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Manufacturing processes may significantly affect the quality of resultant surfaces and 

structural integrity of the metal end products. Controlling manufacturing process induced 

changes to the product’s surface integrity may improve the fatigue life and overall 

reliability of the end product.  The goal of this study is to model the phenomena that result 

in microstructural alterations and improve the surface integrity of the manufactured parts 

by utilizing physics-based process simulations and other computational methods. Two 

different (both conventional and advanced) manufacturing processes; i.e. machining of 

Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder 

alloys are studied.  3D Finite Element (FE) process simulations are developed and 
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experimental data that validates these process simulation models are generated to compare 

against predictions.  

 

Computational process modeling and optimization have been performed for machining 

induced microstructure that includes; i) predicting recrystallization and grain size using FE 

simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting 

microhardness using non-linear regression models and the Random Forests method, and 

iii) multi-objective machining optimization for minimizing microstructural changes. 

Experimental analysis and computational process modeling of selective laser melting have 

been also conducted including; i) microstructural analysis of grain sizes and growth 

directions using SEM imaging and machine learning algorithms, ii) analysis of thermal 

imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, 

meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) 

predicting localized solidification using the Phase Field method. 

 

These computational process models and predictive models, once utilized by industry to 

optimize process parameters, have the ultimate potential to improve performance of 

products in their service life.  
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 CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

Manufacturing processes may significantly affect the quality of resultant surfaces and 

structural integrity of the metal end products. Controlling manufacturing process induced 

changes to the product’s surface and structural integrity may improve the fatigue life and 

overall performance of the end product. Surface integrity is considered one of the most 

relevant attributes used for evaluating the quality of finish machined surfaces, as the critical 

structural components in industry are manufactured with the objective to reach high 

reliability levels. Surface integrity comprises two aspects, topography and layer 

characteristics. Topography characteristics are defined by the shape of the surface of a 

material, such as surface waviness and surface roughness. For instance, feed marks left on 

the surface of a material after machining and subsequent polishing operations to remove 

these marks fall in the domain of topography. Having a smooth surface topography after 

machining is essential in certain areas, such as assemblies that require high precision and 

moving parts. The second aspect of surface integrity is layer characteristics. As opposed to 

surface topography, layer characteristics are related to the condition of the material below 

the surface. For instance, thermal and mechanical loads that result in deformation may 

leave some stresses in the material even after the loads are removed. This remaining stress, 

called the residual stress, can greatly affect the strength of a material. Certain processes, 

such as shot peening and laser peening, aim to generate compressive residual stresses near 

the surface of a material, increasing its strength against compressive forces. However, 
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residual stresses may lead to cracks that may yield catastrophic failures if not investigated 

and treated properly. Another property of layer characteristics is hardness, which can be 

defined as a material’s resistance to indentation, or plastic deformation under compressive 

stress. While hardness is closely related to the strength of the material, it may not be 

homogenous throughout the material as it is highly influenced by the material’s 

thermomechanical processing history. A material’s properties greatly depend on the 

condition of its internal structure, called the microstructure. Microstructure can be altered 

via phase changes, recrystallization and grain growth as a result of thermomechanical 

processes, such as forging and machining, and these alterations may lead to increased / 

decreased hardness and residual stresses. Therefore, microstructure of a material plays a 

critical role in surface integrity, and it has become a topic of interest in manufacturing of 

certain alloys.  

 

Nickel-base alloys can considerably maintain their strength at high temperatures and long 

exposures; therefore they are preferred material for components in hot sections of the 

aircraft and gas turbine engines, nuclear reactors and rocket engines. These alloys can be 

obtained in the forms of wrought, forged, cast and sintered, through several different 

processing routes. Inconel 100 (IN100) is a Ni-Co-Cr based super alloy which is used in 

the cast or powder metallurgy (PM) forms and powder processing provides structural 

uniformity, high strength, and toughness suitable for engine components operating at 

intermediate temperature regimes such as disks, spacers, and seals. Although high strength 

at elevated temperatures and good corrosion resistance are achieved, machining of IN100 

alloy is highly difficult due to low thermal conductivity, high rigidity, high toughness, 
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chemical affinity with tool materials at elevated temperatures and microstructure related 

hard carbide particles (Axinte et al., 2006). In addition, machining induced surface integrity 

and alterations to the subsurface microstructure so called “white layer” due to severe plastic 

deformation (SPD) and abusive thermal loading strongly affects the fatigue life of mission-

critical components (Ulutan and Ozel, 2011; M'Saoubi et al., 2014) .  

 

Titanium alloys, specifically Ti-6Al-4V (Ti64), are commonly used in the aerospace 

industry due to their high strength to weight ratio and toughness. Ti-6Al-4V is known to 

form a tightly adherent oxide film immediately upon exposure to oxygen, vastly improving 

its corrosion resistance. They are also considered bio-compatible and can be used in 

medical devices.  

 

1.1.1 Conventional and Advanced Manufacturing of Titanium & Nickel Based 

Alloyed Parts 

Conventional manufacturing process often starts with a large workpiece prepared through 

metal forming or powder material compaction and material is removed from this workpiece 

in certain locations to obtain the final geometry of the product. Such processes are called 

material removal processes or machining and they are the most commonly used 

manufacturing processes in the industry. Additive metal manufacturing, often called but 

not limited to 3-D printing, is an emerging field where the final part is built layer-by-layer 

by combining the powder material together by utilizing energy sources such as high energy 

laser or electron beams.  
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1.1.1.1 Material Removal / Machining Processes 

Material removal processes may start with a bulk material obtained via casting, forging or 

powder compaction manufacturing routes to create a desired geometry, or with a pre-

processed part to achieve higher geometrical precision. This research will only focus on 

machining processes, in particular, the turning process applied on bulk material. Turning 

process consists of a workpiece rotating around one of its axis, and a tool made from a 

harder material is forced on the workpiece to remove material from desired locations.  

 

Powder-based materials such as IN100 can be processed in various ways. One typical 

processing route is given in Figure 1.1 where the powder goes through several steps to 

obtain its final form. Powder manufacturing processes generally yield a porous 

microstructure. The material then undergoes sintering and Hot Isostatic Pressing (HIP) in 

order to achieve a fully dense microstructure. The densified material is then forged into a 

desired shape, such as a billet. After the forging operation, the final part is obtained via 

material removal processes. Additionally, residual stresses that may have occurred from 

previous processes can be removed by heat treatment processes.  

 

Figure 1.1 Processing route for IN100 nickel alloy. 
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1.1.1.2 Additive Manufacturing Processes 

Additive manufacturing processes such as 3-D printing are most commonly applied to 

metal alloys and plastics, but more exotic applications include biological tissue and even 

food printing. Additive manufacturing has become popular because it allows the creation 

of intricate parts directly from a computer design.  

 

Selective Laser Melting (SLM) is an example of metal printing where a layer of powdered 

metal is melted at specific locations using a high power laser beam. The desired 3-D 

geometry is sliced to layers of equal thickness using Computer Aided Design (CAD), and 

the printer builds the part layer-by-layer by adding a new layer of powder on top of the 

previously processed layer. At the end, the excess metal powder is vacuumed and can be 

reused to a certain extent.  

 

Alternative processing routes to that shown in Figure 1.1 has emerged with the advent of 

additive manufacturing processes. Figure 1.2 shows one such route where the powder Ni 

alloy is directly processed via SLM. Additional steps such as HIP and precision machining 

can be included to achieve higher quality parts. 

 

 

Figure 1.2 Alternative processing route for IN100 nickel alloy.  
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1.2 Microstructure of Ti-6Al-4V and IN100 Alloys 

 

Regardless of the processing route chosen, surface integrity of the final product depends 

greatly on its final microstructure. Microstructure of Ti-6Al-4V and IN100 alloys are of 

particular interest to this research, and they are briefly discussed in this section. 

 

1.2.1 Microstructure of the Ti-6Al-4V alloy 

Pure titanium has two phases, the hexagonal close-packed α-phase, and the body-centered 

cubic β-phase. As stated by Carpenter (Carpenter, 2000), allotropic phase transformation 

occurs in titanium at 882.5°C from the α-phase to β-phase. The β-phase must be stabilized 

to exist in room temperature with the use of alloying elements. This allows titanium alloys 

to be strengthened by heat treating to achieve higher strengths. Therefore, titanium alloys 

are classified as α-alloys, β-alloys and α+β alloys.  The first group α-alloys are not heat 

treatable and may contain natural α-stabilizers such as Al or O. The second group β-alloys 

are metastable and require the addition of β-stabilizers such as V or Mo to preserve the β 

phase after quenching. They can benefit greatly from solution treating and aging, resulting 

in strength increase. The third group, α+β alloys, are alloyed with both α and β stabilizers 

to retain both phases in low and high temperatures. Ti-6Al-4V is an α+β alloy, and is by 

far the most commonly used titanium alloy in the industry. Microstructure of annealed Ti-

6Al-4V consists of two phases;  phase with average d0= 20 m grain diameters, and β-

matrix grains with about 40-60% volume fraction as reported by Nalla et al. (Nalla et al., 

2003). A typical microstructure image of Ti-6Al-4V alloy is shown in Figure 1.3.  
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Figure 1.3 Typical microstructure of Ti-6Al-4V titanium alloy. 

(Nalla et al., 2003) 

 

1.2.2 Microstructure of the IN100 alloy 

IN100 microstructure mainly consists of two phases; γ and γ'. A representative image of 

the IN100 microstructure is given in Figure 1.4. The γ phase consists of large grains that 

form the matrix in the material whereas γ' is formed as a result of various processes 

(Milligan et al., 2004; Wusatowska-Sarnek et al., 2003a; Wusatowska-Sarnek et al., 2003b; 

Kikuchi et al., 1990). Three types of γ' have been observed: primary γ', secondary γ', and 

tertiary γ' as shown in Figure 1.5. 

 

Figure 1.4 Typical microstructure of IN100 nickel alloy. 

(Kikuchi et al., 1990)  
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Figure 1.5 Description of microstructural features in IN100   and SEM image of the 

microstructure of IN100. 

(Wusatowska-Sarnek et al., 2003b) 

 

Sizes and distributions of these γ' formations are set by process parameters, for instance, a 

very fine microstructure may be obtained by a subsolvus heat treatment. Milligan et al. 

(Milligan et al., 2004) states that by varying the cooling rate after the solutionizing step 

and the solution heat treatment temperature, it is possible to influence the γ grain sizes as 

well as γ' grain sizes and distributions. It is stated by Wusatowska-Sarnek et al. 

(Wusatowska-Sarnek et al., 2003a) that primary γ' is affected by the solution treatment 

temperature, secondary γ' is affected by the stabilization temperature and forms during 

cooling from the solution temperature and tertiary γ' is controlled by aging. Primary γ'-
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grains are large enough to be compared with the γ-matrix grains, and can be included in 

the grain size measurement of the matrix. Wusatowska-Sarnek et al. (Wusatowska-Sarnek 

et al., 2003b) reports the average IN100 γ-matrix grain size as 3.82 μm (see Figure 5b), 

Kikuchi et al. (Kikuchi et al., 1990) reports as 3.5 μm and Milligan et al. (Milligan et al., 

2004) reports it as 4.2 μm. Average diameters of secondary and tertiary γ'-grains are 

nanocrystalline grains with average sizes of 120 nm and 8.5 nm respectively (see Table 

1.1). It is stated that the sizes and distributions of the γ' precipitates play an important role 

in mechanical properties of IN100. It also reported by Wusatowska-Sarnek et al. 

(Wusatowska-Sarnek et al., 2003a) that a high strength material is obtained in the two 

phase field (γ + γ') by maintaining the temperature below the γ' solvus, 1460K. A subsolvus 

solution treatment at 1416K is followed by a two-step aging sequence at 1255K and 1005K 

to form the strengthening phases. Upon investigating the PM IN100 alloy through tensile 

tests at 260°C and 650°C,  Milligan et al. (Milligan et al., 2004) concludes that secondary 

γ' size and volume fraction has a dominant effect on the strength of the material. It is further 

claimed that the presence of γ' is important, but its size is not. A decrease in strain hardening 

is observed with larger secondary γ' particles and with the presence of primary γ' particles.  

 

Table 1.1. Typical grain size of IN100 nickel-base alloy. 

 (Milligan et al., 2004) 

Phase Grain size [m] Volume Fraction 

γ grains 4.2 balance 

Primary γ’ grains 1.28 0.25 

Secondary γ’ grains 0.109 0.32 

Tertiary γ’ grains 0.021 0.024 
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1.2.3 Process Induced Microstructural Changes 

Microstructure of the material may be affected by thermal fields and deformations during 

and after certain manufacturing processes, depending on the process parameters. High 

temperatures and excessive strain / strain rates often change the microstructure so much 

that the initial properties of the material are altered, sometimes towards an undesirable 

state. One example is the severe work/strain hardening effect seen in Ni alloys during 

machining processes.  

 

1.2.3.1 Machining Induced Microstructural Changes 

Microhardness is an important aspect of surface integrity, and it can play an important role 

throughout the product’s lifecycle as reviewed in (Ulutan and Ozel, 2011). It is affected by 

the machining induced strain, stress and temperature fields in the workpiece. Although 

there are some analytical modeling efforts for microhardness, they require a great 

understanding of the microstructure of the specific material and are not easily implemented 

or generalized (Ulutan and Ozel, 2011; Che-Haron and Jawaid, 2005). However, it is 

known that machining parameters such as cutting speed, depth of cut, tool radius and tool 

coating have an effect on stress and temperature fields; therefore it is possible to obtain a 

relationship between the machining parameters and microhardness. 

 

Moussaoui et al. (Moussaoui et al., 2013) investigated the effects of milling on 

microhardness and microstructure in Ti-6Al-4V. It is stated that machining causes a 

softening effect on the material due to high temperatures during cutting which cause 

Vanadium to diffuse into the α phase from the β phase of the alloy, without changing the 



11 

 

 

microstructure. It is also stated that it is difficult to take traditional hardness measurements 

from two phase alloys such as the Ti-6Al-4V, and the results are dispersed. Jovanovic et 

al. (Jovanović et al., 2006) investigated how the mechanical properties and microstructure 

of investment cast Ti-6Al-4V change with different annealing temperatures and cooling 

rates. It was found out that higher annealing temperatures and faster cooling rates yield 

higher tensile strength and hardness, and reported hardness measurements of annealed Ti-

6Al-4V between 360-375 HV using 10 N force (about 1.02 kg). Moussaoui et al. 

(Moussaoui et al., 2013) reported microhardness measurements that were made at 300 g 

force (about 2.94 N) for Ti-6Al-4V as 335.65 HV mean with 19.24 standard deviation. 

Rotella et al. (Rotella et al., 2014) measured surface and subsurface microhardness values 

as 354 HV for as received (annealed) Ti-6Al-4V using 50 g force (0.49 N). 

 

1.2.3.2 Selective Laser Melting Generated Microstructure 

Selective Laser Melting (SLM) of titanium alloys and nickel alloys is a recent research 

interest for many researchers. In SLM, powder material is melted using a high powered 

laser which cools down and solidifies. Anam et al. (Anam et al., 2013b) investigated the 

microstructure of SLM processed IN625 alloy, and stated that process parameters such as 

laser beam power and scan speed affect the temperature and cooling rates in the meltpool 

which in turn determine the formation of constituent phases. Anam et al. (Anam et al., 

2014) further studied the SLM processing of IN625 alloy, by observing the microstructure 

obtained from different scanning strategies. Cellular dendritic grain growth was observed 

towards the center of the scan track (perpendicular to the scanning direction), however, 

alternating scan directions between layers caused remelted dendritic structures from 
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previous layers to grow epitaxially towards the center of the new melt pool. Intercellular 

spacing was found to be less than 1 μm, which was said to contribute to the strength of the 

material. Coarse cellular structures were also observed in the inter-meltpool regions, which 

were deemed undesirable and assumed to have a significant impact on hardness and 

strength.  

 

In nickel based alloys, the matrix phase γ NiCr fcc, γ' Ni3(Al,Ti) fcc with primary, 

secondary, tertiary if exists, γ'' Ni3Nb bct and δ (Fe,Ni)2Nb hcp phases can be found in the 

microstructure, as well as dendrite formations (Anam et al., 2013b; Anam et al., 2014; 

DuPont et al., 2001; Jia and Gu, 2014; Amato et al., 2012; Nie et al., 2014; Smith and Patel, 

2005). In SLM of IN625, γ and γ'' phases are dominantly observed. Coarser cellular 

structures are also observed in the inter-meltpool regions (Anam et al., 2014). Amato et al. 

(Amato et al., 2012) investigated the mechanical behavior and microstructure of SLM 

fabricated IN718 alloy. It was observed that as-fabricated cylinders oriented in the build 

direction and perpendicular to the build direction contained columnar grains and arrays of 

oblate ellipsoidal γ' precipitates. Further processing by Hot Isostatic Pressing (HIP) 

revealed columnar γ'' Ni3Nb (bct) phase parallel to the laser beam and build direction 

whereas annealing of as-processed parts (1160°C for 4h) revealed 50% recrystallization 

with spheroidal γ' precipitates, densely distributed γ'' precipitates and δ phase 

recrystallization interfaces and recrystallized grain boundaries. The columnar grains were 

0.5-1 μm in width. Microindentation Vickers hardness measurement values were 3.9GPa 

for as-fabricated, 5.7GPa for HIP processed and 4.6 GPa for the annealed materials. It was 

concluded that SLM produced parts exhibited similar tensile properties to wrought (cold 
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work) IN718 alloy. The melt pool width was reported as 75 to 100 μm and the layer 

thickness was about 50 μm in their study. 

 

DuPont et al. (DuPont et al., 2001) investigated the microstructure of Laser Engineered 

Net Shaping (LENS) deposited IN718 alloy using optical, scanning and transmission 

electron microscopy. The LENS process uses a high powered laser beam to create a molten 

pool of metal powder that is injected during the process. It was found that the thermal 

cycles of subsequent passes did not affect the underlying layer microstructure. It is stated 

that γ', γ'' and δ precipitates appear in the as-cast IN718 at high temperatures, however, it 

takes about six minutes at 870°C and takes even longer at lower temperatures. Time above 

peak temperature has been observed to be extremely short in the LENS process, and peak 

temperature decreases to 850°C five layers below the weld pool, leading to the conclusion 

that precipitation reactions would not occur during the process. This conclusion was also 

supported by TEM analysis, and it allowed the as-deposited microstructure to be estimated 

using only solidification models. The microstructure model used in the paper predicts the 

types of phases formed during solidification that are necessary to prevent 

microsegregation. 

 

Gong et al. (Gong et al., 2013) studied the effects of process parameters in SLM and 

Electron Beam Melting (EBM) processing of Ti-6Al-4V alloy. It was found that energy 

density, defined by laser power divided by scanning speed, hatch spacing and layer 

thickness, had an impact on meltpool size and a low energy density could result in voids 

between hatch lines. Defects such as pits and pores, and their correlations with process 
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parameters were explored. It was found that in the SLM process, pits can be formed by 

splashed particles that land and adhere on the processed surface of the material, which were 

then hit by the recoater blade. Porosity of the as-processed material was also found to be 

affected by processing conditions, however, a direct correlation could not be found.  

 

The current literature indicates that the final microstructure of the processed material 

highly depends on the processing conditions, thus, researching experimental analysis and 

modeling of the microstructure is very compelling. 
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1.3 Microstructure Modeling 

 

Microstructure is often characterized by grain sizes in the material, before and after 

processing. Grains are known to be affected by variables such as temperature, strain and 

strain rates during a process. Sun et al. (Sun et al., 2010) reported the effects of different 

temperatures and strain rates on the grain sizes of TA15 titanium alloy during hot forging. 

 

Many different models exist for grain diameter prediction in manufacturing processes, such 

as the Zener-Hollomon (ZH) parameter based model used by Rotella et al. (Rotella et al., 

2013), the Kocks-Mecking (KM) based dislocation density model used by Sun et al. (Sun 

et al., 2010), and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) based recrystallization 

model used by Yi et al. (Yi et al., 2008). Another model by Arieli and Rosen (Arieli and 

Rosen, 1977) relates the grain size of the Ti-6Al-4V alloy to flow stress and temperature 

by a logarithmic relationship. Using initial average grain size, material properties and 

process outcomes such as strain, strain rate, temperature, and time, the final average grain 

size can be obtained with these models which is ultimately related to surface integrity. 

JMAK based recrystallization model, KM based dislocation density model and ZH 

parameter based recrystallization model are reviewed in this section.  
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1.3.1 Johnson-Mehl-Avrami-Kolmogorov (JMAK) 

The JMAK model, also called Avrami model, defines the transformation kinetics in a 

material. The JMAK equation relates the volume fraction of (nucleated and grown) crystals 

in a solidifying liquid with time, and requires the crystal nucleation and growth rates to be 

known. It can be used to calculate the recrystallized volume fraction inside the material as 

a function of time. Under the assumption that the nucleation and growth rates are affected 

by the initial grain size, and variables such as temperature, strain and strain rate, the 

microstructure evolution for recrystallization can be modeled.  

 

Isothermal JMAK equations describe the volume fraction of the transformed material as a 

function of temperature and time. Experimental results are used to determine the constants, 

and subsequent calculations can be made for recrystallized fraction and grain size. There 

is an implementation of this model in the commercial Finite Element Analysis software 

DEFORM that includes grain growth, static, dynamic, and metadynamic recrystallization, 

and it incorporates a modified version of the JMAK equation that takes strains and strain 

rates the material experiences into account (SFTC; Shen et al., 1995; Shen, 2005).  

Arrhenius type equations are used to describe model variables with respect to temperature, 

strain and strain rate empirically which are obtained from the FE solution at a given time 

step. Dynamic recrystallization occurs when a critical strain 휀𝑐 = 𝑎2휀𝑝 is exceeded, where 

𝑎2 is a model parameter and the peak strain 휀𝑝 is defined by: 

 휀𝑝 = 𝑎1𝑑0
ℎ1휀̇𝑚1𝑒𝑥𝑝(𝑄1 𝑅𝑇⁄ ) + 𝑐1 (1.1) 

Note that the temperature dependence is justified by the fact that in the Finite Element 

implementation of these equations, they are recalculated at each timestep, and a constant 



17 

 

 

value of temperature is used in the equation. Furthermore, the model parameters can also 

be defined as temperature dependent, using different values at distinct temperature ranges. 

The volume fraction for dynamic recrystallization is defined with the Avrami equation as 

given by: 

where XDRx is the fraction of dynamically recrystallized material. The strain for 50% 

recrystallization is given by: 

 휀0.5 = 𝑎5𝑑0
ℎ5휀𝑛5휀̇𝑚5exp(𝑄5 𝑅𝑇⁄ ) + 𝑐5 (1.3) 

where R is the universal gas constant. The recrystallized grain size is calculated from, 

 𝑑𝐷𝑅𝑥 = 𝑎8𝑑0
ℎ8휀𝑛8휀̇𝑚8𝑒𝑥𝑝(𝑄8 𝑅𝑇⁄ ) + 𝑐8 (1.4) 

The average grain size is then calculated from the mixture of recrystallized grains and 

unaffected grains as: 

 𝑑𝑎𝑣𝑔 = 𝑑0(1 − 𝑋𝐷𝑅𝑥) +  𝑑𝐷𝑅𝑥𝑋𝐷𝑅𝑥 (1.5) 

Descriptions of parameters in Eqs. (1.1)-(1.5) are given in Table 1.2. 

 

  

 
𝑋𝐷𝑅𝑥 = 1 − 𝑒𝑥𝑝 [−𝛽𝑑 (

휀 − 𝑎10휀𝑝

휀0.5
)
𝑘𝑑

] 
(1.2) 
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Table 1.2 JMAK parameters and descriptions. 

Qact: Activation energy [kJ/mole] 

a1: Peak strain slope 

h1: Initial grain size sensitivity exponent 

m1: Strain rate sensitivity exponent 

Q1:  Qact m1 

c1: Peak strain intercept 

a2: Critical strain ratio 

a5: 0.5 slope 

h5: Initial grain size sensitivity exponent in 0.5  

n5: Strain sensitivity exponent in 0.5  

m5: Strain rate sensitivity exponent in 0.5   

Q5:  Qact m5 

c5: 0.5 intercept 

a10: DRx constant 

kd: DRx exponent 

βd: DRx constant 

a8: dDRx slope 

h8: Initial grain size sensitivity exponent in dDRx 

n8: Strain sensitivity exponent in dDRx 

m8: Strain rate sensitivity exponent in dDRx 

Q8:  Qact m8 

c8: dDRx intercept 

 

Yi et al. (Yi et al., 2008) used this model to predict the grain size of aluminum alloy 

AL7050 during hot forming and the constitutive model was defined by writing the strain 

rate as a function of flow stress and temperature at high temperatures using an Arrhenius 

type equation. The dynamic recrystallization is given by: 

 

𝑋𝐷𝑅𝑥 = 1 − 𝑒
−[0.693(

𝜀−0.8𝜀𝑝
𝜀0.5

)
2

]
 

(1.6) 
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The strain for 50% recrystallization is given by: 

 
휀0.5 = 1.214 × 10−5𝑑0

0.13휀̇0.04𝑒
5.335×104

𝑅𝑇  
(1.7) 

where constants are determined by means of experiments and regression analysis. Dynamic 

recrystallization is said to occur at a critical strain 휀𝑐 = 0.8휀𝑝 where 휀𝑝 is defined by: 

 
휀𝑝 = 4.107 × 10

−3휀̇0.06𝑒
1.318×104

𝑅𝑇  
(1.8) 

The grain size after recrystallization is calculated from: 

 
𝑑𝐷𝑅𝑥 = 78.6022휀̇

−0.03722𝑒−
1902.72
𝑅𝑇  

(1.9) 

The average grain size is then calculated using the mixture law, given in Eq. (1.5). 

 

1.3.2 Kocks-Mecking (KM) 

The Kocks-Mecking (KM) model (Mecking and Kocks, 1981; Follansbee and Kocks, 

1988; Kocks, 1976) relates the flow stress to the square root of dislocation density to 

explain the work hardening behavior. KM based models that are used in the literature for 

microstructure modeling. Dislocation density can be related to the shear flow stress, and 

additional parameters such as grain size can be included in the formulation (Banabic, 

2007), allowing to a fuller microstructure modeling. According to the KM model, the shear 

flow stress (𝜏) is given in terms of the dislocation density (ρ) as: 

 𝜏 = 𝜏0 + 𝛼𝜇𝑏√𝜌  (1.10) 

where 𝜏0 is the lattice friction stress, μ is the elastic shear modulus, b is the amplitude of 

the Burgers vector and α is a constant that takes dislocation interactions into account. The 

dislocation density rate is written in terms of dislocation density and other state parameters 

empirically as: 
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 𝜕𝜌

𝜕𝑡
= 𝑘1 + 𝑘2√𝜌 − 𝑘3𝜌  (1.11) 

where the coefficients ki are assumed to be strain rate and temperature-dependent. This 

approach allows the modeling of time-dependent and independent behaviors. Following 

the KM approach, Sun et al. (Sun et al., 2010) developed a model that accounts for static 

recovery, recrystallization, and static and recrystallized grain growth rates in order to 

compute the microstructure evolution in TA15 titanium alloy during hot deformation using 

the internal-state-variable method. The microstructure evolution is determined with the use 

of Eqs. (1.12) through (1.16). 

 �̇� = 𝑘1√𝜌휀̇ − 𝑘2휀̇
𝑚𝑒−

𝑄𝑠
𝑅𝑇 − 𝑘3𝜌

𝑛𝑒−
𝑄𝑠
𝑅𝑇 −𝑘4𝜌�̇� (1 − 𝑆)⁄  (1.12) 

 �̇� = 𝛼1𝑑
−𝛾1 − 𝛼2�̇�

𝛾3𝑑𝛾2 (1.13) 

 �̇� = 𝛽1𝛾𝜌𝑒
−
𝑄𝑏
𝑅𝑇 𝑑⁄  (1.14) 

 𝜌𝑐𝑟 = 𝛽2 (휀̇𝑒
−𝑄𝑧
𝑅𝑇)

𝜆1
 (1.15) 

 𝛾 = (0.1 + 𝑆)𝑞(1 − 𝑆) 𝜌 𝜌𝑐𝑟⁄  (1.16) 

where �̇� is the dislocation density rate, �̇� is the recrystallized volume fraction rate, �̇� is the 

grain growth (or refinement) rate, 𝜌𝑐𝑟 is the critical dislocation density, and ki, αi, βi, γi, λ1, 

m, n, q, Qs, Qb are material constants.  
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1.3.3 Zener-Hollomon (ZH) 

Another common approach in the literature for determining the recrystallized grain size is 

utilizing an Arrhenius type equation with strain-rate dependency. The Zener-Hollomon 

parameter combines strain rate and temperature effects and is defined as: 

 𝑍 = 휀̇𝑒𝑄 𝑅𝑇⁄  (1.17) 

where Q is the apparent activation energy for hot deformation. The recrystallized grain size 

can then be found, independently of the initial grain size, as: 

 𝑑𝐷𝑅𝑥 = 𝑏𝑍
𝑚 (1.18) 

where b and m are model constants to be determined that depend on the material and the 

process. Hot forming of Ti-6Al-4V titanium alloy in the temperature range of 750 – 1100°C 

and strain rate range of  3 × 10−4 − 10 s-1, and estimated the α and prior β grain sizes for 

the Ti-6Al-4V based on the Zener-Hollomon parameter as (Seshacharyulu et al., 2002): 

 𝑔𝛼 = 1406.4 × 𝑍−0.139 (1.19) 

 𝑑𝑃𝛽 = 1954.3 × 𝑍−0.172 (1.20) 

where 𝑔𝛼 is the α grain size (in μm) and 𝑑𝑃𝛽 is the prior β grain size. It was stated that 

linear fits in the log-log scale between 𝑔𝛼- Z and 𝑑𝑃𝛽- Z suggest that a relationship between 

Z and grain sizes exists. 

 

In another study (Rotella et al., 2013), microstructural changes in turning of AA7075-T651 

aluminum alloy and grain size after recrystallization were calculated using the Zener-

Hollomon parameter which was then related to the hardness of the material using the Hall-

Petch equation.  The Zener-Hollomon parameter can also be related to the flow stress 𝜎 as: 

 𝑍 = 𝐴[𝑠𝑖𝑛ℎ(𝛼𝜎)]𝑛 (1.21) 
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where A, α and n are parameters that were determined. Note that this form of the ZH 

parameter comes from substituting the Arrhenian constitutive equation given as: 

 휀̇ = 𝐴[𝑠𝑖𝑛ℎ(𝛼𝜎)]𝑛𝑒−𝑄 𝑅𝑇⁄  (1.22) 

Dynamic recrystallization occurs when the strain exceeds a critical strain value, 휀𝑐𝑟, which 

is given as: 

 
휀𝑐𝑟 = 𝑐 (

𝑍

𝐴
)
𝑝

 
(1.23) 

where c and p are model parameters to be obtained. A derivation of this is given in (Quan 

et al., 2014). The recrystallized grain size, modified to include the initial grain size ( 𝑑0) is 

given by: 

 𝑑 = 𝑑0 + 𝑏𝑍
𝑚 (1.24) 

where b and m are two material related empirical constants.  

 

1.3.4 Solidification Microstructure in SLM of IN625 

Solidification is an important process that needs to be investigated separately, as it affects 

the properties of the material significantly based on nucleation and crystallization kinetics 

due to rapid cooling rates in SLM. Microstructure plays a critical role and will 

tremendously affect the components’ performance and life. Therefore, it is important to 

know the final state of the microstructure after the SLM process concludes. A typical 

microstructure obtained after SLM processing is shown in Figure 1.6. Here, the meltpool 

boundaries are clearly visible.  
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Figure 1.6 Optical image of SLM microstructure showing melt pool boundaries in the 

build direction (Z). 

(Anam et al., 2014).  

 

Microstructure of SLM processed IN625 is given in Figure 1.7 where dendrites are 

observed to grow in cells. It is seen in Figure 1.7a that the growth direction is toward (or 

away from) the center of the scan track. Furthermore, in Figure 1.7b, meltpools in different 

layers are observed with dendritic growth occurring towards the track center in the build 

(Z) direction. Figure 1.8 shows a 3D view of SLM produced IN100 microstructure. 

Columnar grains are observed in the build direction in the side views. Moreover, cellular 

grains are also seen in the top (XY) and side views. Cellular grains in the top view have 

approximately the same diameter as the width of the columnar grains, and may in fact be 

appearing due to cross-sectioning of the columnar grains.  Li et al. (Li et al., 2015) states 

that boundaries of the cellular structures are primarily composed of Nb. It is further 

explained that during solidification, the liquid-solid interface moves at very high speeds, 
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impeding diffusion. Therefore, solute atoms are trapped in the resulting structure, and 

solute atoms such as Cr, Mo and Nb are captured by the matrix phase, which prevents phase 

transition. γ'' and δ phases are instead detected in heat treated samples by inference from 

the changes in the lattice constant of the matrix phase. Amato et al. (Amato et al., 2012) 

melt layer banding is observed, with dark contrasts caused by γ'' Ni3Nb (bct) precipitates 

distinguishing these bands. 

 

After an SLM process, it is desirable for the workpiece to have a microstructure that is 

similar to one obtained via traditional manufacturing processes and usually, heat treatments 

are performed on the finished parts in order to remedy this. Therefore, a microstructure 

model can be used to determine key characteristics of the microstructure of an SLM 

processed part, and allow a comparison with other methods in the literature.  

 

The evolution of the microstructure in a process can be roughly estimated by phase 

fractions, grain shapes and diameters depending on the thermal-mechanical process. 

Computational methods such as Finite Element Method (FEM) have been successfully 

utilized in conjunction with theoretical models to accurately predict the resulting 

microstructure in various manufacturing processes. Yazdipour et al. (Yazdipour et al., 

2008) also utilized Cellular Automata (CA) in conjunction with the ZH parameter to model 

recrystallization. Nie et al. (Nie et al., 2014) utilize a stochastic microstructure model 

coupled with Finite Element Method to model solidification during laser additive 

machining o IN718 alloy. While many applications of such models exist widely in the 

literature for processes like hot forming (Sun et al., 2010; Yi et al., 2008) and machining 
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(Özel and Arisoy, 2014; Arisoy and Özel, 2014; Arısoy and Özel, 2015) the microstructure 

of components fabricated using SLM processes has not been adequately studied in a 

computational framework with a few exceptions (Amato et al., 2012; Jia and Gu, 2014; 

Wang et al., 2012; Nie et al., 2014). 

 

 

Figure 1.7 Microstructure of SLM processed IN625 Nickel alloy. (a) SEM image of 

horizontal (XY) section showing cellular/dendritic growth towards the center of the scan 

track, (b) vertical (YZ) section with dendrites growing towards the track center and in the 

build direction. Growth direction is marked with red arrows, and laser scan track centers 

are marked with white arrows. 

(Anam et al., 2014). 
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Figure 1.8 SEM 3D combined view of SLM produced IN100 microstructure. The build 

direction is shown by the arrow. 

 (Murr et al., 2012). 
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1.3.5 Phase Field Method 

The phase field method is commonly used in computational modeling of solidification due 

to its ability to model complexities more efficiently than other methods used in 

solidification. During the solidification process, an interface is formed between different 

phases of the material, e.g. between the solid and liquid phases in the solidification of a 

pure metal. The actual location of the interface is not calculated in the phase field method, 

therefore it provides a massive computational advantage especially when modeling 

complicated interfaces where meshing is prohibitively hard in problems like dendritic 

solidification and spinodal decomposition.  Rather than explicit tracking of sharp 

interfaces, diffuse interfaces are employed using continuous order parameters to represent 

different phases in the system. In the case of solidification of a pure substance from melt, 

a single order parameter p can be used such that p=0 where the material is liquid, and p=1 

where it is solid. Figure 1.9 illustrates the liquid/solid interface along a line that goes 

through liquid and solid phases. 

 

It is relatively common to couple additional physical phenomena into the phase field 

model. For instance, heat and concentration diffusion equations are usually solved in 

conjunction with the phase field during the evolution. 
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Figure 1.9 Liquid/solid interface representation using order parameter p. 

(Kobayashi, 1993) 

 

Kundin et al. (Kundin et al., 2015) investigate the phase field modeling of Inconel 718 

alloy during rapid solidification in SLM processing, and compare their predictions with 

experimental results and theoretical predictions.  

