provided we have O(m) number. In 

additional to this, we will get the overhead associated with each thread. Thus, time 

to find moving average for n streams in parallel can be computed as Tn = Ts/m + 

m⋋ where m = number of threads, Ts = time taken by single thread and ⋋ is 

overhead associated with each thread. Hence, if we do not have large Ts, which 

is the case here, overhead in creating multiple threads will cause degradation in 

the performance. We will see this in chapter 6. 

For n data streams, max value for each data stream can be computed in 

O(n*w) time. This can be parallelized allocating each thread to each stream. 

Hence, it becomes O(n*w/m) with O(m) threads running in parallel. 

4.3.3 Aggregated Average and Max 
 

Aggregated max is the max value among max values of the windows of all 

data streams. Again, this can be found by comparing max values of windows of all 

data streams. We keep updating sliding windows of all data streams. Hence, we 

have to find max value again whenever sliding windows get updated. This results 
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in time complexity of O(n). When we use multiple threads, reduction operation is 

used to find aggregated max. Hence, time complexity for this becomes O(one 

reduction operation). One reduction operation is the time to perform reduction 

operation on critical variable shared by all threads. This depends on the system 

implementation. Figure 4.2 shows the design of the model. The same way, we can 

find aggregated average value of the multiple windows of all data streams. 

 

Figure 4.2 Design of computing aggregated average/max 

4.3.4 Standard deviation  
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This function is often used to find how volatile the data stream is. In the case 

where X takes random values from a finite data set x1, x2, ..., xN, with each value 

having the same probability, the standard deviation is  

                𝜎 = √1/𝑁 ∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝜇 = 1/𝑁 ∑ 𝑥𝑖

𝑁
𝑖=1                                (4.1) 

An application is to find the volatility of the particular stock. Equation 4.1 has 

been used to find standard deviation. In order to find standard deviation of the 

sliding window, we need to find average of the window, which is already explained. 

This average is subtracted from each data point. Finally, we sum up square of 

these values and divide the final sum by number of data points w. At last, we take 

the square root of the final value. The Algorithm can be found below, 

Find average of sliding window s[t - w + 1..t]; //moving average() 

Sum =0; 

FOR ALL x  sliding window s: 

         Sum= Find summation of (square of (x – average)); 

Compute square root of (sum/w); 

Figure 4.3 Algorithm to find standard deviation 

 We can see that the time complexity of finding standard deviation for one 

stream is O(w) where w = sliding window size. 

4.3.5 Standard deviation with multiple threads  
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 It can be seen from the algorithm that computation of square (x – average) 

can be done in parallel across the data points in a sliding window. 

create threads { // parallel region starts 

FOR ALL x  sliding window s: 

         t = Compute (square of (x – average)); 

         sum = sum + t // this is a critical update; only one thread should able    

                                    to do this update at a time  

}// parallel region ends 

Compute square root of (sum/w); 

Figure 4.4 Algorithm to find standard deviation using multiple threads 

Given O(m) threads, we can calculate the time complexity of the function = 

O(w/m + one sum-reduction operation). One reduction operation depends on 

machine and the way we implement the parallelism. 

4.3.6 Standard deviation for multiple streams 

 

For n data streams, standard deviation can be computed using the single 

thread algorithm discussed in figure 4.3. Run time complexity is O(w * n). We can 

create multiple threads across n data streams to compute standard deviation. In 

this case run time complexity becomes O(w * n /m) with O(m) parallel threads. 

4.3.7 Discrete Fourier Transform 
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The discrete Fourier transform (DFT) is a fundamental mathematical 

operation used in digital signal processing. It allows the user to analyze, modify, 

and synthesize signals in a digital environment. Because of this, it has found a 

wide range of uses in engineering and scientific applications. The DFT is 

performed on a discrete numerical sequence. This is in contrast to the analog 

Fourier transform, which operates on continuous signals. A discrete sequence is 

typically a sampling in time of an analog signal, but this is not always the case. For 

instance, the two-dimensional DFT plays a valuable role in frequency domain 

image processing. It operates on discrete data representing image pixels, sampled 

spatially, rather than temporally. 

The DFT produces a spectral profile of the frequency components found 

within a sequence. In other words, it transforms the sequence from a sequence 

domain (for example, the time domain, or the spatial domain) to the frequency 

domain. The resulting transformed signal can then be analyzed, or manipulated in 

ways that are not possible in the sequence domain, or in a manner that would be 

difficult or time consuming. For example, a common application of the DFT is in 

digital filtering. If a noisy input is known to contain a useful signal within a known 

bandwidth, the DFT can be used to first produce a spectral profile of the signal. 

Next, one can nullify all signal components outside the target bandwidth. When the 

now modified frequency profile is subsequently transformed back from the 

frequency domain to its original domain, the undesired noise will be greatly 

reduced. Though this same operation can be performed outside the frequency 
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domain, it must be done using time-domain convolution. Convolution becomes 

prohibitively expensive for anything but small sequences. 

The discrete Fourier transform will map a sequence in the time domain into 

another sequence in the frequency domain. Here is the definition of the Discrete 

Fourier Transform. 

Definition 4.3.1 (Discrete Fourier Transform) Given a time sequence 

𝑥⃗=(𝑥(0), 𝑥(1), … , 𝑥(𝑁 − 1)), its Discrete Fourier Transform (DFT) is 

𝑥⃗ = 𝐷𝐹𝑇(𝑥⃗) = (𝑋(0), 𝑋(1), … , 𝑋(𝑁 − 1)) 

where 

                                𝑋(𝐹) = 1/√𝑁 ∑ 𝑥(𝑖)𝑒−𝑗2𝜋𝐹𝑖/𝑁𝑖=𝑁−1
𝑖=0    F = 0,1,…,N-1                 (4.2) 

 

If the time series X(F) and x(i) are complex, their real and imaginary parts are 

real time series: 

𝑥(𝑖)  =  𝑥𝑅(𝑖)  +  𝑗𝑥𝐼(𝑖), 

𝑋(𝐹)  =  𝑋𝑅(𝐹)  +  𝑗𝑋𝐼(𝐹), 

To compute the DFT, we use the following relation: 

