TY - JOUR TI - Time-resolved in-situ analysis of densification of nano-boron carbide under superimposed electric and thermal fields with energy dispersive x-ray diffraction DO - https://doi.org/doi:10.7282/T32J6DXK PY - 2016 AB - Boron carbide (B4C) is characterized by high melting temperature, high hardness, and low density. Such exceptional properties make B4C is an important covalent solid which is considered the foremost material of choice for high-technology applications. However, low diffusivity caused by the highly directional and stiff character of the covalent bond makes the thermally activated sintering of B4C difficult. Highly covalent bonded ceramics are sintered with hot pressing and spark plasma sintering (SPS) to achieve high densities. However, these two techniques are limited to simple shape components and costly, involving expensive equipment. Pressureless sintering of B4C is desired to avoid expensive die designs and post sintering diamond machining, but very high sintering temperatures close to melting point is necessary to obtain high densities. Recently introduced flash sintering technique is a low voltage two electrode method which enhances the densification of ceramics. The sintering time and temperature can be reduced substantially with flash sintering that provide essential energy savings. In this study, the feasibility of flash sintering of nanoparticulate boron carbide is investigated. Firstly, we analyze the thermal expansion of boron carbide under different constant electric field strength to obtain fundamental data to provide insight into understanding of flash sintering. The electric field strength has an effect on the non-linear thermal expansion coefficients of B4C, and expansion becomes more non-linear with the increase of applied e-field. Secondly, the variety of non-isothermal and isothermal flash sintering experiments have been performed to achieve densification of B4C. By using low voltage, densities up to 95% of the theoretical density have been accomplished at temperatures as low as 711oC and short times on the order of few minutes. The very low process densification temperatures and time clearly indicate that mass transport in this nanoparticulate system under the action of both thermal and electrical fields are of an electrochemical origin. The implementation of ultrahigh energy EDXRD method in flash sintering of B4C enables us to monitor the evolution of nanoparticulate matter at the unit cell scale that is otherwise not possible with conventional Bragg-Brentano-method. EDXRD analysis reveals the transient anomalous unit cell expansion which is consistent with the flash sintering phenomena, and we demonstrate that flash sintering of B4C is possible with help of new coupling mechanism called the galvanomechanical effect. Moreover, we investigate the effect of different flash sintering conditions on densification of B4C. KW - Materials Science and Engineering KW - Carbides KW - Boron KW - Sintering LA - eng ER -