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ABSTRACT OF THE DISSERTATION
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ESTIMATION

by TAREK EL-GAALY

Dissertation Director: Ahmed Elgammal

Visual object recognition is a challenging problem with a wide range of real-life applications.

The difficulty of this problem is due to variation in shape and appearance among objects within

the same category, as well as varying viewing conditions, such as viewpoint, scale, illumina-

tion, occlusion and articulation of multi-part deformable objects. In addition, beyond the visual

spectrum, depth and range sensors suffer from noise that inhibits object recognition. Under

visual object recognition lie three subproblems that are each challenging: category recognition,

instance recognition and pose estimation. Impressive work has been done in the last decade

on developing systems for generic object recognition. Previous research has covered many

recognition-related issues, however, the problem of multi-view recognition remains among the

most fundamental challenges in computer vision. In this dissertation we focus on discovering

low-dimensional latent representations that enable efficient joint multi-view object recognition

over multiple modalities. These discovered latent representations allow us to work in lower di-

mensional latent spaces that capture the factors needed for object recognition from multi-view

images and over multiple modalities; from images to depthmaps and 3D point clouds. Each

of the models we present in this dissertation explore a different representation space of latent
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factors. The first model builds multiple kernel induced spaces to fuse information between dif-

ferent modalities and performs object pose estimation in a regression framework. The second

model performs manifold analysis to solve categorization and pose estimation simultaneously.

It does this by factorizing the space of topological mappings between a unified conceptual man-

ifold and feature spaces. We present two variations of this; an unsupervised learning model and

a supervised learning model. The third approach analyzes the representational spaces of the

layers of Convolutional Neural Networks and builds on the findings by proposing a network

that jointly solves category and pose. The fourth approach explores solving pose-invariant cat-

egorization of multi-part objects by shape information, in the form of 3D point clouds. We build

a representation that inherently encodes pose and allows objects to be represented by multiple

levels of object-part decompositions for more robust object recognition. In each approach we

support our hypotheses by extensive experimentation.
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Chapter 1

Introduction
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1.1 Introductory Remarks

The layout of this dissertation takes the form of a dissertation-by-publication. We refer to the

problem of simultaneously solving for object category and pose as joint object recognition.

In all the work of this dissertation no color information from the images was used for cate-

gorization and pose estimation, unless otherwise noted. The object-view manifold refers to

the low-dimensional intrinsic manifold that capture the multiple views of an object. In this

dissertation we commonly refer to it as just the manifold.

Each chapter in this dissertation digs deep into analyzing and discovering representation

spaces that capture the latent factors needed to efficiently solve the problem of multi-view joint

object recognition over multiple modalities, from images to depthmaps and point clouds. Chap-

ter 3 solves object pose regression by using multiple kernel induced spaces to fuse visual and

depth features of multi-view images. We perform two variations: multi-kernel learning and

multi-kernel regression. Chapters 4 and 5 focus on a framework to jointly solve categorization

and pose estimation using multi-view images. This work uses a manifold analysis approach

to factorize the space of topological mappings between a unified conceptual manifold and the

input feature space. In its simplest form, the conceptual manifold takes the form of a unit circle

in the case of a viewing circle around an object, e.g. when the camera is fixed and an object is

turning on a turn-table. The space of topological mappings is factorized into two factors: the

first we call style which captures the deformation in appearance and shape of objects (and can

then be used to represent object instances) and the second is the object pose. A generalization

of the unit circle to a full viewing sphere of more degrees of freedom is described in Chapter

4. We present two branches of this manifold analysis approach: unsupervised linear decom-

position (Chapter 4) and supervised nonlinear decomposition (Chapter 5). These approaches

are also shown to fuse both visual and depth modes for more accurate recognition. Chapter 6

looks into using a more recent Machine Learning paradigm, known as Deep Learning, to solve

both categorization and pose estimation simultaneously. The representation spaces of layers

of a Convolutional Neural Network are analyzed from the perspective of encoding information

pertaining to object category and pose. From the findings of the analysis we propose a new

network that solves for both category and pose. The fourth and final chapter explores building
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representations from 3D point clouds for categorization that are inherently pose-invariant. This

final work uses a probabilistic approach to decompose 3D point clouds of multi-part objects

into parts and thus paves the way for 3D Recognition-by-Parts robust to pose variation and

articulation.

1.2 Problem Statement

Visual object recognition is a challenging problem with ample real-life applications. The dif-

ficulty of this problem is due to variations in shape and appearance among objects within the

same category, as well as varying viewing conditions, such as viewpoint, scale, illumination,

occlusion in cluttered environments and articulation in multi-part objects. In addition, beyond

the visual spectrum, depth sensors suffer from noise that inhibit the ability to perform robust

object recognition.

Under this perceptual problem of visual recognition lie three subproblems that are each

quite challenging: category recognition, instance recognition, and pose estimation. Impressive

work have been done in the last decade on developing computer vision systems for generic ob-

ject recognition. Research has spanned a wide spectrum of recognition-related issues, however,

the problem of multi-view recognition remains one of the most fundamental challenges to the

progress of computer vision.

It is essential that approaches discover and use lower dimensional latent representations to

solve this challenging problem of joint multi-view object recognition. Latent representations

here dictate the appearance and shape of objects over different categories, object instances and

poses. In addition latent representations should be able to capture and enable fusion over multi-

ple modalities. Models need to be able to discover these lower dimensional latent representation

spaces and utilize them for more efficiently solving joint object recognition.

The problems of object classification from multi-view setting (multi-view recognition) and

pose estimation are closely linked and directly impacted by the way shape is represented. In-

spired by Marr’s 3D object-centric doctrine [92], traditional 3D pose estimation algorithms

often solved the recognition, detection, and pose estimation problems simultaneously (e.g.[51,

79, 87, 126]), through 3D object representations, or through invariants. However, such models
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were limited in their ability to capture large within-class variability, and were mainly focused

on recognizing instances of objects. In the last two decades the field has shifted to study 2D

representations based on local features and parts, which encode the geometry loosely (e.g. pic-

torial structure like methods [44, 43]), or does not encode the geometry at all (e.g. bag of words

methods [144, 129].) Encoding the geometry and the constraints imposed by objects’ 3D struc-

ture are essential for pose estimation. Most research on generic object recognition bundle all

viewpoints of a category into one representation; or learn view-specific classifiers from limited

viewpoints, e.g. frontal cars, side-view cars, rear cars, etc. Recently, there has been an increas-

ing interest in object categorization in the multi-view setting, as well as recovering object pose

in 3D, e.g. [21, 75, 119, 86, 130, 132, 103, 95]. However, the representations used in these

approaches are mainly category-specific representations, which do not support scaling up to a

large number of categories.

More recently Deep Learning has emerged as an end-to-end Machine Learning paradigm

that by-passes explicit hand-engineered features, and learns feature hierarchies within layered

models that best achieve a certain task. Despite the success of these methods in object recogni-

tion, not much success has been achieved in pose estimation. Deep Learning models capable of

pose estimation have been built for estimating human pose in images but this is a slightly dif-

ferent problem to recovering the pose of rigid objects. The work by [140] explored using CNNs

for recognizing human pose. Other notable works in human pose estimation are [84, 105]. Re-

cently [49] proposed joint optimization on human pose and activity. Object pose estimation

is fundamentally different from human posture estimation. In human pose estimation, there is

no problem getting millions of image of people at different postures. The human activities are

correlated with human poses, while in the object-pose domain the category is independent of

pose. That makes the joint learning of category and pose more challenging than joint learning

of human activity and pose.

In addition to multi-view image data, a proliferation of depth sensors in the field of Com-

puter Vision and Robotics provide depthmaps and 3D point clouds (e.g. Xbox Kinect [148]).

These sensor modes provide shape of objects and are a very important additional cue to augment

vision for object recognition. In particular shape is important to disambiguate and recognize

multi-part objects (e.g. animals, furniture and vehicles). An example of this is an airplane that



5

can be decomposed into parts: fuselage, wings and tail. Many real-world objects possess parts

and it is the structure of these parts that dictate object pose and the category of the object. We

refer to this as Recognition-by-Parts (similar to Recognition-by-Components in [11]). Many

research questions are raised here, for example: How can we efficiently represent shape to

account for both the category of multi-part objects and at the same time encode their pose? Hu-

mans are able to seamlessly achieve this task. Are there ways of mimicking this human ability?

Object parts suffer from ambiguity in the sense that there are multiple levels of granularity at

which objects can be divided up into their constituent parts. How can we model these multiple

levels of granularity? How can we use these levels to achieve more robust object recognition?

1.3 Objectives

The first objective of this dissertation is to solve the three sub-problems of object recognition

simultaneously and robustly in a general framework that is not class-specific. To reiterate,

the three sub-problems are: object categorization, instance recognition (can be seen as a more

fine-grained object categorization) and pose estimation.

The second objective is to perform the first objective over multiple modalities of percep-

tion: images, depthmaps and 3D point clouds, and to fuse between the modes where possible

(e.g. fuse registered grayscale images and depthmaps from the Kinect sensor [148]).

An implicit objective of this dissertation is to analyze and discover latent representation

spaces that allow efficient solving of joint object recognition across the multiple modalities.

Each of the presented computational models explores latent representation across the different

modalities and thus enables them to solve the task of joint object recognition.

1.4 Contributions

We investigate the use of multi-modal fusion for object pose estimation. In Chapter 3, we

address the challenging problem of pose recognition using simultaneous color and depth in-

formation. For this purpose, we extend a state-of-the-art regression framework by using a

multi-kernel approach to incorporate depth information to perform more effective pose recog-

nition on table-top objects. We do extensive experiments on a large publicly available dataset to
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validate our approach. We show significant performance improvements (more than 20%) over

published results.

The premise of the work in Chapter 4 is that multi-view images of the same object lie on

intrinsic low-dimensional manifolds in descriptor spaces (e.g. visual/depth descriptor spaces).

These object manifolds share the same topology despite being geometrically different. Each

object manifold can be represented as a deformed version of a unified manifold. The object

manifolds can thus be parameterized by its homeomorphic mapping/reconstruction from the

unified manifold. In Chapter 4 we describe a novel framework to jointly solve the three chal-

lenging recognition sub-problems, by explicitly modeling the deformations of object manifolds

and factorizing it in a view-invariant space for recognition. We perform extensive experiments

on several challenging datasets and achieve state-of-the-art results.

Thirdly, in Chapter 5, we further explore using manifold analysis of the common topology

of multi-view images of objects. We utilize this common topology between object manifolds by

learning a low-dimensional latent space which non-linearly maps between a common unified

manifold and the object manifold in the input space. Using a supervised embedding approach,

the latent space is computed and used to jointly infer the category and pose of objects. We

empirically validate our model by using multiple inference approaches and testing on multiple

challenging datasets. We compare our results with the state-of-the-art and present our increased

category recognition and pose estimation accuracy.

Chapter 6 is focused on studying the view-manifold structure in the feature spaces implied

by the different layers of Convolutional Neural Networks (CNN). There are several questions

that this work aims to answer: Does the learned CNN representation achieve viewpoint invari-

ance? How does it achieve viewpoint invariance? Is it achieved by collapsing the view mani-

folds, or separating them while preserving them? At which layer is view invariance achieved?

How can the structure of the view manifold at each layer of a deep convolutional neural net-

work be quantified experimentally? How does fine-tuning of a pre-trained CNN on a multi-view

dataset affect the representation at each layer of the network? In order to answer these questions

we propose a methodology to quantify the deformation and degeneracy of view manifolds in

CNN layers. We apply this methodology and report interesting results in this work that answer

the aforementioned questions.
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Chapter 7 presents a probabilistic approach to shape decomposition that creates a skeleton-

based shape representation of a 3D object while simultaneously decomposing it into constituent

parts. Our approach probabilistically combines two prominent threads from the shape litera-

ture: skeleton-based (medial axis) representations of shape, and part-based representations of

shape, in which shapes are combinations of primitive parts. Our approach recasts skeleton-

based shape representation as a mixture estimation problem, allowing us to apply probabilistic

estimation techniques to the problem of 3D shape decomposition, extending earlier work on

the 2D case. The estimated 3D shape decompositions approximate human shape decompo-

sition judgments. We present a tractable implementation of the framework, which begins by

over-segmenting objects at concavities, and then probabilistically merges them to create a dis-

tribution over possible decompositions. This results in a hierarchy of decompositions at differ-

ent structural scales, again closely matching known properties of human shape representation.

The probabilistic estimation procedures that arise naturally in the model allow effective predic-

tion of missing parts. We present results on shapes from a standard database illustrating the

effectiveness of the approach.
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Background and Related Work
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We divide up this section into three parts:

• A review of previous approaches to solving object recognition, particularly the approaches

concerned with joint categorization, instance recognition and pose estimation.

• Focused review on work done in Deep Learning to solve joint object recognition.

• A review of 3D representations for object recognition that also inherently capture pose

information in order to be robust to viewpoint changes and articulation.

2.1 Joint Object Recognition

2.1.1 Recognition and Pose Estimation

Traditional 3D pose estimation algorithms often solve the recognition and pose estimation prob-

lems simultaneously using 3D object model-bases, hypothesis and test principles, or through

the use of invariants, e.g. [51, 79, 87, 126]. Such models are incapable of dealing with large

within-class variability and have been mainly focused on recognizing instances previously seen

in the model-base. This limitation led to the development, over the last decade, of very suc-

cessful categorization methods mainly based on local features and parts. Such methods loosely

encode the geometry, e.g. methods like pictorial structure [44]; or does not encode the geometry

at all, e.g. bag of words [144, 129].

There is a growing recent interest in developing representations that captures 3D geomet-

ric constraints in a flexible way to handle the categorization problem. The work of Savarese

and Fei-Fei [119, 120] was pioneering in that direction. In [119, 120] a part-based model was

proposed where canonical parts are learned across different views, and a graph representa-

tion is used to model the object canonical parts. Successful recent work have proposed learning

category-specific detection models that is able to estimate object pose (e.g. [95, 103, 121, 104]).

This has an adverse side-effect of not being scalable to a large number of categories and dealing

with high within-class variation. Typically papers on this area focus on evaluating the detection

and pose estimation performance and do not evaluate the categorization performance. In con-

trast to category-specific representations, we focus on developing a common representation for
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recognition and pose estimation. This achieved through learning a view-invariant representa-

tion using a proposed three-phase process that can use images and videos in a realistic learning

scenario.

Almost all the work on pose estimation and multi-view recognition from local features

is based on formulating the problem as a classification problem where view-based classifiers

and/or viewpoint classifiers are trained. These classification-based approaches solve pose es-

timation problem in a discrete way simultaneously or not with recognition problem. They

use several discrete (4, 8, 16 or more) view-based/pose-based classifiers, and take the clas-

sification results as the estimated poses. For example, in [53], 93 support vector machine

(SVM) classifiers were trained. It is obvious that only discrete poses can be obtained by these

classification-based methods, and the accuracy depends on the number of classifiers. On the

other hand, there are also works formulate the problem of pose estimation as a regression prob-

lem by learning the regression function within a specific category, such as car or head, e.g.

[4, 139, 40, 33, 102]. These regression-based approaches solve pose estimation in a continuous

way, and can provide continuous pose prediction. A previous comparable study in [53] shows

that the regression method (i.e. support vector regression, SVR) performs well in either hori-

zontal or vertical head pose variations comparing to SVM classifiers. More recent regression-

based approaches [139, 33] also report better pose estimation results than classification-based

methods on some challenging datasets. Generally, pose estimation is essentially a continuous

problem, since the pose varies continuously in real world. Thus, continuously estimating the

poses is more conformable to the essence of the problem.

In the domain of multi-modal data, recent work by [78] uses synchronized multi-modal

photometric and depth information (i.e. RGB-D) to achieve significant performance in object

recognition. They build an object-pose tree model from RGBD images and perform hierarchical

inference. Although performance of category and instance recognition is significant, object

pose recognition performance is less so. The reason is the same: a classification strategy for

pose recognition results in coarse pose estimates and does not fully utilize the information

present in the continuous distribution of descriptor spaces. In the work by [40, 39], random

regression forests were used for real time head pose estimation from depth images, and such a

continuous pose estimation method can get 3D orientation errors less than 10

� respectively.
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2.1.2 Modeling Visual Manifolds for Recognition

Learning image manifolds has been shown to be useful in recognition, for example for learning

appearance manifolds from different views [97], learning activity and pose manifolds for activ-

ity recognition and tracking [34, 141], etc. The seminal work of Murase and Nayar [97] showed

how linear dimensionality reduction using PCA [66] can be used to establish a representation

of an object’s view and illumination manifolds. Using such representation, recognition of a

query instance can be achieved by searching for the closest manifold. However, such a model

is mainly a projection of the data to a low-dimensional space and does not provide a way to

untangle the visual manifold. The pioneering work of Tenenbaum and Freeman [136] formu-

lated the separation of style and content using a bilinear model framework. In that work, a

bilinear model was used to decompose face appearance into two factors: head pose and differ-

ent people as style and content interchangeably. They presented a computational framework

for model fitting using SVD. A bilinear model is a special case of a more general multilinear

model. In [142], multilinear tensor analysis was used to decompose face images into orthog-

onal factors controlling the appearance of the face including geometry (people), expressions,

head pose, and illumination using High Order Singular Value Decomposition (HOSVD) [25].

N-mode analysis of higher-order tensors was originally proposed and developed in [67, 91]

and others. A fundamental limitation with bilinear and multilinear models is that they need an

aligned product space of data (all objects ⇥ all views ⇥ all illumination etc.).

The proposed framework utilizes bilinear and multilinear analysis. However, we use such

type of analysis in a different way that avoids their inherent limitation. The content man-

ifold, which is the view manifold in our case, is explicitly represented using an embedded

representation, capitalizing in the knowledge of its dimensionality and topology. Given such

representation, the style parameters are factorized in the space of nonlinear mapping functions

between a representation of the content manifold and the observations. The main advantage of

this approach is that, unlike bilinear and multilinear models that mainly discretize the content

space, the content in our case is treated as a continuous domain, and therefore aligning of data

is not needed.

The introduction of nonlinear dimensionality reduction techniques such as Local Linear
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Embedding (LLE) [115], Isometric Feature Mapping (Isomap) [135], and others [8, 17, 81,

143], provide tools to represent complex manifolds in low-dimensional embedding spaces, in

ways that aim at preserving the manifold geometry. However, in practice, away from toy exam-

ples, it is hardly the case that various orthogonal perceptual aspects can be shown to correspond

to certain directions or clusters in the embedding space. In the context of generic object recog-

nition, direct dimensionality reduction of visual features was not shown to provide an effective

solution; to the contrary, the state of the art is dominated by approaches that rely on extremely

high-dimensional feature spaces to achieve class linear separability, and the use of discrimi-

native classifier, typically SVM, in these spaces. By learning the visual manifold, we are not

advocating a direct dimensionality reduction solution that just preserves the manifold geometry

locally and/or globally. We are arguing for a solution that is able to factorize and untangle the

complex visual manifold to achieve multi-view recognition.

A comprehensive review of recent work on object recognition can be seen in [120]. We

will highlight the most relevant research in this section.

Successful work has been done in estimating the object pose of a single object [23, 95, 121].

This model, referred to as single-instance 3D model, has the limitation of being category-

specific and does not scale to a large number of categories and deal with high intra-class varia-

tion. This stipulates that independent models are learnt for different object. This has an adverse

side-effect of not being scalable to a large number of categories and dealing with high intra-

class variation. Work in this area focus on evaluating the pose estimation performance and do

not evaluate how the model can be used for categorization.

Recently, category recognition and pose estimation have been solved simultaneously (e.g. [119,

78]). In [119], multiple-view object modeling is addressed by linking diagnostic parts of the

objects from different (discrete) viewing points. This model is extendable to different instances

of previously trained objects. It still belongs to the category of limited-pose (discrete-pose)

object recognition since it uses a classification approach to deal with pose estimation. This

may not be extendable to general continuous pose estimation. Very few works formulate the

problem of pose estimation as a regression problem over a continuous space. In [78], an object

pose tree is built for doing multi-level inference (object category, instance and pose recogni-

tion). This work involves a classification strategy for pose recognition which results in coarse
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pose estimates and does not fully utilize the information present in the continuous distribution

of descriptor spaces. Work presented in [119] and [139] explicitly model the continuous pose

variations of objects but the scalability of these models is limited. A more recent work [7]

proposes a feedforward approach to solve the two problems jointly by balancing between con-

tinuous and discrete modeling of pose in order to increase performance and scalability. In these

models, the nonlinearity in the category representations is not modeled, which is mandatory for

many applications.

Solving object recognition and pose estimation using a manifold-based representation is

not novel. The pioneering work of Murase and Nayar explored this idea in [97]. However, the

recognition in [97] is for object instances and not for generic categories. The model used in [97]

is a linear model based on PCA, while our model is nonlinear in both the pose and the category.

Manifold based representations has also been recently used in [95], however for object-specific

view estimation.

2.2 Deep Learning Approaches for Joint Object Recognition

LeCun et al. has widely used CNNs for various vision tasks [123, 70, 64, 110, 82]. The suc-

cess of CNNs can be partially attributed to these efforts, in addition to training techniques that

have been adopted. Krizhevsky et al. [74] used a CNN in the ImageNet Challenge 2012 and

achieved state-of-the-art accuracy. Since then, there have been many variations in CNN ar-

chitectures and learning techniques within different application contexts. In this section we

mainly emphasize related works that focused on bringing an understanding of the representa-

tion learned at the different layers of CNNs and related architectures. This understanding will

enable us to leverage CNNs to perform joint object recognition.

Yobinski et al. [150] studied how CNN layers transition from general to specific. An im-

portant finding in this study is that learning can be transferred, and by using fine-tuning, perfor-

mance is boosted on novel data. Other transfer learning examples include [112, 29, 2]. Zeiler

et al. [151] investigated the properties of CNN layers for the purpose of capturing object in-

formation. This study is built on the premise that there is no coherent understanding of why
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CNNs work well or how we can improve them. Interesting visualizations were used to ex-

plore the functions of layers and the intrinsics of categorization. The study stated that CNN

output layers are invariant to translation and scale but not to rotations. The study in [19] eval-

uated different deep architectures and compares between them. The effect of the output-layer

dimensionality was explored.

Due to the surge of work in deep architectures over the last few years, there has amassed a

large number of research studies. Despite this, using CNNs for regression and capturing pose

information is still a relatively unexplored area. This further motivates the goals of some of

the work in this dissertation in exploring the capability of CNNs to capture distributed pose

representations and utilize them for pose estimation within deep architectures.

We focus on the most relevant work, in particular, CNN studies that focus on understanding

the functions and impact of CNN layers and CNNs that solve for pose information.

The work by [140] explored using CNNs for recognizing human pose. Other notable works

in human pose estimation are [84, 105]. Recently [49] proposed joint optimization on human

pose and activity. Object pose estimation is fundamentally different from human posture esti-

mation. In human pose estimation, there is no problem getting millions of image of people at

different postures. The human activities are correlated with human poses, while in the object-

pose domain the category is independent of pose. That makes the joint learning of category and

pose more challenging than joint learning of human activity and pose.

2.3 Medial Axis Representations for Object Recognition

Throughout history, man has been trying to understand the nature of shape, representations of

it and our inherent visual and cognitive perception of it. It hasn’t been until modern times that

scientists have attempted to scientifically establish what it means for humans to perceive shape.

In the latter half of the last century, scientists have focused on trying to understand and mimic

human perception of both 2D and 3D shapes.

Understanding the visual representation of shape is a difficult problem due to the infinite

dimensions of object geometry. Starting in the mid 1900s, much effort was channeled towards



16

discovering low-dimensional meaningful representations for shape. A meaningful representa-

tion requires that it should be intuitively capable of summarizing shape information and support

tasks such as shape/object recognition and matching. These are key tasks in Computer Vision,

Computer Graphics and Robotics applications.

Many researchers explored the description of shape by the holistic structure of object parts

and described each primitive part geometrically, e.g. geons [11] and geometric cylinders [93,

92]. Others developed feature descriptors to describe surface localities of shapes, e.g. spin-

images [65] and 3D shape context [76]. A very large body of work has focused on skeletons -

more generally referred to as Medial Representations. The topic of Medial Representations is

caught between multiple disciplines: Computer Science, Robotics, Psychology, Neuroscience

and Perceptual Science. In this chapter we will focus on Medial Representations and their

importance in understanding shape.

2.3.1 The Rise of Medial Representations

In 1967, Harry Blum published his work on representing 2D shapes by 1D skeletons. He called

this representation the Medial Axis or Medial Axis Transform (MAT) [13]. He based this work

on the insight that shape contours are intuitively captured by a representation that extracts local

symmetries of the contour boundary. Evidence supporting medial representations can be found

in psychophysics and neuroscience [28]. Children have no problem at all in recognizing shapes

represented by line-drawings without prior experience [28].

The Medial Axis has been found to be similar to many other approaches and has several

analogous definitions. For this reason Medial Axis is also sometimes referred to as topological

skeletons, symmetry axis/sets, grassfire propagation and central sets. All these names refer

to similar medial representations of shape that capture both the interior, local symmetry and

boundary of shapes by reducing them to 1D skeleton segments, that evidently summarize the

”parts” of an object at various levels of abstraction. The representation is formed by computing

the loci of centers of maximal discs contained within the shape. Blum also extended this work to

representing object parts and 3D shapes by representing 3D objects using surface skeletons (i.e.

sheets), seams and junctions joining the two and then building a graph of the object parts. This

was done in a later paper, published in 1973 [14]. The work by Blum has sparked numerous
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medial and graph representations of shapes over the years.

The recent book by Sidiqqi et. al. [127] goes through much of the literature since Blum’s

seminal paper. Sidiqqi et. al. divides shape understanding approaches into the following

categories: landmark representations, boundary representations, displacement by voxel rep-

resentations and medial representations. Landmark representations are similar to work done

in the Computer Vision community where each object is represented by a collection of dis-

tinctive visual/geometric features. Boundary representations represent objects/shapes by their

boundaries in the form of meshes, functional decomposition...etc. These can be thought of as

exo-skeleton representations but do not have the same simplicity as medial representations and

do not intuitively represent the symmetries in shapes. Displacement by voxel representations

represent shape by the displacement from an atlas of the space, much like morphing into the

shape. This representation also has trouble describing shapes in terms of symmetry and in sim-

ple terms. By far the most popular shape representation is the medial representation stemming

from Blum’s work. There have been numerous models and extensions to this. Examples of

these are Shock graphs [90], Reeb graphs [10], Flux graphs [28], Object Cores [18], Multiscale

Medial Axis [106], Bone graphs [89] and a Bayesian generative form of medial representation

[41, 47]. All these representations are similar in the essential step of reducing the dimension of

the shape representation to a series of curve segments making up the skeleton of the shape. The

final representation in these methods usually takes the form of a graph built from the skeleton

curve segments. For example, the popular Shock Graphs describes a skeleton as a Directed

Acylic Graph (DAG) using a scheme of combining adjacent equal types of shocks (i.e. necks,

protrusions, bends, seeds (junctions)), where shocks are different types of skeleton segments.

Problems with ligatures, noise, missing shape information due to occlusion and ambiguity

in the final representation haunt many of these models because they inherit the basic limitations

of Blum’s approach [28, 122]. Shock Graphs are affected by noise in the object boundary,

occlusions, the choice of root node and they do not maintain planar order of nodes [122].

Improvements have been made by either improvements in building the skeleton, smoothing

over the object’s shape prior to fitting the skeleton or smoothing the skeletal representation

after fitting. A discussion of these methods appears in [96].

There is no doubt that medial representations are essential in understanding shape and have
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been widely used across disciplines. In addition to psychological and perceptual evidence to

support the medial representation, we have compiled the main advantages of this elegant and

intuitive representations as follows:

• Medial representations offer an intuitive representation of the structure of shape (includ-

ing articulated objects) and as a result represent the topology of shapes in a natural way.