 

The model (and corresponding derivation) by Kobayashi (Kobayashi, 1993) is followed in 

the following equations. The evolution of the phase field follows the Ginzburg-Landau 

form given in Eq. (1.25) as the free energy functional 𝛷 is minimized: 

 
𝜏
𝜕𝑝

𝜕𝑡
= −

𝛿𝛷

𝛿𝑝
 (1.25) 

Where p is the phase field order parameter, 𝜏 is a positive constant characterizing 

relaxation. Dendritic crystal growth in a single component system using a Ginzburg-

Landau type free energy functional with parameter m, is defined as 

 
𝛷[𝑝;𝑚] = ∫

1

2
휀2|𝛁p|2 + 𝐹(𝑝;𝑚)𝑑𝑟 (1.26) 
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where ε is a parameter that determines the thickness of the interface. Here, F is a double-

well free energy potential and can take many forms. Kobayashi (Kobayashi, 1993) uses the 

following equation: 

 
𝐹(𝑝;𝑚) =

1

4
𝑝4 − (

1

2
−
1

3
𝑚)𝑝3 + (

1

4
−
1

2
𝑚)𝑝2 (1.27) 

with |𝑚| <
1

2
  controlling the difference of chemical potentials of the two phases that can 

be a function of temperature. The phase field method, when coupled with a heat diffusion 

equation can model the growth of dendritic structures while accommodating the latent heat 

of fusion arising from solidification: 

 𝜕𝑇

𝜕𝑡
= 𝛁2𝑇 + 𝐾

𝜕𝑝

𝜕𝑡
 

(1.28) 

where 𝑇 is a dimensionless undercooling temperature (𝑇 = 0 at melting temperature) and 

𝐾 is a dimensionless latent heat parameter. The value of 𝐾 has a strong effect on the 

evolution of the microstructure. It is possible to introduce anisotropy by considering that 휀 

is dependent on the direction of the outer normal vector at the interface, which is denoted 

as - ∇p. Here, 휀is a function of vector 𝒗such that 휀(𝜆𝒗) = 휀(𝒗).  

 

From Eqs. 1.25-1.27, and considering the dependency of 휀 on −𝜵𝑝, the following 

equation is obtained: 

 
𝜏
𝜕𝑝

𝜕𝑡
= −𝛁 ∙ (|𝛁p|2ε

∂ε

∂𝐯
) + 𝛁 ∙ (휀2𝛁p) + 𝑝(1 − 𝑝) (𝑝 −

1

2
+𝑚) (1.29) 

where τ is a small positive constant. The thermodynamical driving force is achieved by the 

term m that controls the double-well free energy potential F. Furthermore, when a 2D 
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space is considered, there parameter ε can be made a function of θ, an angle that is between 

the vector v and a specific direction. Equation 1.29 then becomes:  

𝜏
𝜕𝑝

𝜕𝑡
= −

𝜕

𝜕𝑥
(ε
∂ε

∂θ

∂p

∂y
) +

𝜕

𝜕𝑦
(휀
𝜕휀

𝜕𝜃

𝜕𝑝

𝜕𝑥
) + 𝛁 ∙ (휀2𝛁p) + 𝑝(1 − 𝑝) (𝑝 −

1

2
+𝑚) 

(1.30) 

Furthermore, the parameter m can be assumed to be a function of temperature to increase 

the driving force of interfacial motion with supercooling. The following form of m is 

assumed: 

 𝑚(𝑇) = (
𝛼

𝜋
) 𝑎𝑡𝑎𝑛[𝛾(𝑇𝑒 − 𝑇)] 

(1.31) 

where 0<α<1 to ensure  |𝑚| <
1

2
  for all temperature values. 

The anisotropy is incorporated by assuming  휀 = 휀�̅�(𝜃) where 휀 ̅ is the mean interface 

thickness and 𝜎(𝜃) represents anisotropy such that 

 𝜎(𝜃) = 1 + 𝛿𝑐𝑜𝑠[𝑗(𝜃 − 𝜃0)] (1.32) 

where 𝛿 is the strength of the anisotropy and 𝑗 is the mode of the anisotropy. 

 

The 2D phase field method is used in conjunction with a 3D Finite Element Method based 

heat equation solver in Chapter 7 to model the microstructure of the IN625 nickel alloy 

during the Selective Laser Melting process. 
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1.4 Computational Modeling 

 

While analytical solutions exist for Ordinary Differential Equations (ODE) and Partial 

Differential Equations (PDE) for simple geometries, it is extremely hard to apply them over 

complicated problem geometries. However, computational methods such as Finite Volume 

Method (FVM) and Finite Element Method (FEM) can be utilized to solve these 

complicated problems with good accuracy when sufficient computational power is 

employed.  

 

Finite Volume Method is commonly used in the field of fluid mechanics, for solving the 

Navier-Stokes equations in Eulerian reference frame. The Finite Element Method on the 

other hand is widely used for solid mechanics, heat transfer in Lagrangian or Arbitrary 

Lagrangian-Eulerian (ALE) reference frames, however applications of FEM on fluid 

mechanics and electromagnetic fields are also very common. 

 

Apart from Finite Element Method, machine learning methods can also be a useful tool in 

modeling microstructure. Particularly, regression models can find relationships between 

process parameters and outcomes, using available data. Optimization is another tool in 

computational modeling that can be applied to both FEM and machine learning. For 

instance, experimental data can be used to optimize the microstructure model parameters 

for a better representation. 
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1.4.1 Finite Element Method 

Many applications of FEM exist, such as solid mechanics, fluid mechanics (Navier-Stokes 

equations), heat transfer and electromagnetic fields (Maxwell’s equations). The main 

advantage of FEM over other methods is that it is highly modular and customizable thanks 

to different types of elements being used. In addition, it allows complex geometries without 

having to change the formulation. The accuracy of the solution is affected by how well the 

discretization is done, however, achieving a high accuracy through mesh convergence 

studies is a common challenge to the current practice. The number of elements used in an 

FEM simulation model affects the computational cost but it does not change the problem 

formulation. This allows easy scalability, and robustness. 

 

At the heart of the FEM lies the discretization of the problem geometry into small elements, 

via the Mean Weighted Residuals (MWR) method. MWR method is an approximation 

method for solving differential equations over various domains, and it employs test 

functions to approximate the field. Galerkin method limits these test functions to be the 

same as the shape functions of elements in the Finite Element formulation, therefore FEM 

is often considered to be a special case of the Galerkin method. The elements have 

properties of their own, and represent the differential equation that is being solved in the 

local domain. For instance, a heat transfer element may have a conductance and a capacity 

matrix to represent the convection-diffusion equation, whereas a solid mechanics element 

may have a stiffness matrix that represents the constitutive equation, a mass matrix, and a 

dampening matrix for dynamic problems. Each element has a certain number of degrees of 

freedom, which represent the solution of the problem, such as temperature or displacement. 
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All of these elements come together to form the geometry, and by assembling the matrices 

of the elements into global matrices, the problem can be solved over the original domain.  

Matrix and vector calculus is used extensively in FEM in order to improve the performance, 

and through clever use of parallelization and high performance clusters, highly complex 

problems can be solved over large, intricate geometries in a reasonable amount of time.  

 

Many commercially available software exist for solving different types of problems. For 

large plastic deformation processes such as forging and machining processes, Deform-3D 

software developed by Scientific Forming Technologies Corporation (SFTC) is a highly 

customizable and comprehensive software package, and is utilized in this study 

extensively. 

 

1.4.2 Machine Learning 

Machine Learning is an emerging field in statistics and computer science that utilizes 

complex relationships in large sets of data that would otherwise be impossible to recognize 

intuitively. Machine learning algorithms inspect, extract and use the relationships and 

patterns that exist within the given dataset, which is very convenient for the user. Given a 

set of data that includes inputs 𝑥𝑖,𝑗 and outputs 𝑦𝑗, a function f can be inferred that defines 

the relationship between them such that 𝑓(𝑥𝑖,𝑗) = 𝑦𝑗 . Here, i represents different features 

and j represents different observations or samples. Since 𝑦𝑗’s are known from the dataset, 

i.e. the data is “labeled”,  an error can be calculated to evaluate the performance of the 

model for each observation. This act of inference from labeled data is called supervised 

learning. Regression falls under the supervised learning category, where after a model is 
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trained the function f is used to estimate the value of the output 𝑦𝑘,𝑘≠𝑗 for new observations 

𝑥𝑖,𝑘,𝑘≠𝑗. Regression is often used for making predictions, such as forecasting. Another 

supervised learning method is classification. In classification, each observation x belongs 

to a class y, and the goal is to determine the classes of incoming observations based on the 

previous data. Unsupervised learning, such as clustering, deals with data that have no prior 

labeling, in other words, where 𝑦𝑗’s do not exist.  

 

In unsupervised learning, the user must make certain assumptions to proceed. For instance, 

in clustering, the data set 𝑥𝑖,𝑗 is separated into clusters, i.e. groups that contain the 

observations that are similar to each other. The user often needs to decide the number of 

clusters that the data will be divided into. Moreover, the data can be clustered using 

different measures and approaches. Since an error cannot be calculated, there is often no 

best solution and it becomes the user’s responsibility to “supervise” the method. 

 

Various machine learning algorithms exist, and their performance depends on the 

application, available data and calibration. Among them, Neural Networks (NN), Support 

Vector Machines (SVM) and Random Forests (RF) are some of the most popular ones for 

classification and regression. Random Forests (RF) method proposed by Breiman 

(Breiman, 2001) is used in this research.  

 

RF is an adaptive nearest neighbor algorithm that can be used for classification and 

regression and it can easily capture nonlinear relationships between an input data set and a 

target data set. Essentially, it works by dividing the data into regions based on features. As 
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the name suggests, Random Forests algorithm employs multiple decision (regression) trees 

to find the relationship between the input and target data. Decision trees work by 

recursively partitioning the data. Starting from the root node that contains the whole 

dataset, a tree is grown by generating two branches. For regression, the partitioning is done 

to minimize the residual sum of squared errors (RSS) over all splitting variables α (input 

parameters and predictor types) and split points β as shown in Eq. (1.33): 

 

𝑅𝑆𝑆 = [∑(𝑦𝑖 − �̅�𝐿)
2 +

𝑁𝐿

𝑖=1

∑(𝑦𝑖 − �̅�𝑅)
2

𝑁𝑅

𝑖=1

] (1.33) 

where L and R denote the first (left) and second (right) regions, NL and NR are the number 

of points in L and R, yi are the response variables, and �̅�𝐿 and �̅�𝑅 are the mean values at the 

left and right nodes, respectively. For classification, the Gini criterion, which is a measure 

of the frequency of incorrectly labeled points is minimized: 

 

𝐺𝑖𝑛𝑖 = 𝑁𝐿∑𝑝𝑖𝐿(1 − 𝑝𝑖𝐿)

𝑁𝐿

𝑖=1

+ 𝑁𝑅∑𝑝𝑖𝑅(1 − 𝑝𝑖𝑅)

𝑁𝑅

𝑖=1

 (1.34) 

where 𝑝𝑖𝐿 and 𝑝𝑖𝑅 are the proportion of class i in the left and right nodes, respectively.  

 

The splitting process continues at each new node until certain criteria are met; such as 

meeting a minimum error improvement δ for a split, or setting a minimum number of data 

points in each branch. When a node cannot be split anymore, it is called a leaf node or a 

terminal node. Usually, trees are grown until a minimum number of leaves exists. However, 

overfitting becomes an issue when the trees are grown excessively, yielding a smaller bias. 

When overfitting occurs, small changes in the training data yield a high variance in the 

result due to the number of degrees of freedom created in the tree. This can be prevented 
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by pruning the trees, which in turn reduces the model’s ability to capture complicated 

relationships in the data. However, pruning is generally not used in Random Forests.  

 

Regression trees require a careful selection of data and model. Bootstrap aggregating, or 

bagging, is a data selection method effective for preventing overfitting and reducing 

variance, and is a critical component of the Random Forests algorithm. It is performed by 

randomly sampling and using a different subset of data each for each tree. The number of 

trees, ntree, is a parameter in the RF algorithm that can affect the computational 

performance, however, in terms of robustness, similar results can be obtained over a wide 

range of ntree. Yet another parameter in the RF algorithm is mtry, which limits the number 

of features (m) being used at each branching operation and is typically chosen to be 

between the square root of number of features (√𝑚) and number of features divided by 3 

(𝑚/3).  

 

1.4.3 Optimization 

Optimization is an important step in design, realization and service phases of a products 

lifecycle. Various types of optimization exist in different fields, such as in Operations 

Research, combinatorial optimization techniques are widely used for transportation 

problems, whereas shape and topology optimization is used in the design of components 

and systems, such as wings and engines in the aerospace industry.  

 

Industrial applications often require multiple yet often conflicting objectives to be 

optimized. The process of minimizing or maximizing multiple objective functions 
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simultaneously is called multi-objective optimization. In most cases of multi-objective 

optimization, the objectives are in conflict, meaning that the best solution for one may not 

be the best solution for the other. In this case, a set of candidate designs appears that cannot 

be improved in the direction of all objectives simultaneously. This set of best candidate 

designs is called the Pareto set, and the user often faces the question of choosing the best 

candidate among the Pareto set by considering trade-offs.  

 

Furthermore, the optimization problem can be multi-modal, meaning that multiple good 

solutions exist, locally or globally. Classical optimization methods, especially a-priori 

gradient based methods or a-posteriori methods such as bisection or Simplex method 

perform poorly in multi-modal problems, since they tend to get stuck at one solution only 

(often at a local minimum or maximum), based on the starting point.  Meta-heuristic 

methods such as evolutionary computational programming such as Genetic Algorithms 

(Mitchell, 1996; Deb, 2001) or Particle Swarm Optimization (Eberhart and Kennedy, 1995) 

are good at capturing most of the multiple solutions in a multi-modal problem, and 

therefore are more resistant to local optima. Moreover, when an analytical or explicit 

representation of the problem does not exist, it becomes a challenging task to use classical 

methods. Furthermore, evolutionary computational methods also perform very well when 

the solution space is large.  

 

Genetic Algorithm (GA) is an evolutionary programming method that mimics the evolution 

and natural selection process seen in the nature. Starting with an initial population, the 

individuals of this population mate and evolve towards the optimum solution. Each 
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individual in the population has a chromosome that represents the current values of the 

decision variables for that individual. The next generation of individuals containing the 

offspring is evolved from the current generation, the parents. The algorithm relies on three 

main operations: Selection, Crossover and Mutation. A child (offspring) must be the 

product of either crossover, or mutation.  

 

At this point, it is important to note that it is often necessary to impose certain constraints 

on the problem to limit the solution space, to eliminate unrealistic designs. These 

constraints are either equality or inequality constraints, and are applied to the decision 

variables. Solutions that do not satisfy the constraint are called infeasible. In both crossover 

and mutation operations, the feasibility of the offspring must be satisfied.  

 

During the selection phase, the fitness value of each individual in the current generation is 

evaluated, using the objective function. The fitness value of an individual represents how 

close to the solution that individual is. A set of individuals is selected to become parents of 

the next generation, based on their fitness values. There are various methods for the 

selection process, such as fitness proportionate selection, truncation selection and 

tournament selection. In fitness proportionate selection, individuals are selected randomly 

with replication from the current population with probabilities proportional to the 

normalized fitness values, as shown in Figure 1.10. Truncation selection selects the best 

individuals that form an arbitrary upper percentage, and tournament selection selects the 

individuals with the best fitness values from randomly selected subgroups of individuals.  
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Figure 1.10 Selection operation. 

 

The next step after selection operation is the crossover operation. In this phase, the 

chromosomes of two parents that are randomly selected from the result set of the selection 

operation are combined to create two offspring for the next generation. The operation can 

be performed in various ways, the simplest one being one point crossover where a 

crossover point is selected after which the chromosomes of two parents are swapped with 

each other, producing two offspring as shown in Figure 1.11. Alternatively, one parent’s 

genes at certain locations can be selected randomly to be exchanged with another parent. 

Other methods for crossover exist, such as multi-point crossover and uniform crossover.  

 

Figure 1.11 One point crossover operation.  
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The third basic operation in GA is mutation. Mutation is a process where one or more genes 

(decision variables) in the chromosome are changed to a different value as shown in Figure 

1.12. The final value must be within the feasible region of the decision variable, and a 

distribution such as uniform or Gaussian can be used to assign the value. In some cases, 

the value is set to the lower or upper boundary of the variable. Mutation allows the 

population to maintain a genetic diversity, and is crucial for preventing the population from 

getting stuck in local optima. 

 

Figure 1.12 Mutation operation. 

Elitism is another selection method that supplements other operations and allows certain 

individuals from one generation to survive to the next generation without being altered, as 

shown in Figure 1.13. It can also be considered as a special case of mutation, with no 

mutation being applied. 

 

Figure 1.13 Elitism. 

 

The algorithm stops when the change in the best solution between the last two generations 

becomes smaller than a tolerance value, or when a certain number of generations is reached, 

whichever happens first. The performance and accuracy of the algorithm depends on the 

population size, and generation limit. 
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Genetic algorithms and evolutionary computation have been used in optimization problems 

in materials and manufacturing processes successfully ranging from carbon nanotubes to 

the process optimization (Ulutan and Özel, 2013c; Chakraborti et al., 2007; Chakraborti, 

2013). Recently, a review was provided on the soft computing techniques used in designing 

metal alloys based on composition-process-microstructure-property relations (Datta and 

Chattopadhyay, 2013) and a critical assessment of this field was given in (Chakraborti, 

2014). 
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1.5 Motivation 

 

It is widely discussed in the literature and industry that different manufacturing processes 

and process settings result in different surface quality and microstructures affecting the 

fatigue life of the end product. The motivation of this dissertation is to improve the surface 

integrity of the manufactured parts by identifying the phenomena that result in 

microstructural alterations and utilizing physics-based process simulations and various 

computational methods for process optimization purposes. Through this methodology, 

certain predictions can be made and process parameters can be optimized, ultimately 

leading to better performance of products in their service life.  
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1.6 Objectives 

 

The objectives of this study can be summarized as; a) obtaining physics based theoretical 

models for process simulations and generating experimental data that validates these 

process simulation models and using them to make viable predictions, b) developing 

comprehensive computational 3D machining models for studying microstructural changes 

and c) designing and conducting controlled experiments to quantify microstructural 

changes occurring during conventional machining processes such as face turning and 

advanced manufacturing processes such as Selective Laser Melting in processing Titanium 

and Nickel based alloyed end products. 
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1.7 Organization of the Thesis 

 

Firstly, experimental work is presented in Chapter 2 including machining experiments and 

measurement of microhardness, grain sizes and phase fractions on the machined 

subsurfaces. In Chapter 3, physics based computational models using Finite Element 

Method are developed with microstructure calculations, and process simulations and 

relevant results are shown. In Chapter 4, machine learning methods are used in making 

predictions of hardness, and grain sizes. In Chapter 5, multi-objective machining parameter 

optimization is performed to minimize the grain size changes, minimize machining 

temperature and maximize productivity using experimental measurements and Finite 

Element simulations. Furthermore, JMAK model parameters for the IN100 alloy are 

identified using optimization. In Chapter 6, experimental work for Selective Laser Melting 

of IN625 is presented, where grain sizes, growth directions and spattering are measured 

using image processing. In Chapter 7, the SLM process is investigated computationally via 

3-D Finite Element simulations, and a basic phase field model is implemented to compare 

the relative effects of processing parameters on solidification.  
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 CHAPTER 2: EXPERIMENTAL WORK ON MACHINING OF Ti-6Al-4V 

AND IN100 ALLOYS 

 

2.1 Introduction 

 

In order to understand the effects of machining on surface integrity of Ti-6Al-4V and 

IN100 alloys, a series of experiments were conducted. For this purpose, the experimental 

work includes designing experimental conditions, running the controlled experiments, 

inspection surfaces generated, hardness testing, polishing and etching surfaces for 

obtaining Scanning Electron Microscopy imaging and image analysis. 

 

Face turning and cut-off machining operations were utilized to create disk shaped 

specimens from the bulk material. Each specimen consists of tracks that are machined with 

different cutting tool, cutting speed, or feed, in order to represent a wider range of 

machining processing conditions and explore the effects of machining on process induced 

surface integrity and microstructure. Thermomechanical processing often causes visible 

alterations in the microstructure of polycrystalline materials. These microstructural 

alterations may reflect themselves in certain material properties such as surface hardness. 

Hardness is an important property in machining of metal alloys, as it plays a direct role in 

the quality and performance of the part, as well as the performance and lifetime of the tool 

that is being used. For this reason, hardness measurements were taken from the processed 

surfaces of the specimens. After hardness measurements were taken, surfaces were etched 

and inspected with Scanning Electron Microscopy (SEM). SEM is a useful tool for 

obtaining high resolution images of a surface in a very small scale, in the order of 
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nanometers to microns which reveals the microstructure of the material. Grain and 

precipitate formations were analyzed via a proprietary image processing algorithm written 

in MATLAB. The results of these analyses are shown in this chapter, along with further 

details and analysis on the experiments. 
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2.2 Machining (Material Removal) Experiments 

 

Machining experiments in face turning configuration were made  to investigate the effects 

of different machining and tool parameters on the microstructure of Ti-6Al-4V and IN100 

alloys using the cylindrical workpieces and TPG432 type insert geometry (insert nose 

radius of rε= 0.8 mm and relief angle of α=11°).  

 

In the face turning of Ti-6Al-4V cylindrical workpiece, a constant depth of cut (ap=2 mm), 

two cutting speed levels (vc=55 and 90 m/min) and two feed levels (f=0.05 and 0.1 mm) 

were used under dry cutting conditions. In these experiments, uncoated cutting inserts 

made of tungsten carbide in cobalt binder (WC/Co) with up-sharp (edge radius of 

rβ=5±0.5µm as measured) and TiAlN coated (rβ=10±0.7µm as measured) inserts and edge 

prepared inserts with abrasive brushing for rβ=25±1.0m (WC25) and rβ=10±0.7µm 

(WC10) were used.  These inserts were installed onto a tool holder (CTFPR-164C type). 

As a result, the inserts were oriented to have lead and side rake angles of 0° and a back 

rake angle of -5° during face turning. On each face of the disks, three tracks have been 

machined using high speed cutting condition first and low speed cutting conditions the last 

along the feed direction. After each set of face turning, a section (approximately 3 mm 

thickness) of the cylindrical workpiece was cut off gently, for use in hardness testing.  

Effects of face turning with different machining and tool parameters on the microstructure 

of Inconel IN100 were also investigated using a cylindrical workpiece. Figure 2.1 shows 

the experimental setup, and parameter definitions where ap is the depth of cut, Fc, Ff, and 

Fp are the cutting, feed, and thrust forces, and rβ is the cutting edge radius of the tool. IN100 
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alloy disks used in the experiments are manufactured via powder metallurgy route with a 

chemical composition of 18.3% Co, 12.3% Cr, 4.9% Al, 4.3% Ti, 3.3% Mo, 0.7% V, 0.1% 

Fe, 0.06% C, 0.02% B, 0.02% Zr and Ni balance.  After face turning, approximately 3-5 

mm thick disks from the machined section were cut off at least 5 mm away from the surface 

of the disk and the new surface was cleaned with very gentle machining. A constant depth 

of cut (ap=1 mm), two cutting speed levels (vc=12 and 24 m/min) and a constant feed 

(f=0.05 mm/rev) were used under dry cutting conditions. In these experiments, uncoated 

cutting inserts made of tungsten carbide in cobalt binder (WC/Co) with up-sharp (edge 

radius of rβ=5±0.5µm as measured) and edge prepared with abrasive brushing for 

rβ=25±1.0m µm (WC25) and rβ=10±0.7µm (WC10), and TiAlN coated inserts 

(rβ=10±0.7µm as measured) have been used.  

 

After each machining test and the cutoff operation, the remaining cylindrical workpiece 

was heat treated in a furnace for annealing and stress relieving. Both Ti-6Al-4V alloy and 

IN100 alloy cylindrical billets have undergone this operation. 

 

Figure 2.1 Experimental configuration used in face turning of Ti-6Al-4V disks.  
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2.3 Microhardness Measurements 

 

2.3.1 Microhardness measurements for Ti-6Al-4V alloy 

Prior to each machining test, hardness measurements were taken from the untouched back 

surface of the cylindrical billet after each annealing process using a Rockwell type tester 

in the HR15N scale (15N or 1.53 kg) and then converted to Vickers Hardness (HV). The 

mean and standard deviation of hardness of annealed Ti-6Al-4V specimens are reported as 

335.7 HV and 13.5 HV respectively.  In order to quantify the effects of different cutting 

conditions and tools on the microstructure, microhardness measurements were taken at 

different locations by collecting 30 or more data points on the machined tracks of the disks. 

Their mean and standard deviations are calculated.  The varying machining conditions (vc 

& f) and tool parameters (rβ & coating) along with the hardness measurements taken on Ti-

6Al-4V disk tracks are summarized in Table 2.1. A large experimental scatter is observed. 

 

The effects of machining conditions and tool parameters on hardness of Ti-6Al-4V 

titanium alloy disk samples are shown in Figure 2.2 and Figure 2.3, for vc=55 m/min and 

vc=90 m/min, respectively. These figures are commonly known as box-and-whisker plots 

have whiskers (lines extending vertically from the boxes) indicating variability outside the 

upper and lower quartiles. It should be noted that outliers are plotted as individual points.   
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Table 2.1 Microhardness measurements on the machined surfaces for Ti-6Al-4V. 

Disk 

Sample 

ap 

[mm] 
Tool type 

rβ 

[μm] 

vc 

[m/min] 

f 

[mm/rev] 

Mean 

HV 

SD 

HV 

Ti-6Al-4V 2 

WC/Co 

(TiAlN) 
10 

55 
0.05 324.26 9.30 

0.1 324.84 13.01 

90 
0.05 313.72 10.09 

0.1 319.20 9.11 

WC/Co 25 

55 
0.05 327.72 14.90 

0.1 326.51 6.95 

90 
0.05 325.03 5.67 

0.1 319.04 9.45 

WC/Co 10 

55 
0.05 303.76 20.57 

0.1 314.17 12.66 

90 
0.05 314.62 8.91 

0.1 311.72 18.09 

WC/Co 5 

55 
0.05 315.96 14.34 

0.1 324.65 9.46 

90 
0.05 321.45 8.39 

0.1 331.78 11.61 

 

 

In general, it was observed that higher feed rates yield harder surfaces, while faster cutting 

speeds tend to yield softer surfaces. The dashed line (green) indicates mean annealed 

hardness of Ti-6Al-4V.  Machined surfaces are found to be softer than the annealed surface 

at room temperature, indicating microstructural changes. As the cutting speed and feed rate 

are altered, effects of dynamic recrystallization and grain growth can cause such changes 

in surface hardness. It was observed that machining of Ti-6Al-4V titanium alloy using 

uncoated WC/Co tool with rβ=5 µm (sharp edge) provided the hardest surface in almost all 

cutting conditions.  
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(a) 

 

(b) 

 

 

(c) 

Figure 2.2 Effects of cutting tool edge radius and coating on measured microhardness 

of the machined surfaces (vc=55 m/min). Comparison boxplots indicate the upper and 

lower quartiles and variability of the measured hardness. 

 

 

(a) 

 

(b) 

Figure 2.3 Effects of cutting tool edge radius and coating on measured microhardness 

of the machined surfaces (vc=90 m/min).Comparison boxplots indicate the upper and 

lower quartiles and variability of the measured hardness. 
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2.3.2  Microhardness measurements for IN100 alloy 

In order to quantify the effects of different cutting conditions and tools, hardness 

measurements were taken on the machined tracks of the disks using a Rockwell-type tester. 

The measurements were then converted to Vickers Hardness (HV). Different machining 

conditions (vc only) and tool parameters (rβ and coating) along with the hardness 

measurements taken on IN100 nickel-base alloy disk tracks are summarized in Table 2.2. 

The effects of tool edge radius on hardness indicate that largest edge radius tool generated 

higher mean surface hardness. However, a clear distinction cannot be made due to the 

relatively close measurement uncertainties. 

 

Table 2.2 Hardness measurement results for IN100 nickel alloy. 

Tool type 
rβ vc Mean SD 

[µm] [m/min] HV HV 

WC/Co 

5 
12 380.53 5.75 

24 381.3 22.33 

10 
12 386.39 7.07 

24 375.77 13.26 

25 
12 389.57 6.02 

24 394.49 5.83 

WC/Co (TiAlN) 10 
12 382.73 9.18 

24 382.51 6.55 

 

Figure 2.4 shows the effects of cutting speed and tool geometry on the measured hardness. 

The results indicate that in general, increasing cutting speed decreased the hardness but 

increased hardness variations along the tracks. Dynamic recrystallization caused by 

different strain rates may be responsible for the increased or decreased hardness. A clear 

difference between the tools and the effect of cutting speed is also not very clear across the 
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tools due to experimental spread. It is seen that the largest edge radius tool generated a high 

surface hardness in IN100 samples, which supports the results shown in Ranganath et al. 

(Ranganath et al., 2009). 

 

  

Figure 2.4 Effects of cutting speed (a) and tool type (b) on the microhardness of the 

machined surface.  

 

Furthermore, a detailed microhardness study on the machined IN100 disks has been 

conducted by Atilim University as seen in Arisoy et al. (Arısoy et al., 2015). In order to 

take hardness measurements at various depths, surface layers were removed with Struers 

LectroPol-5 electro-polishing machine. Struers A2 electrolyte with 20V voltage was used 

and the process took between 20s and 330s for different specimens and depths. The depth 

was confirmed with readings from a dial gauge. Microhardness measurements were taken 

on the machined surfaces in Vickers Hardness (HV) 19.61N scale into the depth with 

Zwick / Roell ZHV 10 microhardness tester with a testing speed of 25 mm/min. At each 
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depth level, five microhardness measurements were made for replication. Results of this 

study are shown in Table 2.3 and Figure 2.5. Overall, a depth of severe plastic deformation 

(SPD) about 10-25 µm has been observed from microhardness profiles which is clearly 

seen in Figure 2.5a. Measurements show an increase in the hardness values immediately 

below the surface followed by softening towards the core of the sample. Increasing the tool 

edge radius tends to yield hardening at both cutting speeds. Increasing cutting speed 

decreases the hardness but increases hardness variations indicating possible 

microstructural changes due to dynamic recrystallization. Among the cutting conditions 

used for IN100 alloy, it is observed that uncoated WC/Co tool with rβ=25 µm produced 

abusively severe deformation field and hardest subsurface which should be avoided in 

industrial applications. Furthermore, TiAlN coated tool provides the lowest hardness 

profile into the depth of the alloy material. 

 

Table 2.3 Vickers hardness profiles (mean and standard deviation) of machined IN100 

for different cutting speeds and tool geometries. 

vc 

[m/min] 
Tool Type 

Measurement Depth [m] 

0 10 25 50 80 120 

12 

WC/Co rβ=5 µm 439.0±1.6 445.3±4.8 424.0±18.7 397.0±7.1 396.7±3.9 390.7±4.8 

WC/Co rβ=10 µm 436.0±21.6 453.0±12.1 431.3±11.2 413.3±8.7 404.7±12.4 398.0±1.6 

WC/Co rβ=25 µm 452.0±4.3 448.0±1.6 437.0±4.9 427.0±8.6 423.7±2.5 401.3±6.0 

TiAlN rβ=10 µm 430.3±12.7 434.0±9.4 434.0±11.6 409.7±2.5 393.0±4.2 402.0±4.3 

24 

WC/Co rβ=5 µm 451.0±12.4 444.2±8.9 426.2±5.5 402.3±4.6 396.5±9.2 399.0±4.2 

WC/Co rβ=10 µm 452.5±10.6 439.8±11.0 424.2±6.2 404.6±6.4 396.8±5.9 392.1±5.8 

WC/Co rβ=25 µm 460.7±17.2 439.3±5.9 441.5±10.2 416.1±8.1 398.4±6.2 395.8±4.2 

TiAlN rβ=10 µm 440.9±4.3 419.7±7.1 413.7±12.7 400.5±4.3 384.0±3.7 389.4±6.9 
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Figure 2.5 Microhardness profiles of machined IN100 subsurface into depth for different 

cutting speeds and tool geometries. (a) vc = 12 m/min, (b) vc = 24 m/min. 
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2.4 Grain Size Measurements 

 

2.4.1 Specimen preparation 

After the machining operations and hardness tests, Ti-6Al-4V and IN100 disks were 

prepared in order to perform grain size measurements. First, a sector was cut out from each 

disk using a band saw at low speed and low feet with plenty of lubricant to prevent 

overheating that might result in a change in microstructure. A total of eight specimens were 

obtained, four from Ti-6Al-4V and four from IN100 disks. In the second step, the edges 

were deburred using mild grinding and a file. In the third step, the specimens were sanded 

with SiC sand paper by hand, rotating the specimen 45 and 90 degrees while sanding. 

Multiple stages of sanding was performed on the machined surfaces, with increasing grit 

up to 1200. In the fourth step, the specimens were polished in multiple stages using 

diamond compounds with 3 μm and 1 μm particle size using a napless cloth. The specimens 

were then cleaned using compressed air blasts and with soap and water in an ultrasound 

bed at low heat between each of the steps. Figure 2.6 shows the IN100 specimens after they 

were cut out from the disks. 

 

 

Figure 2.6 IN100 specimens before preparation for grain size measurements.   
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After the polishing operation, the Ti-6Al-4V specimens were prepared for microstructure 

analysis. In order to reveal the grains, the specimens were etched using Kroll’s reagent, 

prepared by mixing 2 ml HF, 6 ml HNO3 and 92 ml distilled water. The mixture was poured 

on the specimens in droplets, which were allowed to stay for several seconds, after which 

the specimens were washed with distilled water to stop the reaction. 

Similarly, IN100 specimens were etched using 3 ml HF, 5ml HNO3 and 100 ml H2O. The 

IN100 specimens were found to be very resistant hence the etching process was allowed to 

continue for a longer period of time. 

 

2.4.2 Grain size measurements for Ti-6Al-4V alloy 

Grain diameters were determined from the SEM images via a proprietary image processing 

code written in MATLAB. Figure 2.7  shows a representative SEM image that was 

processed for the Ti-6Al-4V machining case of TiAlN coated tool, vc=90 m/min,  

f=0.05mm/rev. Grains were marked individually (see Figure 2.7a) and image processing 

code was utilized in calculating their volumes and finding corresponding grain diameters 

as shown in Figure 2.7b. The histogram in Figure 2.7c depicts the frequency of grain sizes 

within the SEM image evaluated. 
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(a) 

 

(b) 

 

(c) 

Figure 2.7 (a) Microstructure of machined subsurface, (b) image processing for grain 

size calculations, and (c) histogram (TiAlN coated WC/Co tool, vc=90 m/min, f=0.05 

mm/rev). 

 

Several specimens that were obtained from Ti-6Al-4V cylindrical workpiece have been 

used in analyzing the as-received microstructure. Figure 2.8 shows of these SEM images 

and grain size distribution. The average grain diameter was found between 15.84 µm and 

13.65 µm at the different locations of the cylindrical billet. These observed average grain 

size values are below the 20 µm that has been commonly reported in the literature, such as 

in the paper by Nalla et al. (Nalla et al., 2003). This could be related to the fact that the 

microstructure of these surfaces of the cylindrical billet had been affected by preceding 

processing. Results of the measurements for all cutting conditions are summarized in Table 

2.4. 

davg= 14.5 µm 

SD= 4.77 µm 
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(a) (b) 

Figure 2.8 SEM image (a) and grain size distribution (b) taken from unmachined 

surfaces. 

