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Lanthanum Gallium Silicate (La3Ga5SiO14, Langasite, LGS) and its isomorphs are 

gaining in popularity due to their superior piezoelectric material properties. These 

materials have similar crystal properties as the quartz crystal, which is widely used in 

BAW applications such as resonators and piezoelectric vibratory gyroscopes. The 

langasite and langatate have better stability at high temperatures that have no phase 

transition up to the melting point at 1475°C and 1450°C, respectively. Additionally, 

quartz, langasite, and langatate crystals are trigonal class crystals that belonging to the 

same point group 32, for which well-known methods of trapping energy of piezoelectric 

resonator can be easily and accurately applied. 

Quartz, langasite and langatate crystals are used for studying and designing 

piezoelectric vibratory gyroscopes. The three-dimensional finite element models are 

developed to simulate the characteristic of the vibratory gyroscopes. The piezoelectric 

double-ended tuning fork gyroscope is used to verify and validate the finite element 

analysis. The geometric and gyroscopic sensitivity of the finite element models of the 

quartz doubled-ended tuning fork gyroscope showed the excellent agreement with the 
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experimental data. The results show that langasite and langatate crystal are more effective 

than quartz crystal for high precision piezoelectric gyroscopes. 

A length-extension vibratory gyroscope is our newly designed gyroscope, which 

utilizes a length extension mode as a driving mode and a flexure mode as a sensing mode 

to detect the Coriolis force generated by the rotation of the system. The sizes of the 

gyroscopes vary due to the material properties and length of the driving arms. The 

langasite and langatate gyroscopes are nearly the same size and are smaller than the quartz 

gyroscope. The results show that the newly designed length-extension gyroscope can be 

used as a gyro-sensor, and that langasite and langatate gyroscopes provide the stronger 

sensitivity to angular velocity than the quartz gyroscope. The length extension gyroscope 

is also able to detect the angular velocities about the other two axes(x- and y-axes).   

 The three-dimensional Langrangian formulations are used to calculate the frequency-

temperature behaviors of the langasite. Normally, the piezoelectric effect is ignored in 

analysis of the quartz crystal due to their weak piezoelectric coupling. The piezoelectric 

coupling factor of the langasite crystal is much larger than that of the quartz crystal, which 

cannot be ignored. However, the analysis shows that the piezoelectric effect on the 

frequency-temperature behavior of langasite is negligible. The study on the temperature 

behaviors of the langatate cannot be completed, since the third-order non-linear elastic 

constants have not been published. The results show that no zero-temperature 

compensated cuts for A- and B- mode exist, while a more than sufficient number of the 

zero-temperature compensated orientations of langasite for C-mode have been identified.  

The temperature compensated cuts of langasite for any order higher than the first were not 

found.   
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Introduction 

In 1880, Jacques and Pierre Curie brothers discovered the piezoelectric effect. They 

found some materials, which generate electrical charges when a mechanical stress was 

applied. The word “piezo” is a Greek word means “to press or to squeeze” [1]. Therefore, 

piezoelectric means electricity generated from the pressure. Those piezoelectric materials 

have asymmetric crystal structure. The piezoelectric materials can be divide into three 

main categories; crystals, ceramics and thin films [2]. The most well-known and widely 

used piezoelectric material is quartz crystal (SiO2).  

Ever since micro-electromechanical systems are introduced, the piezoelectric gyro-

sensors are dramatically gained the popularly due to its manufacture cost, power 

consumption and its size. Due to these reasons, the piezoelectric gyro-sensors are widely 

used in many industries such as automotive, aerospace, telecommunications, consumer 

electronics and entertainment industries. However, the piezoelectric gyro-sensors have to 

overcome many technical problems. The problems are related to the performance, 

complexity of the geometry and shock resistance due to the decrease of the size of the 

sensors. Quartz crystal gyro-sensors are more durable and have much simple geometry 

compared to other piezoelectric gyro-sensors based on ceramic piezoelectric materials.  

The gyroscopic sensitivity of the gyroscope is one of the most important criteria in 

the design of gyro-sensor, which directly related to type of material and the geometry of 

the gyroscope. Quartz and ceramic type piezoelectric materials are widely used material 

for gyro-sensor.  Lanthanum gallium silicate (La3Ga5SiO14) and lanthanum gallium 

tantalite (La3Ga5.5Ta0.5O14), also known as langasite and langatate, respectively, are other 

piezoelectric materials that have same crystal properties as quartz crystal. They all belong 
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to point group 32 and trigonal class.  Langasite and langatate crystals are fairly newer 

piezoelectric materials, which introduced in early 1980s by Russian scientists. Due to the 

number of reasons, the crystals are not utilized for any applications until recent years. 

Both crystals started to get attention after scientist found that they are suitable for high 

temperature condition and they perform better than quartz crystal due to their 

piezoelectric material properties. Both langasite and langatate have stronger electro-

mechanical coupling factor, heavier mass density and higher temperature frequency 

coefficient constant than the quartz crystal.  These material properties make langasite and 

langatate gyro-sensors perform superior to quartz gyroscope. The geometry of the 

gyroscope is also affecting the gyroscopic characteristics which can be analyzed by 

parametric modal analysis.  

In this dissertation work, the langasite and langatate doubled-ended tuning fork gyro-

sensor are analyzed and compared with the quartz gyroscope. Design of the gyroscopes 

and analyses were done using finite element method. The Furthermore, the length 

extension gyroscopes are introduced and analyzed with the same analysis method.  The 

temperature behavior of the langasite is also analyzed by numerical method. Since, third 

order non-linear constants of langatate are not published; the temperature analysis on 

langatate has been omitted.   

Thesis Organization: 

The work carried out in this dissertation has been organized into six chapters. 

 Chapter 1 provides a brief introductory of piezoelectric crystals  
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 Chapter 2 contains the introductory of piezoelectric vibratory gyroscope and 

its governing equations. The equations derived in this chapter are used to 

design and analyze the piezoelectric gyroscopes.   

 Chapter 3 consists of evaluating the characteristics of the piezoelectric 

doubled-ended tuning fork. The finite element analysis is used to analyze the 

double-ended tuning forks gyro-sensors. 

 Chapter 4 includes design of length extension gyroscopes. The gyroscopic and 

geometric sensitivity analyzes are also includes in this chapter. 

 Chapter 5 contains the analysis of temperature nonlinearly behavior of 

langatate crystal 

 Chapter 6 includes the conclusion and future improvement of this dissertation. 
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Chapter 1. Basics of Piezoelectric Crystals  

1.1 Crystal systems and basic terminology 

The crystal means a solid in which the atoms are arranged in a single pattern repeated 

through the body. The crystal atoms are occurring in small groups, all groups being 

exactly alike, similarly oriented, and regularly aligned in all three dimension. Each group 

are bounded by a parallelepiped and each parallelepiped can be considered as an ultimate 

building blocks of crystal. The crystal is formed by stacking the basic parallelepiped 

without any spaced between them. Such a building block is called a unit cell. Since the 

choice of a particular set of atoms to form a unit cell is arbitrary, it is evident that there is a 

wide range of choices in the shape and dimensions of the unit cell. In practice, the unit cell 

is selected by the symmetry of the crystal and by simply related to the actual crystal faces 

and X-ray reflections.  

In crystallography, the properties of a crystal is represents in terms of natural 

coordinate system which the axes are indicated by the latter a, b and c. For example, 

theses axes are equal length and are mutually perpendicular in a cubic crystal while the 

axes are unequal lengths and no two axes are mutually perpendicular in triclinic crystal. 

The faces of any crystal are all parallel to the planes whose intercepts on the a, b, and c 

axis are small multiples of unit distances or infinity, in order that their reciprocals, when 

multiplied by a small common factor, are all small integers or zero, which represent the  

indices of the plane. In the orthorhombic, tetragonal, and cubic systems, these faces are 

normal to a, b and c axes. Even in the monoclinic and triclinic systems, these faces 

contain, respectively, the b and c, a and c, and a and b axes. As referred to the set of 

rectangular axes X, Y, Z, these indices are in general irrational except for cubic crystals. 
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The crystals are commonly classified into seven systems; triclinic, monoclinic, 

orthorhombic, tetragonal, trigonal, hexagonal, and cubic [3]. The seven systems are further 

divided into point groups, also known as classes, based on their symmetry with respect to 

a point. For example, the trigonal crystals all possess a three-fold axis, while those of the 

tetragonal and hexagonal crystal systems possess a four-fold and six-fold axis, 

respectively. The cubic crystal groups all have multiple threefold axes. The orthorhombic 

point groups have two-fold symmetry either 2 or m with respect to each of the X-, Y-, Z- 

directions of an orthogonal axis system, while the monoclinic point groups are limited to 

two-fold symmetry with respect to a single axis direction. Finally, the triclinic point 

groups can only have an axis of order 1. Overall, there are total 32-point groups. Table 

1.1.1 and 1.1.2 gives the summary of crystal system and provides clarification by 

identifying the symmetry directions for each crystal system.  
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Table 1.1.1 Summary of crystal systems [IEEE Standards on Piezoelectricity] 
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Table 1.1.2 Symmetry direction for each crystal system [IEEE Standards on 

Piezoelectricity]  



8 

 

 

 

1.2 Trigonal class piezoelectric material 

The primary piezoelectric materials of interest in this dissertation are quartz, langasite 

and langatate, which all have a trigonal system [4] [5]. The trigonal system is one of the 

seven crystal systems in crystallography. Crystallography is the branch of the science of 

determining the arrangement of the atoms in the crystalline solid. Although quartz, 

langasite and langatate belong to the trigonal system, their unit cells are hexagonal. The 

Bravais-Miller system is often used to specify the hexagonal crystal system. This is the 

only crystal system that has a four-axis coordinate system as shown in figure 1.2.1   The 

system consist with three equivalent secondary axes, a1, a2 and a3, that are of equal 

length to each other of 120 degrees in a plane normal to c. These axes are either 

perpendicular to a plane of symmetry parallel to a two-fold axis or if there are neither two-

fold axes perpendicular to c not plane of symmetry parallel to c, the a axes become the 

smallest unit cell. The x-axis coincides in direction and sense with any one of a axes. The 

z-axis is parallel to c and the y-axis is perpendicular to z- and x-axis, which form a right-

handed coordinate system. Positive-sense rules for +Z, +X, +Y are listed in Table 1.2.1 for 

the trigonal and hexagonal system crystals. In addition, the quartz, langasite and langatate 

are belongs to the 32 symmetry classes which have a 3 fold rotational symmetry on one 

and a two-fold rotational symmetry on another axis.  
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(a) Bravais-Miller system               (b) Rectangular Coordinate 

system  

Figure 1.2.1 Bravais-Miller system 

 

Figure 1.2.2 Left and Right-handed quartz crystals, Trigonal class 32 [IEEE 

Standards on Piezoelectricity] 
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Table 1.2.1 Positive sense rules for Z, X, and Y for trigonal and hexagonal crystals 

[IEEE Standards on Piezoelectricity] 
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1.3 Governing Equations of Piezoelectricity 

The governing equations of linear and non-linear piezoelectricity are listed in this 

section [6] [7] [8]. These equations are implemented in COMSOL Multiphysics finite 

element analysis software and Matlab to analyze the gyroscopes and study the frequency-

temperature behavior of langasite crystal in succeeding chapters. 

1.3.1 Linear Piezoelectricity 

 Strain-displacement relation 

 휀𝑖𝑗 =  
1

2
 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)        (1.3.1) 

 Equation of motion 

 Ti j, j  = ρ�̈� j         (1.3.2) 

 Ti j = T ij          (1.3.3) 

 Electric field-potential relation 

 𝐸𝑖 =  −∅,𝑖         (1.3.4) 

 Electrostatic 

 𝐷𝑖,𝑖 = 0         (1.3.5) 

Constitutive equations 

𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝐸 휀𝑘𝑙 −  𝑒𝑘𝑖𝑗𝐸𝑘 + 𝜂𝑖𝑗𝑘𝑙휀�̇�𝑙      (1.3.6)  

𝐷𝑖 = 𝑒𝑖𝑘𝑙휀𝑘𝑙 + 𝜖𝑖𝑘
𝑠 𝐸𝑘        (1.3.7) 

Where Ti j is the Cauchy stress tensor, 𝑢𝑖 is the component of displacement, 휀𝑖𝑗 is the 

lagrangian strain tensor, ρ is the mass density of the material and 𝐷𝑖  is the electric 

displacement. 𝐸𝑖 is the electric field,  ∅ is the electric potential, 𝑐𝑖𝑗𝑘𝑙
𝐸  is the elastic moduli 

of an anisotropic body, 𝑒𝑖𝑘𝑙is the piezoelectric constant describing the effect of an electric 
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field on the mechanical stress, 𝜖𝑖𝑘
𝑠  is the dielectric permittivity and 𝜂𝑖𝑗𝑘𝑙 is the viscoelastic 

constant.  

1.3.2 Non-linear Piezoelectricity 

 Strain-displacement relation 

 휀𝑖𝑗 =  
1

2
 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑖,𝑘𝑢𝑘,𝑗)      (1.3.8) 

 Equation of motion 

 (𝑇𝑖𝑗 + 𝑇𝑗𝑘𝑢𝑖,𝑘),𝑗 = ρ�̈� j       (1.3.9) 

 Ti j = T ij                  (1.3.10) 

 Electric field-potential relation 

 𝐸𝑖 =  −∅,𝑖         (1.3.11) 

Electrostatic 

 𝐷𝑖,𝑖 = 0         (1.3.12) 

Constitutive equations 

𝑇𝑖𝑗 = (𝐶𝑖𝑗𝑘𝑙+𝐶𝑖𝑗𝑘𝑙𝑚𝑛휀𝑛𝑚 − 𝑒𝑖𝑗𝑘𝑙𝑚𝐸𝑚)휀𝑘𝑙 −  (𝑒𝑖𝑗𝑘𝑙𝑚𝑛휀𝑘𝑙)𝐸𝑚 + 𝜂𝑖𝑗𝑘𝑙휀�̇�𝑙 (1.3.13)

   

𝐷𝑖 = (−𝑒𝑖𝑘𝑙−𝑒𝑖𝑗𝑘𝑙𝑚휀𝑚𝑗)휀𝑘𝑙 + (𝜖𝑚𝑖
𝜀 + 𝛽𝑚𝑘𝑖

𝜀 𝐸𝑘)𝐸𝑚               (1.3.14) 

where  𝑒𝑖𝑗𝑘𝑙𝑚is the nonlinear piezoelectric constants and 𝛽𝑚𝑘𝑖
𝜀  is the electro-optical 

coefficients. The constitutive equation can be written in different forms, which listed in 

Appendix B. The stress-charge form of the piezoelectric constitutive equations, shown in 

equation 1.3.13 and 1.3.14 are implemented in finite element analysis. 
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Chapter 2. Microelectromechanical System (MEMS) Piezoelectric 

Vibratory Gyroscopes 

2.1  Introduction 

The vibratory gyroscope is a device, which utilizes the Coriolis force to measure the 

changes in angular momentum or angular velocity. The Coriolis force is generates by 

Coriolis affect, which only be seen in rotating non-inertial reference frame.  

French physicist Leon Foucault introduced the gyroscope in 1852. He named a 

gyroscope combining two Greek words “gyro” meaning rotation and “skopeein” meaning 

to see.  The earlier mechanical gyroscope consists of a spinning wheel that is suspended 

by three gimbals. However, the mechanical gyroscope has many disadvantages such as 

wear and bearing friction.   Modern vibratory gyroscope eliminated these problems by 

removing the rotating parts. 

There are many different types of vibratory gyroscopes in the current market. Wine-

glass resonator/hemisphere resonator gyroscopes, cylindrical resonator gyroscope (CRG), 

tuning fork gyroscope and vibrating wheel gyroscope/disk resonator gyroscope (DPG) 

are the most widely used and well known vibratory gyroscopes. Alternately, optical 

gyroscopes such as fiber-optic gyroscope and ring laser gyroscope are available for high 

performance applications. Due to the high price of the optical gyroscopes, it can only be 

used for high performance applications. Inertial navigation and guidance system, radar 

sensors and structural health monitoring are the example of aerospace industry 

applications. A wide range of consumer electronics and entertainment industries 
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applications include stabilization in digital camera, smartphone and motion sensor for 

game console.  

Microelectromechanical Systems (MEMS) is based on photo-lithography technology. 

In order to be consider as MEMS, it has to be in micrometer scale with electrical and 

mechanical functions. MEMS technologies became more desirable for many applications 

because of its lightweight, miniature size and manufacture cost.  

 

Figure 2.1.1 Schematic diagrams of the cylindrical gyroscopes [9]. 

 

Figure 2.1.2 Schematic diagram of double tuning fork gyroscope [10]. 
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Figure 2.1.3 Schematic diagram of disk resonator gyroscope [11]. 

 

2.2  Dynamics of Vibratory Gyroscopes 

The fundamental equations of the vibratory gyroscope are developed in this chapter. 

The simple theoretical gyroscope is comprised of a driving-mode oscillator, sensing-mode 

detector and the proof mass. The driving mode oscillator comprises of proof mass which 

oscillating in the driving direction at driving resonant frequency and it is suspended by 

suspension system.  

The sensing mode accelerometer is comprises of proof mass suspended by suspension 

system. It allows the proof mass to oscillate in the sensing direction, which is 

perpendicular to the driving direction. The Coriolis force is generated in the sensing 

direction when the gyroscope is subjected to an angular rotation. The sense electrodes 

detect the change in angular momentum and output the signal.   
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Figure 2.2.1 A structure of the simplified 2-D.O.F vibratory gyroscope. 

 

A simple theoretical z-axis gyroscope, shown in figure 2.2.1, is used to illustrate the 

dynamics and operational principles of the vibratory gyroscope.  The gyroscope subjected 

to rotation about z-axis is considered. The equation of the motion of the vibratory 

gyroscope can be derived by taking second time derivative of the position vector [1]. 

The equations of the motion of the moving body in a rotating reference frame consist 

of following definitions: 

A : Inertial frame 

B : Rotating reference frame 

𝐫A: Position vector relative to inertial frame A 

𝐫B: Position vector relative to inertial frame B 

𝐯A: Velocity vector relative to inertial frame A,  𝐯A = �̇�A 

𝐯B: Velocity vector relative to inertial frame B,  𝐯B = �̇�B 
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Figure 2.2.2 Illustration of the position vector relative to the inertial reference frame 

and the rotating reference frame. 

 

𝐚A: Acceleration vector relative to inertial frame A,  𝐚A = �̇�A = �̈�A 

𝐚B: Acceleration vector relative to inertial frame B,  𝐚B = �̇�B = �̈�B 

ϴ: Orientation vector of rotating reference frame relative to inertial frame 

Ω: Angular velocity vector of rotating reference frame, Ω = θ̇ 

R: Position vector of rotating frame  

By taking the second time derivative of the position vector, the equations of the 

motions of moving body in a rotating frame is obtained and they are given as 

𝐫A(t) = R(t) + 𝐫B(t)        (2.2.1) 

�̇�A(𝑡) = �̇�(𝑡) +  �̇�B(𝑡) +  θ̇ × 𝐫B(𝑡)      (2.2.2) 
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�̈�A(t) = �̈�A(t) + �̈�B(t) + θ̇ × �̇�B(𝑡) + θ̇ × (θ̇ × 𝐫B(𝑡)) + θ̈ × 𝐫B(𝑡) + θ̇ × �̇�B(𝑡) 

          (2.2.3) 

The figure 2.2.2 represent the position vector relative to the inertial frame A and the 

rotating frame. Equation 2.2.3 can be reduced by writing the equation in terms of velocity 

vector, v, acceleration vector, a, and linear acceleration of the reference frame B, A and is 

it given as 

𝐚A = A + 𝐚B + Ω̇ × 𝐫B + Ω × (Ω × 𝐫B) + 2 Ω × 𝐯B    (2.2.4) 

Above equation 2.2.4 can be divided into three parts where first three terms are the 

local acceleration, A + 𝐚B + Ω̇ × 𝐫B, following two terms are centripetal acceleration, Ω × 

(Ω × 𝐫B ) , and last two terms are the Coriolis acceleration, 2 Ω × 𝐯B . The Coriolis 

acceleration only appears in the rotating reference frame. We can further simplify the 

equation by multiplying the mass with the  equation 2.2.4 to find the equation of the 

motion of the proof mass moving with the rotating frame reference frame and it is shown 

as 

𝐅ext = m [A + 𝐚B + Ω̇ × 𝐫B + Ω × (Ω × 𝐫B) + 2 Ω × 𝐯B]   (2.2.5) 

where 𝐅ext is the total external force applied on the proof mass, m is the proof mass, A is 

the linear  acceleration and 𝐯B and 𝐚B are the velocity and acceleration vectors of the 

proof mass with respect to the reference frame. 

In a simple theoretical z-axis gyroscope, the proof mass is allow to move in two 

principle oscillation directions which are the driving direction along the x-axis and the 

sense direction along the y-axis as shown in figure 2.2.1. The schematic diagram of the 2-

DOF vibratory gyroscope in rotating reference frame rotation with respect to the inertial 

frame is shown in figure 2.2.3. The equations of the motion along the drive and sense 
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directions, which shown in equation 2.2.6, can be written by decomposing the motion of 

the proof mass into the two principle oscillation directions and neglecting the linear 

acceleration. 

𝑚�̈� +  𝑐𝑥�̇� + (𝑘𝑥 − 𝑚(Ω𝑦
2 + Ω𝑧

2))𝑥 + 𝑚(Ω𝑥Ω𝑦 −  Ω̇𝑧)𝑦 =  𝜏𝑥 + 2𝑚Ω𝑧�̇�  

𝑚�̈� +  𝑐𝑦�̇� + (𝑘𝑦 − m(Ω𝑥
2 + Ω𝑧

2))𝑦 + 𝑚(Ω𝑦Ω𝑦 +  Ω̇𝑧)𝑥 =  𝜏𝑦 − 2𝑚Ω𝑧�̇� 

           (2.2.6) 

where 𝑐𝑥 and 𝑐𝑦 are the damping coefficient in the drive direction and sense direction, 𝑘𝑥 

and  𝑘𝑦 are the spring constant in the drive direction and sense direction and Ω̇𝑧 is the 

angular acceleration rotation about z-axis. 𝜏𝑥 is the external harmonic excitation force that 

drives the proof mass, m, at the driving resonant frequency in the drive direction and 𝜏𝑦 is 

the total external force which comprise of parasitic and external inertial forces in the sense 

direction. Finally, 2𝑚Ω𝑧�̇� and 2𝑚Ω𝑧�̇� are the Coriolis terms applied to the proof mass 

induced by rotation of rotating reference frame with respect to inertial frame.  

Equation 2.2.6 can be further simplified by assuming a constant angular rate,  Ω̇𝑧 = 0 

and angular rate is much lower that driving resonant frequency which Ω𝑥
2, Ω𝑦

2 and Ω𝑦Ω𝑦 

become negligible. In addition, the term 2𝑚Ω𝑧�̇�  become negligible since sense-mode 

Coriolis force response is much smaller than drive-mode motion. Therefore, the simplified 

equations motion of 2 degrees of freedom vibratory gyroscope are  

𝑚�̈� +  𝑐𝑥�̇� + 𝑘𝑥𝑥 =  𝜏𝑥          

𝑚�̈� +  𝑐𝑦�̇� + 𝑘𝑦𝑦 =  𝜏𝑦 − 2𝑚Ω𝑧�̇�      (2.2.7) 

The first equation of equation 2.2.7 represents the equation of motion in drive direction 

while the second equation of equation 2.2.7 represents the equation of motion in sense 
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direction. The second term of right hand side of the second equation of equation 2.2.7 is 

the practical Coriolis applied on the gyroscope that is proportional to the angular rate.   
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Figure 2.2.3 The schematic diagram of the 2-DOF vibratory gyroscope in rotating 

reference frame rotation with respect to the inertial frame. 
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2.3  Drive-Mode  

The vibratory gyroscope requires the momentum to detect the Coriolis force. Moment 

is usually generated by 1-D.O.F resonator or oscillator. The equation of motion of 1-DOF 

resonator along the x-axis given as 

𝑚�̈� +  𝑐�̇� + 𝑘𝑥 =  𝐹(𝑡)       (2.3.1) 

If resonator generates the harmonic excitation force,𝐹 = 𝐹0 sin 𝜔𝑡, the equation 2.8 can 

be rewritten as  

𝑚𝑑�̈� +  𝑐𝑑�̇� + 𝑘𝑑𝑥 =  𝐹𝑑sin 𝜔𝑡        (2.3.2) 

where  𝑚𝑑 is drive mass proof, 𝑐𝑑 is the viscous and thermoelastic damping and 𝑘𝑑 is the 

drive-mode suspension stiffness and ω is the angular frequency. The steady state the 

response of above equation is  

𝑥 =  𝑥0 sin(𝜔𝑡 + ∅𝑑)       (2.3.3)  

where x0 is the amplitude and ϕd is the phase of the drive-mode stead state response. 

𝑥0 =  
𝐹𝑑

𝑘𝑑√[1−(
𝜔

𝜔𝑑
)

2

]

2

+ [
1

𝑄𝑑

𝜔

𝜔𝑑
]

2
       (2.3.4) 

ø𝑑 =  −tan−1  

1

𝑄𝑑

𝜔

𝜔𝑑

1−(
𝜔

𝜔𝑑
)

2         (2.3.5) 

 𝜔𝑑 =  √
𝑘𝑑

𝑚𝑑
         (2.3.6) 

𝑄𝑑 =  
𝑚𝑑𝜔𝑑

𝑐𝑑
         (2.3.7) 

where the ωd is the drive-mode resonant frequency. Qd is the drive-mode Quality factor, 

which defined as maximum ratio of the amplitude to the static deflection. The gyroscopic 

sensitivity of the gyroscope is directly proportional to the drive-mode oscillation 

amplitude, which directly scale the quality factor Q. Therefore, the gyroscopes are usually 
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operate at the drive resonant frequency. The phase at the resonant become -90 and the 

amplitude at the resonant is 

𝑥0𝑟𝑒𝑠
= 𝑄𝑑

𝐹𝑑

𝑚𝑑𝜔𝑑
2          (2.3.8) 

 

2.4  Coriolis Response  

In a vibratory gyroscope, the Coriolis force, Fc, is generated by the resonator which 

driving at the drive-mode resonant frequency. The equations of the motion of Coriolis 

response in the sense-mode direction can be derived by considering the system which 

drive-mode operates at drive resonant frequency, 𝜔𝑑, with the drive motion regulated to 

be in sinusoidal form as shown in equation 2.4.1. 