  𝑋(𝐹) = 1/√𝑁 ∑ (𝑥𝑅 + 𝑗𝑥𝐼(𝑖)) [cos (
2𝜋𝐹𝑖

𝑁
) − 𝑖𝑠𝑖𝑛 (

2𝜋𝐹𝑖

𝑁
)]  𝐹 = 0,1, … , 𝑁 − 1𝑁−1

𝑖=0     (4.3) 

Therefore, 

𝑋𝑅(𝐹) = 1/√𝑁 ∑ [𝑋𝑅(𝑖) cos (
2𝜋𝐹𝑖

𝑁
) + 𝑋𝐼(𝑖)sin (2𝜋𝐹𝑖/𝑁)] 𝐹 = 0,1, … , 𝑁 − 1𝑁−1

𝑖=0     (4.4) 

𝑋𝐼(𝐹) = 1/√𝑁 ∑ [𝑋𝐼(𝑖) cos (
2𝜋𝐹𝑖

𝑁
) − 𝑋𝑅(𝑖)sin (2𝜋𝐹𝑖/𝑁)]  𝐹 = 0,1, … , 𝑁 − 1𝑁−1

𝑖=0     (4.5) 
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The time series 𝑥⃗=(𝑥(0), 𝑥(1), … , 𝑥(𝑁 − 1)) can be thought as samples from 

a function f(x) on the interval [0; T] such that 𝑥𝑖 = 𝑓 (
𝑖

𝑁𝑇
). Although the Discrete 

Fourier Transform and Inverse Discrete Fourier Transform are defined only over 

the finite interval [0,N-1], in many cases it is convenient to imagine that the time 

series can be extended outside the interval [0, N-1] by repeating the values in [0,N-

1] periodically. When we compute the DFT based on (4.2), if we extend the variable 

F outside the interval [0, N-1], we will actually get a periodical time series. A similar 

result holds for the IDFT. 

4.3.8 Fast Fourier Transform 

 

We will here discuss the efficient algorithm to calculate the DFT which is 

FFT. Here, we will discuss about the radix 2 Decimation in Time (DIT) algorithm to 

find FFT. The decimation in time (DIT) radix-2 FFT is the most intuitive FFT 

algorithm, and the simplest to derive, so it will be presented first. It is also the same 

algorithm presented in the original Cooley and Tukey paper [36] on the FFT. The 

term decimation in time refers to the method of derivation. Given the DFT for a 

discrete data sequence in time, 

                                X[m] = ∑ 𝑥[𝑡]𝑊𝑁
𝑚𝑛𝑁−1

𝑡=0                                            (4.6) 

where N is the length of x[t] and WN = 𝑒−𝑗2𝜋/𝑁. WN is known as the (1/N)th root 

twiddle factor. The DIT FFT follows by recursively splitting the DFT of x[t] into 

multiple, smaller DFTs of subsequences of x[t]; in other words, to decimate x[t] in 

time. For the radix-2 DIT FFT, x[t] will be recursively decimated into two smaller 

sequences of length N/2. Given the discrete sequence x[n] = {x[0], x[1], ..., x[N 
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−1]}, where N is power of- two, the DFT of x[n], X[m], is given by (4.6). The 

summation of (4.6) can be split into two summations of length N/2, 

X[m] = ∑ 𝑥[2𝑛]𝑊𝑁
𝑚2𝑛𝑁/2−1

𝑛=0  +  ∑ 𝑥[2𝑛 + 1]𝑊𝑁
𝑚(2𝑛+1)𝑁/2−1

𝑛=0  

        = ∑ 𝑥[2𝑛]𝑊𝑁/2
𝑚𝑛𝑁/2−1

𝑛=0  + 𝑊𝑁
𝑚 ∑ 𝑥[2𝑛 + 1]𝑊𝑁/2

𝑚𝑛𝑁/2−1
𝑛=0 ,                           (4.7) 

 

Where the identity 𝑊𝑁
2= 𝑊𝑁/2  is used. Now observe that the upper-half of X[m] 

can be obtained from the bottom half, giving 

 

X[m+N/2] = ∑ 𝑥[2𝑛]𝑊𝑁/2
(𝑚+𝑁/2)𝑛𝑁/2−1

𝑛=0  + 𝑊𝑁
(𝑚+𝑁/2) ∑ 𝑥[2𝑛 + 1]𝑊𝑁/2

𝑛(𝑚+𝑁/2)𝑁/2−1
𝑛=0  

      = ∑ 𝑥[2𝑛]𝑊𝑁/2
𝑚𝑛𝑁/2−1

𝑛=0  - 𝑊𝑁
𝑚 ∑ 𝑥[2𝑛 + 1]𝑊𝑁/2

𝑛𝑚𝑁/2−1
𝑛=0                      (4.8) 

 
This holds because 

  𝑊𝑁
𝑛(𝑚+𝑁/2)=𝑊𝑁/2

𝑚𝑛𝑊𝑁/2
𝑛𝑁/2=𝑊𝑁/2

𝑛𝑚,                                      (4.9) 

and 

    𝑊𝑁
𝑚+𝑁/2 = 𝑊𝑁

𝑚𝑊𝑁
𝑁/2 = −𝑊𝑁

𝑚                                                (4.10) 
  

By comparing equations (4.9) and (4.10), it can be seen that x[m] and x[m+N/2], 

for 0<=m<N/2, only differ by a sign. Therefore, the two halves of the DFT result 

can be produced by using the same operands. These operands are the two 

summations in (4.9) and (4.10); they are two N/2-point DFTs. Because the input 

sequence, x[n], has been recursively decimated in time, the input order has been 

scrambled. For FFTs of a power of two radix, the data can be reordered by a simple 

bit-reverse-copy. This consists of copying the input sequence into a new sequence 

where the elements have been assigned to bit-reversed addresses. After the bit-

reverse copy, the data can be presented to the radix-2 DIT FFT in the correct order. 

Despite the need to reorder the data, the computational savings of the FFT are 

considerable, compared to the DFT. 
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We have described pseudocode of the radix-2 DIT FFT of the iterative 

algorithm. Though the DIT FFT was derived recursively, recursive algorithms are 

difficult to map to hardware. Note that the outer loop iterates log(N) times where 

N=w=size of the window, and the inner loop iterates N times. Also, lines 11-14 

perform the twiddle factor multiplication and the radix-2 butterfly. Line 4 completes 

a bit-reverse copy of the input data sequence. 