 

Figure 2.9 shows the processed SEM images and grain size distributions the Ti-6Al-4V 

machining case of TiAlN coated tool, with cutting speeds vc=55 m/min and 90 m/min, and 

feed rates  f=0.05mm/rev and  f=0.10mm/rev. Measurements show no significant effect of 

cutting speed at low feeds (f=0.05mm/rev), but an increase of 2.18 µm in average diameter 

is observed when the speed is increased at the high feed cutting condition (f=0.10mm/rev) 

which can be related to a recovery process. Figures 2.10-2.12 give the results of the same 

analysis for WC/Co tool (rβ=25 µm), WC/Co tool (rβ=25 µm), and WC/Co tool (rβ=5 µm) 

respectively. A large variation in grain sizes is observed in some cases. Small grains (less 

than ~8 µm) observed in these figures indicate recrystallization, as they did not appear in 

Figure 2.8. Similarly, grains with diameters greater than ~25 µm can be considered as a 

product of grain growth. Furthermore, grains as large as 34.3 µm are observed in the 

machined tracks, supporting the evidence of grain growth. If an as-received grain size of 

davg= 14.9µm 

SD= 3.57 µm 
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about ~15 µm is assumed as suggested by Figure 2.7, then by looking at the histograms in 

Figures 2.9-12, one may infer the evolution of microstructure. For instance, Figures 2.10d 

and 2.11a suggest a heavily affected microstructure with many grains undergoing 

recrystallization, yielding a reduction in average grain size. On the other hand, Figure 2.9d 

suggests that several grains have experienced growth, reaching very large diameters. Figure 

2.13 shows the comparison of grain sizes calculated from SEM images for different cutting 

speed and feed rates. 

 

Table 2.4 Measured grain sizes and calculated volume fractions on the specimens after 

machining of Ti-6Al-4V. 

Disk 

Sample 

Depth 

of Cut 

ap 

[mm] 

Tool Type Edge 

Radius 

rβ 

[μm] 

Cutting 

Speed 

vc 

[m/min] 

Feed 

f 

[mm/rev] 

Avg. 

Grain 

Size 

davg 

(µm) 

SD 

Grain 

Size 

davg 

(µm) 

Volume 

Fraction  

of  

Matrix 

Grains 

Ti-6Al-4V 2 

WC/Co 

(TiAlN) 
10 

55 
0.05 14.66 3.43 0.17 

0.1 13.09 2.59 0.18 

90 
0.05 14.40 3.18 0.19 

0.1 14.95 3.63 0.17 

WC/Co 25 

55 
0.05 13.03 3.04 0.22 

0.1 14.39 2.73 0.27 

90 
0.05 16.17 3.45 0.19 

0.1 13.57 2.85 0.28 

WC/Co 10 

55 
0.05 13.20 2.69 0.27 

0.1 12.82 2.69 0.24 

90 
0.05 14.39 2.79 0.29 

0.1 13.66 2.62 0.23 

WC/Co 5 

55 
0.05 10.70 2.41 0.34 

0.1 13.63 3.07 0.23 

90 
0.05 16.29 2.95 0.25 

0.1 14.57 3.23 0.27 
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Figure 2.9 (a) TiAlN coated WC/Co tool (rβ=10 µm), vc=55 m/min, f=0.05mm/rev 
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Figure 2.9 (b) TiAlN coated WC/Co tool (rβ=10 µm), vc=55 m/min, f=0.10mm/rev 
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Figure 2.9 (c) TiAlN coated WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.05mm/rev 
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Figure 2.9 (d) TiAlN coated WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.10mm/rev 

 

Figure 2.9 SEM images and grain size distributions of the disk tracks machined with the 

TiAlN coated WC/Co tool, with different cutting speed and feed rates. 
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Figure 2.10 (a) WC/Co tool (rβ=25 µm), vc=55 m/min, f=0.05mm/rev 
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Figure 2.10 (b) WC/Co tool (rβ=25 µm),, vc=55 m/min, f=0.10mm/rev 
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Figure 2.10 (c) WC/Co tool (rβ=25 µm), vc=90 m/min, f=0.05mm/rev 
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Figure 2.10 (d) WC/Co tool (rβ=25 µm), vc=90 m/min, f=0.10mm/rev 

 

Figure 2.10 SEM images and grain size distributions of the disk tracks machined with the 

WC/Co tool (rβ=25 µm), with different cutting speed and feed rates.  
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Figure 2.11 (a) WC/Co tool (rβ=10 µm), vc=55 m/min, f=0.05mm/rev 
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Figure 2.11 (b) WC/Co tool (rβ=10 µm),, vc=55 m/min, f=0.10mm/rev 
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Figure 2.11 (c) WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.05mm/rev 
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Figure 2.11 (d) WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.10mm/rev 

 

Figure 2.11 SEM images and grain size distributions of the disk tracks machined with the 

WC/Co tool (rβ=10 µm), with different cutting speed and feed rates.  
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Figure 2.12 (a) WC/Co tool (rβ=5 µm), vc=55 m/min, f=0.05mm/rev 
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Figure 2.12 (b) WC/Co tool (rβ=5 µm), vc=55 m/min, f=0.10mm/rev 
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Figure 2.12 (c) WC/Co tool (rβ=5 µm), vc=90 m/min, f=0.05mm/rev 
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Figure 2.12 (d) WC/Co tool (rβ=5 µm), vc=90 m/min, f=0.10mm/rev 

 

Figure 2.12 SEM images and grain size distributions of the disk tracks machined with the 

sharp WC/Co tool (rβ=5 µm), with different cutting speed and feed rates. 
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Figure 2.13 Comparison of grain sizes calculated from SEM images for different cutting 

speed and feed rates.  
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2.4.3 Grain size measurements for IN100 alloy 

Similar measurements of primary and secondary γ' grain sizes have been taken for the 

IN100 alloy machined with different conditions. Results of measured grain sizes (d1, d2) 

and fractions (f1, f2) are summarized in Table 2.5.  

 

Table 2.5 Measured grain sizes and calculated volume fractions on the specimens after 

machining. 

Tool  

 

vc 

[m/min] 

Primary γ' Secondary γ' 

Mean 

d1 

[nm] 

SD  

d1  

[nm] 

Mean 

 f1 

Mean  

d2 

[nm] 

SD  

d2 

[nm] 

Mean 

f2 

WC/Co 

rβ=5µm 

12 828 239 0.114 135 45 0.280 

24 941 253 0.106 163 45 0.278 

TiAlN 

rβ=10µm 

12 880 263 0.145 154 48 0.241 

24 728 219 0.060 167 49 0.272 

WC/Co 

rβ=10µm 

12 918 257 0.111 140 40 0.265 

24 783 217 0.107 167 58 0.269 

WC/Co 

rβ=25µm 

12 965 270 0.092 141 39 0.281 

24 814 224 0.065 150 45 0.300 

 

Figures 2.14-2.21 show the processed SEM images together with identified zones of 

primary and secondary γ' grains. In addition, the distribution of primary and secondary γ' 

grain sizes are given with histograms in each figure. Figures 2.22-2.23 show the effects of 

process parameters on grain sizes and volume fractions. Higher cutting speeds tend to yield 

smaller primary γ' precipitates (d1), and larger secondary γ' precipitates (d2). Higher cutting 

speeds decrease the volume fraction of the primary γ' phase (f1), but decrease the volume 

fraction of the secondary γ' phase (f2).  Sharp and WC25 (WC/Co tool with rβ=25 µm) tools 

yield larger primary γ' precipitates (d1), followed by the WC10 (WC/Co tool with rβ=10 

µm) tool.  
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Using TiAlN coated tool results in the smallest average d1. An interesting result is that 

these trends are reversed for the secondary γ' precipitate sizes (d2) where the TiAlN coated 

tool generates the largest (d2). Moreover, TiAlN tool yields the lowest f2 whereas the WC25 

tool yields the lowest f1. 
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(a) 

  

(b) (c) 

 

Figure 2.14 Microstructure of machined IN100 subsurface (a) (Sharp WC/Co tool, 

vc=12 m/min, f=0.05 mm/rev), histograms of primary γ (b) and secondary γ' (c) grains. 

Grains are marked red. 
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(a) 

  

(b) (c) 

 

Figure 2.15 Microstructure of machined IN100 subsurface (a) (Sharp WC/Co tool, 

vc=24 m/min, f=0.05 mm/rev), histograms of primary γ (b) and secondary γ' (c) grains. 

Grains are marked red. 
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(a) 

  

(b) (c) 

 

Figure 2.16 Microstructure of machined IN100 subsurface (a) (TiAlN coated WC/Co 

tool, vc=12 m/min, f=0.05 mm/rev), histograms of primary γ (b) and secondary γ' (c) 

grains. Grains are marked red. 
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(a) 

  

(b) (c) 

 

Figure 2.17 Microstructure of machined IN100 subsurface (a) (TiAlN coated WC/Co 

tool, vc=24 m/min, f=0.05 mm/rev), histograms of primary γ (b) and secondary γ' (c) 

grains. Grains are marked red. 

  



84 

 

 

 

(a) 

  

(b) (c) 

 

Figure 2.18 Microstructure of machined IN100 subsurface (a) (WC/Co rβ=10 µm tool, 

vc=12 m/min, f=0.05 mm/rev), histograms of primary γ (b) and secondary γ' (c) grains. 

Grains are marked red. 
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(a) 

  

(b) (c) 

 

Figure 2.19 Microstructure of machined IN100 subsurface (a) (WC/Co rβ=10 µm tool, 

vc=24 m/min, f=0.05 mm/rev), histograms of primary γ (b) and secondary γ' (c) grains. 

Grains are marked red. 
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(a) 

  

(b) (c) 

Figure 2.20 Microstructure of machined IN100 subsurface (a) (WC/Co rβ=25 µm tool, 

vc=12 m/min, f=0.05 mm/rev), histograms of primary γ (b) and secondary γ' (c) grains. 

Grains are marked red. 
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(a) 

  

(b) (c) 

Figure 2.21 Microstructure of machined IN100 subsurface (a) (WC/Co rβ=25 µm tool, 

vc=24 m/min, f=0.05 mm/rev), histograms of primary γ (b) and secondary γ' (c) grains. 

Grains are marked red.  

  



88 

 

 

  

  

Figure 2.22 Effects of cutting speed vc (left) and tool type (right) on the primary (top) and 

secondary (bottom) γ' grains.  
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                     (a)              (b) 

 

Figure 2.23 Effects of (a) cutting speed vc and (b) tool type on the primary (f1)   and 

secondary (f2) γ' grain volume fractions. 
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 CHAPTER 3: COMPUTATIONAL MICROSTRUCTURE MODELING 

 

3.1 Introduction 

 

The Johnson-Mehl-Avrami-Kolmogorov (JMAK) model has been used to predict the 

microstructure in the 3-D FE simulations (Arisoy & Özel, 2014; Özel & Arisoy 2014). The 

JMAK model, also known as Avrami model, defines the transformation kinetics in a 

material. The JMAK model does not provide a detailed microstructure evolution in terms 

of grain geometries; however it has been proven to be a very useful tool for modelling 

nucleation and grain growth phenomena.  

 

There is an implementation of this model in the commercial Finite Element Analysis 

software DEFORM-3D that includes grain growth, static, dynamic, and metadynamic 

recrystallization. The implemented model uses temperature, strain, strain rate, activation 

energies and initial grain size information to model the microstructure evolution. 

Isothermal JMAK equations describe the volume fraction of the transformed material as a 

function of temperature and time. 
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3.2 Microstructure Modeling in Machining Processes with Finite Element 

Simulations 

 

Microstructure models described in Chapter 1 have been widely used in the literature, by 

utilizing experimental data. An internal-state-variable based self-consistent constitutive 

model in order to predict microstructural evolution and flow stresses of Ti-6Al-4V and 

IMI834 titanium alloys, and considered the KM model and the ZH parameter (Fan and 

Yang, 2011). Shafaat et al. (Shafaat et al., 2011) performed isothermal hot compression 

tests on Ti-6Al-4V material in α + β phase region and used JMAK equation to model flow 

curves. Seshacharyulu et al. (Seshacharyulu et al., 2000) investigated the recovery and 

recrystallization in Ti-6Al-4V in a hot deformation process using the ZH parameter. (Park 

et al., 2008) also performed isothermal hot compression tests (rolling) on Ti-6Al-4V alloy 

with martensitic structure, and investigated optimum conditions for achieving dynamic 

globularization and enhanced superplasticity. An agreement between the Zenner-

Hollomon parameter with α grain sizes under various temperatures was reported.  

 

The evolution of the microstructure in a process can be roughly estimated by the grain 

diameter and it is established that there is a relationship between strain, strain rate and 

temperature during a process and the grain diameter in the material so that Finite Element 

(FE) based simulations can be used to predict the grain size and microstructure.  

 

Ti-6Al-4V alloy microstructure after manufacturing processes has been investigated by 

various researchers, using Finite Element Method in conjunction with microstructure 
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models. (Buffa et al., 2013) used FE simulations to model α-β phase transformations and 

volume fractions using the Avrami model in friction stir welding of Ti-6Al-4V. Similarly, 

(Vo et al., 2008) modeled the static recrystallization behavior of the near- α Ti alloy IMI834 

during hot compression with FE simulations using Avrami-type equation. (Ding et al., 

2002) investigated microstructural evolution of Ti-6Al-4V alloy during thermomechanical 

processing using ZH parameter and calculated recrystallized grain size in hot deformation 

process. (Rotella et al., 2014) conducted experiments for machining induced surface 

integrity in Ti-6Al-4V under various cooling conditions. Furthermore, (Rotella and 

Umbrello, 2014) investigated machining induced microstructure in orthogonal cutting of 

Ti-6Al-4V alloy by using 2-D FE modeling with flow softening adjusted flow stress curves 

and Z-H parameter for grain size and Hall-Petch model for hardness.  

 

Finite Element based microstructure modeling has been demonstrated in other materials as 

well. (Pu et al., 2014) investigated the microstructure of AZ31B magnesium alloy after dry 

and cryogenic machining, and calculated dynamically recrystallized grain sizes using the 

Zener-Hollomon parameter. (Umbrello and Filice, 2009) studied machining induced 

microhardness alteration and related white layer formation in AISI52100 steel using FE 

modeling and hardness based flow stress modeling. (Rotella et al., 2013) reported dynamic 

recrystallization during turning of AA7075-T651 alloy and utilized FE modeling to predict 

grain refinement and hardness modifications on machined surfaces of this alloy. They 

found that both the cutting speed and the tool nose radius affect the machined surface and 

subsurface integrity since both dynamic recrystallization and higher hardness values are 

observed. Additionally, various computational methods have been used for microstructure 
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modeling. (Yazdipour et al., 2008) modeled the microstructure of 304 austenitic stainless 

steel using irregular cellular automata and performed hot torsion tests. (Chun et al., 2006) 

developed a methodology to model the recrystallization of commercial-purity Titanium 

after cold-rolling process using Electron Backscatter Diffraction (EBSD) measurements, 

Monte-Carlo simulations, JMAK and Speich-Fischer (SF) models.  

 

Since dynamic recrystallization has been observed during machining of titanium alloys, 

the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model which is readily implemented in 

the DEFORM-3D software has been used. DEFORM-3D has a database that contains the 

JMAK model parameters and material properties for certain materials, including some 

aluminum alloys (Yi et al., 2008) and nickel alloys such as Waspaloy (Shen et al., 1995; 

Shen, 2005). However, most of the JMAK parameters are tailored towards forging 

applications and work at high temperatures.  
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3.2.1 Microstructure Modeling of Ti-6Al-4V Titanium Alloy 

3.2.1.1 Finite Element Simulation Setup for Machining of Ti-6Al-4V Alloy 

Finite element method based 3-D face turning simulations using DEFORM-3D machining 

software have been investigated in various papers (Özel and Ulutan, 2012; Ozel et al., 

2013; Ulutan and Özel, 2013a; Ulutan and Özel, 2013b; Ulutan and Özel, 2013c; Özel and 

Arisoy, 2014; Arisoy and Özel, 2014; Arısoy and Özel, 2015). In the 3-D FE simulations, 

curved workpiece geometry was modeled as viscoplastic and represented with high number 

of elements. The finite element mesh was generated by using DEFORM-3D software’s 

mesh generation system with linear tetrahedral elements. The sensitivity of the mesh size 

(i.e. number of elements) on the simulation outputs suggested that a mesh size of 50,000 

elements for workpiece is optimum for obtaining fast and accurate results. A higher mesh 

density was used in a 1 mm-long section behind the chip to better resolve the temperature 

and strain fields that are necessary for the microstructure calculations on the machined 

surface as shown in Figure 3.1.  

 

Friction between the tool and the workpiece was described with a hybrid model including 

shear friction and Coulomb friction along the rake and flank faces of the tool. The hybrid 

friction model is summarized in Eq. (3.1), where m and µ are friction coefficients for shear 

and Coulomb friction models, and , k, f  and n  are material shear stress, shear flow stress, 

frictional stress and normal stress on the tool face, respectively.  
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The heat transfer coefficient between tool and workpiece was set to a very high value 

(h=100000 N/ s mm ºC) in order to allow temperature field to reach near its steady-state in 

a short period of time. This is a necessary step in order to simulate the process more 

accurately considering the simulation is very short compared to the real process. Some key 

simulation parameters are listed in Table 3.1. 

 

   
(a) 

        
(b) (c) 

 

Figure 3.1 FE model of the simulation with (a) workpiece geometry and boundary 

conditions, (b) tool geometry and (c) mesh of the chip and the machined workpiece. 

 𝜇 =
𝜏𝑓

𝑛
, 𝑛𝑙𝑜𝑤 

𝑚 =
𝜏

𝑘
, 𝑛ℎ𝑖𝑔ℎ, 0 ≤ 𝑚 ≤ 𝑙 

 

(3.1) 
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Table 3.1 Parameters of the FE simulation model. 

Tool 

Length [mm] Number of elements 
Friction factor and 

coefficient 

Workpiece Cutting Tool Work 
Rake Flank 

m µ m µ 

WC/Co 2.5 1.8 120,000 50,000 0.95 0.6 0.9 0.5 

TiAlN 2.5 1.8 120,000 50,000 0.95 0.7 0.9 0.5 

 

All 3-D FE simulations were run until a fully grown chip formation occurs at a fixed cutting 

length at respective cutting speeds. Each simulation takes about 12 hours on a PC with Intel 

i7-2600 3.4 GHz processor. In each simulation, it is concluded that the machining process 

reaches near its steady-state conditions in terms of generating acceptable fields of strain, 

strain rate and temperature for predicting the microstructure.  

 

In order to fully calculate the microstructure resulting from continuous cutting, the effects 

of consecutive passes (cuts) can be investigated. Consecutive passes may change the 

microstructure due to increasing temperatures and different strain fields. In order to take 

these effects into account, an additional cutting pass is implemented in the 3-D FE 

simulations. To achieve this, the tool was first moved away from the workpiece upon 

reaching a fixed cutting length by moving it in the negative feed direction. The chip that 

had been generated after the first pass was then manually removed via element deletion 

close to its root, allowing disposal of excess heat stored in the chip. Upon the deletion of 

the chip, the workpiece was remeshed while preserving the element data. Then, the 

remaining heat in the workpiece was allowed to diffuse within the workpiece during the 

time the tool completes its revolution to begin a new cut. The tool travels in the feed 

direction during its revolution around the cutting axis. During this period where the tool is 
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not in contact with the workpiece, temperature and heat flux boundary conditions were 

removed from the workpiece and the tool to trap the heat within. This is an acceptable 

approach as in reality, other areas in the workpiece would be processed during this time 

that would lead to more heat generation in the surrounding areas, slowing down the 

cooling. Moreover, the thermal conductivity of the tool was set to 0 in order to preserve 

the hot zone at the tool tip to induce a realistic continuous cutting effect. After one 

revolution, the conductivity of the tool was restored upon contact with the workpiece, and 

boundary conditions on the tool and the workpiece were enabled again. When the tool 

touches the workpiece, tool elements were joined with the workpiece elements via contact 

conditions and the cutting process for the second pass begins. The cutting length for the 

second pass was chosen to be sufficiently long, while avoiding contact with the remaining 

chip root from the previous cut. Figure 3.2 shows the workpiece after chip removal, and 

temperature field on the workpiece at different stages of this process. After each pass (cut), 

simulation results were extracted from DEFORM-3D, and processed in MATLAB over a 

selected volume (extending up to 1 mm behind the chip in the machined zone) for each 

simulation (consistent among materials and feeds) using normalized element volumes as 

weights to accurately represent the given volume.  

 

For the cases with the TiAlN coated WC/Co tool, the temperatures in the beginning of the 

2nd cut range between 100-202 °C (vc=55 m/min, f=0.05 mm/rev), 110-237 °C (vc=55 

m/min, f=0.1 mm/rev), 115-207 °C (vc=90 m/min, f=0.05 mm/rev) and 102-274 °C (vc=90  

m/min, f=0.1 mm/rev). For the uncoated WC/Co tool (r=25 m), the temperatures range 

between 100-161 °C (vc=55 m/min, f=0.05 mm/rev), 109-234 °C (vc=55 m/min, f=0.1 
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mm/rev), 112-193 °C (vc=90 m/min, f=0.05 mm/rev) and 100-267 °C (vc=90  m/min, f=0.1 

mm/rev). These initial temperature fields, sustained from the previous pass in the 

workpiece affect the subsequent simulation results. 

  



99 

 

 

 

 

Figure 3.2 Finite element model geometry and temperature fields after the first cut;( a) 

workpiece mesh with removed chip, (b) temperature field after chip removal, (c) 

temperature field after diffusion, (d) temperature field during second cut, (e) tool and 

workpiece at the beginning of second pass. 
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3.2.1.2 Modified Material Constitutive Model 

In 3-D FE simulations, a material constitutive model with modification to the Johnson-

Cook (JC) material model to represent temperature-dependent flow softening behavior of 

high temperature titanium and nickel alloys has been used. The modified material model 

is given in Eq. (3.2) where flow stress (σ) of the material is being represented in terms of 

strain (ε), strain rate (휀̇), and temperature (T) and where 휀0̇ is the reference strain rate, T0 is 

the ambient temperature, and Tm is the melting temperature of the material. This model 

includes the JC material model parameters (A, B, C, n, m) and modification parameters (a, 

b, d, r, s) that are used to describe temperature-dependent flow softening. 

where 𝐷 = 1 − (
𝑇

𝑇𝑚
)
𝑑

, and 𝑝 = (
𝑇

𝑇𝑚
)
𝑏

. 

 

Model parameters, given in Table 3.2, have been determined for Ti-6Al-4V titanium alloy 

by using experimental and simulated forces in 3-D FE simulations in an earlier study by 

(Ulutan and Özel, 2013b). First, the parameters of the original Johnson-Cook model, given 

in Eq. (3.3), were obtained from the literature (Lee and Lin, 1998) for the Ti-6Al-4V alloy 

A=724.7, B=683.1, n=0.47, C=0.035, m=1. 

 
𝜎 = [𝐴 + 𝐵휀𝑛 (

1

exp(휀𝑎)
)] × [1 + 𝐶𝑙𝑛

휀̇

휀0̇
] × [1 − (

𝑇 − 𝑇𝑟
𝑇𝑚 − 𝑇𝑟

)
𝑚

]

× [𝐷 + (1 − 𝐷) [tanh (
1

(휀 + 𝑝)𝑟
)]
𝑠

] 

 

 

 

(3.2) 
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Using these parameters as basis, additional parameters of the modified JC model (Eq. 3.2) 

were obtained via an iterative procedure that compared the forces obtained from 

experiments with 3D FE simulations while varying model parameters B, n, a, b, d, r and s, 

within the ranges reported by various references (Calamaz et al., 2008; Sima and Özel, 

2010). Parameters A, C and m were kept constant in order to preserve the flow stress at 

zero strain, the strain rate and temperature effects compared to the original JC model, 

respectively. However, parameters B, n, and a were varied until the combined prediction 

error in forces (Fc, Fp, Ff) was minimized. The differences between forces in all directions 

between the experiments and each simulation were used to calculate a normalized square 

error, and the parameters that minimized this error were chosen as final parameters. 

 

Table 3.2 Modified Johnson-Cook material flow stress model parameters. 

 (Ulutan and Özel, 2013a) 

Alloy A B n C m a b d r s 

Ti-6Al-4V 725 300 0.65 0.035 1 0.5 2 0.5 12 -0.05 

 

In order to fully utilize temperature-dependent modified material constitutive model in 3-

D FE simulations, temperature-dependent physical, mechanical, and thermal properties of 

titanium alloy Ti-6Al-4V along with tool material and coating have been used as given in 

Table 3.3, and also their temperature dependent behavior is shown in Figure 3.3. 

 
𝜎 = [𝐴 + 𝐵휀𝑛 (

1

𝑒𝑥𝑝(휀𝑎)
)] × [1 + 𝐶𝑙𝑛

휀̇

휀0̇
] × [1 − (

𝑇 − 𝑇𝑟
𝑇𝑚 − 𝑇𝑟

)
𝑚

] 
(3.3) 
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Table 3.3 Temperature dependent material properties for Ti-6Al-4V FE simulation. 

(Ulutan and Özel, 2013a) 

Property WC/Co TiAlN Ti-6Al-4V 

E [GPa] 5.6×102 6.0×102 7.4×10-4T+113 

α [1/C] 4.7×10-6 9.4×10-6 3×10-9T+7×10-6 

k [W/mC] 55 8.1×10-3T+11.95 7.039×e 0.0011T 

cp [N/mm2C] 5×10-4T+2.07 3×10-4 T+0.57 2.24×e 0.0007T 

 

   

 

 

Figure 3.3 Temperature dependent material properties for Ti-6Al-4V FE simulation. 
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3.2.1.3 Microstructure Modeling Using JMAK Model 

It has been reported that the machining process affects the Ti-64 microstructure and its 

grain size (Arrazola et al., 2009; Nalla et al., 2003).  In thermal-mechanical processing of 

metal alloys, the onset of thermal recovery/recrystallization generally occurs at about 0.4-

0.5 × Tm which is 500-690°C for Ti-64 alloy (Tm=1922K). Therefore dynamic 

recrystallization will take place in the regions of such temperatures combined with large 

plastic deformations. For this reason, JMAK grain size model given in Eqs. (1.1)-(1.5) has 

been utilized to study the effects of machining parameters in machining Ti-64. The JMAK 

model parameters have been identified after running a sweep / sensitivity analysis on 

DEFORM-3D FE simulations by monitoring average -grain size. These parameters are 

partially based on (Yi et al., 2008) with the activation energy for Ti-6Al-4V taken as Qact 

=218 [kJ/mol] as reported by (Ding et al., 2002), and are given in Table 3.4.  

 

Table 3.4 JMAK model parameters for Ti-6Al-4V. 

Peak Strain 

a1 h1 m1 m1×Qact c1 a2 

2 0 0.006 1308 0 0.8 

DRx Kinetics 

a5 h5 n5 m5 m5×Qact βd c5 kd a10 

1.21×10-5 0.13 0 0.04 8720 0.693 0 2 0 

DRx Grain Size 

a8 h8 n8 m8 m8×Qact c8 

150 0 0 -0.03 -6540 0 
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3.2.1.4 Microstructure Prediction Results 

3-D FE simulations for all cutting conditions in turning of Ti-6Al-4V were conducted by 

using the microstructure model given in the previous section. Thermal-mechanical 

transformation kinetics including dynamic recrystallization were predicted and resultant 

field variables such as temperature (T), peak strain (휀𝑝), dynamic recrystallized volume 

fraction (𝑋𝐷𝑅𝑥) and grain size (𝑑𝐷𝑅𝑥), and average grain size including the recrystallized 

grains (𝑑𝑎𝑣𝑔) were extracted. Their volume weighted averages for all of these process 

variables were calculated in MATLAB and their histograms together with mean and 

standard deviations were obtained after first and second cutting passes. These predicted 

field variables and measured average grain sizes are given in Table 3.5 for machining Ti-

6Al-4V. Predicted temperature (T) fields are shown for different cutting conditions and 

tools (coated and uncoated) in Figures 3.4-3.5. In addition, the dynamic recrystallized 

volume fraction (𝑋𝐷𝑅𝑥) and average grain size (𝑑𝑎𝑣𝑔) are shown in Figures 3.6-3.7 and 

Figures 3.8-3.9 respectively.  
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Table 3.5 Predicted field variables (weighted means over the selected volume) during 

first and second pass with against the measured grain size of microstructure in machined 

surfaces. 

Tool 

vc 

[m/min] 

f 

[mm/rev] 

Predicted field variables  

(Pass 1) 

Predicted field variables  

(Pass 2) 
Exp. 

𝑑𝑎𝑣𝑔 

[µm] 

T 

[°C] 

휀𝑝 𝑋𝐷𝑅𝑥 
𝑑𝐷𝑅𝑥 

[μm] 

𝑑𝑎𝑣𝑔 

[µm] 

T 

[°C] 

휀𝑝 𝑋𝐷𝑅𝑥 

𝑑𝐷𝑅𝑥 

[μm] 

𝑑𝑎𝑣𝑔 

[µm] 

WC/Co 

(TiAlN) 

55 

0.05 302.86 2.16 0.37 7.46 17.38 406 2.00 0.39 7.81 17.57 14.66 

0.1 414.46 2.37 0.39 7.81 17.07 473 2.11 0.37 7.40 17.23 13.09 

90 

0.05 307.21 2.22 0.31 6.18 17.60 443 1.98 0.43 8.47 17.91 14.40 

0.1 439.32 2.31 0.39 7.69 17.40 530 2.05 0.45 8.94 17.75 14.95 

WC25 

55 

0.05 265.30 2.24 0.29 5.86 17.41 387 2.05 0.39 7.64 17.35 13.03 

0.1 402.82 2.33 0.35 7.00 17.03 477 2.16 0.36 7.14 16.96 14.39 

90 

0.05 289.96 2.24 0.30 5.98 17.62 431 2.02 0.43 8.47 17.77 16.17 

0.1 436.28 2.30 0.40 8.04 17.30 500 2.03 0.43 8.55 17.72 13.57 
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First pass Second pass 

  

Figure 3.4 (a) TiAlN coated WC/Co tool (rβ=10 µm), vc=55 m/min, f=0.05 mm/rev 

  

Figure 3.4 (b) TiAlN coated WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.05 mm/rev 
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First pass Second pass 

 

Figure 3.4 (c) WC/Co tool (rβ=25 µm), vc=55 m/min, f=0.05 mm/rev 

 

Figure 3.4 (d) WC/Co tool (rβ=25 µm), vc=90 m/min, f=0.05 mm/rev 

 

Figure 3.4 Predicted temperature fields in FE simulations after first pass (left), second 

pass (right) at the low feed rate (f=0.05 mm/rev).  
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First pass Second pass 

  

Figure 3.5 (a) TiAlN coated WC/Co tool (rβ=10 µm),  vc=55 m/min, f=0.10 mm/rev 

 

Figure 3.5 (b) TiAlN coated WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.10 mm/rev 

 

  



109 

 

 

First pass Second pass 

 

Figure 3.5 (c) WC/Co tool (rβ=25 µm), vc=55 m/min, f=0.10 mm/rev 

 

Figure 3.5 (d) WC/Co tool (rβ=25 µm), vc=90 m/min, f=0.10 mm/rev 

 

Figure 3.5 Predicted temperature fields in FE simulations after first pass (left), second 

pass (right) at the high feed rate (f=0.10 mm/rev).  
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First pass Second pass 

 

Figure 3.6 (a) TiAlN coated WC/Co tool (rβ=10 µm), vc=55 m/min, f=0.05 mm/rev 
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First pass Second pass 

 

Figure 3.6 (b) TiAlN coated WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.05 mm/rev 
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First pass Second pass 

 

Figure 3.6 (c) WC/Co tool (rβ=25 µm), vc=55 m/min, f=0.05 mm/rev 

 

  



113 

 

 

First pass Second pass 

 

Figure 3.6 (d) WC/Co tool (rβ=25 µm), vc=90 m/min, f=0.05 mm/rev 

 

Figure 3.6 Predicted dynamic recrystallization volume fraction fields in FE simulations, 

after first pass (left), second pass (right) at the low feed rate (f=0.05 mm/rev).  
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First pass Second pass 

 

Figure 3.7 (a) TiAlN coated WC/Co tool (rβ=10 µm), vc=55 m/min, f=0.10 mm/rev 
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First pass Second pass 

 

Figure 3.7 (b) TiAlN coated WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.10 mm/rev 
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First pass Second pass 

 

Figure 3.7 (c) WC/Co tool (rβ=25 µm), vc=55 m/min, f=0.10 mm/rev 
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First pass Second pass 

 

Figure 3.7 (d) WC/Co tool (rβ=25 µm), vc=90 m/min, f=0.10 mm/rev 

 

Figure 3.7 Predicted dynamic recrystallization volume fraction fields in FE simulations, 

after first pass (left), second pass (right) at the high feed rate (f=0.10 mm/rev).  
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First pass Second pass 

 

Figure 3.8 (a) TiAlN coated WC/Co tool (rβ=10 µm), vc=55 m/min, f=0.05 mm/rev 

 

  

davg= 17.38 µm 

SD= 0.73 µm 

davg= 17.57 µm 

SD= 0.71 µm 
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First pass Second pass 

 

Figure 3.8 (b) TiAlN coated WC/Co tool (rβ=10 µm),  vc=90 m/min, f=0.05 mm/rev 

 

  

davg= 17.91 µm 

SD= 0.62 µm 

davg= 17.60 µm 

SD= 0.71 µm 
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First pass Second pass 

 

Figure 3.8 (c) WC/Co tool (rβ=25 µm), vc=55 m/min, f=0.05 mm/rev 

 

  

davg= 17.35 µm 

SD= 0.72 µm 

davg= 17.41 µm 

SD= 0.77 µm 
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First pass Second pass 

 

Figure 3.8 (d) WC/Co tool (rβ=25 µm), vc=90 m/min, f=0.05 mm/rev 

 

Figure 3.8 Predicted average grain size fields in FE simulations, after first pass (left), 

second pass (right) at the low feed rate (f=0.05 mm/rev).  

  

davg= 17.77  µm 

SD= 0.63 µm 
davg= 17.62 µm 

SD= 0.72 µm 
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First pass Second pass 

 

Figure 3.9 (a) TiAlN coated WC/Co tool (rβ=10 µm), vc=55 m/min, f=0.10 mm/rev 

 

  

davg= 17.23 µm 

SD= 0.61 µm 
davg= 17.07 µm 

SD= 0.75 µm 
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First pass Second pass 

 

Figure 3.9 (b) TiAlN coated WC/Co tool (rβ=10 µm), vc=90 m/min, f=0.10 mm/rev 

 

  

davg= 17.75 µm 

SD= 0.46 µm 

davg= 17.40 µm 

SD= 0.69 µm 
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First pass Second pass 

 

Figure 3.9 (c) WC/Co tool (rβ=25 µm), vc=55 m/min, f=0.10 mm/rev 

 

  

davg= 16.96 µm 

SD= 0.63 µm 

davg= 17.03 µm 

SD= 0.64 µm 
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First pass Second pass 

 

Figure 3.9 (d) WC/Co tool (rβ=25 µm), vc=90 m/min, f=0.10 mm/rev 

 

Figure 3.9 Predicted average grain size fields in FE simulations, after first pass (top), 

second pass (bottom) at the high feed rate (f=0.10 mm/rev).  

 

 

  

davg= 17.72 µm 

SD= 0.5 µm 
davg= 17.30 µm 

SD= 0.68 µm 
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Comparison plots for predicted average grain diameter (or size) from first and second 

passes are given in Figure 3.10 for machining Ti-6Al-4V. It is observed that the dynamic 

recrystallized volume fraction is about 30-40% in machining Ti-6Al-4V. The average grain 

size became smaller (compared to the initial grain size d0 = 20 μm) in all machining 

conditions for both Ti-6Al-4V indicating that the recrystallized grains contribute to this 

smaller average grain size hence machining affected microstructure. It should be noted that 

grain growth (from annealing) is not being considered in FE simulations due to rapid 

cooling rates of the machined surfaces.  

 

 

Figure 3.10 Comparison of predicted average α-grain sizes (mean and standard 

deviation) in machined Ti-6Al-4V sub-surfaces. 
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3.2.2 Microstructure Modeling of IN100 Alloy 

As described in Chapter 1, IN100 microstructure mainly consists of two phases; γ and γ' 

where γ phase consists of the large grains that form the matrix in the material whereas γ' is 

formed as a result of various processes (Kikuchi et al., 1990; Wusatowska-Sarnek et al., 

2003a; Wusatowska-Sarnek et al., 2003b; Milligan et al., 2004).  The face-centered-cubic 

austenitic γ phase consists of large grains (3-4 µm) that form the matrix in the material 

whereas precipitating γ' phase grains (<1.5 µm) are formed as a result of various processes. 