𝑥 =  𝑥0 sin(𝜔𝑑𝑡 +  ∅𝑑)       (2.4.1) 

�̇� =  𝑥0 𝜔𝑑sin(𝜔𝑑𝑡 +  ∅𝑑)       (2.4.2) 

𝐹𝑐 = −2𝑚𝑐Ω𝑧�̇� =  −2𝑚𝑐𝛺𝑧𝑥0𝜔𝑑cos (𝜔𝑑𝑡 + ∅𝑑)     (2.4.3) 

where 𝑚𝑐  is the part of the proof mass that contributed to Coriolis force. Considering 

sense-mode oscillator is also 1-DOF, the equation of motion in y-axis is  

𝑚𝑠�̈� +  𝑐𝑠�̇� + 𝑘𝑠𝑦 =  𝐹𝑐       (2.4.4) 

By substituting equation 2.4.3 into equation 2.4.4, the equation of motion of the 1-DOF 

sense-mode oscillator in y-axis become 

𝑚𝑠�̈� +  𝑐𝑠�̇� + 𝑘𝑠𝑦 =  −2𝑚𝑐𝛺𝑧𝑥0𝜔𝑑cos (𝜔𝑑𝑡 +  ∅𝑑)   (2.4.5) 

where 𝑚𝑠 is the part of proof mass that responds to the Coriolis force. In single-mass 

vibratory gyroscope system, 𝑚𝑐 , 𝑚𝑠  and 𝑚𝑑  are equal. Similar to the drive-mode, 

amplitude and phase of the sense-mode response can be found as 
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𝑦0 =  Ω𝑧
𝑚𝑐𝜔𝑑

𝑚𝑠𝜔𝑠
2

2𝑥0

𝑘𝑑
√[1−(

𝜔𝑑
𝜔𝑠

)
2

]
2

+ [
1

𝑄𝑠

𝜔𝑑
𝜔𝑠

]
2

      (2.4.6) 

ø𝑠 =  −tan−1  

1

𝑄𝑠

𝜔𝑑
𝜔𝑠

1−(
𝜔𝑑
𝜔𝑠

)
2 +  ∅𝑑       (2.4.7) 

where  

 𝜔𝑠 =  √
𝑘𝑠

𝑚𝑠
           (2.4.8) 

𝑄𝑠 =  
𝑠𝜔𝑠

𝑐𝑠
         (2.4.9) 

The 𝜔𝑠 is sense-mode resonant frequency and 𝑄𝑠  is the sense-mode Quality factor. The 

phase at the sense-mode resonant frequency is -90⁰ and the amplitude at the sense-mode 

resonant is  

𝑦0𝑟𝑒𝑠
= 𝛺𝑧

2𝑄𝑠𝑥0𝑚𝑐

𝑚𝑠𝜔𝑠
          (2.4.10) 

Achieving the higher gyroscopic sensitivity is the most important criteria in designing a 

gyroscope. In order to get the maximum gyroscopic sensitivity, most of the gyroscope 

operates at peak or near the peak of the sense-mode resonance frequency, as illustrated in 

figure 2.4.1. This technical is called mode-matching. When the drive-mode resonant 

frequency gets closer to the sense-mode resonant frequency, the sense-mode amplitude 

increases dramatically. Even though matching the drive-mode and sense-mode enhance 

the gyroscopic sensitivity, but it makes the system unstable and shifts the resonant 

frequencies. Gyroscopic sensitivity can be also improve by increasing the drive-mode 

oscillation amplitude and increasing the quality factor Q by decreasing damping. Figure 

2.4.2 and 2.4.3 illustrate how quality factor affects the sensitivity of the gyroscope. We 

can consider the system operating at resonant frequency of 𝜔=1000 kHz and assume that 



25 

 

 

 

the drive-mode and sense-modes are mode-matched. If sense-mode is shift by 5 kHz from 

the resonant frequency, the gain drops by 29% when Q =1000. For the same system with 

the higher quality factor, Q =10,000, the gain drops by 90%. It is clear shows that the 

higher gyroscopic sensitivity can be achieve by increase of quality factor; however, the 

system become very sensitive. In addition, maximizing the mass 𝑚𝑐 and minimizing 𝑚𝑠 

enhance the performance of the gyroscope [1].  

 

 

 

 

 

 

Figure 2.4.1 Drive and sense mode response of the gyroscope [1]. 
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Figure 2.4.2 Sense mode response of the gyroscope at a resonant frequency of 𝜔𝑠=10 

kHz and a Q =1000 [1]. 

 

Figure 2.4.3 Sense mode response of the gyroscope at a resonant frequency of 𝜔𝑠=10 

kHz and a Q =10,000 [1]  
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Chapter 3. Piezoelectric doubled-ended tuning fork gyroscope 

3.1   Introduction 

The finite element analysis has been used to design the gyroscopes for many years and 

they are very accurate [12]. In this chapter, the piezoelectric double-ended tuning fork 

gyroscope, which designed by Sato, Ono, and Tomikawa [13] [14] [15] and [16], will be 

analyze by finite element analysis. A piezoelectric double-ended tuning fork gyroscope 

has many advantages such that it can be easily manufacture due to its small size and 

simple geometry, it is very durable and reliable under external shock since it is made of a 

single quartz crystal and it has stable vibration characteristic [13].  Moreover, the gyro-

sensor has flatly supports at each ends that make the tight support. Even though the 

gyroscope can detect the dual axis, y- and z-axes rotation, we only looked at z-axis 

rotation for most of this chapter. The first part of this chapter is to study the geometric the 

gyroscopic characteristics of gyroscope. In the second part of this chapter, the mounting 

and support structure will be investigate. Furthermore, we analyze the langasite and 

langatate double-ended tuning fork gyroscopes in addition to the quartz double-ended 

tuning fork gyroscope. The langasite and langatate gyroscopes will have higher 

gyroscopic sensitivity than quartz gyroscope due to their higher electromechanical 

coupling coefficient and mass density [17] [18]. Since langasite and langatate have same 

crystal class as quartz, the well-known methods of trapping energy of resonator can be 

easily and accurately applied [19] [20]. The material properties of the langasite, langatate 

and quartz are listed in Appendix C. 
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3.2  Structure of the double-ended tuning fork gyroscope 

A single rotated z-cut quartz, langasite and langatate crystals are used for a double-

ended tuning fork gyroscopes. The schematic diagrams of the piezoelectric double-ended 

tuning fork gyroscope and electrodes configuration diagram are shown in figure 3.2.1. The 

gyroscope is axisymmetric about both x- and y-axis. It is comprised of three main 

components and the mounting support. The first main component is driving arms located 

at the center of the gyroscope where it includes the driving electrodes. The second main 

component is the z-axis detecting parts that are located between the base and the driving 

arms. The last component is the supporting bases that are located at each end of the sensor 

and they are fixed with silicone rubber adhesive. Dimensions of the main components of 

gyroscope are listed in table 3.2.1.  

 

 

Figure 3.2.1 Structure of a double-ended tuning fork gyroscope. 
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Table 3.2.1 Dimensions of the double-ended tuning fork gyroscope 

Component Dimension Component Dimensions 

L 16.0 W 2.00 

L1 7.46 W1 0.31 

L2 1.38 W2 1.60 

L3 0.89 W3 0.451 

LB 2.00 Wi 0.75 

t Silicon rubber 0.03 t 0.30 

Unit:mm 

3.3  Principle of Operation of Piezoelectric Double-Ended Tuning Fork 

Gyroscope 

The principle of operation of piezoelectric double-ended tuning fork gyroscope is 

shown in figure 3.3.1. It shows the two modes of vibrations that are used by the gyroscope 

to detect the angular velocity about z-axis. The driving mode is a flexure mode in the x-y 

plane, as shown in Figure 3.3.1 (a). It is a symmetrical mode driven by drive electrodes on 

drive arms. The z-axis detecting mode is an asymmetric flexure mode in the x-y plane, as 

shown in Figure 3.3.1 (b).  

The driving electrodes on the drive arms are configured to vibrate the drive arms 

symmetrical in the x-y plane. When the gyroscope is subjected to a rotation about the z-

axis, a pair of Coriolis forces Fcz is generated proportional to the angular velocity Ωz and 

vibration velocity Vx. The moment Mcz are produced at each end of the driving arms and 

displace them in opposite direction which will cause an asymmetric mode in the horizontal 

x-y plane. The z-axis detection electrodes on the arm L3 measures the change of charge or 

voltage to output change in angular velocity. 

 



30 

 

 

 

 

Figure 3.3.1Operation principle of double-ended tuning fork gyroscope 
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3.4  Finite Element Analysis  

The geometric sensitivity and gyroscopic sensitivity characteristics of the double-ended 

tuning fork gyroscope are simulated using Comsol Multiphyscis 4.3a. As shown in figure 

3.4.1, a total 16,467 tetrahedral mesh elements and 303,770 degree of freedom are used in 

the FEM analysis. The gyroscopic sensitivity is dependent on the matching of the resonant 

frequency of drive mode and detection mode. In order to have maximum gyroscopic 

sensitivity of the gyro sensor, the natural frequency of the z-axis detection mode must 

match closely to the natural frequency of the driving mode. The drive electrodes are 

located at the drive arms and the sensing electrodes are located at the arm L3, which are 

designed to sense the changes in electric charge or voltage. For modal analyses, all the 

electrodes are grounded, while for the frequency response analysis, the driving electrodes 

are excited at ±1 V. The thickness of 0.2μm of gold films are applied to all the electrodes. 

 

 

Figure 3.4.1 FEM mesh of the double-ended tuning fork gyroscope. 

 

While the thickness of electrode films could be changed for fine-tuning of the driving 

or detecting frequencies, we need to determine as the first order an optimal geometry of 

the resonator where the driving and detecting frequencies are well matched. The frequency 

of the z-axis detection mode is highly dependent on the width W3 when the detection arm 
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length L3 is fixed, that is, the frequency of the detection mode increases with W3 for a 

fixed L3. 

Figure 3.4.2, 3.4.3 and 3.4.4 show the frequency spectrum of the driving mode and 

detection mode versus the width W3 for quartz, langasite and langatate, respectively. From 

the three figures, the optimal W3 is determined for each of the material quartz, langasite 

and langatate. We observe that the driving mode is highly coupled to the detection mode 

when their modal branches intersected in the frequency spectrum. Hence, in order to 

reduce the coupling between the two modes but at the same time maintain adequate 

performance of the detection mode, we select W3 width that is slightly away from the 

intersection of the two modal branches. The W3 width chosen is shown in table 3.4.1 for 

each material quartz, langasite and langatate, respectively, along with their driving 

frequency, detection frequency, and frequency difference Δf. The change in width W3 has 

little effect on the driving frequency. The thickness, t, of the gyroscope is kept constant at 

0.30 mm.   



33 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.2 frequency spectrum of quartz of the driving and detecting modes as a 

function of W3  
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Figure 3.4.3 Frequency spectrum of langasite of the driving and detecting modes as a 

function of W3.  



35 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.4 Frequency spectrum of langatate of the driving and detecting modes as a 

function of W3.  
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 Table 3.4.1  The driving frequency and detecting frequency of the doubled ended tuning 

fork gyroscope of each material 

 
Quartz, 

W3=0.445mm 

Langasite, 

W3=0.452mm 

Langatate, 

W3=0.450mm 

f driving 30733 25270 23224 

f detecting 30740 25264 23230 

Δf 7 6 6 

Unit: Hz  

The gyro-characteristics of the gyroscope also depends on the  frequency separation, 

Δf. When driving frequency is too close to the detecting resonant frequency, the system 

becomes unstable which can cause a shift in  detecting resonance frequency. Moreover, 

the coupling of driving mode and detecting mode will change the mode shapes of both 

modes. Operating the system too far away from the detection mode frequency will reduce 

the sensitivity of the gyroscope. It is very important in this simulation for comparing the 

relative merits of each material that we keep the same frequency separation for each 

material. The equation of the frequency separation is   

Δf = fdetecting - fdriving         (3.4.1) 

where fdetecting and fdriving are the detecting frequency and driving frequency in Hz.  

3.5  The Gyroscopic Sensitivity  

The gyroscopic sensitivities of the quartz, langasite and langatate double-ended tuning 

fork were obtained by frequency response analysis. For the models that we were analyzing 

are only in angular velocity about the z-axis, we applied the following gyroscopic 

equations in our finite element models [21].    
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fx = Fx + ρω
2
ux + j2ρΩzωuy       (3.5.1) 

fy = Fy + ρω
2
uy - j2ρΩzωux         (3.5.2) 

where f is the total force acting on the element, F is the external force, ρ is the mass of the 

element, uy is the displacement in y-direction and ux is the displacement of x-direction. The 

third terms on the right hand side are the Coriolis forces generated by the rotation about z-

axis with angular velocity Ωz. Frequency response analyses were performed without 

Coriolis-body force and angular velocity, Ωz. Then, we applied the body forces Fb as 

Coriolis-body forces on the entire structures and these are given as  

Fbx = 2ρωΩzuy         (3.5.3) 

Fby = -2ρωΩzux        (3.5.4) 

Fbz = 0          (3.5.5) 

where Fbx, Fby, and Fbz are the body forces applied to the structure in the x-, y-, and z- 

directions, respectively. The difference in voltage on the detecting electrodes were used to 

calculate the gyro-sensitivity. The output voltage as a function of the angular velocities, 

Ωz, which represent the gyroscopic sensitivity, of each material are shown in figure 3.5.1. 

The sensitivity of quartz, langasite, and langatate to angular velocity Ωz were 

0.191mV/(deg/s), 0.469mV(deg/s) and 0.784mV/(deg/s), respectively. As the values 

indicate, sensitivity of langatate and langasite were about 4 times and 2 times higher than 

quartz, respectively. Also, it can be seen that all three materials exhibit a linear 

relationship between output voltage and angular velocity. 
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Figure 3.5.1 The gyroscopic sensitivity of quartz, langasite and langatate double-ended 

tuning fork gyroscope rotation about the z-axis 

3.6  Effect of the mounting support of quartz double-ended tuning fork 

gyroscope 

The vibration modes of piezoelectric crystal involve not only the geometry of the 

resonator or gyroscope, but also the supporting and mounting structure [22]. The quality 

factor of the gyroscope can decrease significantly with the small changes of mounting 

support. In this section, the geometry characteristics of the quartz double-ended tuning 

fork gyroscope with dual axis is analyzed as well as the gyroscopic sensitivity of the 

gyroscope rotation about z-axis as a function of thickness of mounting support. 

Furthermore, we look into the equivalent circuit parameter of the Butterworth Van Dyke 

resonator. The same double-ended tuning fork gyroscopes are used in this section except 

we exclude the langasite and langatate double-ended tuning fork gyroscope. 
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The structure of the quartz double-ended tuning fork gyroscope used in this section 

has the same dimension as in previous section. However, the arrangement of the 

electrodes has been changed so that it can detect the y- and z-axis as shown in figure 

3.6.1. The electrodes are thin films made of gold. The thickness of the driving electrodes 

could be adjusted for fine-tuning the driving mode frequency by using the mass loading 

effect of the electrodes. The gyroscope was designed so that the moment and the 

displacement of the mounting support are minimized while the moment of the detecting 

arms was maximized. The driving, y-axis sense, and z-axis sense electrodes are denoted 

as Dr ±, Dy ±, and Dz ±, respectively.  

The operation principle of the quartz double-ended tuning fork gyroscopes is the 

same as in previous section except it can detect the y-axis, in addition to the z-axis. For 

the angular velocity rotation about z-axis, the principle of the operation is the same as in 

section 3.3. Figure 3.6.2 shows the three modes of vibrations that are employed by the 

gyroscope to detect the angular velocities about the y- and z-axes of the device: (a) At the 

top is the driving mode which is a flexure mode in the x-y plane, (b) at the middle is the 

y-axis (Ωy) detection mode which is a flexure mode in the y-z plane, and (c) at the bottom 

is the z-axis (Ωz) detection mode which is a asymmetric flexure mode in the x-y plane. 

The driving electrodes are designed to vibrate the center arms in the horizontal x-y plane 

as shown in figure 3.6.2 (a). The top arms vibrate in the opposite x-direction from the 

bottom arm. The Coriolis force, Fcy, is generated in z-direction when an angular velocity 

Ωy is applied to the gyroscope. Due to the Coriolis Effect, the center arms then vibrate in 

y-z plane as shown in figure 3.6.2 (b). The y-axis detecting electrodes on the center arms 

of the gyroscope detect the Coriolis force Fcy.  
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Figure 3.6.1 The electrode configuration of the double-ended tuning fork 
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Figure 3.6.2 The three modes of vibration of the gyroscope: (a) Driving mode, (b) y-axis 

detection mode and (c) z-axis detection mode. 
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The 3-D Structural Mechanics, Piezoelectric Devices (pzd) module was employed to 

model the structure of the quartz gyroscope. The FEM model of the gyroscope is shown in 

figure 3.6.3. Tetrahedral elements were used in the mesh. There were 50,594 elements and 

321,757 degrees of freedom. Both eigenfrequency and frequency response analyses were 

performed. The eigenfrequency analysis was employed to (1) determine the optimum 

gyroscope geometry for the driving mode and two detection modes, and (2) to calculate 

the electrical parameters of the gyroscope. The frequency response analysis was needed to 

calculate the Coriolis forces and the detection sensitivity of the gyroscope. 

 

 

Figure 3.6.3 FEM mesh of the double-ended tuning fork gyroscope. 

 

3.6.1 Eigenfrequency analysis 

Since the sensitivity of the gyroscope is dependent on the matching of the natural 

frequencies of the detecting modes to the natural frequency of the driving mode, 

parametric eigenfrequency analyses were performed on the geometry of the tuning fork. 

The parameters were the height of the mounting supports and the thickness of the quartz 

blank. These parameters affect the frequencies of the driving mode and the detecting 

modes. For example, figure 3.6.4 shows the changes in the y-detection and z-detection 
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mode frequencies and the driving mode frequency as a function of the thickness of the 

resonator-gyroscope when W3 = 0.491 mm. We observed that it is difficult to get all three 

modal frequencies to match, especially the y-detection mode frequency. At the resonator 

thickness t = 0.36031 mm the three modes come closest together but there is coupling of 

the y-detection mode with the driving and z-detection modes. This coupling creates cross-

talking of the y-detection mode with the z-detection mode. Hence, in this paper we 

focused on a one axis detection gyroscope, namely, the z-axis angular velocity detection 

while putting aside for now the y-axis angular velocity detection. 

The analysis also shows that it is possible to match very well the frequency of the z-

detection mode to the frequency of the driving mode. Figure 3.6.5 shows that a good 

frequency match could be obtained at a resonator thickness of 0.3 mm. The normalized 

resonant frequency of the z-axis detection mode depends on the width W3. The width W3 

is adequate at W3=0.491mm, as shown in figure 3.6.6. The change in the width W3 has 

very little effect on the driving and y-axis detection modes frequencies. We also observed 

that the resonant frequency of the z-axis detection mode can be tuned by the width W3.  

We can further optimize the frequency matching of the z-detection mode. Figure 3.6.7 

shows the change in frequency of the z-detection mode as a function of the spacer height. 

The blue line is for W3=0.491 mm while the red line is for W3=0.49 mm.  

Based upon our parametric studies, we chose the resonator dimensions to be those 

provided in table 3.6.1. (Please see figure 3.2.1 and 3.6.1 for the definition of the 

dimension) 
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Table 3.6.1 Dimensions of the double-ended tuning fork gyroscope. 

Item Dimension Item Dimension 

L 16.0 W 2.00 

L1 7.46 W1 0.31 

L2 1.38 W2 1.60 L3 0.89 W3 0.43 

LB 2.00 Wi 0.75 

t (blank thickness) 0.30 Spacer 0.28 

Silicon rubber 0.03   
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Figure 3.6.4 Resonant frequencies of the driving, y- and z-axis detection modes as a 

function of the resonator thickness when W3=0.491mm 
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Figure 3.6.5 Resonant frequencies of the z-axis detection mode and the driving mode 

with the resonator thickness when W3=0.43mm 
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Figure 3.6.6 Resonant frequencies of the driving, z- and y-axis detection modes as 

function of the W3 
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Figure 3.6.7 Change in resonant frequencies of the z-axis detection mode for height of the 

spacer 
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3.6.2  Butterworth Van Dyke Electrical Parameters 

The piezoelectric gyroscope could be represented in an equivalent circuit parameters of 

the Butterworth van Dyke resonator as shown in figure 3.6.8. [23] 

 

Figure 3.6.8 Equivalent electrical circuit parameters of the piezoelectric resonator-

gyroscope represented as Butterworth van Dyke resonator 

 

The static capacitance C0 is obtained from a COMSOL electrostatic analysis by putting 

1V on the drive electrodes. C0 is then equal to the total surface charge on the drive 

electrodes as shown in equation 3.6.1. The electrical parameters C1, L1 and R1 can be 

obtained from our eigenfrequency analysis of the resonator-gyroscope. The following four 

quantities are first obtained from the eigenfrequency analysis:  

(1) ωr , the short circuit resonance frequency,  

(2) Q, the quality factor of the mode ωr, 

 (3) q, the charge on the drive electrode, and  

(4) E, an energy norm.  

Q and ωr are obtained directly from the COMSOL eigenfrequency model pzd.Q_eig 

and pzd.omega, respectively, while q and E are calculated using equation 3.6.1 and 3.6.2, 

respectively 
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𝑞 =  |∫
𝑑𝑟𝑖𝑣𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

 (𝑝𝑧𝑑. 𝑛𝐷)𝑑𝐴|     (3.6.1) 

𝐸 =  |∫
𝐴𝑙𝑙 𝑑𝑜𝑚𝑎𝑖𝑛𝑠

 (𝑝𝑧𝑑. 𝑟ℎ𝑜 ∗ 𝑝𝑑𝑧. 𝑑𝑖𝑠𝑝^2) 𝑑𝛺|    (3.6.2) 

The four quantities ωr , Q, q, and E are used to calculate the electrical parameters C1, 

L1, and R1 using equation 3.6.3, 3.6.4 and 3.6.5 below 

𝑐1 =  
𝑞2

𝐸 𝜔𝑟
2         

 (3.6.3) 

𝐿1 =  
1

𝐶1 𝜔𝑟
2        

 (3.6.4) 

𝑅1 =  
1

𝑄 𝐶1 𝜔𝑟
        (3.6.5) 

The calculated Butterworth van Dyke electrical parameters for our gyroscope are 

provided in Table 3.6.2. 

Table 3.6.2 Calculated equivalent circuit elements 

Frequency (Hz) 30781.69 

C1 (F) 1.0347 E -15 

R1 (Ω 3332.4965 

C0 (F) 1.8394 E -10 

L1 (H) 25837.8089 

 

It is important that the dissipation or damping of the gyroscope be modeled because of 

its effect on the electrical parameters and sensitivity of the gyroscope. The quality factor Q 

obtained from the COMSOL model is dependent on the damping coefficients of the quartz 

elastic constants, and the dissipation in the silicon rubber adhesive used to bond the 
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gyroscope to a device substrate. Equation 3.6.5 shows that the motional resistance R1 is 

inversely proportional to the Q if the motional capacitance C1 is constant. Since the model 

damping will affect the coupling between resonant modes, and the resonant frequencies of 

the modes themselves, the dissipation at the silicon rubber adhesive bonds was studied and 

found to be an important factor in the sensitivity of the gyroscope when subjected to an 

angular velocity about the z-axis.  

3.6.3  Frequency response analysis of the double-ended gyroscope 

The sensitivity of the gyroscope to angular velocity about the z-axis was simulated with 

the frequency domain or harmonic response analysis. The frequency response of the 

driving mode with 1V at the drive electrodes is shown in figure 3.6.9. The simulation 

method is the same as in previous sections 3.5 and 3.6. We observe a change in the charge 

at the z-detection electrodes when the gyroscope is rotated about the z-axis. For example 

in a frequency response analysis shown in figure 3.6.10 we see the change in charge at the 

z-detection electrodes when Ωz = 120 deg. /s. Therefore, the gyroscope could sense the 

angular velocity Ωz about the z-axis as a change in charge at the z-axis detection 

electrodes. The magnitude of the change is greatest at the resonant frequency of the 

driving mode.  

The sensitivity of the gyroscope is dependent on the matching of the resonant 

frequency of the z-axis detection mode to the resonant frequency of the driving mode. 

When the two resonant frequencies are not well matched the sensitivity of the gyroscope 

decreases. We studied the effect of small changes in the thickness of the silicon rubber 

adhesive at the bottom of the spacers of the gyroscope (please see figure 3.6.1). The 

adhesive thickness has significant effects on the z-axis detection mode frequency but has 
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little or no effect on the driving mode frequency. The change in the z-axis detection mode 

frequency resonator will affect the sensitivity of gyroscope when subjected to an angular 

velocity about its z-axis. This is shown in figure 3.6.11 where we observe that a small 

change of 4μm in adhesive thickness could change the sensitivity by as much as 44%. 

Therefore the adhesive thickness will be a significant factor in improving the production 

yields of this gyroscope. 

 

 

 

Figure 3.6.9 Frequency response of the driving mode with 1V at the drive electrodes 
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Figure 3.6.10 Change in charge at the z-axis detection electrodes when the gyroscope 

experiences an angular velocity Ωz = 120 deg./s about z-axis 

 

 

 

 

 



54 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.11 The z-axis detection sensitivity of the gyroscope as a function of adhesive 

thickness  
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3.1 Summary 

Using FEM simulation, we have investigated the geometry of double-ended tuning 

fork gyroscope and gyro-characteristics of a double-ended tuning fork gyroscope that 

utilized either quartz, or langasite, or langatate crystal respectively. Our study confirms 

that the langasite and langatate gyroscopes provide higher gyro-sensitivity than the quartz 

gyroscope. The gyro-sensitivity is also a function of geometry and frequency separation 

between the driving mode frequency and the detection mode frequency. In order to 

achieve higher sensitivity, adequate frequency separation is needed so that both the 

driving mode and detection mode remain pure while at the same time the detection mode 

could sense the Coriolis force at the driving mode frequency.  We conclude that the 

langasite and langatate crystals are better gyroscopic materials than quartz.   