1. ITERATIVE_DIF_FFT(x,X) { 

2.  X = x; /* copy x */ 

3.  n = length(x); 

4.  bit_reverse(X); /*reorder X */ 

5.  for(s = log(n); s >= 1; s--) { /* outer loop */ 

6.   m = 2^s; 

7.   wm = cos(2*pi/m)-sqrt(-1)*sin(2*pi/m); 

8.   for(k = 0; k < n; k += m) { /* inner loop */ 

9.   w = 1; /* twiddle factor */ 

10.    for(j = 0; j < m/2; j++) { /* execute butterflies */ 

11.     t = X[k+j]; 

12.     u = w*X[k+j+m/2]; 

13.     X[k+j] = t + u; 

14.     X[k+j+m/2] = t - u; 

15.     w = w*wm; /* compute next twiddle factor */ 

16.    } 

17.   } 



23 
 

 
 

18.  } 

19.} 

 The pseudocode for a recursive version can be found below. 

1. Recursive-FFT ( array )  

2. - arrayEven = even indexed elements of array  

3. - arrayOdd = odd indexed elements of array  

4. - Recursive-FFT ( arrayEven ) 

5. - Recursive-FFT ( arrayOdd )  

6. - Combine results using Cooley-Tukey butterfly  

7. - Bit reversal, could be done either before, after or in between 

 

The time complexity of the sequential FFT algorithm is O(w log w) where w 

= size of the window. 

4.3.9 Parallel Fast Fourier Transform 

 

Figure 4.5 shows the graph in the case of 16 data points. The first column 

of butterflies connects grid points whose numbers differ in bit 0 (the leftmost bit). 

For example, the black butterfly connects 0000 and 1000. The second column of 

butterflies connects grid points whose numbers differ in bit 1; for example the black 

butterfly connects 0000 and 0100. The next black butterfly connect 0000 and 0010, 

and the rightmost black butterfly connects 0000 and 0001. Each of the rightmost 

columns can be computed in one time step using 16 processors. 

Psudo code for parallel version of iterative fft: 

Input: n = number of data points, m = log2 n, A_re = real part of input data, A_im   

           = imaginary part of input data 
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Output: n points DFT stored in A_re and A_im for real and imaginary coefficients  

              respectively 

fft(n,m,A_re, A_im) 

{ 

Bitreversal(A_re,A_im);       /*bit reversal * 

n1=0;   /*FFT*/ 

n2=1; 

FOR(i=0;i<m;i++)    /* for each stage out of total log(n) stages*/ 

{ 

 n1=n2; 

 n2=2*n2; 
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Figure 4.5 Data dependencies in a 16 points FFT 

 

e=-6.2381853071/n2; 

 a=0.0; 

 create parallel threads{ 
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 FOR (j=0;j<n1;j++){  /* each butterfly group uses only one root of unity.*/ 

     a=j*e;  

    c=cos(a); 

    s=sin(a); 

   FOR(k=j;k<n;k=k+n2){  /* execute each butterflies */ 

       t1=c*A_re[k+n1] - s*A_im[k+n1]; 

       t2=s*A_re[k+n1] + c*A_im[k+n1]; 

       A_re[k+n1]=A_re[k]-t1; 

       A_im[k+n1]=A_im[k]-t2; 

       A_re[k]=A_re[k]+t1; 

       A_im[k]=A_im[k]+t2; 

 } 

        }  

      } // end of parallel region 

} 

} 

Psudo code for recursive version of parallel fft: 

 

pcfft(input) 

{  

  IF (n <= WINDOW) /*if n satisfies this condition then perform sequential fft*/ 

    { 

    cfft(n,wn,X,Y); // call to a sequential FFT function 

    RETURN; 

    } 

m = n/2; 

FOR (j = 0; j < m; j++) 

  { 
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     X1[j] = X[2*j]; 

     X2[j] = X[2*j+1]; 

  } 

 # CREATE PARALLEL TASK1 

{ 

 pcfft(input1); 

} 

# CREATE PARALLEL TASK2 

{ 

 pcfft(input2); 

} 

# wait for task 1 and task 2 to complete  

w.r = 1.0; 

w.i = 0.0; 

FOR (j=0;j<m;j++)  /*Combine results using Cooley-Tukey butterfly */ 

  { 

  Y[j] = Cadd(Y1[j],Cmult(w,Y2[j])); 

  Y[j+m] = Cdif(Y1[j],Cmult(w,Y2[j])); 

  w = Cmult(w,wn); 

  } 

} 

 Described parallel algorithm runs in O( w/m log w) time for w size sliding 

window with O(m) parallel threads. Each time sliding window is updated, DFT for 

the new sliding window is computed. 

4.3.10 Fast Fourier Transform for multiple streams 
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 In a scenario of n multiple streams, we compute DFT using parallel 

iterative FFT algorithm for each stream. Run time complexity can be calculated 

as O (w/m * n/m * log w) with O (m) parallel threads for data streams and O (m) 

threads in FFT function.  

 

4.3.11 Pearson Correlation Coefficients 
 

This is used to find the correlation between two time series. The value of 

pearson coefficients varies between -1 to 1. -1 means negatively correlated and 1 

means positively correlated [3]. This is used in almost every industry to find the 

relationship between two streams. If two streams are highly correlated then we can 

predict the future value of the other stream based on the value of the one stream. 

Finding most correlated pair takes time because we have to compare each and 

every pair to find correlation coefficient. We use the pearson correlation coefficient 

to find the correlation between two streams. The algorithm can be found in [3]. 

Here's the formula for computing the coefficient for two items x and y 

 

4.3.12 Monitor Most Correlated Pair   

  

Pearson coefficient has been used to find correlation between streams. The 

pseudocode to find the most correlated pair among n streams can written as, 

         FOR each x € [1, n] // for each data stream 
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     FOR each i € [x+1, n] // compute pearson coefficient with  

  FOR each data points in a window 

  SUM of x; SUM of j 

  SUM of the squares of x; SUM of the squares of j 

  SUM of the PRODUCT of (x,j) 

 COMPUTE pearson score 

     COMPARE pearson scoring for each j and UPDATE local most 

correlated 

 COMPARE local most correlated pair for each x and UPDATE global 

most  

 correlated pair 

In order to find most correlated pair, coefficients between each pair in multiple data 

streams are calculated. If we have n data streams, then we need to make total n(n-

1)/2 comparison. Hence this algorithm is O(w * n * n). 