Three sizes of γ' grains have been observed: primary γ' (1.25-1.3 µm with 25% volume 

fraction), secondary γ' (~0.1 µm with 32% volume fraction) and tertiary γ' (~20 nm with 

0.24% volume fraction). 

 

During the machining process, the microstructure is altered due to large plastic 

deformations and temperatures. Work hardening is often observed during machining of 

IN100 and is linked to white layer formation, which is a region close to the surface where 

a large amount of recrystallization occurs that results in much smaller grains and increased 

strength. The name is attributed to the white color of the region in optical microscopy 

imaging. Ranganath et al. (Ranganath et al., 2009) investigated the white layer formation 

in IN100 after machining using orthogonal cutting and finite element simulations. While 

the white layer formation was not detected due to relatively short cutting times, the effects 

of machining caused strain hardening was evident, with elongated grains near the machined 

surface. They also found out that low speed machining with large edge radius produced 

harder surfaces, with deformed layers being 2-3 times harder when compared to the bulk 

material.  
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M’Saoubi et al. (M'Saoubi et al., 2014) investigated the effect of abusive drilling on Nickel 

superalloys Alloy 718, Waspaloy, Alloy 720Li and RR1000 using Electron Backscatter 

Diffraction (EBSD), X-Ray Diffraction (XRD), Transmission Electron Microscopy 

(TEM), SEM and nano indentation. Nano-sized grains were observed in the severe plastic 

deformation (SPD) zone and plastic slip bands in sub-surface layers. Nano indentation 

results suggested a work hardening near the machining surface, and the TEM results show 

equiaxed ultra-fine grained microstructure that was attributed to recrystallization. RR1000 

and Alloy 720Li exhibited a larger SPD zone and higher nanohardness compared to the 

other two alloys. Additionally, the Zener-Hollomon parameter was used to obtain the grain 

size based on strain rate and temperature. 

 

In order to study the effects of machining parameters in machining IN100 alloy, finite 

element simulations have been performed using the JMAK grain size model, as discussed 

before. 

 

3.2.2.1 Finite Element Simulation Setup for Machining of IN100 Alloy 

3D FE simulations for face turning have been conducted for selected experimental 

conditions using DEFORM-3D software similar to the previous studies (Ulutan and Ozel, 

2011; Sun et al., 2010). In the 3D FE simulations, curved workpiece geometry was 

modelled as viscoplastic. A higher mesh density was used in a 3 mm-long section behind 

the chip to better resolve the temperature and strain fields that are necessary for the 

microstructure calculations on the machined surface as shown in Figure 3.11. The friction 

between the tool and the workpiece was described with a hybrid model including shear 
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friction and Coulomb friction along the rake and flank faces of the tool (see Table 3.6). A 

shear friction factor of m=0.9 was used in all simulations. A very high heat transfer 

coefficient (h=1.0e5 kWm-2K-1) between tool and workpiece was used to allow temperature 

field to reach its steady-state in a short period of time. 

 

 

Figure 3.11 3D FE simulation model for turning IN100 alloy.  

 

All 3D simulations were run until a fully grown chip formation occurred at a fixed cutting 

length at respective cutting speeds. Simulation results on predicted grain sizes were 

extracted from DEFORM-3D, and processed in MATLAB software over a selected volume 

(extending up to 3 mm behind the chip in the machined zone) for each simulation using 

normalized element volumes as weights to accurately represent the given volume. 

 

Table 3.6 IN100 alloy FE simulation parameters. 

Length [mm] No. of elements Friction coefficients 

Workpiece Cutting Tool Work Rake Flank 

3.5 2.6 120,000 100,00 
0.8 WC/Co 0.6 WC/Co 

0.6 TiAlN 0.5 TiAlN 
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The same material constitutive model given in Eq. 3.2 has been used for IN100 alloy, with 

different parameters. Model parameters for the IN100 alloy have been determined by 

matching experimental and simulated forces through iterations in 3D FE simulations 

(Ulutan and Özel, 2013b) and are given in Table 3.7. Temperature-dependent physical, 

mechanical, and thermal properties of IN100 alloy along with tool material and coating 

used in FE simulations are given in Table 3.8 and Figure 3.12. 

 

Table 3.7 Material flow stress model parameters for IN100 alloy. 

(Ulutan and Özel, 2013a) 

A B n C m a b d r s 

1350 1750 0.65 0.017 1.3 1.5 10 0.01 1.5 -0.4 

 

 

Table 3.8 Temperature-dependent material properties for IN100 alloy. 

(Ulutan and Özel, 2013a) 

Property WC/Co TiAlN IN100 

E [GPa] 5.6×105 6.0x105 -72×T+217000 

α [1/C] 4.7×10-6 9.4x10-6 1.1×10-5 

k [W/m×C] 55 0.0081T+11.95 10.3×e0.0008*T 

cp [N/mm2C] 5×10-4T+2.07 0.0003T+0.57 3.62×e0.0004*T 
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Figure 3.12 Temperature dependent material properties for the IN100 alloy FE 

simulation.  

 

3.2.2.2 Microstructure Prediction Results 

Experimental microstructure results under hot deformation conditions are often used to 

determine the constants for recrystallized fraction and grain size. Two sets of FE 

simulations have been run for predicting γ matrix grains and primary γ’ grains. The JMAK 

model parameters for the first set of simulations for γ matrix grains have been obtained 

using the parameters of a similar Nickel based alloy as a starting point (Shen, 2005), and 
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modifying them through a careful sensitivity analysis. Since the γ matrix grains could not 

be identified in the SEM measurements shown in Chapter 2, the average γ matrix grain size 

was taken as d0=3.5 μm (Kikuchi et al., 1990). JMAK parameters are given in Table 3.9. 

 

For the second set of simulations to predict primary γ’ grains, JMAK model parameters 

have been identified using Genetic Algorithm based optimization on the FE simulations to 

minimize the difference with FE predicted and SEM measured average grain sizes. A 

reduced model of the Sharp tool, vc = 12 m/min, f = 0.05 mm/rev simulation was used and 

parameters a1, h1, m1, a2, a5, h5, m5, a8, n8 and m8 were changed while other parameters 

were kept constant. Population size was selected as 8 in order to run 8 simulations in 

parallel for each generation. Initial population included the JMAK parameters for 

Waspoloy (Shen, 2005), and the final parameters are given in Table 3.10. Once the 

optimum JMAK parameters were found, they were used for all cutting conditions and tools 

to predict primary γ' grains. Apparent activation energy of Qact =348000 J/mol (Kikuchi et 

al., 1990) was used for both cases, and initial grain sizes of d0= 3.5 m for γ matrix grains 

and d0= 1.28 m for primary γ' grains (Milligan et al., 2004) were used. The methodology 

is further explained in Chapter 5. 

 

Substantial recrystallization with dynamic recrystallized volume fraction of 30-35% has 

been predicted in the simulations. A comparison plot for predicted and measured average 

grain size for primary gamma prime (γ') grains is given in Figure 3.13 indicating mostly 

reasonable agreements. 3D FE simulation results of average grain sizes for both γ matrix 
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and primary γ' grains on machined surfaces using uncoated WC/Co and TiAlN coated tools 

are shown in Figures 3.14-3.17. 

 

Table 3.9 JMAK model parameters for IN100 alloy γ matrix grain simulations. 

a1 h1 m1 c1 a2 d 

0.293 0 0.0102 0 0.8 0.693 

a5 h5 m5 n5 c5 kd 

0.145 0.32 0.03 0 0 3 

a8 h8 m8 n8 c8 a10 

8103 0 -0.16 0 0 0 

 

 

Table 3.10 JMAK model parameters for IN100 alloy primary γ' grain simulations. 

a1 h1 m1 c1 a2 d 

0.293 0.34 0.039 0 0.38 0.693 

a5 h5 m5 n5 c5 kd 

0.145 0.48 0.03 0 0 3 

a8 h8 m8 n8 c8 a10 

8103 0 -0.16 0.43 0 0 
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Figure 3.13 Comparison of predicted and measured (primary γ') average grain size 

(mean and standard deviation) on IN100 alloy subsurface.  

 

Figure 3.14 Predicted grain size fields: TiAlN coated tool vc=12 m/min.  
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Figure 3.15 Predicted grain size fields: TiAlN coated tool vc=24 m/min.  
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Figure 3.16 Predicted grain size fields: WC/Co tool rβ=5m, vc=12 m/min.  
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Figure 3.17 Predicted grain size fields: WC/Co tool rβ=5m, vc=24 m/min.  

 

 

3.2.2.3 Microhardness Prediction 

Using the grain sizes and distributions obtained via SEM and FEM analysis, an expression 

is constructed for  predictive modeling of hardness on the machined subsurface (at about 

25 µm into the depth) as suggested in (Milligan et al., 2004). Following this Hall-Petch 

type approach, a generalized model of the following form is proposed: 

 

 

𝐻𝑉 = 𝑐0 + 𝑐1[𝑑1
𝑚1𝑓1

𝑛1] + 𝑐2[𝑑2
𝑚2𝑓2

𝑛2] + 𝑐3[𝑑3
𝑚3𝑓3

𝑛3] + 𝑐4[𝑑𝑎𝑣𝑔
𝑚4 ] (3.4) 
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where HV is microhardness, davg, d1, d2, d3 are the γ-matrix, primary, secondary and tertiary 

γ’ grain sizes and f1 , f2 , f3 are related volume fractions, respectively. The c0, c1, c2, c3, c4 

are model constants and m1, n1, m2, n2, m3, n3, m4 are model exponents that define the 

relationship between different grains and volume fractions and the hardness. Model 

parameters are obtained via nonlinear optimization using Genetic Algorithm from SEM 

measurements for gamma prime grain sizes and volume fractions, γ matrix grain sizes 

calculated from 3D FE simulations along with the microhardness measurements. The 

resultant microhardness model for IN100 which can be used for hardness predictions is 

given as: 

𝐻𝑉 = 110.36 + 168.75[𝑑1
0.38𝑓1

0.007] + 2858.91[𝑑2
−0.74𝑓2

0.35]

+ 60.97[𝑑3
−0.33𝑓3

0.41] + 97.43[𝑑𝑎𝑣𝑔
0.25] 

(3.5) 

 

This predictive microhardness model could also be used to estimate the expected hardness 

of so called “white layer” from measured and/or predicted grains sizes and phase fractions. 

 

  



139 

 

 

 CHAPTER 4: MACHINE LEARNING BASED MODELING OF HARDNESS 

AND MICROSTRUCTURE 

 

4.1 Introduction 

 

Machine learning methods can be used to predict the outcomes of a process without 

experiments or simulations. Using experimental and simulation data, a metamodel can be 

generated that links inputs to outputs, or targets. Inputs and targets must first be determined 

carefully in order to train a model that achieves desirable results. Inputs are composed of 

different features that represent different physical attributes, and observations that 

represent the measurements of each feature. When designing such models, one should 

always keep the Occam’s Razor (lex parsimoniae) principle in mind, keeping the model as 

simple as possible, since making many assumptions and including unnecessary information 

into the model reduces the accuracy and robustness of it. 
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4.2 Temperature Based Random Forests Model for Hardness Prediction of Ti-6Al-

4V 

 

Following this line of thought, two separate RF models for regression were constructed; 

one for predicting the instantaneous hardness during machining and another for predicting 

the final hardness of the workpiece after cooling down to room temperature (Ozel et al., 

2013; Arisoy and Özel, 2014). For the prediction phase, FE simulation data was extracted 

in the form of nodal temperatures and passed to MATLAB. A line of 0.1 mm depth from 

the surface was selected close to the middle of the workpiece in order to see the effects of 

the tool. The temperature data was interpolated using MATLAB. The resulting data was 

fed into the RF model, and hardness values were calculated. It is important to note that 

current model is purely temperature dependent and is not intended to capture the work 

deformation induced effects. For instance, localized heating, an important factor that 

affects surface integrity during machining, is not present in the hot hardness measurements. 

Moreover, plastic deformation was not included in this current model. However, a more 

complicated and accurate model can be developed in a similar manner. 
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4.3 Instantaneous hardness model 

 

The training of the instantaneous model is performed using hot hardness measurements as 

the target, where the temperature and hardness values were measured and recorded. Hot 

hardness measurements during cooling from given annealing temperatures are shown in 

Figure 4.1. 

 

Figure 4.1 Hot hardness measurements at during air cooling for different initial 

temperatures (different colors).  

 

Inputs are chosen as maximum temperature, instantaneous temperature and the cooling 

time since these are factors that are known to play an important role in microstructure 

alterations. An input matrix is constructed from the data such that each column is a feature 

and each row is a different measurement. A representative tree from the model is shown in 

Figure 4.2. During the training of the model, 10% of the input data was reserved as test 
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data and was not used in training. Figure 4.3 shows the goodness of fit. The fit has R2= 

0.965, MAE=0.51 and RMSE=0.933.  

 

 

Figure 4.2 Representation of a regression tree in the instantaneous hardness model.  

 

 

Figure 4.3 Instantaneous hardness RF regression model results, red: whole dataset, blue: 

predictions on training data, green: predictions on testing data.  
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After the model is trained, FE simulation results are used as inputs to the model to obtain 

instantaneous hardness values during the machining operations. Temperature field over 

time towards the depth is extracted from FE simulations, showing the increase and decrease 

in temperature as the tool moves over the selected location. Figure 4.4 shows the result 

temperature vs depth over time at the selected location, and the predicted hardness from 

the instantaneous hardness model for a representative cutting condition, TiAlN coated 

WC/Co tool with vc = 90 m/min and f = 0.1 mm / rev. Note that the temperature rise and 

cooldown happens extremely fast, due to the nature of the FE simulation where only a 

small portion of the workpiece geometry is considered and thermal coefficients are 

amplified in order to reach steady state quickly as explained in Chapter 3. This 

amplification can be justified by the fact that the tool processes a much larger area on the 

workpiece in reality, and the simulated region can be a region that is processed after the 

tool has already reached the thermal steady state after processing other regions. The results 

indicate a significant drop in hardness as temperature increases, which is supported by the 

experimental data. Formation of a hardened layer (shown in lighter blue) is observed 

between 20-70 µm below the surface at the last time step.  The machined surface layer 

experiences an instantaneous hardness state due to localized heating and cooling during 

cutting process. During this repeated heating and cooling process, machined surface and 

subsurface go through changes in the microhardness. 
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(a) (b) 

Figure 4.4 Temperature in ºC (a) and hardness in HV (b) over line section on the 

workpiece during machining over time.  

 

4.3.1 Hardness after cooldown 

The secondary RF model was trained to calculate the hardness of the cooled down 

workpiece. The temperatures shown in Figure 4.5 and Table 4.1 were used as the input 

dataset and the hardness measurements are used as the target dataset, with the exception of 

the hardness measurements from the furnace cooled 704°C data which was used as the 

default room temperature hardness for the model to converge to, by setting the temperature 

to 20°C instead.  
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Figure 4.5 Hardness measurements at room temperature after cooling down. 

 

Table 4.1 Hardness measurements at room temperature after cooling down 

Condition Temperature 

[°C] 

Mean Hardness 

[HV] 

SD Hardnesss 

[HV] 

Furnace Cooled 704 335.8 13.3 

Air Cooled 700 323.8 13.1 

Air Cooled 600 332.8 8.9 

Air Cooled 500 326.4 18.9 

Air Cooled 400 312.1 20.1 

 

Figure 4.5 shows the combined result of instantaneous and cooled hardness models along 

with the effects of different cutting conditions and tool coating on instantaneous and final 

hardness during various stages of the machining process. Microhardness state into the 

depth below the surface is shown just prior to chip formation (cutting) process for all 

cutting conditions in Figure 4.6a. Higher feeds create larger change in surface hardness 

while this effect diminishes after 50 µm depth into the machined surface. In general coated 

tool influences hardness more than uncoated tool. In addition, instantenous hardness 

change prior to and after the cutting process was also investigated. Machined surface was 

cooled down to the room temperature and resultant hardness profile was calculated as 
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shown in Figure 4.6b and c. Higher feed rate and a larger edge radius are found responsible 

for greater alterations in microhardness profiles. Figure 4.6b shows that the heated surface 

is predicted to be softer than the relatively colder interior parts of the workpiece, which 

follows the hot hardness measurement data. Figure 4.6c shows the predicted final hardness 

of the surface using the second RF model after the process is over, and reveals the 

differences between different cutting conditions. The hardened layer seen in Figure 4.4b is 

also evident in Figure 4.6c for the TiAlN coated WC/Co tool with vc = 90 m/min and f = 

0.1 mm/rev condition. However, this layer is not seen in other conditions. 
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Figure 4.6 Instantaneous hardness (a) prior to chip formation, (b) after the cutting 

process, and (c) after cooling down to room temperature.  
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4.4 Grain Size and Process Parameter Based Models for Hardness Prediction of Ti-

6Al-4V 

 

Random Forests were also used to create predictive models that relate cutting conditions, 

grain size and fractions, and hardness measurements to each other. Figure 4.7 shows the 3 

different RF models. The 𝑅𝐹1(𝒙) model predicts hardness (HV) from cutting conditions, 

𝑅𝐹2(𝒙) model predicts Ti-6Al-4V’s   grain size (davg) from cutting conditions, and the 

𝑅𝐹3(𝒙) model predicts hardness from grain size and volume fractions. Cutting conditions 

are given as vc, f, rβ, and c, which represent cutting speed, feed rate, tool edge radius, and a 

binary parameter that describes whether coating exists or not (i.e. uncoated c=0 WC/Co 

uncoated and c=1 for TiAlN coating) respectively.  Therefore, the input variable set for 

𝑅𝐹1(𝒙) and 𝑅𝐹2(𝒙)is 𝒙 = {𝑣𝑐 , 𝑓, 𝑟𝛽, 𝑐} and for 𝑅𝐹3(𝒙) is 𝒙 = {𝑑𝑎𝑣𝑔, 𝑓𝛼 }. Mean values 

of the hardness and grain size measurements were obtained for each of the 16 cutting 

conditions (2 levels of cutting speed and feed, and 4 different tools). The data was 

partitioned into training and testing sets such that the testing set contained 4 conditions, 

selected from 4 different tool types at varying cutting speeds and feeds.  The training set 

contained the remaining 12 conditions. 
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Figure 4.7 Random Forests based prediction models for hardness and grain size.  

 

In addition, using the grain sizes and distributions obtained via SEM, an expression was 

constructed and proposed to estimate microhardness based on grain size and phase fraction 

relation and by following a general Hall-Petch (H-P) type equation for grain size and 

strength relation available in literature: 

𝐻𝑉 = 𝑐0 + 𝑐1[𝑑𝑎𝑣𝑔
𝑚1 𝑓

𝑛1]  (4.1) 

where HV is microhardness, davg, and f are α grain size and α  or  volume fraction, 

respectively. The c0 and c1 are model constants and m1 and n1 are exponents.  Model 

parameters were obtained via nonlinear optimization using Genetic Algorithm from SEM 

measurements for α grain sizes and  volume fractions (Eq. 4.2) and α grain sizes and  

volume fractions (Eq. 4.3) to generate a hardness model for predicting machining induced 

microhardness in Ti-6Al-4V titanium alloy. These equations can be used to determine the 

hardness of the particular material that has undergone similar machining conditions from 

microstructure information. 

𝐻𝑉 = 175.79 + 112.36[𝑑𝑎𝑣𝑔
0.07𝑓𝛽

−0.04]  (4.2) 

𝐻𝑉 = 176.26 + 120.53[𝑑𝑎𝑣𝑔
0.08𝑓𝛼

0.11]  (4.3) 
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Predicted  grain sizes in Ti-6Al-4V using 𝑅𝐹2(𝒙)  model were compared against 

measured ones and predicted microhardness of machined surfaces using 𝑅𝐹3(𝒙) model and 

Hall-Petch type equation as given in Eqs. (4.2) and (4.3) against measured mean 

microhardness given in Table 2.1. Figure 4.8 shows the grain size comparisons between 

measurements and 𝑅𝐹2(𝒙) model predictions for different cutting speeds, feeds and tools. 

The predicted values are very close to each other, and while they follow a trend, the 

accuracy is not spectacular even for the training set, with MSE = 0.9203 (across testing 

data). This suggests that there are other factors that should be taken into account that 

determine the final grain size. In fact, it is known that grain sizes in the machined 

subsurfaces are determined by strain, strain rate and temperature history of the area, which 

cannot be accurately described solely by the machining conditions.  Figure 4.9 shows the 

hardness comparisons between measurements, 𝑅𝐹3(𝑥)  model predictions (and predictions 

based on the H-P like equation. In this case, the RF3 model performs better than Eq. (4.3), 

with MSE= 38.3370 (across testing data) and MSE= 59.9408 (across all data) for H-P like 

equation. However, standard deviations of measured grain size and Microhardness which 

represent uncertainty are utilized in obtaining separate RF models and used in predicting 

these uncertainties (as error bars) in Figures 4.8 and 4.9. 
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Figure 4.8 Measured and predicted average grain sizes for vc=55 m/min and vc=90 

m/min.  
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Figure 4.9 Measured and predicted hardness for vc=55 m/min and vc=90 m/min.  
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4.5 Grain Size and Process Parameter Based Models for Hardness Prediction of 

IN100  

 

The microhardness of machined IN100 nickel alloy can also be predicted by following a 

similar methodology to the one seen in previous section. In addition to surface hardness 

values, depth based microhardness analysis has also been conducted by Arisoy et al. 

(Arısoy et al., 2015), as described in Chapter 2. 

 

Two separate regression based models have been created to relate the cutting conditions to 

the microhardness profiles shown in Figure 2.5 and Table 2.3 in Chapter 2. As shown in 

Figure 4.10, the first model predicts the hardness with respect to depth h and cutting speed 

vc for the TiAlN coated tool. The second model is created for uncoated tools with edge 

radii rβ=5µm, 10µm and 25µm, and these tool edge radii have been included in the model.  

 

Figure 4.10 Microhardness profile prediction models for the TiAlN coated and uncoated 

tools.  
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Rather than utilizing machine learning as in the previous section, both models utilize 

explicit equations with exponentially decaying function to represent the depth. Model 1 is 

given by: 

 𝐻𝑉 = 396.05 + 51.09𝑣𝑐
−0.002𝑒−0.02ℎ − 0.14𝑣𝑐

1.46  (4.4) 

where h is the positive depth below surface. Model 2 includes the tool edge radius effect 

in addition to cutting speed and depth, and is shown in Eq. (4.5). 

𝐻𝑉 = 389.51 + 54.61𝑣𝑐
0.09𝑟𝛽

−0.05𝑒−0.02ℎ − 1.17𝑣𝑐
0.72 + 0.86𝑟𝛽

0.93 (4.5) 

The equation parameters are obtained with least squares regression. The R2 values for Eqs. 

(4.4) and (4.5) are found as 0.87 and 0.91, respectively. Note that more complicated models 

with additional terms can be constructed at the expense of generalization power.  

Figure 4.11 shows the surface that is obtained from Eq. (4.4) for TiAlN coated WC/Co 

cutting tool while Figures 4.12 through 4.14 show the surfaces obtained from Eq. (4.5) for 

uncoated WC/Co tools at different tool edge radii. Note that the tool edge radii are kept 

constant (at their respective values) in order to create Figures 4.12-4.14. 
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Figure 4.11 Surface fit of the microhardness with respect to depth and cutting speed for 

the TiAlN coated tool. Experimental data points are shown as circles.  

(Y. M. Arısoy, 2016) 

 

 

Figure 4.12 Surface fit of the microhardness with respect to depth and cutting speed for 

the uncoated tools with rβ=5µm. Experimental data points are shown as circles. 

(Y. M. Arısoy, 2016) 
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Figure 4.13 Surface fit of the microhardness with respect to depth and cutting speed for 

the uncoated tools with rβ=10µm. Experimental data points are shown as circles.  

(Y. M. Arısoy, 2016) 

 

 

Figure 4.14 Surface fit of the microhardness with respect to depth and cutting speed for 

the uncoated tools with rβ=25µm. Experimental data points are shown as circles.  

(Y. M. Arısoy, 2016) 
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Furthermore, using the grain sizes and distributions obtained via SEM, an expression is 

constructed for predictive modeling of hardness on the machined subsurface as suggested 

in Milligan et al. (Milligan et al., 2004), with modifications. Following this Hall-Petch type 

approach, a generalized model of the following form is proposed: 

 𝐻𝑉 = 𝑐0 + 𝑐1[𝑑1
𝑚1𝑓1

𝑛1] + 𝑐2[𝑑2
𝑚2𝑓2

𝑛2]   (4.6) 

where HV is microhardness, d1 and d2 are the primary and secondary γ’ grain sizes and f1 

and f2 are their respective volume fractions. The c0, c1, c2, m1, n1, m2, n2, m3, n3, m4 are 

model parameters that are obtained computationally, utilizing the SEM measurements for 

gamma prime grain sizes and volume fractions obtained at 120 µm depth. The resultant 

microhardness model for IN100 which can be used for hardness predictions is given as: 

𝐻𝑉 = 269.2016 + 3.4203𝑑1
0.4943𝑓1

0.0313 + 5.72𝑑2
0.3995𝑓2 (4.7) 

The model has R2=0.8, indicating that there are other factors that contribute to the hardness. 

The model is compared to experimental data in Figure 4.15. The model provides a fine 

match to the microhardness profiles shown in Figure 2.5 in Chapter 2 and could be used to 

estimate the hardness of white layer formation from measured or predicted grains sizes and 

phase fractions. 
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Figure 4.15 Comparison of experimental microhardness measurements and grain-size 

based microhardness predictions.  
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 CHAPTER 5: MACHINING PARAMETER AND MICROSTRUCTURE 

MODEL OPTIMIZATIONS 

 

5.1 Introduction 

 

This chapter focuses on two major tasks: (i) the optimization of machining process 

parameters for IN100 and Ti-6Al-4V alloys, and (ii) the optimization of JMAK model 

parameters that are used in the Finite Element simulations of the machining IN100 alloy. 

For the first task, optimal machining parameters (such as cutting speed, feed rate, tool type 

and tool edge radius) are determined to improve the quality of the parts by minimizing 

microstructural changes induced while increasing productivity and process efficiency. For 

the second task, the JMAK model parameters are identified with an objective for accurate 

representation of the microstructure resulting from the machining process. 
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5.2 Machining Parameter Optimization 

 

Machining process productivity can be improved by increasing the cutting speed and feed 

rate so that higher volume of material is removed per unit time during the process. 

However, using abusive machining parameters can lead to significant microstructural 

changes which is certainly not desirable. Furthermore, the process efficiency can also be 

improved, by minimizing the heat generation hence maximizing energy for material 

removal in the process. For this purpose, two separate optimization studies are conducted 

in this section in order to improve the machining process productivity and efficiency while 

reducing microstructural changes. The first optimization study aims to maximize the 

process rate via increasing the cutting speed and feed rate of the process and at the same 

time reduce the microstructural changes due to machining by minimizing recrystallization 

(or maximizing the grain size). The second optimization process aims to reduce the 

resultant temperature of the workpiece obtained from Finite Element simulations while 

minimizing the microstructural changes. Since these objectives are in conflict or competing 

against each other, a multi-objective optimization approach is suggested to identify optimal 

machining parameters. Regression equations for process outcomes such as average grain 

diameter and resultant temperature are utilized as objective functions for the multi-

objective optimization problems. The following initial grain sizes are used as described in 

Chapter 3, d1=1.28 m for the IN100 primary γ’ grains and Davg=20 m for the Ti-6Al-4V 

α grains. 
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5.2.1 Minimizing Microstructural Changes and Maximizing Productivity 

At first, a multi-objective optimization study is performed to maximize the productivity 

while minimizing the microstructural changes. This would allow machining operations 

used in finishing to be done at an optimum speed without altering the existing 

microstructure. 

 

Rather than pursuing a non-parametric approach such as the Random Forests explained in 

Chapter 4, a first-order (linear) regression model with interactions is utilized to establish 

the input-output relationship between response (e.g. grain size or resultant temperature) 

and controllable processes variables effectively. The model has the following form: 

 

𝑦 = 𝛽0 +∑𝛽𝑖

𝑘

𝑖=1

𝑥𝑖 + ∑ 𝛽𝑖𝑗

𝑘

𝑖≠𝑗=1

𝑥𝑖𝑥𝑗 +  (5.1) 

where 𝑦 is the response, 𝑥𝑖 are the input variables, 𝛽 are the coefficients of the estimation 

and  is the residual or error. After subtracting the response and input variables, the 

equation becomes: 

𝐷𝑎𝑣𝑔𝑜𝑟𝑑1 = 𝛽0 + 𝛽1𝑟𝛽 + 𝛽2𝑣𝑐 + 𝛽3𝑓 + 𝛽12𝑟𝛽𝑣𝑐 + 𝛽13𝑟𝛽𝑓

+ 𝛽23𝑣𝑐𝑓 +  

(5.2) 

where the left hand side denotes the grain size obtained from SEM images, d1 for primary 

γ’ in IN100 and Davg for alpha grain size in Ti-6Al-4V and 𝑟𝛽 is the tool edge radius. The 

data used in obtaining the model coefficients are summarized in Table 5.1. The coefficients 

of the model were determined using Minitab software, and are listed in Table 5.2 along 
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with calculated R2 values that describes the determination coefficient for the goodness of 

the fit to the data for IN100 and Ti-6Al-4V alloys. 

 

Productivity in a machining process can be related to how much material is removed per 

second, defined by the material removal rate MRR [mm3/s] as follows: 

 𝑀𝑅𝑅 = 𝑣𝑐 × 𝑓 × 𝑎𝑝  (5.3) 

Where 𝑎𝑝 [mm] is the depth of cut, 𝑣𝑐 [mm/s] is the cutting speed (in converted units) and 

𝑓 is the feed [mm/rev]. For clarity, further analysis for Ti-6Al-4V and IN100 alloys are 

performed separately. The optimization problems formulated in the following sections are 

solved using the Multi-objective Genetic Algorithm (Deb, 2001) in MATLAB. A 

population size of 1000 is used, with the following settings: The crossover fraction, which 

controls the ratio of children that are created via crossover rather than mutation, is set to 

0.8, and the Pareto faction setting that limits the number of solutions on the Pareto front is 

set to 0.35. 
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Table 5.1 Input and response variables for the regression models for Ti-6Al-4V and 

IN100. 

 Input Variables 
Response 

(Experimental Data) 

Material Tool 
vc 

[m/min] 

f 

[mm/rev] 

d1 – IN100  

[µm] 

IN100 

WC/Co, rβ=5µm 
12 0.05 0.83 

24 0.05 0.94 

WC/Co, rβ=10µm 
12 0.05 0.92 

24 0.05 0.78 

WC/Co, rβ=25µm 
12 0.05 0.97 

24 0.05 0.81 

Material Tool 
vc 

[m/min] 

f 

[mm/rev] 

Davg – Ti-6Al-4V  

[µm] 

Ti-6Al-4V 

WC/Co, rβ=5µm 

55 0.05 10.70 

55 0.1 13.63 

90 0.05 16.29 

90 0.1 14.57 

WC/Co, rβ=10µm 

55 0.05 13.20 

55 0.1 12.82 

90 0.05 14.39 

90 0.1 13.66 

WC/Co, rβ=25µm 

55 0.05 13.03 

55 0.1 14.39 

90 0.05 16.17 

90 0.1 13.57 
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Table 5.2 Regression model coefficients with R2 values for machining IN100 nickel and 

Ti-6Al-4V titanium alloys. 

  

Regression 

Model for 

IN100 

Grain Size 

Regression 

Model for 

Ti-6Al-4V 

Grain Size 

Coefficient d1 [mm] Davg [mm] 

β0 0.745 -2.43 

β1 0.0168 0.266 

β2 0.66 0.2098 

β3 - 132.8 

β12 -0.00891 0.00225 

β13 - -0.96 

β23 - 1.707 

R2 0.612 0.783 
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5.2.1.1 Multi-objective Optimization of Productivity and Microstructure of IN100 

In this case, machining productivity is considered by maximizing cutting speed so that the 

maximum material removal rate is achieved. Since feed rate is often limited by the rapid 

work hardening of the IN100 material, a constant feed rate was used in the machining 

experiments shown in Chapter 2. The objective of the optimization problem is to minimize 

the microstructural changes while maximizing the material removal rate. The optimization 

problem is defined as follows: 

 Min. {(𝑑1
𝑒𝑥𝑝(𝑣𝑐, 𝑟𝛽) − 𝑑1)

2
, −𝑀𝑅𝑅(𝑣𝑐)} 

(5.4) 

 s.t. 12 ≤ 𝑣𝑐 ≤ 24  

  5 ≤ 𝑟𝛽 ≤ 25   

 

where 𝑑1
𝑒𝑥𝑝

 is the average primary γ’ size calculated from the regression equation given in 

Eq. (5.2) along with the coefficients given in Table 5.2, and d1=1.28 µm is the reference 

value for the primary γ’ sizes as reported in Chapter 3. The average grain diameter obtained 

after machining of IN100 is considered as a measure for microstructural changes. Note that 

in calculation of MRR, constant feed rate f =0.05 mm/rev and depth of cut ap=1 mm is 

used. 

 

The results of the multi-objective optimization are given for as the Pareto front and the 

corresponding decision variables as shown in Figure 5.1. For visualization and easier 

identification, the Pareto front is grouped into 4 regions using k-means clustering in 

MATLAB, and each group is shown with a different color. It can be seen from the objective 

function space that two groups of non-dominating solutions are obtained. One set of 

solutions for maximizing cutting speed is grouping along the cutting speed value of 24 
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m/min or the upper limit of the velocity constraint and another set of non-dominating 

solutions is forming a trend line which represents a conflicting relations for minimizing the 

microstructural alterations and maximizing the MRR at the same time.  

 

Depending on the importance of the individual objectives, an optimum cutting speed and 

a tool can be selected. For instance, if the surface integrity of the part is of utmost 

importance and productivity can be sacrificed to achieve that, then vc < 14 m/min and 𝑟𝛽 

=25 µm tool (blue region in Figure 5.1) can be used. If the part is not mission critical 

therefore the microstructural changes are not very important, then vc =24 m/min and 𝑟𝛽 =5 

µm tool can be used to maximize the productivity (orange region in the figure). 

 

  

Figure 5.1 Multi-objective optimization result for IN100 nickel alloy with objective 

values (left) and the decision variables (right).  

0.08 0.1 0.12 0.14 0.16 0.18
10

12

14

16

18

20

(d
1

exp
-d

1
)
2
 [m

2
]

M
R

R
 [

m
m

3
/s

]

12 14 16 18 20 22 24
5

10

15

20

25

v
c
 [m/min]

r 
 [

m

]



167 

 

 

5.2.1.2 Multi-objective Optimization of Productivity and Microstructure of 

Ti-6Al-4V 

A similar optimization problem can be constructed for the Ti-6Al-4V material. Since the 

machining experiments were done with two different feed rates (0.05 and 0.1 mm/rev), 

feed rate is included as a decision variable in the problem. Thus, the optimization problem 

is defined as follows: 

 Min. {(𝐷𝑎𝑣𝑔
𝑒𝑥𝑝
(𝑣𝑐, 𝑟𝛽) − 𝐷𝑎𝑣𝑔)

2
, −𝑀𝑅𝑅(𝑣𝑐, 𝑓)} 

(5.5) 

 s.t. 55 ≤ 𝑣𝑐 ≤ 90  

  5 ≤ 𝑟𝛽 ≤ 25  

  
0.05 ≤ 𝑓 ≤ 0.1 
 

 

where 𝐷𝑎𝑣𝑔
𝑒𝑥𝑝

 is the average α grain size calculated from the regression equation given in Eq. 

(5.2) along with the coefficients given in Table 5.2, and 𝐷𝑎𝑣𝑔 = 20 µm is the reference 

value for the α grain sizes as reported in Chapter 3. For the machining of Ti-6Al-4V, the 

depth of cut ap is 2 mm. 