Furthermore, a COMSOL model of a piezoelectric quartz double ended tuning fork 

gyroscope was successfully implemented. The gyroscope has two detection modes; the 

first mode detects the angular velocity about a z- axis perpendicular to the tuning fork 

plane (X-Y plane), while the second mode detects the angular velocity about a y-axis that 

is the longitudinal axis along the length of the tuning fork. The quartz doubleended tuning 

fork gyro sensor characteristics were studied using COMOL software. Both 

eigenfrequency and frequency response analyses were performed. The eigenfrequency 

analysis was employed to (1) determine the optimum gyroscope geometry for the driving 

mode and two detection modes, and (2) to calculate the electrical parameters of the 

gyroscope. The frequency response analysis was needed to calculate the Coriolis forces 

and the detection sensitivity of the gyroscope. An optimal geometry of the gyroscope was 

found by eigenfrequency analyses with geometric parameters such as the dimensions of 
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the tuning fork tines, spacers, and resonator thickness. The dimensions of the gyroscope 

provided in Table 3.6.1 were obtained using eigenfrequency analyses. The frequency 

response analysis was used to simulate the response of the gyroscope to angular velocity 

about its z-axis. The Coriolis forces were treated as body forces in the COMSOL model, 

which cause change in charge at the detection electrodes. The sign and magnitude of the 

change in charge at the detection electrodes are proportional to the sign and magnitude of 

the angular velocity of the gyroscope. We observed that good frequency matching of the 

driving mode with the detection modes was essential for the gyroscope to function well as 

a sensor for angular velocity. A sensitivity analysis was performed for detection of z-axis 

angular velocity as a function of the silicon rubber adhesive thickness at the bottom of the 

spacers. The z-axis detection mode was found to be sensitive to the adhesive height. 

Conversely the driving mode was found to be insensitive to the adhesive height. 

Therefore, the adhesive height is an important factor in the matching of the z-detection 

mode frequency to the driving mode frequency. The adhesive height would affect the 

production yields of this gyroscope.  
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Chapter 4. Piezoelectric length-extension gyroscope 

4.1  Introduction 

A piezoelectric length extension gyroscope is a newly designed gyroscope, which 

utilizes the length extension mode and flexure mode to detect the Coriolis force [24]. The 

z-cut, third-overtone, extensional quartz resonator was extensively studied by Yong, Lee 

and Chung [25] [26]. Moreover, the length-extension mode are studied by many other 

researchers [27] [28]. It can be made of a single piezoelectric crystal with MEMs 

fabrication technology.  It has small size structure that can be easily mount and 

manufactured. The geometry of a length extension gyroscope is very simple compared to 

other vibratory gyroscopes. The length extension gyroscope utilizes the length extension 

mode to reduce the energy dissipation that uses the symmetric mode shape with the zero 

displacement nodes at the center of the driving arms. In this chapter 4, the piezoelectric 

length extension gyroscope is analyze by finite element analysis. Furthermore, 

gyroscopic sensitivity of quartz, langasite and langatate length extension gyroscopes are 

compared. 

4.2  Structure of the Piezoelectric Length Extension Vibratory Gyroscope 

The piezoelectric length extension vibratory is comprises of three main components, 

driving parts, sensing parts and supporting arms and base, as shown in figure 4.2.1 and 

figure 4.2.2.  

4.2.1  Driving Parts 

The driving arms are located at the middles of the sensing arms. The crystallographic 

axis and electric polarization direction of each crystal are considered for designing the 

length extension gyroscopes. The driving part electrodes are placed on the side wall (y-z 
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plane) of the driving arms so the drive arms can extend and contract in drive direction (y-

axis). In order to get maximum gyroscopic sensitivity, gyroscopes are designed so that the 

drive mode shape is identical to the resonant frequency mode shape, the first length 

extension mode. The each driving arms are driven by ± 1 V which applied on one side of 

the electrodes whereas opposite sides of the electrodes are ground. The advantage of using 

length extension mode is energy dissipation of the gyroscope. The drive-mode vibration 

mode has very small influence by the support conditions, which high Q-factor of the 

gyroscope can be easily achieved. 

4.2.2  Sensing Parts 

The sensing part is the part that connects the driving arms and the support part while it 

measures the Coriolis force signals of the gyroscope. The sensing bridge is located at the 

end of the supporting arms, as shown in figure 4.2.2. Similar to the driving arms, the 

electrodes on the sensing bridge are located on the sidewalls (x-y plane) of the sensing 

bridge. The electrodes are placed so that the resonant frequency mode shape, the flexure 

mode, is similar to the sensing mode shape. In consideration of the crystallographic axis 

and electric polarization direction of each crystal, the sensing electrodes, which measure 

and output the Coriolis force signal of a gyroscope, are placed on one side of the sidewalls 

and the electrodes on the other side is grounded. The result is that higher sensitivity of the 

gyroscope can be achieved. 

4.2.3  Support Part and Base 

The supporting part is located between the base and sensing part, as shown in 

figure 4.2.2. The length of the support part, L2, is determined by the length of driving arm, 

LD. The small gap between the end of the driving arm and the supporting part is adequate, 
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since the displacement of the driving arms is insignificant. The width of the length, Ws, 

has to be long enough so that displacement of the support part along the x-axis is 

minimized. The end of the base is fixed to the fixed end conditions. 

 

 

Figure 4.2.1 Structure of the piezoelectric length extension vibratory. 

 

Figure 4.2.2 Dimensions of the piezoelectric length extension gyroscope 
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4.3  Principle of Operation of the Piezoelectric Length Extension 

Gyroscope 

The principle of operation of a length extension gyroscope is shown in figure 4.3.1. 

The each mode of two vibration modes is used as driving mode and sensing mode. Both 

modes are used to detect the angular velocity rotation about z-axis. The driving mode is a 

first extension mode of driving arm in the x-y plane. The driving arm is expands and 

contracts along y-axis by the external harmonic excitation force, as shown in figure 4.3.2 

(a).  The midpoint of the driving arm is the zero displacement node. The second vibration 

mode is the z-axis detection mode that is an anti-symmetric flexure mode in x-y plane, as 

shown in figure 4.3.2 (b). When the gyroscope is subjected to a rotation about z-axis, a 

pair of Coriolis forces, Fc, on the driving arms is generated proportional to the angular rate 

of gyroscope, Ωz, mass density, m, and vibration velocity, Vy. A pair of equal and opposite 

Coriolis force on each driving arms, which generated by the rotation about z-axis, create 

the moment, Mc, on the center of the driving arms. The moment, Mc, induce the flexure 

mode of the sensing arms. The z-axis detection electrodes on the sensing arm measure the 

Coriolis force signals. The driving frequency, fd, and sensing frequency, fs, have to tuned 

closed to each other in order to achieve higher gyroscopic sensitivity.  
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Figure 4.3.1 The principle of operation of a length extension gyroscope 

 

(a) Driving mode 

 

(b) Sensing mode 

 

Figure 4.3.2 Drive-mode and sense-mode vibration modes of the piezoelectric length 

extension gyroscope  
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4.4  Finite Element Simulation  

In this section, the length extension gyroscope is simulated and analyzed by finite 

element analysis method. Quartz, langasite and langatate crystals are used as materials for 

the length extension gyroscopes. The three materials can be easily compared, since they 

have same crystal properties. The material properties of the quartz, langasite and langatate 

are listed in Appendix C. The eigenfrequency analysis and frequency domain analysis are 

performed to study the geometric characteristics and gyro-characteristics of each 

gyroscope. The following equations 4.4.1, 4.4.2, 4.4.3, and 4.4.4 are implemented in 

COMSOL finite element method software. The equation 4.4.1 is the strain-displacement 

relation and the equation 4.4.2 is the electric field-potential relation.  

𝑆𝑖𝑗 =  
1

2
 (𝑢𝑗,𝑖 +  𝑢𝑖,𝑗)        (4.4.1) 

𝐸𝑖 =  −∅𝑖                              (4.4.2) 

where 𝑆𝑖𝑗  is the mechanical strains, ui is the mechanical displacements, and Ei is the 

electrical field and ∅𝑖 is the electric potential. 

𝑇𝐾 =  −𝑒𝐾𝑘𝐸𝑘 +  𝑐𝐾𝐽
𝐸 𝑠𝐽       (4.4.3) 

𝐷𝑖 =  𝜖𝑖𝑘
𝑆 𝐸𝑘 + 𝑒𝑖𝑗𝑠𝐽        (4.4.4) 

The equation 4.4.3 and 4.4.4 are the piezoelectric constitutive equations in stress-

charge form. Tk, eKk, 𝑐𝐾𝐽
𝐸 , Di, 𝜖𝑖𝑘

𝑆  are the mechanical stress, piezoelectric constants, linear 

elastic constants, electric displacements, and dielectric permittivity, respectively.  
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Figure 4.4.1 FEM mesh of the length extension gyroscope 

 

 

Figure 4.4.2 The locations of the drive and sensing electrodes of the gyroscope 
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The figure 4.4.1 shows the FEM model of the proposed gyroscope. The 10 layers of the 

triangle shaped elements were used in mesh for all three materials. The total number of 

elements and degrees of freedom which used in FEM is listed in table 4.4.1. The drive and 

sense electrodes are also included in the FEM simulations, which shown in figure 4.4.2. 

All the electrodes are coated with 0.2µm thickness gold film. 

The targeted the driving frequency of the gyroscopes to be around 1 MHz. The 

gyroscope uses a length extension mode as a driving mode. The driving arm is symmetric 

along the x-axis. Hence, we considered a longitudinal vibration of elastic beam of fixed-

free case to simplify the problem. The equation of the motion for free vibration of elastic 

beam is 

𝑚
𝜕2𝑢

𝜕𝑡2 − 𝐸𝐴
𝜕2𝑢

𝜕𝑥2 = 0        (4.4.5) 

Applying the fixed-free boundary conditions to the equation 4.4.5, we can obtain the 

equation for the frequency of a longitudinal vibration of beam when the structure is fixed 

at its one end.  

𝑓 ≡  
1

2𝜋
√

𝐸𝐴

𝑚𝐿𝐷
2 =  

1

2𝜋𝐿
√

𝐸

𝜌
         (4.4.6) 

The driving frequencies of each material are depends on the length of the driving arms, 

LD, elastic modulus, E, and mass density. Since elastic modulus and mass density of each 

materials are constant, the driving frequencies are depends on the length of the driving 

arms of the gyroscope. Therefore, the lengths of the drive arms of each gyroscope are 

different; such that the length of the driving arms of langasite and langatate gyroscopes are 

shorter than quartz gyroscope. Hence, overall size of the langasite and langatate 

gyroscopes can be minimized.   
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4.4.1  Eigenfrequency analysis  

The eigenfrequency analyses were used to determine the length of the drive arms as 

well as overall size of each gyroscope. The specific sizes of each gyroscope are listed in 

Table 4.4.2.  

 

Table 4.4.1 Conditions of FEM simulation 

Material Quartz Langasite Langatate 

# of elements 26,950 10,110 5,170 

# of degree of freedom 490,310 188,918 100,214 

 

Table 4.4.2 Dimension of the length extension gyroscope of quartz, langasite and 

langatate. 

 Quartz Langasite Langatate 

W 2.500 1.074 1.074 

WS 1.258 0.574 0.574 

WD 0.100 0.100 0.100 

L 3.000 2.000 2.000 

LD 2.510 2.016 1.998 

L2 1.400 0.300 0.300 

LS 0.100 0.100 0.100 

t 0.060 0.060 0.060 

Units:mm 

In the simulation, the cut angles of each crystal are different. It is realized that the z-cut 

crystals are not the optimum cut angle for all materials. Hence, we analyzed the each 

material by rotating the geometry along the x-axis to find out the geometry where the 

displacement along the z-axis of the driving arm is minimum. It is not only reduces the 

vibration of the system but also reduce the energy dissipation which increases the 
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sensitivities of the gyroscopes. The optimum cut angles of the quartz, langasite and 

langatate are ϕ= 0̊, θ=-9̊, ϕ=0̊, θ=24̊  and ϕ=0̊ , θ=24̊. respectively.  

The sensitivity of the gyroscopes is depending on the matching of the driving 

frequency and the sensing frequency. Therefore, parametric eigenfrequency analyses were 

performed to obtain the optimum length of the drive arm of each material. Thus, the 

parameters which used in this simulation were the length of the driving arms. The 

changing the length of the drive arms not only affect the driving frequencies but also 

sensing frequencies as shown in figure 4.4.3 ,4.4.4 and 4.4.5. The rates of change of the 

sensing frequencies are higher than driving frequencies. The adequate length of the drive 

arms of the quartz gyroscope, langasite gyroscope and langatate gyroscope are 2.5 mm, 

2.016 mm and 1.998 mm, respectively. The diving and sensing frequencies can be adjust 

by changing the length of the sensing arm, Ws or width of the sensing arm, Ls. However, 

changing those two parameter to match the driving and sensing frequencies cannot be 

accomplished due to the limitation of its geometry. Hence, it can only be used for fine 

tuning. The mechanical coupling between the driving mode and sensing mode of the 

quartz gyroscope is very small compared to the other two materials, this makes it easier to 

match the driving and sensing frequency very closed to each other when the length of the 

driving arm is around 2.515mm as shown in figure 4.4..The mechanical coupling of 

langasite gyroscope is larger than quartz gyroscope but it’s smaller than langatate 

gyroscope. Two modes can be matched when the length of the driving arm is near 

2.018mm as shown in figure 4.4.4. As shown in figure 4.4.5, the piezoelectric coupling 

factor of langatate is larger enough so that two modes are never cross each other.  
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Previously, we discussed that matching the driving and sensing frequencies increase the 

gyro-sensitivity of the gyroscope. However, the system becomes unstable when the 

driving frequency gets too closed to the sensing frequency which requires the frequency 

separation of driving and sensing frequency. The frequency separations of quartz, 

langasite and langatate gyroscopes are 29.4 Hz, 504 Hz and 519.5 Hz, respectively. The 

separation frequency equation is simple and it is  

Δf = fdetecting – fdriving        (4.4.7) 

where fdetecting is the detecting frequency and fdriving is the frequency.  
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Figure 4.4.3 Frequency spectrum of the quartz gyroscope as a function of the length of 

the drive arm, LD  
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 Figure 4.4.4  Frequency spectrum of the langasite gyroscope as a function of the length 

of the drive arm, LD  
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Figure 4.4.5 Frequency spectrum of the langatate gyroscope as a function of the length of 

the drive arm, LD  
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4.4.2  Frequency response analysis 

We further analyzed the length extension gyroscope with frequency response analyses 

using the optimized geometries of the gyroscopes of each material. The equations of the 

motion of the element of the rotating system rotating about z-axis are implemented in 

FEM simulation and they are 

𝑓𝑥 =  𝐹𝑥 +  𝜌𝜔2𝑢𝑥 + 𝑗2𝜌𝛺𝑧𝜔𝑢𝑦 +  𝜌𝛺𝑧
2𝑥     (4.4.8) 

𝑓𝑦 =  𝐹𝑦 +  𝜌𝜔2𝑢𝑦 − 𝑗2𝜌𝛺𝑧𝜔𝑢𝑥 +  𝜌𝛺𝑧
2𝑦      (4.4.9) 

𝑓𝑧 =  0          (4.4.10) 

where f, F, u, Ω and 𝜔  are respectively the total force acting on the element, external 

forces, element displacement, and angular velocity and angular frequency. The x and y are 

the coordinates of the element. The first term and second terms of the right hand side of 

equation 4.4.8 and 4.4.9 are the external force and inertia forces induced by vibration. The 

third terms on the right hand side of equation 4.4.8 and 4.4.9 are the Coriolis force terms 

that we are interested in this study. Finally, the last terms of the equations are the 

centrifugal forces. The Coriolis forces are applied as body forces, Fb, on the entire 

gyroscopes in frequency response analyses to simulate the gyroscope rotation about z-axis 

and they are  

𝐹𝑏𝑥 = 2𝜌𝜔𝛺𝑧𝑢𝑦        (4.4.11) 

𝐹𝑏𝑦 = −2𝜌𝜔𝛺𝑧𝑢𝑥         (4.4.12) 

𝐹𝑏𝑧 = 0         (4.4.13) 

where Fbx, Fby and Fbz are respectively the body forces applied to the entire structure in x-, 

y-, and z-directions. Since the vibration direction of the drive arms of the gyroscope is 

parallel to the angular velocity, z-axis, the Coriolis force in the z-direction is zero. 
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Similarly, we can also apply the Coriolis forces for rotation about x- and y-axis. The 

absolute values of the charges on the driving and sensing electrodes of each material as a 

function of the driving frequency, fdr., are shown in figure 4.4.6, 4.4.7 and 4.4.8. Also, the 

gyroscope response of each gyroscope to angular velocity of 60 degrees/s about x-, y- and 

z-axis are shown in figure 4.4.9, 4.4.10 and 4.4.11. These results show that the charge are 

the maximum at the resonance frequency, fdr., of the driving mode. It also shows that the 

sensitivity at the resonance will get amplified the most. The sensitivities of each gyroscope 

are also calculated by frequency response analyses. The electric potential was used as 

output signal. The gyro-sensitivities of the gyroscopes of each material are shown in figure 

4.4.12, 4.4.13 and 4.4.14. The sensitivities of the quartz, langasite and langatate 

gyroscopes are Sz = 2.78e-4V/(deg/s), Sz = 1.60e-2V/(deg/s),  Sz = -5.76e-3V/(deg/s), 

respectively. The sensitivity of the quartz gyroscope was calculated to be very small as 

expected. The sensitivities of the langasite and langatate are about 57 times and 20 times 

more sensitive than the quartz gyroscope. We also simulate the gyro-sensitivities of the 

gyroscopes rotation about the x-and y-axis. Both gyro-sensitivities were very small as 

expected. The quality factor, Q, is also calculated. The summary of the gyro-sensitivity of 

the gyroscopes are listed in Table 4.4.3. The results clearly show that the length extension 

gyroscope performed as a gyro-sensor.   
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Figure 4.4.6  Frequency responses in charge at the driving and sensing electrodes for the 

quartz gyroscope.  
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 Figure 4.4.7  Frequency responses in charge at the driving and sensing electrodes for the 

langasite gyroscope.    
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 Figure 4.4.8  Frequency responses in charge at the driving and sensing electrodes for the 

langatate gyroscope.    
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 Figure 4.4.9  Gyroscope response of the quartz gyroscope to angular velocity of 60 

degree/s about x-, y- and z-axis.  
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 Figure 4.4.10  Gyroscope response of the langasite gyroscope to angular velocity of 60 

degree/s about x-, y- and z-axis.  
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Figure 4.4.11  Gyroscope response of the langatate gyroscope to angular velocity of 60 

degree/s about x-, y- and z-axis.  
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 Figure 4.4.12 Gyroscopic sensitivty of the quartz gyroscope rotation about x-,y- and z-

axis.  
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Figure 4.4.13 Gyroscopic sensitivity of the langsite gyroscope rotation about x-,y- and z-

axis.  
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Figure 4.4.14 Gyroscopic sensitivity of the langtate gyroscope rotation about x-,y- and z-

axis  
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Table 4.4.3 The driving and sensing frequencies of the gyroscopes and sensitivities of the 

gyroscopes of each material. 

 Units Quartz Langasite Langatate 

f dr. Hz 1034888 999496 960028.3 

f sens. Hz 1034854 999999.7 960547.6 

Sx V/(deg/s) 8.46e -6 1.52e-4 2.18e-4 

Sy V/(deg/s) 1.70e-6 8.90e-5 -1.12e-4 

Sz V/(deg/s) 2.78e-4 -1.6e-2 -5.76e-3 

Q  230048 970375 687081 
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4.5  Frequency-Temperature Analysis of the Langasite 

 

The frequency-temperature behavior of the gyroscope is an important criterion of a 

design of the langasite, since small shift in drive frequency can significantly reduce the 

gyroscopic sensitivity of the gyroscope. However, many researchers or engineers do aware 

of this effect when they design the gyroscope. In this chapter, the frequency-temperature 

behavior of the langasite length-extension gyroscope is studied. We only considered the 

langasite gyroscope, since we do not have all the material properties of the langatate such 

as third-order non-linear elastic constants or higher order temperature constants.  

We implemented the non-linear questions from chapter 5 into Comsol Multiphysics 

softweare to compute the frequency-temperature curves of the gyroscopes. The simulation 

involves two steps, stationary and eigenfrequency. In the stationary analysis, only the solid 

mechanics module is involved, which determines the material behavior affects by the 

temperature chages. In the eigenfrequency analysis, the changes of drive frequency of the 

gyroscope as a function of temperature is calculated. Please see chapter 5 for more details. 

The figure 4.5.1 and 4.5.2 show the temperature–frequency curve of the quartz and 

langasite length-extension gyroscope. Both gyroscopes are not temperature compensated, 

as the curves nearly linear. The cubic and parabolic curves can be expected for quartz and 

langasite gyroscopes, respectively, when the gyroscopes are temperature compensated. 

The langasite curve can only be parabola in this case, since we do not have third-order 

temperature coefficients of langasite.  For more detail of the non-linear parameters and 

variable of Comsol sostware please see Appendix D.  
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Figure 4.5.1 The temperature–frequency curve of the quartz gyroscope 

 

 

 

 
Figure 4.5.2 The temperature–frequency curve of the langasite gyroscope 
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4.6  SUMMARY  

 

A novel design of the length extension gyroscope is proposed and it is analyzed with 

the finite element analysis software. The calculated optimum cut angle for a singly rotated 

quartz crystal have ϕ=0̊ , θ =-9̊ , a singly rotated langasite crystal have ϕ=0̊ , θ  =24̊ and a 

singly rotated langatate have ϕ=0̊ , θ =24̊, respectively. The sizes of the gyroscopes vary 

due to the material properties and length of the driving arms. Overall sizes of the langasite 

and langatate gyroscopes are smaller than the quartz gyroscope and these two are nearly 

the same size. The gyro-sensitivity rotations about z-axis of quartz, langasite and langatate 

gyroscopes were 2.78e-4 V/(deg/s), -1.60e-2 V/(deg/s) and -1.6e-2 V/(deg/s). The results 

show that the finite element method to design the gyroscope are reliable and the newly 

designed length extension gyroscope can be used as a gyro-sensor. Moreover, the 

langasite and langatate gyroscope provided stronger sensitivity to angular velocity than the 

quartz gyroscope as we expected. The gyro- sensitivities of the gyroscopes are also a 

function of the geometry of the gyroscope. The length extension gyroscope is also able to 

detect the angular velocities about the other two axes(x- and y-axes).   
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Chapter 5. The Frequency-Temperature Behavior of Langasite 

5.1  Introduction 

Frequency control and stability of the resonator or piezoelectric sensor at high 

frequency or higher sensitivity is one of the most important criteria in the design of 

piezoelectric sensor. The quartz crystal has been used for many applications due to its 

temperature stability. For example, the AT-cut is the most well-known and most used type 

in resonator. It has a frequency temperature coefficient described by a cubic function of 

temperature whereas most other crystal cuts give a parabolic temperature characteristic. 

The frequency-temperature curve of the fundamental thickness-shear vibration of AT-cut 

is shown in Figure 5.1.1.  

The langasite and langatate are highly attractive piezoelectric materials for the high 

temperature environment due to their temperature frequency coefficient (TFC) and their 

temperature stability. Especially, the langasite and its isomorphs have the quite unique 

temperature compensate property that is similar to the quartz crystal [29] [30] [31]. 

Therefore, these crystals are of current interest for BAW applications [32]. The complete 

sets of the materials properties of quartz, langasite and langastate are listed in Appendix C. 

The analysis on the temperature-frequency behavior of langatate has not performed in this 

dissertation, since third-order non-linear elastic constants of langatate have not published 

The non-linear field equations of thermo-elasticity in Langrangian formulation are used 

to develop the three dimensional linear field equations for small vibration superposed on 

thermally induced deformations by stead and uniform temperature change. This 

Lagrangian formulation consist with three states, the natural state, initial state and final 

state [33] [34] [35] [36]. 
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Figure 5.1.1 Frequency-temperature curves of the fundamental thickness-shear vibration 

of AT-cut plate. [34]   
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Figure 5.1.2 positions of a material point at the natural, initial and final state. [34]  
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5.2  Equation of Motion for Small Vibrations Superposed on Thermally 

Induced Deformations   

The non-linear equations of thermo-elasticity in Lagrangian formation consist of three 

steps, natural state, initial state and final state. The incremental equations are conveniently 

derived with the following definitions: 

To : Reference temperature 

T :  Final temperature from the reference temperature 

θ :  Temperature increment respect to reference temperature  T-T0 

𝑈𝑖 :  Displacement at initial state 

�̅�𝑖 :  Total displacement from the natural state to final state 

𝑢𝑖 :  Incremental displacement 

𝐸𝑖𝑗:  Lagrangian strain tensor at initial state 

�̅�𝑖𝑗:  Total strain tensor from the natural state to final state 

𝑒𝑖𝑗:  Incremental strain 

𝑇𝑖𝑗 : Kirchoff - Piola stress tensor at initial state 

�̅�𝑖𝑗 : Total stress tensor from the natural state to final state 

𝑡𝑖𝑗 :  Incremental stress 

𝑃𝑖:  Surface traction at initial state 

�̅�𝑖:  Total traction from the natural state to final state 

𝑝𝑖:  Incremental traction 

𝑛𝑖:  Unit outward normal vector to S 

𝐶𝑖𝑗𝑘𝑙: Second-order elastic stiffnesses of the crystal 
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𝐶𝑖𝑗𝑘𝑙𝑚𝑛: Third-order elastic stiffnesses of the crystal 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞 : Four-order elastic stiffnesses of the crystal 

𝐶𝑖𝑗𝑘𝑙
(1)

 : First temperature derivative of the second-order elastic stiffnesses of the crystal 

�̃�𝑖𝑗𝑘𝑙
(2)

 : Effective Second temperature derivative of the second-order elastic stiffnesses of 

the crystal 

𝜆𝑖𝑗
𝜃  : Stress coefficient of temperature 

𝛼𝑖𝑗
𝜃  : Thermal expansion coefficient  

The first state is the natural state where crystal is at rest, free of stress and strain with a 

uniform temperature T0 as shown in figure 5.1.2. The rectangular Cartesian coordinate 

system is used to illustrate the position of a material point as shown in figure 5.1.2. xi 

(i=1,2,3) is the position of a material point and T0 is the reference temperature.  