We can use multi-threaded application to parallelize the function. Multiple 

threads will handle the outer for loop in parallel. Each x for data steam has been 

allocated a separated thread to compute local most correlated pair in parallel. We 

can reduce the time complexity to O(w * n/m) by using O(m) threads to process n 

data streams. Here, there is a critical section to update the global most correlated 

pair across all the data streams. This update is done sequentially by each thread 

resulting in O(m) complexity. Thus the time complexity will be O(w * n/m + m) with 
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O(m) threads.  However, we do not have balance load for each thread to work as 

the comparison starts reducing with high 

 

Figure 4.6 Design for computing most correlated pair 

value of x. For example, for x=1, we have to compare 1 with all the streams starts 

from 2 to n. But, in the case of x=n-2, the comparison is only from n-1 to n. Thus, 

we need to distribute our load same to each threads for better performance. This 

can be implemented in OpenMP with scheduled(dynamic,1) command. This 

basically distributes the load among the threads dynamically. When one thread 

finishes the task early, it will be allocated the remaining iteration to compute. When 

a new basic window comes, sliding window gets updated and we compute most 
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correlated pair again across all the data streams. Figure 4.6 shows design of the 

model. 

 

4.3.13 Singular Value Decomposition 
 

The Discrete Fourier Transform and the Discrete Wavelet Transform of 

different wavelet families are all based on the orthogonal transform of time series. 

We choose the orthogonal basis vectors based on the nature of the time series 

and keep a few coefficients of the transform to approximate the original time series. 

One might wonder whether there is an optimal orthogonal transform that is the best 

in approximating the original time series with as few coefficients as possible. The 

answer is positive. It is the Singular Value Decomposition. 

First we introduce the concept of Singular Value Decomposition. For more 

detail about SVD, the readers can refer to [22]. Consider a collection of m time 

series 𝑥⃗𝑖, 𝑖 = 1,2, … , 𝑚, each time series has the same length n: 𝑥⃗𝑖, 𝑖 =

(𝑥𝑖(1), 𝑥𝑖(2), … , 𝑥𝑖(𝑛)). We can write such a collection of time series in the following 

matrix form: 

 

             (4.10) 
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We can write for any symmetric matrix S = A AT, 

                                            S  𝑈𝑖
⃗⃗ ⃗⃗  = ⋋𝑖 𝑈𝑖

⃗⃗ ⃗⃗   ,  𝑖 = 1,2, … , 𝑑                                (4.11) 

Where 𝑈𝑖
⃗⃗ ⃗⃗  = 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 𝑖 = 1,2, … , 𝑑 and ⋋𝑖= 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑖 = 1,2, … , 𝑑 

Let the rank of s be d. Of course, d<= m. If S is singular, then  

⋋𝑑+1=⋋𝑑+2=⋋𝑚= 0 

Using linear algebra we can also define 

                                𝑉𝑖
⃗⃗⃗ = 1/√⋋𝑖  A

T𝑈𝑖
⃗⃗ ⃗⃗  , 𝑖 = 1,2, … , 𝑑.                                       (4.12)   

{𝑈𝑖
⃗⃗ ⃗⃗ } 𝑖=1,2,…,𝑑 and {𝑉𝑖

⃗⃗⃗} 𝑖=1,2,…,𝑑 are orthonormal vectors.  

Hence,      A =Im*m A 

                    = ∑ 𝑈𝑖
⃗⃗ ⃗⃗  𝑈𝑖

𝑇⃗⃗ ⃗⃗ ⃗⃗⃗ 𝑚
𝑖=1  A 

          = ∑ 𝑈𝑖
⃗⃗ ⃗⃗  (𝐴𝑇 𝑈𝑖

⃗⃗ ⃗⃗  )𝑇 𝑚
𝑖=1  

          = ∑ √⋋𝑖 𝑈𝑖
⃗⃗ ⃗⃗ 𝑉𝑖

⃗⃗⃗𝑑
𝑖=1   + ∑ 𝑈𝑖

⃗⃗ ⃗⃗  (𝐴𝑇 𝑈𝑖
⃗⃗ ⃗⃗  )𝑇𝑚

𝑖=𝑑+1    

We can prove using simple linear algebra ∑ 𝑈𝑖
⃗⃗ ⃗⃗  (𝐴𝑇 𝑈𝑖

⃗⃗ ⃗⃗  )𝑇𝑚
𝑖=𝑑+1  = 0 

Then we can write 

                                                    𝐴 =  ∑ √⋋𝑖 𝑈𝑖
⃗⃗ ⃗⃗ 𝑉𝑖

⃗⃗⃗𝑑
𝑖=1                                                    (4.13) 

 

Equation (4.13) is called the Singular Value Decomposition (SVD) of the matrix 

A. √⋋𝑖, 𝑖 = 1,2, … , 𝑑 are the singular values of A. The vectors {𝑈𝑖
⃗⃗ ⃗⃗ } 𝑖=1,2,…,𝑑 and 

{𝑉𝑖
⃗⃗⃗} 𝑖=1,2,…,𝑑 are the left singular vectors and right singular vectors of the 

decomposition respectively. 

 SVD can be found solving for eigenvalues and eigenvectors of A . AT  and 

AT . A. The efficient and more practical algorithm to find SVD is a Jacobi algorithm 
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proposed by James Demmel and Krešimir Veselic [38]. The 

algorithm implicitly computes the product  and then, uses a sequence of 

“Jacobi rotations” to diagonalize it. A Jacobi rotation is a 2 × 2 matrix rotation that 

annihilates the off-diagonal term of a symmetric 2 × 2 matrix. Given a 2 × 

2 matrix  with 

 

It is possible to find a ``rotation by angle  matrix'' 

 

with the property that  is a diagonal matrix.  can be found by 

multiplying out the matrix product, expressing the off-diagonal matrix component 

in terms of  , and setting it to zero to arrive at an equation 

 

where  . The quadratic formula 

gives  and  and  can be recovered. There is no need to 

recover  itself. The algorithm repeatedly passes through the implicitly-

constructed matrix  , choosing pairs of indices i < j, constructing the 2 × 2 

submatrix from the intersection of rows and columns, and using Jacobi rotations 

to annihilate the off-diagonal term. Unfortunately, the Jacobi rotation for the 

pair i=2, j =10 messes up the rotation from i=1, j=10. So, the process must be 
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repeated until convergence. At convergence, the matrix  of the SVD has been 

implicitly generated, and the right and left singular vectors are recovered by 

multiplying all the Jacobi rotations together. 
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Chapter 5 System Implementation 
 

5.1 Computation of Time Series 
 

The computation of the time series is done in a receiver part. A producer 

continuously produces the data streams at the rate which we can specify in the 

system. After producing the data, it stores it into the buffer. The receiver thread will 

take the data out from the buffer and processes it to find different analytical values. 