 

The Pareto front obtained from the final generation and the corresponding decision 

variables are shown in Figure 5.2. It is seen that 𝑣𝑐 = 90 [m/min] is the preferred cutting 

speed. Again, two dominant groups are observed in the Pareto front, with small and large 

tool edge radii (𝑟𝛽 = 5  μm and 𝑟𝛽 = 25 μm). The small edge radius tool can be used with 

high feed rates to achieve the best MRR at the cost of high microstructural alterations 

(purple and yellow regions in the figure). In contrast, the large edge radius tool can be 

utilized along with a slow feed setting to minimize the grain size difference, at the cost of 

productivity (orange region in the figure). 
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Figure 5.2 Multi-objective optimization result for Ti-6Al-4V titanium alloy with 

objective values (left) and the decision variables (right). 
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temperatures will possibly lead to less significant changes (in terms of recrystallization) in 

the microstructure, therefore, these objectives may not necessarily conflict with each other. 

 

Similar to Eq. (5.1), a first-order regression model with interactions is utilized to establish 

the input-output relationship between the process parameters and the final average 

temperature: 

 𝑇𝑎𝑣𝑔 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑣𝑐 + 𝛽3𝑓 + 𝛽12𝑡𝑣𝑐 + 𝛽13𝑡𝑓 + 𝛽23𝑣𝑐𝑓 +  (5.6) 

𝑇𝑎𝑣𝑔 [°C] is the final average temperature of the workpiece from the FEM simulations, and 

𝑡 is a variable denoting the tool type (t=0 for the WC/Co 𝑟𝛽 = 25 µm tool and t=1 for the 

TiAlN coated 𝑟𝛽 = 10µm tool). Note that since only 2 tools out of 4 were used in the 

IN100 and Ti-6Al-4V FE simulations, the value of 𝑡 represents a combination of tool edge 

radius and coating. The variable t is allowed to be continuous so that different tool types in 

terms of edge radius and coating can also be considered qualitatively. Alternatively, a 

mixed-integer programming approach can be used to constrain the variable t to be an 

integer, however, it is not implemented here. Furthermore, feed was kept constant across 

all IN100 simulations and it is not used in the equation (𝛽3 = 𝛽13 = 𝛽23 = 0). The data 

used in obtaining the model coefficients are summarized in Table 5.3. The coefficients of 

the model were determined using Minitab software, and are listed in Table 5.4 along with 

calculated R2 values for IN100 and Ti-6Al-4V alloys. 
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Table 5.3 Input and response variables for the regression models for Ti-6Al-4V and 

IN100. 

Material 
Tool Type  

t 

Cutting Speed  

vc [mm/min] 

Feed  

f [mm/rev] 

Average 

Temperature 

Tavg [°C] 

 d1  

IN100  

[µm] 

IN100 

1 

(TiAlN, 𝑟𝛽 = 10µm) 
12 0.05 359 0.88 

1 

(TiAlN, 𝑟𝛽 = 10µm) 
24 0.05 524 0.73 

0  

(WC/Co, 𝑟𝛽 = 25 µm) 
12 0.05 383 0.97 

0 

(WC/Co, 𝑟𝛽 = 25 µm) 
24 0.05 552 0.81 

Material 
Tool Type  

t 

Cutting Speed 

vc [mm/min] 

Feed  

f [mm/rev] 

Average 

Temperature 

Tavg [°C] 

 Davg 

Ti-6Al-4V 

[µm] 

Ti-6Al-

4V 

1 

(TiAlN, 𝑟𝛽 = 10µm) 
55 0.05 302.86 14.66 

1 

(TiAlN, 𝑟𝛽 = 10µm) 
55 0.1 414.46 13.09 

1 

(TiAlN, 𝑟𝛽 = 10µm) 
90 0.05 307.21 14.4 

1 

(TiAlN, 𝑟𝛽 = 10µm) 
90 0.1 439.32 14.95 

0 

(WC/Co, 𝑟𝛽 = 25 µm) 
55 0.05 265.3 13.03 

0 

(WC/Co, 𝑟𝛽 = 25 µm) 
55 0.1 402.82 14.39 

0 

(WC/Co, 𝑟𝛽 = 25 µm) 
90 0.05 289.96 16.17 

0 

(WC/Co, 𝑟𝛽 = 25 µm) 
90 0.1 436.28 13.57 
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Table 5.4 Regression model coefficients for Ti-6Al-4V and IN100. 

 

Regression Models 

for IN100 Grain Size 

and Temperature 

Regression Models for 

Ti-6Al-4V Grain Size 

and Temperature 

Coefficient d1 [μm] Tavg [°C] Davg [μm] Tavg [°C] 

β0 1.116 214 10 121 

β1 -0.084 -20 0.57 77.4 

β2 -0.01258 14.08 0.073 0.202 

β3 - - 26 2231 

β12 -0.000083 -0.3333 -0.0103 -0.413 

β13 - - 2.2 -401 

β23 - - -0.53 8.37 

R2 0.278 0.907 0.398 0.995 

 

5.2.2.1 Multi-objective Optimization of Machining Temperature and 

Microstructure of IN100 

An optimization problem for minimizing the machining temperature and microstructural 

changes is formulated as follows using the variables described previously: 

 Min. {(𝑑1
𝑒𝑥𝑝(𝑣𝑐, 𝑟𝛽) − 𝑑1)

2
, 𝑇𝑎𝑣𝑔(𝑣𝑐, 𝑡)} 

(5.7) 

 s.t. 12 ≤ 𝑣𝑐 ≤ 24  

  0 ≤ 𝑡 ≤ 1  

    

The Pareto front and the corresponding decision variables are shown in Figure 5.3. It is 

seen that the low cutting speed (𝑣𝑐 = 12 m/min) is preferred, and the tool type is the 

deciding factor for the competing objectives. According to the regression equations and the 

result of the optimization, lower cutting speed results in lower temperatures and less 

microstructural alterations. The TiAlN coated tool has higher thermal conductivity and 

lower friction, therefore generates less heat during machining. An interesting result is that 
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even though the TiAlN coated tool yields lower temperatures, it results in a more refined 

microstructure that could be explained by dynamic recrystallization. 

 

The results indicate that if the minimization of microstructural changes is more important 

than the minimization of the average temperature, then the WC/Co 𝑟𝛽 = 25 µm tool can 

be used with  vc=12 m/min cutting speed (orange region in the figure). If the temperature 

minimization is more critical, the coated tool can be used with vc=12 m/min cutting speed 

(yellow region in the figure). 

 

  

Figure 5.3 Multi-objective optimization result for IN100 nickel alloy with objective 

values (left) and the decision variables (right). 
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5.2.2.2 Multi-objective Optimization of Efficiency and Microstructure of Ti-6Al-4V 

The optimization problem for minimizing the grain size change and the machining 

temperature of Ti-6Al-4V titanium alloy is formulated as follows: 

 Min.  {(𝐷𝑎𝑣𝑔
𝑒𝑥𝑝(𝑣𝑐, 𝑟𝛽) − 𝐷𝑎𝑣𝑔)

2
, 𝑇𝑎𝑣𝑔(𝑣𝑐, 𝑡, 𝑓)} 

(5.8) 

 s.t.  12 ≤ 𝑣𝑐 ≤ 24  

   0 ≤ 𝑡 ≤ 1  

   0.05 ≤ 𝑓 ≤ 0.1  
 

The Pareto front and corresponding decision variables are shown in Figure 5.4. It is 

observed that the Pareto front is contained in the slow feed rate (𝑓 = 0.05 mm/rev) 

solutions which could be explained by the dominant effect of feed rate on the heat 

generation during machining. Interestingly, the WC/Co 𝑟𝛽 = 25 µm tool (𝑡 = 0) is 

preferred even though the TiAlN coated tool has higher thermal conductivity and lower 

friction, which could only be attributed to microstructural alterations. Reducing the cutting 

speed yields lower temperatures as well, which is desirable for efficiency. However, lower 

cutting speeds create a significant differences between the reference and predicted grain 

sizes. The WC/Co 𝑟𝛽 = 25 µm tool (𝑡 = 0) can be used with 𝑓 = 0.05 mm/rev and 𝑣𝑐 =

90 m/min can be used to minimize the microstructural alterations at the expense of higher 

temperatures, as shown as the yellow region in the figure. Alternatively, the same tool can 

be used with 𝑓 = 0.05 mm/rev and 𝑣𝑐 = 55 m/min to obtain lower temperatures, shown 

as the blue region in the figure. 
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Figure 5.4 Multi-objective optimization result for Ti-6Al-4V titanium alloy with 

objective values (left) and the decision variables (right).  
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5.3 JMAK Microstructure Model Parameter Optimization 

 

Although the finite element simulations provide a way to predict the grain size distribution 

after machining under different conditions, they can be further improved via a methodical 

search for model parameters. However, designing and running a large amount of 

simulations manually is a tedious task. Fortunately, this can be achieved using heuristic 

search methods such as Genetic Algorithms as discussed in this section. By designing FEM 

simulations and tying them to an optimization algorithm, the JMAK microstructure model 

parameters can be optimized to achieve a better match between FEM predicted grain sizes 

and actual grain sizes. Mean grain sizes obtained from SEM measurements at different 

cutting conditions can be utilized as target values to improve the accuracy predictions of 

the recrystallization model.  

 

The proposed optimization scheme will be applied to IN100 alloy material, to primary γ` 

grains. The original JMAK parameters determined for γ matrix grains in the previous 

chapters can be supplied as the initial population to the GA algorithm. Moreover, certain 

parameters such as the activation energy can be selected to remain constant via equality 

constraints, while others can be bound by inequality constraints at reasonable ranges.  

  



176 

 

 

5.3.1 JMAK Model and Parameters 

The JMAK model described in Chapter 1 utilizes temperature, strain and strain rates 

calculated during the simulations to predict dynamic recrystallization and grain sizes using 

model parameters and material properties. Dynamic recrystallization occurs when a critical 

strain 휀𝑐 = 𝑎2휀𝑝 is reached. The JMAK model equations given in Eqs. (1.1)-(1.5) are 

repeated below: 

 휀𝑝 = 𝑎1𝑑0
ℎ1휀̇𝑚1𝑒𝑥𝑝(𝑄1 𝑅𝑇⁄ ) + 𝑐1 (5.9) 

 
𝑋𝐷𝑅𝑥 = 1 − 𝑒𝑥𝑝 [−𝛽𝑑 (

휀 − 𝑎10휀𝑝

휀0.5
)
𝑘𝑑

] 
(5.10) 

 휀0.5 = 𝑎5𝑑0
ℎ5휀𝑛5휀̇𝑚5 exp(𝑄5 𝑅𝑇⁄ ) + 𝑐5 (5.11) 

 𝑑𝐷𝑅𝑥 = 𝑎8𝑑0
ℎ8휀𝑛8휀̇𝑚8 exp(𝑄8 𝑅𝑇⁄ ) + 𝑐8 (5.12) 

 𝑑𝑎𝑣𝑔 = 𝑑0(1 − 𝑋𝐷𝑅𝑥) +  𝑑𝐷𝑅𝑥𝑋𝐷𝑅𝑥 (5.13) 

 

The apparent activation energy for IN100 nickel alloy is taken as Qact =348,000 J/ mol 

(Kikuchi et al., 1990) and the initial grain size for primary γ’ grains is d0= 1.28 m 

(Milligan et al., 2004) as described previously. Brief descriptions of the JMAK parameters 

implemented in the DEFORM-3D software are given in Table 5.5.  
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5.3.2 Initial Parameters of JMAK Model 

In order to determine initial IN100 parameters, a sensitivity analysis sweep was run based 

on Waspaloy (Shen, 2005) and IN718 AMTC parameters. Further analyses were performed 

using Mathematica in order to obtain reasonable ranges by looking at effects of parameters 

on the equations. Table 5.6 shows the existing JMAK parameters in the DEFORM-3D 

database for Nickel-base alloys IN718 and Waspaloy. These parameters served as a basis 

for the parameter search. Table 5.7 shows the different sets of parameters that were used 

in the analysis.  

 

IN100 base JMAK model parameters, obtained by running sensitivity analyses on 

parameters given in (Shen et al., 1995; Shen, 2005) for Waspaloy, IN718 JMAK 

parameters in DEFORM 3D (IN718-AMTC set) are given in Table 5.8. The JMAK-based 

dynamic recrystallization model implemented in the DEFORM-3D software uses 

parameters a1, h1, m1, c1 and a2 along with the strain rate 휀̇ to calculate the peak strain value 

휀𝑝 as shown in Eq. (5.9), which is in turn used to determine whether recrystallization occurs 

or not. As the IN100 primary γ’ grains have different morphologies, compositions and sizes 

than the γ-matrix grains, it is assumed that 휀𝑝,𝛾−𝑚𝑎𝑡𝑟𝑖𝑥 ≠ 휀𝑝,𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝛾′. Therefore, the 

parameters a1, h1, m1 and a2 are included in the parameter identification study. Moreover, 

parameters a5 and h5, which are the exponents of initial grain size d0 and 휀 in Eq. (5.11) 

contribute to the strain for 50% recrystallization,휀0.5, are included in the scheme. 

Furthermore, in Eq. (5.12), the exponent 휀 denoted n8 and the scaling parameter a8 

contribute to the recrystallized grain size dDRx, therefore they are also included in the 

parameter identification. Parameters m5 and m8 which are the strain rate exponents in 
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calculation of 휀0.5 and dDRx are kept constant as strain rate fluctuates greatly with the FE 

mesh and location. Finally, the parameter h8 is set to 0 (h8 = 0) in order to disable the effect 

of initial grain size d0 to recrystallized grain size dDRx. Recrystallization kinetics 

parameters, d and kd are kept at their initial values. Lastly, values of c1, c5 and c8 are taken 

as constant (c1 = c5 = c8 = 0).  

 

Table 5.5 JMAK parameters and descriptions. 

Qact: Activation energy [kJ/mole] 

a1: Peak strain slope 

h1: Initial grain size sensitivity exponent 

m1: Strain rate sensitivity exponent 

Q1:  Qact m1 

c1: Peak strain intercept 

a2: Critical strain ratio 

a5: 0.5 slope 

h5: Initial grain size sensitivity exponent in 0.5  

n5: Strain sensitivity exponent in 0.5  

m5: Strain rate sensitivity exponent in 0.5   

Q5:  Qact m5 

c5: 0.5 intercept 

a10: DRx constant 

kd: DRx exponent 

βd: DRx constant 

a8: dDRx slope 

h8: Initial grain size sensitivity exponent in dDRx 

n8: Strain sensitivity exponent in dDRx 

m8: Strain rate sensitivity exponent in dDRx 

Q8:  Qact m8 

c8: dDRx intercept 
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Table 5.6 JMAK Parameters for IN718 and Waspaloy. 

Parameters 
IN718 AMTC 

DEFORM-3D 

Waspaloy 

(Shen, 2005) 

 Qact N/A 468000 

Peak Strain 

a1 0.004659 0.0005375 

h1 0 0.54 

m1 0.1238 0.106 

Q1 49520 49610 

c1 0 0 

a2 0.83 0.83 

DRX Kinetics 

a5 294 0.1449 

h5 340 0.32 

n5 512 0 

m5 593 0.03 

Q5 600 14040 

c5 0 0 

βd 0 0.693 

kd 0 3 

a10 0 0 

DRX Grain 

Size 

a8 4.85 × 1010 8103 

h8 0 0 

n8 -0.41 0 

m8 -0.028 -0.16 

Q8 -240000 -74880 

c8 0 0 
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Table 5.7 Different JMAK parameter sets used in the sensitivity analysis study. 

Peak Strain DRX Kinetics DRX Grain Size 

a1 h1 m1 Q1 
c

1 
a2 a5 h5 n5 m5 Q5 

c

5 
d 

k

d 

a1

0 
a8 

h

8 
n8 m8 Q8 

c

8 

0.000538 
0.5

4 
0.106 49610 0 

0.8

3 
0.1449 

0.3

2 
0 

0.0

3 

1404

0 
0 

0.69

3 
3 0 8103 0 0 -0.16 -74880 0 

0.004659 0 
0.123

8 
49520 0 

0.8

3 
294 340 

51

2 
593 600 0 0 0 0 

4.85× 

1010 
0 

-

0.41 

-

0.028 

-

240000 
0 

0.000538 0 0.106 36888 0 0.8 0.1449 
0.3

2 
0 

0.0

3 

1044

0 
0 

0.69

3 
3 0 8103 0 0 -0.16 -55680 0 

2.99× 10-

7 
0 0.106 36888 0 0.8 0.1449 

0.3

2 
0 

0.0

3 

1044

0 
0 

0.69

3 
3 0 8103 0 0 -0.16 -55680 0 

3× 10-7 0.5 0.01 3480 0 0.8 0.05 0.2 0 
0.0

3 

1044

0 
0 

0.69

3 
2 0 8103 0 0 -0.16 -55680 0 

0.3 0.5 0.01 3480 0 0.8 0.05 0.2 0 
0.0

3 

1044

0 
0 

0.69

3 
2 0 8103 0 0 -0.16 -55680 0 

2 0 0.006 1308 0 0.8 
1.21× 10-

5 

0.1

3 
0 

0.0

4 
8720 0 

0.69

3 
2 0 150 0 0 -0.03 -6540 0 

2 0 0.006 2088 0 0.8 
1.21× 10-

5 

0.1

3 
0 

0.0

4 

1392

0 
0 

0.69

3 
2 0 150 0 0 -0.03 -10440 0 

0.293 0 
0.010

2 

3549.

6 
0 0.8 0.145 

0.3

2 
0 

0.0

3 

1044

0 
0 

0.69

3 
3 0 8103 0 0 -0.16 -55680 0 

0.293 0 
0.010

2 

3549.

6 
0 0.8 0.145 

0.3

2 
0 

0.0

3 

1044

0 
0 

0.69

3 
3 0 4000 0 0 -0.1 -34800 0 

 

Table 5.8 Initial JMAK model parameters for IN100 alloy. 

a1 h1 m1 c1 a2 d

0.293 0 0.0102 0 0.8 0.693 

a5 h5 m5 n5 c5 kd 

0.145 0.32 0.03 0 0 3 

a8 h8 m8 n8 c8 a10 

8103 0 -0.16 0 0 0 
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Furthermore, a sensitivity analysis has been performed on the parameter a8. Figure 5.5 

shows the results obtained from SEM measurements, and three different simulation sets 

that have been run with four different cutting conditions. The SEM measurement results 

are shown in black while the results obtained with the initial parameter set from Table 5.8 

are shown in red, denoted as original parameters, with a8=8103. The green and blue bars 

represent the results from the same parameter set with modifications to the a8 parameter at 

two levels (a8=5000 and a8=1000). It is seen that increasing the a8 term increases the 

predicted grain sizes, however a nonlinear response is present in comparison to 

measurements. The nonlinear response of different tools and cutting speeds to the grain 

sizes is the motivation to perform a heuristic search on the JMAK model parameters by 

utilizing the Genetic Algorithm.  

 

Figure 5.5 Sensitivity analysis on parameter a8 with different cutting conditions.  
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5.3.3 Model Parameter Identification Methodology 

Model parameter identification is performed by minimizing the difference in measured and 

predicted average grain sizes on primary γ’ grains using FE simulations of machining 

IN100 alloy. The methodology can be summarized in three steps. 

Step 1: Select model parameters to be identified (a1, h1, m1, a2, a5, h5, a8, n8) together with 

their constraints (e.g. a1,min  ≤  a1  ≤  a1,max). 

Step 2: Develop optimization schemes for obtaining the set of model parameters 

heuristically as explained in later sections. FE simulations have been run repeatedly until 

a certain criterion is met. 

Step 3: Analyze the results and identify a suitable set of JMAK model parameters. 

 

5.3.4 Optimization Problem Definition 

The optimization problem for minimizing the difference of measured and predicted grain 

sizes for a particular cutting condition with JMAK model parameters 𝑥 is defined as: 

 Min. (𝑑1
𝑒𝑥𝑝 − 𝑑1

𝑠𝑖𝑚(𝒙))
2
 (5.14) 

 s.t. 𝑨𝒙 = 𝒃 (5.15) 

  𝑪𝒙 ≤ 𝒅 (5.16) 

  𝒍 ≤ 𝒙 (5.17) 

  𝒙 ≤ 𝒖 (5.18) 

where 𝑑1
𝑒𝑥𝑝

 is  the mean of the primary γ' grain sizes obtained from experimental 

measurements and 𝑑1
𝑠𝑖𝑚 is the mean grain sizes obtained from simulations, respectively. 
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Constraints shown in Eqs. (5.15)-(5.19) are chosen based on suitable values and ranges for 

each of the JMAK parameters. The decision variable vector 𝒙 is given in terms of JMAK 

parameters as: 

𝒙 = [𝑎1𝑛1𝑚1𝑄1𝑐1𝑎2𝑎5ℎ5𝑛5𝑚5𝑄5𝑐5𝛽𝑑𝑘𝑑𝑎10𝑎8ℎ8𝑛8𝑚8𝑄8𝑐8] (5.19) 

with  𝑄𝑖 =𝑚𝑖 × 𝑄𝑎𝑐𝑡 where 𝑄𝑎𝑐𝑡 is the activation energy which can be satisfied using Eq. 

(5.15). Furthermore, the following equality constraints are used to form the matrix A and 

vector b in Eq. (5.15). 

 𝑥5 = 𝑥9 = 𝑥12 = 𝑥15 = 𝑥17 = 𝑥21 = 0, 

𝑥8 = 0.48732 , 𝑥10 = 0.03 , 𝑥13 = 0.693 , 𝑥14 = 3 

(5.20) 

There are no coupled inequality constraints in this problem, therefore Eq. (5.16) is not used 

in the optimization. Lower and upper bounds, l and u are used in the form of Eqs. (5.17) 

and (5.18) instead, which are given as in Eqs. (5.21) and (5.22). 

𝒍 = [0.2, 0.1, 0.01, 0, 0, 0.1, 0.1, 0.4, 0, 0.01, 0, 0, 0, 0, 0, 5000, 0, 0.1,−0.5,−∞, 0] (5.21) 

𝒖 = [0.4, 0.5, 0.1,∞, 0, 0.5, 0.5, 0.5, 1, 0.1,∞, 0, 1, 3, 0, 11000, 1, 0.5, −0.1, 0, 0] (5.22) 

The optimization problem can easily be solved in MATLAB using the built in packages. 

However, Finite Element simulations must be designed and run in batch mode, 

autonomously. To achieve this, the MATLAB program has to create the simulations using 

a template file, make the changes as required by the optimization algorithm, submit the 

simulations to DEFORM 3D software and extract the outputs when the simulations are 

over. The optimization process is shown in Figure 5.6. First, a DEFORM Key file is created 

using an existing simulation by the user. This key file contains the necessary information 

such as material properties, JMAK model parameters, geometry, mesh, and solver settings, 



184 

 

 

and is in a text format. Standard MATLAB I/O procedures can be used to manipulate this 

key file to convey the information that is coming from the optimization algorithm, such as 

changing the JMAK model parameters. Next, the KEY file is converted to a DEFORM 

database (DB) file that is used to run the simulation and save the finite element solution. 

At the end of the simulation, the DB file is parsed and grain size information is extracted 

from the elements. These extracted results are passed on to the optimization algorithm, and 

the whole cycle is repeated until an optimum solution is found. Furthermore, since each 

simulation takes a considerable amount of time to be completed, multiple simulations are 

run at the same time, on a multicore processor. We are currently limited to an Intel i-7 

quad-core processor that is capable of running eight simulations at the same time using 

hyper-threading. However, this limits the population size to 8 as well, therefore a queue 

must be implemented to run the simulations in batches of 8 if larger population sizes are 

desired. 

 

Figure 5.6 Optimization of JMAK Model Parameters: DEFORM and MATLAB 

interface.   
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In an attempt to generalize the fit of the parameters, the problem is formulated as multi-

objective optimization utilizing i different cutting conditions with the weighted sum 

approach. A linear scalarization with weights wj is used to convert the problem to a single-

objective problem as shown in Eqs. (5.23)-(5.27). 

Min. 
∑𝑤2𝑗−1 (

µ𝑒𝑥𝑝,𝑗 − µ𝑠𝑖𝑚,𝑗(𝑥)

µ𝑒𝑥𝑝,𝑗
)

2

+𝑤2𝑗 (
𝜎𝑒𝑥𝑝,𝑗 − 𝜎𝑠𝑖𝑚,𝑗(𝒙)

𝜎𝑒𝑥𝑝,𝑗
)

2𝑖

𝑗=1

 
(5.23) 

s.t. ∑ 𝑤𝑗
2𝑖
𝑗=1 = 1  (5.24) 

 𝐴𝑥 = 𝑏 (5.25) 

 𝑥 ≥ 𝑙 (5.26) 

 𝑥 ≤ 𝑢 (5.27) 

Two cutting conditions are used and the objective function is modified accordingly to give 

equal weights to the errors from both simulations. 

 

5.3.5 Simulation Queuing & Batch Jobs 

The simulation queuing is performed via an in-house developed C# program. Figure 5.7 

shows the scheduling and running of the optimization. Firstly, model parameters 

determined by the optimization algorithm in MATLAB are saved in a SQL database. Next, 

a C# application periodically checks for new inputs to the database and captures them. In 

the event of a new simulation input, the C# application creates the DEFORM KEY and DB 

files, then runs these simulations in batches. Once the simulations are over, the application 

writes the results to the SQL database. Meanwhile, the optimization algorithm in 

MATLAB waits for the results to be written in the database. Once the results are in, it 
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calculates the objective function value and continues the optimization process to generate 

new parameters. The process continues until an optimum parameter set is obtained. The 

stopping condition is set such that the difference between the objective function values of 

the best generation and the newest generation is less than 10-5. The advantage of this 

approach is that larger population sizes are made available through queuing. Moreover, 

because parallelization itself does not affect the performance of individual simulations in 

the proposed solution, it is also be possible to create a cluster of workstations in this manner 

by running the C# application on different computers that monitor the database and share 

the workload without having to write complex Message Passing Interface (MPI) calls and 

network operations for parallelization of the whole process, and without having to purchase 

additional expensive software packages. 

 

 

Figure 5.7 Scheduling and running the JMAK model parameter optimization  
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This effort yields JMAK model parameters that are then used in predicting grain sizes for 

other cutting conditions including cutting tools with uncoated WC/Co and TiAlN coated 

WC/Co, two levels of cutting speed (vc=12 m/min and 24 m/min).  

 

5.3.6 Finite Element Simulations 

The Finite Element simulations created for modeling the IN100 turning process described 

in Chapter 3 are utilized in the optimization problem. However, as hundreds of simulations 

are needed for the optimization to converge, the computational time it takes to run these 

simulations becomes an issue. Therefore, in order to reduce the simulation times, the 

problem geometry is simplified, and two separate simulation models are created. 

 

5.3.6.1 Reduced Simulation Model - 1 

In order to speed up the optimization process, reduced models of the simulations shown in 

Chapter 3 are created. The full simulation is first run until the tool has traveled a certain 

distance in the feed (x) direction. Since the feed is kept constant in all IN100 simulations, 

this also means that the tool travels the same distance in the cutting direction in all 

simulations. The simulation is stopped when the x-stroke reaches 394 nm. Then, the length 

of the workpiece is reduced by removing a portion of if that has already been processed. 

The length of the workpiece is reduced to 1.9 mm down from the initial 3.5mm while 

leaving the boundary conditions and solution fields on the remaining part untouched. The 

new workpiece is then utilized in the optimization study, where simulations are run until 

the x-stroke reaches 0.00417. The reduced workpiece, containing approximately 30000 

elements is shown Figure 5.8, at the beginning and end of the optimization run. The results 
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are extracted from the processed region, which is about 0.5 mm in the y direction. This 

approach has reduced the average simulation time to 2 hours. A summary of the simulation 

parameters is given in Table 5.9. 

 

 

(a) 

 

(b) 

Figure 5.8 Reduced Model 1 geometry after the slicing operation: a) Beginning of the 

optimization run. b) End of the optimization run.  

 

The microstructure data is then initialized, and a Deform KEY file is created from the 

simulation. The KEY file is modified accordingly to let MATLAB write in the new set of 

JMAK parameters. This allows the optimization algorithm to modify the parameters in the 

FE simulation.  
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Table 5.9 Simulation parameters for Reduced FE Model 1. 

Length [mm] No. of elements Friction coefficients 

Workpiece Cutting Tool Work Rake Flank 

1.9 0.5 120,000 30,000 
μ=0.8  

WC/Co 

μ=0.6  

WC/Co 

 

 

5.3.6.2 Reduced Simulation Model 2 

Next, we look at improving the accuracy of the simulations by increasing the area where 

the data is extracted from, while keeping the simulation times low. In order to achieve this, 

the original geometry show in Chapter 3 is utilized, however, it is discretized with fewer 

elements. Figure 5.9 shows the model geometry and mesh, and Table 5.10 shows the 

summary of the simulation parameters. Once again, the full simulations are run until the 

tool has travelled a certain distance in the cutting (y) direction starting from a cutting length 

of l1=1.1 mm until a cutting length of l2=2.6 mm (see Figure 5.9). After this distance is 

reached, the simulation is stopped and remeshed using 50000 elements, down from 100000 

in the beginning of the simulation. Afterwards, the boundary conditions and existing 

solution fields (temperature, displacement, etc.) are interpolated on to the new mesh. Note 

that different machining conditions yield different chip geometries and fields (such as 

temperature), therefore this process has to be repeated for each different machining 

condition to obtain different geometries if multiple simulations are required. 
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Figure 5.9 Reduced Model 2 geometry and mesh for TiAlN coated tool with vc=24 

m/min, (a) beginning of the optimization run (cutting length of l1=1.1 mm) (b) end of the 

optimization run (cutting length of l2=2.6 mm). 

 

Table 5.10 Simulation parameters for Reduced FE Model 2. 

Length [mm] No. of elements Friction coefficients 

Workpiece Cutting Tool Work Rake Flank 

3.5 Δl=l2-l1=1.5 120,000 50,000 

μ=0.8 

WC/Co 

μ=0.6  

WC/Co 

μ=0.6  

TiAlN 

μ=0.5  

TiAlN 

 

As discussed in the previous section, Deform KEY files are created from simulations, and 

they are modified to allow MATLAB to write the new set of JMAK parameters in them 

during the optimization. 
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5.3.6.3 Simulation Runs 

Using the Reduced Models explained in the previous sections, two separate optimization 

studies have been performed. First, the optimization problem defined in Eqs. (5.14)-(5.22) 

is solved using FE simulations with the Reduced Model 1 with a single machining 

condition, WC/Co tool with rβ=5 μm and vc=12 m/min cutting speed. The second 

optimization study utilizes WC/Co tool with rβ=5 μm tool, vc=12 m/min cutting speed and 

TiAlN coated tool with vc=24 m/min cutting speed conditions to create two simulations to 

be run simultaneously, using Eqs. (5.20)-(5.27). Table 5.11 shows the constraints used in 

the optimization runs for Models 1 and 2 for each JMAK parameter. The weights were 

selected as w1=w3=0.35 and w2=w4=0.15, with a total of seventy percent of the weights 

being distributed to the means. Thirty percent of the weights were given to the standard 

deviations, in order to better represent the grain size distributions seen in the measurements. 

Note that each machining condition uses a different geometry for reduced model 2.  
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Table 5.11 Constraints used in the optimization runs for Models 1 and 2. 

Parameters 
Constraints 

for Model 1 

Constraints 

for Model 2 

Peak Strain 

Qact Qact =348000 Qact =348000 

a1 0 ≤ a1 ≤ 0.5 0.2 ≤ a1 ≤ 0.4 

h1 0 ≤ h1 ≤ 0.5 0.1 ≤ h1 ≤ 0.5 

m1 0 ≤ m1 ≤  0.5 0.01 ≤ m1 ≤  0.1 

Q1 Q1=Qact × m1 Q1=Qact × m1 

c1 c1 = 0 c1 = 0 

a2 0 ≤ a1 ≤ 1 0.1 ≤ a1 ≤ 0.5 

DRX Kinetics 

a5 0 ≤ a5 ≤ 0.5 0.1 ≤ a5 ≤ 0.5 

h5 0 ≤ n5 ≤ 0.5 h5=0.48732 

n5 n5=0 n5=0 

m5 0 ≤ m5 ≤ 0.5 m5=0.03 

Q5 Q5=Qact × m5 Q5=Qact × m5 

c5 c5=0 c5=0 

βd βd =0.693 βd =0.693 

kd kd =3 kd =3 

a10 a10=0 a10=0 

DRX Grain Size 

a8 5000 ≤ a8 ≤ 10000 5000 ≤ a8 ≤ 11000 

h8 h8=0 h8=0 

n8 0 ≤ n8 ≤ 0.5 0.1 ≤ n8 ≤ 0.5 

m8 -0.5 ≤ m8 ≤ 0 -0.5 ≤ m8 ≤ -0.1 

Q8 Q8=Qact × m8 Q8=Qact × m8 

c8 c8=0 c8=0 
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5.3.7 Optimization Results and Discussion 

The identified JMAK model parameters using reduced Model 1 are given in Table 5.12. It 

is seen that h1, m1, a2, h5 and n8 parameters show differences to the γ-matrix grain 

parameters shown in Table 5.8 used as initial values. 

 

The results obtained from the multiple simulation case with reduced Model 2 are given in 

Table 5.13, in the first row. Furthermore, a post-process analysis is performed using the 

simulation results to determine the effects of the weights wj in the weighted sum objective 

function shown in Eq. (5.23). Rows 2 and below show the result of this post processing 

analysis, where the weights of the standard deviation terms (w2, w4) are set to 0, and weights 

of the mean grain size terms (w1, w3) are varied at 5 different cases. Based on the different 

weights, a new set of parameters has been chosen to better represent the model. Figure 5.10 

shows a comparison between the optimization results, and the initial parameters. Results 

denoted by MultiOpt-Reduced in Figure 5.10 belong to the model (SetMulti_Opt,1) obtained 

from the post-process analysis whose parameters are given later. It is seen that the single 

simulation case with reduced Model 1 outperforms the reduced Model 2 on TiAlN rβ=10 

μm, vc=12 m/min and WC/Co rβ=5 μm, vc=24 m/min conditions, while the multiple 

simulation case with reduced Model 2 is best at TiAlN rβ=10 μm, vc=24 m/min and WC/Co 

rβ=5 μm, vc=12 m/min conditions. 

 



194 

 

 

Table 5.12 Identified JMAK model parameters using single machining condition with Reduced Model 1. 

a1 h1 m1 c1 a2 d 

0.293 0.34 0.039 0 0.38 0.693 

a5 h5 m5 n5 c5 kd 

0.145 0.48 0.03 0 0 3 

a8 h8 m8 n8 c8 a10 

8103 0 -0.16 0.43 0 0 

 

Table 5.13 Identified JMAK model parameters with Reduced Model 2, post-processed with different weights. 

Objective  

Weights 
a1 h1 m1 a2 a5 h5 a8 n8 

WC /Co 

vc=12 

m/min  

TiAlN  

vc=24 

m/min 

Davg_mes 

0.828 

μm 

SDmes 

0.239 

μm 

Davg_mes 

0.728 

μm 

SDmes 

0.219 

μm 

w1 w2 w3 w4 
Davg_sim 

[μm] 

SDsim 

[μm] 

Davg_sim 

[μm] 

SDsim 

[μm] 

0.3

5 

0.1

5 

0.3

5 

0.1

5 

0.2871

8 

0.2724

9 

0.010

2 

0.1161

3 
0.2654 

0.4873

2 

860

3 

0.3388

1 

0.9817

4 

0.3634

9 

0.9350

2 

0.2636

5 

1 0 0 0 0.2871

8 

0.1318

4 

0.010

2 

0.1161

3 
0.1079 

0.4873

2 

810

1 

0.3388

1 

0.8303

8 

0.4582

5 

0.7187

7 

0.3726

6 

0.7 0 0.3 0 0.2871

8 

0.1318

4 

0.010

2 

0.1161

3 
0.1079 

0.4873

2 

810

1 

0.3388

1 

0.8303

8 

0.4582

5 

0.7187

7 

0.3726

6 

0.5 0 0.5 0 0.2871

8 

0.1318

4 

0.010

2 

0.1161

3 
0.1079 

0.4873

2 

810

1 

0.3388

1 

0.8303

8 

0.4582

5 

0.7187

7 

0.3726

6 

0.3 0 0.7 0 0.2871

8 

0.1318

4 

0.010

2 

0.1161

3 

0.1156

5 

0.4873

2 

813

0 

0.3388

1 
0.8374 

0.4552

6 

0.7354

3 

0.3667

8 

0 0 1 0 0.2871

8 

0.1318

4 

0.010

2 

0.1161

3 

0.1156

5 

0.4873

2 

813

0 

0.3388

1 
0.8374 

0.4552

6 

0.7354

3 

0.3667

8 
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Figure 5.10 Comparison of measured and predicted grain sizes by using identified JMAK 

model parameters under different objective function weights. 