• They describe internal local symmetry as well as global shape structure. Symmetry is a

key feature of shape that humans perceive [145] and skeletons are naturally very adept at

representing this feature.

• Skeletons or medial representations allow part decomposition of shapes and hence ob-

ject/shape matching through the use of graph matching. Graphs built from skeletons

represent the global structure of objects’ shape and are thus useful for object recogni-

tion/matching [122].

• Invariance to rotation (to some degree - experiments on view-based robustness can be

found in [28, 122]), translation, scale and articulation.

• They offer compact powerful representations in reduced dimension (1D curves or 2D

sheets in some cases for 3D shapes).

2.3.2 3D Medial-Axis: An Inherently Pose-Invariant Representation

Much of the research in 2D shape understanding was also done theoretically on 3D shapes at

the same time because these two problems come hand in hand and the reality of the world lies

in 3D. Blum’s 1973 work also explores representations of 3D shapes. Other examples of work

exploring 3D shape understanding can be found in [60, 32, 61, 93, 92, 107, 28] and a good

integrative study of the subject can be found in [145], although many of these approaches focus

on decomposition of shape into primitive parts and not explicitly medial representations.

In the 3D realm, there has been a lot of work in the Computer Graphics community on geo-

metrically fitting skeletons to 3D object data in the form of meshes or unorganized point clouds.

The aim in the computer graphics community is to use these models to perform shape model-

ing and analysis. Two recent methods are [133] and [59]. Both methods compute skeletons on
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incomplete point clouds. The former computes a ROtational Symmetry Axis (ROSA) which

captures local symmetry in the shape of objects. The latter improves upon this by creating a

L1-median skeleton which locally adapts to the shape of object. There are many more previous

approaches that fit skeletons to 3D object models and these are discussed further in [59]. A very

interesting approach in [100] approaches the problem from another direction. They first de-

compose the object into parts using segmentation techniques and critical-point/inflection-point

computation based on surface concavities and then extract the skeleton from the segmented

parts by joining the parts and refining the skeleton to represent the topology of the shape in

accordance with Morse Theory. This theory is the basis for Reeb Graphs 1D skeletons and

analyzing the topology of shapes using critical points. Inflection and critical points is discussed

in detail by perceptual scientists and psychologists in [145]. The authors of [100] claim that

this method follows the process of human perception of shape. Despite this it fails when the

shape is partially occluded.

Many approaches extract 1D skeletons, not sheets or skeletal surfaces. An approach that

extracts 2D medial representations from 3D is [96]. This approach, named the Discrete Scale

Axis, improves upon Blum’s original medial axis transform for 3D objects by following the

medial axis transform with topology-preserving angle filtering. The approach argues that 2D

shape medial representations are not directly extendable to 3D shapes [96, 127].

The problem with 2D medial representations from a computer vision perspective (i.e for

object recognition/matching) is that the skeletal representation is still in a relatively high di-

mension. In [96] an illustrative example shows the body of a dolphin where it is represented by

a relatively vertical sheet. This is unnecessary for this tubular shape. A sufficient representation

can be a curve going through the center of the dolphin’s body with some definition of the cross-

sectional variation along the main axis as was done in Biederman’s definitions of 3D object

parts (geons) [11]. It is our view that only flat objects, such as rectangular walls, flattened ellip-

soids or tabletops should have sheet representations in 2D. A 1D curve/line going through these

objects no longer makes intuitive sense and complicates the representation for object recogni-

tion/matching purposes. All other objects or their primitive parts can be represented in their

tubular/cylinderical form by a 1D curve.

Some of the approaches that have achieved good object segmentation into parts have been
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tested on the Princeton Benchmark for 3D Mesh Segmentation [20] have also represented their

shapes using skeletons, for example [124, 147]. Object segmentation, object-part decomposi-

tion and medial representations have a lot in common because they all complement each other

in decomposing objects according to their shape. The decomposition itself (i.e. the shape struc-

ture) as well as the individual shape representations of the parts can then be used to perform

shape matching.

In the field of Computer Vision and Robotics, the research community has been focus-

ing intensely on shape representation in 2D images over the past decades. An example of

shape matching in binary 2D images can be seen in [122] where distance metrics are defined

between the graph representations. More recently [28] describes approaches to match Flux

Graphs between 2D image projections of 3D objects under viewpoint variation. Recently with

the emergence of 3D sensors (e.g. Xbox Kinect [148] and laser-scanners) and more available

3D data, shape representation for the foundational task of object recognition/matching has ap-

peared. A recent large dataset of objects scanned by a Kinect sensor has set a object recognition

benchmark for Robotics and Computer Vision systems [77]. Many, if not all, representations

of 3D objects in this dataset have focused on 2D representations of the 3D, in other words,

using feature descriptors such as HOG [24] or depth kernel descriptors [16] computed directly

on the depth image. This is shape representation in a limited way and the actual full 3D shape

information is lost. It is important to note that the Kinect sensors produce 2.5D information and

not full 3D. 2.5D is another way of saying depth/range map which is represented as a grayscale

depth image. The approach in [68] analyzes shape representations in order to detect and rec-

ognize objects using point clouds from depth sensors. It seems that a robust 3D representation

of noisy realistic 2.5D and 3D data that are able to cope with the demanding task of object

recognition are still lacking.

There are only two works that we are aware of that have explored representing medial

representations probabilistically [47, 154]. These probabilistic approaches are important to

be able to generate missing information and make predictions of shape boundaries based on

the medial representation. This is very similar to the way humans perceive shape and can

interpolate missing shape information. These approaches are confined to 2D shapes and no

exploration of representing full 3D shapes stochastically have yet taken place.
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Representing objects by shape alone is counter-intuitive in the sense that humans use many

other cues, including visual cues for recognition and matching. A stable model of object repre-

sentation should be built to combine shape and visual information.
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Chapter 3

Multi-Modal Pose Estimation
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The advent of inexpensive depth augmented color (RGBD) sensors (e.g. Microsoft Xbox

Kinect [148]) has brought about a large advancement in the 3D perceptual capability of vi-

sion systems and mobile robots. Challenging vision problems like object category, instance

and pose recognition have all benefited from this recent technological advancement. In this

work we address the challenging problem of pose recognition using simultaneous color and

depth information. For this purpose, we extend a state-of-the-art regression framework by us-

ing a multi-kernel approach to incorporate depth information to perform more effective pose

recognition on table-top objects. We do extensive experiments on a large publicly available

dataset to validate our approach. We show significant performance improvements (more than

20%) over published results.

3.1 Introduction

The introduction of RGBD sensors has had an immediate impact on mobile robotics where

robots are being fitted with Kinect sensors to enhance their perceptive capability. A challenging

problem for robots is to automatically identify objects (category and instance) as well as their

poses. We feel that in this space, while the problems of object category and instance recognition

have received a lot of attention, pose recognition has not been addressed adequately. Pose

recognition is an important problem that can help the robot answer important questions, for

example, what is the arrangement and orientation of various objects or people?, Where is the

handle of the mug?, etc. . Addressing these questions is important for a variety of tasks like

scene understanding, activity recognition, object manipulation in mobile robotics as well as for

the wider areas of computer vision.

3D object pose recognition is a rich field of research [94, 52, 119, 15, 88]. However, the

cheap availability of scene depth information synchronized with photometric (RGB/grayscale)

is only a recent phenomenon. As a result, approaches that use both modalities of information

are rather sparse. It is expected that this new modality has the potential to provide considerable

boost in the accuracy of pose recognition systems.

The most relevant work in the area of pose (along with category and instance) recogni-

tion using synchronized multimodal photometric and depth data (i.e. RGBD) is by Lai et al.
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[78, 77]. In [78], the authors show significant performance improvements for simultaneous

recognition of object category, instance and pose recognition. They use machine learning to

build an object-pose tree model from RGBD images and perform hierarchical inference on it.

Although the performance improvements on category and instance recognition are impressive,

object pose recognition performance is modest. The main reasons for this is that they use a

classification strategy for pose recognition (resulting in coarse pose estimates) and do not fully

utilize the information present in the spatial distribution of features on object surfaces.

In our previous work [139], we have addressed these two issues. Since the pose space is

continuous, we developed a regression framework for estimating object pose (using only color

images). Moreover, along with the appearance properties, our framework explicitly represents

and models spatial distributions of salient features on the object surfaces to get a (continuous)

pose estimate. This framework was shown to achieve state-of-the-art results on pose estimation

from 2D images and significantly improved estimation on a variety of difficult datasets.

This work makes the following contributions: firstly, we use a multi-kernel learning (MKL)

approach to extend our framework for pose estimation to use multimodal RGBD data and show

the benefits of doing this. This confirms that 3D shape information captured in the form of

depth-maps provides valuable additional information about object pose as well as the fact that

the proposed framework is able to exploit this information. Using depth is very useful for

objects which lack visual features and/or suffer from partial occlusion (e.g. second pitcher in

fig. 3.3) which severely limits pose estimation using visual cues alone. Furthermore, depth

features also have the advantage of being illumination-invariant.

Secondly, we do extensive experiments on a large, publicly available RGBD dataset [77]

specially suited for this purpose. The dataset consists of RGBD data for 300 objects. The

objects were put on a turntable and the Kinect sensor was used to gather data from 3 different

sensor heights and 250 different object poses at each sensor height2. We evaluate our algorithm

on this dataset and demonstrate that we achieve significant performance improvements over

best published results.

In section 3.2, we describe the regularized kernel regression framework (from [139]) and

2Other RGBD datasets are available which are smaller and less suitable to validate pose-estimation performance
– for a comprehensive description refer to [63].
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how we extend it to use multiple kernels to incorporate depth information. In section 3.2.1

we describe the method of building the visual and depth kernels and lastly in section 3.2.2 we

describe the various methods we have explored to learn using multiple kernels (MKL).

3.2 RGBD Multi-Kernel Regression

Let an image Xk be represented by its features – Xk

= {xk
i

2 R2, fk

i

2 RF, dk
i

2 RD} where

i = 1, ..., N
k

. Let xk
i

denote the ith spatial location, and fk

i

and dk
i

the respective RGB and

depth feature descriptors at that location. N
k

is the number of local features (variant across

images). Each image is also associated with a pose vk 2 RV. The goal of regression is to learn

a regularized mapping function ĝ from input image features to the pose space from (paired)

training data: (Xk, vk). As shown in [139], the regression can be reduced to:

v = ĝ(X) =

X

j

bjK(X,Xj
) (3.1)

K(·, ·), a positive definite (p.d.) kernel, measures the similarity between images. We ex-

tend this approach to use multiple kernels. We define two kernels – K for representing visual

similarity and G(·, ·) for depth similarity. Multi-kernel regression is similarly reduced to:

v = ĝ(X) =

X

j

(bjK(X,Xj
) + cjG(X,Xj

)) (3.2)

where G measures depth similarity between images and K measures similarity of visual

local features within and between images.

We depict the proposed multi-kernel regression pipeline in fig. 3.1. It consists of two steps:

feature embedding (section 3.2.1) and pose regression (section 3.2.2).

3.2.1 Feature Embedding

Our pose regression framework uses the feature embedding concept defined in prior work [139].

This section summarizes the key ideas of this work and then focuses on the extensions to use

depth information.

The goal of feature embedding is to enforce regularity constraints: inter-image feature affin-

ity, intra-image spatial affinity and prior manifold structure (topology, 1D...etc). At the same

time, we want the embedded feature space to be independent of the variant number of features
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in input images. In this work, we learn two feature embeddings: one for the RGB features

and another for the depth features. This requires the specification of corresponding affinity

matrices.

RGB feature embedding follows [139]: The spatial affinity within each image and feature

affinity between images is computed using kernels resulting in two weight matrices. We use

Geometric Blur (GB) as the RGB feature. A regularized objective function is then optimized

(eqn 7, [139]) from training images to obtain a Laplacian Eigenmap embedding. Depth feature

embedding is done in a slightly different (albeit simpler) way. Kinect depth data has many

missing holes (see fig. 3.4) due to infrared absorption by some materials. We empirically es-

tablished that a single global depth feature (per image) is more reliable than locally anchored

multiple depth features. We use HOG applied to depth images (dHOG) as a single depth de-

scriptor per image. We now obtain a Laplacian embedding for the depth features also.

Consequently, each training image is mapped to two embedded feature representations cor-

responding to the RGB and depth data. Embedding the features from an unseen test image

is done by solving an out-of-sample problem which estimates the mapping between the input

space and embedding space.

3.2.2 Pose Regression

Once the feature embedding is done, pose regression is performed to learn the model for pre-

dicting pose from embedded features (see fig. 3.1). We experimented with two approaches.

MKR: Multi-Kernal Regression

In the first approach, called Multi-Kernel Regression (MKR), we estimated coefficients b
j

and

c
j

in eq. 3.2 from the training data using Euclidean error norm on the estimated pose. Note

that the X in eq. 3.2 now corresponds to embedded features computed in the last section. The

advantage of this approach is that since weights for both RGB and depth kernels are learned

simultaneously for each training example, example-specific weights are learnt than can achieve

a good tradeoff between the relative quality of information (or lack thereof) in depth or RGB

data. Thus, objects with good discriminative visual features can be robust to noisy or non-

discriminative depth features and vice versa. The resulting pose estimator can be represented



27

Figure 3.1: Pose Regression Using Feature Embedding. Model is learnt using training data.
Estimation is done for test data by treating them as out-of-sample cases.

as follows:

v = ĝ(X) =

h
K|G

i

2

6664

b

�
c

3

7775
(3.3)

K and G here are the p.d. kernels built over the RGB and depth feature embeddings inde-

pendently.

MKL: Multi-Kernal Learning

The second approach we tried is Multi-Kernel Learning (MKL) [3] where effectively a new

kernel is represented as a weighted sum of several kernels (as in eq. 3.4). This method is

analogous to a system with multiple experts. Weights must be assigned to each kernel according

to its discriminative power in the regression problem. For our scenario, this approach has an

effect of learning an apriori relative bias for/against the RGB information vis-a-vis the depth
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information.

K =

MX

j

⌘jKj (3.4)

M is the number of kernels and ⌘ are the scalar weights corresponding to each individual

kernel. When combining RGB and depth we have two kernels representing each of these two

modes. There are multiple ways of learning the discriminative power of each kernel. A com-

mon way is to use a correlation measure between individual kernel regressor and the ground

truth values in the training data. This work uses two heuristics: F-measure and M-measure

[109]. The former measures the kernel alignment using the Frobenius norm between the kernel

regresser and the inner product of the pose labels. The higher this value is for a kernel, the

more it contributes to the combined kernel. The latter measure is based on the mean square

error when performing regression using each kernel on training data. The smaller the MSE

per kernel is, the less contribution that kernel has to the combined kernel. These two measures

give us the weights ⌘
j

corresponding to each kernel Kj . The weighted sum kernel is now used

to learn the pose regression from (3.1). We call the two pose regressors MKL-F and MKL-M

respectively.

3.3 Experiments

We evaluate the presented approach on a large, publicly available RGBD dataset [77] specially

suited for pose recognition. The Kinect sensor was used to gather data from 3 different sensor

heights and poses were densely captured per object using a turntable. We followed the same

experimental setup and loss function as in [78] for a fair comparison with this state-of-the-art

approach. Thus, images captured from elevation angles of 30� and 60� were used for training

while those from 45� were used for testing.

Geometric Blur (GB) features were computed on RGB images to represent photometric

information while HOG features [24] were computed on the depth images to represent depth

information (dHOG). While 45 most-significant GB features (local) were used, we used a single

global dHOG per image. The depth data has large areas of missing depth (see fig. 3.4) due to

infrared absorption by some materials. A single global dHOG descriptor was found to be more
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reliable than multiple local features because of its ability to capture the overall structure of

the objects, including noisy areas of the depth image with missing depth (that happen to be

consistent per the material of the object and thus pose-invariant). We also empirically analyzed

the eigenvalues of the Laplacian Eigenmap embedding on the training data and found the best

embedding dimensions to be 100 for GB (204-dimensional) and 75 for the 9x9-grid dHOG. We

used Radial-Basis Function (RBF) kernels with Euclidean distances between feature vectors.

These settings were used for all experiments.

The experimental results are presented in Table 3.1. The baseline approach [78] is presented

in the last row. The first two rows represent our regression approach using only depth features

(dHOG) and only RGB features (gsGB [139]), respectively. MKR represents our multi-kernel

regression approach by concatenating the visual features kernel and global depth features ker-

nel. MKL-F and MKL-M represent our regression approach when the kernel weights were

computed using the F-measure and M-measure, respectively.

The dHOG approach shows worst performance, significantly lower than gsGB. This is due

to two reasons: the depth feature is more noisy (large missing holes) than the RGB data. Sec-

ondly, for robustness, we use a single global depth feature while gsGB uses multiple locally

anchored visual features. The relative spatial arrangement of these features is very informa-

tive about the object pose and is effectively exploited by our visual-only algorithm. It can be

seen that the proposed MKR and MKL approaches are able to use information from both color

and depth features to provide a statistically significant improvement over regression using only

depth or only color features. Note that we see a larger jump in the median performance than

in the mean performance. The reason for this is that we get a significant performance boost

for most of the object classes. A few object categories do not perform as well which can be

attributed to being objects that have uniform non-discriminative pose-invariant shape, such as

ball and bowl categories. In fact, asking the question of which pose these objects are in is an

ill-posed question. Note that we get a relative improvement of approximately 11% and 4% over

our own color-only baseline implementation.

Lastly, we compare the performance of the proposed regression framework with the base-

line algorithm in [78]. The proposed MKR and MKL approaches easily outperform the base-

line. In fact, MKL-M achieves a relative performance improvement of approx. 21% and 32%
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Method Median Pose Accuracy Avg Pose Accuracy St. Dev.

dHOG (Depth) 51.25 50.62 5.16

gsGB (RGB) [139] 77.8 72.06 14.39

MKR (RGB+D) 85.0 74.58 13.69

MKL-F (RGB+D) 86.3 75.50 12.71

MKL-M (RGB+D) 86.7 74.76 14.21

[78] 71.40 56.80 -

Table 3.1: Pose Recognition Performance over all 51 classes of RGBD-dataset

in the median and average pose accuracy, respectively. The median performance using MKL-M

is shown for a representative subset of objects in fig. 3.2.

3.4 Conclusion

In this work, we presented a novel MKL based regression framework that automatically com-

bines the color and depth information present in the multi-modal RGBD image data for effective

object pose estimation. We extensively evaluated the performance of the presented framework

on a large dataset and showed that we are able to significantly outperform best published results

in this area, thus validating the efficacy of the presented framework.

Figure 3.2: Median % accuracy for a subset of objects from RGBD-dataset

1Pose annotations indicate the yaw angle plotted on a unit circle anchored to the center of the image
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Figure 3.3: Ground truth and estimated poses overlaid for sample images. The red line signifies
the ground-truth pose, green represents the estimated pose using visual + depth and blue is the
estimated pose using visual local features only. 1

Figure 3.4: Pose estimates with RGB and depth images. Note missing depth on parts of the
flashlight depth image (dark blue regions) 1
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Chapter 4

Unsupervised Joint Categorization and Pose Estimation using
Manifold Approaches
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Due to large variations in shape, appearance, and viewing conditions, object recognition is a

key precursory challenge in the fields of object manipulation and robotic/AI visual reasoning in

general. Recognizing object categories, particular instances of objects and viewpoints/poses of

objects are three critical subproblems robots must solve in order to accurately grasp/manipulate

objects and reason about their environments. Multi-view images of the same object lie on in-

trinsic low-dimensional manifolds in descriptor spaces (e.g. visual/depth descriptor spaces).

These object manifolds share the same topology despite being geometrically different. Each

object manifold can be represented as a deformed version of a unified manifold. The object

manifolds can thus be parameterized by its homeomorphic mapping/reconstruction from the

unified manifold. In this work, we develop a novel framework to jointly solve the three chal-

lenging recognition sub-problems, by explicitly modeling the deformations of object manifolds

and factorizing it in a view-invariant space for recognition. We perform extensive experiments

on several challenging datasets and achieve state-of-the-art results.

4.1 Introduction

Visual object recognition is a challenging problem with many real-life applications. The diffi-

culty of the problem is due to variations in shape and appearance among objects within the same

category, as well as the varying viewing conditions, such as viewpoint, scale, illumination, etc.

Under this perceptual problem of visual recognition lie three subproblems that are each quite

challenging: category recognition, instance recognition, and pose estimation. Impressive work

has been done in the last decade on developing computer vision systems for generic object

recognition. Research has spanned a wide spectrum of recognition-related issues, however,

the problem of multi-view recognition remains one of the most fundamental challenges to the

progress of the computer vision.

The problems of object classification from multi-view setting (multi-view recognition) and

pose recovery are coined together, and directly impacted by the way shape is represented. In-

spired by Marr’s 3D object-centric doctrine [92], traditional 3D pose estimation algorithms

often solved the recognition, detection, and pose estimation problems simultaneously (e.g.[51,

79, 87, 126]), through 3D object representations, or through invariants. However, such models
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were limited in their ability to capture large within-class variability, and were mainly focused

on recognizing instances of objects. In the last two decades the field has shifted to study 2D

representations based on local features and parts, which encode the geometry loosely (e.g. pic-

torial structure like methods [44, 43]), or does not encode the geometry at all (e.g. bag of words

methods [144, 129].) Encoding the geometry and the constraints imposed by objects’ 3D struc-

ture are essential for pose estimation. Most research on generic object recognition bundle all

viewpoints of a category into one representation; or learn view-specific classifiers from limited

viewpoints, e.g. frontal cars, side-view cars, rear cars, etc. Recently, there has been an increas-

ing interest in object categorization in the multi-view setting, as well as recovering object pose

in 3D, e.g. [21, 75, 119, 86, 130, 132, 103, 95]. However, the representations used in these

approaches are mainly category-specific representations, which do not support scaling up to a

large number of categories.

The fundamental contribution of this work is the way we address the problem. We look

at the problem of multi-view recognition and pose estimation as a style and content separation

problem, however, in an unconventional and unintuitive way. The intuitive way is to model

the category as the content and the viewpoint as a style variability. Instead, we model the

viewpoint as the content and the category as a style variability. This unintuitive way of looking

at the problem is justified from the point of view of learning the visual manifold of the data. The

manifold of different views of a given object is intrinsically low in dimensionality, with known

topology. Moreover, we can show that view manifolds of all objects are deformed version of

each other. In contrast, the manifold of all object categories is hard to model given all within-

class variability of objects and the enormous number of categories. Therefore, we propose to

model the category as a “style” variable over the view manifold of objects. We show that this

leads to models that can untangle the appearance and shape manifold of objects, and lead to

multi-view recognition.

The formulation in this work is based on the concept of Homeomorphic Manifold Analysis

(HMA) [37]. Given a set of topologically equivalent manifolds, HMA models the variation in

their geometries in the space of functions that maps between a topologically-equivalent com-

mon representation and each of them. HMA is based on decomposing the style parameters in

the space of nonlinear functions that map between a unified embedded representation of the
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content manifold and style-dependent visual observations. In this work, we adapt a similar

approach to the problem of object recognition, where we model the viewpoint as a continuous

content manifold and separate object style variables as view-invariant descriptors for recogni-

tion. This results in a generative model of object appearance as a function of multiple latent

variables, one describing the viewpoint and lies on a low-dimensional manifold, and the other

describing the category/instance and lies on a low-dimensional subspace. A fundamental differ-

ent in our proposed framework is the way 3D shape is encoded. An object’s 3D shapes imposes

deformation of its view manifold. Our framework, explicitly models the deformations of object

manifolds and factorizes it in a view-invariant space for recognition. It should be notice that

we ignore the problem of detection/localization in this work, and only focus on the problem

of recognition and pose estimation assuming that bounding boxes or masks of the objects are

given.

Pose recognition/estimation is fundamentally a six-degree-of-freedom (6DoF) problem [134],

including 3DoF position [x, y, z] and 3DoF orientation [yaw, pitch, roll]. However, in practi-

cal computer vision and robotic applications, pose estimation typically means solving for the

some or all of the orientation degrees of freedom, while solving for the 3DoF position is usually

called localization. In this work, we focused on the problem of estimating the 3DoF orientation

of the object (or the 3DoF viewing orientation of the camera relatively), i.e. we assume that the

camera is at a fixed distance to the object. We firstly considered the case of 1DoF orientation,

i.e. a camera looking at an object on a turntable setting, which results in a one-dimensional

view manifold, and then generalized to 2DoF and 3DoF orientation. Generalization to recover

the full 6DoF of a camera is not obvious. Recovering the full 6DoF camera pose is possible for

a given object instance. This can be achieved by traditional model-based method. However,

this is a quite challenging task for the case of generic object categories.

There are various reasons why we only consider 3DoF viewing orientation and not full

6DoF. First, it is quite hard to have training data that cover the space of poses in that case;

all the state-of-the-art dataset are limited to only a few views, or at most, multiple views of

an object on a turn-table with a couple of different heights. Second, practically, we do not see

objects in all possible poses, in many applications the poses are quite limited to a viewing circle

or sphere. Even humans will have problems recognizing objects in unfamiliar poses. Third, for
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Figure 4.1: Framework for factorizing the view-object manifold. In the bottom left lies the
space over which the views of the object are captured. Points in this space have correspond-
ing feature points in the image/feature space which lie on entangled manifolds. A generative
mapping can be found between points on a conceptual manifold space (i.e. a unit circle in the
simple viewing circle setup) to the points in the feature space (see Figure 4.2 for two example
object mappings). This mapping can then be factorized to find the latent factors over which we
can solve for category and pose of objects.

most applications, it is not required to know the 6DoF pose, 1DoF pose is usually enough.

Definitely for categorization 6DoF is not needed. In this work we show that we can learn from

a viewing circle and generalize very well to a large range of views around it.

4.2 Framework

Intuition

The objective of our framework is to learn a manifold representation for multi-view objects that

supports category, instance and viewpoint recognition. In order to achieve this, given a set of

images captured from different viewpoints, we aim to learn a generative model that explicitly

factorizes the following:

• Viewpoint variable (within-manifold parameterization): smooth parameterization of the

viewpoint variations, invariant to the object’s category.

• Object variable (across-manifold parameterization): parameterization at the level of each

manifold that characterizes the object’s instance/category, invariant to the viewpoint.

Consider collections of images containing instances of different object classes and different

views of each instance. The shape and appearance of an object in a given image is a function
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Figure 4.2: A motivational illustration of the mapping of a conceptual manifold to the input
spaces of multiple view images of two different objects. Notice that the manifold can collapse
where similar views lie in the input feature space.

of its category, style within category, viewpoint, besides other factors that might be nuisances

for recognition. Our discussion do not assume any specific feature representation of the input,

we just assume that the images are vectors in some input space. The visual manifold given

all these variability collectively is impossible to model. Let us first simplify the problem.

Let us assume that the object is detected in the training images (so there is no 2D translation

or in-plane rotation manifold). Let us also assume we are dealing with rigid objects (to be

relaxed), and ignore the illumination variations (assume using an illumination invariant feature

representation). Basically, we are left with variations due to category, within category, and

viewpoint, i.e., we are dealing with a combined view-object manifold.

The underlying principle is that multiple views of an object lie on an intrinsic low-dimensional

manifolds in the input space (denoted as view manifold). The view manifolds of different ob-

jects are distributed in input space. To recover the category, instance and pose of a test image

we need to know which manifold this image belongs to and the intrinsic coordinates of that

image within the manifold. This basic view of object recognition and pose estimation is not

new, and was used in the seminal work of [97]. PCA [66] was used to achieve linear dimen-

sionality reduction of the visual data, and the manifolds of different object were represented as

parameterized curves in the embedding space. However, dimensionality reduction techniques,

whether linear or nonlinear, will just project the data (preserving the manifold’s local and/or

global geometry), and will not be able to achieve the desired untangled representation.