The high level architecture of the model can be seen in the figure 5.1.  

The system is basically a two thread application where one thread is the 

producer and the other thread is the receiver. If we specify multiple streams, then 

the producer will produce the data for multiple streams and store it into the 

respective buffer. The receiver removes data from the buffer and does the analysis 

we want to perform. If there are multiple streams, then the receiver can be multi-

threaded. Each thread is allocated to perform analysis for one stream. Thus, we 

can have parallel implementation of the system. This receiver is again the multi-

threaded application. We want to compare the performance between the multi-

threaded receiver and the single threaded receiver. When we have multiple data 

streams and the single threaded receiver, then the receiver has to handle all the 

streams one by one. This takes time if we have large number of data streams 

coming in. Instead, if we have multiple receiver for each data stream, then each 

receiver will handle each data stream. This computation is done in parallel. We 

can reduce our time for analysis by implementing parallel system. 
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The computation also depends on the configuration of the system. Multi-

threaded application will be only useful if we have multi-core system. We can 

allocate multiple cores to different threads and they all can work in parallel. If we 

do not have multiple cores then multiple threads will have to wait for their turn to 

access the core. Eventually, this will reduce the performance because of the thread 

creation overhead. We will discuss more about this in chapter 6. Figure 5.1 

describes the high level description of the system. The producer produces multiple 

data streams into the buffer for each data stream. Then, the receiver will create 

multiple threads to handle each data streams. Each thread first takes the data out 

from the buffer and puts it into sliding window. Then, each receiver computes 

output like DFT, Moving average, standard deviation, SVD, local most correlated 

pair, etc. Then, we can calculate global most correlated pair, aggregated moving 

average, aggregated max value, etc. Finally, we can feed output to the 

visualization system like matlab to visualize the aggregated output. Figure 5.1 

describes the high level architecture of the system. Now we will study more 

detailed implementation of the system. A First important part of the system is the 

buffer. 

5.2 Design of Buffer 
 

 A Buffer is basically the storage for the data streams. The producer thread 

produces the data and stores it into the buffer. This buffer is accessible to both: 

the producer and the receiver. In the system implementation, we have used a two 

dimension array to store the data. One dimension is for multiple stream and second 

is for buffer size. The producer will put the data into the buffer till it becomes full. 
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Once the buffer is full, it will stop producing data till there is a space to put the data. 

We can vary size of the buffer. In the system, we have used struct window 

r[world_size -1][BufferSize] as the buffer. Structure window has time and value 

properties. World_size is the parameter that defines the number of streams and 

BufferSize is the parameter that defines the size of the buffer. 
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Figure 5.1 High level description of the system 
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This means that each stream has space = Buffer size to store the data and each 

data has two fields: time and value.  

5.3 Design of Producer 
 

 A producer is the thread which produces data continuously. The producer 

uses the random generator to produce the random number. However, we need to 

make sure the random generator follows Gaussian distribution. For that, we have 

implemented a function which follows normal distribution. The function has been 

implemented based on the Gaussian distribution definition. This random generator 

will also ensure that it will generate different range of data for different data 

streams. The function will generate normal distribution data around the value x. 

The value of x depends on the rank of the data stream. For example, for stream 

number 0, it will generate normal distribution data centered on value 70; for stream 

number 1, it will generate normal distribution data centered on value 140. 

For multiple data streams, the producer will keep producing data for each 

stream one after one in sequential manner. For that, we have used for loop that 

will iterate for each data stream. This loop is sequential and can be parallelized to 

speed up producing speed. If producer is faster than receiver, then producer might 

fill up the buffer. In this case, it will have to wait for the receiver to release some 

space from buffer to put the data into it. This producer can be set to feed live data 

from different data sources. It can be set to finance application, feed data from 

censor, etc. 
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5.4 Design of Receiver 
 

A receiver is the thread that consumes the data from buffer and processes 

it to find different analytical functions. The receiver takes the data from buffer and 

this process can be implemented in parallel. Each thread can be allocated to each 

stream to process the data. We use the sliding window technique discussed in the 

chapter 4. It continuously updates the sliding window when a new basic window 

arrives. Then, it finds different statistics on the sliding window. Size of the basic 

window and sliding window can be changed for different rates of producer and 

receiver. 

1. For(;;) //This is for the receiver which keeps receiving data from buffer 

continuously 

2. {   

3.     Update start time; 

4.     For (all i <= number of streams)// This is to take data for each stream and   

                                                          can be parallelized 

5.     { 

6.         Update window;  // this updates the sliding window based on receiving  

                                       index 

7.         Compute different analytical values; 

8.      } 

9.    Update receiving index // increment receiving index after receiving data 

10.    Update end time; 

11.    Compute consumed time// finds total time taken in computation 
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12.    CHECK IF buffer is empty: // it checks if buffer is empty or not 

13.                      Wait on TRUE // will wait for producer to produce 

14.  } 

A basic design of the receiver has been shown in pseudo code above. We 

can see that the loop runs for each data stream. For each data stream, we update 

the sliding window and calculate different statistics. In this system, if the receiver 

is faster than the producer, then it will have to wait for producer to generate the 

data in to the shared buffer. We start our timer to compute the performance when 

the receiver is able to fetch data from the buffer. We end our timer when we get 

the analytical output for all data streams. This way we make sure that our time 

consumption does not include waiting time. We try to avoid waiting time for the 

receiver by using large buffer size. We also start the producer little bit early for the 

first time. So that by the time the receiver starts processing the data, the buffer is 

already full. Moreover, except moving average function, all other analytical 

functions take more time to process the data for all the streams than the producer 

to produce it. 