 

Furthermore, to complete the analysis, parameter sets obtained via reduced Model 1 and 

reduced Model 2 are run on the FE simulation models (full FE models) given in Chapter 

3, and the results are given in Table 5.14. On the full simulations, the JMAK parameters 

identified with the reduced Model 1 simulation (with WC/Co rβ=5 μm, vc=12 m/min) 

outperforms the reduced Model 2 (with two machining conditions) in all conditions, except 

the TiAlN vc=24 m/min condition. The difference can be related to two reasons. Firstly, it 

is possible that the TiAlN, vc=24 m/min condition is dissimilar to the other conditions, and 

a better generalization is achieved with the WC/Co rβ=5 μm, vc=12 m/min condition that 

is used as the sole condition in the case of the reduced Model 1. Secondly, the difference 

in the Reduced Models could have also caused the difference.  

 

On the other hand, it is important to note that smaller grain sizes are linked with hardening 

in IN100, which causes increased difficulty in machining. The reduced Model 1 parameters 
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overestimate the grain sizes in one cases by a significant margin, while the reduced Model 

2 parameters underestimate the grain sizes in the other two. It is preferable to err on the 

side of caution, and predicting a more refined microstructure is more desirable. Ultimately, 

the optimization problem could be run on the full set of simulations given sufficient 

computational power and time to achieve improvements on these parameters. 

 

Table 5.14 Identified JMAK model parameters (with w1=0.5 and w2=0.5) running on full 

FE simulations. 

Parameter / Condition *SetSingle_Opt **SetMulti_Opt,1 **SetMulti_Opt,2 

a1 0.293 0.28718 0.28718 

h1 0.34 0.13184 0.13184 

m1 0.039 0.0102 0.0102 

a2 0.38 0.11613 0.11613 

a5 0.145 0.11565 0.1079 

h5 0.48 0.48732 0.48732 

a8 8103 8130.4 8101.1 

n8 0.43 0.33881 0.33881 

TiAlN,  vc=12 m/min,  

Davg,exp 0.87 [μm] 
0.79 0.709 0.708 

TiAlN, vc=24 m/min,  

Davg,exp 0.728 [μm] 
0.88 0.72 0.715 

WC/Co rβ=5 μm, vc=12 m/min,  

Davg,exp 0.828 [μm] 
0.78 0.726 0.721 

WC/Co rβ=5 μm, vc=24 m/min,  

Davg,exp 0.94 [μm] 
0.89 0.738 0.764 

 

*SetSingle_Opt = Set of model parameters identified from a single machining simulation (WC/Co, Sharp, vc=12 m/min) by 

using the reduced FE Model 1. 

**SetMulti_Opt = Set of model parameters identified from multiple machining simulations (WC/Co, Sharp, vc=12 m/min 

and TiAlN vc=24 m/min) by using the reduced FE Model 2 and further analysis using the results. 
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 CHAPTER 6: EXPERIMENTAL ANALYSIS OF IN625 SELECTIVE LASER 

MELTING 

 

6.1 Introduction 

 

Additive manufacturing of metals is becoming increasingly popular in aerospace, 

automative and medical industries as it allows production of intricate parts directly from a 

computer design. Selective Laser Melting (SLM) is a metal additive manufacturing method 

where a layer of powdered metal is melted at specific locations using a high power laser 

beam. The desired 3D geometry is sliced into 2D layers of equal thickness using Computer 

Aided Design (CAD) software, and the printer builds the part layer-by-layer by adding a 

new layer of powder on top of the previously processed layer. Once the process is 

completed, the excess metal powder is vacuumed and can be reused to a certain extent. 

Figure 6.1 provides a graphical representation of the SLM process.  

 

While the 3D printing allows manufacturing of parts with sophisticated features, the quality 

of the printed parts are often not up to the industry level standards, and require further 

operations to improve quality and surface integrity. The surface integrity and layer 

characteristics of the processed parts play an important role in the products reliability and 

service life. Microstructures of IN625 parts obtained from SLM are significantly different 

than parts obtained with other processes. Selective Laser Melting of powder metals has not 

been fully studied and documented yet and consequently, investigation of the 

microstructure is of great importance.  
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Figure 6.1 Representation of Selective Laser Melting process.  

 (Krauss et al., 2014) 

 

In this Chapter, Selective Laser Melting processing of IN625 alloy is analyzed using test 

coupons that were fabricated with different process conditions. Grain size and columnar 

grain growth directions are measured from SEM images. Furthermore, an in-situ thermal 

camera video recording is analyzed for meltpool widths, spattering particles and heating 

and cooling rates.  
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6.2 Selective Laser Melting Process 

 

The SLM process works by melting desired locations on the powder bed on a layer. The 

area to be processed is first divided into stripes. Each stripe consists of multiple tracks, 

separated by a hatch distance, and each track is processed with the laser beam at a constant 

scanning velocity. After a track is completed by the movement of laser in one direction, 

the laser shifts towards the next unprocessed track and starts moving in the opposite 

direction of the previous track as shown in Figure 6.2. The size of the molten region in the 

powder bed, called the meltpool, is determined by the process parameters such as scanning 

velocity (vs), laser power (P), hatch distance (h), laser spot size (d) and the powder material 

mesh size (MS). Material properties such as thermal conductivity (k), specific heat (Cp), 

density () and reflectivity (R), as well as the process environment also has an effect on the 

meltpool. After a layer is finished, a new layer of powder, with a predefined thickness (s) 

is placed on the powder bed. Another process parameter in the SLM process is the rotation 

angle between consecutive layers, which allows the parts to be built in different scanning 

directions at each layer. Note that the 90º rotation angle means that after each layer, the 

scanning directions are rotated by 90º which essentially means that the scanning directions 

coincide after every other layer whereas the 67º angle rotation strategy yields a different 

design.  

 

For a successful build, it is critical that the meltpool size is large enough to connect the 

tracks and stripes in each layer and deep enough to connect to the previous layer. 

Inadequate process parameters can easily cause incomplete fusion which leads to 
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catastrophic failures during or after the process. Furthermore, process parameters also have 

a significant effect on the underlying microstructure of the part, which affects the 

mechanical properties of the material significantly.  

 

 

Figure 6.2 SLM terminology.  

(Criales et al., 2015) 

 

6.2.1 Sample Fabrication and Preparation 

In order to analyze the SLM processing of IN625, thirty six specimens have been 

manufactured at the National Institute for Standards & Technology (NIST) facility in 

Gaithersburg, MD, using an EOS M270 DMLS machine. Fabricated test coupons are 16 × 

16 × 15 mm in dimension. The coupons were removed from the base plate using wire 

Electrical Discharge Machining (EDM) which results in final coupon heights less than 

15mm. Coupons are processed with 4mm stripes, with a 0.1 mm overlap between each 

stripe to ensure the stripes are fused together. Process parameters follow the Box-Behnken 

design with ranges such that the resulting energy intensities coincide with the acceptable 
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builds shown in Anam et al. (Anam et al., 2013a). Three process parameters are considered 

at three levels, namely, laser power (P), scanning velocity (vs) and hatch distance (h). The 

rotation angle scan strategy was not included as a factor in the design, rather, two separate 

designs were made for 90º and 67º rotation strategies, with otherwise identical parameters. 

The three factor Box-Behnken design is shown in Figure 6.3 that represents the process 

space where the treatment combinations appear at the center of the cube as well as on the 

midpoints of the edges. Table 6.1 shows the standardized values of factors for each 

experiment in a 3-factor, 3-level Box-Behnken design where low, medium and high 

settings of each factor are shown. The selected Box-Behnken design requires 15 coupons 

to be processed with distinct parameters, as well as 3 additional replications at the default 

setting. Therefore, 36 coupons were built in total for the experiments. It is important to 

note that the 67º setting is the recommended setting by EOS. Locations of these coupons 

were assigned randomly prior to the build, and the build layout is shown in Figure 6.4. 

 

Box-Behnken design was utilized in designing of experiments it requires less number of 

experiments compared to other designs such as full factorial designs, while maintaining 

rotatability. Furthermore, it allows the analysis of results via Response Surface 

Methodology (RSM) which is a popular tool for creating predictive models from 

experimental data.  
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Figure 6.3 Box-Behnken Design. 

(National Institute of Standards and Technology, 2015) 

 

 

Figure 6.4 Build layout, as shown in the EOS M270 software.  

 

In order to analyze the microstructure of SLM processed IN 625, specimens have been 

built as explained in the next sections. Due to the nature of the SLM process, processed 

layers are reheated many times during the processing of new layers, and the effect of 

reheating on the microstructure can only be observed from the interior layers. Moreover, 

because of convective and radiative heat transfer with the environment, the “skin” of the 

coupons are likely to experience a higher cooling rate then the core which may also affect 
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the microstructure. Furthermore, the SLM machine processes the outer regions of the 

specimens with the so called “skin” parameters that are different than the user prescribed 

parameters. Therefore, coupons obtained via SLM were first ground to remove 

approximately 500 µm from the outside surfaces. After the grinding operation, the SLM 

coupons were electropolished to reveal the microstructure. 

 

 

Table 6.1 General Structure of Box-Behnken Design for Three Factors 

Power 

P 

 [W] 

Scanning Velocity  

vs 

[mm/s] 

Hatch Distance 

h 

 [mm] 

169 725 0.1 

195 725 0.1 

169 875 0.1 

195 875 0.1 

169 800 0.09 

195 800 0.09 

169 800 0.11 

195 800 0.11 

182 725 0.09 

182 875 0.09 

182 725 0.11 

182 875 0.11 

182 800 0.1 

182 800 0.1 

182 800 0.1 
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6.3 Image Analysis 

 

Grain sizes are and growth directions are indicative of cooling rates, and can affect the 

mechanical properties of the material significantly. Utilizing a similar methodology to 

Chapter 2, grain size information can be extracted from SEM images that are taken from 

SLM produced coupon samples.  

 

6.3.1 Scanning Electron Microscopy (SEM) Imaging 

SEM images were obtained from the prepared test coupons using the InLens and Secondary 

Electron (SE2) detectors, from XY, XZ and YZ surfaces at multiple locations and 

magnification levels.  The images reveal a dendritic microstructure with cross sections of 

dendrites appearing as equiaxed grains in different cross-sections of the coupons. The 

dendrites appear to be growing in 2 main directions, in the build (Z) direction and also in 

a direction perpendicular to the laser’s scanning path. During the processing, the scanning 

path changes many times, thus creating dendrites in different directions. The growth of 

dendrites in these two directions can be explained by temperature gradients as dendritic 

growth is observed when large gradients of temperature or concentration are present. In the 

case of SLM, the temperature gradient is largest in the build direction as the cooling occurs 

towards the base plate via conduction, and towards the environment at the top layer 

dominantly via radiation (due to high temperatures) and to some extent convection (the 

chamber is not in vacuum). 
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Figure 6.5 shows the XZ view of the coupon #35 (195 W, 800 mm/s, 0.1 mm, 90° rotation 

scan strategy). Here, the build direction (Z) is shown with a white arrow. Coupon #35 is of 

specific importance as it was processed with the default settings. Layers can be seen 

approximately 20 μm apart and the layer thickness varies along each layer as the meltpools 

intrude and join with the previously solidified layers. Figure 6.6 shows the XZ view of the 

coupon at larger magnifications. Columnar grains are observed in the build direction, with 

approximately 0.75 μm in width.  Figure 6.7 shows the XY and YZ views of coupon #17 

(182 W, 800 mm/s, 0.1 mm, 90° rotation scan strategy), produced with a different set of 

parameters. It is observed that the region between two curved meltpool boundaries contains 

equiaxed grains, whereas columnar grains as well as equiaxed grains are observed within 

the meltpool boundaries.   
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Figure 6.5 SEM image of the electropolished XZ surface of the coupon #35, at 100X 

magnification. B indicates the build direction. 

 

 

 

Figure 6.6 SEM image of the electropolished XZ surface of the coupon #35, at 1500X 

magnification (left) showing layers and 8000X magnification (right) showing columnar 

grains with inclinations. B indicates the build direction. 
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Figure 6.7 SEM image of horizontal (XY) section (top) and vertical (YZ) section 

(bottom) of coupon #17 showing cellular growth between meltpool regions and columnar 

growth within meltpool regions.  
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6.3.2 Grain Size Detection 

An image processing procedure is applied on SEM images by marking grain boundaries in 

order to calculate the average diameters of the cellular grains commonly seen in the XY 

plane. However, manually marking the grains on each SEM image, as shown in Chapter 2, 

is a very challenging task given the sheer amount of grains and images involved. The task 

can be made easier by utilizing various image analysis methods and machine learning, as 

explained in the next section. 

 

6.3.2.1 Semi-Automatic Edge Detection of Grains Using Machine Learning 

Machine learning algorithms can be utilized to mark the grain boundaries, greatly reducing 

the workload for manual marking. Feature selection is an important task in constructing 

machine learning algorithms, especially when a large amount of data is involved. A 

standard SEM image consists of 1024 by 768 pixels, and the grayscale color information 

of each pixel is coded as an integer between 0-255. 

 

After various trial and error experiments, the best testing performance was obtained after 

the image was processed in the following way: (1) Canny edge detection is applied on the 

images. (2) A brightness threshold is applied separately on the images. After the brightness 

threshold is applied, the pixels are processed with a radial filter. (3) The resulting images 

are superimposed with different weights applied at each image as a coefficient for the color 

information. 
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Features are then extracted from the resulting image to be used in Random Forests based 

classification in the following manner. The 8-connected pixel neighborhood, similar to the 

Moore’s neighborhood is obtained for each pixel as shown in Figure 6.8. Here, pixel pi,j is 

the central pixel, with color ci,j.  

 

 

Figure 6.8 8-connected neighborhood for pixel pi,j 

 

Each pixel in this neighborhood is used to form a vector of features using their color value, 

along with the central pixel. The vector is then normalized in order to improve 

generalization power. Additionally, the initial color of the central pixel is also included in 

the feature vector which is given by: 

 𝑐 =  [�̂�𝑖−1,𝑗+1�̂�𝑖,𝑗+1�̂�𝑖+1,𝑗+1�̂�𝑖−1,𝑗�̂�𝑖,𝑗 �̂�𝑖+1,𝑗�̂�𝑖−1,𝑗−1�̂�𝑖,𝑗−1�̂�𝑖+1,𝑗−1𝑐𝑖,𝑗] (6.1) 

In this methodology, each pixel must have an 8-connected neighborhood, therefore, the 

pixels at the four edges of the original image are not treated as observations as they don’t 

have the required amount of neighboring pixels. Consequently, predictions can’t be 

performed on the edge pixels of the image. After the input matrix is constructed, Principal 

Component Analysis (PCA) is performed to further reduce the number of features.  
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A binary output variable for each pixel is defined in the classification problem to suggest 

whether the pixel is on the boundary (edge) of a grain, or not. This information comes from 

the preprocessed image (edge detection + thresholding) as explained previously. Each pixel 

is then treated as an observation, and subsequently, input and output matrices are 

constructed. Finally, a Random Forests classification model is trained with 4 trees using 

the input matrix and the output vector is defined. 

 

The grain size calculation algorithm explained in Chapter 2 requires convex and continuous 

(with no gaps in the perimeter) boundaries to be marked on the image. While the proposed 

machine learning algorithm is successful at detecting edges, the process results in 

disconnected edge detection, i.e. some pixels are missing along the contour of the grain. 

This prevents the grain size calculation operation. Therefore, a manual post-processing step 

is applied after the RF-predictions. 

 

An image processing procedure is applied on SEM images in order to calculate the average 

diameters of the cellular grains commonly seen in the XY plane. The calculation is 

performed by manually tracing the boundaries of the grains on the SEM images with RF-

predictions first, and then calculating their diameters in MATLAB.  
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6.3.2.2 Results and Analysis 

 Figure A1 in Appendix A shows the processed SEM images of XY views of all coupons 

showing marked grains and calculated grain diameters. The number of grains identified in 

each image varies between 126 and 547, which is sufficient for statistical analysis. Only 

one image per condition is chosen to be processed and further analysis can yield more 

general results. Figure 6.9 shows the grain size measurements from two of the coupons; 

coupon #35 (195 W, 800 mm/s, 0.1 mm, 90° rotation scan strategy) and (b) coupon #31 

(195 W, 800 mm/s, 0.1 mm, 67° rotation scan strategy).  Measurements for all coupons are 

summarized in Table 6.2, showing average grain diameters for each coupon, along with 

the processing conditions.  
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 SEM Image with Grains Histogram with average grain size 

(a) 

  

(b) 

  

Figure 6.9 Grain size analysis of SLM processed IN625 coupons, (a) coupon #35 (195 W, 

800 mm/s, 0.1 mm, 90° rotation scan strategy) and (b) coupon #31 (195 W, 800 mm/s, 

0.1 mm, 67° rotation scan strategy). 
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Table 6.2 Processing conditions and grain size analysis results. 

Coupon # 
Rotation 

[º] 

Laser 

Power 

P 

[W] 

Scanning 

Velocity 

vs 

[mm/s] 

Hatch 

Distance 

h 

[mm] 

Energy 

Intensity 

E 

[J/mm3] 

Average 

Grain 

Diameter 

Davg [μm] 

Standard 

Deviation 

of Grain 

Diameters 

SDavg [μm] 

1 90 169 875 0.1 96.57 0.6809 0.0913 

2 67 169 725 0.1 116.55 0.5247 0.1226 

3 67 195 725 0.1 134.48 0.5175 0.1111 

4 90 195 875 0.1 111.43 0.5588 0.1033 

5 67 169 800 0.09 117.36 0.5728 0.0885 

6 90 182 875 0.09 115.56 0.4893 0.0838 

7 67 182 800 0.1 113.75 0.6003 0.0809 

8 90 182 725 0.11 114.11 0.4659 0.0942 

9 90 195 800 0.11 110.8 0.5158 0.1049 

10 67 182 725 0.11 114.11 0.7336 0.1313 

11 67 169 875 0.1 96.57 0.4961 0.093 

12 90 182 725 0.09 139.46 0.7546 0.1069 

13 67 195 800 0.09 135.42 0.615 0.0881 

14 90 182 800 0.1 113.75 0.6567 0.1395 

15 90 182 800 0.1 113.75 0.4946 0.1046 

16 90 195 725 0.1 134.48 0.71 0.11 

17 90 182 800 0.1 113.75 0.66 0.1 

18 90 182 875 0.11 94.55 0.5052 0.0866 

19 67 195 875 0.1 111.43 0.4826 0.2071 

20 90 169 725 0.1 116.55 0.615 0.1194 

21 90 169 800 0.09 117.36 0.5469 0.0964 

22 67 182 800 0.1 113.75 0.3943 0.1505 

23 90 169 800 0.11 96.02 0.5607 0.0845 

24 67 182 800 0.1 113.75 0.5487 0.1521 

25 67 195 800 0.11 110.8 0.5044 0.0909 

26 67 182 875 0.09 115.56 0.5129 0.0719 

27 67 182 725 0.09 139.46 0.4411 0.1512 

28 67 182 875 0.11 94.55 0.3857 0.0613 

29 90 195 800 0.09 135.42 0.65 0.11 

30 67 169 800 0.11 96.02 0.6062 0.1449 

31 67 195 800 0.1 121.88 0.7622 0.1424 

35 90 195 800 0.1 121.88 0.67 0.09 
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Figures 6.10-6.13 show the main effects of energy intensity, laser power, scanning speed 

and hatch distance on the measured average grain sizes respectively. In general, increasing 

the energy intensity causes an increase in the average grain sizes. Laser power does not 

seem to affect the grain sizes significantly in both 67° and 90° rotation strategies. 

Increasing scanning speed tends to decrease the grain sizes in both 67° and 90° rotation 

strategies. Increasing hatch distance tends to reduce the grain average grain diameters in 

the case of 90° rotation, whereas in the 67° rotation the change is not as significant.  

 

 

Figure 6.10 Effect of energy intensity. 
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Figure 6.11 Effect of laser power.  

 

 

Figure 6.12 Effect of scanning velocity. 
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Figure 6.13 Effect of hatch distance. 

 

In order to better understand the effect of each process parameter, a detailed analysis is 

carried out by looking at effects of two process parameters at different levels while keeping 

the third process parameter constant at the medium level, as shown in Figures 6.14-17. In 

these figures, the error bars represent sample standard deviations. It is clear that there are 

many factors affecting the microstructural evolution. Figure 6.14 shows that at a low laser 

power, increasing the scanning speed causes an increase in the average grain sizes for 90° 

rotation strategy and a decrease in the average grain sizes for the 67° rotation strategy. At 

the high power level (195 W), increasing scanning speed decreases the average grain size 

for 90° rotation, and a nonlinear effect is observed for the 67° rotation. Figure 6.15 shows 

that at low and medium scanning speeds, increasing the laser power tends to increase the 

average grain size for 90° rotation, while at the high scanning speed level the effect is 

reversed. For 67° rotation, a clear trend is not observed for low and high speeds, but at the 

medium speed average grain sizes are increased with increasing power. Figure 6.16 shows 

that at low and medium hatch distance settings, increasing laser power tends to increase 
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the average grain size for both 67° and 90° rotation strategies while at the high level hatch 

distance setting (h=0.11mm), increasing power decreases the average grain size for both 

strategies. Finally, Figure 6.17 shows that at the low level hatch distance setting 

(h=0.09mm), increasing the scanning speed decreases the average grain size for 90° 

rotation whereas at the high level hatch distance setting, the effect is reversed. For the 67° 

rotation strategy, increasing the scanning speed increases the average grain size at the low 

hatch distance setting but decreases it at the high hatch distance setting. It is important to 

note the sharp changes in the average grain size (diameter) in Figure 6.17 that are caused 

by large changes in the scanning speed. 
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Figure 6.14 Effect of laser power and scanning velocity. 

 

 

 

Figure 6.15 Effect of scanning velocity and laser power.  
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Figure 6.16 Effect of hatch distance and laser power.  

 

 

Figure 6.17 Effect of hatch distance and scanning velocity.  
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6.3.3 Growth Direction Analysis 

Growth directions provide valuable information about how the processing parameters 

affect the microstructure as they are indicative of cooling rates and directions. The images 

reveal a dendritic microstructure with cross sections of dendrites appearing as equiaxed 

grains in different cross-sections of the coupons. The dendrites appear to be growing in 2 

main directions, in the build (Z) direction and also in a direction perpendicular to the laser’s 

scanning path. During the processing, the scanning path changes many times, thus creating 

dendrites in different directions. The growth of dendrites in these two directions can be 

explained by temperature gradients as dendritic growth is observed when the growth is 

diffusion driven, due to large gradients of temperature or concentration being present. In 

the case of SLM, the temperature gradient is largest in the build direction as the cooling 

occurs towards the base plate via conduction, and towards the environment at the top layer. 

Analyzing the orientation of the dendrites may reveal the effect of different heating/cooling 

cycles resulting from process parameters on the microstructure of the IN625. 

 

The dendritic microstructure observed in the SLM processed IN625 coupons indicate that 

the solidification is diffusion driven and largely affected by thermal gradients. Analyzing 

the orientation of the dendrites may reveal the effect of different heating/cooling cycles 

resulting from process parameters on the microstructure of the IN625. In this section, 

directionality in the different microstructures resulting from various process conditions is 

identified via image analysis. By looking at the XZ cross-section of the test coupons, the 

boundaries of dendrites are identified and their directions with respect to the z axis (build 

direction) are obtained using MATLAB. Looking at YZ cross-sections would also yield 
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similar results due to the rotational scanning strategies. The image processing algorithm 

identifies growth directions in the SEM images in the following way: 

Step 1: Regions of interest on the image are marked manually. Each image is processed 

regionally for each of the marked areas.  

Step 2: The contrast of the image is adjusted. The image is filtered and processed to remove 

the noise and thresholding is applied to reveal boundaries. 

Step 3: The region of interest (ROI) is divided into n x m sub-regions where n x m are 

determined based on the size of the ROI and pixel size (pixels per µm; depends on the 

image resolution and zoom level of SEM) of the image. 

Step 4: Hough transform is applied and top 80% of the peaks are selected. Lines 

corresponding to these peaks with sufficient minimum line length and acceptable gap size 

per line, defined as a function of pixel size and sub-region size, are selected. The inclination 

angles of detected lines are constrained between -30° and 30° with respect to the z axis. 

Corrections are made to reduce the errors. 

Step 5: Histograms are constructed using all sub-regions and regions in an image. 

 

Calculated angles are positive in the counter-clockwise direction from the Z axis, as shown 

in Figure 6.18. Lines with positive inclination are shown in blue whereas lines with 

negative inclination are shown in red. Note that the coloring gets stronger with increasing 

angle magnitude. Figure B1 in Appendix B shows the analyzed SEM images along with 

histograms for detected lines in each image. 
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Note that the coupons were aligned with the SEM detector using coupon edges at the time 

of recording in order to minimize the error coming from tilting in the images. Also note 

that coupon #29 (195 W, 800 mm/s, 0.09 mm, 90° rotation scan strategy) YZ surface is 

being used instead of XZ surface due to technical difficulties and it is considered to be not 

significantly different than what the XZ surface would yield. 

 

 

Figure 6.18 Positive and negative angles and line coloring.  

 

6.3.3.1 Results and Analysis 

Measurements for all coupons are summarized in Tables 6.3-6.4, showing bin centers and 

averages for positive and negative dominant angles, along with the processing conditions. 

Figure 6.19 shows the measurements from coupons #35 (195 W, 800 mm/s, 0.1 mm, 90° 

rotation scan strategy) and #31 (195 W, 800 mm/s, 0.1 mm, 67° rotation scan strategy). 

From the figure, it is evident that a decrease in the scanning velocity between these two 

coupons caused the growth directions in the measurement area to lean towards the positive 

angles. As dendrites grow towards cooler areas, the skewness of the histogram indicate 

directional heating or cooling caused by the SLM process. 
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For further analysis, dominant positive and negative directions are chosen from each 

image. These directions are compared against each other to better understand the effect of 

process parameters. Figures 6.20-6.22 show the main effects of laser power, scanning 

speed and hatch distance on positive and negative growth directions, with dashed lines 

showing the overall trend. The values are obtained from the histogram bin centers shown 

in Figure A1 in Appendix A. Note that missing values in these figures means that no 

dominant direction (positive or negative) was identified for that case. Overall, it is seen 

that increasing laser power increases the magnitude of both positive and negative dominant 

angles for the 90° rotation strategy whereas it tends to decrease the positive dominant angle 

and not affect the negative dominant angle for the 67° rotation strategy. Increasing the 

scanning speed also causes an increase in both positive and negative dominant angles in 

the 90° rotation strategy setting, whereas a decrease in the positive angle and an increase 

in magnitude in the negative angle is observed for the 67° rotation strategy. Finally, 

increasing the hatch distance tends to increase the magnitude of both negative and positive 

dominant angles in both 90°and 67° rotation strategies.  Although the effects are nonlinear 

in most cases, these plots provide an insight on how the process parameters may alter the 

microstructure. 
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Table 6.3 Processing conditions and grain growth direction analysis results for 90° 

rotation. 

Coupon 
# 

Laser 

Power 

P [W] 

Scanning 

Velocity 

vs [mm/s] 

Hatch 

Distance 

h [mm] 

Energy 

Intensity 
[J/mm3] 

E=P/vs×h×s 

θ+ 
Average 

of θ+ 

SD 

of 

θ+ 

θ- 

Average 

Of 

θ- 

SD 

Of 

θ- 

1 169 875 0.1 96.6 20 19.29 2.66 -10 -9.47 2.52 

4 195 875 0.1 111.4 30 27.76 1.86 -10 -11.48 2.52 

6 182 875 0.09 115.6 10 11.74 2.51 0 3.72 1.17 

8 182 725 0.11 114.1 20 19.87 2.46 -10 -11.01 2.76 

9 195 800 0.11 110.8 30 27.84 1.56 -10 -11.20 2.88 

12 182 725 0.09 139.5 0 -1.78 2.27 -10 -10.04 2.60 

14 182 800 0.1 113.8 30 27.73 1.66 -10 -9.89 2.62 

15 182 800 0.1 113.8 10 10.56 2.70 0 1.36 2.34 

16 195 725 0.1 134.5 30 27.55 0.66 -10 -13.24 1.24 

17 182 800 0.1 113.8 10 9.80 2.87 -20 -22.17 2.10 

18 182 875 0.11 94.6 20 18.98 2.20 -20 -19.78 2.38 

20 169 725 0.1 116.6 20 21.13 2.92 0 1.96 2.48 

21 169 800 0.09 117.4 0 -0.92 2.76 -10 -9.23 2.43 

23 169 800 0.11 96.0 20 18.21 2.50 0 1.18 2.07 

29 195 800 0.09 135.4 30 27.96 1.81 -10 -12.08 2.08 

35 195 800 0.1 121.9 10 10.58 2.48 0 3.53 1.14 
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Table 6.4 Processing conditions and grain growth direction analysis results for 67° 

rotation. 

Coupon 
# 

Laser 

Power 

P [W] 

Scanning 

Velocity 

vs [mm/s] 

Hatch  

Distance 

 h [mm] 

Energy 

Intensity 
[J/mm3] 

E=P/vs×h×s 

θ+ 
Average 

of θ+ 

SD 

of 

θ+ 

θ- 

Average 

Of 

θ- 

SD 

Of 

θ- 

2 169 725 0.1 116.6 10 9.58 2.87 0 -0.57 2.73 

3 195 725 0.1 134.5 10 10.24 2.65 0 2.60 1.97 

5 169 800 0.09 117.4 10 11.73 2.34 -10 -9.22 2.90 

7 182 800 0.1 113.8 20 19.03 2.85 -10 -9.91 2.74 

10 182 725 0.11 114.1 20 19.63 3.00 -20 -20.09 2.85 

11 169 875 0.1 96.6 20 19.08 2.31 -20 -19.50 2.36 

13 195 800 0.09 135.4 10 10.07 2.67 -10 -10.43 2.39 

19 195 875 0.1 111.4 0 -3.61 1.43 -10 -12.09 2.22 

22 182 800 0.1 113.8 10 12.26 2.04 0 4.40 0.54 

24 182 800 0.1 113.8 20 19.26 3.05 0  12.15 2.04 

25 195 800 0.11 110.8 30 28.46 1.71 -10 -11.53 2.38 

26 182 875 0.09 115.6 30 27.95 1.72 -10 -11.38 2.69 

27 182 725 0.09 139.5 30 27.99 1.80 -20 -20.66 2.89 

28 182 875 0.11 94.6 10 10.54 2.81 -20 -19.51 2.75 

30 169 800 0.11 96.0 30 28.23 1.61 -20 -19.89 3.47 

31 195 800 0.1 121.9 0 -2.71 1.98 -30 -27.83 1.47 
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 SEM Image with Marked Directions Histogram with Direction Angles 

(a) 

 

 

(b) 

 

 

Figure 6.19 Growth directions and histograms of inclination angles for IN 625 test 

coupons observed from XZ faces, (a) coupon #35 (195 W, 800 mm/s, 0.1 mm, 90° 

rotation scan strategy) and (b) coupon #31 (195 W, 800 mm/s, 0.1 mm, 67° rotation scan 

strategy).  
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Figure 6.20 Effect of laser power on dominant positive and negative growth directions, 

with 90° (top) and 67° (bottom) rotation strategies.  
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Figure 6.21 Effect of scanning speed on dominant positive and negative growth 

directions, with 90° (top) and 67° (bottom) rotation strategies.  
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Figure 6.22 Effect of hatch distance on dominant positive and negative growth directions, 

with 90° (top) and 67° (bottom) rotation strategies.  
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Figure 6.23 shows the effect of energy intensity on the growth direction angles using the 

means of samples inside their respective bins. The vertical error bars represent sample 

standard deviations. An overall decrease in magnitude is observed with increasing energy 

intensity in both positive and negative angles, suggesting that as the energy intensity 

increases, the grains tend to grow closer to the z (build) direction. However, the effect is 

highly nonlinear, and a conclusion should not be drawn. Note that the 0° growth direction 

is considered positive in certain cases, and negative in some other cases. Since the bin sizes 

were 10°, each bin contained samples within the ±5° range of the bin center. Because means 

are considered in Figures 6.24-6.26, some of the 0° bins appear positive or negative in 

contrast to their names (θ+ or θ-). 
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Figure 6.23 Effect of energy intensity on dominant positive and negative growth 

directions, for 90° (top) and 67° (bottom) rotation strategies.  
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Each process parameter (laser power, scanning speed and hatch distance) is further 

investigated in more detail by taking into account the effect of another parameter, while 

keeping the third one constant as shown in Figures 6.24-6.26. As in Figure 6.23, means 

and standard deviations of the measurements falling into dominant bins in the histograms 

shown in Figure A1 are utilized in these figures. Note that the figures show a nonlinear 

variations between different settings, therefore the trends reported here are not conclusive. 

Figure 6.24 shows that for 90° rotation and at the low power setting, the magnitude of θ- 

increases with increasing scanning speed while θ+ is not affected significantly. At the high 

power setting, both θ- and θ+ have nonlinear responses. For 67° rotation, magnitudes of 

both θ- and θ+ increase with increasing scanning speeds at the low power setting. At the 

high power setting, a decreasing trend is observed for θ+ and a nonlinear trend is observed 

for θ-. 

 

Figure 6.25 shows very clear trends at different laser power and scanning speeds at 90° 

rotation. Magnitudes of both θ+ and θ- increase with increasing power at low and high 

scanning speed conditions. However, both θ+ and θ- magnitudes decrease with increasing 

power at the medium scanning speed. For 67° rotation, both θ+ and θ- are unaffected by 

laser power changes at low scanning speed. A decrease in magnitude is observed for θ+ at 

medium and high speeds with increasing power. The magnitude of θ- increases with 

increasing power at medium scanning speed, and decreases at high scanning speed. 
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Figure 6.24 Effects of laser power and scanning speed on dominant positive and negative 

growth directions at constant hatch distance (h=0.1mm), for 90° (top) and 67° (bottom) 

rotation strategies.  
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Figure 6.25 Effects of scanning speed and laser power on dominant positive and negative 

growth directions at constant hatch distance (h=0.1mm), for 90° (top) and 67° (bottom) 

rotation strategies. 
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Figure 6.26 shows that at low hatch distance and with increasing laser power, a significant 

increase in the dominant positive and negative angles are observed at 90° degree rotation 

strategy; whereas the 67° degree rotation strategy does not affect the growth directions 

significantly. A decrease in positive and negative angles are seen in the 90° degree rotation 

strategy with increasing power. For the 90° degree rotation strategy, an increase in power 

yields significantly larger negative angles (in magnitude) at the medium hatch distance 

setting. Finally, at the high hatch distance setting, both positive and negative dominant 

angles increase in magnitude with increasing power for 90° degree rotation strategy. For 

the 67° degree rotation strategy, the positive angle is not affected with increasing power 

while the negative angle gets smaller in magnitude.  

 

Figure 6.27 shows that at low hatch distance setting, the positive dominant angle increases 

with increasing speed for the 90° rotation strategy, while there is no significant change in 

the 67° rotation strategy. The negative dominant angle decreases in magnitude with 

increasing speed at low hatch distance setting for both 90° and 67° rotation strategies. At 

high hatch distance setting, the positive dominant angles decrease with increasing speed 

for the 90° rotation strategy. For the 90° rotation strategy, the negative dominant angle 

increases in magnitude with increasing speed but no significant effect was observed at the 

67° rotation strategy. 
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Figure 6.26 Effects of hatch distance and laser power on dominant positive and negative 

growth directions at constant scanning velocity (vs=800mm/s), for 90° (top) and 67° 

(bottom) rotation strategies. 
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Figure 6.27 Effects of hatch distance and scanning speed on dominant positive and 

negative growth directions at constant laser power (P=182W), for 90° (top) and 67° 

(bottom) rotation strategies.  