38

What is novel in our framework, is that we use the view manifold deformation as an invari-

ant that can be used for categorization and modeling the within-class variations. Let us consider

the case where different views are obtained from a viewing circle, e.g. camera viewing an ob-

ject on a turntable. The view manifold of the object is a 1D closed manifold embedded in the

input space. That simple closed curve deforms in the input space depending on the object shape

and appearance (see Figure 4.2 for example mappings for two objects. Notice the deformation

in the input feature space which depends on the shape and appearance of the objects). The view

manifold can be degenerate, e.g. imaging a textureless sphere from different views results in

the same image, i.e. the visual manifold in this case is degenerate to a single point. There-

fore, capturing and parameterizing the deformation of a given object’s view manifold tells us

information about the object category and within category variation. If the views are obtained

from a full or part of the view-sphere centered around the object, it is clear that the resulting

visual manifold should be a deformed sphere as well (assuming the cameras are facing toward

the object).

Let us denote the view manifold of an object instance s in the input space by Ds ⇢ RD. D

is the dimensionality of the input space. Assuming that all manifolds Ds are not degenerate (we

will discuss this issue shortly), then they are all topologically equivalent, and homeomorphic to

each other1. Moreover, suppose we can achieve a common view manifold representation across

all objects, denoted by M ⇢ Re, in an Euclidean embedding space of dimensionality e. All

manifolds Ds are also homeomorphic to M. In fact all these manifolds are homeomorphic to

a unit circle in 2D for the case of a viewing circle, and a unit sphere in 3D for the case of full

view sphere. In general, the dimensionality of the view manifold of an object is bounded by the

dimensionality of viewing manifold (degrees of freedom imposed by the camera-object relative

pose).

1A function f : X ! Y between 2 topological spaces is called a homeomorphism if it is a bijection, continuous,
and its inverse is continuous. In our case the existence of the inverse is assumed but not required for computation,
i.e., we do not need the inverse for recovering pose. We mainly care about the mapping in a generative manner from
M to Ds.
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Manifold Parameterization

We can achieve a parameterization of each manifold deformation by learning object-dependent

regularized mapping functions �
s

(·) : Re ! RD that map from M to each Ds. Given a

Reproducing Kernel Hilbert Space (RKHS) of functions and its corresponding kernel K(·, ·),
from the representer theorem [71, 108] it follows that such functions admit a representation of

the form

�
s

(x) = C

s ·  (x) , (4.1)

where Cs is a D⇥N
 

mapping coefficient matrix, and  (·) : Re ! RN is a nonlinear kernel

map, as will be described in Section 4.3.

In the mapping (Eq. 4.1), the geometric deformation of manifold Ds, from the common

manifold M, is encoded in the coefficient matrix C

s. Therefore, the space of matrices {Cs}
encodes the variability between different object manifolds, and can be used to parameterize

such manifolds. We can parameterize the variability across different manifolds in a subspace

in the space of coefficient matrices. This results in a generative model in the form

�(x, s) = A⇥2 s⇥3  (x). (4.2)

In this model s 2 Rds is a parameterization of manifold Ds that signifies the variation in

category/instance of an object. x is a representation of the viewpoint that evolves around the

common manifold M. A is a third order tensor of dimensionality D ⇥ d
s

⇥N
 

, where ⇥
i

is

the mode-i tensor product as defined in [25]. In this model, both the viewpoint and object latent

representations, x and s, are continuous.

There are several reasons why we learn the mapping in a generative manner from M to

each object manifold (not the other way). First, this direction guarantees that the mapping is

a function, even in the case of degenerate manifolds (or self intersections) in the input space.

Second, mapping from a unified representation as M results in a common RKHS of functions.

All the mappings will be linear combinations of the same finite set of basis functions. This

facilitates factorizing the manifold geometry variations in the space of coefficients in Eq 4.2.

Given a test image y recovering the category, instance and pose reduces to an inference
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problem where the goal is to find s

⇤ and x

⇤ that minimizes a reconstruction error, i.e.,

argmin

s,x

ky �A⇥2 s⇥3  (x)k2. (4.3)

Once s is recovered, an instance classifier and a category classifier can be used to classify y.

Learning the model is explained in Section 4.3. Here we discuss and justify our choice of

the common manifold embedded representation. Since we are dealing with 1D closed view

manifolds, an intuitive common representation for these manifolds is a unit circle in R2. A unit

circle has the same topology as all object view manifolds (assuming no degenerate manifolds),

and hence, we can establish a homeomorphism between it and each manifold.

Dimensionality reductions (DR) approaches, whether linear (such as PCA [66] and PPCA [138])

or nonlinear (such as isometric feature mapping (Isomap) [135], Locally linear embedding

(LLE) [115], Gaussian Process Latent Variable Models (GPLVM) [81]) have been widely used

for embedding manifolds in low-dimensional Euclidean spaces. DR approaches find an optimal

embedding (latent space representation) of a manifold by minimizing an objective function that

preserves local (or global) manifold geometry. Such low-dimensional latent space is typically

used for inferring object pose or body configuration. However, since each object has its own

view manifold, it is expected that the embedding will be different for each object. On the other

hand, using DR to embed data from multiple manifolds together will result in an embedding

dominated by the inter-manifold distance and the resulting representation cannot be used as a

common representation.

Embedding multiple manifolds using DR can be achieved using manifold alignment, e.g.

[54]. If we embed aligned view manifolds for multiple objects where the views are captured

from a viewing circle, we observe that the resulting embedding will converge to a circle. Sim-

ilar results were shown in ([139]), where a view manifold is learned from local features from

multiple instances with no prior alignment. This is expected since each object view manifold

is a 1D closed curve in the input space, i.e. a deformed circle. Such deformation depends on

object geometry and appearance. Hence it is expected that the latent representation of multiple

aligned manifolds will converge to a circle. This observation empirically justifies the use of

a unit circle as a general model of object view manifold in our case. Unlike DR where the

goal is to find an optimal embedding that preserves the manifold geometry, in our case we only
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need to preserve the topology while the geometry is represented in the mapping space. This

facilitates parameterizing the space of manifolds. Therefore, the unit circle represents an ideal

conceptual manifold representation, where each object manifold is a deformation of that ideal

case. In some sense we can think of a unit circle as a prior model for all 1D view manifolds.

If another degree of freedom is introduced which, for example, varies the pitch angle of the

object on the turn-table then a sphere manifold would capture the conceptual geometry of the

pose and be topologically-equivalent.

Dealing with degeneracy

Of course the visual manifold can be degenerate in some cases or it can be self intersecting,

because of the projection from 3D to 2D and lack of visual features, e.g., images of a textureless

sphere. In such cases the homeomorphic assumption does not hold. The key to tackle this

challenge is in learning the mapping in a generative manner from M to Ds, not in the other

direction. By enforcing the known non-degenerate topology on M, the mapping from M to

Ds still exists, still is a function, and still captures the manifold deformation. In such cases the

recovery of object pose might be ambiguous and ill-posed. In fact, such degenerate cases can

be detected by rank-analysis of the mapping matrix C

s.

4.3 Learning the Model

The input to the learning algorithm is images of different objects from different viewpoint, with

viewpoint labels, and category label. For learning the representation, only the viewpoint labels

are needed, while the category labels are used for learning classifiers on top of the learned

representation, i.e. learning the representation is ”unsupervised” from the category perspective.

Images of the same object from different views is dealt with as a set of points sampled from

its view manifold. The number of sampled views do not necessarily be the same, nor they

have to be aligned. We first describe constructing a common ”conceptual” view manifold

representation M then we describe learning the model.
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View manifold representation

Let the sets of input images be Y k

= {(yk

i

2 RD,pk

i

), i = 1, · · · , N
k

} where D is the

dimensionality of the input space (i.e. descriptor space) and p denotes the pose label. We

construct a conceptual unified embedding space in Re, where e is the dimensionality of the

conceptual embedding space. Each input image will have a corresponding embedding coordi-

nate defined by construction using the pose labels. We denote the embedding coordinates by

Xk

= {xk

i

2 Re, i = 1, · · · , N
k

}.

If we assume the input is captured from a viewing circle with yaw angles (viewpoints):

⇥ = {✓k
i

2 [0, 2⇡), i = 1, · · · , N
k

}, then the k-th image set is embedded on a unit circle

such that xk

i

= [cos ✓k
i

, sin ✓k
i

] 2 R2, i = 1, · · · , N
k

. By such embedding, multi-view images

with 1D pose variation are represented on a conceptual manifold (unit circle in 2D), i.e. a

normalized 1-sphere. For the case of a full view sphere (2D pose variation represented by yaw

and pitch angles), images are represented on a unit-sphere in 3D, i.e. a normalized 2-sphere.

And for the case of 3D pose variation represented by yaw, pitch and roll angles, the conceptual

manifold will be a normalized 3-sphere in 4D. Generally, assuming the pose angles of the input

are p

k

i

= {(✓k
i

,�k
i

, ⇣k
i

), i = 1, · · · , N
k

} where ✓, � and ⇣ indicate yaw angle, pitch angle and

roll angle respectively, then the embedded coordinate of the i-th image y

k

i

is defined as

x

k

i

=

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

⇥
cos ✓k

i

, sin ✓k
i

⇤
T 2 R2 (1D case)2

66664

cos ✓k
i

cos�k
i

sin ✓k
i

cos�k
i

sin�k
i

3

77775
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66666664

cos ✓k
i

cos�k
i

cos ⇣k
i

sin ✓k
i

cos�k
i

cos ⇣k
i

sin�k
i

cos ⇣k
i

sin ⇣k
i

3

77777775

2 R4 (3D case)

(4.4)

Notice that by embedding on a conceptual manifold, we just preserve the topology of the man-

ifold, not the metric input space. For clarity and without loss of generality, we only consider

1D case when describing the learning and inferring procedures in the following parts of this

section and the next.
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Homeomorphic Manifold Mapping

Given an input set Y k and its embedding coordinates Xk on a unit circle, we learn a regularized

nonlinear mapping function from the embedding to the input space, i.e. a function �
k

(·) :

Re ! RD that maps from embedding space, with dimensionality e, into the input space with

dimensionality D.

To learn such mappings, we learn individual functions �l
k

: Re ! R for the l-th dimension

in the feature space. Each of these functions minimizes a regularized loss functional in the form

n

kX

i

���yk

il

� �l
k

(x

k

i

)

���
2
+ � ⌦[�l

k

], (4.5)

where k·k is the Euclidean norm, ⌦ is a regularization function that enforces the smoothness in

the learned function, and � is the regularizer that balances between fitting the training data and

smoothing the learned function. From the representer theorem [71] we know that a nonlinear

mapping function that minimizes a regularized risk criteria admits a representation in the form

of linear combination of basis functions around arbitrary points z

j

2 Re, j = 1, · · · ,M on

the manifold (unit circle). In particular we use a semi-parametric form for the function �(·).
Therefore, for the l-th dimension of the input, the function �l

k

is an RBF interpolant from Re to

R. This takes the form

�l
k

(x) = pl(x) +
MX

j=1

!l

j

· �(|x� z

j

|), (4.6)

where �(·) is a real-valued basis function, !
j

are real coefficients and | · | is the 2nd norm in the

embedding space. pl is a linear polynomial with coefficients cl, i.e. pl(x) = [1 x] · cl. The

polynomial part is needed for positive semi-definite kernels to span the null space in the corre-

sponding RKHS. The polynomial part is essential for regularization with the choice of specific

basis functions such as Thin-plate spline kernel [72]. The choice of the centers is arbitrary

(not necessarily data points). Therefore, this is a form of Generalized Radial Basis Function

(GRBF) [108]. Typical choices for the basis function include thin-plate spline, multiquadric,

Gaussian2, biharmonic and tri-harmonic splines. The whole mapping can be written in a matrix

2A Gaussian kernel does not need a polynomial part.
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form

�k(x) = C

k ·  (x), (4.7)

where C

k is a D ⇥ (M + e + 1) dimensional matrix with the l-th row [!l

1, · · · ,!l

M

, cl
T

].

The vector  (x) = [�(|x � z1|) · · ·�(|x � z
M

|), 1, xT ]T represents a nonlinear kernel map

from the embedded conceptual representation to a kernel induced space. To ensure orthogo-

nality and to make the problem well posed, the following condition constraints are imposed:

⌃

M

i=1!i

p
j

(x
i

) = 0, j = 1, · · · ,m, where p
j

are the linear basis of p. Therefore, the solution

for Ck can be obtained by directly solving the linear system:
0

@ A P

x

P

T

t

0(e+1)⇥(e+1)

1

A

k

C

k

T

=

0

@ Y

k

0(e+1)⇥d

1

A , (4.8)

A, P
x

and P

t

are defined for the k � th set of object images as: A is a N
k

⇥M matrix with

A

ij

= �(|xk
i

� z
j

|), i = 1, · · · , N
k

, j = 1, · · · ,M,P
x

is a N
k

⇥ (e+ 1) matrix with i-th row

[1,xk

T

i

], P
t

is M ⇥ (e + 1) matrix with i-th row [1, zT
i

]. Y
k

is a N
k

⇥ D matrix containing

the input images for set of images k, i.e. Y
k

= [y

k

1 , · · · ,yk

Nk
]. Solution for Ck is guaranteed

under certain conditions on the basic functions used.

Decomposition

Each coefficient matrix C

k captures the deformation of the view manifold for object instance

k. Given learned coefficients matrices C

1, · · · ,CK for each object instance, the category

parameters can be factorized by finding a low-dimensional subspace that approximates the

space of coefficient matrices. We call the category parameters/factors style factors as they

represent the parametric description of each object view manifold.

Let the coefficients be arranged as a D ⇥ K ⇥ (M + e + 1) tensor C. The form of the

decomposition we are looking for is:

C = A⇥2 S, (4.9)

where A is a D ⇥ d
s

⇥ (M + e+ 1) tensor containing category bases for the RBF coefficient

space and S = [s

1, · · · , sK ] is d
s

⇥ K. The columns of S contain the instance/category

parameterization. This decomposition can be achieved by arranging the mapping coefficients
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as a (D(M + e+ 1))⇥K matrix:

C =

0

BBBB@

c

1
1 · · · c

K

1

...
. . .

...

c

1
M+e+1 · · · c

K

M+e+1,

1

CCCCA
(4.10)

[c

k

1, · · · , ck
M+e+1] are the columns of Ck. Given C, category vectors and content bases can

be obtained by SVD as C = U⌃V

T . The bases are the columns of U⌃ and the object in-

stance/category vectors are the rows of V. Usually, (D(M+e+1))� K, so the dimensionality

of instance/category vectors obtained by SVD will be K, i.e. d
s

= K. The time complexity of

SVD is O(K3
) so here our approach scales cubically with the number of objects, and the space

complexity is not much of a problem as SVD can be done on a large enough matrix containing

tens of thousands of rows.

4.4 Inference of Category, Instance and Pose

Given a test image y 2 RD represented in a descriptor space, we need to solve for both

the viewpoint parameterization x

⇤ and the object instance parameterization s

⇤ that minimize

Eq. 4.3. This is an inference problem and various inference algorithms can be used. Notice that,

if the instance parameters s is known, Eq. 4.3 reduces to a nonlinear 1D search for viewpoint

x on the unit circle that minimizes the error. This can be regarded as a solution for viewpoint

estimation, if the object is known. On the other hand, if x is known, we can obtain a least-

square closed-form approximate solution for s⇤. An EM-like iterative procedure was proposed

in [35] for alternating between the two factors. If dense multiple views along a view circle of an

object are available, we can solve for C⇤ in Eq. 4.7 and then obtain a closed-form least-square

solution for the instance parameter s⇤ as

s

⇤
= argmin

s

||C⇤ �A⇥2 s||. (4.11)

In the case where we need to solve for both x and s, given a test image, we use a sampling

methods similar to particle filters [6] to solve the inference problem (with K category/style

samples s1, s2, · · · , sK in the category/style factor space and L viewpoint samples x1,x2, · · · ,xL

on the unit circle). We use the terms particle and sample interchangeably in our description of

the approach.
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To evaluate the performance of each particle we define the likelihood of a particle (s

k,xl

)

as

w
kl

= exp
�||y �A⇥2 s

k ⇥3  (x
l

)||2
2�2

. (4.12)

It should be noticed that such a likelihood depends on the reconstruction error to be minimized

in Eq. 4.3. The less the reconstruction error is, the larger the likelihood will be.

We marginalize the likelihood to obtain the weights for sk and x

l as

W
s

k =

P
L

l=1wklP
K

k=1

P
L

l=1wkl

,W
x

l =

P
K

k=1wklP
K

k=1

P
L

l=1wkl

. (4.13)

Style samples are initialized as the K style vectors learned by our model (decomposed via SVD

of matrix C in Eq. 4.10), and the L viewpoint samples are randomly selected on the unit circle.

In order to reduce the reconstruction error, we resample style and viewpoint particles ac-

cording to W
s

and W
x

from Normal distributions, i.e. more samples are generated around

samples with high weights in the previous iteration. To keep the reconstruction error decreas-

ing, we keep the particle with the minimum error at each iteration. Algorithm 1 summarizes

our sampling approach.

In the case of classification and instance recognition, once the parameters s

⇤ are known,

typical classifiers, such as k-nearest neighbor classifier, SVM classifier, etc., can be used to

find the category or instance labels. Given x

⇤ on the unit circle, the exact pose angles can be

computed by the inverse trigonometric function as

✓⇤ = arctan(x⇤2/x
⇤
1), (4.14)

where x⇤1 and x⇤2 are the first and second dimensions of x⇤ respectively. Similar solutions can

be solved for 2D or 3D case.

Multimodal Fusion

For each individual channel (e.g. RGB and depth), a homeomorphic manifold generative model

is built. Our model can be extended to include multiple modalities of information as long as

there is smooth variation along the manifold as the viewpoint/pose changes.

We combine visual information (i.e. RGB) and depth information by using a combined

objective function that encompasses the reconstruction error in each mapping. This is done by
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Algorithm 1 Sampling approach for style and viewpoint inference.
Input:

1: Testing image or image feature, y;
2: Core tensor in Eq. 4.2, A;
3: Iteration number, IterNo;

Output:
4: Initialization:
5: Initialize particles (sk,xl

) where k = 1, · · · ,K, l = 1, · · · , L;
6: Initialize weights of style samples, W

s

k = 1/K;
7: Initialize weights of viewpoint samples, W

x

l = 1/L;
8: Iteration:
9: for i = 1; i < IterNo; i++ do

10: Compute the likelihood of particles w
kl

= exp�||y�A⇥2s
k⇥3 (xl)||2

2�2 ;

11: Update the weights of style samples W
s

k =

PL
l=1 wklPK

k=1

PL
l=1 wkl

;

12: Update the weights of viewpoint samples W
x

l =

PK
k=1 wklPK

k=1

PL
l=1 wkl

;
13: Keep the particle (s

⇤,x⇤
) = argmax

k=1,··· ,K, l=1,··· ,L{wkl

};
14: Resample s

k and x

l according to W
s

k and W
x

l respectively;
15: end for
16: return (s

⇤,x⇤
);

training on each mode (RGB and depth) independently and then using a combined objective

function (reconstruction error). The combined reconstruction error becomes:

E
rgbd

(s

rgb

, s
d

,x) = �
rgb

||y
rgb

�A
rgb

⇥2 s
rgb

⇥3  (x)||2

+�
d

||y
d

�A
d

⇥2 s
d

⇥3  (x)||2
(4.15)

Notice that the two terms share the same viewpoint variable x. �
rgb

and �
d

were selected em-

pirically. Since visual data has less noise than depth (which commonly exhibits missing depth

values, i.e. holes), we bias the visual reconstruction error term of Eq. 4.15. When resampling

style and viewpoint samples in our approach (Algorithm 1), we calculate the likelihood of a

particle (s

k

rgb

, sk
d

,xl

) as

w
kl

= exp
�E

rgbd

(s

k

rgb

, sk
d

,xl

)

2�2
, (4.16)

which is a little different from Eq. 4.12. The formulations of weights of style and viewpoint

samples are the same as 4.13, where visual style sample sk
rgb

and depth style sample sk
d

share the

same weight W
s

k . This means we use a combined style sample as sk = (s

k

rgb

, sk
d

) for inferring.

When the optimal solution (s

⇤
rgb

, s⇤
d

,x⇤
) = argmin

srgb,sd,xErgbd

(s

rgb

, s
d

,x) is obtained, a

combined parameters s⇤ = [�
rgb

s

⇤
rgb

;�
d

s

⇤
d

] can be used for category and instance recognition.
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Figure 4.3: Sample images of different datasets. Rows from top to bottom: COIL-20
dataset [99], Multi-View Car dataset [101], 3D Object Category dataset [119], Table-top Object
dataset [131], PASCAL3D+ dataset [149], Biwi Head Pose database [40], and RGB-D Object
dataset [77].

4.5 Experiments and Results

Datasets

To validate our approach we experimented on several challenging datasets: COIL-20 dataset [99],

Multi-View Car dataset [101], 3D Object Category dataset [119], Table-top Object dataset [131],

PASCAL3D+ dataset [149], Biwi Head Pose database [40], and RGB-D Object dataset [77].

We give a brief introduction of these datasets in the following subsections. Fig. 4.3 shows

sample images from each dataset.

COIL-20 dataset [99]: Columbia Object Image Library (COIL-20) dataset contains 20 ob-

jects, and each of them has 72 images captured every 5 degrees along a viewing circle. All
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images consist of the smallest patch (of size 128⇥ 128 ) that contains the object, i.e. the back-

ground has been discarded. We used this datset for the task of arbitrary view image synthesis

in order to illustrate the generative nature of our model.

Multi-View Car dataset [101]: The Multi-View Car dataset contains 20 sequences of cars

captured as the cars rotate on a rotating platform at a motor show. The sequences capture full

360 degrees images around each car. Images have been captured at a constant distance from

the cars. There is one image approximately every 3-4 degrees. Finely discretized viewpoint

ground truth can be calculated by using the time of capture information from the images. This

dataset is suitable for the validation of dense pose estimation.

3D Object Category dataset [119]: This dataset consists of 8 object categories (bike, shoe,

car, iron, mouse, cellphone, stapler and toaster). For each object category, there are images of

10 individual object instances under 8 viewing angles, 3 heights and 3 scales, i.e. 24 different

poses for each object. There are about 7000 images in total. Mask outlines for each object in the

dataset are provided as well. The entire dataset can be used for multi-view object categorization

and pose estimation. The car subset of 3D Object Category is typically used to evaluate the

performance of sparse pose estimation.

Table-top Object dataset [131]: This dataset contains table-top object categories with both

annotated 2D image and 3D point clouds. There are two subsets called Table-Top-Local and

Table-Top-Pose. Table-Top-Local subset is specific to the task of object detection and localiza-

tion. We only use Table-Top-Pose subset for pose estimation task. Table-Top-Pose contains 480

images of 10 object instances for each object categories (mice, mugs and staplers), where each

object instance is captured under 16 different poses (8 angles and 2 heights). Data includes the

images, object masks, annotated object categories, annotated object viewpoints and 3D point

clouds of the scene.

PASCAL3D+ dataset [149]: PASCAL3D+ is a novel and challenging dataset for 3D ob-

ject detection and pose estimation. It contains 12 rigid categories and more than 3000 object

instances per category on average. The PASCAL3D+ images captured in real-world scenarios

exhibit much more variability compared to the existing 3D datasets, and are suitable to test

real-world pose estimation performance.

Biwi Head Pose database [40]: This database contains 24 sequences of 20 different people
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(some recorded twice), captured with a Kinect sensor3. The subjects were recorded at roughly

one meter distance to the sensor. The subjects move their heads around to try and span all

possible yaw/pitch angles they could perform. There are over 15K images in the dataset. Each

frame was annotated with the center of the head in 3D and the head rotation angles (respectively

pith, yaw, and roll angles) by using the automatic system. For each frame, a depth image, the

corresponding RGB image, and the annotation is provided. The head pose range covers about

±75

� yaw, ±60

� pitch, and ±50

� roll. It is a good choice to use Biwi Head Pose database for

3D head pose estimation, as it provides fine ground truth of 3D rotation angles.

RGB-D Object dataset [77]: This dataset is large and consists of 300 common household

table-top objects. The objects are organized into 51 categories. Images in the dataset were

captured using a Kinect sensor that records synchronized and aligned visual and depth images.

Each object was placed on a turntable and video sequences were captured for one whole ro-

tation. There are 3 video sequences for each object each captured at three different heights

(30�, 45�, and 60

�) so that the object is viewed from different elevation angles (with respect to

the horizon). The dataset provides ground truth pose information for all 300 objects. Included

in the RGB-D Object dataset are 8 video sequences of common indoor environments (office

workspaces, meeting rooms, and kitchen areas) annotated with objects that belong to the RGB-

D Object dataset. The objects are visible from different viewpoints and distances, and may be

partially or completely occluded. These scene sequences are part of the RGB-D Scenes dataset.

As one of the largest and most challenging multi-modal multi-view datasets available, we used

RGB-D Object dataset for joint category, instance and pose estimation on multi-modal data,

and used it to test a near real-time system we built for category recognition of table-top objects.

Parameter Determination

As in Subsection 4.3, there is one key parameter in our model that significantly affects the per-

formance. This is the number of mapping centers M . This parameter determines the density of

arbitrary points z
j

on the homeomorphic manifold when learning the nonlinear mapping func-

tion. If M is too small, the learnt mapping function may be not able to model the relationship

3http://www.xbox.com/en-us/kinect
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between view manifolds and visual inputs well enough. On the other hand, the computation

cost of learning the mapping function will increase in proportion to M . When M is larger than

the number of training data points the learning problem becomes ill-posed. In addition to M ,

the image features are also important for our model. The images features are what represent

the objects in the visual/input space. However our approach is orthogonal to the choice of the

image representation, and any vectorized representation can be used.

To get proper parameters, we performed cross validation within the training data of each

fold. For example, in the 50% split experiment of Subsection 4.5, we learnt our model on 9

out of the 10 car sequences in the training set and tested using the 1 left out. We performed

10 rounds of cross validation. Fig. 4.4 shows the performance of our model with different

parameters: the dimensionality of HOG [24] features we used, and the number of mapping

center (M ). We used 35 mapping centers along a 2D unit circle to define the kernel map  (·)
in Eq 4.1, and used HOG features calculated in 7⇥ 7 grids with 9 orientation bins to represent

the inputs. The results in Table 4.2 were obtained using these parameters. Such cross validation

is performed for each experiment in this section.

Arbitrary View Synthesis

Since our model is a generative model mapping from the manifold representation to visual

inputs, we can perform arbitrary view synthesis if image intensities are used as visual inputs.

We did arbitrary view synthesis experiments on COIL-20 dataset to show the generative nature

of our model. We used 54 images to learn our generative model for each object in COIL-20

dataset, and tested the rest 18 images (every 4th), i.e. synthesized images from the viewpoints

of the 18 testing images. We report mean squared error (MSE) to evaluate the synthesized

images, which can be defined as following

MSE =

1

MN

MX

i=1

NX

j=1

[I
o

(i, j)� I
s

(i, j)]2 (4.17)

where I
o

(i, j) is the intensity of the pixel located at (i, j) in the testing image I
o

of size M⇥N ,

and I
s

is the synthesized image from the same viewpoint of image I
o

. For comparison, we also

used typical manifold learning methods, including LLE [115], Isomap [135], and Laplacian

Eigenmap (LE) [8], to learn a latent representing of the view manifold, and then learned a
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Figure 4.4: Cross validation results on Multi-View Car dataset for parameter determination. x
and y axes are the number of mapping centers and the dimensionality of HOG features, z axis
is the pose estimation performance. Titles are shown on the axes (zoom in to see the text).
From top to bottom: MAE, AE < 22.5�, and AE < 45

�. The dimensionality of HOG features
is indicated as n ⇥ n ⇥ 9, meaning that HOG features are computed in n ⇥ n grids with 9
orientation bins.
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similar generative map as Eq. 4.7. Notice that different from the conceptual manifold used in

Subsection 4.3 where the embedded coordinates can be computed according to Eq 4.4 given

the pose angles, the embedding coordinates of the unseen views (in the testing set) are obtained

by linear interpolation between its neighbors in the training set with the assumption that the

manifold learned by LLE, Isomap, or LE is locally linear. Results in Table 4.1 and Fig. 4.5

show that our model can correctly generate unseen view of a learned object, and our synthesis

results are both quantitatively and qualitatively better than those obtained by typical manifold

learning methods.