Based on models discussed in chapter 4, analytical functions have been 

implemented. We discussed algorithm to find standard deviation for n data stream 

in parallel in figure 4.3. Run time complexity is O(w * n/m) with O(m) parallel 

threads for n data streams. The performance of the same has been discussed in 

chapter 6. However, we do not parallelize the computation within function 

discussed in figure 4.4 as thread overhead kills the performance.  
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Out of the two parallel FFT versions, the iterative algorithm is faster than 

the recursive version. One of the main reasons recursive version is not faster that 

it becomes very difficult to map threads to the task. The overhead associated in 

creating the task every time the recursive call to function is made, is higher. We 

will discuss more about the performance of parallel iterative FFT algorithm in 

chapter 6. We already discussed in section 4.2.9 that run time complexity of the 

algorithm is O(w/m log w) for O(m) threads. In the case with n data streams, run 

time becomes O(w/m * n/m * log w) with O(m) parallel threads for data streams 

and O(m) threads in FFT function. The performance is discussed in chapter 6. 

5.5 Open MP Introduction 

 OpenMP Is: 

 An Application Program Interface (API) that may be used to explicitly 

direct multi-threaded, shared memory parallelism 

 Comprised of three primary API components: 

o Compiler Directives 

o Runtime Library Routines 

o Environment Variables 

 Shared Memory Model: 

 OpenMP is designed for multi-processor/core, shared memory machines. 
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Figure 5.2 Uniform memory access 

 Parallelism: 

 OpenMP programs accomplish parallelism exclusively through the use of 

threads. 

 Typically, the number of threads matches the number of machine 

processors/cores. However, the actual use of threads is up to the 

application. 

 OpenMP is an explicit (not automatic) programming model, offering the 

programmer full control over parallelization. 

 Parallelization can be as simple as taking a serial program and inserting 

compiler directives or as complex as inserting subroutines to set multiple 

levels of parallelism, locks and even nested locks. 

 Fork - Join Model: 
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Figure 5.3 Fork-Join model 

 OpenMP uses the fork-join model of parallel execution. 

 All OpenMP programs begin as a single process: the master thread. The 

master thread executes sequentially until the first parallel region construct 

is encountered. 

 FORK: the master thread then creates a team of parallel threads. 

 The statements in the program that are enclosed by the parallel region 

construct are then executed in parallel among the various team threads. 

 JOIN: When the team threads complete the statements in the parallel 

region construct, they synchronize and terminate, leaving only the master 

thread. 

5.6 Parallel implementation 
 

 In order to achieve the parallelism, we utilize the OpenMP. First, we need 

to create two threads: one for the producer and another for the receiver. This can 

be done using openMP. To use OpenMP functionality, we need to add <omp.h> 

header in our C program. 
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 #pragma omp parallel num_threads (2) 

 The above command will create two threads in the program. OpenMP is 

shared memory architecture. This means when you create two threads within a 

program, each thread will share the same memory. If we want to make any 

variables private to any particular thread, we can specify it using private keyword 

while creating threads. More details can be found in the document [5]. Using 

omp_get_thread_num(), we can find the thread number. Then, we can allocate 

producer to one thread and receiver to another thread. Thus, both producer and 

receiver will work in parallel. 

 Inside the receiver thread, we need to create parallel threads to process 

multiple data streams in parallel. For that, we need to enable nested openMP. 

Nested openMP is used to create threads within threads. omp_set_nested(1) will 

enable nested openMP.  

 #pragma omp parallel for reduction ( max:aggr_max) reduction( 

+:aggr_avg) 

 This command is in the receiver. This will create multiple threads to process 

for loop. Each thread will handle each iteration in parallel. reduction keyword is 

used to perform reduction operation on the variable that is shared by all the 

threads. This variable should only be accessed by one thread at a time to avoid 

race condition.  

 reduction ( max:aggr_max) will find max value of aggr_max variable that 

is being updated by each thread. The same way we can find sum using +. 
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 We have also used #pragma omp critical functionality. This will make the 

following section critical. Hence, only one thread can enter to this section at a time. 

Once the one thread finishes the work, another thread will enter the section and 

start the task. This way we can take care of the race condition and can find the 

most co-related pair among all the streams. 

 In the case of calculating most correlated pair, to distribute the load evenly 

among all the threads we use scheduled (dynamic,1). This will basically do the 

load balancing dynamically and can solve the problem of uneven distribution of 

load in each iteration. There are other ways of doing explicit load balancing. For 

example, we can use n(n-1)/2 threads and map these threads to n(n-1)/2 pairs. 

We can also use n(n-1) threads. However, we did not carry out these approaches 

in this thesis. 
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Chapter 6 Testing and Results 
 

 This chapter discusses the results that we get in our system. We will 

compare the performance of single threaded application and multi-threaded 

application. We will discuss which application is better for which function. We will 

also discuss why one application is performing better than the other application. 

The performance is calculated based on speed of the receiver to process different 

analytical functions. We will find the start time before the start of function. Then, 

we will find the end time once the function ends. We can calculate the time taken 

by taking the difference between start time and end time. Time taken is measured 

in micro seconds. 

 We have used a vsmp cluster that has total 8 nodes with each node 

having 8 cores. The detailed architecture of the vsmp cluster can be found here. 

According to the vsmp architecture, all the nodes from 0 to 7 are connected to 

each other through infinity band. However, we can say that the pair of nodes 0-1, 

2-3, 4-5, 6-7 are the closely located pair to each other. Hence, if we run our 

program on these pair of nodes, we get the optimal performance. If we use any 

different combination of nodes, then the performance of the system will decrease. 

For example, if we use node 0,3 to run our openMP program, then the path that 

cluster takes to reach out to node 3 is: 0-1-2-3. Hence, we can see that it will route 

from 0 to 1, 1 to 2, and then 2 to 3. This will take some extra time in terms of 

reaching to the designated node in the cluster. Thus, whatever performance we 

got with node 0-1, we will definitely get less than that in the case of node 0-3. 

Hence, we should understand our cluster configuration to better understand the 
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performance of the model. This is the reason why we use cores mapped to the 

closely located pair or single node. 