  



238 

 

 

6.3.4 In-situ Thermal Video Analysis 

In-situ monitoring of the process can be utilized to quantitatively analyze meltpool size and 

spattering phenomenon. Video recordings of the process can be utilized if a camera is 

placed in the SLM process chamber. Due to the nature of the process, i.e. a laser beam 

moving at very high speeds, a High Frame Rate (HFR) camera is required. An HFR thermal 

camera has been placed by Dr. Brandon Lane (NIST) in the processing chamber of an EOS 

SLM machine at the National Institute of Standards and Technology facility in 

Gaithersburg, MD, and the process has been recorded for the nominal processing condition. 

This section covers the meltpool size and spattering analyses of the process using the HFR 

thermal camera recording (courtesy of NIST). There are some difficulties in processing of 

these images. Firstly, the meltpool itself is very bright and spattering particles that occupy 

the same area as the meltpool in the frame (e.g. particles that are immediately above top of 

the pool) are not recoverable from the images. Moreover, solidified regions are highly 

reflective, causing noise in the measurements. Furthermore, the recording angle of the 

camera as well as path and altitude of flying particles, combined with lens flares create an 

uncertainty in the data provide additional challenges. Lastly, the temperature data may not 

very reliable due to local emittivity variations and camera calibration. This study does not 

aim to remedy all these points, but rather generate useful data from the recording under 

certain assumptions, as discussed in the following sections.  

 

The thermal camera properties are shown in Table 6.5. The camera has an integration time 

of 0.040 ms and can record at 1800 frames per second which translates into 0.5555 ms per 

frame. In the instantaneous field of view (iFoV), each pixel represents is 36 μm. Thermal 
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video and process parameters are shown in Table 6.6. The video recording of coupon #35 

(with 800 mm/s scanning velocity, 195 W laser power, 4.1 mm stripe width and 0.1 mm 

hatch distance) has 801 total frames. The processing occurs out of the view of the camera 

for 99 frames. Horizontal scanning is recorded for 602 frames with approximately 60 

tracks, and a vertical scanning of the stripe boundary is recorded for 100 frames. Since 

each track is processed for 5.125 ms (calculated from track length divided by scanning 

speed), the camera records approximately 9.23 frames per track. The non-integer number 

means that the frequency of the process is different than what the camera records, therefore 

the beginning and end of each track are not necessarily recorded at the correct time with 

the camera. It is also important to note that some frames during processing are skipped in 

the recording, i.e. the recording is not continuous in certain tracks. 

 

Moreover, as shown in Figure 6.28, the camera is placed at a 43.7° angle with the powder 

bed. This results in different scenel sizes for x and y directions in the recording, where the 

size in y direction appears smaller than the actual size. In the instantaneous field of view, 

each pixel represents 36 µm, however, due to the recording angle, the scenel size is 

corrected in the y direction with 𝑑𝑦′ =
𝑑𝑦

sin(43.7)
= 1.48𝑑𝑦 = 52µ𝑚 whereas the scenel 

size in x direction is 𝑑𝑥 = 0.36µ𝑚. Figure 6.29 shows the camera signal transformation 

curve for different emittivity values. It is assumed that the true emittivity is between 0.2 

and 0.5. For the purpose of this study, we use the value 0.2. It is important to note that for 

ε=0.2, only temperatures from 600 °C to 1150 °C can be reliably calculated by the camera. 

Temperatures outside this range should be treated with caution. A single frame from the 

thermal video recording is shown in Figure 6.30.  
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Table 6.5 Thermal camera properties. 

Wavelength (filter) 1350-1600nm 

Integration Time 0.040 ms 

Frame Rate   1800 fps 

iFoV  36 mm/pixel 

Imaging window 360x128 pixels 

(12.96 mm x 4.61 mm) 

 

 

Table 6.6 Thermal video and process parameters. 

SLM parameters 

 𝑣𝑠 = 800𝑚𝑚/𝑠 and stripe width (track length) = 4.1𝑚𝑚 

Laser scanning of a track:4.1𝑚𝑚/800
𝑚𝑚

𝑠
= 5.125ms  

Camera frame rate: 1800 fps or 0.5555 ms per frame 

≈9.23 frames per track of laser scanning 

Laser ON: ≈9 frames 

Laser OFF (0.42 ms): 0-1 frame 

Total frames: 801 

Hatching: 602 frames 

Vertical (track boundary): 100 frames 

Out-of-frame: 99 frames 
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Figure 6.28 Thermal camera setup, (a) Side-view of the EOS machine, custom door, and 

thermal camera, (b) Solidworks model of EOS build chamber + custom viewport, (c) 

optical axis, plane of focus and scenel size.  

(Courtesy of Dr. Brandon Lane, NIST) 
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Figure 6.29 Camera signal transformation curves for different emittivity values.  

(Courtesy of Dr. Brandon Lane, NIST) 

 

 

 

Figure 6.30 Image generated with temperature data obtained from the thermal camera. 

Emittivity (ε) assumed to be 0.2. 
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6.3.4.1 Meltpool Width Measurements 

It is possible to determine the sizes of meltpools from the thermal camera recording. Each 

frame can be processed individually such that pixels with temperatures exceeding the 

liquidus temperature (1350 °C for IN625) are segmented from colder pixels. Figure 6.31 

shows the result of image segmentation using liquidus temperature as a threshold on single 

frame where the molten region is marked red, and colder region is marked blue. 

Afterwards, the width and length of the meltpool can be measured by simply counting the 

number of pixels in x and y directions, and multiplying them by their respective scenel 

sizes. For instance, the meltpool in Figure 82 has width of 109 − 102 = 7 pixels in the y 

direction, which translates to 7𝑝𝑥 × 0.52
µ𝑚

𝑝𝑥
= 0.36µ𝑚. This process is done 

automatically using MATLAB’s built in functions to create a bounding box around the 

meltpool such that the height of the box gives the width of the meltpool in pixels. This 

process is repeated for 185 different frames that belong to 20 different tracks. 

 

During the processing of meltpool size calculations, it is observed that some of the 

spattering particles that are in close proximity to the meltpool affect the meltpool size 

calculation algorithm. For simplicity, we refer to these particles as attached particles. 

Figure 6.32 shows these attached particles and how they may affect the meltpool size 

calculation. Measurements coming from the meltpool size calculation algorithm are 

processed frame by frame to reduce or eliminate the errors caused by the attached spattering 

particles. 
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Figure 6.31 Meltpool visualization from a thermal image. Dimensions are in pixels. 

 

 

Figure 6.32 Meltpool width measurements (calculated and actual) along with attached 

and detached spattering particles. Dimensions are in pixels.  
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Furthermore, camera calibration and measurement limitations for temperatures above 1150 

°C, combined with reflections from the surface of the processed area and potentially other 

optical phenomena result in meltpool width measurements that are considerably larger than 

the measurements obtained via Scanning Electron Microscopy (SEM) and Light Optical 

Microscopy (LOM). Table 6.7 shows the average meltpool width measurements obtained 

via LOM and thermal camera images for Type I and Type II meltpools. LOM meltpool 

width measurements for other coupons are given in Table C1 in Appendix C. Meltpool 

width measurements obtained via LOM are utilized in order to calculate a linear correction 

factor for meltpool widths obtained from thermal images. Correction factors are calculated 

for Type I (beginning of track, at |x| = 0 mm) and Type II (end of track, at |x|=4 mm) 

meltpools by dividing the LOM measured widths to thermal image measurements, as 

shown in Table 6.8. A linear correction function as shown in Figure 6.33 is applied on all 

meltpool measurements obtained via thermal imaging. 

 

Table 6.7 Type I and Type II meltpool width measurements from thermal and optical 

imaging. 

Coupon No. 

Melt Pool Width Avg [μm] 

Optical Imaging Thermal Imaging 

Type I Type II Type I Type II 

35 155 112 437 223 

 

Table 6.8 Correction factor for thermal camera meltpool width measurements. 

Scanning Distance |x| [mm] Correction Factor Meltpool Type 

0 0.3549 Type I 

4 0.5026 Type II 
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Figure 6.33 Meltpool width correction.  

 

6.3.4.2 Results and Analysis 

185 frames from the camera recording are analyzed with this method to calculate the 

meltpool widths. Figure 6.34 shows the results of this analysis where the values are 

calculated across all 185 frames and the x locations are calculated explicitly based on the 

number of frames recorded in that track and the scanning speed of the laser. The main 

conclusion that can be drawn from this analysis is that the meltpool sizes tend to decrease 

from the beginning of each track towards the end of each track. It is attributed to the fact 

that when the laser begins a track, the previous track that ended a hatch distance away from 

the current location is still warm, therefore the temperature at the beginning of the new 

track is also high, resulting in larger meltpools. Consequently, as the laser nears the end of 

a track, it is surrounded by a colder region, resulting in smaller meltpools. Furthermore, 

the increase in meltpool size between 1 mm and 3.5 mm of the track distance may be 

attributed to the linear correction factor. Unfortunately, it is not possible to obtain in-situ 

LOM measurements of the meltpool showing the meltpool width at different track 

distances, therefore a nonlinear correction factor cannot be calculated.  
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Figure 6.34 Minimum, maximum and average meltpool widths after attached particle and 

optical image comparison corrections. Error bars represent sample standard deviations.  

 

6.3.5 Spattering 

Spattering is a common but potentially detrimental phenomenon that is observed during 

SLM.  When the laser beam hits an area, local evaporation of particles cause some of the 

surrounding hot particles to flying off and land on other areas as seen in Figure 6.35. These 

particles are often observed to move in opposite direction of the laser beam, and they may 

create significant problems during processing which may affect the quality of the end 

product, cause the process to fail, or even damage the equipment. For instance, if a particle 

lands on a solidified region, the thickness of the layer is increased by the height of the 

particle. This protruding particle may get caught by the re-coater blade (if exists) when the 

new powder layer is being placed and may result in movement of the processed part or 

damage the blade. Therefore it is important to quantify and analyze this phenomenon.  
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Future research in this subject would be to minimize spattering frequency and particle sizes 

by investigating the effect of process parameters to improve the process reliability.  

 

It is possible to determine the sizes and temperatures of the spattering particles from the 

HFR thermal video recording. Once the temperatures and sizes of these particles are 

known, spattering can be represented stochastically.  

 

 

Figure 6.35 Spattering during the process. 

 

The thermal camera provides images that have temperature information saved in brightness 

of pixels. Since the spattering particles are originating from the vicinity of the meltpool, 

they have high temperatures thus they appear as bright clusters of pixels. Figure 6.36 shows 

a frame from the video recorded by the thermal camera visualized in MATLAB via RGB 

(red, green, blue) temperature contours to allow image segmentation. Here, the original 

RGB image is shown on the top-left corner, and the red, green and blue channel are shown 

in top-right, bottom-left and bottom-right sections of the image. It is seen that the color 

mapping used in the segregation uses dominantly red and green channel, with green 

appearing at very hot areas of the image to generate the yellow color in the combined 

image, and the blue channel mostly contains noise.  
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Each frame of the thermal video recording is preprocessed in order to improve the quality 

of the particle count and size measurements. One of the biggest problems is the existence 

of the lens flare around the meltpool region. This not only creates difficulties in particle 

detection, but also creates spurious temperature fields. To remedy this, a lens flare filter is 

implemented in the region close to the meltpool. Images obtained from the red channel are 

first converted to grayscale images. Afterwards, thresholding based on pixel color intensity 

is performed to segregate the image into black and white areas such that the lens flare 

region as well as the meltpool inside it are grouped together, and are separated from the 

lower intensity regions. Then, pixels in this region are divided into multiple bins based on 

their intensities. Next, the median intensity of all bins that belong to the lens flare – 

meltpool region are calculated, and subtracted from this region. It is important to note that 

a tradeoff is necessary between the complete removal of the lens flare and preserving 

particle information, and rather conservative values are used in this study. Figure 6.37 

shows the original frame on the left, and the processed frame (after segregation and median 

subtraction) on the right. An improvement to this methodology may be to implement the 

procedure iteratively with localized refinement, each time removing more (and smaller) 

regions of the lens flare as the region converges to the meltpool itself, however it is not 

implemented in this study. 
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Figure 6.36 An image captured from the thermal camera plotted in MATLAB showing 

combined RGB (top-left), red (top-right), green (bottom-left) and blue (bottom-right) 

channels. Temperature information is not shown here.  
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Figure 6.37 Lens flare removal around the meltpool region with the original frame (top) 

and the processed frame (bottom). 

 

Furthermore, through a series of image processing steps, all particles are identified in each 

frame of the video and their sizes are calculated in terms of pixels. During the image 

processing, particles are not tracked individually, i.e. at any given frame, all particles are 

assumed to be “new” particles. Consequently, particle trajectory tracking is not performed 

in this study, mainly due to the restrictions discussed in the previous section. Furthermore, 

since the depth (out-of-plane) information is not available through the thermal camera 

images, particle trajectories in the build direction are unknown. This follows from the fact 

that a particle gets dimmer as it cools down, and within each particle the area at a certain 

temperature is not constant over time. Thus, performing size tracking that could also be 
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correlated with the distance from the lens is not possible.  As the next step in particle 

detection, another intensity based thresholding is employed to reveal the pixels at a certain 

temperature range, followed by median filtering to reduce noise. The resulting image is 

then processed to count the number of pixels in each particle that represent the area of each 

particle. These areas, in units of pixels, are then converted to millimeters using the scenel 

sizes calculated for the camera, disregarding the size changes caused by their location in 

the direction towards the camera. Figure 6.38 shows the preprocessed (after lens-flare 

removal) frame on the left, and the processed (with detected particles) frame on the right 

where centroids of detected particles are marked blue. Figure 6.39 summarizes the 

processing steps for spattering calculation. This process is repeated for each frame in the 

thermal video, and detected particles are recorded. The ratio of total area of spattering 

particles to the total processing area (6𝑚𝑚 × 4.1𝑚𝑚 = 24.6𝑚𝑚2), denoted by 

percentage spatter (%S) is reported for each of the processed frames.  

 

  

 

Figure 6.38 Preprocessed thermal camera image (left), detected particles (right). 

Centroids or spattering particles are marked blue.  
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Figure 6.39 Processing steps for spattering particle detection. 

 

6.3.5.1 Results and Analysis 

Figure 6.40 shows thermal images from a single track. Note that only a 6 mm x 3 mm 

region is shown in these images in order to visualize the meltpool region better. Measured 

meltpool width (MPw), frame number (F), calculated relative track distance (xr) and 

spattering percentage (%S) are shown in each of the frame. Here, xr is calculated by 

assuming the first frame of each track is at xr = 0 mm, and each frame increases this distance 

with respect to the recording rate and laser speed (0.5555𝑚𝑠 frame⁄ × 800mm s⁄ =

0.4444mm frame)⁄ , rather than measuring the coordinates of the meltpool at each frame. 

Figures D1-D20 in Appendix D show the thermal images from all 20 tracks that were 

processed. Please note that the meltpool width measurements on these images do not 

account for the optical microscopy corrections. 
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6.3.6 Heating and Cooling Rates 

As discussed previously, it is known that the rapid heating and cooling seen in the SLM 

causes a significantly different microstructure than traditionally processed IN625 allow 

parts. The thermal camera images can be utilized to quantify these heating and cooling 

rates. By sampling the temperature data at certain points, the rate of cooling and heating 

can be estimated. 

 

At this point, it is important to note that due to the asynchrony between the frequency of 

track processing and the recording rate of the camera, the x-coordinates of meltpools do 

not align across tracks. Theoretically, there can be up to 
4.1𝑚𝑚

10
= 40𝜇𝑚 difference in 

meltpool x-coordinates between different tracks, considering that each track takes at most 

10 frames to be processed. This causes an inconsistency in temperature measurements 

between tracks, when analyzed individually. To alleviate this, the temperature histories for 

certain tracks are shifted temporally (±1 frame) as a post processing operation in an attempt 

to create an agreement with the rest of the tracks. Furthermore, multiple tracks are used in 

the analysis and an average temperature history is constructed. Out of the 20 tracks 

analyzed, 10 of them have a positive scanning direction (laser moves in the +x direction) 

while the other 10 have a negative scanning direction. These two groups of tracks are 

analyzed separately. At each frame from the thermal camera data, the centroid of the 

meltpool is calculated. Each track’s center in y-coordinate is identified using the mean of 

meltpool centroids that are observed in that track. These y-coordinates are used in the 

following analysis. Temperature measurements at various x-coordinates (the beginning, 

middle, and end of the track) are recorded during the timeframe of the processing of each 
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track (up to a maximum of 10 frames), at the respective track centers in y-coordinates.  It 

is important to note that spattering particles, if positioned on top of the sampling points, 

can affect the result of this analysis. However, they are not filtered out in this study due to 

the associated challenges. 

 

Figure 6.41 shows the minimum, maximum and mean temperatures observed at three 

different x locations: the beginning, middle and the end of the track, for the tracks with 

positive scanning directions. It is seen that the temperatures are very high at the beginning 

of the track when the processing starts, because the meltpool is located in this region. As 

the time passes, this point cools down. In contrast, the end of the track starts off with a low 

temperature, and heats up when the laser reaches and melts the region. As expected, the 

middle point of the track heats up as the laser approaches, and cools down as it departs. 

Figure 6.42 shows the temperatures for the tracks with negative scanning directions which 

indicates similar results. Figures 6.41-6.42 reveal similar heating and cooling profiles due 

to the nature of the process. The differences between them can be related to conductivity 

due to the layout of neighboring solid / powder regions, local differences in emittivity and 

powder geometry as well as spattering particles that overlap the sampling points. 

Furthermore, it is possible to obtain the rate of cooling and heating from these figures. 

Heating rates in Figure 6.41 are roughly 600 °C/ms and heating rates in Figure 6.42 are 

roughly 1000 °C/ms. Cooling rates are approximately 150 °C/ms in both figures. These 

observations are in agreement with the literature (Li et al., 2015; Vilaro et al., 2012). In 

comparison, the welding process has a much slower cooling rate of 0.550 °C/ms (DuPont, 

1996). 
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Figure 6.40 Frames from the thermal camera video showing the processing of a single 

track. 
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Figure 6.41 Minimum, maximum and average temperature histories grouped by the x 

coordinates: At the beginning of the track (top), middle of the track (middle) and end of 

the track (bottom) across multiple tracks. Error bars represent sample standard deviations. 

Only the tracks with positive scanning direction (+x) are shown.  
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Figure 6.42 Minimum, maximum and average temperature histories grouped by the x 

coordinates: At the beginning of the track (top), middle of the track (middle) and end of 

the track (bottom) across multiple tracks. Error bars represent sample standard deviations. 

Only the tracks with negative scanning direction (-x) are shown.  
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 CHAPTER 7: MICROSTRUCTURAL MODELING OF SLM PROCESS 

 

7.1 Introduction 

 

Computational modeling of the IN625 SLM process can reveal information that is hard to 

obtain or unobtainable by experiments. For instance, a 3D thermal field that is not visible 

by the thermal camera can be obtained by solving the 3D heat transfer problem. 

Furthermore, microstructural modeling can be used to predict the quality and mechanical 

properties of the product. In this chapter, a nonlinear 3D Finite Element Method based 

MATLAB program is written to simulate the SLM process with different process 

parameters such as laser power, and scanning speed. The program is further improved by 

utilizing an in-situ thermal camera recording to predict spattering which is in turn included 

as a stochastic heat loss. Then, a phase field method based post processing is applied on 

the thermal solution to predict the resulting microstructure as a preliminary result.  
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7.2 3D Thermal Modeling with Finite Element Method 

 

The 3D heat convection-diffusion equation is used to solve the transient heat transfer 

problem. Heat conduction in 3D is governed by the diffusion equation: 

 
𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
=
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘
𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘
𝜕𝑇

𝜕𝑧
) + 𝑞 

(7.1) 

where  is the density [kg/m3], 𝐶𝑝 is the isobaric specific heat [J/kg K], T is the temperature 

[K], k is the thermal conductivity [W/m K] and 𝑞 is the volumetric heat source [J/m3]. 

Convective effects are ignored due to the time scale of the SLM process. 

 

Table 7.1 gives a short summary of different Finite Element formulations addressing 

material nonlinearities in steady state and transient solutions. Here, C is the global heat 

capacity matrix, K is the global heat conduction matrix, T is the global temperature vector 

and q is the global heat source vector that are used in the Finite Element scheme. Note that 

temperature-dependent material properties require C and K matrices to be a function of T, 

which makes the problem nonlinear.  There may be other nonlinearities that may require 

different formulations than those shown in Table 7.1. Details of transient formulations are 

covered in the following sections where a 3D FEM based thermal model of the SLM 

process has been constructed using MATLAB, following the derivations in (Felippa, 2014; 

Kwon and Bang, 2000; Huebner, 2001; Hughes, 1987).  Nonlinearities can be accounted 

for with relatively simple modifications to the equation at the cost of computational time. 

We start with the linear formulation, and gradually move towards the nonlinear 

formulation. 
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Table 7.1 Finite Element formulations for steady state, transient, linear and nonlinear 

solution to the diffusion equation. 

Steady 

State 

Solution 

Linear Formulation 𝐊𝐓 = 𝐪 
For constant material 

properties 

Nonlinear 

Formulation 
𝐊(𝑇)𝐓 = 𝐪 

For temperature-

dependent material 

properties 

Transient 

Solution 

Linear Formulation 𝐂�̇� + 𝐊𝐓 = 𝐪 
For constant material 

properties 

Nonlinear 

Formulation 
𝐂(𝑇)�̇� + 𝐊(𝑇)𝐓 = 𝐪 

For temperature-

dependent material 

properties 
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7.2.1 Linear 3D FEM Formulation 

When the nonlinearities such as temperature-dependent material properties are ignored, the 

linear formulation can be used to obtain a solution to the diffusion equation. The FE 

formulation of the heat diffusion is given by: 

 𝐂�̇� + 𝐊𝐓 = 𝐪 (7.2) 

where, as discussed previously, C is the global heat capacity matrix, K is the global heat 

conduction matrix, T is the global temperature vector and q is the global heat source vector.  

Global matrices and vectors are assembled from element matrices and vectors, based on 

the element connectivity in the mesh. The element 𝐂𝑒 and 𝐊𝑒matrices and vectors are 

given by: 

 𝐂𝑒 = ∫ 𝜌𝐶𝑝𝐍
𝑇𝐍𝑑Ω𝑒



Ω𝑒
 

(7.3) 

 𝐊𝑒 = ∫ 𝑘𝐁𝑇𝐁𝑑Ω𝑒


Ω𝑒
 

(7.4) 

 𝐪𝑒 = ∫ 𝒒𝐍𝑇𝑑Ω𝑒


Ω𝑒
 

(7.5) 

In this formulation, N is the element shape function vector of the element and B is the 

Cartesian – natural coordinate derivative matrix of the element. Note that the superscript e 

is dropped for simplicity from these matrices and element-wise constants ρ, Cp and k.   

 

The spatial integrals in Equation (7.3)-(7.5) can be calculated numerically using Gaussian 

quadrature. In an n-point Gaussian quadrature in 1D, the integral in Eq. (7.4) approximated 

by: 

 
𝑲𝑒 = ∫𝑘𝐁𝑇𝐁𝑑Ω



Ω

≈ ∑𝑤𝑖𝑭(𝜉𝑖)

𝑛

𝑖=1

 
(7.6) 
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with 

 𝑭(𝜉𝑖) = 𝑘𝐁
𝑇𝐁J (7.7) 

where 𝜉𝑖 are the quadrature points, 𝑤𝑖 are the weights corresponding to 𝜉𝑖, J= det(J) and 

J is the Jacobian matrix of the element. For dimensions higher than 1, the Gaussian 

quadrature rules are used on each dimension separately, and the number of integration 

points are selected based on the order of the interpolating polynomials on the element. 

2×2×2 rule is required to for the quadrature to be exact in 3D 8-node hexahedron elements. 

The points and weights are calculated from Legendre polynomials, following the 

formulation in (Hughes, 1987). Isoparametric 8-node hexahedral elements are used in the 

current simulations due to their simple geometry, formulation and accuracy. Higher order 

elements are not considered because a linear representation of the temperature over the 

element is considered sufficient for this study. Note that isoparametric hexahedral elements 

can have various shapes, i.e. they are not limited to cubes or cuboids. A representative 

image of an 8-node hex element is shown in Figure 7.1. 

 

Figure 7.1 Isoparametric 8-node hexahedral element.  
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The Jacobian matrix of the 3D element is given by: 

 

𝐉 =
𝛿(𝑥, 𝑦)

𝛿(𝜉, 𝜂)
=

[
 
 
 
 
 
 
𝛿𝑥

𝛿𝜉

𝛿𝑦

𝛿𝜉

𝛿𝑧

𝛿𝜉
𝛿𝑥

𝛿𝜂

𝛿𝑦

𝛿𝜂

𝛿𝑧

𝛿𝜂
𝛿𝑥

𝛿ζ

𝛿𝑦

𝛿ζ

𝛿𝑧

𝛿ζ]
 
 
 
 
 
 

=  [
𝐽11 𝐽12 𝐽13
𝐽21 𝐽22 𝐽23
𝐽31 𝐽32 𝐽33

] 

 

(7.8) 

The element shape function vector N can be written in natural coordinates, 𝜉, 𝜂, ζ for each 

node i  as (Felippa, 2013): 

𝑁𝑖 =
1

8
(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)(1 + ζζ𝑖) (7.9) 

where 𝜉𝑖, 𝜂𝑖 and ζ𝑖 are the coordinates of the ith node, which are given in Table 7.2. 

 

Table 7.2 Natural coordinates of the nodes of a 8-node hexahedron element. 

(Felippa, 2013) 

Node 𝜉 𝜂 ζ 

1 -1 -1 -1 

2 +1 -1 -1 

3 +1 +1 -1 

4 -1 +1 -1 

5 -1 -1 +1 

6 +1 -1 +1 

7 +1 +1 +1 

8 -1 +1 +1 
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The Cartesian derivatives of the shape function vector are then calculated using the chain 

rule: 

 𝛿𝑵

𝛿𝑥
=
𝛿𝑵

𝛿𝜉

𝛿𝜉

𝛿𝑥
+
𝛿𝑵

𝛿𝜂

𝛿𝜂

𝛿𝑥
+
𝛿𝑵

𝛿ζ

𝛿ζ

𝛿𝑥
 

(7.10) 

 𝛿𝑵

𝛿𝑦
=
𝛿𝑵

𝛿𝜉

𝛿𝜉

𝛿𝑦
+
𝛿𝑵

𝛿𝜂

𝛿𝜂

𝛿𝑦
+
𝛿𝑵

𝛿ζ

𝛿ζ

𝛿𝑦
 

 

 𝛿𝑵

𝛿𝑧
=
𝛿𝑵

𝛿𝜉

𝛿𝜉

𝛿𝑧
+
𝛿𝑵

𝛿𝜂

𝛿𝜂

𝛿𝑧
+
𝛿𝑵

𝛿ζ

𝛿ζ

𝛿𝑧
 

 

The B matrix is then calculated from: 

 

𝐁 = [
𝛿𝑵

𝛿𝑥

𝛿𝑵

𝛿𝑦

𝛿𝑵

𝛿𝑧
]
𝑇

=

[
 
 
 
 
 
 𝑱11
−1
𝛿𝑵

𝛿𝜉
+ 𝑱12

−1
𝛿𝑵

𝛿𝜂
+ 𝑱13

−1
𝛿𝑵

𝛿ζ

𝑱21
−1
𝛿𝑵

𝛿𝜉
+ 𝑱22

−1
𝛿𝑵

𝛿𝜂
+ 𝑱23

−1
𝛿𝑵

𝛿ζ

𝑱31
−1
𝛿𝑵

𝛿𝜉
+ 𝑱32

−1
𝛿𝑵

𝛿𝜂
+ 𝑱33

−1
𝛿𝑵

𝛿ζ ]
 
 
 
 
 
 

 (7.11) 

A similar procedure is used to calculate the C matrix and q vector. Once the element level 

matrices are calculated, they are assembled into global matrices.  

 

7.2.2 Heat Source Implementation 

During the SLM process, a laser beam travels across the powder bed, melting and 

occasionally evaporating the material on its path. In this FE implementation, the laser beam 

is modeled as an internal heat source that acts on the elements that fall within the beam’s 

radius. At each time step, elements that fall within the beam’s diameter (based on the 

location of their nodes) are determined, and the heat flux is applied internally.  

 

Elements that are under the beam at each time step, i.e. the “captured” elements are 

calculated by checking whether they intersect with the beam. In node based capturing, an 
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element is captured if any node of that element is within the beam. Similarly, in centroid 

based capturing, the element is captured if its centroid is within the beam. The heat source 

is applied only to the captured elements. Figure 7.2 shows a circular beam on a finite 

element mesh, where node based capturing is utilized, and captured elements are colored 

in yellow. 

 

 

Figure 7.2 Node based element capturing under a circular beam. Captured elements are 

shown in yellow.  

 

The laser beam profile can be represented in various shapes, such as uniform, or Gaussian. 

The uniform beam profile causes the area under the beam to receive a uniform heat flux. 

The heat flux generated by a Gaussian beam on a point with reflectivity R is given by: 

 
𝑞 = (1 − 𝑅)

2𝑃

𝜋𝑤𝑜
2 𝑒

−2(𝑟2 𝑤𝑜
2⁄ ) (7.12) 

where P is the power, wo is the waist size and r is the distance between the point and the 

beam center.  
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Furthermore, captured elements should receive a heat flux proportional to their areas, and 

in case of non-uniform beam shapes, their locations with respect to the beam center should 

affect the heat flux as well. In order to achieve this, Monte-Carlo sampling is utilized to 

accurately distribute the laser beam power to the elements under the beam. The circular 

beam area is sampled by m points distributed uniformly and elements that fall inside the 

beam are heated based on the number and intensity of points that fall within their area.  

Therefore, the beam can be approximated as: 

 
𝑃 =

1

𝑚
∑𝑞𝑚
𝑚

 
(7.13) 

If the uniform beam shape is used, this procedure results in each element being heated up 

proportionally to its area. If the Gaussian beam profile is used, the sampled (lumped) beam 

intensity on the points can account for the nonlinear change of flux with distance from the 

beam center. Figure 7.3 shows a representative Gaussian beam intensity as it hits the 

surface, and Figure 7.4 shows a representation of the sampled beam.  

 

 

Figure 7.3 Gaussian beam intensity on the surface.  
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Figure 7.4 Representation of the beam area (contoured) sampled with points.  

 

The power absorbed by point p under the laser beam, denoted qp, is calculated as: 

 𝑞𝑝 = (1 − 𝑅)𝑃𝛽𝑝 (7.14) 

where 𝑥𝑝 and 𝑦𝑝 are the coordinates of point p under the beam, 𝑥𝑙𝑐 and 𝑦𝑙𝑐, Here, 𝛽𝑝 is a 

function of the coordinates of point p, and it is defined as 

 

𝛽𝑝 = {

2

𝜋𝑤𝑜2
𝑒−2[

(𝑥𝑝−𝑥𝑙𝑐)
2
+(𝑦𝑝−𝑦𝑙𝑐)

2
] 𝑤𝑜

2⁄
, 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

1, 𝑈𝑛𝑖𝑓𝑜𝑟𝑚

 (7.15) 

Let n be the number of sampling points that fall within the element. Then, the total power 

input to the element, 𝑞𝑒 when the beam is estimated by m points (𝑚 ≥ 𝑛) is given by: 

 
𝑞𝑒 =∑ 𝑞𝑝

𝑚

𝑝=1
= (1 − 𝑅)𝑃

1

𝑚
∑ 𝛽𝑝

𝑛

𝑝=1
 

(7.16) 

Movement of the laser beam also needs to be implemented in the simulation. The laser 

moves at a predetermined velocity, and therefore the coordinates of its center at each time 

step is known. Consequently, the laser beam center coordinates are replaced by 𝑥𝑙𝑐 =

𝑥𝑙𝑐(𝑡)and𝑦𝑙𝑐 = 𝑦𝑙𝑐(𝑡). Furthermore, element capturing procedure is repeated at each time 

step as the beam moves. Note that node based element capturing yields more accurate heat 

distribution when combined with Monte-Carlo sampling, therefore we prefer node based 
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capturing over centroid based capturing in this study. Figure 7.5 shows the application of 

Monte-Carlo sampling with node based capturing on the FE mesh, where heated elements 

are shown in blue. The number of points should be increased with finer mesh size. Overall, 

this approach provides a dynamic, accurate and computationally efficient distribution of 

the laser beam power over the elements that can be used with different beam profiles. The 

model can further be improved by utilizing a non-uniform sampling that would better suit 

the beam profile.  

 

After the amount of total power acting on each element is determined, the heat source is 

implemented in the FE model as a volumetric internal heat on the first layer of elements 

using Eq. (7.5).  Figure 7.6 shows the elements at the top where the laser beam is applied 

as an internal heat, and the unaffected elements below. Due to the fact that the heat is 

applied only to the elements at the top regardless of their size, the temperature solution 

depends on the height of these elements. If elements with smaller height are chosen, the 

applied laser power is unchanged but since the mass of the element are lower, their 

temperatures will rise more. Similarly, if taller elements are chosen, they will reach smaller 

temperatures due to their increased mass. This may seem like a drawback at first, but it has 

a meaningful physical interpretation when element heights are chosen to be equal to the 

layer size to represent a layer. 
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Figure 7.5 Power distribution on node-captured elements with Monte-Carlo sampling of 

the laser beam.  

 

 

Figure 7.6 The affected (heated) and unaffected elements under the beam. Only the 

elements in the top are affected. 
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7.2.3 Nonlinearities 

During the SLM process, as the material heats up, melts, and solidifies, its thermal 

properties change with temperature. To accurately model the process, temperature-

dependent material properties must be accounted for, which makes the problem nonlinear. 

The global capacitance and conductance matrices must be updated to account for these 

changes. Therefore, Eq. (7.2) becomes  

 𝐂(𝑇)�̇� + 𝐊(𝑇)𝐓 = 𝐪 (7.17) 

where 𝐂(𝑇) and 𝐊(𝑇) represent the temperature-dependent global capacitance and 

conductance matrices, respectively. Eq. (7.17) also allows the model to account for the 

latent heat during melting and solidification. Furthermore, this formulation allows powder 

to solid (varying packing density) conversion during the simulation. 

 

7.2.3.1 Temperature-dependent Material Properties 

 

It is known that IN625 nickel based alloy’s specific heat, and thermal conductivity 

increases with temperature. The bulk material properties and SLM process parameters for 

IN625 are given in Table 7.3. The specific heat and conductivity values are linearly 

dependent on temperature in the solid region (T ≤ TS). In the solidus-liquidus region 

(TS<T<TL), Cp and k are interpolated linearly between the liquid and the solid values (with 

the added effect of phase change on Cp as described in the next section). In the T ≥TL region, 

the liquid properties are used without temperature dependence. Note that temperature-

dependent density is not utilized to conserve the mass and energy in the system, as volume 

changes are ignored. This is further explained in Section 7.2.3.3. 
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Table 7.3 Bulk Material Properties for IN 625. 

(Yadroitsev et al., 2013) 

Parameter Value 

Liquidus Temperature, TL [K] 1623 

Solidus Temperature, TS [K] 1563 

Density, [kg/m3] 8440 

Latent Heat of Fusion, Lf [kJ/kg] 227 

Specific Heat, Cp [J/kg K] (T≤TS) 338.98 + 0.2437T 

Specific Heat, Cp,L [J/kg K] (T≥TL) 735 

Thermal conductivity, k [W/mK] (T≤TS) 5.331 + 0.015T 

Thermal conductivity, k [W/mK] (T≥TL) 30.05 

Reflectivity, R 0.7 

 

7.2.3.2 Phase Change 

Phase changes between solid and liquid (melting / solidification) are handled by the 

equivalent specific heat formulation, which modifies the specific heat of the material at 

different temperature zones to imitate melting and solidification. It is given by: 

 

𝐶𝑒𝑞(𝑇) =

{
 
 

 
 𝐶𝑝(𝑇), 𝑇 ≤ 𝑇𝑆

𝐶𝑝(𝑇) +
𝐿𝑓

𝑇𝐿 − 𝑇𝑆
, 𝑇𝑆 < 𝑇 < 𝑇𝐿

𝐶𝑝,𝐿, 𝑇 ≥ 𝑇𝐿

 (7.18) 

where Cp,L is the specific heat of the material in liquid phase, Lf is the latent heat of fusion 

of the material, TS is the solidus temperature, and TL is the liquidus temperature. 
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7.2.3.3 Powder to Solid Conversion 

It is known that during the SLM process, the powder bed is not fully dense, since the 

powder is not compressed after it is placed. This loose powder packing entails the existence 

of air gaps in between the particles that reduce the overall thermal conductivity, and the 

density of the region. To compensate for the porosity (how loosely the powder is packed 

compared to a bulk material) of the powder, the density and conductivity of the material 

can be modified such that 

 𝜌𝑝𝑜𝑤𝑑𝑒𝑟 = (1 − 𝜏)𝜌𝑏𝑢𝑙𝑘   (7.19) 

 𝑘𝑝𝑜𝑤𝑑𝑒𝑟 = (1 − 𝜏)𝑘𝑏𝑢𝑙𝑘   (7.20) 

where 𝜏 is the porosity of the powder material. 