Table 4.1: Arbitrary view synthesis results on COIL-20 dataset

Method Mean Squared Error
Isomap [135] 704
LLE [115] 950
LE [8] 7033
Ours 361

Dense Viewpoint Estimation

We experimented on the Multi-View Car dataset to evaluate our model for dense pose estima-

tion. Following previous approaches [101, 139], there are two experimental setups: 50% split

and leave-one-out. For the former we take the first 10 cars for training and the rest for test-

ing, resulting a 10-dimensional style space. For the latter we learn on 19 cars and test on the

remaining 1, and the dimensionality of the style space is 19. Pixels within the bounding box

(BBox) provided by the dataset were used as inputs.

For quantitative evaluation, we use the same evaluation criterion as [101, 139], i.e. Mean

Absolute Error (MAE) between estimated and ground truth viewpoints. To compare with

classification-based viewpoint estimation approaches (which use discrete bins) we also com-

pute the percentages of test samples that satisfy AE < 22.5� and AE < 45

� where the Ab-

solute Error (AE) is AE = |EstimatedAngle � GroundTruth|). According to [139], the

percentage accuracy in terms of AE < 22.5� and AE < 45

� can achieve equivalent compar-

ison with classification-based pose estimation approaches that use 16-bin and 8-bin viewpoint
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Figure 4.5: Synthesized images of unseen views. The first row shows image samples in testing
set, and the rest four rows show synthesized images. Our results are visually better than other
manifold learning methods, and are more robust as well.
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Table 4.2: Results on Multi-View Car dataset

Method MAE (�) % of AE < 22.5� % of AE < 45

�

[101] 46.48 41.69 71.20
[139] - leave-one-out 35.87 63.73 76.84
[139] - 50% split 33.98 70.31 80.75
Ours - leave-one-out 19.34 90.34 90.69
Ours - 50% split 24.00 87.77 88.48

classifiers respectively.

We represented the input using HOG features. Table 4.2 shows the view estimation re-

sults in comparison to the state-of-the-art. Notice that results of [139] were achieved given

bounding boxes of the cars while those of [101] were without bounding boxes, i.e. simultane-

ously performed localization. The quantitative evaluation clearly demonstrates the significant

improvement we achieve.

Sparse Pose Estimation

To validate our approach for viewpoint estimation using sparse training samples on the viewing

circle we did experiments on the 3D Object Category dataset and the Table-top Object dataset.

Both datasets contain only 8 sparse views on the viewing circle. We used HOG features as

input, calculated within the BBoxes (obtained from the mask outlines).

For 3D Object Category dataset, we used its car subset and bicycle subset, and followed

the same setup as [119, 132]: 5 training sequences and 5 sequences for testing (160 training

and 160 testing images). The Table-Top-Pose subset of the Table-top dataset was used for

evaluating the viewpoint estimation of the following classes: staplers, mugs and computer

mice. We followed the same setup as [131, 103]: the first 5 object instances are selected for

training, and the remaining 5 for testing. Following the above setups, the dimensionality of the

style space we used are both 5.

For comparison with [119, 132, 85, 103, 139, 131], we report our results in terms of AE <

45

� (equivalent to an 8-bin classifier). Results are shown in Table 4.3. Some of the state-of-

the-art algorithms mentioned to jointly do detection and pose estimation (without BBox) and

reported pose estimation only for successfully detected objects, while we do pose estimation for
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all objects in the database given BBoxes. Therefore, the comparisons in Table 4.3 may be not

completely fair. We indicate the setting for each approach and put results in the corresponding

columns in Table 4.3. As shown in Table 4.3, our homeomorphic manifold analysis framework

achieves 93.13% on the car subset of the 3D Objects dataset. This is far more than the state-

of-the-art result of 85.38% in [103] and 77.5% in [139]. On the bicycle subset of the 3D

Objects dataset our accuracy is 94.58%. This is more than 17% and 25% improvement over the

results in [103] and [85], respectively. We also achieve the best average accuracy of 89.17%

on the three classes of the Table-Top-Pose subset, improving about 26% and 43% over [103]

and [131], respectively. These results show the ability of our framework to model the visual

manifold, even with sparse views.

Table 4.3: Sparse pose estimation results and comparison with the state-of-the-arts

Dataset Method Pose estimation Pose estimation
(without BBox) (with BBox)

3D Object Category (car) [119] 52.5% -
3D Object Category (car) [132] 66.63% -
3D Object Category (car) [85] 69.88% -
3D Object Category (car) [139] - 77.5%
3D Object Category (car) [103] - 85.38%
3D Object Category (car) Ours - 93.13%
3D Object Category (bike) [85] 75.5% -
3D Object Category (bike) [103] - 80.75%
3D Object Category (bike) Ours - 94.58%
Table-Top-Pose [131] - 62.25%
Table-Top-Pose [103] - 70.75%
Table-Top-Pose Ours - 89.17%

Pose Estimation on PASCAL3D+ dataset

We performed pose estimation on PASCAL3D+ dataset [149]. Such a novel and challenging

dataset is suitable to test pose estimation performance in real-world scenarios. We also used

HOG features calculated within the BBoxes as input. We tested our model on 11 categories

as the benchmark [149], including aeroplane, bicycle, boat, bus, car, chair, dining table, mo-

torbike, sofa, train, and tv monitor, following the same experimental setting as [149]. Results

in Table 4.4 show the power of our model for pose estimation. Noting that the benchmark
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results of [149] were performed simultaneously with detection, the comparison in Table 4.4 is

not completely fair.

Table 4.4: Pose performance (%) on PASCAL3D+ dataset. It can be seen that our approach
outperforms VPDM [149]

Class Ours (% of AE < 45�) VDPM-8V Ours (% of AE < 22.5�) VDPM-16V

aeroplane 60.3 23.4 40.2 15.4
bicycle 60.7 36.5 40.3 18.4
boat 39.7 1.0 20.6 0.5
bus 73.0 35.5 68.7 46.9
car 55.4 23.5 46.4 18.1
chair 50.0 5.8 34.1 6.0
diningtable 45.2 3.6 37.5 2.2
motorbike 67.2 25.1 48.9 16.1
sofa 75.9 12.5 59.2 10.0
train 56.0 10.9 48.0 22.1
tvmonitor 80.1 27.4 55.1 16.3
average 59.0 18.7 44.2 15.6

3D Head Pose Estimation

To test our model for multi-view object pose estimation with 3D pose/viewpoint variation we

performed experiments on the Biwi Head Pose database [40]. In our experiments, we only

considered the problem of pose estimation and not head detection. We assumed that the faces

were detected successfully, thus we just used the depth data within the bounding boxes (ob-

tained from the provided masks) to compute HOG features. Head poses were represented on

a 3-dimensional conceptual manifold in 4D Euclidean space, i.e. a normalized 3-sphere. For

comparison, we ran a 5-fold and a 4-fold subject-independent cross validation on the entire

dataset, resulting a 16-dimensional and a 15-dimensional style space respectively. This is the

same experimental setup as [40] and [39]. We also reported the mean and standard deviation of

the errors for each rotation angles. Results are shown in Table 4.5. It should be noticed that the

pose results of [40] and [39] in Table 4.5 are computed only for correctly detected heads with

1.0% and 6.6% missed respectively. It can been seen that our model significantly outperforms

[40] in 5-fold cross validation. In 4-fold cross validation, our mean errors are a little higher

than [39] with respect to yaw and pitch, but our standard deviations are lower, which means
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that our estimation results are more stable. These results show the ability of our model to solve

continuous 3D pose estimation robustly.

Table 4.5: Summary of results on Biwi Head Pose database

Method Validation Yaw error Pitch error Roll error
Ours (Depth) 5-fold 4.72± 4.69� 3.84± 3.90� 4.78± 5.49�

Ours (RGB) 5-fold 8.09± 7.90� 6.46± 6.79� 6.00± 6.49�

Ours (RGB+D) 5-fold 4.67± 4.57�
3.85± 3.68�

4.59± 5.24�

Baseline [40] (Depth) 5-fold 9.2± 13.7� 8.5± 10.1� 8.0± 8.3�

Ours (Depth) 4-fold 4.84± 4.78� 3.87± 4.06� 4.79± 5.61�

Ours (RGB) 4-fold 8.40± 8.31� 6.60± 6.87� 6.10± 6.65�

Ours (RGB+D) 4-fold 4.81± 4.77� 3.86± 3.93� 4.73± 5.49�

Baseline [39] (Depth) 4-fold 3.8± 6.5� 3.5± 5.8� 5.4± 6.0�

Categorization and Pose Estimation

We used the entire 3D Objects Category dataset to evaluate the performance of our framework

on both object categorization and viewpoint estimation. Similar to [119, 132], we tested our

model on an 8-category classification task, and the farthest scale is not considered. We followed

the same experimental setting as [119] by randomly selecting 8/10 object instances for learning

and the remaining 2 instances for testing. Since there are totally 64 instances for training, the

dimensionality of the style space used in this experiment is 64. Average recognition results of

45 rounds are shown in Table 4.6. We achieve an average recognition accuracy of 80.07%

on 8 classes and an average pose estimation performance of 73.13%4 on the entire test set

which satisfies AE < 45

�. We achieve markedly higher accuracy in recognition in 5 of the 8

classes than [119]. However our performance is not better than [104], which shows the room

to improve the categorization capability of our model. In fact, a follow up paper [7] that uses

our framework with a feed forward solution (without sampling) achieves much better results

than [104].

4Notice that only pose results of correctly categorized images were taken for evaluation.
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Table 4.6: Category recognition performance (%) on 3D Object Category dataset

Class Ours Baseline [119] [104]
Bicycle 99.79 81.00 98.8
Car 99.03 70.00 99.8
Cellphone 66.74 76.00 62.4
Iron 75.78 77.00 96.0
Mouse 48.60 87.00 72.7
Shoe 81.70 62.00 96.9
Stapler 82.66 77.00 83.7
Toaster 86.24 75.00 97.8

Joint Object and Pose Recognition

We evaluated our model for joint object and pose recognition on multi-modal data by using the

RGB-D Object dataset. Training and testing follows the exact same procedure as [78]. Training

was performed using sequences at heights: 30� and 60

�. Testing was performed using the 45

�

height sequence. We treated the images of each instance in the training set as one sequence,

thus resulted a 300-dimensional style space. We used HOG features for both RGB channels and

depth channel. We also experimented with an additional more recent depth descriptor called

Viewpoint Feature Histogram (VFH) [117] computed on the 3D point cloud data.

Table 4.7 summarizes the results of our approach and compares to 2 state-of-the-art base-

lines. In the case of category and instance recognition (column 2 & 3), we achieve results on

par with the state-of-the-art [78]. We find that ⇡ 57% of the categories exhibit better category

recognition performance when using RGB+D, as opposed to using RGB only (set of these cat-

egories shown in Fig. 4.6-top). Fig. 4.6-bottom shows an illustration of sample instances in the

object style latent space. Flatter objects lie more towards the lefthand side and rounder objects

lie more towards the righthand side. Sample correct results for object and pose recognition are

shown in Fig. 4.7.

Incorrectly classified objects were assigned pose accuracies of 0. Avg. and Med. Pose (C)

are computed only on test images whose categories were correctly classified. Avg. and Med.

Pose (I) were computed only using test images that had their instance correctly recognized.

All the object pose estimations significantly out-performs the state-of-the-art [78, 33]. This

verifies that the modeling of the underlying continuous pose distribution is very important in
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pose recognition.

Lime and bowl categories were found to have better category recognition accuracy when

using depth only instead of using either visual-only or visual and depth together. This can be

explained by the complete lack of visual features on their surfaces. Some object instances were

classified with higher accuracy using depth only also. There were 19 (out of 300) of these

instances, including: lime, bowl, potato, apple and orange. These instances have textureless

surfaces with no distinguishing visual features and so the depth information alone was able to

utilize shape information to achieve higher accuracy.

In Table 4.7 we see that depth HOG (DHOG) performs quite well in all the pose estimation

experiments except for where misclassified categories or instances were assigned 0 (column 3

& 4). DHOG appears to be a simple and effective descriptor to describe noisy depth images

captured by the Kinect in the dataset. It achieves better accuracy than [78] in the pose estima-

tion. Similar to [78], recursive median filters were applied to depth images to fill depth holes.

This validates the modeling of the underlying continuous distribution which our homeomor-

phic manifold mapping takes advantage of. VFH is a feature adapted specifically to the task of

viewpoint estimation from point cloud data. No prior point cloud smoothing was done to filter

out depth holes and so its performance suffered.

Table 4.7: Summary of results on RGB-D Object dataset using RGB/D and RGB+D (%). Cat.
and Inst. refer to category recognition and Instance recognition respectively

Methods Cat. Inst. Avg
Pose

Med
Pose

Avg
Pose
(C)

Med
Pose
(C)

Avg
Pose
(I)

Med
Pose
(I)

Ours (RGB) 92.00 74.36 61.59 89.46 80.36 93.50 82.83 93.90
Linear SVM (RGB) 75.57 41.50 - - - - - -

Ours (Depth - DHOG) 74.49 36.18 26.06 0.00 66.36 86.60 72.04 90.03
Linear SVM (Depth - DHOG) 65.30 18.50 - - - - - -

Ours (Depth - VFH) 27.88 13.36 7.99 0.00 57.79 62.75 59.82 67.46
Ours (RGB+D) 93.10 74.79 61.57 89.29 80.01 93.42 82.32 93.80

Baseline (RGB+D) [78] 94.30 78.40 53.30 65.20 56.80 71.40 68.30 83.20
Linear SVM (RGB+D) 86.86 47.42 - - - - - -
Baseline (RGB+D) [33] - - - - 74.76 86.70 - -
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Figure 4.6: Top: Category recognition using different modes for a subset of categories in RGB-
D Object dataset. Bottom: Sampled instances from 6 different categories in RGB-D Object
dataset. Notice: flatter objects lie to the left and more rounded shapes to the right

Table-top Object Category Recognition System

We built a near real-time system for category recognition of table-top objects based on the

homeomorphic manifold analysis framework described. Our system was trained on a subset of

10 different categories from the RGB-D Object dataset. The category recognition runtime per

object in one frame is less than 2 seconds. Our MATLAB implementation was not optimized

for real-time processing but despite this, the potential for real-time capability is evident. We

only performed visual-only and depth-only training and testing of the system. We did not

experiment with the combination of both modes as we wanted to optimize for speed as much

as possible.

The system was tested on videos provided in the RGB-D Scenes dataset that contain clut-

tered scenes with occlusion, a much larger variation of viewpoint and varying scales (e.g.
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Figure 4.7: Sample correct results for object and pose recognition on RGB-D Object dataset.
Black text: category name and instance number. Red line: estimated pose. Green line: ground
truth pose.

kitchen and desk scenes). Our system achieved >62% category recognition accuracy using

the depth mode only. An interesting observation was that depth-only recognition outperformed

visual-only recognition in these cluttered scenes; intuitively due to the fact that background

texture around objects introduces visual noise. In the depth mode, large depth discontinuities

help to separate objects from background clutter and this aids recognition. We also tested our

system on never-seen-before objects placed on table-tops without clutter. For this, we used the

visual-only mode since there was no clutter in the scene. Fig. 4.8 shows results achieved by

our system running on never-seen-before objects and objects from the videos provided in the

RGB-D Scenes dataset.

Depth segmentation was performed on point clouds generated using the Kinect sensor in

real-time using the Point Cloud Library [118]. This allows the table-top object to be segmented

away from the table plane. The segmented objects are then found in the visual and depth images

using the segmented object in the point cloud and then cropped to the size of the object. We

then perform category recognition on these cropped images.



63

Figure 4.8: Near real-time system running on single table-top objects (first 2 rows) and the
RGB-D Scenes dataset (last 3 rows, where green boxes indicate correct results while red boxes
indicate incorrect results).

Computational Complexity

The computation complexity of SVD scales cubically with the number of objects in our case

(O(N3
)). SVD can be done offline on large enough matrices containing tens of thousands of

rows. The running time of our near real-time system for table-top object category recognition

also shows that the computational complexity of the estimation phase is acceptable and has the

potential for real-time.
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4.6 Conclusion

In this work we have presented a unified framework that is based on homeomorphic mapping

between a common manifold and object manifolds in order to jointly solve the 3 subproblems of

object recognition: category, instance and pose recognition. Extensive experiments on several

recent and large datasets validates the robustness and strength of our approach. We significantly

outperform state-of-the-art in pose recognition. For object recognition we achieve accuracy on

par and in some cases better than state-of-the-art. We have also shown the capability of our

approach in estimating full 3D pose. We have also shown the potential for real-time application

to AI and robotic visual reasoning by building a working near real-time system that performs

table-top object detection and category recognition using the Kinect sensor.



65

Chapter 5

Supervised Joint Categorization and Pose Estimation using
Manifold Approaches
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Object recognition and pose estimation are two fundamental problems in the field of com-

puter vision. Recognizing objects and their poses/viewpoints are critical components of ample

vision and robotic systems. Multiple viewpoints of an object lie on an intrinsic low-dimensional

manifold in the input space (i.e. descriptor space). Different objects captured from the same set

of viewpoints have manifolds with a common topology. In this work we utilize this common

topology between object manifolds by learning a low-dimensional latent space which non-

linearly maps between a common unified manifold and the object manifold in the input space.

Using a supervised embedding approach, the latent space is computed and used to jointly infer

the category and pose of objects. We empirically validate our model by using multiple infer-

ence approaches and testing on multiple challenging datasets. We compare our results with the

state-of-the-art and present our increased category recognition and pose estimation accuracy.

5.1 Introduction

Visual object recognition and pose estimation are two fundamental problems in the field of

computer vision. Recognizing objects and their poses/viewpoints are critical components of

vision and robotic systems. With the pervasiveness of robots today, they are required to not only

visually recognize objects but also grasp and interact with them. For this reason simultaneously

recognizing objects as well as their poses is of utmost importance. The difficulty of the problem

lies in the large variation in appearance within object categories and between varying poses of

the same objects. This is due to variations in, for example, illumination, texture and self-

occlusions.

Recent research in the field of generic object categorization and pose estimation can be

divided into four tracks, depending on how the models deal with different views and different

categories. First, there are models that ignore estimating object pose and learn discriminative

object models from all training data to categorize objects. The assumption here is that the

representation and classifier become view-invariant. This is an assumption that is hard to meet

in reality. Second, there are approaches that learn view-specific models for object category

recognition. These approaches discretize the view space into a small number of canonical

views (e.g. car front, car back, car rear) and learn classifiers for each of them. Thirdly, there
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Figure 5.1: Illustration of our dual latent generative model: First, we parameterize the manifold
using multiple-view images of a specific object using non-linear RBF mapping. The mapping is
from the view-point space (⇥) to the image feature space (X). The manifold paramerterizations
are embedded into low-dimensional latent space (T), using supervised technique (based on
KPLS). Consequently, each point in the feature space is generated from a point in view-point
space and a point in the T-space.

are approaches that learn category-specific models, with the aim of estimating the viewpoint at

a finer granularity, e.g. [139, 95, 121]. Finally, there are very few recent approaches that aim

at learning a joint representation of object categories and poses [78, 152].

In this work, we tackle the problems of object category recognition and pose estimation

simultaneously through a joint representation. The main intuition behind our representation

follows the concept proposed in [152], where a common view manifold of different objects is

used as a central representation and different categories are modeled as the style variability of

that manifold. This unintuitive way of looking at the problem capitalizes on the fact that the

view manifold of a given object is low dimensional and of known topology. For example, con-

sidering a viewing circle, the view manifold will be one dimension, and considering a viewing

sphere, the view manifold is two dimensional. In this model all objects are assumed to share the

same view manifold topology and that there is a homomorphism between these manifolds and

the input space. In contrast, the manifold of all object categories can be of infinite dimensions

and hard to model given all within-class variability of objects. Therefore the model separates
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different categories by factorizing the deformation space of objects’ view manifolds to reach a

latent representation of categories, which is used in recognition.

There are clear limitations in the model proposed in [152]. The factorization of the man-

ifold deformation space among different objects was done in an unsupervised way, without

utilizing the available class labels. Instead we propose a supervised approach to achieve a dis-

criminative factorization of the deformation space. As a result, we propose a generative model

that is nonlinear in both the viewpoint and category latent variables. We also address scalabil-

ity limitation of [152] by proposing a hybrid hierarchical model where a discriminative model

is used to classify super-categories and then several generative models are used, one for each

super-category in order to infer the pose and category.

There are three main contributions of this work. First, we propose a novel framework for

view-invariant category recognition and pose estimation. This framework presents a nonlinear

method for separating the manifold parameterization (referred to as style) and pose variations

over the manifold (referred to as content) in sets of images. Our generative model is a purely

non-linear approach which represents both spaces (category and pose) using nonlinear latent

space embedding. This is in contrast to previous approaches that do not represent the non-

linearities across object categories. For this reason our approach has the advantage of being

more robust to within-category and pose variations. The second contribution is that our frame-

work of style/content factorization moves the inference of the category and pose from the very

high-dimensional feature space into two orthogonal low-dimensional spaces, one for category

and the other for pose. Inference in a low-dimensional space guarantees increased accuracy

and computational performance. Our framework uses supervised manifold embedding in a

low-dimensional space and thus increases the point clustering, and in turn the classification

accuracy. The third contribution is that we present the use of different distance metrics, differ-

ent optimization techniques and compare the results of these configurations through extensive

experimentation.

To validate our approach, we present theoretical derivations of the generative model and

also test our model on three large public datasets. We compare our results with state-of-the-art

approaches for these datasets.
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5.2 Dual Latent Generative Model

We learn the model over sets of images. Each set contains images of the same object instance

from different viewpoints. Let us denote the k-th set by Sk

= {(xk

i

, vk
i

, yk), i = 1, · · · , N
k

},

where xk

i

2 RD is the feature representation of the i-th image with viewpoint vk
i

2 Rv and class

label yk 2 {1, · · · , C}. Our goal is to learn a generative model that isolates the viewpoint and

the category variations into two separated latent variables: a viewpoint latent variable ✓ 2 Rd1

and a category latent variable t 2 Rd2

The image sequence of an object rotating on a turn-table lie on a low-dimensional view

manifold (Mk) in RD. We call these manifolds instance manifolds. Under the assumption that

all the input sets are captured using the same degrees of freedom between the camera and the

object, all these manifolds are topologically equivalent, however they have different geometry

in RD. In other words, all these manifolds are geometrically deformed instances of each other.

We can find a unified manifold that is topological equivalent to all these instance manifolds.

The dimensionality of the view manifold of each instance depends on the degrees of freedom

between the object and the camera. Assuming no degeneracy, a one viewing circle around

the object implies a one-dimensional view manifold homeomorphic to a unit circle. A viewing

sphere implies a two-dimensional view manifold homeomorphic to a unit sphere. All manifolds

are internally parameterized by a latent variable ✓ lying on the unified manifold, representing

the viewpoint.

As a result of the homeomorphism, each manifold geometry can be parameterized by its

geometric deformation of the unified manifold. This parametrization space is view-invariant.

The large dimensionality of the manifold parameterization space makes the inference hard

and non-robust. Therefore, we learn low-dimensional representation t for the deformation

space. We use supervised kernel-based partial least squares (K-PLS [114]) to discover this

low-dimensional latent space. As result, the latent variable t is view-invariant category based

representation, which holds the appearance and geometric characteristics of the instance.

As the number of classes increases, it is useful to have hierarchical model which group

categories that share similar geometric characteristics together to form super-categories.

During test, the goal is to recognize the class label y⇤ and the viewpoint value v⇤ for a test
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image x

⇤. This requires inferring the latent pair (t⇤, ✓⇤) which represent the image x

⇤. For

doing that, we learn the following nonlinear generative models

ˆ

x(t, ✓) = A⇥1 �(t)⇥2  (✓) (5.1)

Where � is the nonlinear mapping of the latent space and  is the Radial-Basis function of the

viewpoints ✓.1 This model is based on nonlinear regression over two factors; the pose ✓ and the

latent category representer t. Figure 5.1 shows graphical representation of the used generative

model. This figure shows that for each point in the image space it corresponds to a point on the

unified manifold (⇥) and a point in the low-dimensional parameterization space (T). A new

point in the image space can be computed using the tensor A in Eq. 5.1.

Given a test image, we solve for the optimal point in the latent space and the pose by solving

the following optimization function.

(t

⇤, ✓⇤) = argmin

(t,✓)
�(x

test

, ˆx(t, ✓)) (5.2)

where �(·) is a distance metric in the feature space. Once t⇤ and ✓⇤ are recovered, we can obtain

the class label and view point through two classification functions y⇤ = f(t⇤) and v⇤ = g(✓⇤).

Figure 5.1 illustrates the overall framework, and the details are provided in Section 5.3 and 5.4.

5.3 Learning the Model

As shown in Figure 5.1, each manifold is initially parameterized using a nonlinear mapping

from a unified manifold representation to the input space (Section 5.3.1). Then the manifold

parameterization is embedded in a low-dimensional latent space using a supervised dimen-

sion reduction (DR) technique called K-PLS (Section 5.3.2). Finally, we learn the nonlinear

mapping from latent space to the parameterization space to complete the generative model

(Section 5.3.3). The details of each step is provided in this section.

1For convenience: we use bold small letters for vectors, bold capital for matrices, calligraphic capital for tensors
and regular small for scalars. ⇥i denotes mode-i tensor vector multiplication as defined in [80].
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5.3.1 Manifold Parameterization

The first step is to find a parameterization for each instance manifold. We adapt the approach

in [152]. Let {xk

i

2 RD, i = 1, · · · , n
k

} be a set of points on instance manifold Mk. Let

{zk
i

2 Re, i = 1, · · · , n
k

} be the corresponding points on the unified manifold U ,

We learn a regularized mapping functions �k(·) : Re ! RD, which maps from U to each

instance manifold Mk. The mapping can be written in the following matrix form.

�k(z) = C

k (z) (5.3)

where C is a D ⇥ n matrix, the vector  (z) = [k(z,w1), · · · , k(z,wN

)]

> represents a non-

linear kernel map from the embedded representation to a kernel induced space, given a set of

RBF centers {w1, · · · ,wN

}. k(·, ·) is an RBF kernel. The solution of Eq 5.3 is shown in [108]

to have a closed form solution:

C

k>
= (A

k>
A

k
+ �G)

�1
A

k>
X

k>
, (5.4)

where A

k is a n
k

⇥ n matrix with A

ij

= k(z
i

,w
j

), i = 1, · · · , n
k

, j = 1 · · ·n and G is a

n⇥ n matrix with G

ij

= k(w
i

,w
j

); i, j = 1 · · ·n. Xk is the n
k

⇥D data matrix for manifold

instance k. Solution for C is guaranteed under certain conditions on the basic functions used.