Next state is the initial state which crystal is subject to a steady and uniform 

temperature increase from T0 to T. In this state, the material is allows expand freely and 

the position of a material is moved from xi to yi due to the increases of the temperature. 

The non-linear equation of the thermo-elasticity in Lagrangian formulation can be written 

as: 

(a) Displacement 

Ui = yi – xi          (5.2.1) 

(b) Strain 

Eij = 
1

2
 (Uj,i + Ui,j + Uk,i Uk,j )       (5.2.2) 
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(c) Stress-strain-temperature relations 

𝑇𝑖𝑗 =

 𝐶𝑖𝑗𝑘𝑙
𝜃 𝐸𝑘𝑙 +  

1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛

𝜃 𝐸𝑘𝑙𝐸𝑚𝑛 +
1

6
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞

𝜃 𝐸𝑘𝑙𝐸𝑚𝑛𝐸𝑝𝑞 +

1

24
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝑟𝑠

𝜃 𝐸𝑘𝑙𝐸𝑚𝑛𝐸𝑝𝑞𝐸𝑟𝑠 −  𝜆𝑖𝑗
𝜃

     (5.2.3) 

(d) Stress equation of motion 

(Tij + Tjk Ui,k),j = ρ�̈�𝑖        (5.2.4) 

(e) Traction-stress tensor relation 

Pi = nj (Tij + TjkUi,k ) on S       (5.2.5) 

In the stress-strain-temperature relations equation, equation 5.2.3, material properties can 

be assume to be temperature dependent and have polynomial form.  

𝐶𝑖𝑗𝑘𝑙
𝜃 =  𝐶𝑖𝑗𝑘𝑙 +  𝐶𝑖𝑗𝑘𝑙

(1)
+  

1

2
 𝐶𝑖𝑗𝑘𝑙

(2)
 𝜃2  +  

1

6
 𝐶𝑖𝑗𝑘𝑙

(3)
 𝜃3     (5.2.6) 

 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
𝜃 =  𝐶𝑖𝑗𝑘𝑙𝑚𝑛 +  𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(1)
 𝜃 +

1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(2)
 𝜃      (5.2.7) 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞
𝜃 =  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞 +  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞

(1)
𝜃      (5.2.8) 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞
𝜃 =  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝑟𝑠       (5.2.9) 

𝜆𝑖𝑗
𝜃 =  𝜆𝑖𝑗

1  𝜃 +  𝜆𝑖𝑗
2  𝜃2 + 𝜆𝑖𝑗

3  𝜃3 + 𝜆𝑖𝑗
4  𝜃4     (5.2.10) 

where  

𝐶𝑖𝑗𝑘𝑙
(𝑛)

=  
𝜕𝑛𝐶𝑖𝑗𝑘𝑙

𝜃

𝜕𝑇𝑛 |
𝑇0

,          𝑛 = 1,2,3      (5.2.11) 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑛)

=  
𝜕𝑛𝐶𝑖𝑗𝑘𝑙𝑚𝑛

𝜃

𝜕𝑇𝑛 |
𝑇0

,          𝑛 = 1,2                 (5.2.12) 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞
(𝑛)

=  
𝜕𝑛𝐶𝑖𝑗𝑘𝑙𝑚𝑛

𝜃

𝜕𝑇𝑛 |
𝑇0

,          𝑛 = 1      (5.2.13) 
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The equation 5.2.11, 5.2.12 and 5.2.13 are temperature derivatives of the elastic 

stiffnesses evaluated at the reference temperature in the natural state. The linear thermal 

expansion coefficients are symmetric and have polynomial form as shown in equation 

5.2.14. 

𝛼𝑖𝑗
𝜃 =  𝛼𝑖𝑗

1  𝜃 + 𝛼𝑖𝑗
2  𝜃2 +  𝛼𝑖𝑗

3  𝜃3       (5.2.14) 

1

2
 (𝑈𝑗,𝑖 +  𝑈𝑖,𝑗) =  𝛼𝑖𝑗

𝜃 =  𝛼𝑗𝑖
𝜃       (5.2.15) 

If the equation 5.2.14 is the linear thermal expansion which measured instead of stress 

coefficient,  𝜆𝑖𝑗
𝜃 , the equation 5.2.2 can be written in terms of thermal coefficient 

expansion. 

𝐸𝑖𝑗 =  𝛼𝑖𝑗
𝜃 + 

1

2
 𝛼𝑘𝑖

𝜃 𝛼𝑘𝑗
𝜃          (5.2.16) 

In the innitial fields the plate is at rest and allowed free exapansion. Also, any higher term 

are neglected since higher order terms are much smaller than first term in equation 5.2.16.  

𝑈𝑗,𝑖 =  𝑈𝑖,𝑗 =  𝐸𝑖𝑗 =  𝛼𝑖𝑗
𝜃        (5.2.17) 

𝑇𝑖𝑗 = 0          (5.2.18) 

�̈�𝑖 = 0          (5.2.19) 

In the final state, small vibration is superposed with the thermally induced deformation. 

The governing equations for final state is similir to initial state. In this state, the material 

point is moved from yi to zi. Therefore, incremental displament can be calculated by 

simply taking the different between the final state displacement and the initial state 

displacement, 𝑢𝑖 =  𝑧𝑖 − 𝑦𝑖  as shown in equation 5.2.20. The variable at the final state is 

denoted by “barred” quantity. 

𝑈𝑖 =  𝑈𝑖 + 𝑢𝑖 =  𝑧𝑖 −  𝑥𝑖        (5.2.20) 
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Similarity,  strain, stress and traction at the final state can be defined as: 

𝐸𝑖𝑗 =  𝐸𝑖𝑗 + 𝑒𝑖𝑗         (5.2.21) 

𝑇𝑖𝑗 =  𝑇𝑖𝑗 +  𝑡𝑖𝑗        (5.2.22) 

𝑃𝑖 =  𝑃𝑖 +  𝑝𝑖         (5.2.23) 

 

 

The governing equations for final state are similir to initial state and they are: 

𝐸𝑖𝑗  = 
1

2
 (𝑈𝑗,𝑖 + 𝑈𝑖,𝑗  + 𝑈𝑘,𝑖 𝑈𝑘,𝑗  )      (5.2.24) 

𝑇𝑖𝑗 =

 𝐶𝑖𝑗𝑘𝑙
𝜃 𝐸𝑘𝑙 + 

1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛

𝜃 𝐸𝑘𝑙𝐸𝑚𝑛 +
1

6
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞

𝜃 𝐸𝑘𝑙𝐸𝑚𝑛𝐸𝑝𝑞 +

1

24
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝑟𝑠 

𝜃 𝐸𝑘𝑙𝐸𝑚𝑛𝐸𝑝𝑞𝐸𝑟𝑠 −  𝜆𝑖𝑗
𝜃

          (5.2.25) 

 (T𝑖𝑗 + T𝑗𝑘  U𝑖,𝑘),j = ρ�̈�𝑖        (5.2.26) 

𝑃𝑖 =  𝑛𝑗  (𝑇𝑖𝑗 +  𝑈𝑖,𝑘)   on S                           (5.2.27) 

 

As the temperature at the final state does not change, the governing equation for 

incremental fields can be calculated by substracting initial state from final stateas and 

they are defined as: 

𝑒𝑖𝑗 =  
1

2
 (𝑢𝑗,𝑖 + 𝑢𝑖,𝑗 +  𝑈𝑘,𝑗𝑢𝑘,𝑖 + 𝑈𝑘,𝑖𝑢𝑘,𝑗)     (5.2.28) 

𝑡𝑖𝑗 = (𝐶𝑖𝑗𝑘𝑙
𝜃 + 𝐶𝑖𝑗𝑘𝑙𝑚𝑛

𝜃 𝐸𝑚𝑛 +  
1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞

𝜃 𝐸𝑚𝑛𝐸𝑝𝑞 +  
1

6
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝑟𝑠

𝜃 𝐸𝑚𝑛𝐸𝑝𝑞𝐸𝑟𝑠) 𝑒𝑘𝑙 

          (5.2.29) 

(𝑡𝑖𝑗 + 𝑡𝑗𝑘𝑈𝑖,𝑘 + 𝑇𝑗𝑘𝑢𝑖,𝑘),𝑗 =  𝜌0�̈�𝑖      (5.2.30) 
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𝑝𝑖 =  𝑛𝑗(𝑡𝑖𝑗 +  𝑡𝑗𝑘𝑈𝑖,𝑘 +  𝑇𝑗𝑘𝑢𝑖,𝑘) on S     (5.2.31) 

In the governing equation of incremental fields, the incremental deforemation are 

assumed to be small and product terms are negliected.  

By substituing equation 5.2.17 into 5.2.28, the incremental strain-displacement relation 

can be defined as: 

𝑒𝑖𝑗 =  
1

2
 (𝑢𝑗,𝑖 + 𝑢𝑖,𝑗 +  𝑎𝑘𝑗

𝜃 𝑢𝑘,𝑖 +  𝑎𝑘𝑖
𝜃 𝑢𝑘,𝑗)      (5.2.32) 

By substituting equation 5.2.6,5.2.7 and 5.2.8 into equation 5.2.29, the stress-strain-

temperature relations can be defined as: 

𝑡𝑖𝑗 = (𝐶𝑖𝑗𝑘𝑙 + 𝐷𝑖𝑗𝑘𝑙
(1)

𝜃 +  𝐷𝑖𝑗𝑘𝑙
(2)

𝜃2 + 𝐷𝑖𝑗𝑘𝑙
(3)

𝜃3)𝑒𝑘𝑙    (5.2.33) 

where 

𝐷𝑖𝑗𝑘𝑙
(1)

=  𝐶𝑖𝑗𝑘𝑙
(1)

+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(1)

 

𝐷𝑖𝑗𝑘𝑙
(2)

=  
1

2
�̃�𝑖𝑗𝑘𝑙

(2)
+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛

(2)
 

𝐷𝑖𝑗𝑘𝑙
(3)

=  
1

6
�̃�𝑖𝑗𝑘𝑙

(3)
+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛

(3)
 

�̃�𝑖𝑗𝑘𝑙
(2)

=  𝐶𝑖𝑗𝑘𝑙
(2)

+ 2𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(1)

𝛼𝑚𝑛
(1)

+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝛼𝑚𝑛
(1)

𝛼𝑝𝑞
(1)

 

�̃�𝑖𝑗𝑘𝑙
(3)

=  𝐶𝑖𝑗𝑘𝑙
(3)

+ 3𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(2)

𝛼𝑚𝑛
(1)

+ 6𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(2)

+  6𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝛼𝑚𝑛
(1)

𝛼𝑝𝑞
(2)

+  3𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞
(1)

𝛼𝑚𝑛
(1)

𝛼𝑝𝑞
(1)

+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝑟𝑠𝛼𝑚𝑛
(1)

𝛼𝑝𝑞
(1)

𝛼𝑟𝑠
(1)

 

 

 

Similary, the stress equations of motion can be caluclated and they are defined as: 
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(𝑡𝑖𝑗 + 𝛼𝑖𝑘
𝜃 𝑡𝑗𝑘),𝑗 =  𝜌0�̈�𝑖       (5.2.34) 

𝑝𝑖 =  𝑛𝑗(𝑡𝑖𝑗 +  𝛼𝑖𝑘
𝜃 𝑡𝑗𝑘) on S       (5.2.35) 

Finally , the incremental displacment euqation of the motion and the traction boundary 

condition can be defined by substituting equation 5.2.16 and 5.2.32 into equation 5.2.33 

and then, equation 5.2.34 into 5.2.35. 

𝐺𝑖𝑗𝑘𝑙𝑢𝑘.𝑗𝑙 =  𝜌0�̈�𝑖        (5.2.36) 

𝑝𝑖 =  𝑛𝑗𝐺𝑖𝑗𝑘𝑙𝑢𝑘,𝑙  on S       (5.2.37) 

where 

𝐺𝑖𝑗𝑘𝑙 =  𝐶𝑖𝑗𝑘𝑙 + 𝐺𝑖𝑗𝑘𝑙
(1)

𝜃 + 𝐺𝑖𝑗𝑘𝑙
(2)

𝜃2       (5.2.38) 

𝐺𝑖𝑗𝑘𝑙
(1)

=  𝐺𝑠𝑗𝑘𝑙𝛼𝑖𝑠
(1)

+  𝐺𝑖𝑗𝑠𝑙𝛼𝑘𝑠
(1)

+  𝐺𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(1)

+  𝐺𝑖𝑗𝑘𝑙
(1)

   (5.2.39) 

𝐺𝑖𝑗𝑘𝑙
(2)

=  𝐶𝑠𝑗𝑡𝑙𝛼𝑖𝑠
(1)

𝛼𝑘𝑡
(1)

+ 𝐶𝑠𝑗𝑘𝑙𝛼𝑖𝑠
(2)

+  𝐶𝑖𝑗𝑠𝑙𝛼𝑘𝑠
(2)

+ 𝐶𝑠𝑗𝑘𝑙
(1)

𝛼𝑖𝑠
(1)

+  𝐶𝑖𝑗𝑠𝑙
(1)

𝛼𝑘𝑠
(1)

+

 𝐶𝑠𝑗𝑘𝑙𝑚𝑛𝛼𝑖𝑠
(1)

𝛼𝑚𝑛
(1)

+ 𝐶𝑖𝑗𝑠𝑙𝑚𝑛𝛼𝑘𝑠
(1)

𝛼𝑚𝑛
(1)

+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(2)

+ 
1

2
�̃�𝑖𝑗𝑘𝑙

(2)
 (5.2.40) 

𝐺𝑖𝑗𝑘𝑙
(3)

=
1

6
 �̃�𝑖𝑗𝑘𝑙

(3)
+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛

(3)
+  𝐶𝑖𝑗𝑠𝑙𝛼𝑘𝑠

(3)
+ 𝐶𝑠𝑗𝑘𝑙𝛼𝑖𝑠

(3)
+  𝐶𝑖𝑗𝑠𝑙

(1)
𝛼𝑘𝑠

(2)
+ 𝐶𝑠𝑗𝑘𝑙

(1)
𝛼𝑖𝑠

(2)
+

 𝐶𝑖𝑗𝑠𝑙𝑚𝑛𝛼𝑚𝑛
(1)

𝛼𝑘𝑠
(2)

+ 𝐶𝑠𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(2)

𝛼𝑘𝑠
(1)

+
1

2
�̃�𝑖𝑗𝑠𝑙

(2)
𝛼𝑖𝑠

(1)
+  𝐶𝑖𝑗𝑠𝑙𝑚𝑛𝛼𝑚𝑛

(2)
𝛼𝑘𝑠

(1)
+

 𝐶𝑠𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(2)

𝛼𝑖𝑠
(1)

+ 𝐶𝑠𝑗𝑡𝑙𝛼𝑖𝑠
(1)

𝛼𝑘𝑡
(2)

+ 𝐶𝑠𝑗𝑡𝑙𝛼𝑖𝑠
(2)

𝛼𝑘𝑡
(1)

+ 𝐶𝑠𝑗𝑡𝑙
(1)

𝛼𝑖𝑠
(1)

𝛼𝑘𝑡
(1)

+

 𝐶𝑠𝑗𝑡𝑙𝑚𝑛𝛼𝑚𝑛
(1)

𝛼𝑖𝑠
(1)

𝛼𝑘𝑦
(1)

        (5.2.41) 

Since  the 𝐷𝑖𝑗𝑘𝑙
(𝑛)

 and �̃�𝑖𝑗𝑘𝑙
(2)

 have same symmetry as 𝐶𝑖𝑗𝑘𝑙  from equation 5.2.33, 5.2.36, 

5.2.37 and 5.2.38,  we can say 

𝐺𝑖𝑗𝑘𝑙
(𝑛)

=  𝐺𝑘𝑙𝑖𝑗
(𝑛)

           (5.2.42) 

but  

𝐺𝑖𝑗𝑘𝑙
(𝑛)

≠  𝐺𝑗𝑖𝑘𝑙
(𝑛)

≠  𝐺𝑖𝑗𝑘𝑙
(𝑛)
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The non-llinear equations become to linear euqations when θ=0. For the small vibration 

supeorsed on homogeneous thermal strain only required 𝐶𝑖𝑗𝑘𝑙
(1)

 and �̃�𝑖𝑗𝑘𝑙
(2)

 to describe the 

temperature dependence of elastic stiffnesses up to the second power of θ based on above 

equations. As previously mentioned , we cannot calculate highter than second power of θ  

since there is no measured values of effective third-order temperautre derivative.  

5.2.1  Thickness Vibration 

We let 𝑥𝑖 (𝑖 = 1,2,3) be the cystallographical axes of the crystals. By IEEE,a doubly 

rotated crystal plate is defined by (y,x,ω,l) ϕ, θ. The crystal plate has thickness of 2b as 

shown in figure 5.3 which 𝑛𝑖 denote the unit outward normal to the faces of the plate in 

the natural state.  Refer to the crysallographic axes and the figure 5.3, the unit normal 

components are: 

𝑛1 =  − cos 𝜃 sin ∅ 

𝑛2 =  cos 𝜃 sin ∅       

𝑛3 =  sin 𝜃         (5.2.43) 

For traction free face conditions, equation 5.2.37 becomes 

𝑝𝑖 =  𝑛𝑗𝐺𝑖𝑗𝑘𝑙𝑢𝑘,𝑙 = 0  at 𝑛𝑗𝑋𝑗 = ±𝑏                 (5.2.44) 

For solution  of equation 5.2.36, for harmonic and antisymmetric thickness vibrations 

𝑢𝑘 =  𝐴𝑘𝑠𝑖𝑛𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡                  (5.2.45) 

By substituting equation 5.2.45 into the 5.2.36 and 5.2.44, we can get 

(𝑄𝑖𝑘 − 𝜆𝛿𝑖𝑘)𝐴𝑘 = 0                  (5.2.46) 

where  

ξ =  
𝑛𝜋

2𝑏
 ,       𝑛 = 1,3,5 … 



97 

 

 

 

𝑄𝑖𝑘 =  𝑄𝑘𝑖 =  𝐺𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙 

λ =  𝜌0

𝜔2

𝜉2
=  𝜌0 (

2𝑏𝜔

𝑛𝜋
)2 

The equation 5.2.46 is the eigenvalue problem with the measured quantity, 𝑄𝑖𝑘. The 

amplitutute 𝐴𝑘 and eignenvalue λ are temperature dependent with the equation 5.2.46.   

𝐴𝑘 =  𝐴𝑘
(0)

+  𝐴𝑘
(1)

𝜃 + 𝐴𝑘
(2)

𝜃2 +  𝐴𝑘
(3)

𝜃3                     

λ =  𝜆(0) +  𝜆(1)𝜃 +  𝜆(2)𝜃2 + 𝜆(3)𝜃3     (5.2.47) 

By inseting equation 5.2.47 into equation 5.2.46, the eigenvalue problems of powers of θ 

can be obtained.  

θ0 ∶    [𝑄𝑘
(0)

−  𝜆(0)𝛿𝑖𝑘]𝐴𝑘
(0)

= 0 

θ1 ∶    [𝑄𝑘
(0)

−  𝜆(0)𝛿𝑖𝑘]𝐴𝑘
(1)

+  [𝑄𝑘
(1)

−  𝜆(1)𝛿𝑖𝑘]𝐴𝑘
(0)

= 0 

θ2 ∶    [𝑄𝑘
(0)

−  𝜆(0)𝛿𝑖𝑘]𝐴𝑘
(2)

+  [𝑄𝑘
(1)

− 𝜆(1)𝛿𝑖𝑘]𝐴𝑘
(2)

+  [𝑄𝑘
(2)

− 𝜆(2)𝛿𝑖𝑘]𝐴𝑘
(0)

= 0   

(5.2.48) 

where 

𝑄𝑖𝑘
(0)

=  𝐺𝑖𝑗𝑘𝑙
(0)

 𝑛𝑗  𝑛𝑙 

𝑄𝑖𝑘
(1)

=  𝐺𝑖𝑗𝑘𝑙
(1)

 𝑛𝑗  𝑛𝑙 

𝑄𝑖𝑘
(2)

=  𝐺𝑖𝑗𝑘𝑙
(2)

 𝑛𝑗  𝑛𝑙        (5.2.49) 

The 𝜆(0) can be easily calculate by solving the eigenvalue problem which is the first 

equation of 5.2.48 and 𝐴𝑘
(0)

 can be solve uniquely by requiring normalization 

𝐴𝑘
(0)

𝐴𝑘
(0)

= 1         (5.2.50) 

By utilizing equation 5.2.50 and second equation of 5.2.48, we can get following relation: 

 𝜆(1) =  𝐴𝑖
(0)

 𝑄𝑖𝑘
(1)

 𝐴𝑘
(0)

        (5.2.51) 
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 𝐴𝑘
(1)

 can be solve uniquely by requiring    𝐴𝑘
(1)

 orthogonal to  𝐴𝑘
(0)

, since 

 [𝑄𝑘
(1)

−  𝜆(1)𝛿𝑖𝑘]𝐴𝑘
(0)

 term in equation 5.2.48 is orthogonal to the eigenvector of [𝑄𝑘
(0)

−

 𝜆(0)𝛿𝑖𝑘]. 

𝐴𝑘
(0)

𝐴𝑘
(1)

= 0         (5.2.52) 

We can solve 𝜆(2) by multiplying 𝐴𝑖
(0)

 with the third equation of 5.2.48. 

𝜆(2) =  𝐴𝑖
(0)

 𝑄𝑖𝑘
(2)

 𝐴𝑘
(0)

+  𝐴𝑖
(0)

 𝑄𝑖𝑘
(1)

 𝐴𝑘
(1)

     (5.2.53) 

Similarity, multiplying third equation of 5.2.47 by 𝐴𝑖
(0)

 and utilizing  

𝐴𝑘
(0)

= −
1

2
 𝐴𝑘

(1)
𝐴𝑘

(1)
        (5.2.54) 

We get 

𝜆(3) =  𝐴𝑖
(0)

 𝑄𝑖𝑘
(3)

 𝐴𝑘
(0)

+  𝐴𝑖
(0)

 (𝑄𝑖𝑘
(1)

− 𝜆(1)𝛿𝑖𝑘) 𝐴𝑘
(2)

+  𝐴𝑖
(0)

 𝑄𝑖𝑘
(2)

 𝐴𝑘
(1)

 (5.2.55) 

Further substituting the ω = 2𝜋𝑓 into the fourth equation of 5.2.46, we can get following 

relation: 

𝑓2 =  
𝑛2

4𝜌0𝑏2 [𝜆0 + 𝜆(1)𝜃 +  𝜆(2)𝜃2 + 𝜆(3)𝜃3]     (5.2.56) 

where  

𝑓0
2 =  

𝑛2𝜆(0)

4𝜌0𝑏2
 

By taking the first, second and third derivatives of equation 5.2.56 with repect to 

temperature T  and substituiting Bechmann’s temperature coefficient of frequency, we 

can obtain 𝜆(1), 𝜆(2) and 𝜆(3) in terms of  𝑇𝑓(𝑛). 

𝜆(1) = 2 𝜆(0)𝑇𝑓(1)        (5.2.57) 

𝜆(2) = 2 𝜆(0)𝑇𝑓(2) +  𝜆(0)[𝑇𝑓(1)]2      (5.2.58) 
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𝜆(2) = 2 𝜆(0)𝑇𝑓(3) +  2𝜆(0)𝑇𝑓(1)𝑇𝑓(2)     (5.2.59) 

where  

𝑇𝑓(𝑛) =  
1

𝑛! 𝑓0

𝜕𝑛𝑓

𝜕𝑇𝑛
|

𝑇0

 

Futher substituting equation 5.2.51, 5.2.53 and 5.2.55 into equation 5.2.57, 5.2.58 and 

5.2.59 and  reranging the in terms of known measured values, we have 

2𝜆(0)𝑇𝑓(1) = [𝐶𝑖𝑗𝑘𝑙
(1)

𝑛𝑗𝑛𝑙𝐴𝑖
(0)

𝐴𝑘
(0)

+ [𝐶𝑖𝑗𝑠𝑙𝛼𝑘𝑠
(1)

+  𝐶𝑠𝑗𝑘𝑙𝛼𝑖𝑠
(1)

+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(1)

]𝑛𝑗𝑛𝑙𝐴𝑖
(0)

𝐴𝑘
(0)

]    

  (5.2.60) 

4𝜆(0)𝑇𝑓(2) =  �̃�𝑖𝑗𝑘𝑙
(2)

𝑛𝑗𝑛𝑙𝐴𝑖
(0)

𝐴𝑘
(0)

+ 2𝜆(0)[𝑇𝑓(1)]
2

+ 2[𝐶𝑠𝑗𝑘𝑙𝛼𝑖𝑠
(2)

+ 𝐶𝑖𝑗𝑠𝑙𝛼𝑘𝑠
(2)

+  𝐶𝑠𝑗𝑡𝑙𝛼𝑖𝑠
(1)

𝛼𝑘𝑡
(1)

+  𝐶𝑠𝑗𝑘𝑙
(1)

𝛼𝑖𝑠
(1)

+ 𝐶𝑖𝑗𝑠𝑙
(1)

𝛼𝑘𝑠
(1)

+ 𝐶𝑠𝑗𝑘𝑙𝑚𝑛𝛼𝑖𝑠
(1)

+ 𝐶𝑖𝑗𝑠𝑙𝑚𝑛𝛼𝑘𝑠
(1)

𝛼𝑚𝑛
(1)

+ 𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(2)

] 𝑛𝑗  𝑛𝑙 𝐴𝑖
(0)

𝐴𝑘
(0)

+ 2[𝐶𝑠𝑗𝑘𝑙𝛼𝑖𝑠
(1)

+ 𝐶𝑖𝑗𝑠𝑙𝛼𝑘𝑠
(1)

+ 𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛
(1)

+ 𝐶𝑖𝑗𝑘𝑙
(1)

]𝑛𝑗𝑛𝑙𝐴𝑖
(0)

𝐴𝑘
(1)

 

(5.2.61) 

12𝜆(0)𝑇𝑓(3) =  �̃�𝑖𝑗𝑘𝑙
(3)

𝑛𝑗𝑛𝑙𝐴𝑖
(0)

𝐴𝑘
(0)

− 12𝜆(0)𝑇𝑓(1)𝑇𝑓
(2)

+ 6(𝐴𝑖
(0)

𝑄𝑖𝑘
(1)

𝐴𝑘
(2)

+ 𝐴𝑖
(0)

𝑄𝑖𝑘
(2)

𝐴𝑘
(1)

+ 𝜆(0)𝑇𝑓(1)𝐴𝑘
(1)

𝐴𝑘
(1)

)

+ 6 [𝛼𝑚𝑛
(3)

+ 2𝐶𝑖𝑗𝑠𝑙𝛼𝑘𝑠
(3)

+ 2(𝐶𝑖𝑗𝑠𝑙
(1)

+ 𝐶𝑖𝑗𝑠𝑙𝑚𝑛𝛼𝑚𝑛
(1)

)𝛼𝑘𝑠
(2)

+ 2 (
1

2
�̃�𝑖𝑗𝑠𝑙

(2)
+ 𝐶𝑖𝑗𝑠𝑙𝑚𝑛𝛼𝑚𝑛

(2)
) 𝛼𝑘𝑠

(1)
+ 2𝐶𝑠𝑗𝑡𝑙𝛼𝑖𝑠

(1)
𝛼𝑘𝑡

(2)

+ (𝐶𝑠𝑗𝑡𝑙
(1)

+ 𝐷𝑠𝑗𝑡𝑙𝑚𝑛𝛼𝑚𝑛
(1)

) 𝛼𝑖𝑠
(1)

 𝛼𝑘𝑡
(1)

 ] 𝑛𝑗 𝑛𝑖 𝐴𝑖
(0)

𝐴𝑘
(0)

 

(5.2.62) 
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Figure 5.2.1 A doubly rotated crystal plate and normal with respect to crystallographic 

axes. [34]  
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5.3  Equation of Motion for Small Vibrations Superposed on Thermally 

Induced Deformations with the Piezoelectric Effect. 