 

Eqs. (7.19) and (7.20) can be easily implemented in the linear model (ignoring temperature-

dependent material properties, and solid-liquid phase changes) such that the K and C 

matrices are calculated accordingly. However, the implementation of these equations in a 

linear model would mean that after the powder exceeds the liquidus temperature, it 

solidifies back to a loosely packed powder geometry. This is clearly not the case in the 

SLM process, therefore it needs to be accounted for.  

 

To model the powder-liquid-solid change, it is assumed that an element loses its “powder 

property” once it reaches the liquidus temperature, TL. As soon as the temperature TL is 

reached, the element can no longer go back to the powder state. This can easily be 

implemented in the simulation such that elements in powder state use temperature-

dependent powder properties whereas elements that have lost the powder state use solid 
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properties. However, the implementation of Eq. (7.19) in this manner is problematic, as it 

going from a powder to bulk material causes an increase in the density, which in turn means 

an increase in the mass of the system since the volume of the FE problem domain is kept 

constant in the current implementation. 

 

One solution to this problem would be to utilize a larger geometry (and mesh) for powder 

areas (more height) proportional to the packing density, and adaptively reducing geometry 

as the region melts and solidifies. One may even couple the heat diffusion problem with 

thermal expansion and stress-strain equations to create a full-fledged model of the SLM 

process.  However, this approach would require higher order interface elements to connect 

the solid/liquid elements to powder elements. Furthermore, it would be computationally 

prohibitive, and is not the scope of this study.  

 

A basic solution would be to simply assume that the volume of the powder after melting 

and solidification does not change in the simulation itself (albeit changing in reality in 

conjunction with thermal expansion, and filling the air-gaps between powder particles due 

to expansion and liquid motion); meaning that the density of the powder is equal to the 

density of the bulk material given that the volume change does not affect calculations. If 

the problem geometry remains unchanged at constant volume, then the mass can only be 

conserved if the density is constant. In fact, considering heat source is constant with depth 

and the conductivity reduction is already accounted for in Eq. (7.20), this is a valid 

approximation. 
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Consequently, only Eq. (7.20) is utilized in the FE simulations, and Eq. (7.19) is not utilized 

because powder is assumed to have the same density as the bulk material. 

 

7.2.4 Time Integration 

Time integration is necessary in order to obtain a transient solution to the problem. 

Equation (7.17) can be discretized in time in the following way: 

 
𝐂(𝑇) (

𝐓t+Δt − 𝐓t

Δt
) + 𝐊(𝑇)(θ𝐓t+Δt + (1 − θ)𝐓t) = 𝐟(𝑇) 

(7.21) 

 

where θ is the time parameter. θ=0 yields the explicit method, θ=0.5 yields the Crank-

Nicolson type semi-implicit method and θ=1 yields the implicit method. The explicit 

scheme requires time step to be chosen with respect to the Courant–Friedrichs–Lewy 

(CFL) condition for convergence. The implicit scheme allows the use of larger time steps, 

but adds to the computational time required to find the solution. An implicit time 

integration scheme is required along with a direct sub-iteration to determine the nonlinear 

K and M matrices during each time step. 

 

7.2.5 Verification and Convergence 

Verification of the FE program must be performed to ensure that it is accurately 

representing the solution of the model. One way to perform verification is to compare the 

energy conservation with an analytical solution. We consider applying a certain amount of 

heat for a limited time to the mesh and comparing the steady state solution to the equation 

for the linear problem, given by: 
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 𝑄 = ∫ 𝑃𝑑𝑡

𝑡𝑓

𝑡𝑖

= 𝑚𝐶𝑝𝛥𝑇 
(7.22) 

where Q is the heat, P is laser power, 𝑡𝑖 and 𝑡𝑓 are the initial and final time in which the 

heat source is being applied, 𝑚 is the mass of the whole geometry, 𝐶𝑝 is the isobaric 

specific heat and 𝛥𝑇 is the temperature difference between initial temperature and final 

(steady state) temperature. A verification study in our case can utilize a stationary or 

moving heat source. These test results will be identical as long as Monte Carlo sampling 

points fall within the mesh and the same amount of heat is applied to the surface. A 

stationary heat source is used for simplicity. A cube with 1 mm3 volume discretized with 

1000 elements is considered. The heat source is a laser beam with 0.5 mm radius, with 195 

W power, centered on the top surface of the cube. The heating time is set to 0.01 ms. The 

material properties follows IN625 properties at room temperature, with reflectivity 0.7, 

specific heat 0.412 J/gK and total mass 0.00844 𝑔 𝑚𝑚3⁄  × 1 𝑚𝑚3 = 0.00844 𝑔. Heat 

conductivity can be set to high values to speed up convergence to steady state solution for 

energy verification purposes. Adiabatic boundary conditions are used with a uniform initial 

temperature of 353K across all the elements in the cube. The steady state temperature 

obtained from the FE solution is 521.234951 K. The expected steady state temperature 𝑇𝑆𝑆 

can be calculated using Eq. (7.22) as: 

 
𝑇𝑆𝑆 = 353 𝐾 +

58.5 𝑊 ×  0.01 𝑠

0.00844 𝑔 × 0.412 𝐽 𝑔𝐾⁄
= 521.2349 𝐾  

(7.23) 

which is in close agreement with the FE solution. Therefore, we can conclude that the 

energy verification is successful. 
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Next, we consider mesh convergence. Mesh size can affect the solution and as a rule of 

thumb, a smaller mesh size should be utilized in locations with high gradients in the 

solution. The overall mesh size used in the problem should be reduced until the reduction 

has little to no effect on the solution. Furthermore, the laser beam (with 100 μm radius in 

actual simulations) should be discretized into multiple elements to allow a smooth 

movement and accurate distribution of power on the surface while taking Monte Carlo 

sampling into consideration.  For this reason, we should choose to utilize elements smaller 

than 30 μm in the simulations. It is important to note that due to computational limitations, 

it is not possible to reduce the mesh size much more than the current size. 

 

Furthermore, it is imperative to select the time step so that the solution is correct. The 

implicit scheme is unconditionally stable, which allows larger time steps than an explicit 

scheme. Moreover, since there is no convection, the Peclet number (ratio of advective 

transport rate to diffusive transport rate) and Reynolds number (ratio of intertial forces to 

viscous forces) are zero. Therefore the numerical stability of the solution is not affected by 

the time step size. However, there is still another factor to consider to allow an accurate 

representation of the temperature field. The time step should be small enough so that the 

laser beam does not skip over any elements during the processing. If an element is skipped 

and consequently the laser power is applied on other elements over a longer time period 

(rather than a smooth transition), the skipped elements will be much colder and the 

overexposed elements will be much hotter than expected temperatures. Therefore, the time 

step should be calculated taking the element size into account, such that: 
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𝑑𝑡 ≥

𝑑𝑥

𝑣𝑠
=

0.03𝑚𝑚

800𝑚𝑚 𝑠⁄
= 3.75 × 10−5𝑠 

(7.24) 

where 𝑑𝑡 is the time step size, 𝑑𝑥 is the smallest element dimension on the scanning axis, 

and 𝑣𝑠 is the scanning velocity of the laser. Furthermore an even smaller time step of 𝑑𝑡 =

5 × 10−6𝑠 is chosen in order to represent the discrete Monte Carlo sampling and circular 

shape of the beam better. 

 

7.2.6 Problem Geometry and Process Parameters 

The problem geometry is 4 mm long, 0.5 mm wide and 0.22 mm tall, as shown in Figure7.7. 

Considering each SLM layer is s=0.02 mm, this model accounts for 11 layers, with the 11th 

(top) layer being the powder layer. The lower 10 layers are assumed to be solid with bulk 

material properties. The bottom layer is assumed to be in contact with the base plate, which 

is kept at a constant temperature of 80°C (353 K). The mesh consists of 27588 

isoparametric linear hexahedron elements, and is obtained with the Gmsh software by 

Geuzaine & Remacle (Geuzaine and Remacle, 2009). The mesh is imported to MATLAB 

using the load_gmsh4 software by Almeida & Lorphevre (Almeida and Lorphevre, 2007). 

Process parameters used in the simulations are given in Table 7.4 where the energy 

intensity values are calculated from 𝐸 = 𝑃 (𝑣𝑠 × ℎ × 𝑠)⁄ . 
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Figure 7.7 Problem geometry with hexahedra mesh. 

 

Table 7.4 SLM Process parameters used in the simulation. 

(Special Metals, 2015). 

 

Low Energy 

Intensity 

E=96.6 J/mm3 

Medium Energy 

Intensity 

E=113.8 J/mm3 

High Energy 

Intensity 

E= 134.5 J/mm3 

Hatch distance, h [mm] 0.1 0.1 0.1 

Spot size diameter, d [µm] 100 100 100 

Powder bed thickness, s [µm] 20 20 20 

Laser power, P [W] 169 195 195 

Scanning speed, vs [mm/s] 875 800 725 

Track length [mm] 3.6 3.6 3.6 

Beam type Uniform Uniform Uniform 
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7.2.7 Experimental Validation 

The FE simulation was run with the medium intensity parameters for validation. The track 

was processed with a Gaussian laser beam with 0.1 mm radius, with 195 W power, and 

800 mm/s scanning speed. Temperature-dependent IN625 material parameters are used, 

and the nonlinear transient solution is obtained.   

 

To validate the FE solution with experiments, thermal camera images discussed in Chapter 

6 are utilized. A comparison can be made between the cooling rates observed from the 

thermal images in Chapter 6 and the FE solution. Figure 7.8 shows the FE solution along 

with the thermal camera cutoff temperatures. Cooling rates are observed with the thermal 

camera measurements. It is seen that the average cooling rate is about 700 K/ms, which is 

higher than those observed in the thermal camera images. It is important to note here that 

the thermal camera has a measurement ceiling after which all temperature measurements 

are truncated. This causes a discrepancy in the peak temperatures of the measurements and 

the FE solution. Furthermore, continuous processing of the powder bed causes an overall 

increase in the temperature in the piece, which is further amplified by the processing of 

adjacent tracks. Thermal camera measurements indicate that tracks cool down towards 

approximately 1000K during processing. The current FE model considers a single track 

simulation at 353 K initial temperature, and since only a single layer is considered, there is 

no significant heat buildup and the beginning of the track cools down to approximately 

500K at the end of the simulation. A higher initial temperature that represents the gradual 

heat buildup in the piece can be utilized to obtain a better match between measurements 

and simulation results. 
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Figure 7.8 Comparison of thermal camera and FE results on a single track with medium 

energy intensity (P=195 W, h=0.1 mm, vs=800 mm/s). Liquidus and solidus temperatures 

are marked with dashed lines.  
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7.2.8 Single-track Simulation Results 

Results of the single track simulations are shown in Figures 7.9-7.11 where temperatures 

are plotted on the FE mesh at the last time step of the simulation. The temperature scale is 

limited to T≤TL in order to allow a better visualization of the lower temperature ranges.  

The results show that heat diffusion occurs towards the sides and the bottom of the 

meltpool. The meltpool has a shape similar to that is observed from the thermal images in 

Chapter 6. These results are obtained at low, medium and high energy intensities at 96.6 

J/mm3, 113.8 J/mm3and 134.5 J/mm3
, respectively. 

 

 

Figure 7.9 FE solution for the high energy intensity (P=195 W, h=0.1 mm, vs=725 mm/s) 

case. Temperatures are limited to T≤TL.  
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Figure 7.10 FE solution for the medium energy intensity (P=195 W, h=0.1 mm, vs=800 

mm/s) case. Temperatures are limited to T≤TL.  

 

 

Figure 7.11 FE solution for the low energy intensity (P=169 W, h=0.1 mm, vs=875 mm/s) 

case. Temperatures are limited to T≤TL. 
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To be able to compare these results, temperatures from 6 different points were extracted 

from all three simulations. These points are on the top and bottom of the top layer (𝑧 =

0.22 at the surface and 𝑧 = 0.20), at the center of the track (𝑦 = 0.25) and at 3 different x 

locations along the track (𝑥 = 1, 𝑥 = 2 and 𝑥 = 3). The points on the surface, denoted p1, 

p2 and p3, are illustrated in Figure 7.12. The remaining points, p4, p5 and p6, are directly 

below the first three points and inside the geometry at a depth of 20 µm. The results are 

shown in Figures 7.13-7.15 for high, medium and low intensity cases, respectively. As 

expected, it is seen that the peak temperatures drop as the energy intensity is lowered. 

Another observation is that the FE simulations predict peak temperatures that are above the 

melting temperature at the bottom of the top layer, suggesting meltpool depths greater than 

the layer thickness.  

 

Figure 7.12 Temperature extraction points.  
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Figure 7.13 Temperature histories at six points for the high energy intensity (P=195 W, 

h=0.1 mm, vs=725 mm/s) case.  

 

 

Figure 7.14 Temperature histories at six points for the medium energy intensity (P=195 

W, h=0.1 mm, vs=800 mm/s) case. 
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Figure 7.15 Temperature histories at six points for the low energy intensity (P=169 W, 

h=0.1 mm, vs=875 mm/s) case.  
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7.2.9 Multi-track Simulations 

Aside from the single track simulations shown in the previous section, multi-track 

simulations were designed and run with 2 tracks. Multi-track simulations can reveal the 

larger Type-I meltpools discussed in Chapter 6, arising from the remaining heat in the 

workpiece from the previous track when the laser starts processing a new track. 

 

7.2.9.1 Problem Geometry and Process Parameters 

The problem geometry is 5 mm long, 1 mm wide and 0.1 mm tall, as shown in Figure 7.16. 

Note that the height of the problem geometry is reduced from 0.22 mm to 0.1 mm due to 

computational limitations. The mesh is designed to accommodate 2 scanning tracks with a 

hatch distance of 0.1 mm in the y direction. Considering each SLM layer is 0.02 mm, this 

model accounts for 5 layers, with the 5th (top) layer being the powder layer. The lower 4 

layers are assumed to be solid. The bottom layer is assumed to be touching the base plate, 

which is kept at a constant temperature of 80°C (353 K). The mesh consists of 21450 

isoparametric linear hexahedron elements, and is obtained with the Gmsh software. Similar 

to the single track experiments, the mesh is designed such that the center of the mesh in y 

direction is more refined to allow a better and more accurate representation of the laser 

beam and resulting meltpools. The smallest elements in the central region of the mesh 

(between y=0.3 mm and y=0.7 mm) have dimensions30µ𝑚 × 25µ𝑚 × 20µ𝑚 which 

provides a sufficient resolution for the laser beam, while the largest elements on the near 

y=0 mm and y=1 mm have dimensions 30µ𝑚 × 100µ𝑚 × 20µ𝑚.  
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The scanning starts on the top surface (z=0.1 mm) at (x, y)=(0.5, 0.45) mm, and the first 

track ends at (x, y)=(0.5, 4.6) mm after 4.1 mm of scanning. At the end of the track, the 

laser is turned off for 0.042 ms. The laser then starts processing the second track, with a 

hatch distance of h=0.1 mm, beginning at (x, y)=(4.6, 0.55) mm and ending at (x, y)=(0.5, 

0.55) mm. Process parameters used in the simulation are given in Table 7.5.   

 

 

Figure 7.16 Multi-track simulation geometry with hexahedra mesh.  

 

Table 7.5 SLM process parameters used in the simulation. 

 
Low Energy 

Intensity 

Medium Energy 

Intensity 

High Energy 

Intensity 

Hatch distance, h [mm] 0.1 0.1 0.1 

Spot size diameter, d [µm] 100 100 100 

Powder bed thickness, s [µm] 20 20 20 

Laser power, P [W] 169 195 195 

Scanning speed, vs [mm/s] 875 800 725 

Track length [mm] 4.1 4.1 4.1 

Beam type Gaussian Gaussian Gaussian 
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7.2.9.2 Multi-track Simulation Results 

Meltpool width measurements can be compared between the FE solution and thermal 

camera images corrected with optical images. Based on the previous discussion in Chapter 

6, the mean width of the meltpool varies between 155 µm and 111 µm based on the location 

on the track for the default parameters used in processing Coupon #35. As a reminder, the 

difference between the meltpool width measurements (specifically the Type-I and Type-II 

meltpools) were attributed to the following fact: When the laser starts processing a new 

track, the remaining heat from the processing of the previous track causes the meltpool to 

be wider initially, and this effect decays towards the end of the track causing the meltpool 

to shrink.  

 

Meltpool widths extracted from the low, medium and high energy intensity FE simulation 

results are shown in Figure 7.17. As expected, higher energy intensities result in wider 

meltpools. Furthermore, Type-I and Type-II meltpools are observed for all cases at around 

5 ms and 11 ms marks. Note that the gap between first and second tracks in Figure 7.17 

results from the lack of heating when the laser is turned off, causing the meltpool size to 

decrease. The medium intensity FE simulation estimates the maximum meltpool width to 

be 130 µm, while the minimum meltpool width after reaching steady state is about 116 µm. 

Overall, the results are in good agreement with the measurements in Chapter 6. 
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Figure 7.17 Meltpool width calculated from low, medium and high energy intensity FE 

simulation results showing two tracks of processing. 

 

Furthermore, temperatures were extracted at 6 points from each simulation. These points 

lie on the top surface of the powderbed (z=0.1 mm), and on the track centers (y=0.45 mm 

and y=0.55 mm) at three different x locations along the track (x=1 mm, x=2.5 mm and x=4 

mm). Note that P1, P2 and P3 belong to track 1 whereas P4, P5 and P6 belong to track 2. 

The temperature history is tracked from the beginning of the simulation until the end of the 

simulation, upon the completion of the scanning of 2nd track. The results are given in 

Figures 7.18-7.20. As expected, the high energy intensity simulation shown in Figure 7.18 

reaches higher peak temperatures than the medium and low energy intensity simulations. 

Furthermore, it is observed that when the laser beam passes a point, the temperature of the 

point in the previous track (on the same x coordinate) also rises. However, the temperature 

rise is not sufficient to cause melting which coincides with the fact that these points are 

h=0.1 mm apart and the meltpool half-widths are less than 0.1 mm. The difference in peak 
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temperatures are caused by the remaining temperature fields on the workpiece as well as 

the temporal and spatial sampling of the simulations. 

 

 

Figure 7.18 Temperature histories at six points along the scanning direction for the high 

energy intensity (P=195 W, h=0.1 mm, vs=725 mm/s) case. 
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Figure 7.19 Temperature histories at six points along the scanning direction for the 

medium energy intensity (P=195 W, h=0.1 mm, vs=800 mm/s) case. 

 

 

Figure 7.20 Temperature histories at six points along the scanning direction for the low 

energy intensity (P=169 W, h=0.1 mm, vs=875 mm/s) case.  
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7.3 Microstructure Prediction  

 

7.3.1 Thermal Gradients 

As discussed previously, columnar grains observed from the SEM images of the SLM 

process IN625 samples are indicative of diffusion based growth. In the case of SLM, 

thermal gradients play a major role in solidification. As solidification happens, local 

fluctuations in energy cause certain sites to solidify faster than others. As the grain grows, 

the latent heat of freezing causes the temperatures to rise at the solidification front, which 

causes the surrounding areas to heat up. If the temperature rise reaches the melting 

temperature, solidification can no longer continue. Therefore, the local temperature field is 

critical in determining the direction in which the grains grow towards. Furthermore, as a 

solidified grain grows through the liquid, it experiences different temperature fields which 

may inhibit or accelerate its growth. Any information on the thermal gradients in the 

meltpool can therefore help predict the solidification direction. The 3D FEM simulation 

results in thermal field and gradients can be utilized to obtain this information.  

 

The temperature field of the FE solution is sampled at various points, and thermal gradients 

at each point are calculated based on central differences. Figure 7.21 shows the thermal 

gradients observed on the XY (top) surface of the powder bed, at the end of the simulation 

with default processing condition (P=195 W, h=0.1 mm, vs=800 mm/s). Negative gradient 

vectors are shown with red arrows, and the length of the arrows indicate their magnitude. 
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Figure 7.21 Contour plot of the temperature field and the negative thermal gradients on 

sampled points at the end of the medium energy intensity (P=195 W, h=0.1 mm, vs=800 

mm/s) simulation. 

 

Figure 7.22 shows the negative thermal gradients of the 3D FE solution from the YZ view 

and Figure 7.23 shows the negative thermal gradients from the XZ view. Both views depict 

strong gradient vectors in the Z direction, caused by heating of the laser at the top and 

cooling of the base plate. The YZ view shows some heat diffusion in the Y direction, which 

indicate that the meltpool region also cools down towards the cooler regions on the sides 

of the track. This lateral cooling is further affected by the neighboring material; solidified 

regions transfer the heat more effectively than powder regions. Other than the strong 

gradients in the Z direction in the XZ view in Figure 7.23, lateral cooling is also observed 

especially at the end of the track after x=4.5 mm where the laser is turned off for a period 

of time (0.042 ms) followed by the initiation of the scanning of the subsequent track, as the 

simulation models two tracks. Both figures reveal the nature of solidification in SLM 

process as it is these thermal gradients that shape the microstructure during solidification.   
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Figure 7.22 YZ view of the negative thermal gradients extracted from the FE solution 

(P=195 W, h=0.1 mm, vs=800 mm/s) sampled at various points (shown as blue). Note 

that the thermal gradients are summed over time.  

 

 

Figure 7.23 YZ view of the negative thermal gradients extracted from the medium energy 

intensity FE solution (P=195 W, h=0.1 mm, vs=800 mm/s) sampled at various points 

(shown as blue). Note that the thermal gradients are summed over time. 

 

Furthermore, for all three simulations, temperature fields are sampled on the scanning area 

of the second track (0.5𝑚𝑚 ≤ 𝑦 ≤ 0.6𝑚𝑚), 10 µm below the top surface (𝑧 = 0.09𝑚𝑚) 

coinciding with the half-thickness of the top layer, with 50 µm distance between the 

sampling points in X and Y directions. Histograms of the angles between the build direction 

and X and Y directions of the negative thermal gradients are obtained and are given in 

Figures 7.24 and 7.25.  
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Angles in XZ planes given in Figure 7.24 show that majority of the heat diffusion aligns 

directly with the build direction, with a slight tilt towards the scanning direction indicated 

by the positive angles. The negative angles in XZ planes are in the opposite of the scanning 

direction, and result from the area near the beginning of the second track (𝑥 = 4.6𝑚𝑚). It 

is observed that as the scanning speed decreases, the 0° angles are tilted towards 10°, in the 

direction of scanning. 

 

 

Figure 7.24 Gradient directions in the XZ plane obtained from FE solutions.  

 

The majority of the YZ plane angles shown in Figure 7.25 are also aligned with the Z axis, 

with some heat diffusion occurring in the hatching direction Y.  Here, negative angles 

indicate the direction towards the next hatch, while the positive angles indicate the 

direction towards the previous hatch. The frequency of 0° angle gradients is observed to 

decline with decreasing energy intensity, and in the low intensity case the vectors lean 

towards the -10° direction slightly more than the other cases.  
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Figure 7.25 Gradient directions in the YZ plane obtained from FE solutions.  

 

Overall, these angles indicate the growth direction of columnar grains affected by the heat 

diffusion with respect to the build direction. It is important to note that while these angles 

largely coincide with the direction angles observed in Chapter 6, however, a direct 

comparison should not be made between them.  
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7.3.2 Phase Field Method 

The phase field method is a computational method that is used in modeling of solidification 

and microstructure. A brief introduction to the phase field method was given in Chapter 1. 

This study focuses on applying the basic 2D phase field method algorithm that can achieve 

dendritic growth as proposed by Kobayashi (Kobayashi, 1993) to the results of 3D FEM 

simulations as a post-processing step in an attempt to capture the effects of different 

process parameters on the resultant microstructure of the IN625 material.  

 

It is important to note some of the deficiencies of the method. As stated by Voorhees 

(Voorhees, 2015), one deficiency of the phase field method lies in where it provides the 

biggest advantage against other methods. In reality, the thickness of the interface must be 

very small, and in the computational domain it must be resolved accurately for the 

calculations to be correct. However, such a high resolution is computationally prohibitive, 

and interface thicknesses much larger than the reality are used in computational domains. 

Karma&Rappel (Karma and Rappel, 1998) addresses this by allowing very small interface 

thicknesses that are smaller than the reciprocal of the mean curvature of the interface. 

Furthermore, certain properties of the system, such as diffusivity, are often interpolated at 

the diffuse interfaces using the order parameter, which makes the actual solution dependent 

on the interpolation itself, rather than the physical phenomena taking place at the interface. 

Since utilizing physical interface sizes is not possible in the computational domain, 

spurious terms appear due to the interpolations, such as diffusion happening at the interface 

as it grows. Moreover, due to the large size of the interface, solute trapping becomes an 
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issue, and anti-trapping terms are included to compensate for this in the calculation of the 

concentration diffusion equations (Ebrahimi, 2010).  

 

Nevertheless, phase field method is a very popular method in computational modeling of 

solidification. It is utilized to explore a comparison between high and medium energy 

intensity cases.   
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7.3.2.1 Implementation of the Model 

The phase field method utilizes the temperature fields obtained from the FE simulations. 

Because the implemented phase field algorithm is 2D, the temperature field needs to be 

extracted at desired cross-sections from the 3D FE model over a period of time steps. Once 

the temperatures are known, the phase field can be initialized with liquid and solid phases. 

During the phase field simulation, the temperature field is updated using the solution of the 

FE model. The phase field method requires higher spatial and temporal resolution, 

therefore the temperature field obtained from the FE simulation is interpolated linearly, 

both spatially and temporally.  

 

The Type-II meltpool location (at the beginning of second track) is chosen as a suitable 

location to investigate solidification. Temperatures are extracted from the YZ cross-section 

at x=0.4576 at the corresponding the time step. The laser beam is centered on y=0.55 mm 

during the scanning of the second track. Meltpool widths were observed to be between 

120-140 μm for the Type-II meltpool region.  

 

Equations 1.30-1.32 are solved using a Forward-Time Central-Space (FTCS) Finite 

Difference (FD) scheme. The Fortran implementation by Kiran (Kiran, 2010) is utilized to 

create a MATLAB code for the phase field method, following the paper by Kobayashi 

(Kobayashi, 1993). Model parameters are given in Table 7.6, some of which are suggested 

by Kobayashi (Kobayashi, 1993).The value of K is chosen such that the latent heat buildup 

yields a dendritic structure and the value of j is chosen to eliminate preferred directions. 
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Table 7.6 Parameters used in the phase field simulations. 

𝜇 𝐾 𝛿 𝛼 𝛾 휀 ̅ 𝜏 𝑗 

1 2.4 0.01 0.9 10 0.01 0. 0003 0 

 

The problem domain is described as follows. It is assumed that the meltpool is symmetric 

about the x-axis, which allows only half of the meltpool to be considered rather than the 

full meltpool region. In reality, one side of the meltpool is solidified material (due to the 

processing of the previous track) while the other side is still powder, which affects the 

cooling rates (due to different thermal conductivity) and nucleation sites (existing grains 

on the solidified structure versus the  microstructure of the powder). In these simulations, 

the problem considers that the meltpool is surrounded with the previously processed 

(solidified) region rather than powder material. 

 

Phase field method is run between the FE time steps where the initial melting is observed 

in the selected cross section and where the maximum temperature drops below 70% of the 

melting temperature (TL).  For this purpose, 200 FE time steps are utilized that are sampled 

every 20 steps. The time step size for FE simulation was given as 𝑑𝑡 = 5𝑒 − 6𝑠. This time 

period is further divided into 10000 time steps for the phase field simulation. The time step 

size for the evolution of the phase field method is chosen internally to be 𝑑𝑡 = 2𝑒 − 4, 

making it effectively 𝑑𝑡 = 1𝑒 − 7𝑠. The spatial is 621 by 411, with 0.1 μm spatial step 

size in both directions. Symmetry boundary conditions are used on the top and right edges 

of the geometry. 
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The initial phase field is shown in Figure 7.26 in terms of the order parameter p. In order 

to obtain comparable results between simulations, the meltpool region is assumed to be an 

ellipsoid, consistent across simulations. Furthermore, the perimeter of the ellipsoid is 

superimposed with a sine wave function to act as nucleation sites. 

 

 

Figure 7.26 Initial phase field. The red region (p=1) is solid while the blue region (p=0) is 

liquid.  

 

7.3.2.2 Results and Discussion 

 

Results of the medium and high energy intensity simulations are shown in Figures 7.27 and 

7.28, respectively. Both results look very similar, and a quantitative comparison is not 

possible to be made based on the results. The initialization of the order parameter p results 

in some solid regions to have lower temperatures than others, which amplifies their growth 

rate. Note that the heating occurs from the top-right corner of the problem domain, which 
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corresponds to the center of the laser beam. As the laser beam moves away, the area cools 

down, initiating solidification. Dendrites are formed according to the temperature field, and 

the directions indicate the preferred growth direction is towards the y-axis and z-axis, as 

observed from the SEM images. The release of latent heat during the growth keeps dendrite 

arms away from each other. Note that the implemented model considers only the solid and 

liquid phases of the metal.  

 

As future research, additional phases (such as the Ni3Nb γ'') may be implemented in a 

binary fashion, and when combined with material diffusion, it can greatly improve the 

results. Furthermore, the result of the simulation is very sensitive to the parameters shown 

in Table 7.6, and the problem domain. Rather than forced dendritic growth through the 

initial conditions, random noise can be added to the system to alter the order parameter. 
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Figure 7.27 Microstructure at the end of the phase field simulation that utilizes the 

temperature field from the high energy intensity (P=195 W, h=0.1 mm, vs=725 mm/s) FE 

simulation.  

 

 

Figure 7.28 Microstructure at the end of the phase field simulation that utilizes the 

temperature field from the medium energy intensity (P=195 W, h=0.1 mm, vs=800 mm/s) 

FE simulation. 
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 CHAPTER 8: CONTRIBUTIONS AND FUTURE WORK 

 

This dissertation focuses on understanding the effects of machining and Selective Laser 

Melting (SLM) on the surface integrity of certain titanium and nickel based alloys. Chapter 

1 contains background information, literature review, methods and formulations that are 

used in the dissertation. In Chapter 2, machining induced microstructural changes in IN100 

nickel-based alloy and Ti-6Al-4V titanium alloy samples are investigated. Hardness 

measurements are taken from the samples, and Scanning Electron Microscopy (SEM) 

images obtained from the electropolished or etched surfaces of the samples are analyzed 

with image processing to determine the average grain sizes and volume fractions of 

different phases. In Chapter 3, 3D Finite Element Method based process simulations are 

utilized for machining of IN100 nickel-based and Ti-6Al-4V titanium alloys. 

Temperatures, strain, and strain-rate fields are predicted. Microstructure with grain sizes 

resulting from dynamic recrystallization is predicted by employing the Johnson-Mehl-

Avrami-Kolmogorov (JMAK) model. In Chapter 4, machine learning based predictive 

modeling of microhardness and grain size is performed. Non-linear and Random Forests 

regression models are created to capture the relationships between temperature, machining 

parameters, hardness and grain sizes. In Chapter 5, multi-objective machining parameter 

optimization is performed to maximize the productivity, minimize the machining 

temperature and minimize the grain size alterations in the workpiece, using Genetic 

Algorithms. Grain size measurements from SEM images and temperature fields from FE 

simulations are fitted to regression models which are then utilized as objective functions.  

Furthermore, parameters for the existing JMAK equation based microstructural model are 

identified using an optimization scheme based on grain size prediction results extracted 
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from FE simulations and compared against measured grain sizes. In Chapter 6, 

microstructure in SLM processing of IN625 nickel alloy is investigated. Processed coupons 

are analyzed with SEM and image processing to reveal grain sizes and growth directions. 

Using an in-situ thermal camera recording, the spattering phenomenon is quantified, 

meltpool sizes are identified and heating/cooling rates are determined. Finally, in Chapter 

7, computational modeling of the SLM process is performed with in-house developed 3D 

FEM for thermal field solution and 2D Phase Field method for localized solidification 

investigation. 

 

The experimental and computational work presented in this dissertation is 

multidisciplinary in nature, spanning computational science, materials science, statistics, 

industrial and manufacturing engineering areas. Therefore, many opportunities for 

improvement exist as future research. More detailed and different experiments can be done 

to learn more about the underlying physics and the effects of these processes on surface 

integrity and microstructural changes. For instance, using the SLM processed coupons, 

hardness measurements can be taken to reveal the effect of processing parameters on the 

mechanical properties of the part, or X-Ray Diffraction analysis can be performed to reveal 

the crystal orientations. Capabilities of the computational models can also be enhanced. 

Machining simulations can also be improved to account for static and meta-dynamic 

recrystallization, as well as grain growth. In SLM modeling, spattering can be implemented 

physically, or stochastically with the use of in-situ thermal recordings. More advanced 

phase field models can be utilized to predict the solidification microstructure globally and 
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more accurately, and perform optimization of the microstructure in critical (stress-bearing) 

locations of the part.  
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 APPENDIX A: MICROSTRUCTURAL ANALYSIS - GRAIN SIZE 

MEASUREMENTS 

 

Figure A.1 Grain size analysis of SLM processed IN625 coupons. 
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 APPENDIX B: MICROSTRUCTURAL ANALYSIS - GRAIN GROWTH 

DIRECTION MEASUREMENTS 

 

 

Figure B.1 Growth directions and histograms of inclination angles for all IN 625 test 

coupons. 
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 APPENDIX C: OPTICAL IMAGE ANALYSIS 

 

 

Table C.1 Meltpool width measurements with optical microscopy. 

Coupon 

# 

Laser 

Power  

P [W] 

Scanning 

Velocity 

vs [mm/s] 

Hatch 

Distance 

h [mm] 

Type I 

Width 

[m] 

Type II 

Width 

[m] 

Average 

Width  

[m] 

1 169 875 0.1 134 92 113 

4 195 875 0.1 170 111 135 

6 182 875 0.09 149 101 128 

8 182 725 0.11 153 107 130 

9 195 800 0.11 143 109 128 

12 182 725 0.09 134 113 126 

14 182 800 0.1 132 109 121 

15 182 800 0.1 128 105 119 

16 195 725 0.1 152 114 133 

17 182 800 0.1 143 112 127 

18 182 875 0.11 134 110 126 

20 169 725 0.1 159 106 136 

21 169 800 0.09 154 107 131 

23 169 800 0.11 150 96 120 

29 195 800 0.09 149 103 128 

35 195 800 0.1 155 112 128 
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 APPENDIX D: THERMAL IMAGE ANALYSIS 

 

Figure D.1 Thermal images for track #1. 
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Figure D.2 Thermal images for track #2. 
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Figure D.3 Thermal images for track #3. 
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Figure D.4 Thermal images for track #4. 
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Figure D.5 Thermal images for track #5. 
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Figure D.6 Thermal images for track #6. 
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Figure D.7 Thermal images for track #7. 
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Figure D.8 Thermal images for track #8. 
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Figure D.9 Thermal images for track #9. 
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Figure D.10 Thermal images for track #10. 
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Figure D.11 Thermal images for track #11. 
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Figure D.12 Thermal images for track #12. 
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Figure D.13 Thermal images for track #13. 
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Figure D.14 Thermal images for track #14. 
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Figure D.15 Thermal images for track #15. 
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Figure D.16 Thermal images for track #16. 
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Figure D.17 Thermal images for track #17. 
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Figure D.18 Thermal images for track #18. 
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Figure D.19 Thermal images for track #19. 
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Figure D.20 Thermal images for track #20 
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