6.1 Performance Analysis for Discrete Fourier Transform 

  

For the different input length n and for different number of threads, we have 

measured the time taken in microseconds to calculate the FFT. The program was 

run on cores 0-15 from nodes 0-1. We used export GOMP_CPU_AFFINITY=0-15 

command to tell the system to use cores 0-15. This is how we control the thread 

distribution in openMP to analyze the performance. 

Figure 6.1 presents the time taken for calculating FFT for different length of 

input sequences with different number of threads. Fig 6.2 shows us the speed us 

for different number of threads for w = 65536 = window size. The result of the plot 

clearly shows that the maximum performance we get is at thread number 16. The 

clear difference in time is visible when we have higher length of input sequence 

like w=65536. For higher w, threads get more computation and there will be higher 

speed up. Remember, all these tests have been performed by selected cores 0-

15 from node 0,1. We can see that we get maximum performance at threads = 16 

because we have total 16 cores available. Increasing number of threads to 16 and 

24 adds additional waiting time to get the resources. Thus, it reduces the 

performance. The same pattern is visible when we select cores 0-7. With 8 cores, 

we get the maximum performance at threads =8 and the performance degrades 

as we further increase the number of threads. Hence, we can say that maximum 

performance we get is when we create same number of threads as number of 

available cores.  
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Figure 6.1 Input length n versus time 

 

Figure 6.2 Thread number vs speedup 
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Figure 6.3 Number of threads for data streams vs time 

Figure 6.3 shows the performance of calculating DFT using multiple threads 

for data streams and multiple threads in FFT function. The program had streams 

= 40, buffer size = 4096, and window = 4096. This performance was measured by 

submitting job to one node. The graph shows the performance when parallel 

threads within FFT function and for multiple data streams have been created to 

calculate DFT for 40 data streams. It can be seen that for thread=1 in FFT function, 

we have the optimum performance when we use 6 threads to compute DFT of 40 

data streams. When we tried to parallelize FFT function also, the performance 

started degrading. For two threads in FFT function, the optimum performance to 

compute DFT of 40 streams was found when we created 4 parallel threads to 

handle 40 streams. The total time was 5.6 times higher than what we got in the 

case of thread = 1 in FFT function. The same way performance kept on degrading 
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iterative FFT algorithm for w point window, we have parallel for loop for butterfly 

group of each log (w) stage. For each iteration of outer for loop of log (w) stage, 

parallel for loop of butterfly group has to create multiple threads. OpenMP creates 

threads only once in this case. Then, it uses those threads for each outer loop 

iteration. However, when we use this algorithm in our system that uses nested 

OpenMP, it creates new threads for each outer iteration. This kills the performance 

of the system. 

Figure 6.4 shows the performance for calculating DFT of 40 streams by 

creating parallel threads to handle 40 streams. This experiment was performed by 

keeping single thread in FFT function. The program had streams = 40, buffer size 

= 4096, and window = 4096. The job was submitted to two nodes as well as to a 

single node.  X axis shows the number of threads and Y axis represents the time 

take in micro seconds to complete the task. We can say from the graph that for 

nodes=2 and thread=1, it takes 33,000 µs. The same task using 14 number of 

threads takes 4500 µs. This means that we get the speed up of 7.33 if we run the 

program using 14 threads. This was really expecting because calculating DFT for 

each stream using single thread in sequential manner is a slower process. Hence, 

we can improve our performance using multiple threads. The result also shows 

another thing that we can’t create as many threads as we want. We need to find 

the ideal number for threads that gives the optimal performance. We can see this 

number is 14 as the total cores available are 16. If we create more threads than 

the number of available cores, then threads will have to wait for the cores to finish 

the task. Moreover, OpenMP also needs to run scheduler to allocate cores to many 
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threads. There is an overhead associated with the scheduler to allocate resources 

to the threads. We can also change the default configuration of the scheduler. 

More detail about scheduler can be found in [6]. Thus, creating more threads than 

the available cores will decrease the performance. 

 

Figure 6.4 Number of threads vs time for calculating DFT 

 The result also displays that submitting job to two nodes gives better 

performance than single nodes. It is because two nodes gives more number of 

cores to handle multiple threads. For node=1, best performance was found at 

number of threads = 6. It took 7000 µs to compute DFT for 40 streams. Again, for 

two nodes, it was optimal at threads = 14 and time was 4500 µs. 
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task run with 16 threads took 9000µs. There was a speed up of 3 in the 

performance with 16 threads. It is shown in figure 6.5. If we use two nodes with 

threads 30, the same task is done in 7000 µs. This is 3000 µs lesser than one 

node. The performance is shown in figure 6.6. 

6.3 Performance Analysis of Standard Deviation, Moving Average and Max 
 

 This program had with streams = 1000, buffer = 1000, window = 200. 

 

Figure 6.5 Number of threads vs time for calculating correlation 
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6.  Interesting result was found in performance of calculating moving average. It is 

optimum for thread = 1. It degrades rapidly when we increase number of threads. 

This is because of thread creation 

  

 

Figure 6.6 number of threads vs time for calculating correlation using 2 nodes 
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Figure 6.7 Number of threads vs time for standard deviation 

 

  

 

Figure 6.8 Number of threads vs time for moving average 
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Figure 6.9 Number of threads vs time for moving average 
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Figure 6.10 Number of threads vs time for SVD 
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Chapter 7 Visualization 
 

7.1 Introduction 
 

This chapter is focused on implementing a program to visualize the data 

stream. There is a need of a system which can visualize the data coming at a 

speed of milliseconds. We have proposed an implementation in matlab which can 

visualize archived data or data stream. This code can also be integrated with the 

c code that we implemented to analyze multiple data streams. Integrating matlab 

call with c code gives ability to visualize the analytical output of the C program. 