In recent study, researcher found that the langasite is better material for BAW 

application than quartz crystal due to its piezoelectric properties and temperature stability. 

In temperature frequency analysis of quartz crystal, the piezoelectric effects are neglected 

since effects are marginal. On the other hand, the piezoelectric coefficient of langasite is 

much larger than quartz crystal. In this chapter, we will derive the three-dimensional 

equation of motion for small vibration superposed on thermally induced deformations with 

the piezoelectric effect.  

The equations of motion for small vibrations superposed on thermally induced 

deformations with the piezoelectric effect are conveniently derived with the following 

definitions: 

θ  : Temperature increment respect to reference temperature  T-T0 

𝑠𝑖𝑗 : Incremental strain 

𝑡𝑖𝑗  : Incremental stress 

𝑝𝑖 : Incremental traction 

𝐸𝑘 : Electric field 

∅,𝑘 : Electrical potential 

𝐷𝑖 : Electric charge density displacement 

𝑒𝑘𝑖𝑗: Piezoelectric coupling coefficients 

𝜖𝑖𝑘 : Dielectric coefficients 

𝑛𝑖 : Unit outward normal vector to S 

𝐶𝑖𝑗𝑘𝑙: Second-order elastic stiffnesses of the crystal 
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𝐶𝑖𝑗𝑘𝑙𝑚𝑛: Third-order elastic stiffnesses of the crystal 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞 : Four-order elastic stiffnesses of the crystal 

𝐶𝑖𝑗𝑘𝑙
(1)

  : First temperature derivative of the second-order elastic stiffnesses of the 

crystal 

�̃�𝑖𝑗𝑘𝑙
(2)

  : Effective Second temperature derivative of the second-order elastic stiffnesses 

of the crystal 

�̃�𝑖𝑗𝑘𝑙
(3)

 : Effective third temperature derivative of the second-order elastic stiffnesses of 

the crystal 

𝜆𝑖𝑗
𝜃      : Stress coefficient of temperature 

𝛼𝑖𝑗
𝜃     : Thermal expansion coefficient  

 

The Lagrangian formulation of incremental equations, which derived from previous 

section, will be used in this section. The following incremental equations and constitutive 

equations include piezoelectric effect and they are similar to the ones in previous section. 

(a) Strain- displacement relation 

𝑠𝑘𝑙 =  
1

2
(𝑢𝑘,𝑙 +  𝑢𝑙,𝑘 +  𝛼𝑟𝑘

𝜃 𝑢𝑟,𝑙 +  𝛼𝑟𝑙
𝜃 𝑢𝑟,𝑘)     (5.3.1) 

(b) Electric field – potential relation 

𝐸𝑘 =  −∅,𝑘         (5.3.2) 

(c) Constitutive equations 

𝑡𝑖𝑗 =  𝐶𝑖𝑗𝑘𝑙
𝜃 𝑠𝑘𝑙 −  𝑒𝑘𝑖𝑗𝐸𝑘       (5.3.3) 

𝐷𝑖 =  𝑒𝑖𝑘𝑙𝑠𝑘𝑙 − 𝜖𝑖𝑘𝐸𝑘        (5.3.4) 
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(d) Stress equation of motion 

(𝑡𝑖𝑗 + 𝛼𝑖𝑟
𝜃 𝑡𝑟𝑗),𝑗 =  𝜌�̈�𝑖       (5.3.5) 

𝑝𝑖 =  𝑛𝑗(𝑡𝑖𝑗 +  𝛼𝑖𝑘
𝜃  𝑡𝑗𝑘) on S      (5.3.6) 

(e) Electrostatics 

𝐷𝑖,𝑖 = 0         (5.3.7) 

The constitutive equations can be express in terms of displacement by substituting 

equation (5.3.1) into equation (5.3.3) and (5.3.4). 

𝑡𝑖𝑗 =  𝐶𝑖𝑗𝑘𝑙
𝜃  ( 𝑢𝑘,𝑙 +  𝛼𝑟𝑘

𝜃 𝑢𝑟,𝑙) −  𝑒𝑘𝑖𝑗𝐸𝑘     (5.3.8) 

𝐷𝑖 =  𝑒𝑖𝑘𝑙 (𝑢𝑘,𝑙 +  𝛼𝑟𝑘
𝜃 𝑢𝑟,𝑙) + 𝜖𝑖𝑘𝑘      (5.3.9) 

where 

𝐶𝑖𝑗𝑘𝑙
𝜃 =  𝐶𝑝𝑖𝑗 + 𝐷𝑖𝑗𝑘𝑙

(1)
 𝜃 +  𝐷𝑖𝑗𝑘𝑙

(2)
 𝜃2 + 𝐷𝑖𝑗𝑘𝑙

(3)
 𝜃3 

𝐷𝑖𝑗𝑘𝑙
(1)

=  𝐶𝑖𝑗𝑘𝑙
(1)

+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛 𝛼𝑚𝑛
(1)

 

𝐷𝑖𝑗𝑘𝑙
(2)

=  
1

2
 �̃�𝑖𝑗𝑘𝑙

(2)
+ 𝐶𝑖𝑗𝑘𝑙𝑚𝑛 𝛼𝑚𝑛

(2)
  

𝐷𝑖𝑗𝑘𝑙
(3)

=  
1

6
 �̃�𝑖𝑗𝑘𝑙

(3)
+  𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝛼𝑚𝑛

(3)
 

       

𝛼𝑟𝑖
𝜃 =  𝛼𝑟𝑖

(1)
𝜃 + 𝛼𝑟𝑖

(2)
 𝜃2 + 𝛼𝑟𝑖

(3)
 𝜃3 

 

Further substituting the equation (5.3.8) into equation (5.3.5), we obtain 

[𝐶𝑖𝑗𝑘𝑙
𝜃 +  𝛼𝑟𝑘

𝜃 𝐶𝑖𝑗𝑟𝑙
𝜃 +  𝛼𝑟𝑖

𝜃 𝐶𝑟𝑗𝑘𝑙
𝜃 +  𝛼𝑟𝑖

𝜃 𝛼𝑠𝑘
𝜃 𝐶𝑟𝑗𝑠𝑙

𝜃 ]𝑢𝑘,𝑙𝑗 − [𝑒𝑘𝑖𝑗 +  𝛼𝑟𝑖
𝜃 𝑒𝑘𝑟𝑗]𝐸𝑘,𝑗 =  𝜌�̈�𝑖  

or 

𝐺𝑖𝑗𝑘𝑙
𝜃   𝑢𝑘,𝑙𝑗 − 𝐻𝑘𝑖𝑗

𝜃  𝐸𝑘,𝑗 =  𝜌�̈�𝑖      (5.3.10) 
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where 

𝐺𝑖𝑗𝑘𝑙
𝜃 =  𝐶𝑖𝑗𝑘𝑙

𝜃 + 𝛼𝑟𝑘
𝜃 𝐶𝑖𝑗𝑟𝑙

𝜃 + 𝛼𝑟𝑖
𝜃 𝐶𝑟𝑗𝑘𝑙

𝜃 + 𝛼𝑟𝑖
𝜃 𝛼𝑠𝑘

𝜃 𝐶𝑟𝑗𝑠𝑙
𝜃  

𝐺𝑖𝑗𝑘𝑙
𝜃 =  𝐶𝑖𝑗𝑘𝑙 + 𝐺𝑖𝑗𝑘𝑙

(1)
 𝜃 + 𝐺𝑖𝑗𝑘𝑙

(2)
 𝜃2 + 𝐺𝑖𝑗𝑘𝑙

(3)
 𝜃3 

𝐺𝑖𝑗𝑘𝑙
(1)

=  𝐷𝑖𝑗𝑘𝑙
(1)

+  𝛼𝑟𝑘
(1)

 𝐶𝑖𝑗𝑟𝑙 + 𝛼𝑟𝑖
(1)

 𝐶𝑟𝑗𝑘𝑙 

𝐺𝑖𝑗𝑘𝑙
(2)

=  𝐷𝑖𝑗𝑘𝑙
(2)

+  𝛼𝑟𝑘
(2)

 𝐶𝑖𝑗𝑟𝑙 + 𝛼𝑟𝑖
(2)

 𝐶𝑟𝑗𝑘𝑙 +  𝐷𝑖𝑗𝑟𝑙
(1)

 𝛼𝑟𝑘
(1)

+  𝐷𝑟𝑗𝑘𝑙
(1)

 𝛼𝑟𝑖
(1)

+  𝐶𝑟𝑗𝑠𝑙𝛼𝑟𝑖
(1)

 𝛼𝑠𝑘
(1)

 

𝐺𝑖𝑗𝑘𝑙
(3)

=  𝐷𝑖𝑗𝑘𝑙
(3)

+  𝛼𝑟𝑘
(3)

 𝐶𝑖𝑗𝑟𝑙 + 𝛼𝑟𝑖
(3)

 𝐶𝑟𝑗𝑘𝑙 +  𝐷𝑖𝑗𝑟𝑙
(2)

 𝛼𝑟𝑘
(1)

+  𝐷𝑟𝑗𝑘𝑙
(2)

 𝛼𝑟𝑖
(1)

+  𝐷𝑖𝑗𝑟𝑙
(1)

 𝛼𝑟𝑘
(2)

+  𝐷𝑟𝑗𝑘𝑙
(1)

 𝛼𝑟𝑖
(2)

+  𝐶𝑟𝑗𝑠𝑙 𝛼𝑟𝑖
(1)

 𝛼𝑠𝑘
(2)

+ 𝐶𝑟𝑗𝑠𝑙 𝛼𝑟𝑖
(2)

 𝛼𝑠𝑘
(1)

+  𝐷𝑟𝑗𝑠𝑙
(1)

 𝛼𝑟𝑖
(1)

 𝛼𝑠𝑘
(1)

 

𝐻𝑘𝑖𝑗
𝜃 =  𝑒𝑘𝑖𝑗 +  𝛼𝑟𝑖

𝜃 𝑒𝑘𝑟𝑗 

 

In the equation (5.3.10), the piezoelectric coupling coefficient, the material properties are 

assumed to be temperature dependent.  By further substituting equation (5.3.9) into 

equation (5.3.4), we get 

(𝑒𝑖𝑘𝑙 +  𝛼𝑟𝑘
𝜃 𝑒𝑖𝑟𝑙)𝑢𝑘,𝑙𝑖 + 𝜖𝑖𝑘𝐸𝑘,𝑖 = 0      (5.3.11) 

or 

𝐻𝑘𝑖𝑗
𝜃 𝑢𝑘,𝑙𝑖 + 𝜖𝑖𝑘𝐸𝑘,𝑖 = 0       (5.3.12) 

where 

𝐻𝑖𝑘𝑙
𝜃 =  𝑒𝑖𝑘𝑙 +  𝛼𝑟𝑘

𝜃 𝑒𝑖𝑟𝑙 

=  𝑒𝑖𝑘𝑙 +  𝑒𝑖𝑟𝑙 𝛼𝑟𝑘
(1)

𝜃 +  𝑒𝑖𝑘𝑙 𝛼𝑟𝑘
(2)

 𝜃2 +  𝑒𝑖𝑘𝑙 𝛼𝑟𝑘
(3)

 𝜃3 

=  𝑒𝑖𝑖𝑘𝑙 +  𝐻𝑖𝑘𝑙
(1)

𝜃 +  𝐻𝑖𝑘𝑙
(2)

 𝜃2 +  𝐻𝑖𝑘𝑙
(3)

 𝜃3 
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5.3.1  Thickness Vibration 

Similar to the section 5.2.1, we kept the same notation so that 𝑥𝑖  (𝑖 = 1,2,3) be the 

cystallographical axes of the crystals. By conventional IEEE notation,a doubly rotated 

crystal plate is defined by (y,x,ω,l) ϕ, θ. The crystal plate has thickness of 2b as shown in 

figure 5.3 which 𝑛𝑖 denote the unit outward normal to the faces of the plate in the natural 

state.  Refer to the crysallographic axes and the figure 5.3, the unit normal components 

are same as equation 5.4.1: 

𝑛1 =  −cos 𝜃  sin ∅ 

𝑛2 =  cos 𝜃 cos ∅ 

𝑛3 =  sin 𝜃         (5.3.12) 

For traction free face boundary conditions, the equation 5.3.2 and 5.3.6 becomes 

𝑝𝑖 = 𝑛𝑗[𝐺𝑖𝑗𝑘𝑙
𝜃 𝑢𝑘,𝑙 +  𝐻𝑘𝑖𝑗

𝜃 ∅,𝑘] = 0     at    𝑛𝑗𝑋𝑗 =  ±𝑏    (5.3.13) 

∅ = 𝑉     at    𝑛𝑗𝑋𝑗 =  ±𝑏       (5.3.14) 

The solution for harmonic and anti-symmetric thickness vibrations are 

𝑢𝑘 =  𝐴𝑘 sin 𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡       (5.3.15) 

∅ =  𝑉 sin 𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡        (5.3.16) 

and 

𝑢𝑘,𝑙 =  ξ 𝑛𝑙 cos 𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡  ∙ 𝐴𝑘      (5.3.17) 

𝑢𝑘,𝑙𝑗 =  − ξ2 𝑛𝑙 𝑛𝑗 sin 𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡  ∙ 𝐴𝑘     (5.3.18) 

�̈�𝑖 =  −𝜔2  sin 𝜉 𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡  ∙  𝐴𝑘      (5.3.19) 

∅,𝑘 = 𝑉 𝜉 𝑛𝑘 cos 𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡       (5.3.20) 

∅,𝑘𝑗 = − 𝑉 𝜉2 𝑛𝑘𝑛𝑗 sin 𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡      (5.3.21) 
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By further substituting equation 5.3.18 and 5.3.21into equation 5.3.11, we get 

𝐻𝑘𝑖𝑗
𝜃  [ −𝐴𝑖 𝜉2 𝑛𝑗 𝑛𝑘  sin 𝜉 𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡 ] −  𝜖𝑗𝑘 [ −𝑉𝜉2𝑛𝑗𝑛𝑘 sin 𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡 ] = 0 

(5.3.22) 

By simplifying the equation 5.322, we obtain electric potential in terms of piezoelectric 

coupling coefficient, dielectric coefficient and amplitude. 

𝑉 =  𝛾𝑖
𝜃 𝐴𝑖         (5.3.23) 

where 

𝑉 =  
𝑛𝑗 𝑛𝑘 𝐻𝑘𝑖𝑗

𝜃

𝑛𝑟 𝑛𝑠 𝜖𝑟𝑠
 𝐴𝑖        (5.3.24) 

𝛾𝑖
𝜃 =  

𝑛𝑚𝑛𝑛 𝐻𝑛𝑖𝑚
𝜃

𝑛𝑟𝑛𝑠𝜖𝑟𝑠
        (5.3.25) 

The equation 5.3.21 can be written in terms of 𝛾𝑖
𝜃 by substituting 5.3.23 into equation 

5.3.21. 

∅,𝑘𝑗 =  −𝛾𝑞
𝜃𝐴𝑞𝜉2𝑛𝑘𝑛𝑗 sin 𝜉𝑛𝑝𝑋𝑝𝑒𝑖𝜔𝑡     (5.3.26) 

Now, we can substitute equation 5.3.18, 5.3.19 and 5.3.26 into equation 5.3.10 to setup 

the eigenvalue problem. 

𝜉2 𝑄𝑖𝑘 𝐴𝑘 =  𝜌𝜔2𝐴𝑖        (5.3.27) 

where 

𝑄𝑖𝑘 =  𝐺𝑖𝑗𝑘𝑙
𝜃  𝑛𝑗 𝑛𝑙 + 𝐻𝑞𝑖𝑝 

𝜃 𝛾𝑘
𝜃  𝑛𝑝 𝑛𝑞      (5.3.28) 

𝐻𝑞𝑖𝑝
𝜃 𝛾𝑘

𝜃𝑛𝑝𝑛𝑞 =  
𝐻𝑝𝑖𝑗 

𝜃 𝐻𝑞𝑘𝑙
𝜃

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
 𝑛𝑝 𝑛𝑞 𝑛𝑗 𝑛𝑙      (5.3.29) 

Further substituting the equation 5.3.29 into 5.3.28, we obtain piezoelectrically stiffened 

Christoffel constant �̅�𝑖𝑗𝑘𝑙
𝜃 . 
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𝑄𝑖𝑘 = �̅�𝑖𝑗𝑘𝑙
𝜃  𝑛𝑗𝑛𝑙 =  𝑄𝑘𝑖       (5.3.30) 

�̅�𝑖𝑗𝑘𝑙
𝜃 =  𝐺𝑖𝑗𝑘𝑙

𝜃 +  
𝐻𝑝𝑖𝑗

𝜃  𝐻𝑞𝑘𝑙
𝜃  𝑛𝑝𝑛𝑞

𝜖𝑟𝑠𝑛𝑟𝑛𝑠
       (5.3.31) 

where 

�̅�𝑖𝑗𝑘𝑙
𝜃 =  �̅�𝑖𝑗𝑘𝑙 +  �̅�𝑖𝑗𝑘𝑙

(1)
 𝜃 +  �̅�𝑖𝑗𝑘𝑙

(2)
 𝜃2 +  �̅�𝑖𝑗𝑘𝑙

(3)
 𝜃3 

�̅�𝑖𝑗𝑘𝑙 =  𝐶𝑖𝑗𝑘𝑙 + 
𝑒𝑝𝑖𝑗  𝑒𝑞𝑘𝑙 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
 

G̅𝑖𝑗𝑘𝑙
(1)

=  𝐶𝑖𝑗𝑘𝑙
(1)

+ 
𝑒𝑝𝑖𝑗  𝐻𝑞𝑘𝑙

(1)
 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
+ 

𝐻𝑝𝑖𝑗
(1)

 𝑒𝑞𝑘𝑙 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
 

G̅𝑖𝑗𝑘𝑙
(2)

=  𝐶𝑖𝑗𝑘𝑙
(2)

+ 
𝑒𝑝𝑖𝑗  𝐻𝑞𝑘𝑙

(2)
 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
+ 

𝐻𝑝𝑖𝑗
(2)

 𝑒𝑞𝑘𝑙 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
+  

𝐻𝑝𝑖𝑗
(1)

 𝐻𝑞𝑘𝑙
(1)

 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
 

G̅𝑖𝑗𝑘𝑙
(3)

=  𝐶𝑖𝑗𝑘𝑙
(3)

+ 
𝑒𝑝𝑖𝑗  𝐻𝑞𝑘𝑙

(3)
 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
+ 

𝐻𝑝𝑖𝑗
(3)

 𝑒𝑞𝑘𝑙 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
+ 

𝐻𝑝𝑖𝑗
(1)

 𝐻𝑞𝑘𝑙
(2)

 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠

+  
𝐻𝑝𝑖𝑗

(2)
 𝐻𝑞𝑘𝑙

(1)
 𝑛𝑝 𝑛𝑞

𝜖𝑟𝑠 𝑛𝑟 𝑛𝑠
 

Upon substituting the equation 5.3.31 and 5.3.30 into equation 5.3.27, we find 

[ 𝜉2 �̅�𝑖𝑗𝑘𝑙
𝜃  𝑛𝑗  𝑛𝑙 ]𝐴𝑘 = 𝜌𝜔2𝐴𝑖 

or 

[ 𝑄𝑖𝑘 − 𝜆𝛿𝑖𝑘 ]𝐴𝑘 = 0        (5.3.32) 

where 

λ =  ρ 
𝜔

𝜉2

2
,  ξ = 𝑛𝜋/2𝑏,  n=1,3,5… .     (5.3.33) 

The equation 5.3.32 is the eigenvalue problem including the temperature effect and 

piezoelectric effect on crystal. The traction free boundary condition can be further 

simplify by substituting equation 5.3.17 and 5.3.20 into equation 5.3.13. 
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𝑝𝑖 =  𝑛𝑗 [ 𝐴𝑘𝐺𝑖𝑗𝑘𝑙
𝜃  𝜉 𝑛𝑙 cos 𝜉 𝑛𝑝 𝑋𝑝 𝑒𝑖𝜔𝑡 + 𝐻𝑘𝑖𝑗

𝜃 𝑉 𝜉 𝑛𝑘  cos 𝜉 𝑛𝑝 𝑋𝑝 𝑒𝑖𝜔𝑡 ] 

=  𝑛𝑗  [ 𝐴𝑘𝐺𝑖𝑗𝑘𝑙
𝜃  𝜉 𝑛𝑙 + 𝐻𝑘𝑖𝑗

𝜃 𝑉 𝜉 𝑛𝑘  ] cos 𝜉 𝑛𝑝 𝑋𝑝 𝑒𝑖𝜔𝑡 =

0       𝑎𝑡     𝑛𝑗𝑋𝑛 = ±𝑏        

          (5.3.34) 

We let 

𝑡𝑖 = [ 𝐺𝑖𝑗𝑘𝑙
𝜃  𝑛𝑗 𝑛𝑙 𝐴𝑘 + 𝐻𝑘𝑖𝑙

 𝜃  𝑛𝑘 𝑉]      (5.3.35) 

and then,           

𝑝𝑖 =  𝜉 𝑡𝑖  cos 𝜉 𝑛𝑝 𝑋𝑝 𝑒𝑖𝜔𝑡 = 0      at   𝑛𝑗𝑋𝑗 = ±𝑏    (5.3.36) 

Since 𝑒𝑖𝜔𝑡 , ξ and 𝑡𝑖 cannot equal to zero, cos 𝜉 𝑏 has to be zero. Therefore,    

ξ =  
𝜋

2𝑏
 ,

3𝜋

2𝑏
,
5𝜋

2𝑏
… 

λ =  ρ (
2𝑏𝜔

𝑛𝜋
)2 ,                𝑛 = 1,2,3 …      (5.3.37) 

Now, we can repeat the same procedure as in section 5.2.1 and solve the eigenvalue 

problem. 

From the equation 5.3.32, the amplitutute 𝐴𝑘  and eignenvalue λ  are assumed to be 

temperature dependent and utilizing Rayleigh-Schrodinger’s pertubation method, we get  

𝐴𝑘 =  𝐴𝑘
(0)

+  𝐴𝑘
(1)

𝜃 + 𝐴𝑘
(2)

𝜃2                     

λ =  𝜆(0) +  𝜆(1)𝜃 +  𝜆(2)𝜃2       (5.3.38) 

By substituting the equation 5.3.28 into equation 5.3.32, the eigenvalue problems of 

powers of θ can be obtained and they are 

𝜃0 ∶    [𝑄𝑘
(0)

−  𝜆(0)𝛿𝑖𝑘]𝐴𝑘
(0)

= 0 

𝜃1 ∶    [𝑄𝑘
(0)

−  𝜆(0)𝛿𝑖𝑘]𝐴𝑘
(1)

+  [𝑄𝑘
(1)

−  𝜆(1)𝛿𝑖𝑘]𝐴𝑘
(0)

= 0 
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𝜃2 ∶    [𝑄𝑘
(0)

−  𝜆(0)𝛿𝑖𝑘]𝐴𝑘
(2)

+  [𝑄𝑘
(1)

−  𝜆(1)𝛿𝑖𝑘]𝐴𝑘
(2)

+  [𝑄𝑘
(2)

− 𝜆(2)𝛿𝑖𝑘]𝐴𝑘
(0)

= 0 

  

𝜃3 ∶    [𝑄𝑘
(0)

−  𝜆(0)𝛿𝑖𝑘]𝐴𝑘
(3)

+  [𝑄𝑘
(1)

−  𝜆(1)𝛿𝑖𝑘]𝐴𝑘
(2)

+  [𝑄𝑘
(2)

− 𝜆(2)𝛿𝑖𝑘]𝐴𝑘
(1)

+

 [𝑄𝑘
(3)

− 𝜆(3)𝛿𝑖𝑘]𝐴𝑘
(0)

= 0          

          (5.3.39) 

where 

𝑄𝑖𝑘
(0)

=  𝐺𝑖𝑗𝑘𝑙
(0)

 𝑛𝑗  𝑛𝑙 

𝑄𝑖𝑘
(1)

=  𝐺𝑖𝑗𝑘𝑙
(1)

 𝑛𝑗  𝑛𝑙 

𝑄𝑖𝑘
(2)

=  𝐺𝑖𝑗𝑘𝑙
(2)

 𝑛𝑗  𝑛𝑙  

𝑄𝑖𝑘
(3)

=  𝐺𝑖𝑗𝑘𝑙
(3)

 𝑛𝑗  𝑛𝑙        (5.3.40) 

Similar to the previous section 5.2.1, the each eigenvalues 𝜆(𝑛) are uniqlely calculated.  

The 𝜆(0)   and 𝐴𝑘
(0)

 can be easily calculate by solving the first eigenvalue problem of 

equation 5.3.39 and satifying the equation 5.3.41.   