5.3.2 Supervised Manifold Embedding

The second phase of our framework is to learn good2 low-dimensional embedding for the pa-

rameterizations. Consider Eq 5.3, if we ignore the superscript k, and if we have a test image

x

test

, then the objective is to find the best C⇤ and z

⇤ that minimizes the objective function:

�(x
test

� �k(C⇤, (z)⇤)). However, the generated parameterization (C’s from Eq 5.4) belong

to a high-dimensional space. This makes solving the objective hard and not robust. Therefore,

there is a need to find a suitable low-dimensional latent space for those parameterizations.

2Good in sense that balance between encoding the spatial relationship between points in the original space and
separate points with different labels
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Subspace analysis is used in [36] to obtain a latent representation of the manifold param-

eterization space. However, these approaches do not benefit from available class labels. Al-

ternatively we propose a supervised way to achieve a low-dimensional latent manifold pa-

rameterization space, which benefits from the class labels. We use Partial Least Squares

(PLS)[146, 114, 9].

While PCA tends to keep most of the variance of the input space, and LDA tends to maxi-

mize the interclass and minimize the intraclass distances, PLS is a supervised version of PCA.

PLS compromises by generating orthogonal components (in the latent space) using the already

existing correlations between observation variables (in the input space) and corresponding la-

beling, while keeping most of the variance of the points in the input space. Good interpretation

for PLS and its relationship with PCA can be found in [83, 9]. PLS has been proven to be

useful in situations where the dimensionality of the input space exceeds significantly the num-

ber of observations (sparse case) and/or multicollinearity3 is high among the explanatory vari-

ables. PLS embeds the input points X into low-dimensional latent space T , so that it satisfies:

argmin

T

kXW �Tk and argmax

T

cov(T,y). W is the learned projection matrix and y is

the set of labels.

K-PLS:

Using Kernel PLS (K-PLS)[114] is more convenient in the case of coefficient matrices (C’s).

First, we need to define a kernel on the parameterization space: since C is D ⇥N matrix,

and D � N , then C represents N -dimensional subspace in RD. Therefore, we can use Cosine-

Similarity kernel (CSK) or Grassmannian kernels [55]. In this work, we use CSK, for its

efficiency, defined by

K(Ci,Cj) =
tr(CiC

>
j )

2

kCikF kCjkF
, (5.5)

where k·k
F

is matrix Frobenius norm.

Given the instance manifold parameterization C

k and parameterization kernel and label yk,

we use K-PLS for embedding parameterizations space into low-dimensional latent space. The

points in this latent space satisfy the two objectives of the PLS.

3Multicollinearity refers to a situation in which two or more explanatory variables in a multiple regression model
are highly linearly related.
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K-PLS maps the point Ck to latent points {tk 2 Rm, for each k = 1 · · ·N , by

t = K(C, ·)W (5.6)

where W is a non-linear projection matrix. Details of the K-PLS algorithm can be found

in [114]. Like PCA, the choice of latent dimensionality (m) is a crucial step, since small and

large values of m lead to under-fitting and over-fitting of the training data, respectively.

5.3.3 Nonlinear Mapping from Latent Space to Parameterization Space

Almost all linear DR techniques, such as (linear) PLS and PCA, provide mapping from latent

space to input space as well as from input space to latent space. In contrast, almost all nonlinear

DR techniques do not provide mapping from latent to input space. K-PLS, as nonlinear DR,

does not provide a closed form mapping from the latent space T to the parameterization space

C. However, we need this reverse mapping to complete the generative model in Eq 5.1 and

illustrated in Figure 5.1. In this work, we learn non-linear Gaussian RBF mapping � : T! C

C = �(t) = A⇥1 �(t) (5.7)

where C is an n⇥D matrix, t is a m-D vector and A is a h⇥ n⇥D tensor, and

�(t) = K(t, ·) = exp(� kt� u

i

k) (5.8)

where u

i

; i = 1 · · ·h are the centers of the RBF kernel. Those centers are the h-means of the

training points in the latent space.

The tensor A is computed as follows. Let c (nD-dimensional vector) is the vectorization

of C (n⇥D matrix).

c = A

>�(t)

Then we can find the mapping A by the same way we computed C in Eq 5.4. Finally, A
(h⇥ n⇥D tensor) is the reshaped version of A (h⇥ nD matrix).

Substituting Eq 5.7 in Eq 5.3 results in the generative model: x
predicted

= A ⇥1 �(t) ⇥2

 (✓).
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5.4 Inference

This section shows how to use the underlining generative model for inferring (v⇤, y⇤) that best

fit a given test image (x
test

). This is done in two steps: first, find (t

⇤, ✓⇤) that optimizes Eq 5.9,

then analyze (t

⇤, ✓⇤) to get (v⇤, y⇤). In this work, we use two distance metrics to measure the

difference between the test image and the predicted image �{x
test

,x
predict

}: Euclidean dis-

tance (kx
test

� x

predict

k) and Normalized Cross-Correlation (NCC) (1� x

>
testxpredict

kxtestkkxpredictk ). We

adopt two optimization techniques for solving Eq 5.9: gradient-based method and sampling-

based methods.

5.4.1 Optimization

In this section, we need to show how we solve the objective function:

(t

⇤, ✓⇤) = argmin

(t,✓)
{�{x

test

,x
predict

(t, ✓)}} (5.9)

Gradient-based Method

Our gradient-based optimization uses the second order BFGS quasi-Newton optimizer with

cubic polynomial line search for optimal step size selection [5].

To use this algorithm, for each value of t and ✓, we need to compute the distance:

�{x
test

,x
predict

(t, ✓)}, and its derivative. The derivation is shown in section 5.4.3.

Sampling-based method

In this method we use MCMC sampling [12], similar to the unsupervised approach in the last

chapter, to solve Eq 5.9. We use simulated annealing [1] to enhance resampling of particles.

The details of the algorithm are provided Algorithm 2.

5.4.2 Classification

At this point, we have low-dimensional category and pose representations: t⇤ and ✓⇤. We wish

to infer the label for object category y⇤ and for pose v⇤.
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Algorithm 2 Sampling Algorithm
Initialize particles by the M -means of the available latent points.
repeat

for Every particle p do
Generate N new samples for every old particle p: . Use Gaussean as the proposal

distribution for generating new samples.
for ⌫  1! N do

p

⌫

d

⇠ N (p

d

,�) 8d = 1 · · ·m+ 1 .m is the latent space dimensionality, and
+1 for ✓. � shrinks over iterations

E(p

⌫

) distance from Eq 5.9. . Energy value of every particle E(p

⌫

)

A⌫ = E(p)/E(p

⌫

) . Acceptance ratio
u Uniform(0, 1)
if A⌫ > u then

Accept p⌫

else
Reject p⌫ , and set p⌫  p

end if
end for

end for
Re-sample M particles from the set of new particles. Use e��E(p) as a the re-sampling

weights.
until All selected particles are close by . Convergence happens when the variance of the
newly selected particles is small var  ✏

For pose, we use a nearest neighbor classification function g. If the actual pose label is

discrete, then we use v⇤ = k �NN(✓⇤) and if not, v⇤ = ✓⇤.

For category, we use Regression for classification (RfC), i.e. we use the regression results

of K-PLS [114]

y⇤ = t⇤>T>
y (5.10)

where T is the set of embedded training points in the K-PLS latent space (Eq 5.6), and y is the

corresponding labels of the training points.

5.4.3 Gradients-based inference details

In this section, we show the gradients of the objective function Eq 5.9, for both distance metrics

Euclidean and Normalized Cross-Correlation.

Euclidean distance:

J(t, ✓) = �{x
test

,x
predicted

} = kx
test

� x

predict

k
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Where x

test

is the test image and x

predict

is the predicted image based on t and ✓ defined in

Eq 5.1. Then the derivatives will be

@J

@t
= �2@�(t)

@t
(A⇥2  (✓))

>
(x

test

� x

predict

) (5.11)

where �(t) defined in Eq 5.8 and its Jacobian matrix is

@�(t)

@t
= 2�


(t� u1)

kt� u1ke
�kt�u1k,

(t� u2)

kt� u2ke
�kt�u2k · · · (t� u

h

)

kt� u
h

ke
�kt�uhk

�
.

And
@J

@✓
= �2@ (✓)

@✓
(A⇥2 �(t))

>
(x

test

� x

predict

) (5.12)

where
@ (✓)

@✓
=

@ (z)

@✓

@z

@✓

, where z = [cos(✓) sin(✓)]> and  (z) defined (in Eq 5 in the paper) as

 ((z)) = exp(� kz�w

i

k) (5.13)

where w

i

; i = 1 · · ·n represent fixed equi-spaced centers on the unit circle. and its Jacobian

matrix

@ (z)

@z
= 2�


(z � w1)

kz � w1ke
�kz�w1k,

(z � w2)

kz � w2ke
�kz�w2k · · · (z � w

n

)

kz � w
n

ke
�kz�wnk

�

, and
@z

@✓
= [�sin(✓) cos(✓)]T

Normalized Cross-Correlation (NCC):

J(t, ✓) = �{x
test

,x
predicted

} = 1� x

>
test

x

predict

kx
test

k kx
predict

k

Where x

test

is the test image and x

predict

is the predicted image based on t and ✓ defined in

Equation 1 in this thesis. For convenience, lets use s for test and p for predict. Then we have

@J

@t
= �@xp

@t

 
x

s

kx
s

kkx
p

k +
J x

p

kx
p

k2
!

(5.14)

where the Jacobian matrix @xp

@t

is defined as:
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@x
p

@t
=

@�(t)

@t
(A⇥2  (✓))

>

where �(t) defined in Equation 8 in this thesis, and its Jacobian matrix is
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where the Jacobian @xp
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5.4.4 Hierarchical Model

Dealing with large datasets containing fine-grained classification (i.e. large sets of object im-

ages with large visual and semantic similarity - e.g. tableware, fruits, etc. found in the RGBD

dataset [77]) is a challenging problem. To solve this we extend our framework to a hierarchical

model. The hierarchical model performs recursive spectral clustering [31] to identify super-

categories of classes in the data (see fig. below). On each of these clusters, we use the same
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Figure 5.2: The overall hierarchical model. Recursive clustering is used to identify super-
categories of similar objects. Our view-invariant latent generative model is then applied to each
individual cluster to perform category recognition and pose estimation.

generative model described to learn the latent space and perform inference on the category label

and pose. Each cluster has its own independent latent embedding. This enables more efficient

classification due to the less number of object classes in each cluster.

To infer the category and pose of a test object, top-down inference is performed on the

hierarchy. The super-category cluster is identified using a Support Vector Machine (SVM) on

the raw training HoG descriptors. Once the cluster is identified the inference takes place over

the latent space for that specific cluster.

5.5 Experiments and Results

We experiment on three datasets: 3DObjects [119], RGB-D [77] and EPFL [101]. 3DObjects

consists of 10 classes of table-top objects as well as larger objects, such as, cars and bicycles.

The objects are captured at multiple viewpoints. The RGB-D dataset is another multi-view



79

dataset but consists of a much larger set of 300 table-top objects. This is a challenging dataset

due to its size and fine-grained categories. EPFL has 20 different car image sequences as the

cars rotate on a platform.

We use HoG features [24] as our input image representation and we use a unit circle as the

unified manifold, i.e, ✓ 2 [0, 2⇡].

For inference (Section 5.4), we use gradient-based optimization with Euclidean distance

and sampling-based optimization with NCC distance metric. The results here are reported

based on these best configurations.

5.5.1 3DObjects

We show the experimental results of our work applied to 3D Objects dataset and compare our

results to [119, 152]. The 3D Objects dataset has images of 10 objects categories. Every

category has 10 different instances, differing in brand, color and shape. Every instance has

images captured at 3 heights and 3 scales. Every image sequence has 8 poses covering all

views: back, back-right, right, front-right, front, front-left, left, back-left.

We show our results for 2 different configurations: 1) 8 classes excluding the farthest scale.

2) All classes are included (included in supplementary material). Pose accuracy is reported even

if the object is incorrectly classified. We use the first configuration for comparison purposes

because this is the configuration in prior work ([119],[152]). For all experiment, we train over

7 instances (brands/shapes) and test on remaining 3 brands. The final results are the average of

several folds.

Table 5.1,5.2 and 5.3 show both our sampling and gradient based methods compared against

the baselines. We can see an improvement of about 38% in pose recognition (Table 5.2). Ta-

ble 5.3 shows the comparison of the gradient optimization and sampling optimization in both

category and pose recognition using different classification techniques (as described in Sec-

tion 5.4.2). For pose, we computed the percentages of poses that are less than 22.5� and 45

�

away from groundtruth. The gradient optimization technique is more robust.

Table 5.1 shows the recognition rate of every category compared to the baselines. We used a

13-dimensional K-PLS latent space. Inference can be done efficiently on very low-dimensional

latent spaces instead of the very high-dimensional feature spaces. From the table, it is clear
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Sampling Gradient Baseline[152] Baseline[119]
Average 88.44% 89.50% 80.07% 75.65%

Bicycle 99.52% 99.54% 99.79% 81.00%
Car 96.45% 97.22% 99.03% 69.31%
Cellphone 98.10% 99.54% 66.74% 76.00%
Iron 88.10% 90.28% 75.78% 77.00%
Mouse 50.72% 54.46% 48.60% 86.14%
Shoe 87.56% 89.35% 81.70% 62.00%
Stapler 96.08% 97.63% 82.66% 77.00%
Toaster 93.30% 90.28% 86.24% 74.26%

Table 5.1: Recognition rate for each Category.
We show improved accuracy for most cate-
gories

Sampling Gradient Baseline[119]
Average 74.94% 79.19% 57.46%

Front 75.24% 74.27% 64.00%
Front-left 66.34% 73.66% 40.40%
Left 76.81% 80.68% 47.00%
Left-back 76.33% 88.89% 62.00%
Back 80.00% 78.05% 53.54%
Back-right 73.91% 84.54% 71.72%
Right 81.64% 83.09% 57.00%
Right-front 67.31% 70.10% 64.00%

Table 5.2: Recognition rate of each pose. These
results are for the first experiment configuration
on the 3DObject dataset.

Gradient Sampling
Category
Linear-SVM 89.50 88.44
SVM - 85.94
RfC 88.65 88.31
k-NN 89.68 88.63

Pose
<45.0� 83.25 80.13
<22.5� 79.19 74.94

Table 5.3: Category recognition and pose estimation accuracy (%) on the 3DObjects dataset
using our approach

that our model outperforms state-of-the-art results in most categories. We achieve an overall

increase of up to about 10% in accuracy using sampling-based inference and 11.8% using

gradient-based inference.

5.5.2 EPFL Cars

EPFL dataset has 20 different car sequences. Each sequence has around 120 image frames of

the same car. The ground truth of this dataset provides the number of frames in every sequence,

the frontal frame number, the number of frames that make up a whole viewing circle and the

bounding boxes.

To compare with previous work ([101],[137] and [139]), we use the same experiment con-

figuration, we train over the sequences of first ten cars (cars from 1! 10) and test over the last

ten cars (cars from 11 ! 20). In this experiment test images are for car instances that are not

present in the training data. Our framework finds the closest instance to the query car instance

and estimates the pose.

Table 5.6 shows the results of this configuration compared with previous work. The result

are: 90.81% have error less than 22.5 degrees compared to 41.69% reported in [101], 70.31%

reported in [139] and 78.1% reported in [137]. Which means that we achieved 16.27% im-

provement. This shows the power of our framework for continuous pose estimation. We also
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Method MAE AE<22.5� AE<45�

[101] - 50% split 46.48 41.69 71.20
[137] - 50% split 47.40 78.10 79.70
[139] - 50% split 40.60 70.31 80.75
ours - 50% split 22.34 90.81 90.81
[139] - leave one out 35.87 63.73 76.84
ours - leave one out 11.81 95.13 95.13

Table 5.4: Comparison of our results with state-
of-the-art baselines on the EPFL multi-view car
dataset. For the baselines we report the best re-
sults of all configurations

Method MAE AE<22.5� AE<45�

Train over 1 ! 10 16.35 92.22 92.22
Train over 11 ! 20 20.35 90.81 90.81
Train over odd numbers 18.34 91.64 91.64
Train over even numbers 16.35 92.22 92.22
Average 17.76 91.75 91.75

Table 5.5: Results for our framework on four
different splits.

Figure 5.3: In EPFL, Statistics on 50% split (train on cars 1 ! 10 , test on cars 11 ! 20):
(left) histogram of Absolute Error (AE), (right) probability of P (AE < x) for different values
of x.

reduce the mean absolute error (MAE) by about 45%. Leave-one-out has significant improve-

ment over 50% split, the reason behind this is that our algorithm has a wider space (more car

instances) to search for the closest point to the query car. More discussion of the results and

figures are in the supplementary material.

Figure 5.5 shows statistics for 50% split. Figure 5.5(left) shows histogram for Absolute

Error (AE). We can see in this figure that except for the frames which has been has been

estimated in reflection, all AE is less than 20

�. From this figure, we see that the 9.2% estimation

error comes from reflection (estimating the pose by its opposite value (estmated = actual +

180

�
+ ✏)). This error happen for cars which has high symmetry.

While Figure 5.5(right) shows Pr{AE < x} for x 2 [0, 50] which give us more accurate

overview. In this figure, we can see that saturation happen at x = 20

� and also we can see that

Pr{AE < 10} = 0.80 which is the same accuracy that [139] achieved for x = 45

� which is

significant improvement.

One 50% split may not draw the full picture of the framework performance. More accurate
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Method MAE AE<22.5� AE<45

�

[101] - 50% split 46.48 41.69 71.20
[137] - 50% split 47.40 78.10 79.70
[139] - 50% split 40.60 70.31 80.75
ours - 50% split 22.34 90.81 90.81

[139] - leave one out 35.87 63.73 76.84
ours - leave one out 11.81 95.13 95.13

Table 5.6: Comparison of our results with state-of-the-art baselines on the EPFL multi-view car
dataset. For the baselines we report the best results of all the configurations the authors used.

results are shown in Table 5.7. In these two items, we repeated the 50% split experiment, but

for four different fair splits. One split is trained over cars 1 ! 10 and test over the rest. Other

split is trained over cars 11 ! 20, the third one is trained over the odd numbered cars and

the last one trains over the even numbered cars. Figure 5.4 shows the accuracy on different

sequences of the dataset.

Pose regression (Instance independent)

To compare with previous work ([101],[137] and [139]), we use the same experiment config-

uration, we train over the sequences of first ten cars (cars from 1 ! 10) and test over the last

ten cars (cars from 11 ! 20). In this experiment test images are for car instances that are

not present in the training data. This is why we call it instance independent. Our framework

finds the closest instance to the query car instance and estimates the pose. Table 5.6 shows the

results of this configuration compared with previous work. The result are: 90.81% have error

less than 22.5 degrees compared to 41.69% reported in [101], 70.31% reported in [139] and

78.1% reported in [137]. Which means that we achieved 16.27% improvement. This shows

the power of our framework for continuous pose estimation. In the same time, we reduces the

mean absolute error (MAE) by about 45%.

Leave one out has significant improvement over 50% split, the reason behind that is our

algorithm has a wider space (more car instances) to search for the closest point to the query car.

Figure 5.5 shows statistics for 50% split. Figure 5.5(a) shows histogram for Absolute Error

(AE). We can see in this figure that except for the frames which has been has been estimated in
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Figure 5.4: Snapshots of the video demo in the supplementary material. Color code: red:
ground truth pose, green: estimated pose, frames highlighted green if error less than 22.5 de-
grees (red otherwise)
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(a)

(b)

Figure 5.5: In EPFL, Statistics on 50% split (train on cars 1! 10 , test on cars 11! 20): (a)
histogram of Absolute Error (AE), (b) probability of P (AE < x) for different values of x.

reflection, all AE is less than 20

�. From this figure, we see that the 9.2% estimation error comes

from reflection (estimating the pose by its opposite value (estmated = actual + 180

�
+ ✏)).

This error happen for cars which has high symmetry.

While Figure 5.5(b) shows Pr{AE < x} for x 2 [0, 50] which give us more accurate

overview. In this figure, we can see that saturation happen at x = 20

� and also we can see that

Pr{AE < 10} = 0.80 which is the same accuracy that [139] achieved for x = 45

� which is

significant improvement.

One 50% split may not draw the full picture of the framework performance. More accurate
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Figure 5.6: In EPFL, Statistics on four 50% splits. The probability is shown along with standard
deviation across the splits

Method MAE AE<22.5� AE<45

�

Train over 1! 10 16.35 92.22 92.22
Train over 11! 20 20.35 90.81 90.81
Train over odd numbers 18.34 91.64 91.64
Train over even numbers 16.35 92.22 92.22

Average 17.76 91.75 91.75

Table 5.7: Results for our framework on four different splits.

results are shown in Table 5.7 and Figure 5.6. In these two items, we repeated the 50% split

experiment, but for four different fair splits. One split is trained over cars 1! 10 and test over

the rest. Other split is trained over cars 11! 20, the third one is trained over the odd numbered

cars and the last one trains over the even numbered cars. Figure 5.6 shows Pr{AE < x}, along

with standard deviation across all splits. Table 5.7 shows some statistics on this experiment.

Category and pose classification (Instance dependent)

For testing the category and pose in this dataset, we divide every sequence into four overlapping

sequences. Each car has four sequences. We train over one sequence for every car and test over

all images in the remaining three sequences. In this experiment all cars are presented in the
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(a) (b)

Figure 5.7: (a) shows category confusion (Average of 96.01), (b) shows pose confusion (Aver-
age of 75.66).

training data (instance dependent). Figure 5.7(a) shows the instance (car instance) confusion

matrix , and Figure 5.7(b) shows the pose classification confusion matrix. For pose estimation,

to get the confusion, we classify every pose by the nearest neighbor based on 16 different poses

covering the whole viewing circle. The final result of this experiment is 96.01% car instance

recognition and 75.66% pose estimation accuracy. We also report that 97.38% of the results

have error less than 22.5� and 97.79% have error less than 45

�. The reason that makes the pose

classification has lower accuracy that for specific image, the estimated pose could be very close

to the actual pose but each value falls in different bin. Moreover, P (AE < 22.5�) = 97.79%,

which clarify that the estimation error is very small.

5.5.3 RGB-D Dataset

In order to deal with the large number of objects in the RGB-D dataset, we used the hierarchical

extension of our model. Referring to fig. 2, we can see that similarly shaped objects cluster

together, e.g., super-category 1 shows round objects, super-category 2 shows flat objects and

super-category N shows spherical objects. The accuracy of the top level classification which

classifies objects into the different semantic clusters of objects is about 95.6%.

The results are reported in table 5.8. The same accuracy metrics were used as the baseline

approaches. We outperform the two baselines in pose estimation over all test images (whether

or not they were classified correctly). This is shown in the Avg. Pose (All) column. For the
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Method Category Avg. Pose (C) Avg. Pose (All)
ours (visual only) 85.00 77.31 73.78
visual only baseline [152] 92.00 80.01 61.57
visual + depth baseline [78] 94.30 56.80 53.50

Table 5.8: Category recognition and pose estimation accuracy (%) on the RGBD dataset. We
report the RGB-only accuracy of [152]. [78] only report their multi-modal RGB+D accuracy.

average pose accuracy over the correctly classified images (C), we achieve better accuracy than

[78] but slightly less than [152]. For category recognition we achieve less accuracy than the

two baselines. For [78] both visual and depth features are used for classification. Our approach

only uses visual information. The hierarchical clustering approach aids the pose estimation

for finding optimal poses for similar objects even though they are misclassified. For example,

similar objects with handles such as mugs and pitchers have similar pose variations due to the

presence of the handle.

In table 5.8, although the recognition accuracy is less than [152], the overall pose is signifi-

cantly better. Even with wrong categorization, the method inferred a good representation in the

category latent space (which can be a combination of multiple-categories), which enabled the

correct pose estimation. The lower recognition accuracy can also be due to the classification

scheme used after inference which can be improved.

5.6 Discussion

The proposed model is supervised and nonlinear, in contrast to linear-unsupervised previous

approaches (including the approach seen earlier in this chapter). The use of supervision to

achieve the category latent space is fundamental to retain the discriminative ability, while re-

ducing the dimensionality for better inference in this space. This resulted in significantly better

results in 3DObjects (recognition + pose) and EPFL-Cars (pose). While the use of supervision

to achieve latent spaces has been studied before, this has not been addressed in the context of

the space of manifold deformations as presented here. For instance, using LDA in the coef-

ficient space gives worse results than unsupervised (in 3DObjects the recognition rate drops

to 61%). Adding supervision is not trivial for high-dimensional parameterization spaces, and

results in a nonlinear latent space, which mandates the use of a nonlinear model as we have

presented. The nonlinearity in the model requires developing suitable inference methods. We



88

compare two inference methods.

Unfortunately there is no large multi-view dataset to really evaluate scalability. Category-

specific models for pose estimation (e.g. [95, 121]) are not scalable, since one model per cat-

egory is needed, and these models do not allow sharing knowledge among similar classes. In

contrast, we aim for a model that solves simultaneously for category and pose, where there

is one common representation for all categories, hence the scalability potentials. Interestingly,

we achieved better pose estimation over many category-specific models, even though our model

combines all objects.

Compared to [152], our approach is scalable in two fundamental ways. First, In [152],

the category latent space was the subspace spanned by all training data, which is still high

dimensional for inference. [152] used 300 dimensional space for the RGB-D dataset. We only

use 20 dimensions and achieve comparable results. In addition, [152] used a k-NN classifier

because of the use of the full subspace. This is not scalable and not robust, therefore, supervised

DR is needed to achieve a low dimensional representation that retains the discriminative power.

Second, we propose a hierarchical Model, which is essential for scalability.

Supervision and nonlinearity are coined together in our use of KPLS. Comparing our sam-

pling results with [23] (also used sampling, although no algorithm was provided) shows the

value of the unsupervised-linear/supervised-nonlinear (88.4% vs 80% Table 5.1).

5.7 Conclusion

We present a novel framework for recognizing object category and pose estimation. The frame-

work uses a generative model that is based on homeomorphic manifold analysis, supervised

manifold embedding into a latent space and nonlinear mapping. The advantage of our model is

that inference is moved from the very high-dimensional feature space to two low-dimensional

orthogonal pose and category spaces, which makes the inference more accurate and computa-

tionally easier. We also incorporate this model into a hierarchical structure to deal with large

fine-grained classification problems. We show theoretical basis of our framework and com-

pare our results with the state-of-the-art. We show that our framework both achieves higher

performance than state-of-the-art in some configurations and is comparable in others.
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Chapter 6

Joint Object Recognition using Convolutional Neural Networks
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This work is focused on studying the view-manifold structure in the feature representation

space implied by the different layers of Convolutional Neural Networks (CNN). There are sev-

eral questions that this work aims to answer: Do the representations encoded in the layers of

a trained CNN achieve viewpoint invariance? If so, how is viewpoint invariance achieved?

Is it achieved by collapsing the view manifolds, or separating them while preserving and un-

tangling them? At which layer is view invariance achieved? How can the structure of the

object-view manifold at each layer of a deep convolutional neural network be quantified and

analyzed experimentally? How does fine-tuning of a pre-trained CNN on a multi-view dataset

affect the representation at each layer of the network? In order to answer these questions we

propose a methodology to quantify the deformation and degeneracy of view manifolds in CNN

layers. We apply this methodology and report interesting results in this work that answer the

aforementioned questions.

We first analyze the layers of a state-of-the-art CNN and present our findings. Starting from

section 6.6, based on the findings of our analysis, we investigate adapting Convolutional Neural

Networks to the task of simultaneous categorization and pose estimation of objects. We further

investigate and analyze the layers of various CNN models and extensively compare between

them with the goal of discovering how the layers of distributed representations of CNNs rep-

resent object pose information and how this contradicts object category representations. We

extensively experiment on two recent large and challenging multi-view datasets. Our models

achieve better than state-of-the-art performance on both datasets.