7.2 Data sample 

 
 We had a Nanex actual trading data in archived form [13]. The sample of 

the data can be seen below, 

 

;{Header}= 
LstExg|Sym|SsDte|SsID|NxTime|ExgTime|RepExg|MMID| 
;{OptTail}= ; 
 

TD|{Header}|Trade|Tick|Size|ExgSeq|VolType|Open|High|Low|Last|NetCh|TickVol|TotVol|{
Optio nTail} ; RB|{Header}|Bid|BidCh|BidSz|BidSzCh|{OptionTail} ; 
RA|{Header}|Ask|AskCh|AskSz|AskSzCh|{OptionTail} ; 
BB|{Header}|BBid|BBidCh|BBidSz|BBidSzCh|{OptionTail} ; 
BA|{Header}|BAsk|BAskCh|BAskSz|BAskSzCh|{OptionTail} ; 
MB|{Header}|Bid|BidCh|BidSz|BidSzCh|{OptionTail} ; 
MA|{Header}|Ask|AskCh|AskSz|AskSzCh|MMQteType|MMType| 

 

RB|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 72.97| -0.01| 1| -4| 

RA|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.54| 0.00| 3| 0| 

BB|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.08| 0.00| 3| 0| 

BA|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.54| 0.00| 3| 0| 

RB|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 72.96| -0.01| 4| +3| 

RA|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.54| 0.00| 3| 0| 

BB|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.08| 0.00| 3| 0| 

BA|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.54| 0.00| 3| 0| 

RB|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 72.97| +0.01| 1| -3| 
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RA|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.54| 0.00| 3| 0| 

BB|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.08| 0.00| 3| 0| 

BA|NYSE|eNKE |04/05/2010|0|09:30:00.000|09:29:59|PACF| | 74.54| 0.00| 3| 0| 

 

BB (Best Bid price): It is the maximum price that a trader can get from the investors. 
 

BA (Best Ask price): It is the minimum price that a trader can get from the seller. 

 

7.3 Implementation 

We use Matlab for visualization. Matlab provides tool especially for the real 

time data visualization. Timer object is the one which is used in visualization. 

Datafeed toolbox is the tool which is specifically designed for the trading 

visualization. 

Timer: This is an object which is used in real time visualization. The object 

has the following parameters as inputs: 

 TimerFcn: This is a call back function which is called each time timer fires. 

 ExecutionMode: This is the mode of execution. Here, it is set to 

‘fixedRate’. 

 Period: The period at which the timer fires. It can be set to minimum 0.001 

sec. 

We first need to take data from the archived file and then visualize the data 

in plot. We need to update the plot once the new data come in. Timer object in 

matlab fires at the time period specified in the object. When the object fires, it calls 

the callback function defined in the code. If timer period is set to 1 sec, then it 

continuously calls callback function at 1 sec. Then, the call back function fetches 

data from file line by line in each call by timer function. It also plots the output in 
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continuous form. Call back function can contain basic logic. We can check for the 

particular symbol match. If the particular ticker matches, take the data. Otherwise, 

discard it. We can put basic analysis like price is higher or lesser than the previous 

time stamp. We have put graphs for three different prices BB, BA, and TD for the 

ticker. 

7.4 Result 

 Below, the demo of what we did with visualizing trading data at 1 second 

interval can be seen. The result here is shown for ticker ‘eCSCO’. It shows the 

graphs for three prices BB, BA, and TD. These graphs will give the traders a good 

reasoning to analyze the results. 

 

 

 

 

 

 

 

 

 

Figure 7.1 Visualization of Cisco trading data 
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Chapter 8 Future Work 
 

 Although, we have got the performance increase in this thesis, there are still 

some recommendations for future work. We have implemented functions to 

calculate DFT, standard deviations, most correlated pair, Moving average, etc. 

However, we have not worked on creating incremental algorithms for these 

functions. We basically update our sliding window for each new basic window. 

Then, we calculate all the functions again. We do not find incremental max or 

incremental standard deviation for the sliding window. A book, Data Streams 

Models and Algorithms by Charu C. Aggarwal [8] describes an incremental 

algorithm to find max. We can find incremental algorithm for standard deviation in 

[9]. 

We have used brute-force approach to find the most correlated pair among 

the multiple streams. This can be further optimized using the approach given in 

paper [1]. We can use indexing and hashing to filter out pairs which have Euclidean 

distance less than a threshold value based on the first few coefficients of the DFT. 

Then, we can calculate most correlated pair from the remaining pairs using DFT. 

  Another work in this system we can do is that we can include Matlab for 

visualization. We have already done visualization using Matlab for real time stock 

market series. We visualize stock values in real time at the interval of 1 second. 

We can use this code to visualize the different analytics values that we find from 

our system. We need to call Matlab engine from C program [11,12]. 
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Chapter 9 Conclusion 
 

 Three conclusion can be drawn from this thesis. First, parallel 

implementation in the system definitely helps improving the performance in a 

significant way. Calculating DFT and most correlated pair using multiple threads 

speed up the performance of the system. DFT and most correlated pair functions 

have lots of work to be done by a single thread if we work on many streams. In this 

case, if we parallelize this work by creating multiple threads for each stream, we 

can significantly improve the system performance. We can apply this in the 

industry for real time series analysis. 

 Second conclusion we can draw is that number of threads, which is equal 

to available cores, gives the optimal performance. It is because maximum number 

of threads, which can access the cores at a time, is number of available cores. The 

remaining threads have to wait for their turn to access the cores. This will take 

more time and reduce the performance. We can increase available cores by 

running the program on multiple nodes. However, this will have the overhead of 

distributing threads to multiple nodes. 

 Third conclusion we can draw from our results is that parallel 

implementation is only useful for functions which have heavy computation. For 

function like moving average, it is not good idea to work in parallel unless we have 

so many streams like 10000 or window size like 1000 to handle. If single thread 

does not have heavy calculation, then creating multiple threads for the task will 

have overhead that supersedes the time taken by single thread. Hence, we should 

create multiple threads only when there is a lot of computation for single thread. 
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Appendix A Testing Routine 

 
1. ssh to vsmp cluster. 

2. Set the buffer size, size of the window, and number of streams. 

3. gettimeofday(&start,NULL); 

4. First set the number of omp threads =1 

omp_set_num_threads(1); 

5. program to calculate Moving Average. 

6. gettimeofday(&finish,NULL); 

(double)(finish.tv_usec - start.tv_usec)); 

7. Run the program using, 

numactl --cpunodebind=0 ./prod-consu4_2_4 > output.log 

8. See the output file for the time in micro seconds to finish moving 

average job 

9. Now, set 

omp_set_num_threads(14); 

Rerun the program to measure performance using 14 threads. 

We can measure the performance for DFT, SVD, Standard Deviation, Most 

correlated pair, Aggregated Moving Average the same way. 
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