𝐴𝑘
(0)

𝐴𝑘
(0)

= 1         (5.3.41) 

By multiplying 𝐴𝑖
(0)

 with the second equation of 5.3.39 and utilizing equation 5.3.41 and 

first euquation of 5.3.39, we can get following relation: 

𝜆(1) =  𝐴𝑖
(0)

 𝑄𝑖𝑘
(1)

 𝐴𝑘
(0)

        (5.3.42) 

 𝐴𝑘
(1)

 can be solve uniquely by requiring    𝐴𝑘
(1)

 orthogonal to  𝐴𝑘
(0)

, since [𝑄𝑘
(1)

−

 𝜆(1)𝛿𝑖𝑘]𝐴𝑘
(0)

 term in equation 5.3.39 is orthogonal to the eigenvector of [𝑄𝑘
(0)

−  𝜆(0)𝛿𝑖𝑘]. 

𝐴𝑘
(0)

𝐴𝑘
(1)

= 0         (5.3.43) 
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We further multiply the  𝐴𝑖
(0)

 with the third equation of 5.3.39 and utilizing equation 

5.3.41 and 5.3.43, we obtain  

𝜆(2) =  𝐴𝑖
(0)

 𝑄𝑖𝑘
(2)

 𝐴𝑘
(0)

+  𝐴𝑖
(0)

 𝑄𝑖𝑘
(1)

 𝐴𝑘
(1)

     (5.3.44) 

Finally, 𝜆(3) can be calculated by repeating the same procedure, which is  multiplying 

𝐴𝑖
(0)

 with the forth equation of 5.3.39, and employing the constraint, equation 5.3.45. 

𝐴𝑘
(2)

𝐴𝑘
(1)

= −
1

2
𝐴𝑘

(1)
𝐴𝑘

(1)
       (5.3.45) 

𝜆(3) =  𝐴𝑖
(0)

 𝑄𝑖𝑘
(3)

 𝐴𝑘
(0)

+  𝐴𝑖
(0)

 (𝑄𝑘
(1)

− 𝜆(1)𝛿𝑖𝑘) 𝐴𝑘
(2)

+  𝐴𝑖
(0)

 𝑄𝑖𝑘
(2)

 𝐴𝑘
(1)

  (5.3.46) 

These above formulations are the normal procedures to compute the  𝜆(𝑛) and 𝐴𝑘
(𝑛)

 when 

𝑄𝑘
(𝑛)

 are known. In the next chapter, we are going to compute the temperature coefficient 

of frequency using the calculated quantity, such as 𝜆(𝑛) and𝐴𝑘
(𝑛)

, from this section.  

 

 

5.3.2  Temperature coefficient of frequency     

In this section, we will utilize the same method, which previously used in section 5.2.1 

by Yong ,Lee and Tiersten, to find the relation between Bechmann’ temperature 

coefficient of frequency 𝑇𝑓𝑛 and the eigen value 𝜆(𝑛). 

𝜆(1) = 2 𝜆(0)𝑇𝑓(1)        (5.3.47) 

𝜆(2) = 2 𝜆(0)𝑇𝑓(2) +  𝜆(0)[𝑇𝑓(1)]2      (5.3.48) 

𝜆(3) = 2 𝜆(0)𝑇𝑓(3) +  2𝜆(0)𝑇𝑓(1)𝑇𝑓(2)     (5.3.49) 

where  

𝑇𝑓(𝑛) =  
1

𝑛! 𝑓0

𝜕𝑛𝑓

𝜕𝑇𝑛
|

𝑇0
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The above equations can be rearrange so that 𝑇𝑓(𝑛) are a function of   𝜆(𝑛) and they are 

𝑇𝑓(1) =
1

2

𝜆(1)

𝜆(0)         (5.3.50) 

𝑇𝑓(2) =
1

2

𝜆(2)− 𝜆(0)(𝑇𝑓(1))
2

𝜆(0) =  
4 𝜆(2)− 𝜆(1) 𝜆(1)

8 𝜆(0) 𝜆(0)      (5.3.51) 

𝑇𝑓(3) =  
1

2

𝜆(3)−2𝜆(0)𝑇𝑓(1)𝑇𝑓(2)

𝜆(0) =  
𝜆(3)

𝜆(0) + 
1

4

𝜆(2) 𝜆(1)

𝜆(0) 𝜆(0) +
1

16

𝜆(1) 𝜆(1) 𝜆(1)

𝜆(0) 𝜆(0) 𝜆(0)  (5.3.52) 

 

5.4  Temperature Compensated Cuts of Langasite 

In this chapter, the temperature coefficients of frequency  𝑇𝑓𝑛  are computed at the 

entire region of the langasite crystal. From the computational results, the temperature 

compensated cuts of all three thickness vibration modes, the thickness-extensional or A-

mode, fast thickness - shear modes or B-mode and slow thickness- shear or C-mode are 

identified by loci plots. The calculated lamda, λ, values from equation 5.3.40 are directly 

related to each mode of vibration, such that lamda and resonance frequencies follow 

below relations, 

 𝑓𝐴 >  𝑓𝐵 >  𝑓𝐶          (5.4.1) 

𝜆1
0 >  𝜆2

0 >  𝜆3
0         (5.4.2) 

where 

 𝜆1
0 =  𝑓𝐴   &  𝜆2

0 =  𝑓𝐵   &  𝜆3
0 =  𝑓𝐶    

The temperature compensated cut of Tf3 cannot be calculated, since the third-order 

temperature derivative of the langasite has not been reported. [37] Therefore, the analysis 

of the temperature compensated cut of Tf1 and Tf2 are only included in this works. We 

implemented the equations from the previous section to calculate thee Tf1 and Tf2 of each 
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vibration mode. The complete sets of the material properties of the langasite obtain by 

Bourquin [38] and Molocha [39] are listed in Appendix C. 

The temperature coefficients of frequency are calculate with the data obtained by 

Bourquin. The calculated values of each temperature coefficient of frequency are shown in 

figure 5.4.1, 5.4.2, 5.4.3, 5.4.4, 5.4.5 and 5.4.6. The figure 5.4.1 and 5.4.2 represent the 

first- and second- order temperature coefficient of frequency for A-mode. The figure 5.4.3 

and 5.4.4 represent the first- and second-order temperature coefficient of frequency for B-

mode. The figure 5.4.5 and 5.4.6 show the first- and second-order temperature coefficient 

of frequency for C-mode. There are no zero-valued temperature coefficients for A- and B-

mode are found based on our calculation. Figure 5.4.7 shows the loci of C-mode 

temperature compensated orientations for langasite. A more than sufficient number of the 

zero-temperature compensated orientations of first-order temperature coefficient of 

frequency of langasite for C-mode have been identified.  Figure 5.4.8 and 5.4.9 show a 

typical examples of the behavior of first- and second-order frequency-temperature 

coefficient of langasite for C-mode when θ = 10°, 20° and 30°. The blue, red and green 

curves are represent the temperature coefficient of frequencies when  θ = 10°, 20° and 30°, 

respectively. No zero values of second-order temperature of frequency of langasite are 

found.   
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Figure 5.4.1 First-order temperature coefficient of frequency of langasite for A-mode   
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Figure 5.4.2 Second-order temperature coefficient of frequency of langasite for A-mode  
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Figure 5.4.3 First-order temperature coefficient of frequency of langasite for B-mode  
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Figure 5.4.4 Second-order temperature coefficient of frequency of langasite for B-mode  
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Figure 5.4.5 First-order temperature coefficient of frequency of langasite for C-mode  
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Figure 5.4.6 Second-order temperature coefficient of frequency of langasite for C-mode  
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Figure 5.4.7 Temperature compensated loci of langasite for C-mode.  
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Figure 5.4.8 First-order of temperature coefficient of frequency of the C-mode for 

langasite when θ = 10 °, 20 ° and 30 ° 
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Figure 5.4.9 Second-order of temperature coefficient of frequency of the C-mode for 

langasite when θ = 10 °, 20 ° and 30 °  
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In addition, the temperature coefficients of frequency are calculated with the data 

obtained by Molacha [39]. The calculated values of each temperature coefficient of 

frequency are shown in figure 5.4.10, 5.4.11, 5.4.12, 5.4.13, 5.4.14 and 5.4.15. The figure 

5.4.10 and 5.4.11 represent the first- and the second- order temperature coefficients of 

frequency for A-mode. The figure 5.4.12 and 5.4.13 represent the first- and second-order 

temperature coefficient of frequency for B-mode. The figure 5.4.14 and 5.4.15 show the 

first- and second-order temperature coefficient of frequency for C-mode. There are no 

zero-valued temperature coefficients for A- and B-mode are found based on the 

calculation. Figure 5.4.16 shows the first-order temperature compensated loci of the 

langasite for C-mode. The red crosses and the green diamonds represent the calculated 

temperature coefficients of frequency with the data obtained from ref. [38] and [39], 

respectively. The temperature compensated cuts are closely matched except when θ ≈ 

±70⁰ and ϕ ≈ ± 40⁰ to 60⁰. Figure 5.4.17 shows the first- and the second-order temperature 

compensated loci of the langasite for C mode. The green circles and red crosses represent 

the first-order temperature coefficient of frequency, which computed with the data obtain 

by Bourquin [38] and Malocha [39], and the blue diamonds represent the second-order 

temperature coefficient of frequency with the data obtain from ref. [40]. A more than 

sufficient number of the temperature compensated orientations up to the second-order of 

langasite for C-mode have been identified. Our computation shows that no zero values of 

the second-order temperature coefficients of frequency are identify with the data obtain 

from ref. [38]. The points, where the red crosses and the blue diamonds intersect, are the 

crystal orientations, which the first- and the second-order temperature coefficient of 

frequencies equal to zero. These intersect points provide the ideal langasite cuts for a 
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resonator which operates at extremely high temperature. Figure 5.4.18 and 5.4.19 show 

the behavior of the first- and second-order temperature coefficient of langasite for C-mode 

when ϕ varies from 10° to 30° at increment of 10° and θ varies from -120° to 120°.  As 

calculated results illustrate in fig.5.4.18 and 5.4.19, the number of zero-valued temperature 

coefficient of frequency are identified.  

Figure 5.4.20 shows the examples of the frequency-temperature behavior of the 

langasite. The θ is fixed at -35⁰, while ϕ varies from 30.36⁰ to 30.40⁰ at increment of 

0.02⁰. The results show that the langasite has excellent frequency-temperature stability.
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Figure 5.4.10 The first-order temperature coefficient of frequency of langasite for A-

mode
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Figure 5.4.11 The second-order temperature coefficient of frequency of langasite for A-

mode
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Figure 5.4.12 The first-order temperature coefficient of frequency of langasite for B-

mode 
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Figure 5.4.13 The second-order temperature coefficient of frequency of langasite for B-

mode 
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Figure 5.4.14 The first-order temperature coefficient of frequency of langasite for C-

mode 
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Figure 5.4.15 The first-order temperature coefficient of frequency of langasite for C-

mode 
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Figure 5.4.16 Loci of Tf1=0 for the thickness mode C of langasite 
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Figure 5.4.17 Loci of Tf1 =0 and Tf 2=0 for the thickness mode C of langasite 
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5.5 The Material Properties at High Temperature 

It is well known that the resonant frequency of the piezoelectric resonators or devices 

not only depends on its crystalline orientations, material anisotropy and mounting support, 

but also on temperature. The resonant frequency shifting due to the changes of the 

temperature can be compensated or corrected with a known temperature dependence of 

the resonant frequencies or by measuring the temperature of the piezoelectric crystal by 

some independent means.  The temperature coefficients are usually measured at the room 

temperature, 25°C and those material properties values that associate with the reference 

temperature are only valid under a relatively small temperature range around the room 

temperature. For example, the oil and gas industry requires reliable and stable sensors to 

operate at high temperatures because the temperature is a function of depth. The langasite 

sensor has the potential to allow the oil/gas companies to drill deeper as they seek to find 

sources of production. 

In this section, the Lagrangian equations, which previously derived in Chapter 5.2 and 

5.3, are used to predict the material properties at the elevated temperature. Only the 

effective elastic constants are temperature dependent and requires the computation of the 

material constants. The six-independent second-order linear elastic constants and the 

thermal expansion coefficients are analytically calculated with the data obtain from [41] 

by shifting the reference temperature from 25°C to 600°C. The newly calculated 

materials constants are used to compute the temperature coefficient of frequency.  The 

temperature compensated orientations of the langasite for C-mode at reference 

temperature are compared with the temperature compensated orientations that are 

calculated in a wide temperature range.  



135 

 

 

 

By assuming the relationship between the temperature and the elastic constant of 

langasite at any reference temperature is the same, each second-order linear elastic 

constant is computed with the first equation of Eq. 5.2.6. The Taylor series expansion is 

used to predict the second-order linear elastic constants at high temperatures. The 

changes of each elastic constant of the langasite as a function of temperature are shown in 

fig. 5.5.1 to 5.59. Each second-order elastic constant of langasite and thermal expansion 

coefficients are computed from -50°C to 500°C at increments of 25°C. Base on the 

calculation of the stiffness of langasite, C11, C12, C13, C14, C33 and C44 decrease when 

temperature increases. C66 is the only second-order linear elastic constant that increases 

when temperature increases.   

Similarly, the thermal expansion coefficients at a wide temperature range, from -50°C 

to 600°C, are computed with Eq. 5.1.14. Figure 5.5.8 and 5.5.9 show the changes of the 

thermal expansion coefficient as a function of temperature. Both thermal expansion 

coefficients increase when the temperature increases. In addition, the rate of change in 

the thermal expansion coefficient increases with the temperature. 

By shifting the reference temperature using the regression analysis technique, we 

obtained new set of second-order elastic constants: first-and second-order temperature 

derivative of the elastic constants and thermal expansion coefficients at temperatures 

from 25°C to 600°C. The calculated second order elastic constants are compared with the 

data obtained by Weihnacht [42], as shown in Fig. 5.5.10. The comparison between the 

newly calculated sets of second-order elastic constants agrees well with experimental 

data, except elastic constant C33.  Figure 5.5.11 and 5.5.12 show the first order 

temperature derivative of second-order elastic constant and thermal expansion 
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coefficients of langasite as a function of reference temperature. The second temperature 

derivative of second order elastic constants and the second order thermal expansion 

coefficients are temperature independent due to the nature of the curve fitting process. 

Once the third-order temperature coefficients are determined, the second-order 

temperature derivative and second-order thermal expansion coefficients of langasite can 

be calculated as a function of temperature.   

The temperature coefficient of frequency of the langasite plates is calculated with the 

present sets of elastic constants and the thermal expansion coefficients at high 

temperatures. The temperature compensated orientations of langasite are investigated in 

the entire region of the crystalline. The fast- and slow-thickness shear modes are not 

included in this study, as zero-valued temperature coefficient of frequency of those two 

modes are not found. Figure5.5.13 shows a loci of C-mode temperature compensated 

orientations for langasite at various temperatures from 25°C to 315°C. The results shows 

that when the  reference temperature increases, the zero-valued temperature coefficient of 

frequency curves get smaller until it reaches the temperature of around 315°C. At any 

temperature above 350 °C, the temperature compensated orientations do not exist. Figure 

5.5.14, 5.5.15 and 5.5.16 show the typical examples of the behavior of the temperature 

coefficient of frequency for the C-mode of langasite when ϕ=30°, 45° and 60°, 

respectively. The number of points crossing the zero-value of temperature coefficient of 

frequency decreases as the reference temperature increases as shown in fig. 5.5.14, 5.5.15 

and 5.5.16. 
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Figure 5.5.1 The second-order linear elastic constant C11 as a function of temperature 

 

Figure 5.5.2 The second-order linear elastic constant C12 as a function of temperature
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Figure 5.5.3 The second-order linear elastic constant C13 as a function of temperature 

 

Figure 5.5.4 The second-order linear elastic constant C14 as a function of temperature
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Figure 5.5.5 The second-order linear elastic constant C66 as a function of temperature 

 

Figure 5.5.6 The second-order linear elastic constant C44 as a function of temperature
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Figure 5.5.7 The second-order linear elastic constant C33 as a function of temperature
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Figure 5.5.8 Thermal expansion coefficient ε11 as a function of temperature 

 

Figure 5.5.9 Thermal expansion coefficient ε33 as a function of temperature
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Figure 5.5.10 Temperature dependence of the second-order elastic constants of langasite  
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Figure 5.5.11 Temperature dependence of first temperature derivative of the second-order 

linear elastic constant of langasite  
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Figure 5.5.12 Temperature dependence of thermal expansion coefficients  

2

4

6

8

10

12

14

0 5 10 15 20 25

Th
er

m
al

 e
xp

an
an

si
o

n
 c

o
ef

fi
ci

e
n

t 
(1

e
-6

) 

Reference temperature 

α11(1) α33(1) 



145 

 

 

 

 

 

 

 

Figure 5.5.13 Loci of C-mode temperature compensated orientation for langasite  
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Figure 5.5.14 Temperature dependence of the temperature coefficient of frequency of the 

C-mode for langasite when ϕ=30°  
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Figure 5.5.15 Temperature dependence of the temperature coefficient of frequency of the 

C-mode for langasite when ϕ=45°  
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Figure 5.5.16 Temperature dependence of the temperature coefficient of frequency of the 

C-mode for langasite when ϕ=60°  
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5.6  Summary 

The frequency-temperature behavior of the langasite crystal is studied with the three-

dimensional equations of incremental motion superposed on homogeneous thermal strain 

including piezoelectric effect. Normally, the piezoelectric effect is neglected in analysis of 

quartz crystal due to their very small piezoelectric coupling. The piezoelectric coupling 

factor of the langasite crystal is much larger than its quartz crystal and cannon be ignore. 

However, the analysis shows that piezoelectric effect on the frequency-temperature 

behavior of langasite is negligible. The temperature coefficient of frequency of langasite 

of all three modes of vibration, A-, B- and C-mode, is calculated. The results show that no 

temperature compensated orientation of the A- and B-modes exist. For C-mode, the 

temperature compensated cuts are found at several locations.   

Only the effective elastic constants are a function of the temperature in the equations 

for small vibrations superposed on thermally-induced deformations by steady and 

uniform temperature changes. The effective elastic constants consist of the second-order 

elastic constants, first-and effective second-order temperature derivative of second-order 

elastic constants, third-order elastic constant, and the first-and second-order thermal 

expansion coefficient, in addition to piezoelectric and dielectric coefficients. These 

values are measured at the room temperature, but they can change when measured at 

different temperatures. The second order elastic constants and the thermal expansion 

coefficients are calculated with regression analysis at high temperatures. The results show 

that this theoretical method can be used to predict the elastic constants and the thermal 

expansion coefficient at high temperatures as newly computed elastic constants agree 

very well with the experimental data, except C33. This theoretical method to predict the 
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temperature dependency of the material properties of langasite can be more accurately 

implemented once higher-order temperature coefficients are known. The loci shows that 

the temperature compensated orientations change as temperature increases. No 

temperature compensated orientations can be found at temperatures above 350°C. The 

loci can be used for design of sensors or devices that operates at high temperatures.  
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Chapter 6. Future works 

In this dissertation, we studied double-ended tuning fork gyroscope and introduced the 

newly designed gyroscope called, length-extension gyroscope. Using quartz, langasite and 

langatate crystals, we simulated each gyroscope and compared the geometric and 

gyroscopic characteristics. Furthermore, frequency-temperature behavior of the langasite 

has been investigated at the reference temperature, as well as elevated temperatures.  

In the future study, the third-order temperature coefficient of frequency of langasite can 

be calculated once the full set of the third-order temperature coefficient are measured. This 

will provide more accurate results. The temperature coefficient of frequency of langatate 

can be investigated when the third-order nonlinear elastic constants are reported.   
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Appendix A.  

A.1 Matrix Notation 

Einstein tensor notation Voigt notation 

ij or kl p or q 

11 (xx) 11 

22 (yy) 2 

33 (zz) 3 

23 or 32 (yz or zy) 4 

31 or 13 (zy or yz) 5 

12 or 21 (xy or yx) 6 

 

The Voigt notation is an alternative way of representing and simplifying higher-order 

tensor. The notation is often used in continuum mechanics.  
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Appendix B.  

B.1 Alternate forms of Constitution equations 

The standard constitutive equations can be written in four different forms.  

Stress-Charge form 

𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝐸 𝑆𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘         

𝐷𝑖 = 𝑒𝑖𝑘𝑙𝑆𝑘𝑙 + 휀𝑖𝑘
𝑠 𝐸𝑘 

 

Stress-Voltage form 

𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝐷 𝑆𝑘𝑙 − ℎ𝑘𝑖𝑗𝐷𝑘 

𝐸𝑖 = −ℎ𝑖𝑘𝑙𝑠𝑘𝑙 + 𝛽𝑖𝑘
𝑆 𝐷𝑘 

Strain-Charge form 

𝑆𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙
𝐸 𝑇𝑘𝑙 +  𝑑𝑘𝑖𝑗𝐸𝑘 

𝐷𝑖 = 𝑑𝑖𝑘𝑙𝑇𝑘𝑙 + 휀𝑖𝑘
𝑇 𝐸𝑘 

Strain –Voltage form 

𝑆𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙
𝐷 𝑇𝑘𝑙 +  𝑔𝑘𝑖𝑗𝐷𝑘 

𝐷𝑖 = −𝑔𝑖𝑘𝑙𝑇𝑘𝑙 + 𝛽𝑖𝑘
𝑇 𝐷𝑘 

 

The relations between coefficients appearing in the constitutive equations are  

𝑐𝑝𝑟
𝐸 𝑠𝑞𝑟

𝐸 =  𝛿𝑝𝑔     𝑐𝑝𝑟
𝐷 𝑠𝑞𝑟

𝐷 =  𝛿𝑝𝑔 

𝛽𝑖𝑘
𝑠 휀𝑗𝑘

𝑠 =  𝛿𝑖𝑗     𝛽𝑖𝑘
𝑇 휀𝑗𝑘

𝑇 =  𝛿𝑖𝑗 

𝑐𝑝𝑞
𝐷 =  𝑐𝑝𝑞

𝐸 + 𝑒𝑘𝑝ℎ𝑘𝑞    𝑠𝑝𝑞
𝐷 =  𝑠𝑝𝑞

𝐸 − 𝑑𝑘𝑝𝑔𝑘𝑞 

휀𝑖𝑗
𝑇 =  휀𝑖𝑗

𝑆 + 𝐷𝑖𝑞𝑒𝑗𝑞    𝛽𝑖𝑗
𝑇 =  𝛽𝑖𝑗

𝑆 − 𝑔𝑖𝑞ℎ𝑗𝑞 
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𝑒𝑖𝑝 =  𝑑𝑖𝑞𝑐𝑞𝑝
𝐸      𝑑𝑖𝑝 =  휀𝑖𝑘

𝑇 𝑔𝑘𝑝 

𝑔𝑖𝑝 =  𝛽𝑖𝑘
𝑇 𝑑𝑘𝑝     ℎ𝑖𝑝 =  𝑔𝑖𝑞𝑐𝑞𝑝

𝐷  

where i,j,k = 1,2,3 and p,q,r = 1,2,3,4,5,6  
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Appendix C. Properties of Materials 

C.1 Quartz 

The material properties of quartz is determined by Yong [34] [33], Thurston [43], 

Bechmann [44] and Lamb and Richter [45]. 