6.1 Introduction

Impressive results have been achieved recently with the application of Convolutional Neural

Networks (CNNs) in the tasks of object categorizations [74] and detection [123, 48]. Several

studies recently investigated different properties of the learned representations at different lay-

ers of the network, e.g. [150, 151, 19]. One fundamental question is how CNN models achieve

different invariances. It is well understood that consecutive convolution and pooling layers can

achieve translation invariant. Training CNN networks with a large dataset of images, with ar-

bitrary viewpoints and arbitrary illumination, while optimizing the categorization loss helps to
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achieve viewpoint invariant and illumination invariant.

In this work we focus on studying the viewpoint invariant properties of CNNs. In many

applications, it is desired to estimate the pose of the object, for example for robot manipulation

and scene understanding. Estimating pose and object categorization are tasks that contradict

each other; estimating pose requires a representation capable of capturing the viewpoint vari-

ance, while viewpoint invariance is desired for categorization. Ultimately, the vision system

should achieve a representation that can factor out the viewpoint for categorization and pre-

serve viewpoint for pose estimation.

The biological vision system is able to recognize and categorize objects under wide vari-

ability in visual stimuli, and at the same time is able to recognize object pose. It is clear

that images of the same object under different variability, in particular different views, lie on

a low-dimensional manifold in the high-dimensional visual space defined by the retinal array

(⇠100 million photoreceptors and ⇠1 million retinal ganglion cells). DiCarlo and Cox [27]

hypothesized that the ability of our brain to recognize objects, invariant to different viewing

conditions, such as viewpoint, and at the same time estimate the pose, is fundamentally based

on untangling the visual manifold encoded in neural population in the early vision areas (retinal

ganglion cells, LGN, V1). They suggested that this is achieved through a series of successive

transformation (re-representation) along the ventral stream (V1,V2, V4, to IT) that leads to an

untangled population at IT. Despite this, it is unknown how the ventral stream achieves this

untangling. They argued that since IT population supports tasks other than recognition, such

as pose estimation, the manifold representation is some how ”flattened” and ”untangled” in

the IT layer. DiCarlo and Cox’s hypothesis is illustrated in Figure 6.1. They stress that the

feedforward cascade of neural re-representation is a way to untangle the visual manifold.

Inspired by recent impressive results of CNNs and by DiCarlo and Cox’s hypothesis [27] on

manifold untangling, this work focuses on studying the view-manifold structure in the feature

spaces implied by the different layers of CNNs. There are several questions that this work aims

to answer:

1. Does the learned CNN representations achieve viewpoint invariance? If so, how does it

achieve viewpoint invariance? Is it by collapsing the view manifolds, or separating them
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Figure 6.1: Illustration of DiCarlo and Cox model [27]: Left: tangled manifolds of different
objects in early vision areas. Right: untangled (flattened) manifold representation in IT

Figure 6.2: Illustration showing hypotheses of the object-view manifold within the layers of a
CNN. We attempt to analyze how CNN models represent the object-view manifold within their
layers?

while preserving them? At which layer is the view invariance achieved? See Figure for

a hypothesized illustration of how CNN layers represent the object-view manifold 6.2.

2. How to experimentally quantify the structure of the viewpoint manifold at each layer of

a deep convolutional neural network?

3. How does fine-tuning of a pre-trained CNN, optimized for categorization on a multi-view

dataset, affect the representation at each layer of the network?

In order to answer these questions, we present a methodology that helps to get an insight

about the structure of the viewpoint manifold of different objects as well as the combined



93

object-view manifold in the layers of CNN. We conducted a series of experiments to quantify

the ability of different layers of a CNN to either preserve the view-manifold structure of data

or achieve a view-invariant representation.

The contributions of this work are as follows: (1) We propose a methodology to quantify

and get insight into the manifold structures in the learned representation at different layers of

CNNs. (2) We use this methodology to analyze the viewpoint manifold of pre-trained CNNs.

(3) We study the effect of transfer learning a pre-trained network with two different objectives

(optimizing category loss vs. optimizing pose loss) on the representation. (4) We draw impor-

tant conclusions about the structure of the viewpoint-object manifold and how it coincides with

DiCarlo and Cox’s hypothesis.

Section 6.2 defines the problem, experimental setup, and the basic CNN network that our

experiments are based upon. Section 6.3 introduces our methodology of analysis. Sections 6.4

and 6.5 describe the findings on the pre-trained network and the fine-tuned networks respec-

tively. After that, starting with section 6.6 we present our investigation into adapting the CNN

model for simultaneous categorization and pose estimation.

6.2 Problem Definition and Experimental Setup

It is expected that multiple views of an object lie on intrinsically low-dimensional manifolds

(view manifold1) in the input space. View manifolds of different instances and different objects

are spread out in this input space, and therefore form jointly what we call the object-view

manifold. The input space here denotes the RN⇥M space induced by an input image of size

N ⇥ M , which is analogous to the retinal array in the biological system. For the case of a

viewing circle(s), the view manifold of each object instance is expected to be a 1-dimensional

closed curve in the input space. The recovery of the category and pose of a test image reduces

to finding which of the manifolds this image belongs to, and what is the intrinsic coordinate

of that image within that manifold. This view of the problem is shared among manifold-based

approaches such as [97, 152, 7]

The ability of a vision system to recover the viewpoint is directly related to how the learned

1we use the terms view manifold and viewpoint manifold interchangeably
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representation preserves the view manifold structure. If the transformation applied to the input

space yields a representation that results in the collapsing of the view manifold, the system

will no longer be able to discriminate between different views. Since each layer of a deep NN

re-represents the input in a new feature space, the question would be how the re-representations

deforms a manifold that already exists in the input space. A deep NN would satisfy the hypoth-

esis of ”flattening” or ”untangling” by DiCarlo and Cox [27], if the representation in a given

layer separates the view manifolds of different instances, without collapsing them, in a way to

be able to put a separating hyperplanes between different categories.

Typically CNN layers exhibit general-to-specific feature encoding, from Gabor-like fea-

tures and color blobs at low layers to category-specific features at higher layers [151]. We

can hypothesize that for the purpose of pose estimation, lower layers should hold more useful

representations that might preserve the view manifold and be better for pose estimation. But

which of these layers would be more useful, and where does the view-manifold collapse to

view-invariance.

Figure 6.3: Sketches of four hypotheses about possible structures of the view manifolds of two
objects in a given feature space
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There are different hypotheses we can make about how the view manifolds of different

objects are arranged in the feature space of a given layer. These hypotheses are shown in

Figure 6.3. We arrange these hypotheses based on linear separability of the different objects’

view manifolds and the preservation of the view manifolds. Case 0 is the non-degenerate

case where the visual manifolds preserve the pose information but are tangled and there is

no linear separation between them (this might resemble the input space, similar to left case

in Figure 6.1). Case 1 is the ultimate case where the view manifolds of different objects are

preserved by the transformation and are separable (similar to the right case in Figure 6.1). Case

2 is where the transformation in the network leads to separation of the object’s view manifold

at the expense of collapsing these manifolds to achieve view invariance. Collapsing of the

manifolds can be to different degrees, to the point where each object’s view manifold can be

mapped to a single point. Case 3 is where the transformation results in more tangled manifolds

(pose collapsing and non-separable). It is worth to notice that both cases 1 and 2 are view

invariant representations. However, it is obvious that case 1 would be preferred since it also

facilitates pose recovery. It is not obvious whether optimizing a network with a categorization

loss result in case 1 or case 2. Getting an insight about which of these hypotheses are true in a

given layer of a DNN is the goal of this work. In Section 6.3 we propose a methodology to get

us to that insight.

6.2.1 Experimental Settings

To get an insight into the representations of the different layers and answer the questions

posed in Section 6.1 we experiment on two datasets: I) RGB-D dataset [77], II) Pascal3D+

dataset [149]. We selected the RGB-D dataset since it is the largest available multiview dataset

with the most dense viewpoint sampling. The dataset contains 300 instances of tabletop objects

(51 categories). Objects are set on a turntable and captured by an Xbox Kinect sensor (Kinect

2010) at 3 heights (30�, 45� and 60� elevation angles). The dense view sampling along each

height is essential for our study to guarantee good sampling of the view manifold. We ignore

the depth channel and only used the RGB channels.

Pascal3D+ is very challenging because it consists of images “in the wild”, in other words,

images of object categories exhibiting high variability, captured in uncontrolled settings and
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under many different poses. Pascal3D+ contains 12 categories of rigid objects selected from

the PASCAL VOC 2012 dataset [38]. These objects are annotated with 3D pose information

(i.e. azimuth, elevation and distance to camera). Pascal3D+ also adds 3D annotated images of

these 12 categories from the ImageNet dataset [26]. The bottle category is omitted in state-of-

the-art results. This leaves 11 categories to experiment with. There are about 11,500 and 7,000

training images in ImageNet and Pascal3D+ subsets, respectively. For testing, there are about

11,200 and 6,900 testing images for ImageNet and Pascal3D+, respectively. On average there

are about 3,000 object instances per category in Pascal3D+, making it a challenging dataset for

estimating object pose.

The two datasets provide different aspect of the analysis. While the RGB-D provides dense

sampling of each instance’s view manifold, Pascal3D+ dataset contains only very sparse sam-

pling. Each instance is typically imaged from a single viewpoint, with multiple instances of the

same category sampling the view manifold at arbitrary points. Therefore, in our analysis we

use the RGB-D dataset to analyze each instance viewpoint manifold and the combined object-

viewpoint manifolds, while the Pascal3D provides analysis of the viewpoint manifold at the

category level.

Evaluation Split: For our study, we need to make sure that the objects we are dealing with have

non-degenerate view manifolds. We observed that many of the objects in the RGB-D dataset

are ill-posed, in the sense that the poses of the object are not distinct. This happens when the

objects have no discriminating texture or shape to be able to identify the different poses (e.g.

a texture-less ball, apple or orange on a turntable). This will cause view manifold degeneracy.

Therefore we select 34 out of the 51 categories as objects that possess pose variations across

the viewpoints, and thus are not ill-posed with respect to pose estimation.

We split the data into training, validation and testing. Since in this datasets, most categories

have few instances, we left out two random object instances per category, one for validation and

one for testing. In the case where a category has less than 5 instances, we form the validation

set for that category by randomly sampling from the training set. Besides the instance split, we

also left out all the middle height for testing. Therefore, the testing set is composed of unseen

instances and unseen heights and this allows us to more accurately evaluate the capability of

the CNN architectures in discriminating categories and estimating pose of tabletop objects.
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6.2.2 Base Network: Model0

The base network we use is the Convolutional Neural Network described in Krizhevsky et al. [74]

and winner of LSVRC-2012 ImageNet challenge [116]. The CNN was composed of 8 layers

(including 1000 neuron output layer corresponding to 1000 classes). We call these layers in

order: Conv1, Pool1, Conv2, Pool2, Conv3, Conv4, Conv5, Pool5, FC6, FC7, FC8 where Pool

indicates Max-Pooling layers, Conv indicates layers performing convolution on the previous

layer and FC indicates fully connected layer. The last fully connected layer (FC8) is fed to a

1000-way softmax which produces a distribution over the category labels of the dataset.

6.3 Methodology

The goal of our methodology is two-folds: (1) study the transformation that happens to the

viewpoint manifold of a specific object instance at different layers, (2) study the structure of

the combined object-view manifold at each layer to get an insight about how tangled or untan-

gled the different objects’ viewpoint manifolds are. Both these approaches will get us an insight

to which of the hypotheses explained in Section 6.2 is correct at each layer, at least relatively

by comparing layers. This section introduces our methodology, which consists of two sets of

measurements to address the aforementioned two points. First, we introduce instance-specific

measurements that quantify the viewpoint manifold in the different layers to help understand

whether the layers preserve the manifold structure. We performed extensive analysis on syn-

thetic manifold data to validate the measures, which can be found in the appendix. Second,

we introduce empirical measurements that are designed to draw conclusions about the global

object-viewpoint manifold (involving all instances).

6.3.1 Instance-Specific View Manifold Measurements

Let us denote the input data (images taken from a viewing circle and their pose labels) for of

a specific object instance as {(x
i

2 RD, ✓
i

2 [0, 2⇡]), i = 1 · · ·N}, where D denotes the

dimensionality of the input image to the network, and N is the number of the images, which

are equally spaced around the viewing circle. These images form the view manifold of that

object in the input space denoted by M = {x
i

}N1 . Applying each image to the network will
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result in a series of nonlinear transformations. Let us denote the transformation from the input

to layer l by the function f
l

(x) : RD ! Rdl where d
l

is the dimensionality of the feature space

of layer l. With an abuse of notation we also denote the transformation that happens to the

manifold M at layer l by Ml

= f
l

(M) = {f
l

(x
i

)}N1 . After centering the data by subtracting

the mean, let Al

= [

´f
l

(x
i

) · · · ´f
l

(x
N

)] be the centered feature matrix at layer l of dimension

d
l

⇥N , which corresponds to the centered transformed images of the given object. We call Al

the sample matrix in layer l.

Since the dimensionality d
l

of the feature space of each layer varies, we need to factor out

the effect of the dimensionality. Since N ⌧ l
d

the transformed images on all the layers lie on

subspaces of dimension N in each of the feature spaces. Therefore we can change the bases

to describe the samples using N dimensional subspace i.e. , we define the N ⇥ N matrices

ˆ

A

l

= U

T
A where U 2 Rdl⇥N are the orthonormal bases spanning the column space of Al

(which we can get by SVD of Al

= USV

T). This projection just rotates the samples at each

layer.

The following measures will be applied to the N transformed images, representing the view

manifold of each object instance individually. To obtain an overall measures for each layer we

will average these measures over all the object instances.

1) Measure of spread - Nuclear Norm: There are several possible measures of the spread of the

data in the sample matrix of each view manifold. We use the nuclear norm (also known as the

trace norm [58]) defined as ||A||⇤ = Tr(
p
A

T
A) =

P
N

i=1 �i, i.e. it measure the sum of the

singular values of A.

2) Subspace dimensionality measure - Effective-p: As a measure of the effective dimensionality

of the subspace where the view manifold lives, we define Effective-p as the minimum number

of singular values (in decreasing order) that sum up to more that or equal to p% of the nuclear

norm,

Effective� p = sup{n :

nX

i=1

�
i

/
NX

i=1

�
i

 p/100} (6.1)

A smaller number means that the view manifold samples live in a lower dimensional subspace.

3) Alignment Measure - KTA: Ideally the view manifold resulting of the view sitting is a one-

dimensional closed curve in the feature space, which can be thought as a deformed circle [152].
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This manifold can be degenerate in the ultimate case to a single point in case of a textureless

object. The goal of this measurement is to quantify how the transformed manifold locally

preserves the original manifold structure. To this end we compare the kernel matrix of the

transformed manifold at layer l, denote by K

l

n

, with the kernel matrix of the an embedding of

the ideal view manifold on unit circle, denote by K

�
n

, where n indicates the local neighborhood

size used in constructing the kernel matrix. We construct the neighborhood based on the pose

labels.

Given these two kernel matrices we can define several convergence measures. We use

Kernel Target Alignment (KTA) which has been used in the literature for kernel learning [22]. It

simply finds a scale invariant dependency between two normalized kernel matrices2. Therefore,

we define the alignment of the transformed view manifold Ml at layer l with the ideal manifold

as

KTA
n

(Ml

) =

< K

l

n

,K�
n

>
F

||Kl

n

, ||
F

||K�
n

||
F

(6.2)

4) KPLS-regression measures: Kernel Partial Least Squares (KPLS) [114] is a supervised re-

gression method. KPLS iteratively extracts the set of principal components of the input kernel

that are most correlated with the output 3. We use KPLS to map from the transformed view

manifold kernel Kl

n

(input kernel) to the unit circle kernel K�
n

(output kernel). We enforce this

mapping to use maximum of d = 5 principal components, where d ⌧ N and N is the di-

mensionality of the kernels. Based on this mapping, we define KPLS-Regression Error, which

measures the Normalized Cross Correlation between the output kernel and the mapped input

kernel. This measures the mapping correctness from the transformed view manifold to the

circle manifold kernel 4.

5) TPS-linearity measure: In this measure we learn a regularized Thin Plate Spline (TPS) non-

linear mapping [30] between the unit circle manifold and each Ml. The reason for using TPS

in particular is that the mapping has two parts, an affine part (linear polynomial) and a nonlinear

2We also experimented with HSIC [50], however HSIC is not scale invariant and is not designed to compare
data in different feature spaces. Even after scaling the data, HSIC did not give any discriminative signal

3Unlike KPCA which extracts the principal components of the input kernel to maximize the variance of the
output space, KPLS extracts the principal components of the input kernel that maximize the correlation with the
output data.

4We also used another KPLS measure we call KPLS-Norm Ratio, which can be found in the appendix



100

part; details about the definition of the metric is in the appendix). Analysis of the two parts will

tell us if the mapping is mostly linear or nonlinear. We use the reciprocal-condition number

(rcond) of the sub coefficient matrices corresponding to the affine and the nonlinear part as a

measure of the linearity of the transformation.

6.3.2 Global Object-Viewpoint Manifold Measures

To achieve an insight about the global arrangement of the different objects’ view manifolds in

a given feature space we suggest to use the following three empirical measurements:

6) L-SVM: For a test image x transformed to the l-th layer’s feature space, f
l

(x), we compute

the performance of a linear SVM classifier trained for categorization. Better performance of

such a classifier directly implies more linear separability between different view manifolds of

different categories.

7) Kernel Pose Regression: To evaluate whether the pose information is preserved in a local

neighborhood of a point in a given feature space we evaluate the performance of kernel ridge

regression for the task of pose estimation. Better performance implies better pose-preserving

transformation, while poor performance indicates pose-collapsing transformation. The combi-

nation of L-SVM and kernel regression should be an indication to which of the hypotheses in

Figure 6.3 is likely to be true.

8) Local Neighborhood Analysis: To evaluate the local manifold structure we also evaluate the

performance of nearest neighbor classifiers for both category and pose estimation, with varying

size of the neighborhood. This directly tell us whether the neighbors of a given point are from

the same category and/or of similar poses. KNN for categorization cannot tell us about the

linear separability of classes. However evaluating the pose estimation in a neighborhood of a

datapoint gives us an insight about how the view manifolds are preserves, and even whether the

view manifolds of different instances are aligned. To achieve this insight we use two different

measurements:

1. KNN-Accuracy: the accuracy of KNN classifiers for category and pose estimation.

2. KNN-Gap: the drop in performance of each KNN classifier as the neighborhood size

increases. In particular in our experiments we increase K from 1 to 9. Positive gap
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indicates a drop (expected) and negative gap indicates improvement in performance.

Figure 6.4: KNN Tradeoffs: Left) accuracy tradeoff between pose and category estimation
using KNN. Right) Gap tradeoff (Gap is the drop in performance as K increases.)

The interaction between these two measures and how they tell us about the manifold struc-

ture is illustrated in Fig 6.4. The contrast between the accuracy of the KNN classifiers for pose

and category directly implies which of the hypotheses in Figure 6.3 is likely. The analysis of

KNN-Gap (assuming good 1-NN accuracy) gives further valuable information. As the KNN-

gap reaches zero in both category and pose KNN classifiers, this implies that neighborhoods are

from the same category and has the same pose, which indicates that the representation aligns

the view manifolds of different instances of the same category. If the view manifolds of such

instances are preserved and separated in the space, and the neighbors of a given point are from

the same instance, this would imply small gap in the category KNN classifier and bigger gap in

pose KNN classifier. Low gap in pose KNN vs high gap in category CNN implies the represen-

tation aligns view manifolds of instances of different categories. A high gap in both obviously

implies the representation is tangling the manifolds such that a small neighborhood contains

points from different categories and different poses. Notice that this implications are only valid

when the 1-NN accuracy is high.
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6.4 Analysis of the Pre-trained Network

6.4.1 Instance View Manifold Analysis

Figure 6.5 shows the application of the instance-specific view manifold measurements on the

images of the RGBD dataset when applied to a pre-trained network (Model0 - no fine-tuning).

This gives us an insight on the transformation that happens to the view manifold of each object

instance at each layer of the network. Figure 6.5a shows that the nuclear norm of the trans-

formed view manifolds in Model0 is almost monotonically decreasing as we go higher in the

network, which indicates that the view manifolds is more spread in the lower layers. In fact

at the output layer of Model0 the nuclear norm becomes too small, which indicates that the

view manifold is collapsing to reach view invariant representation at this layer. Figure 6.5b

(p = 90%) shows that subspace dimension varies within a small range in the lower layers

and it reduces dramatically in fully connected layers, which indicates that the network tries to

achieve view invariance. The minimum is achieved at FC8 (even without fine tuning). Fig-

ure 6.5c shows the KTA applied to Model0, where we can notice that the alignment is almost

similar across the lower layers, with Pool5 having the maximum alignment, and then starts to

drop at the very high layers. which indicates that after Pool5, the FC layers try to achieve view

invariant. Fig 6.5d shows that KPLS regression error on Model0 dramatically reduces from

FC8 down to Pool5, where Pool5 has the least error. In general the lower layers have less error.

This indicates that the lower layers preserve higher correlation with the ideal manifold struc-

ture. Fig 6.5e shows that the mapping is highly linear, which is expected because of the high

dimensionality of the feature spaces. From Fig 6.5e we can clearly notice that the lower layers

has more better-conditioned linear mapping5.

From these measurements we can conclude: (1) The lower layers preserve the view mani-

folds. The manifolds start to collapse in the FC layers to achieve view invariance. Preserving

the view manifold at the lower layers is intuitive because of the nature of the convolutional

layers. (2) The manifold at Pool5 achieves the best alignment with the pose labels. This is

a less intuitive result; why does the representation after successive convolutions and pooling

5Figures for the nonlinear part can be seen in the appendix, which shows very small values (⇡ 10�11) compared
to the linear part
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improves the view manifold alignment? even without seeing any dense view manifold in train-

ing, and even without any pose labels being involved in the loss. The hypotheses we have to

justify that Pool5 has better alignment than the lower layers is that Pool5 has better translation

invariant properties, which results in improvement of the view manifold alignment.

6.4.2 Global Object-View Manifold Analysis

The performance of Linear SVM and Kernel Regression is shown in Figure 6.6, using RGBD

dataset (plots for Pascal3D are in the appendix). The figure clearly shows the conflict in the rep-

resentation of the pre-trained network (categorization increases and pose estimation decreases).

Linear separability of category is almost monotonically increasing up to FC6. Linear separa-

bility in FC7 and FC8 is worse, which is expected as they are task specific (no fine-tuning).

Surprisingly Pool1 features perform very bad, despite being the most general features (typ-

ically they show Gabor like features and color blobs). In contrast, for pose estimation, the

performance increases as we go lower in the network up to Conv4 and then slightly decreases.

This confirms our hypothesis that lower layers offer better feature encoding for pose estimation.

It seems that Pool5 provides feature encoding that offer the best compromise in performance,

which indicates that it is the best in compromising between the linear separation of categories

and the preservation of the view-manifold structure.

What is surprising is that the pose estimation results do not drop dramatically in FC6 and

FC7. We can still estimate the pose (with accuracy around 63%) from the representation at these

layers, even without any training on pose labels. This highly suggests that the network preserves

the view manifold structure to some degree. For examples taking the accuracy as probability at

layer FC6, we can vaguely conclude that 90% of the manifolds are linearly separable and 65%

are pose preserved (we are somewhere between hypotheses 1 and 2 at this layer).

The aforementioned conclusion is also confirmed by the KNN analysis. Very high accuracy

is achieved using KNN for category and pose. The category gap is reducing as we go up in

the network up to FC7 (almost 0 gap at FC6 and FC7). In contrast the gap is large at all

layers for pose estimation. This indicates separation of the instances’ view manifolds where

the individual manifolds are not collapsed (This is why as we increase the neighborhood, the
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Approach Split Categorization % Pose
(AAAI
metric)

Model0 (SVM/Kernel Regres-
sion) on FC6

1 86.71 64.39

Model0 (SVM/Kernel Regres-
sion) on conv4

1 58.64 67.39

HOG (SVM/Kernel Regres-
sion)

1 80.26 27.95

Model1 1 89.63 81.21%,
69.58
(<
22.5),
81.09
(< 45)

Table 6.1: RGBD Dataset Results for Model1, Model0, and HOG

category performance stays the same while pose estimation decreases smoothly - See the top-

right block of Figure 6.4-right for illustration). The results above consistently imply that the

higher layers of CNN (expect FC8 which is task specific), even without any fine-tuning on the

dataset, and even without any pose label optimization achieve representations that separate and

highly preserve the view manifold structure.

Tables 6.1 and 6.2 show the quantitative results of our models, compared to baselines, on the

RGBD Dataset and Pascal3D+. Table 6.2 shows our quantitative results compared against two

previous methods [153] and [149], using the two metrics < 45

� and < 22.5�. It is important

to note that the comparison with [149] is unfair because they solve for detection and pose

simultaneously while we do not solve for detection. We solve for categorization and pose.

6.5 Effect of Transfer Learning

In order to study the effect of fine-tuning the network (transfer learning to a new dataset) on the

representation we trained the following model (denoted as Model1). This architecture consists

of two parallel CNNs: one with category output nodes (Model1-Cat), and one with binned

pose output nodes (Model1-Pose). We used 34 and 11 category nodes for RGBD and Pascal3D

datasets respectively; while we used 16 pose nodes for both datasets). The parameters of both

CNNs were initialized by Model0 parameters up to FC7. The parameters connecting FC7 to the

output nodes are randomly initialized on both networks and they are fine-tuned by minimizing

the categorization loss for Model1-Cat and the pose loss for Model1-pose. The purpose of these

architectures is to study the effect of fine-tuning when the category and pose are independently
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Approach Categorization % Pose (AAAI metric)
Model0 (SVM/Kernel Regression)

FC6 73.64 49.72
FC7 76.38 48.24
FC8 71.13 45.41

Model1 (SVM/Kernel Regression)
FC6 74.65 54.41
FC7 79.25 54.07
FC8 84.12 60.31

Model0 NN
FC6 60.05 61.11
FC7 69.89 61.38
FC8 61.26 60.32

Model1 NN
FC6 73.50 65.87
FC7 77.30 66.07
FC8 83.07 70.54

Model1 (direct prediction from CNN)
output 84.00 71.60 (AAAI), 47.34(<22.5), 61.30 (<45)

State of the Art Methods
[153] - 44.20 (< 22.5), 59.00 (<45)
[149] - 15.6% (<22.5), 18.7% (<45)

Table 6.2: Pascal3D Performance. Here we see our results compared to the two baselines from
[153] and [149] using the two metrics < 45

� and < 22.5�. It is important to note that the
comparison with [149] is slightly unfair because they solve for detection and pose simultane-
ously while we do not solve for detection. We solve for categorization and pose. Model1 here
outperforms both [153] and [149] (despite the unfair comparison with the latter approach).

optimized.

We applied all the measures described in Sec 6.3 to understand how the view manifolds

will be affected after such tuning. The questions are: To what degree optimizing on category

should damage the ability of the network to encode view manifolds. On the other hand, how

optimizing on pose should enhance that ability. Model1-Cat indicates the effect of optimizing

on category, while Model1-Pose indicates the effect of optimizing on pose.