The mass density of quartz is 2649 kg/m
3
 

Second-order elastic constant: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 8.674 0.6980 1.191 -1.791 0.000 0.000 

2 6.980 8.674 1.191 1.791 0.000 0.000 
3 1.191 1.191 1.072 0.000 0.000 0.000 
4 -1.791 1.791 0.000 5.794 0.000 0.000 

5 0.000 0.000 0.000 0.000 5.794 -1.791 
6 0.000 0.000 0.000 0.000 -1.791 3.998 

 

Viscosity constant: (10
-3

 N-sec/m
2
) 

   npg    
               q    
  p     1 2 3 4 5 6 

1 1.370 0.730 0.710 0.010 0.000 0.000 
2 0.730 1.370 0.710 -0.010 0.000 0.000 

3 0.710 0.710 0.960 0.000 0.000 0.000 
4 0.010 -0.010 0.000 0.360 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.360 0.010 

6 0.000 0.000 0.000 0.000 0.010 0.320 

 

First-order temperature derivative of elastic constants: (10
6
 N/m

2
/°C) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 1.5976 -8.5518 -2.1983 0.91675 0.0000 0.0000 
2 -8.5518 1.5976 -2.1983 -0.91675 0.0000 0.0000 
3 -2.1983 -2.1983 -6.5255 0.0000 0.0000 0.0000 

4 0.91675 -0.91675 0.0000 -5.3780 0.0000 0.0000 
5 0.0000 0.0000 0.0000 0.0000 -5.3780 0.91675 
6 0.0000 0.0000 0.0000 0.0000 0.91675 5.0747 

 

Effective second-order temperature derivative of elastic constants: (10
3
 N/m

2
/ (°C )

2
) 
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   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 -12.989 -35.121 -18.806 4.2849 0.000 0.000 
2 -35.121 -12.989 -18.806 -4.2849 0.000 0.000 
3 -18.806 -18.806 -20.835 0.000 0.000 0.000 

4 4.2849 -4.2849 0.000 -26.505 0.000 0.000 
5 0.000 0.000 0.000 0.000 -26.505 4.2849 
6 0.000 0.000 0.000 0.000 4.2849 11.066 

 

Effective third-order temperature derivative of elastic constants: (N/m
2
/ (°C )

3
) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 -38.1450 73.5030 -8.9302 0.0000 0.0000 0.0000 

2 73.5030 -38.1450 -8.9302 -85.7730 0.0000 0.0000 
3 -8.9302 -8.9302 46.2550 0.0000 0.0000 0.0000 
4 85.7730 -85.7730 0.0000 -20.4680 0.0000 0.0000 

5 0.0000 0.0000 0.0000 0.0000 -20.4680 85.7730 
6 0.0000 0.0000 0.0000 0.0000 85.7730 -55.8240 

 

Third-order non-linear of elastic constants: (10
10

 N/m
2
) 

r =1   Cpqr    
               q    
  p     1 2 3 4 5 6 

1 -21.000 -34.500 1.200 -16.300 0.000 0.000 
2 -34.500 -22.300 -29.40 -1.500 0.000 0.000 
3 1.200 -29.400 -31.20 0.200 0.000 0.000 

4 -16.300 -1.500 0.200 -13.400 0.000 0.000 
5 0.000 0.000 0.000 0.000 -20.00 -10.40 
6 0.000 0.000 0.000 0.000 -10.400 -5.775 

 

r =2   Cpqr    
               q    
  p     1 2 3 4 5 6 

1 -34.500 -22.300 -29.400 -1.500 0.000 0.000 

2 -22.300 -33.200 1.200 19.300 0.000 0.000 
3 -29.400 1.200 -31.200 -0.200 0.000 0.000 
4 -1.500 19.300 -0.200 -20.00 0.000 0.000 

5 0.000 0.000 0.000 0.000 -13.400 -7.400 
6 0.000 0.000 0.000 0.000 -7.400 6.425 
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r =3   Cpqr    
               q    
  p     1 2 3 4 5 6 

1 1.200 -29.400 -31.200 0.200 0.000 0.000 
2 -29.400 1.200 -31.200 -0.200 0.000 0.000 
3 -31.200 -31.200 -81.500 0.000 0.000 0.000 

4 0.200 -0.200 0.000 -11.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -11.000 0.200 
6 0.000 0.000 0.000 0.000 0.200 15.300 

 

r =4   Cpqr    
               q    
  p     1 2 3 4 5 6 

1 -16.300 -15.000 0.200 -13.400 0.000 0.000 

2 -1.500 19.300 -0.200 -20.000 0.000 0.000 
3 0.200 -0.200 0.000 -11.00 0.000 0.000 
4 -13.400 -20.000 -11.000 -27.600 0.000 0.000 

5 0.000 0.000 0.000 0.000 27.600 -3.300 
6 0.000 0.000 0.000 0.000 -3.300 -1.500 

 

r =5   Cpqr    
               q    
  p     1 2 3 4 5 6 

1 0.000 0.000 0.000 0.000 -20.000 -10.400 
2 0.000 0.000 0.000 0.000 -13.400 -7.400 

3 0.000 0.000 0.000 0.000 -11.000 0.200 
4 0.000 0.000 0.000 0.000 27.600 -3.300 
5 -20.000 -13.400 -11.000 27.600 0.000 0.000 

6 -10.400 -7.400 0.200 -3.300 0.300 0.300 

 

r =6   Cpqr    
               q    
  p     1 2 3 4 5 6 

1 0.000 0.000 0.000 0.000 -10.400 -5.775 

2 0.000 0.000 0.000 0.000 -7.400 6.425 
3 0.000 0.000 0.000 0.000 0.200 15.300 
4 0.000 0.000 0.000 0.000 -3.300 -1.500 

5 -10.400 -7.400 0.200 -3.300 0.000 0.000 
6 -5.775 6.425 15.300 -1.500 0.300 0.300 
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First-order thermal expansion coefficients: (10
-6

 1/C) 

   α
(1)

ij    
               j    
  i     1 2 3 

1 13.71 0.00 0.00 
2 0.00 13.71 0.00 
3 0.00 0.00 7.48 

 

Second-order thermal expansion coefficients: (10
-9

 1/C
2
) 

   α
(2)

ij    
               j    
  i     1 2 3 

1 6.50 0.00 0.00 

2 0.00 6.50 0.00 
3 0.00 0.00 2.90 

 

Third-order thermal expansion coefficients: (10
-12

 1/C
3
) 

   α
(2)

ij    
               j    
  i     1 2 3 

1 -1.90 0.00 0.00 
2 0.00 -1.90 0.00 
3 0.00 0.00 -1.50 

 

Dielectric constant: (10
-12

 Coulombs/(Volts*m)) 

   εip    
               p   
  i     1 2 3 

1 39.215 0.000 0.000 

2 0.000 39.215 0.000 
3 0.000 0.000 41.038 
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Piezoelectric constants: (10
-3

 Coulombs/m
2
) 

   eij    
               j    
  i     1 2 3 4 5 6 

1 171.00 -171.00 0.00 -40.67 0.00 0.00 
2 0.00 0.00 0.00 0.00 40.67 -171.00 
3 0.00 0.00 0.00 0.00 0.00 0.00 

 

C.2 Langasite 

The material constants for langasite have been determined by Molocha [39], Sergeev [46] 

Bourquin [41] and Sorokin [47]. 

Mass density of langasite: ρ = 5743 kg/m
3 

Second-order linear elastic constant: (10
10 

N/m
2
) [39] 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 18.849 10.407 9.688 1.415 0.000 0.000 
2 10.407 18.849 9.688 -1.415 0.000 0.000 
3 9.688 9.688 26.168 0.000 0.000 0.000 

4 1.415 9.688 0.000 5.371 0.000 0.000 
5 0.000 0.000 0.000 0.000 5.371 1.415 
6 0.000 0.000 0.000 0.000 1.415 4.221 

 

First-order temperature derivative of elastic constants: (10
6
 N/m

2
/°C)  

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 -2.370 -6.4586 -2.4585 -3.9250 0.0000 0.0000 

2 -6.4586 -2.3701 -2.4585 3.9250 0.0000 0.0000 
3 -2.4585 -2.4585 -8.4501 0.0000 0.0000 0.0000 
4 -3.9250 3.9250 0.0000 5.6096 0.0000 0.0000 

5 0.0000 0.0000 0.0000 0.0000 5.6096 -3.9250 
6 0.0000 0.0000 0.0000 0.0000 -3.9250 2.0443 
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Effective second-order temperature derivative of elastic constants: (10
3
 N/m

2
/ (°C )

2
) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 9.5165 7.6227 -2.7230 8.3625 0.000 0.000 
2 7.6227 9.5165 -2.7230 -8.3625 0.000 0.000 
3 -2.7230 -2.7230 -2.2310 0.000 0.000 0.000 

4 8.3625 -8.3625 0.000 2.0063 0.000 0.000 
5 0.000 0.000 0.000 0.000 2.0063 8.3625 
6 0.000 0.000 0.000 0.000 8.3625 946.8962 

 

Second-order linear elastic constant: (10
10 

N/m
2
) [41] 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 18.920 10.490 9.782 1.448 0.000 0.000 

2 10.490 18.920 9.688 -1.415 0.000 0.000 
3 9.782 9.688 26.330 0.000 0.000 0.000 
4 1.448 9.688 0.000 5.343 0.000 0.000 

5 0.000 0.000 0.000 0.000 5.343 1.448 
6 0.000 0.000 0.000 0.000 1.448 4.232 

 

First-order temperature derivative of elastic constants: (10
6
 N/m

2
/°C)  

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 -4.4242 -11.0486 -3.6073 -4.6337 0.0000 0.0000 
2 -11.0486 -4.4242 -3.6073 4.6337 0.0000 0.0000 
3 -3.6073 -3.6073 11.0729 0.0000 0.0000 0.0000 

4 -4.6337 4.6337 0.0000 -0.0601 0.0000 0.0000 
5 0.0000 0.0000 0.0000 0.0000 -0.0601 -4.6337 
6 0.0000 0.0000 0.000 0.0000 -4.6337 3.3089 

 

Effective second-order temperature derivative of elastic constants: (10
3
 N/m

2
/ (°C )

2
) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 -14.757 -5.453 -4.817 7.113 0.000 0.000 

2 -5.453 -14.757 -4.817 -7.113 0.000 0.000 
3 -4.817 -4.817 0.751 0.000 0.000 0.000 
4 7.113 -7.113 0.000 -1.522 0.000 0.000 

5 0.000 0.000 0.000 0.000 -1.522 7.113 
6 0.000 0.000 0.000 0.000 7.1135 -4.704 
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Third-order non-linear of elastic constants: (10
10

 N/m
2
) [47] 

   Cpqr (r=1)    
               q    
  p     1 2 3 4 5 6 

1 -97.20 0.70 -11.60 -2.20 0.00 0.00 
2 0.70 0.00 0.90 -2.80 0.00 0.00 
3 -11.60 0.90 -72.10 -4.10 0.00 0.00 

4 -2.20 -2.80 -4.10 -4.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 -19.80 -5.30 
6 0.00 0.00 0.00 0.00 -5.30 48.95 

 

   Cpqr (r=2)    
               q    
  p     1 2 3 4 5 6 

1 0.70 0.00 0.90 -2.80 0.00 0.00 

2 0.00 -96.50 -11.60 7.80 0.00 0.00 
3 0.90 -11.60 -72.10 4.10 0.00 0.00 
4 -2.80 7.80 4.10 -19.80 0.00 0.00 

5 0.00 0.00 0.00 0.00 -4.00 0.30 
6 0.00 0.00 0.00 0.00 0.30 -24.650 

 

   Cpqr (r=3)    
               q    
  p     1 2 3 4 5 6 

1 -11.60 0.90 -72.10 -4.10 0.00 0.00 
2 0.90 -11.60 -72.10 0.410 0.00 0.00 

3 -72.10 -72.10 -183.40 0.00 0.00 0.00 
4 -4.10 4.10 0.00 -38.90 0.00 0.00 
5 0.00 0.00 0.00 0.00 -38.90 -4.10 

6 0.00 0.00 0.00 0.00 -4.10 -6.250 

 

   Cpqr (r=4)    
               q    
  p     1 2 3 4 5 6 

1 -2.20 -2.80 -4.10 -4.00 0.00 0.00 

2 -2.80 7.80 4.10 -19.80 0.00 0.00 
3 -4.10 4.10 0.00 -38.90 0.00 0.00 
4 -4.00 -19.80 -38.90 20.20 0.00 0.00 

5 0.00 0.00 0.00 0.00 -20.20 -7.90 
6 0.00 0.00 0.00 0.00 -7.90 -2.80 
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   Cpqr (r=5)    
               q    
  p     1 2 3 4 5 6 

1 0.00 0.00 0.00 0.00 -19.80 -5.30 
2 0.00 0.00 0.00 0.00 -4.00 0.30 
3 0.00 0.00 0.00 0.00 -38.90 -4.10 

4 0.00 0.00 0.00 0.00 -20.20 -7.90 
5 -19.80 -4.00 -38.90 -20.20 0.00 0.00 
6 -5.30 0.30 -4.10 -7.90 0.00 0.00 

 

   Cpqr (r=6)    
               q    
  p     1 2 3 4 5 6 

1 0.00 0.00 0.00 0.00 -5.30 -23.95 

2 0.00 0.00 0.00 0.00 0.30 -24.65 
3 0.00 0.00 0.00 0.00 -4.10 -6.25 
4 0.00 0.00 0.00 0.00 -7.90 -2.80 

5 -5.30 -0.30 -4.10 -7.90 0.00 0.00 
6 -23.95 -24.65 -6.25 -2.80 0.00 0.00 

 

Viscosity constant: (10
-3

 N-sec/m
2
)  

   npg    
               q    
  p     1 2 3 4 5 6 

1 0.443 0.139 0.041 -0.082 0.000 0.000 
2 0.139 0.443 0.041 0.082 0.000 0.000 

3 0.041 0.041 0.462 0.000 0.000 0.000 
4 -0.082 0.082 0.000 0.196 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.196 -0.082 

6 0.000 0.000 0.000 0.000 -0.082 0.152 

 

First-order thermal expansion coefficients: (10
-6

 1/C) 

   α
(1)

ij    
               j    
  i     1 2 3 

1 5.630 0.000 0.000 

2 0.000 5.630 0.000 
3 0.000 0.000 4.577 
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Second-order thermal expansion coefficients: (10
-9

 1/C
2
) 

   α
(2)

ij    
               j    
  i     1 2 3 

1 5.979 0.000 0.000 
2 0.000 5.979 0.000 
3 0.000 0.000 4.577 

Dielectric constant: (10
-12

 Coulombs/(Volts*m)) 

   εip    
               
p   
  i     

1 2 3 

1 167.52 0.00 0.00 
2 0.00 167.52 0.00 
3 0.00 0.00 448.92 

 

Piezoelectric constants: (10
-3

 Coulombs/m
2
) 

   eij    
               j    
  i     1 2 3 4 5 6 

1 -402 402 0 130 0 0 
2 0 0 0 0 -130 402 

3 0 0 0 0 0 0 

 

C.3 Langatate 

The material constants for langatate have been determined by Molocha [39], Sergeev [46] 

Bourquin [41] and Zhang [48]. 

Mass density of langatate: ρ = 6150 kg/m
3 

Second-order elastic constant: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 18.852 10.788 10.336 1.351 0.000 0.000 

2 10.788 18.852 10.336 -1.351 0.000 0.000 
3 10.336 10.336 26.180 0.000 0.000 0.000 
4 1.351 -1.351 0.000 5.110 0.000 0.000 

5 0.000 0.000 0.000 0.000 5.110 1.351 
6 0.000 0.000 0.000 0.000 1.351 4.032 
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Viscosity constant: (10
-3

 N-sec/m
2
) 

   npg    
               q    
  p     1 2 3 4 5 6 

1 0.490 0.290 0.093 0.093 0.000 0.000 
2 0.290 0.490 0.093 -0.093 0.000 0.000 
3 0.093 0.093 0.320 0.000 0.000 0.000 

4 0.093 -0.093 0.000 0.185 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.185 0.093 
6 0.000 0.000 0.000 0.000 0.093 0.100 

 

First-order thermal expansion coefficients: (10
-6

 1/C) 

   α
(1)

ij    
               j    
  i     1 2 3 

1 6.087 0.000 0.000 

2 0.000 6.087 0.000 
3 0.000 0.000 3.827 

 

Second-order thermal expansion coefficients: (10
-9

 1/C
2
) 

   α
(2)

ij    
               j    
  i     1 2 3 

1 4.736 0.000 0.000 
2 0.000 4.736 0.000 
3 0.000 0.000 5.030 

 

Dielectric constant: (10
-12

 Coulombs/(Volts*m)) 

   εip    
               
p   
  i     

1 2 3 

1 161.77 0.00 0.00 
2 0.00 161.77 0.00 
3 0.00 0.00 699.02 

 

Piezoelectric constants: (10
-3

 Coulombs/m
2
) 

   eij    
               j    
  i     1 2 3 4 5 6 

1 -456 456 0 94 0 0 

2 0 0 0 0 -94 456 
3 0 0 0 0 0 0 
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C.4 Gold 

The material constants for langatate have been determined by Radwan [49]. 

Mass density of gold : ρ = 19,300 kg/m
3 

Elastic constants (Gpa) 

   Cij    
               j   
  i     1 2 3 4 5 6 

1 190.0 161.0 161.0 0.0 0.0 0.0 
2 161.0 190.0 161.0 0.0 0.0 0.0 

3 161.0 161.0 190.0 0.0 0.0 0.0 
4 0.0 0.0 0.0 42.3 0.0 0.0 
5 0.0 0.0 0.0 0.0 42.3 0.0 

6 0.0 0.0 0.0 0.0 0.0 42.3 
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Appendix D. Comsol Parameters and Variable 

D.1 Variable 

Theta= T-Tref Temperature in Celcius 

theta2= theta^2 

theta3= theta^3 

alf11= alfa11+alfb11*theta+alfc11*theta2 1/K Thermal expansion coefficient 

alf12= alfa12+alfb12*theta+alfc12*theta2 1/K Thermal expansion coefficient 

alf13= alfa13+alfb13*theta+alfc13*theta2 1/K Thermal expansion coefficient 

alf22= alfa22+alfb22*theta+alfc22*theta2 1/K Thermal expansion coefficient 

alf23= alfa23+alfb23*theta+alfc23*theta2 1/K Thermal expansion coefficient 

alf33= alfa33+alfb33*theta+alfc33*theta2 1/K Thermal expansion coefficient 

CT11 

=N111*solid.eX+N112*solid.eY+N113*solid.eZ+2*(N114*solid.eYZ+N115*solid.eXZ+N116*solid.eXY) 

CT12 

=N121*solid.eX+N122*solid.eY+N123*solid.eZ+2*(N124*solid.eYZ+N125*solid.eXZ+N126*solid.eXY) 

CT13 

=N131*solid.eX+N132*solid.eY+N133*solid.eZ+2*(N134*solid.eYZ+N135*solid.eXZ+N136*solid.eXY) 

CT14 

=N141*solid.eX+N142*solid.eY+N143*solid.eZ+2*(N144*solid.eYZ+N145*solid.eXZ+N146*solid.eXY) 

CT15 

=N151*solid.eX+N152*solid.eY+N153*solid.eZ+2*(N154*solid.eYZ+N155*solid.eXZ+N156*solid.eXY) 

CT16 

=N161*solid.eX+N162*solid.eY+N163*solid.eZ+2*(N164*solid.eYZ+N165*solid.eXZ+N166*solid.eXY) 

CT22 

=N221*solid.eX+N222*solid.eY+N223*solid.eZ+2*(N224*solid.eYZ+N225*solid.eXZ+N226*solid.eXY) 

CT23 

=N231*solid.eX+N232*solid.eY+N233*solid.eZ+2*(N234*solid.eYZ+N235*solid.eXZ+N236*solid.eXY) 
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CT24 

=N241*solid.eX+N242*solid.eY+N243*solid.eZ+2*(N244*solid.eYZ+N245*solid.eXZ+N246*solid.eXY) 

CT25 

=N251*solid.eX+N252*solid.eY+N253*solid.eZ+2*(N254*solid.eYZ+N255*solid.eXZ+N256*solid.eXY) 

CT26 

=N261*solid.eX+N262*solid.eY+N263*solid.eZ+2*(N264*solid.eYZ+N265*solid.eXZ+N266*solid.eXY) 

CT33 

=N331*solid.eX+N332*solid.eY+N333*solid.eZ+2*(N334*solid.eYZ+N335*solid.eXZ+N336*solid.eXY) 

CT34 

=N341*solid.eX+N342*solid.eY+N343*solid.eZ+2*(N344*solid.eYZ+N345*solid.eXZ+N346*solid.eXY) 

CT35 

=N351*solid.eX+N352*solid.eY+N353*solid.eZ+2*(N354*solid.eYZ+N355*solid.eXZ+N356*solid.eXY) 

CT36 

=N361*solid.eX+N362*solid.eY+N363*solid.eZ+2*(N364*solid.eYZ+N365*solid.eXZ+N366*solid.eXY) 

CT44 

=N441*solid.eX+N442*solid.eY+N443*solid.eZ+2*(N444*solid.eYZ+N445*solid.eXZ+N446*solid.eXY) 

CT45 

=N451*solid.eX+N452*solid.eY+N453*solid.eZ+2*(N454*solid.eYZ+N455*solid.eXZ+N456*solid.eXY) 

CT46 

=N461*solid.eX+N462*solid.eY+N463*solid.eZ+2*(N464*solid.eYZ+N465*solid.eXZ+N466*solid.eXY) 

CT55 

=N551*solid.eX+N552*solid.eY+N553*solid.eZ+2*(N554*solid.eYZ+N555*solid.eXZ+N556*solid.eXY) 

CT56 

=N561*solid.eX+N562*solid.eY+N563*solid.eZ+2*(N564*solid.eYZ+N565*solid.eXZ+N566*solid.eXY) 

CT66 

=N661*solid.eX+N662*solid.eY+N663*solid.eZ+2*(N664*solid.eYZ+N665*solid.eXZ+N666*solid.eXY) 

C11= C011+Ca11*theta+0.5*Cb11*theta2+0.1666666666*Cc11*theta3+CT11 Pa Nonlinear elastic 

constants with damping 
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C12= C012+Ca12*theta+0.5*Cb12*theta2+0.1666666666*Cc12*theta3+CT12 Pa Nonlinear elastic 

constants with damping 

C13= C013+Ca13*theta+0.5*Cb13*theta2+0.1666666666*Cc13*theta3+CT13 Pa Nonlinear elastic 

constants with damping 

C14= C014+Ca14*theta+0.5*Cb14*theta2+0.1666666666*Cc14*theta3+CT14 Pa Nonlinear elastic 

constants with damping 

C15= C015+Ca15*theta+0.5*Cb15*theta2+0.1666666666*Cc15*theta3+CT15 Pa Nonlinear elastic 

constants with damping 

C16= C016+Ca16*theta+0.5*Cb16*theta2+0.1666666666*Cc16*theta3+CT16 Pa Nonlinear elastic 

constants with damping 

C22= C022+Ca22*theta+0.5*Cb22*theta2+0.1666666666*Cc22*theta3+CT22 Pa Nonlinear elastic 

constants with damping 

C23= C023+Ca23*theta+0.5*Cb23*theta2+0.1666666666*Cc23*theta3+CT23 Pa Nonlinear elastic 

constants with damping 

C24= C024+Ca24*theta+0.5*Cb24*theta2+0.1666666666*Cc24*theta3+CT24 Pa Nonlinear elastic 

constants with damping 

C25= C025+Ca25*theta+0.5*Cb25*theta2+0.1666666666*Cc25*theta3+CT25 Pa Nonlinear elastic 

constants with damping 

C26= C026+Ca26*theta+0.5*Cb26*theta2+0.1666666666*Cc26*theta3+CT26 Pa Nonlinear elastic 

constants with damping 

C33= C033+Ca33*theta+0.5*Cb33*theta2+0.1666666666*Cc33*theta3+CT33 Pa Nonlinear elastic 

constants with damping 

C34= C034+Ca34*theta+0.5*Cb34*theta2+0.1666666666*Cc34*theta3+CT34 Pa Nonlinear elastic 

constants with damping 

C35= C035+Ca35*theta+0.5*Cb35*theta2+0.1666666666*Cc35*theta3+CT35 Pa Nonlinear elastic 

constants with damping 

C36= C036+Ca36*theta+0.5*Cb36*theta2+0.1666666666*Cc36*theta3+CT36 Pa Nonlinear elastic 

constants with damping 
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C44= C044+Ca44*theta+0.5*Cb44*theta2+0.1666666666*Cc44*theta3+CT44 Pa Nonlinear elastic 

constants with damping 

C45= C045+Ca45*theta+0.5*Cb45*theta2+0.1666666666*Cc45*theta3+CT45 Pa Nonlinear elastic 

constants with damping 

C46= C046+Ca46*theta+0.5*Cb46*theta2+0.1666666666*Cc46*theta3+CT46 Pa Nonlinear elastic 

constants with damping 

C55= C055+Ca55*theta+0.5*Cb55*theta2+0.1666666666*Cc55*theta3+CT55 Pa Nonlinear elastic 

constants with damping 

C56= C056+Ca56*theta+0.5*Cb56*theta2+0.1666666666*Cc56*theta3+CT56 Pa Nonlinear elastic 

constants with damping 

C66= C066+Ca66*theta+0.5*Cb66*theta2+0.1666666666*Cc66*theta3+CT66 Pa Nonlinear elastic 

constants with damping 

e11= e011+ea11*theta+eb11*theta2+ec11*theta3 C/m^2 Piezoelectric stress constant 

e12= e012+ea12*theta+eb12*theta2+ec12*theta3 C/m^2 Piezoelectric stress constant 

e13= e013+ea13*theta+eb13*theta2+ec13*theta3 C/m^2 Piezoelectric stress constant 

e14= e014+ea14*theta+eb14*theta2+ec14*theta3 C/m^2 Piezoelectric stress constant 

e15= e015+ea15*theta+eb15*theta2+ec15*theta3 C/m^2 Piezoelectric stress constant 

e16= e016+ea16*theta+eb16*theta2+ec16*theta3 C/m^2 Piezoelectric stress constant 

e21= e021+ea21*theta+eb21*theta2+ec21*theta3 C/m^2 Piezoelectric stress constant 

e22= e022+ea22*theta+eb22*theta2+ec22*theta3 C/m^2 Piezoelectric stress constant 

e23= e023+ea23*theta+eb23*theta2+ec23*theta3 C/m^2 Piezoelectric stress constant 

e24= e024+ea24*theta+eb24*theta2+ec24*theta3 C/m^2 Piezoelectric stress constant 

e25= e025+ea25*theta+eb25*theta2+ec25*theta3 C/m^2 Piezoelectric stress constant 

e26= e026+ea26*theta+eb26*theta2+ec26*theta3 C/m^2 Piezoelectric stress constant 

e31= e031+ea31*theta+eb31*theta2+ec31*theta3 C/m^2 Piezoelectric stress constant 

e32= e032+ea32*theta+eb32*theta2+ec32*theta3 C/m^2 Piezoelectric stress constant 

e33= e033+ea33*theta+eb33*theta2+ec33*theta3 C/m^2 Piezoelectric stress constant 

e34= e034+ea34*theta+eb34*theta2+ec34*theta3 C/m^2 Piezoelectric stress constant 
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e35= e035+ea35*theta+eb35*theta2+ec35*theta3 C/m^2 Piezoelectric stress constant 

e36= e036+ea36*theta+eb36*theta2+ec36*theta3 C/m^2 Piezoelectric stress constant 

eps11= eps011+epsa11*theta+epsb11*theta2+epsc11*theta3 F/m Dielectric permittivity 

eps12= eps012+epsa12*theta+epsb12*theta2+epsc12*theta3 F/m Dielectric permittivity 

eps13= eps013+epsa13*theta+epsb13*theta2+epsc13*theta3 F/m Dielectric permittivity 

eps22= eps022+epsa22*theta+epsb22*theta2+epsc22*theta3 F/m Dielectric permittivity 

eps23= eps023+epsa23*theta+epsb23*theta2+epsc23*theta3 F/m Dielectric permittivity 

eps33= eps033+epsa33*theta+epsb33*theta2+epsc33*theta3 F/m Dielectric permittivity 

D.2 Parameters 

C_freq 1e6 Center frequency of device, Hz 

C_omega C_freq*2*pi C_freq in rad/s 

T 25 Temperature in Celcius 

Tref 25 Reference temperature in Celcius 

gold_rho 19300 

gold_thickness 0.2e-6 

C011 1.884900e+11+i*C_omega*4.430000e-04 Pa Elastic constants with damping 

C012 1.133960e+11+i*C_omega*6.184952e-05 Pa Elastic constants with damping 

C013 8.755398e+10+i*C_omega*1.181505e-04 Pa Elastic constants with damping 

C014 6.796592e+09+i*C_omega*-9.128281e-05 Pa Elastic constants with damping 

C015 0.000000e+00+i*C_omega*0.000000e+00 Pa Elastic constants with damping 

C016 0.000000e+00+i*C_omega*0.000000e+00 Pa Elastic constants with damping 

C022 1.773070e+11+i*C_omega*4.859546e-04 Pa Elastic constants with damping 

C023 1.096556e+11+i*C_omega*-5.594175e-06 Pa Elastic constants with damping 

C024 4.435348e+09+i*C_omega*4.699347e-05 Pa Elastic constants with damping 

C025 0.000000e+00+i*C_omega*0.000000e+00 Pa Elastic constants with damping 

C026 0.000000e+00+i*C_omega*0.000000e+00 Pa Elastic constants with damping 

C033 2.473117e+11+i*C_omega*4.377302e-04 Pa Elastic constants with damping 

C034 1.329184e+10+i*C_omega*3.016958e-05 Pa Elastic constants with damping 
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C035 0.000000e+00+i*C_omega*0.000000e+00 Pa Elastic constants with damping 

C036 0.000000e+00+i*C_omega*0.000000e+00 Pa Elastic constants with damping 

C044 6.648565e+10+i*C_omega*1.866576e-04 Pa Elastic constants with damping 

C045 0.000000e+00+i*C_omega*0.000000e+00 Pa Elastic constants with damping 

C046 0.000000e+00+i*C_omega*0.000000e+00 Pa Elastic constants with damping 

C055 4.129200e+10+i*C_omega*2.191898e-04 Pa Elastic constants with damping 

C056 1.374128e+10+i*C_omega*-5.208517e-05 Pa Elastic constants with damping 

C066 5.462800e+10+i*C_omega*1.288102e-04 Pa Elastic constants with damping 

Ca11 -4.424200e+06 Pa/K 1st temperature derivative of C0 

Ca12 -1.325355e+07 Pa/K 1st temperature derivative of C0 

Ca13 -1.393350e+06 Pa/K 1st temperature derivative of C0 

Ca14 -3.389128e+05 Pa/K 1st temperature derivative of C0 

Ca15 0.000000e+00 Pa/K 1st temperature derivative of C0 

Ca16 0.000000e+00 Pa/K 1st temperature derivative of C0 

Ca22 1.939984e+06 Pa/K 1st temperature derivative of C0 

Ca23 -3.964216e+06 Pa/K 1st temperature derivative of C0 

Ca24 2.433941e+06 Pa/K 1st temperature derivative of C0 

Ca25 0.000000e+00 Pa/K 1st temperature derivative of C0 

Ca26 0.000000e+00 Pa/K 1st temperature derivative of C0 

Ca33 5.422548e+06 Pa/K 1st temperature derivative of C0 

Ca34 6.424904e+06 Pa/K 1st temperature derivative of C0 

Ca35 0.000000e+00 Pa/K 1st temperature derivative of C0 

Ca36 0.000000e+00 Pa/K 1st temperature derivative of C0 

Ca44 -4.170158e+05 Pa/K 1st temperature derivative of C0 

Ca45 0.000000e+00 Pa/K 1st temperature derivative of C0 

Ca46 0.000000e+00 Pa/K 1st temperature derivative of C0 

Ca55 3.940561e+06 Pa/K 1st temperature derivative of C0 

Ca56 -4.351932e+06 Pa/K 1st temperature derivative of C0 
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Ca66 -6.929611e+05 Pa/K 1st temperature derivative of C0 

Cb11 -1.475700e+04 Pa/K^2 2nd temperature derivative of C0 

Cb12 -3.691453e+04 Pa/K^2 2nd temperature derivative of C0 

Cb13 -1.751347e+04 Pa/K^2 2nd temperature derivative of C0 

Cb14 2.140374e+04 Pa/K^2 2nd temperature derivative of C0 

Cb15 0.000000e+00 Pa/K^2 2nd temperature derivative of C0 

Cb16 0.000000e+00 Pa/K^2 2nd temperature derivative of C0 

Cb22 -2.125137e+04 Pa/K^2 2nd temperature derivative of C0 

Cb23 -1.043062e+03 Pa/K^2 2nd temperature derivative of C0 

Cb24 6.598400e+02 Pa/K^2 2nd temperature derivative of C0 

Cb25 0.000000e+00 Pa/K^2 2nd temperature derivative of C0 

Cb26 0.000000e+00 Pa/K^2 2nd temperature derivative of C0 

Cb33 -3.025106e+02 Pa/K^2 2nd temperature derivative of C0 

Cb34 3.429790e+02 Pa/K^2 2nd temperature derivative of C0 

Cb35 0.000000e+00 Pa/K^2 2nd temperature derivative of C0 

Cb36 0.000000e+00 Pa/K^2 2nd temperature derivative of C0 

Cb44 2.251938e+03 Pa/K^2 2nd temperature derivative of C0 

Cb45 0.000000e+00 Pa/K^2 2nd temperature derivative of C0 

Cb46 0.000000e+00 Pa/K^2 2nd temperature derivative of C0 

Cb55 -3.673167e+03 Pa/K^2 2nd temperature derivative of C0 

Cb56 -2.281400e+03 Pa/K^2 2nd temperature derivative of C0 

Cb66 1.957817e+04 Pa/K^2 2nd temperature derivative of C0 

Cc11 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc12 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc13 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc14 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc15 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc16 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 
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Cc22 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc23 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc24 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc25 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc26 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc33 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc34 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc35 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc36 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc44 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc45 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc46 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc55 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc56 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

Cc66 0.000000e+00 Pa/K^3 3rd temperature derivative of C0 

N111 -9.720000e+11 Pa Nonlinear elastic constant 

N112 -2.969765e+10 Pa Nonlinear elastic constant 

N113 -7.930235e+10 Pa Nonlinear elastic constant 

N114 -6.042428e+10 Pa Nonlinear elastic constant 

N115 0.000000e+00 Pa Nonlinear elastic constant 

N116 0.000000e+00 Pa Nonlinear elastic constant 

N121 -2.969765e+10 Pa Nonlinear elastic constant 

N122 -8.415077e+10 Pa Nonlinear elastic constant 

N123 -7.740464e+10 Pa Nonlinear elastic constant 

N124 -8.573777e+10 Pa Nonlinear elastic constant 

N125 0.000000e+00 Pa Nonlinear elastic constant 

N126 0.000000e+00 Pa Nonlinear elastic constant 

N131 -7.930235e+10 Pa Nonlinear elastic constant 
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N132 -7.740464e+10 Pa Nonlinear elastic constant 

N133 -4.640400e+11 Pa Nonlinear elastic constant 

N134 -2.283359e+11 Pa Nonlinear elastic constant 

N135 0.000000e+00 Pa Nonlinear elastic constant 

N136 0.000000e+00 Pa Nonlinear elastic constant 

N141 -6.042428e+10 Pa Nonlinear elastic constant 

N142 -8.573777e+10 Pa Nonlinear elastic constant 

N143 -2.283359e+11 Pa Nonlinear elastic constant 

N144 -1.264046e+11 Pa Nonlinear elastic constant 

N145 0.000000e+00 Pa Nonlinear elastic constant 

N146 0.000000e+00 Pa Nonlinear elastic constant 

N151 0.000000e+00 Pa Nonlinear elastic constant 

N152 0.000000e+00 Pa Nonlinear elastic constant 

N153 0.000000e+00 Pa Nonlinear elastic constant 

N154 0.000000e+00 Pa Nonlinear elastic constant 

N155 -1.654789e+11 Pa Nonlinear elastic constant 

N156 -2.004367e+10 Pa Nonlinear elastic constant 

N161 0.000000e+00 Pa Nonlinear elastic constant 

N162 0.000000e+00 Pa Nonlinear elastic constant 

N163 0.000000e+00 Pa Nonlinear elastic constant 

N164 0.000000e+00 Pa Nonlinear elastic constant 

N165 -2.004367e+10 Pa Nonlinear elastic constant 

N166 -2.720211e+11 Pa Nonlinear elastic constant 

N211 -2.969765e+10 Pa Nonlinear elastic constant 

N212 -8.415077e+10 Pa Nonlinear elastic constant 

N213 -7.740464e+10 Pa Nonlinear elastic constant 

N214 -8.573777e+10 Pa Nonlinear elastic constant 

N215 0.000000e+00 Pa Nonlinear elastic constant 
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N216 0.000000e+00 Pa Nonlinear elastic constant 

N221 -8.415077e+10 Pa Nonlinear elastic constant 

N222 -9.756775e+11 Pa Nonlinear elastic constant 

N223 -2.447772e+11 Pa Nonlinear elastic constant 

N224 -1.727253e+11 Pa Nonlinear elastic constant 

N225 0.000000e+00 Pa Nonlinear elastic constant 

N226 0.000000e+00 Pa Nonlinear elastic constant 

N231 -7.740464e+10 Pa Nonlinear elastic constant 

N232 -2.447772e+11 Pa Nonlinear elastic constant 

N233 -5.777157e+11 Pa Nonlinear elastic constant 

N234 -9.965539e+10 Pa Nonlinear elastic constant 

N235 0.000000e+00 Pa Nonlinear elastic constant 

N236 0.000000e+00 Pa Nonlinear elastic constant 

N241 -8.573777e+10 Pa Nonlinear elastic constant 

N242 -1.727253e+11 Pa Nonlinear elastic constant 

N243 -9.965539e+10 Pa Nonlinear elastic constant 

N244 -4.388714e+11 Pa Nonlinear elastic constant 

N245 0.000000e+00 Pa Nonlinear elastic constant 

N246 0.000000e+00 Pa Nonlinear elastic constant 

N251 0.000000e+00 Pa Nonlinear elastic constant 

N252 0.000000e+00 Pa Nonlinear elastic constant 

N253 0.000000e+00 Pa Nonlinear elastic constant 

N254 0.000000e+00 Pa Nonlinear elastic constant 

N255 5.133600e+10 Pa Nonlinear elastic constant 

N256 6.532915e+10 Pa Nonlinear elastic constant 

N261 0.000000e+00 Pa Nonlinear elastic constant 

N262 0.000000e+00 Pa Nonlinear elastic constant 

N263 0.000000e+00 Pa Nonlinear elastic constant 
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N264 0.000000e+00 Pa Nonlinear elastic constant 

N265 6.532915e+10 Pa Nonlinear elastic constant 

N266 -2.358255e+11 Pa Nonlinear elastic constant 

N311 -7.930235e+10 Pa Nonlinear elastic constant 

N312 -7.740464e+10 Pa Nonlinear elastic constant 

N313 -4.640400e+11 Pa Nonlinear elastic constant 

N314 -2.283359e+11 Pa Nonlinear elastic constant 

N315 0.000000e+00 Pa Nonlinear elastic constant 

N316 0.000000e+00 Pa Nonlinear elastic constant 

N321 -7.740464e+10 Pa Nonlinear elastic constant 

N322 -2.447772e+11 Pa Nonlinear elastic constant 

N323 -5.777157e+11 Pa Nonlinear elastic constant 

N324 -9.965539e+10 Pa Nonlinear elastic constant 

N325 0.000000e+00 Pa Nonlinear elastic constant 

N326 0.000000e+00 Pa Nonlinear elastic constant 

N331 -4.640400e+11 Pa Nonlinear elastic constant 

N332 -5.777157e+11 Pa Nonlinear elastic constant 

N333 -1.866844e+12 Pa Nonlinear elastic constant 

N334 -6.860074e+10 Pa Nonlinear elastic constant 

N335 0.000000e+00 Pa Nonlinear elastic constant 

N336 0.000000e+00 Pa Nonlinear elastic constant 

N341 -2.283359e+11 Pa Nonlinear elastic constant 

N342 -9.965539e+10 Pa Nonlinear elastic constant 

N343 -6.860074e+10 Pa Nonlinear elastic constant 

N344 -1.336214e+11 Pa Nonlinear elastic constant 

N345 0.000000e+00 Pa Nonlinear elastic constant 

N346 0.000000e+00 Pa Nonlinear elastic constant 

N351 0.000000e+00 Pa Nonlinear elastic constant 
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N352 0.000000e+00 Pa Nonlinear elastic constant 

N353 0.000000e+00 Pa Nonlinear elastic constant 

N354 0.000000e+00 Pa Nonlinear elastic constant 

N355 -4.322443e+11 Pa Nonlinear elastic constant 

N356 -1.353448e+11 Pa Nonlinear elastic constant 

N361 0.000000e+00 Pa Nonlinear elastic constant 

N362 0.000000e+00 Pa Nonlinear elastic constant 

N363 0.000000e+00 Pa Nonlinear elastic constant 

N364 0.000000e+00 Pa Nonlinear elastic constant 

N365 -1.353448e+11 Pa Nonlinear elastic constant 

N366 -1.212661e+11 Pa Nonlinear elastic constant 

N411 -6.042428e+10 Pa Nonlinear elastic constant 

N412 -8.573777e+10 Pa Nonlinear elastic constant 

N413 -2.283359e+11 Pa Nonlinear elastic constant 

N414 -1.264046e+11 Pa Nonlinear elastic constant 

N415 0.000000e+00 Pa Nonlinear elastic constant 

N416 0.000000e+00 Pa Nonlinear elastic constant 

N421 -8.573777e+10 Pa Nonlinear elastic constant 

N422 -1.727253e+11 Pa Nonlinear elastic constant 

N423 -9.965539e+10 Pa Nonlinear elastic constant 

N424 -4.388714e+11 Pa Nonlinear elastic constant 

N425 0.000000e+00 Pa Nonlinear elastic constant 

N426 0.000000e+00 Pa Nonlinear elastic constant 

N431 -2.283359e+11 Pa Nonlinear elastic constant 

N432 -9.965539e+10 Pa Nonlinear elastic constant 

N433 -6.860074e+10 Pa Nonlinear elastic constant 

N434 -1.336214e+11 Pa Nonlinear elastic constant 

N435 0.000000e+00 Pa Nonlinear elastic constant 
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N436 0.000000e+00 Pa Nonlinear elastic constant 

N441 -1.264046e+11 Pa Nonlinear elastic constant 

N442 -4.388714e+11 Pa Nonlinear elastic constant 

N443 -1.336214e+11 Pa Nonlinear elastic constant 

N444 -1.084232e+11 Pa Nonlinear elastic constant 

N445 0.000000e+00 Pa Nonlinear elastic constant 

N446 0.000000e+00 Pa Nonlinear elastic constant 

N451 0.000000e+00 Pa Nonlinear elastic constant 

N452 0.000000e+00 Pa Nonlinear elastic constant 

N453 0.000000e+00 Pa Nonlinear elastic constant 

N454 0.000000e+00 Pa Nonlinear elastic constant 

N455 6.422266e+10 Pa Nonlinear elastic constant 

N456 -6.271507e+10 Pa Nonlinear elastic constant 

N461 0.000000e+00 Pa Nonlinear elastic constant 

N462 0.000000e+00 Pa Nonlinear elastic constant 

N463 0.000000e+00 Pa Nonlinear elastic constant 

N464 0.000000e+00 Pa Nonlinear elastic constant 

N465 -6.271507e+10 Pa Nonlinear elastic constant 

N466 -9.103381e+09 Pa Nonlinear elastic constant 

N511 0.000000e+00 Pa Nonlinear elastic constant 

N512 0.000000e+00 Pa Nonlinear elastic constant 

N513 0.000000e+00 Pa Nonlinear elastic constant 

N514 0.000000e+00 Pa Nonlinear elastic constant 

N515 -1.654789e+11 Pa Nonlinear elastic constant 

N516 -2.004367e+10 Pa Nonlinear elastic constant 

N521 0.000000e+00 Pa Nonlinear elastic constant 

N522 0.000000e+00 Pa Nonlinear elastic constant 

N523 0.000000e+00 Pa Nonlinear elastic constant 
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N524 0.000000e+00 Pa Nonlinear elastic constant 

N525 5.133600e+10 Pa Nonlinear elastic constant 

N526 6.532915e+10 Pa Nonlinear elastic constant 

N531 0.000000e+00 Pa Nonlinear elastic constant 

N532 0.000000e+00 Pa Nonlinear elastic constant 

N533 0.000000e+00 Pa Nonlinear elastic constant 

N534 0.000000e+00 Pa Nonlinear elastic constant 

N535 -4.322443e+11 Pa Nonlinear elastic constant 

N536 -1.353448e+11 Pa Nonlinear elastic constant 

N541 0.000000e+00 Pa Nonlinear elastic constant 

N542 0.000000e+00 Pa Nonlinear elastic constant 

N543 0.000000e+00 Pa Nonlinear elastic constant 

N544 0.000000e+00 Pa Nonlinear elastic constant 

N545 6.422266e+10 Pa Nonlinear elastic constant 

N546 -6.271507e+10 Pa Nonlinear elastic constant 

N551 -1.654789e+11 Pa Nonlinear elastic constant 

N552 5.133600e+10 Pa Nonlinear elastic constant 

N553 -4.322443e+11 Pa Nonlinear elastic constant 

N554 6.422266e+10 Pa Nonlinear elastic constant 

N555 0.000000e+00 Pa Nonlinear elastic constant 

N556 0.000000e+00 Pa Nonlinear elastic constant 

N561 -2.004367e+10 Pa Nonlinear elastic constant 

N562 6.532915e+10 Pa Nonlinear elastic constant 

N563 -1.353448e+11 Pa Nonlinear elastic constant 

N564 -6.271507e+10 Pa Nonlinear elastic constant 

N565 0.000000e+00 Pa Nonlinear elastic constant 

N566 0.000000e+00 Pa Nonlinear elastic constant 

N611 0.000000e+00 Pa Nonlinear elastic constant 
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N612 0.000000e+00 Pa Nonlinear elastic constant 

N613 0.000000e+00 Pa Nonlinear elastic constant 

N614 0.000000e+00 Pa Nonlinear elastic constant 

N615 -2.004367e+10 Pa Nonlinear elastic constant 

N616 -2.720211e+11 Pa Nonlinear elastic constant 

N621 0.000000e+00 Pa Nonlinear elastic constant 

N622 0.000000e+00 Pa Nonlinear elastic constant 

N623 0.000000e+00 Pa Nonlinear elastic constant 

N624 0.000000e+00 Pa Nonlinear elastic constant 

N625 6.532915e+10 Pa Nonlinear elastic constant 

N626 -2.358255e+11 Pa Nonlinear elastic constant 

N631 0.000000e+00 Pa Nonlinear elastic constant 

N632 0.000000e+00 Pa Nonlinear elastic constant 

N633 0.000000e+00 Pa Nonlinear elastic constant 

N634 0.000000e+00 Pa Nonlinear elastic constant 

N635 -1.353448e+11 Pa Nonlinear elastic constant 

N636 -1.212661e+11 Pa Nonlinear elastic constant 

N641 0.000000e+00 Pa Nonlinear elastic constant 

N642 0.000000e+00 Pa Nonlinear elastic constant 

N643 0.000000e+00 Pa Nonlinear elastic constant 

N644 0.000000e+00 Pa Nonlinear elastic constant 

N645 -6.271507e+10 Pa Nonlinear elastic constant 

N646 -9.103381e+09 Pa Nonlinear elastic constant 

N651 -2.004367e+10 Pa Nonlinear elastic constant 

N652 6.532915e+10 Pa Nonlinear elastic constant 

N653 -1.353448e+11 Pa Nonlinear elastic constant 

N654 -6.271507e+10 Pa Nonlinear elastic constant 

N655 0.000000e+00 Pa Nonlinear elastic constant 
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N656 0.000000e+00 Pa Nonlinear elastic constant 

N661 -2.720211e+11 Pa Nonlinear elastic constant 

N662 -2.358255e+11 Pa Nonlinear elastic constant 

N663 -1.212661e+11 Pa Nonlinear elastic constant 

N664 -9.103381e+09 Pa Nonlinear elastic constant 

N665 0.000000e+00 Pa Nonlinear elastic constant 

N666 0.000000e+00 Pa Nonlinear elastic constant 

e011 -4.020000e-01 C/m^2 Piezoelectric stress constant 

e012 4.328472e-01 C/m^2 Piezoelectric stress constant 

e013 -3.084722e-02 C/m^2 Piezoelectric stress constant 

e014 -6.171600e-02 C/m^2 Piezoelectric stress constant 

e015 0.000000e+00 C/m^2 Piezoelectric stress constant 

e016 0.000000e+00 C/m^2 Piezoelectric stress constant 

e021 0.000000e+00 C/m^2 Piezoelectric stress constant 

e022 0.000000e+00 C/m^2 Piezoelectric stress constant 

e023 0.000000e+00 C/m^2 Piezoelectric stress constant 

e024 0.000000e+00 C/m^2 Piezoelectric stress constant 

e025 -2.587002e-01 C/m^2 Piezoelectric stress constant 

e026 2.868193e-01 C/m^2 Piezoelectric stress constant 

e031 0.000000e+00 C/m^2 Piezoelectric stress constant 

e032 0.000000e+00 C/m^2 Piezoelectric stress constant 

e033 0.000000e+00 C/m^2 Piezoelectric stress constant 

e034 0.000000e+00 C/m^2 Piezoelectric stress constant 

e035 1.151807e-01 C/m^2 Piezoelectric stress constant 

e036 -1.277002e-01 C/m^2 Piezoelectric stress constant 

ea11 3.290000e-04 C/(m^2.K) 1st temperature coefficient of e0 

ea12 -5.287275e-04 C/(m^2.K) 1st temperature coefficient of e0 

ea13 1.997275e-04 C/(m^2.K) 1st temperature coefficient of e0 
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ea14 -1.065953e-04 C/(m^2.K) 1st temperature coefficient of e0 

ea15 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea16 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea21 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea22 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea23 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea24 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea25 4.076687e-04 C/(m^2.K) 1st temperature coefficient of e0 

ea26 -1.474942e-04 C/(m^2.K) 1st temperature coefficient of e0 

ea31 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea32 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea33 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea34 0.000000e+00 C/(m^2.K) 1st temperature coefficient of e0 

ea35 -1.815058e-04 C/(m^2.K) 1st temperature coefficient of e0 

ea36 6.566866e-05 C/(m^2.K) 1st temperature coefficient of e0 

eb11 1.990000e-07 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb12 1.533494e-06 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb13 -1.732494e-06 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb14 1.604245e-06 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb15 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb16 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb21 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb22 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb23 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb24 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb25 -1.834708e-06 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb26 -1.015865e-06 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb31 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 
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eb32 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb33 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb34 0.000000e+00 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb35 8.168646e-07 C/(m^2.K^2) 2nd temperature coefficient of e0 

eb36 4.522921e-07 C/(m^2.K^2) 2nd temperature coefficient of e0 

ec11 1.955179e-12 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec12 -5.118842e-12 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec13 3.163663e-12 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec14 -2.413324e-12 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec15 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec16 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec21 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec22 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec23 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec24 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec25 4.642588e-12 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec26 1.118344e-13 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec31 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec32 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec33 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec34 0.000000e+00 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec35 -2.067013e-12 C/(m^2.K^3) 3rdd temperature coefficient of e0 

ec36 -4.979188e-14 C/(m^2.K^3) 3rdd temperature coefficient of e0 

eps011 1.962000e+01 F/m Dielectric permittivity 

eps012 0.000000e+00 F/m Dielectric permittivity 

eps013 0.000000e+00 F/m Dielectric permittivity 

eps022 2.454830e+01 F/m Dielectric permittivity 

eps023 1.106914e+01 F/m Dielectric permittivity 



188 

 

 

 

eps033 4.448170e+01 F/m Dielectric permittivity 

epsa11 3.229000e-04 F/(m.K) 1st temperature coefficient of eps0 

epsa12 0.000000e+00 F/(m.K) 1st temperature coefficient of eps0 

epsa13 0.000000e+00 F/(m.K) 1st temperature coefficient of eps0 

epsa22 1.475558e-04 F/(m.K) 1st temperature coefficient of eps0 

epsa23 -3.938296e-04 F/(m.K) 1st temperature coefficient of eps0 

epsa33 -5.616558e-04 F/(m.K) 1st temperature coefficient of eps0 

epsb11 -1.073000e-06 F/(m.K^2) 2nd temperature coefficient of eps0 

epsb12 0.000000e+00 F/(m.K^2) 2nd temperature coefficient of eps0 

epsb13 0.000000e+00 F/(m.K^2) 2nd temperature coefficient of eps0 

epsb22 -8.055086e-07 F/(m.K^2) 2nd temperature coefficient of eps0 

epsb23 6.007954e-07 F/(m.K^2) 2nd temperature coefficient of eps0 

epsb33 2.764086e-07 F/(m.K^2) 2nd temperature coefficient of eps0 

epsc11 0.000000e+00 F/(m.K^3) 3rd temperature coefficient of eps0 

epsc12 0.000000e+00 F/(m.K^3) 3rd temperature coefficient of eps0 

epsc13 0.000000e+00 F/(m.K^3) 3rd temperature coefficient of eps0 

epsc22 0.000000e+00 F/(m.K^3) 3rd temperature coefficient of eps0 

epsc23 0.000000e+00 F/(m.K^3) 3rd temperature coefficient of eps0 

epsc33 0.000000e+00 F/(m.K^3) 3rd temperature coefficient of eps0 

alfa11 5.630000e-06 1/K 1st thermal expansion coefficient 

alfa12 0.000000e+00 1/K 1st thermal expansion coefficient 

alfa13 0.000000e+00 1/K 1st thermal expansion coefficient 

alfa22 5.455797e-06 1/K 1st thermal expansion coefficient 

alfa23 -3.912658e-07 1/K 1st thermal expansion coefficient 

alfa33 4.751203e-06 1/K 1st thermal expansion coefficient 

alfb11 5.979000e-09 1/K^2 2nd thermal expansion coefficient 

alfb12 0.000000e+00 1/K^2 2nd thermal expansion coefficient 

alfb13 0.000000e+00 1/K^2 2nd thermal expansion coefficient 
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alfb22 5.595921e-09 1/K^2 2nd thermal expansion coefficient 

alfb23 -4.536528e-10 1/K^2 2nd thermal expansion coefficient 

alfb33 4.778979e-09 1/K^2 2nd thermal expansion coefficient 

alfc11 0.000000e+00 1/K^3 3rd thermal expansion coefficient 

alfc12 0.000000e+00 1/K^3 3rd thermal expansion coefficient 

alfc13 0.000000e+00 1/K^3 3rd thermal expansion coefficient 

alfc22 0.000000e+00 1/K^3 3rd thermal expansion coefficient 

alfc23 0.000000e+00 1/K^3 3rd thermal expansion coefficient 

alfc33 0.000000e+00 1/K^3 3rd thermal expansion coefficient 

ang_freq_factor 2*pi 

omega_radian omega_degree*pi/180 

omega_degree 90 

rho_langasite 5743 

ext_damping 1.92e6/2 

 

 
 

 