Fig 6.5 shows the five view manifold measures for the different layers of Model1(Cat/Pose),

in comparison with Model0. In terms of data spread, from Fig 6.5a shows that the spread at

FC8 has doubled after fine tuning on pose (Model1-Pose). Fig 6.5b shows the fine tuning

on category (Model1-Cat) caused the view manifold subspace dimensionality to significantly

reduce to 1, where it became totally view invariant. Optimizing on pose slightly enlarged

the subspace dimensionality (i.e. become better) at FC8 and FC7. Fig 6.5c clearly shows the

significant improvement achieved by fine tuning on pose, where the alignment of FC8 jumped

to close to 0.9 from about 0.78, while fine tuning on category reduces the alignment of FC8 to

close to 0.65. Similar behavior is also apparent in the KPLS ratio for FC8 and FC7 (sup-mat).
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One very surprising result is that optimizing on pose makes the pose KTA alignment worse

at the lower layers, while optimizing on category makes the pose alignment better compared

to model0. In fact, although optimizing on pose significantly helps aligning FC8 with pose

labels, Pool5 still achieves the best KTA alignment and the least regression reconstruction

error. The regression reconstruction error in Fig 6.5d clearly shows significant improvement in

the representation of FC8 and FC7 to preserve the view manifold. One surprising finding from

these plots is that the representation of FC6 becomes worse after fine tuning for both pose and

category. Fig 6.5e indicates that the deformation of the view manifold is reduced as a result

of fine tuning on pose (larger rcond number), while it increases as a result of fine tuning on

category.

On the global object-view manifold structure, we notice from Figures 6.6 some intuitive

behavior at FC8. Basically optimizing on pose reduces the linear separability and increases

the view manifold preservation (moves the representation towards hypothesis 0). In contrast,

optimizing the category significantly improves the linear separability at FC9, however, inter-

estingly, it only slightly reduces the pose estimation performance to be slightly less than 50%.

Combining this conclusion with the observation from Fig 6.5b, that the view manifold sub-

space dimensionality reduces to 1, this implies that optimizing on category collapses the view

manifolds to a line, but they are not totally degenerate. What is less obvious is the effect of

fine tuning on the lower layers than FC8. Surprisingly, optimizing on pose did not affect the

linear separability of FC7. Another very interesting observation is that optimizing on category

actually improves the pose estimation slightly at the FC7, FC6, and Pool5; and did not reduce

it at lower layers. This implies that fine tuning by optimizing on category only improved the

internal view manifold preservation at the network, even without any pose labels. Analysis

using KNN measures, as well as results of fine-tuning on Pascal3D dataset are available in the

appendix.

6.6 Adapting CNNs to Categorization and Pose Estimation

Based on the findings presented so far, in the remainder of this chapter we present an in-depth

analysis and discussion of the view-invariant properties of CNNs. We proposed a methodology
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to analyze individual instance’s view manifolds, as well as the global object-view manifold. We

applied the methodology on a pre-trained CNN, as well as two fine-tuned CNNs, one optimized

for category and one for pose. We performed the analysis based on two multi view datasets

(RGBD and Pascal3D+). Results on both datasets give consistent conclusions.

Based on the proposed methodology and the datasets, we analyzed the layers of the pre-

tained and fine-tuned CNNs. There are several findings from our analysis that are detailed

throughout the work, some of them are intuitive and some are surprising. We find that a pre-

trained network captures representations that highly preserve the manifold structure at most of

the network layers, including the fully connected layers, except the final layer. Although the

model is pre-trained on ImageNet, not a densely sampled multi-view dataset, still, the layers

have the capacity to encode view manifold structure. It is clear from the analysis that, except

of the last layer, the representation tries to achieve view invariance by separating individual

instances’ view manifolds while preserving them, instead of collapsing the view manifolds to

degenerate representations. This is violated at the last layer which enforces view invariance.

Overall, our analysis using linear SVM, kernel regression, KNN, combined with the man-

ifold analysis, makes us believe that CNN is a model that simulate the manifold flattening

hypothesis of Cox and DiCarlo [27] even without training on multi-view dataset and without

involving pose labels in the objective’s loss.

Another interesting finding is that Pool 5 offers a feature space where the manifold structure

is still preserved to the best degree. Pool 5 shows better representation for the view-manifold

than early layers like Pool1. We hypothesize that this is because Pool5 has better translation and

rotation invariant properties, which enhance the representation of the view manifold encoding.

We also showed the effect of fine-tuning the network on multi-view datasets, which can

achieve very good pose estimation performance. In this work we only studied the effect of inde-

pendent pose and category loss optimization. Optimizing on category achieves view invariance

at the very last fully connected layers; interestingly it enhances the viewpoint preservation at

earlier layers. We also find that fine-tuning mainly affects the higher layers and rarely affects

the lower layers.

In the following sections, we further investigate how to use this analysis to build a CNN

model that can be adapted to the task of simultaneous categorization and pose estimation of
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objects. We investigate how each of these tasks affects the other, i.e. how category-specific

information can help estimate the pose of an object, and how a balance between these con-

trasting tasks can be achieved. We analyze different CNN models and extensively compare

between them to find an efficient balance between high accuracy object categorization and ro-

bust pose estimation. (4) We validate our work by extensive experiments on two recent large

and challenging multi-view datasets and we achieve better than state-of-the-art performance on

both.

The first question we pose in this part is: how good are pre-trained representations of

different CNN layers, without fine-tuning, for the task of pose estimation? To answer this we

took a state-of-the-art CNN trained on the ImageNet challenge (introduced in [74]) and tested

it with dense multi-view images from the RGBD dataset [77] to see how well it represented

object view-manifolds and hence was able to discriminate between object poses. This CNN

is composed of 8 layers. We call these layers in order: Conv1, Pool1, Conv2, Pool2, Conv3,

Conv4, Conv5, Pool5, FC6, FC7, FC8. Pool indicates Max-Pooling layers, Conv indicates

layers performing convolution on the previous layer and FC indicates fully connected layer.

In order to quantitatively evaluate the representations of pose in this network, we trained

pose regressors using Kernel Ridge-Regression and a SVM classifier for categorization (lin-

ear one-vs-all) on the features extracted from each of the layers of the CNN. Fig. 6.7-Left is

the result of the regressor and classifier. It clearly shows the conflict in representation of the

pre-trained network. For pose estimation, the performance increases around Pool5 and and

then decreases in the following layers. This confirms that shallower layers offer better feature

encoding for pose estimation, but only up to a point where before that the abstraction nec-

essary to represent pose is not sufficient. It appears that Pool5 provides representations that

offers the best balance in performance, indicating it is the best in compromising between the

categorization and discriminating pose.

In Fig 6.7-Left we also report cross-evaluation of categorization using pose features and

vice versa, we see that, FC8 (output) which is task specific, does not perform good pose es-

timation, while FC6/FC7 perform much better. It is interesting to observe the opposite is not

true; when optimizing on pose, much of the category-specific information is still represented by

the features of the CNN, as seen by the increase in performance of category recognition using
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the pose-optimized features.

We further explored using other regressors on multiple views of a single object instance

(GPR [111], WKNN [22], SVR [22], KTA [22]). We use a coffee mug instance that has enough

visual and shape features to discriminate its poses. Fig 6.7-Right shows the MAE of the pose

regression. The results also confirm that the pose representation improves as we approach

Pool5. Since this is on one object instance, this indicates that Pool5 has the best representation

of the object’s view-manifold. We also found that the performance of features based on Pool5

are the closest to correlate with the performance when using HOG features on the objects’

multi-view images. This further proves that Pool5 has the abstraction capability of representing

pose efficiently.

6.7 Analyzed Models

We now discuss the various CNN models used for extensive analysis and evaluation. The

CNN model used as a base network in our experiments is the CNN built by Krizhevsky et al.

[74] which achieved state-of-the-art performance in the LSVRC-2012 Imagenet Challenge for

object recognition [116]. We will refer to this model as the Model0: base network. This model

is pre-trained on Imagenet. The last fully connected layer (FC8) is fed to a 1000-way softmax

which produces a distribution over the category labels of the dataset. Dropout was employed

during training and Rectified Linear Units (ReLU) were used for faster training. Stochastic

gradient descent is used for back propagation.

It is important to note that this model is not fine-tuned on the datasets we experiment on.

This is to show how the layers of a CNN trained on categorization of ImageNet lacks the ability

to represent pose efficiently, but rather separates between (i.e. cluster) object categories where

each cluster lacks pose information.

Throughout this study we vary the architecture of the base network and change the loss

functions to study its behavior. All the models described are pre-trained on ImageNet and fine-

tuned on each of the two large dataset we experimented on. The base network is only trained

on ImageNet.
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We investigate, in total, four different CNN models besides the base network (Base Net-

work). We call these Parallel Model (PM), Cross-Product Model (CPM), Late Branching Model

(LBM), Early Branching Model (EBM).

PM is a parallel version of the base network, in the sense that it is two parallel and indepen-

dent versions of it, one for categorization and one for pose.

CPM involves jointly training over object category and pose, using a last layer with units

for each category and pose combination, i.e. the cross-product of category and pose labels

(depicted in Figure 6.8-a).

LBM and EBM models are also depicted in Figure 6.8. The LBM branches into two 1-

layer subnetworks at the last layer of the overall architecture. EBM performs early branching

into two subnetworks, each specialized in categorization and pose estimation, respectively.

The output layer FC8 is not merged but instead the LBM and EBM networks optimize over

two loss functions, one concerned with building view-invariance representations for category

recognition and the other with category-invariance representation for pose estimation. Because

of the branching, this causes two units to be active, one in each branch, at the same time. The

only work that has done something similar to this in CNN models is the work by[49].

All losses are optimized by the multinomial logistic regression objective, similar to [74].

This loss is referred to as the Softmax loss. We denote softmax loss of label l 2 {lc, lp} and

image x as loss
i

(x, l), where i indicates if this loss is over category or pose modes, lp and lc

are the labels for pose and category, respectively.

In the following subsections we describe each model in detail.

6.7.1 Parallel Model (PM)

This model consists of two base networks running in parallel, each solving categorization and

pose estimation independently. There is no sharing of information between the two networks.

The goal of this model is to see how well the traditional CNN is capable of representing object-

view manifolds and hence estimating object pose, independent of category-specific informa-

tion. The category and pose losses minimized in this model are: loss
c

(x, lc) and loss
p

(x, lp),

one for each of the tasks of categorization and pose estimation, respectively.
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6.7.2 Cross-Product Model (CPM)

CPM explores a way to combine categorization and pose estimation by building a last layer

capable of capturing both (see Fig6.8-a). We build a layer with the number of units equivalent

to the number of combinations of category and pose, i.e. the cross-product of category and pose

labels. The number of categories varies according to the dataset as we will see. The pose angles

(in this case yaw or azimuth angle of an object) is discretized into angle bins across the viewing

circle. This is the case with all our pose estimating models. The loss function for the CPM

model is the softmax loss over the cross-product of category and pose labels: loss(x, lp ⇥ lc).

6.7.3 Late Branching Model (LBM)

We introduce a change in the architecture by splitting/branching the network into two last

layers, each designed to be specific to the two tasks: categorization and pose estimation. Thus,

this network has a shared representation for both category and pose information up until layer

FC7 (see Fig6.8-b).

The goal is to learn category and pose information simultaneously from the representations

encoded in the previous layers of the CNN. The question behind this model is whether or

not one last layer would be enough to recover the pose information from the previous layers,

in other words untangle the object view-manifold and give accurate pose estimates. In other

words, one can think of this as testing the ability of the deep distributed representations of

a CNN in holding both category-specific pose-invariant information as well as pose-variant

information. LBM is trained using a linear combination of losses over category and pose: �1 ·
loss

c

(x, lc) + �2 · lossp(x, lp) where �1,�2 are weights found empirically (see supplementary

material).

6.7.4 Early Branching Model (EBM)

The question of moving the branching to an earlier layer in the network poses itself here:

Can the branching be moved earlier in the network to where the pose knowledge is still well

preserved and in fact maximal across the layers?

From our experiments (described later on) we observe that the objects’ view-manifolds are
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maximally represented at Pool5. Thus, this network has a shared representation for both cate-

gory and pose information up until layer Pool5. At Pool5 it branches out into two subnetworks,

that are jointly optimized using a combined loss function (same as for LBM): �1 · lossc(x, lc)+
�2 · lossp(x, lp). Similar to LBM, it is important to note that this network optimizes over two

losses. This model achieves the most efficient balance between categorization and pose esti-

mation and achieve state-of-the-art results on two large challenging datasets, as we shall see in

Section 6.10.

6.8 Datasets

6.8.1 RGBD Dataset

One of the largest and challenging multi-view datasets available is the RGB-D dataset [77]. It

consists of 300 tabletop object instances over 51 different categories. Images of objects are

captured as it rotates on a turn-table, producing dense views of each object. The camera is

positioned at three different heights with elevation angles: 30�, 45� and 60�.

In previous approaches the middle height (45�) is left out for testing [78, 152, 7, 33]. This

means that object instances at test time have been seen before from other heights at training

time. For this dataset it was important to experiment with an additional training-testing split

of the data to give more meaningful results. We wanted to ensure that objects were never seen

before at test time. We also wanted to make sure that the instances we are dealing with have

non-degenerate view manifolds. We observed that many of the objects in the dataset are ill-

posed, in the sense that the poses of the object are not distinct. This happens when the objects

have no discriminating texture or shape to be able to identify its poses (e.g. a texture-less ball

or orange). This will cause object-view manifold degeneracy. For this reason, we select 34

out of the 51 categories as objects that possess variation across the viewpoints, and thus are

not ill-posed with respect to pose estimation. We split the data into training, validation and

testing. In this datasets, most categories have few instances; therefore we left out two random

instances per category, one for validation and one for testing. In the case where a category has

less than 5 instances, we form the validation set for that category by randomly sampling one

object instance from the training set. We also left out all the middle height for testing. Thus,
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the testing set is composed of unseen instances and unseen heights and this allows us to more

accurately evaluate the capability of CNNs in discriminating categories and poses of tabletop

objects. We call this split, Split 1. In order to compare with state-of-the-art we also used the

split used by previous approaches (we call this Split 2).

6.8.2 Pascal3D+ Dataset

We experiment on the recently released challenging dataset of multi-view images, called Pas-

cal3D+ [149]. Pascal3D+ is very challenging because it consists of images in the wild, in other

words, images of object categories exhibiting high variability, captured in uncontrolled settings,

in cluttered scenes and under many different poses. Pascal3D+ contains 12 categories of rigid

objects selected from the PASCAL VOC 2012 dataset [38]. These objects are annotated with

pose information (azimuth, elevation and distance to camera). Pascal3D+ also adds pose an-

notated images of these 12 categories from the ImageNet dataset [116]. The bottle category is

omitted in state-of-the-art results. To be consistent, we do the same. This leaves 11 categories

to experiment with. There are about 11,500 and 7,000 training images in ImageNet and Pas-

cal3D+ subsets, respectively. We take a small portion of these images for validation and use

the rest for training. For testing, there are about 11,200 and 6,900 testing images for ImageNet

and Pascal3D+, respectively. On average there are about 3,000 object instances per category in

Pascal3D+ captured in the wild, making it a challenging dataset for estimating object pose.

6.9 CNN Layer Analysis

Similar to the analysis performed in Section ??, we do this on all our described models. This

gives insight into the ability of these models to represent pose and the intrinsic differences

between them. We perform kernel Ridge-regression and SVM classification on each layer of

the CNN models. The results of this analysis on the two muti-view datasets are shown in Fig.

6.9 and 6.10.

From Fig. 6.9 and 6.10, we can see that the base network monotonically decreases in pose

accuracy after layer Pool5. Pool5 seems to again hold substantial pose information, before it is

lost in the following layers. This is the premise behind the design of our EBM model. EBM is
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able to efficiently untangle the object-view manifold and achieve good pose estimation on the

branch specific to pose estimation.

From Fig. 6.9 and 6.10, it can be observed that the LBM is able to achieve a good boost

in pose performance at its last layer. From 6.9-right, it can be observed that at the layers

Conv4 and Pool5 EBM has slightly worse accuracy than LBM and PM on the RGBD dataset.

This indicates that the optimization is putting emphasis on the category information just before

branching to achieve better pose estimation at deeper layers.

We conduct k �NearestNeighbor pose estimation on all the layers of the 4 models with

varying neighborhood sizes (shown in Fig. 6.11). We observe that EBM is able to align object

poses (i.e. align the instances’ view manifolds) in layer FC7 while all the rest of the models

align at the output layer. This can be concluded because the drop in KNN performance as k

increases reduces to zero, which indicates the neighborhood contains images of the same pose.

In addition, it can be observed that starting from Pool5, EBM has consistently more aligned

object poses than the other models. This indicates the advantage of early branching, where

pose representations are able to be preserved and enhanced within the CNN layers.

CPM does quite substantially worse than the other models on both datasets, in both cate-

gorization and pose estimation. This can be seen in Fig. 6.9-Left and 6.9-Right and to some

extent in Fig. 6.10. The reason for this lies in the fact that CPM shares information to jointly

optimize over category and pose. The drop is more evident in the task of categorization, indi-

cating again that category information aids in estimating the pose, but not the other way round.

The drop is more on the RGBD dataset because there are a lot more categories than Pascal3D+

and thus a lot more inter-class confusion. This is analogous to using category labels to separate

between objects of different categories which may help bring similar posed objects of the same

category together in the latent space encoded in the layers. On the other hand there is no clear

untangling of the object-view manifold, where the pose information is stored, and thus this lack

of pose information negatively impacts the categorization of objects.
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6.10 Experiments

In this section we describe the experimental setup and present the quantitative results of our

experiments as well as comparisons with state-of-the-art.

6.10.1 Training

All models are trained by back propagation with Stochastic gradient descent (batch size = 100

images). Refer to the supplementary material for details about the parameters, e.g. learning

rate, decay etc. . At training time, we randomly sample 227x227 patches from the down-scaled

256x256 images. At test time the center 227x227 patches are taken.

All classification losses are optimized by the multinomial logistic regression objective.

Similar to [74], we optimized it by maximizing the average of the log-probability of the correct

label under the prediction distribution across training cases. For each of the category and pose

losses, the gradient with respect to the CNN parameters is computed which is then fed into

CNN training for back propagation.

The two metrics < 22.5 and < 45 used to evaluate the performance of pose estimation are

the percentages of test samples that satisfy AE < 22.5� and AE < 45

�, respectively, where

the Absolute Error (AE) is AE = |EstimatedAngle � GroundTruth|). The AAAI pose

metric is defined as

�(✓
i

, ✓
j

) = min(|✓
i

� ✓
j

|, 2⇡ � |✓
i

� ✓
j

|)/⇡ (6.3)

The base learning rate is assigned 0.5 ⇥ 10

�3. For fine-tuning, the learning rate of the

randomly initialized parameters (e.g. FC8 parameters in PM) are assigned to be ten times higher

than the learning rate of the parameters initialized from the pretrained CNN (e.g. . Conv1 to

Pool5 in all the models). The decay of the learning rate � is 0.1. While training our CNNs, we

drop the learning rate by a factor of � every 5000 iterations. The momentum and the weight

decay were assigned to 0.9 and 0.0001 respectively. Training images are randomly shuffled

before feeding the CNN for training.
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6.10.2 Results

Table 6.3 shows the category recognition and pose estimation performance for the different

models. Table 6.5 shows the performance of our models on Pascal3D+. We compare the accu-

racy achieved by our models with state-of-the-art results by [153] and results by [149]. It must

be noted here that we are solving a slightly different problem than [149], where they solve

detection and pose estimation, assuming correct detection. On the other hand [153] solve just

pose estimation, assuming that the object categories are known. In our case we are jointly solv-

ing both category recognition and pose estimation, which can be considered a harder problem

than that of [153] and [149]. Our pose estimation performance is better than both these previ-

ous approaches. For the sake of this comparison, we computed the pose performance using the

metrics applied in [153]. These metrics are pose accuracy for images with pose errors < 22.5�

and < 45

�.

Table 6.5 (rows 1-4) shows both our categorization and pose estimation results on Pascal3D

dataset-Pascal12 part, compared with [153]. The table indicates 13.69% improvement of our

method over [153] in pose < 22.5� metric and 4% improvement in pose < 45

�, which

are significant results. We also show our performance when including ImageNet images in

the training set and also the test set - see Table 6.5 (rows 5-8). The results show the benefit of

ImageNet training images which boosts pose performance to 76.9% (from 57.89%) and 88.26%

(from 63.0%) for pose < 22.5� and pose < 45

�, respectively. It is important to note that

comparing to [149] is slightly unfair because [149] solve for detection and pose simultaneously,

while we do not solve detection.

Since all CNN were trained with a multinomial loss, maximizing log-probability of the

correct label under the prediction distribution across training cases. This indicates that the pose

softmax output (FC8) layer is the pose probability distribution given the image. All the results

that are presented in the paper were based on the prediction of argmax
pose

p(pose|x), where

pose is one of the 16 poses and x is the given image. We did an additional experiment where

we predict the pose by computing the expected pose in the distribution of p(pose|x); see Eq.



117

6.4.

E(p(pose|x)) =
X

i

p(pose
i

|x)⇥ �(pose
i

) (6.4)

where �(pose
i

) is the center angle of the corresponding bin pose
i

(the pose of the ith bin).

Using the pose prediction rule of eq. 6.4, the pose accuracy of EBM(800) increased from

78.83% to 79.30% for the argmax prediction on split 2 on RGBD (reported in Table 6.4). This

indicates that the expected pose of the distribution of the learnt p(pose|x) is a more accurate

measure. With this, we achieve over 1% increase in category recognition and just over 3%

increase in pose estimation (79.30%) using the EBM(800) model. In Table 6.5, on the in the

wild images of Pascal3D+ dataset, our EBM model achieves a very impressive increase of⇠8%

and ⇠5% using the two pose accuracy metrics, respectively. These measurements are likely to

increase further when using the EBM(4096) as we see slight improvement of EBM(4096) over

EBM(800) in Table 6.4. It is also possible that running k-NN on top of the layer features would

improve performance further. In Table 6.4, [7] achieved 96.01% classification accuracy. This

is achieved using both visual and depth channels. In our system, we used only the RGB (no

depth). The approach in [7] achieved 94.84% with RGB only, which shows the advantage of

our models for classification. We achieved 97.14% using the EBM model. We also achieved

99.0% classification accuracy using Nearest Neighbor classification on the Pool5 layer from

EBM Model, which indicates that we learnt better convolutional filters.

6.11 Discussion

We offer multiple forms of analytical and quantitative results. Our analysis of the layers of the

various CNN models are shown in Fig. 6.9, 6.10 and 6.11. We provide quantitative results over

two challenging datasets and summarize them in Tables 6.3, 6.4 and 6.5.
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Table 6.3: A summary of all the results of the CNN models. Split 2 is the traditional RGBD
dataset split. Split 1 is the one we describe that better evaluates our experiments. Split 2 is the
state-of-the-art training-testing split. C indicates category performance and P indicates pose
accuracy (where it is measured using 3 different metrics consistent with state-of-the-art. P
(< 22.5�) indicates that the pose accuracy is measured for objects where the pose error was
less than 22.5�

Model Split C P
(< 22.5�)

P
(< 45�)

P
(AAAI)

PM 1 89.63 69.58 81.09 81.21
CPM 1 80.68 63.46 75.45 77.35
LBM 1 91.48 68.25 79.31 79.94
EBM (4096) 1 89.94 71.49 82.19 82.00
EBM (800) 1 89.84 71.29 0.8229 81.91
EBM (400) 1 89.77 70.80 81.73 81.65
EBM (200) 1 90.11 67.70 79.43 79.77
EBM (100) 1 90.34 69.15 80.09 80.36
EBM (800) 2 97.14 66.13 77.02 78.83
EBM (4096) 2 97.07 65.82 76.51 78.66
SVM/Kernel Reg -
Model 0 (best cate-
gory - FC6)

1 86.71 - - 64.39

SVM/Kernel Reg -
Model 0 (best pose -
Conv4)

1 58.64 - - 67.39

SVM/Kernel Reg -
HOG

1 80.26 - - 27.95

Table 6.4: RGBD Dataset: Comparison with state-of-the-art approaches on category recogni-
tion and pose estimation.

Approach Category % Pose %
[78] 94.30 53.50
[7] 96.01 76.01
[152] 93.10 61.57
Ours 97.14 79.30

Table 6.5: Pascal3D dataset [149]: Comparison with state-of-the-art approaches on category
recognition and pose estimation. The AAAI pose metric is the performance metric used in[153,
78, 152].

Train: Pascal12, Test: Pascal12
Approach Category Pose % (er-

ror < 22.5)
Pose % (er-
ror < 45)

Pose
AAAI
metric

[149] - 18.70 15.60 -
[153] - 44.2 59.0 -
EBM
(4096)

83.0 51.80 64.27 73.53

EBM
(800)

83.10 51.37 64.20 73.26

LBM 82.69 48.38 60.11 70.88
CPM 76.35 49.39 61.90 71.80
PM 84.0 47.34 61.30 71.60

Train: Pascal12 + ImageNet, Test: Pascal12
EBM
(800)

83.79 51.89 60.74 75.39

Train: Pascal12 + ImageNet, Test: Pascal12 + ImageNet
EBM
(800)

92.83 67.26 75.11 83.27



119

We compare our models with two baselines in Table 6.3: Linear SVM and Kernel Ridge-

Regression on HOG descriptors [24] and weights from the best selected layer of the base net-

work. These baseline results were expected to be quite lower than our models’ performance

due to the lack of fine-tuning in the base model and due to the sharing of the network between

the two tasks of category recognition and pose estimation.

Without fine-tuning the base network does not represent the object-view manifold well

enough to estimate the pose efficiently. After fine-tuning on each of the respective datasets

used in this work, we are able to achieve good category performance on both datasets using the

PM model. The downside of this model is its inability to perform robust pose estimation on the

more challenging natural sparser-views of Pascal3D+. This is evident in the results shown in

Table 6.5, where PM drops by about 3-4% in pose accuracy.

In Tables 6.3 and 6.5, we see again that CPM does worse than the other models in both

datasets. The drop is more evident in the task of categorization, e.g. , a drop of ⇠7% and 2%-

3% in category and pose accuracy on Pascal3D+, respectively, and similarly ⇠10% and ⇠6%

on the RGBD dataset. This motivates the need for branching in the networks and branching at

the particular layer that more robustly represents both category and pose.

Changing the weights for EBM only slightly affected performance; see supplementary

material. The intuition behind this is that EBM splits into separate parameters starting from

Pool5, which makes each of the pose and category subnetworks have independent parameters

(FC6,FC7,FC8), in addition to shared parameters (Conv1 to Pool5).

LBM performs relatively well on RGBD but this is not the case on Pascal3D+. This can be

attributed to the fact that RGBD has much more categories than Pascal3D+ and is composed

of images of objects under controlled settings and not in the wild like Pascal3D+. The images

in the RGBD dataset are captured at dense views as the object rotates on a turn-table. This

is why the pose information is more prevalent in the last layers. This evident from the steep

monotonically increasing curve of LBM in Fig. 6.9-Left while this is not the case in Pascal3D+

where the increase is more steady and in fact there is a decrease after layer FC6 (see Fig.

6.10-Right).
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The reason why EBM performs better than PM even though its weights are randomly ini-

tialized is that PM’s FC6 and FC7 layers in the category branch are initialized with category-

specific weights. This adversely affects pose estimation here. Our hypothesis is that learning

the convolutional filters jointly with categories help make them discriminative for both tasks.

Therefore initializing FC6/FC7 by another network trained for a different purpose is not likely

to help.

The slight effect of decreasing the size of the layers in the pose subnetwork of EBM can be

observed from the results in Table 6.3 and 6.5.

6.11.1 Computational Analysis

In Fig. 6.12 we show the convergence rates of the proposed models. EBM here is the larger

EBM (4096) network. Despite having many more parameters than most of the other models

(about ⇠112 million parameters compared to 60 million in the base network), EBM converges

substantially faster than all the other models. This shows the ability of this particular network

to specialize faster in the two tasks. The shared first five layers are able to build up the object-

view manifolds, preserve them and enhance them in the pose subnetwork of the model, while

the other subnetwork specializes in pose-invariant category recognition.

6.12 Conclusion

This work is the first exploration of using CNNs for object pose estimation. We present our

analysis and comparison of CNN models with the goal of performing both efficient object cat-

egorization and pose estimation. Despite the dichotomy in categorization and pose estimation,

we show how CNNs can be adapted, by novel means introduced in this work, to simultane-

ously solve both tasks. We make key observations about the intrinsics of CNNs in their ability

to represent pose. We quantitatively analyze the models on two large challenging datasets with

extensive experiments and achieve better than state-of-the-art accuracy on both datasets.
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(d) KPLS-Regression error
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Figure 6.5: Measurement analysis for the view-manifold in RGBD dataset based on features ex-
tracted from different layers of several CNN models. Every figure shows single measurement.
Multiple lines is for different CNN model. X-axis is labeled by the layers. Larger versions of
the figures are available in the appendix.
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Figure 6.6: Top-Left: the performance of linear SVM category classification over the layers
of different model. Top-Right: the performance of pose regression over the layers of different
models. Bottom-Left: KNN categorization. Bottom-right: KNN pose estimation.
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Figure 6.7: Left: Linear SVM categorization and Pose regression Performance based on fea-
ture encoding of different layers of a pre-trained CNN over all objects. The dotted lines in
the graph are for cross-evaluation: for PM-Cat, LBM-Cat and EBM(800)-Cat represent the
models’ category representations evaluated on the task of pose estimation (to observe the ef-
fect of how category representations encode pose information). Also, PM-Pose, LBM-Pose
and EBM(800)-Pose are evaluated on the task of category recognition to see how well pose
representations in the network encodes object categories. This is to show the complete pose-
invariant representations of the layers of the CNNs when learning category recognition. Right:
Pose regression on a single object - this shows the Mean Absolute Error in degrees of vari-
ous regression algorithms from FC8 (output layer) to Pool5. The horizontal lines represent the
regression performance on HOG feature descriptors computed on the images

Figure 6.8: The proposed models showing the joint loss layer in CPM, late branching in LBM
and early branching in EBM. Blue layers correspond to layers with convolution, pooling and
normalization. Violet colored layers correspond to layers with just convolution. Green layers
correspond to fully-connected layers.
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Figure 6.9: Analysis of layers trained on the RGBD dataset. Left: the performance of lin-
ear SVM category classification over the layers of different model. Right: the performance
of pose regression over the layers of different models (including the category parts of some
of the models - this shows the lack of pose information encoded within the object category
representations)

Figure 6.10: Analysis of layers trained on the Pascal3D+ dataset. Left: the performance of
linear SVM category classification over the layers of different model. Right: the performance
of pose regression over the layers of different models
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Figure 6.11: A comparison of the pose estimation at each layer of the CNN using k-NN with
varying k = {1, 3, 5, 7, 9} from top to bottom. It can be observed that EBM converges to the
highest pose estimation accuracy one layer before any of the other models. This indicates that
objects’ view manifolds align with each other and similar poses become close to each other.

Figure 6.12: Comparison of convergence between the models. On the left is the category
error and on the right is the pose error, on the validation set, respectively for each model (a)
to (d). The error is computed per batch during each iteration. CPM shows the error for the
joint category and pose. It can be seen that EBM (4096) converges much faster than the others
which is another benefit of early branching. This is despite have a lot more parameters than
the other models. This indicates that each of the subnetworks of EBM are able to specialize in
both categorization and pose estimation faster. Each iteration is computed on one batch of 100
training samples.
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Chapter 7

3D Joint Object Recognition: Recognition-by-Parts
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Figure 7.1: A motivational illustration of how part decomposition is key to categorizing multi-
part objects and recognizing their poses.

We present a probabilistic approach to shape decomposition that creates a skeleton-based shape

representation of a 3D object while simultaneously decomposing it into constituent parts. Our

approach probabilistically combines two prominent threads from the shape literature: skeleton-

based (medial axis) representations of shape, and part-based representations of shape, in which

shapes are combinations of primitive parts. Our approach recasts skeleton-based shape repre-

sentation as a mixture estimation problem, allowing us to apply probabilistic estimation tech-

niques to the problem of 3D shape decomposition, extending earlier work on the 2D case. The

estimated 3D shape decompositions approximate human shape decomposition judgments. We

present a tractable implementation of the framework, which begins by over-segmenting objects

at concavities, and then probabilistically merges them to create a distribution over possible de-

compositions. This results in a hierarchy of decompositions at different structural scales, again

closely matching known properties of human shape representation. The probabilistic estima-

tion procedures that arise naturally in the model allow effective prediction of missing parts. We

present results on shapes from a standard database illustrating the effectiveness of the approach.
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Figure 7.2: Dendogram showing 3D decompositions of a 3D model point cloud. We show
4 decompositions in the hierarchy, starting (left) with an over-segmented interpretation and
ending (right) with an under-segmented interpretation in which the whole object is represented
as a single central axis. Each interpretation shows a segmentation (color-code) and the most
probable skeletal axes under the model.

7.1 Introduction

The goal of this work it to simultaneously decompose an object into its parts and compute a low-

dimensional representation that can then be used in categorization and pose estimation of multi-

part objects. For example, a coffee mug can be decomposed into the handle and the cylindrical

vessel, and each of these primitive parts has a skeleton-based representation expressing its local

symmetries (medial axes). The problem of interpreting 3D shape is fundamental in computer

vision and robotics, especially with the increasing availability of 3D data. This is key to being

able to robustly categorize multi-part objects and recognize object pose (see Figure 7.1 for a

motivational illustration).

In 1967, Blum published his pioneering work on representing 2D shapes using the Medial

Axis Transform (MAT) [13]. The intuition behind MAT is that shapes are intuitively captured

by a lower-dimensional representation that extracts local symmetries of the shape’s bounding

contours, referred to as the the medial axis. MAT computes the axis from the loci of cen-

ters of maximal discs contained within the shape. Evidence supporting medial representations

can be found in psychophysics and neuroscience, with recent work showing neural represen-

tations in areas V4 and MT of the visual cortex [62]. On another front, early influential work
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has suggested that shapes can be recognized or classified based on their part decomposition

[93, 57, 11]. Both these lines of thought have led to enormous research literatures, but compu-

tational techniques for effectively decomposing 3D shapes into component parts remain poorly

developed. These problems remain central challenges today, especially with the emergence of

a plethora of 3D data and 3D sensor applications.

We present a probabilistic model of object-part decomposition and skeletonization of 3D

objects. The contributions of this work are as follows. First, we present a probabilistic estima-

tion procedure for 3D skeleton-based representations of point clouds. Second, simultaneously,

our method decomposes an object into intuitively distinct parts. Third, our model allows us to

assign degrees of belief (probabilities) to distinct part decomposition interpretations. Fourth,

the model provides hierarchical interpretations, providing not just a single interpretation but

a family of possible interpretations at different levels of abstraction, along with a probability

distribution over them. This accords with characteristics of human perceptual organization, and

moreover allows the computational system to interpret objects at multiple scales. Finally, the

probabilistic nature of the model allows it to identify both the most probable object decompo-

sition hypothesis and a distribution over a set of alternative hypotheses.

7.2 Related Work

[127] [127] survey the many advances in shape representation since Blum. They divide shape

understanding methods into several types, including landmark representations, boundary repre-

sentations, displacement by voxel representations and medial representations. By far the most

popular and intuitive shape representation is the medial representation. Numerous extension

and improvements to the MAT have been proposed, including shock graphs [90], reeb graphs

[10], flux graphs [113], object cores [18], multi-scale medial axes [106], Bone graphs [89],

Bayesian estimation of the shape skeleton for 2D shapes [41, 46]. Problems with ligatures,

noise, missing shape information due to occlusion and ambiguity in the final representation

haunt many of these models because they inherit the basic limitations of Blum’s approach

[113, 122]. Improvements have been made by either smoothing over the object’s shape before

fitting the skeleton or smoothing the skeletal representation after fitting. A discussion of these
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methods appears in [96] [96].

Most research on shape, including work nominally oriented towards the 2D case, takes the

interpretation of 3D shape as the more fundamental problem [60, 32, 61, 93, 42]. Much of this

work focuses on decomposition of shape into primitive parts that are not explicitly medial, and

are applied to hand-crafted 3D objects rather than point-cloud data.

More recently, the Computer Graphics community has explored geometric methods for

fitting skeletons to 3D shapes. The goal is to use these models to perform shape modelling and

analysis for Computer Graphics applications. Two recent methods, [133] [133] and [59] [59],

compute skeletons on incomplete and initially unorganized point clouds. The former computes

a Rotational Symmetry Axis (ROSA) which captures local symmetry of the object shape. The

latter approach improves upon this by creating an L1-median skeleton which locally adapts to

the shape. There are many more previous approaches that fit skeletons to 3D object models,

discussed further in [59] [59]. Although these approaches are able to find 3D skeletons, they

do so using a large set of free parameters, and are not able to assign graded beliefs to different

possible decomposition interpretations.

One study [100] approaches the problem from a cognitive perspective by first decomposing

objects into parts using segmentation and then computing critical/inflection points based on

surface concavities. Skeletons are then extracted from segmented parts by joining them and

refining the skeleton to represent the topology of the shape in accordance with Morse Theory

(the basis for Reeb Graphs 1D skeletons and analyzing the topology of shapes using critical

points). The emphasis in this approach on critical points and inflections reflects the prominent

role they play in human shape representation [145]. However, in part because of its reliance on

critical points, the method tends to fail in the presence of occlusion, though the human system

can accommodate missing data with relative ease.

One approach that extracts 2D medial representations from 3D is [96] [96]. This approach,

named the Discrete Scale Axis, improves upon Blum’s original MAT for 3D objects by follow-

ing the medial axis transform with topology-preserving angle filtering. Similarly, [128] [128]

proposed an algorithm for jointly computing the medial surfaces and object segmentations, re-

sulting in a representation that yields favorable retrieval performance for rigid objects. The

problem with 2D medial representations from a Computer Vision perspective (i.e for object
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recognition/matching) is that 2D skeletal representation (e.g. sheets) is still relatively high di-

mensional. In [96] [96] an example of this is the body of the dolphin which is represented by

a relatively vertical sheet. This seems unnecessary for tubular shapes. A sufficient representa-

tion can be a curve going through the center of the dolphin’s body with some definition of the

cross-sectional variation along the main axis as in Biederman’s definitions of 3D object parts

[11]. Despite this, some more rectangular objects require 2D representations, such as sheets.

Several approaches that focus on 3D mesh segmentation have achieved good performance

on the Princeton Benchmark for 3D Mesh Segmentation [20] and some also represent shapes

using skeletons [124, 147]. Most of these approaches depend on the number segments/parts

k being set prior to decomposition, except Core Extraction and Shape Diameter Function.

The former decomposes an object hierarchically with a focus on pose invariance using feature

points. No notion of probability is defined to identify more probable or intuitive decomposi-

tions and this method does not use skeletons to achieve the decomposition. The latter approach

is similar to our approach. The authors jointly decompose objects and recover the skeleton

using a probabilistic membership function (i.e. membership of a vertex into one of the object

clusters/parts). The method performs well on articulated objects, but has trouble with non-

articulated objects. Many of the aforementioned methods suffer from the same limitations as

the traditional MAT approach, which stem from their inherently deterministic nature. Only a

small number of approaches aim to estimate medial representations probabilistically. One ex-

ample of this is [46] [46] who assumes that the underlying skeleton is the generating source of

the point-cloud. A probabilistic estimation procedure enables these approaches to handle noisy

and missing information, assign beliefs to different decomposition interpretations, incorporate

prior knowledge, and predict missing information. These approaches are, however, confined to

2D shapes, and probabilistic approaches have not yet been applied to the 3D case.

7.3 3D Perceptual Object-Part Decomposition

In this section we describe our 3D object-part decomposition approach. It is based on the

idea that 3D object-part decomposition can be understood as a Bayesian mixture estimation
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problem. We propose a tractable implementation of this framework, which begins by over-

segmenting objects at shape concavities, and then probabilistically merging them into a hierar-

chical representation, creating a distribution over possible decompositions.

7.3.1 Initial Over-Segmentation

The smallest unit of data we consider in this work is a segment of 3D points extracted by Over-

Segmentation. In order to find these segments we use Normalized Cuts [125], similar to [68]

[68], that prefer segment cuts that lie along concavities. This mimics human perception as

humans perceive part boundaries to be concave while the individual parts of the object tend to

be convex [57, 68].

Our approach is set up such that Normalized Cuts computes the minimal cuts in the graph

connecting the 3D points of the point cloud. The graph edges are assigned weights based on

angles between neighboring points’ surface normals as follows:

w
ij

=

e�↵(ni·(pj�pi))/2�

d
ij

(7.1)

where i is the subscript for the central point and j is for the neighbors of point p
i

. n are the

normals of the corresponding points and d
ij

is the Euclidean distance between the points. When

angles between n
i

and (p
j

� p
i

) are > 90

�, this means that the surface is convex. The weights

in equation 7.1 are larger for more convex surfaces. Additionally, we penalize concavities by

using a large ↵ value when the angle is < 90

� and using a small ↵ for convex angles > 90

�.

This ensures that optimal cuts are along surface concavities.

The segments found in this way, shown in Fig. 7.3, serve as the basic building blocks in our

hierarchical approach below and in addition we use the normalized cut values as an additional

cue in determining most-probable merges in the hierarchy. The normalized cut values are equal

to the normalized sum of weights on edges of optimal cuts. We scale these optimal cuts in the

0-1 range and combine them with the posterior probabilities of merging two segments. This is

described further in the Hierarchical Grouping section.
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Figure 7.3: Over-Segmentation results for arbitrary large k values. Notice concavities on the
surface of the objects constitute good cut boundaries.

7.3.2 Generative 3D Skeletal Representation

Our approach is based on a framework found in [46] [46] for perceptual grouping in general,

and 2D part-decomposition specifically, called Bayesian Hierarchical Grouping (BHG). This

framework has been shown to make qualitative and quantitative predictions of human behavior

across several areas of perceptual grouping, including 2D part-decomposition. Here we apply

the framework to the realm of 3D object decomposition with some novel extensions.

Mixture Model

Within BHG each possible part decomposition interpretation c

j

2 C = {c
1

. . . c
J

} of a set of

3D points D = {x1 . . . xN} is associated with a posterior probability p(C|D), which according

to Bayes rule is proportional to the product of a prior probability p(C) and a likelihood p(D|C).

Here a decomposition hypothesis c
j

is a vector of labels c
j

= {c1 . . . cN} assigning each set of

3D points x
n

to a part m. By adopting the BHG framework, both the 3D part decomposition

problem and 3D skeletonization can be viewed as a mixture estimation problem. We assume

that the configuration of 3D points making up a 3D shape is generated by a mixture of M

underlying skeletal axes:

p(x
n

|�) =
MX

m=1

p(x
n

|✓
m

)p(c
n

= m|p) (7.2)
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Figure 7.4: Two cuts showing our 3D generative function. Red line depicts the underlying
B-spline axis. The gradient depicts the probability p(x
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|✓), where red has a higher probability.

where c
n

2 c = {c1 . . . cN} are the assignments of data to an axis, p is a parameter vector

of a multinomial distribution with p(c
n

= m|p) = p
m

, ✓
m

are the parameters of the m-th

axis, and � = {✓1, . . . , ✓M ,p}. Since the problem of estimating mixture consists of estimating

which axis m owns which point x
n

and the parameters ✓ of the underlying axes, both the

decomposition problem and the 3D skeletonization problem are solved in tandem.

Generative Function

The generative function p(x
n

|✓
m

) depicting how 3D points are generated from an underlying

axis generalizes the skeletal generating function proposed in [41] [41] and [46] [46]. A flexible

way of representing (and encoding) axes is by means of a 3D parametric B-spline curve g
m

(t)

(Fig. 7.4), governed by a parameter vector q
m

. From this curve data points are generated from

a univariate Gaussian distribution perpendicular to the curve,

p(x
n

|✓
m

) = N (d
n

|a
m

t
n

+ b
m

,�
m

)

where d
n

= ||x
n

� g
m

(n)||, called the riblength, is the distance between the datapoint x
n

and

its perpendicular projection on the curve g
m

(n), referred to as the footpoint. The mean of the

normal distribution is defined as a linear function of the footpoint positions t
n

, with slope a
m

,

intercept b
m

and �
m

is variance over the riblengths (Fig. 7.4). Together parameter vector for

the generative function becomes ✓
m

= {a
m

, b
m

,�
m

,q
m

}. Note that the generative function

constrains parts to obey a kind of local symmetry, and the linear function over riblengths allows

us to capture conic parts.
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In keeping with a full-fledged Bayesian approach a set of priors over the generative func-

tion’s parameters ✓
m

is defined, summarized by p(✓|�). Two priors are introduced over the

curve g
m

itself: one over the squared arclengthF1m of the curve g
m

, F1m ⇠ exp(�1) and

one over the squared total curvature F2m of the curve g
m

, F2m ⇠ exp(�1) , both respectively

governing the elastic and bending energy of the curve. Lastly, a conjugate prior to the normal

distribution is adopted. The prior over the variance � is � ⇠ X�2
(�0, ⌫0), where �0 depicts the

mean variance of the riblength, and ⌫0 how strongly we believe this. The slope a and intercept

b both have a Gaussian prior distribution, a ⇠ N (µ0,
�1
0 ) and b ⇠ N (µ0,

�1
0 ). Thus the

hyperparameter vector is defined as � = {µ0,0,�0, ⌫0,�1,�2}
In order to compute the likelihood of a particular decomposition hypothesis p(D|c

j

), it

is important to integrate over the axis parameters ✓ for each axis, resulting in the marginal

likelihood p(D
m

|�) =

R
p(D

m

|✓)p(✓|�)d✓, where D
m

are all the points x
n

belonging to

axis c
n

= m. Unfortunately integrating over all possible curves (i.e. the parameter space of

q

m

) is computationally expensive. The marginal is approximated by only integrating over the

Gaussian components, which due to the conjugate formulation can be done analytically, and

selecting q

m

as to maximize,

p(D
m

|�,q) =
Z Y

cn=m

p(x
n

|a, b,�)p(✓|�)dadbd�. (7.3)

This equation is maximized as a function of q, by means of a 2-step algorithm (for details see

[45], [45]). In step 1 the footpoints t
n

for each point x
n

is computed. Given these pairs [x
n

, t
n

],

in step 2, we maximize the above equation using Simulated Annealing [73]. Both steps are then

repeated until convergence. In this way we not only find an at least locally optimal skeletal axis

representation for a point cloud segment, but also (as incorporated in p(D
m

|✓)) we capture how

”part-like” the segment is, given our prior assumptions.

Our approach should be formulated to be independent of any user-specified M components.

To ensure independence, a Dirichlet process prior is used, as in [46] [46], over the decompo-

sition hypotheses p(c
j

|↵). In this way the above mixture model becomes a Dirichlet process

mixture model which is a widely used non-parametric approach [98]. This results in the fol-

lowing definition of the above introduced posterior for a decomposition hypothesis:

p(c
j

|D,↵,�) / p(c
j

|↵)
MY

m=1

p(D
m

|�), (7.4)
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where M now denotes the number of axis specific to c

j

, and p(c
j

|↵) = R p(c
j

|p)p(p|↵)dp is

a standard Dirichlet integral. Unfortunately the size of the hypothesis space C is exponential

in the number of 3D points, N . The BHG framework approximates this large posterior, by

implementing a version of the Bayesian Hierarchical Clustering algorithm by [56] [56]. More-

over, this approach results in an intuitive hierarchical representation of the configuration of 3D

points.

7.3.3 Hierarchical Grouping

Bayesian hierarchical clustering [56] follows the same concept as traditional Agglomerative

clustering algorithms, with the main difference that a Bayesian hypothesis test is used to decide

which clusters to merge. Here we will briefly sketch the algorithm; for more details we refer

to [56] [56]. In our implementation the algorithm will initiate with K trees T
k

each containing

the set of 3D points D
k

belonging to the k-th initial segment as found by the over-segmentation

stage (see above and Fig. 7.2). At each iteration the algorithm decides which pair of trees (T
i

and T
j

) are most likely to be merged using a Bayesian hypothesis test, resulting in a new tree

T
i[j containing the data D

i[j = D
i

[ D
j

. The pairs of segment regions of the point cloud

are considered for merging if they are adjacent to each other in Euclidean space. This is a

simple way of drastically reducing the complexity of the computation, since not all pairs must

be considered.

In order to compute the likelihood of a merge, two hypothesis are compared. The first

hypothesis H
merge

, treats all data D
i[j as generated from one underlying axis, and can thus

readily be computed as p(D
i[j |Hmerge

) = p(D
i[j |�) (see Eq. 7.3). We also benefit from

information from the over-segmentation phase which is in the form of the cut values between

neighboring segments. We take the product log p(D
i[j |�) = Cut(D

i

, D
j

) log p(D
i[j |�) as

our new marginal likelihood (adding to Eq. 7.3). This affects the probability of merging by

preferring merges with high cut-values (i.e. less concavity between the segments).

The second hypothesis H
nomerge

, treats all data D
i[j as generated by more than one axis

as constrained by the tree structure. Its probability is computed by taking the product over the

subtrees p(D
i[j |Hnomerge

) = p(D
i

|T
i

)p(D
j

|T
j

). Here p(D
i

|D
j

) is computed recursively as



137

the tree is built:

p(D
i[j |Ti[j) = p(H

merge

)p(D
i[j |Hmerge

)+

(1� p(H
merge

))p(D
i

|T
i

)p(D
j

|T
j

)

where p(H
merge

) is based on the Dirichlet process prior and is also computed recursively as

the tree is built. The probability of a pair D
i

and D
j

being merged is:

r
i[j =

p(D
i[j |Hmerge

)p(H
merge

)

p(D
i[j |Ti[j)

The pair with the highest probability of the merge hypothesis is then merged. In this way

the algorithm continues to greedily build the tree until all data is merged into one tree. Note

that each level along the tree depicts a different decomposition hypothesis (see Fig. 7.2). The

probability of each of these hypotheses is easily computed using Eq. 7.4.

7.4 Experimental Discussion

We experimented on the 3D Dataset from [20], which provides a large dataset of 3D meshes

- 380 objects across 19 different categories. We subsample the 3D meshes and reduce the

representation to unorganized 3D point clouds. Each point has its corresponding computed

surface normal which is used in over-segmentation. We uniformly subsample the point clouds,

substantially reducing the number of points.

Figure 7.5: Added zero-mean Gaussian noise to one of the airplane object models. Despite
noise of up 20% of the mean inter-point distance, the skeletonization and decomposition works
well.
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Figure 7.2 shows the hierarchical decomposition of a Teddy Bear. The two center decom-

positions shown correspond to local maxima of the posterior probability in the hierarchy. We

find these to be among the most intuitive decompositions. Our maximum-a-posterior (MAP)

decomposition is the second one from the right and corresponds exactly to 14 human annotated

teddy bears. This particular object may be considered an “easy” example but more complex

objects can be seen in Fig. 7.8 and some of their corresponding human segmented counterparts

in Fig. 7.9.

We show that our object representations are somewhat robust to noise as shown in Fig. 7.5.

We added Gaussian noise with zero-mean and standard deviation equal to 10-20% of the mean

inter-point distance of neighboring points. As the noise increases we still obtain a relatively

intuitive decomposition.

To validate the generative capability of our model on 3D data, we show how it performs in

reverse by generating the input data. Fig. 7.6 and Fig. 7.7 show the original subsampled input

point cloud with sampled points from our underlying generative model overlaid. Figure 7.7 is

particularly interesting. We remove a hole in the surface of the Martini Glass model and are

able to reconstruct it by filling it up with points sampled from the Gaussian distribution of our

underlying generative model.

Figure 7.6: Black points are the subsampled input point cloud which is used to estimate the un-
derlying generative model. Red points show sampled points from our underlying probabilistic
model (the more opaque being more probable - best viewed using zoom).

In addition, we quantitatively compare our approach to two previous approaches Fig. 7.10.
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B

A

Figure 7.7: This figure shows the ability to predict missing data. Here a hole is cut into the
side of object and it is filled by sampling from the underlying generative model. The heat map
depicts the probability of that sample (with red being higher probability)

(a) Horse (b) Teddy bear (c) Martini glass (d) Human

(e) Dolphin (f) Ant (g) Chair (h) Pliers (i) Airplane

Figure 7.8: MAP object-part decomposition for a broad selection of 3D object models. The
black curves in each colored segmented represents the estimated skeletal axis of that segment.
Notice, for example, the ability to discriminate the 3 parts of the Martini glass. Notice also the
ability to decompose both articulated and non-articulated objects. Some failure cases can be
seen in (d). One or two problematic merges happen due to the non-symmetric torso. Despite
this, the skeleton is not compromised.



140

(a) Horse

(c) Martini glass (d) Ant

(b) Airplane

Figure 7.9: For comparison, these are a selection of 4 manually human segmented objects.
Each object in the dataset has annotations corresponding to, on average, 11 human subject
segmentations. MAP decompositions computed by our approach are shown in the red squares.

These two previous approaches are the only two run on the Princeton Benchmark for 3D Mesh

Segmentation [20] that do not assume a prior number of parts. These two methods are the

Shape Diameter Function [124] and the Core Extraction approach [69]. We compare with these

methods over four standard metrics found in the [20]. These metrics are described in [20]

and measure how much the predicted decompositions correspond to the ground-truth annotated

segmentations of the object models in the dataset. We see that our approach labeled ”BHG” in

the Fig. 7.10 achieves similar performance over the four segmentation metrics. The difference

in our approach is that it can represent multiple granularities of decompositions for the same

object and also represent the shape boundary of an object probabilistically, in order to be robust

to noise. In addition to these benefits of our approach, Fig. 7.10 shows that our approach

achieves similar performance to two state-of-the-art approaches.

7.5 Conclusion

We have presented a novel procedure for estimating skeletal representations from 3D point

clouds and decomposing them into intuitive component parts. We produce an intuitive hierar-

chical tree of abstractions and a distribution over them. These multiple representations of an

object closely match known properties of human shape representation. We validate this by an

experimental study as well as the capability of dealing with noise and predicting missing data

which can occur due to occlusion.
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Figure 7.10: Quantitative comparison of our approach, labeled BHG, with two previous meth-
ods. The four metrics measures how much the predicted segmentation cuts correspond to the
ground-truth segmentation cuts. Hamming Distance and Consistency Error have different vari-
ations, shown by the color bars. For Hamming Distance, the dark blue corresponds to the
average of the missing rate and false alarm rate, the green is the missing rate and the dark red
is the false alarm rate. For the Consistency Error - the dark blue bar corresponds to Global
Consistency Error and the dark red corresponds to Local Consistency Error.
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Chapter 8

Summary and Conclusion
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In this dissertation we have explored machine learning approaches that use different represen-

tation spaces that capture the factors involved in solving the problem of simultaneous object

categorization and pose estimation. We have presented a multi-kernel learning method for fus-

ing different modalities for object pose estimation in low-dimensional embedding spaces. We

have presented a general framework based on topological mapping for simultaneous object

categorization and pose estimation across different modalities; with a nonlinear factorization

extension to this also. With the advent of Deep Learning techniques, we have explored the rep-

resentation space that Neural Networks populate and used this end-to-end learning paradigm to

perform joint object categorization and pose estimation within a convolutional neural network.

Lastly, we have presented an approach for performing probabilistic recognition-by-parts using

a representation that inherently captures object pose information by its skeleton representation,

making it robust to pose changes and articulation of multi-part objects. We have explored ob-

ject recognition over multiple modalities in this dissertation - from 2D images to depthmaps

and 3D point clouds. We support the hypotheses of the models by extensive experimentation

and show how our models achieve state-of-the-art results in object recognition on challenging

datasets.
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