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Accurate and timely condition assessment of bridge decks is essential for economic
management of aging highway bridges. The ability to evaluate concrete modulus profile
in a bridge deck can help the detection of early signs of deterioration and optimize the
bridge maintenance procedures. This study presents a new method for modulus profiling
of concrete bridge decks. The stiffness matrix method is used to simulate wave
propagation in a layered media. The results are compared to numerical finite element

models. Dispersion analysis is done using the multi-channel analysis of surface waves



(MASW) and phase-shift methods. The characteristics of dispersion surface are analyzed
and the effects of model parameters on dispersion surface are examined through a series
of parametric studies. An inversion technique is proposed for a fast inversion of surface-
wave data collected on bridge decks. This technique utilizes a database of pre-calculated
dispersion surfaces and takes advantage of the observed patterns in the parametric study

as a priori information for the inversion process.
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1 Introduction

1.1 Problem Statement

The key problem that this research will address is that of completing a rapid and accurate
modulus profiling method for concrete bridge decks. Specifically it will study the wave
propagation in concrete bridge decks and examine the current practices in Ultrasonic
Surface-waves (USW) technique and use the findings to recommend methods to
complete an accurate and in-situ concrete moduli evaluation of the entire thickness of the

concrete bridge-deck.

A key difficulty in assessing bridge-deck deterioration is that it most often takes place
below the surface and it is not easy to detect until the very progressive stages. Therefore,
the techniques commonly used by the state departments of transportation (DOTS), such as
visual inspection or those based on acoustic methods are not effective in detecting or
assessing the variation in concrete modulus throughout the thickness. Visual inspection,
by definition, will be ineffective while acoustic methods such as chain drag, hammer
sounding provide information about presence of delamination only. Measuring modulus
on the retrieved cores is expensive and can cause structural damage. A group of
evaluation techniques commonly referred to as Non-Destructive Testing (NDT)
techniques have shown promise in assessing under-the-surface deteriorated conditions in
bridge decks. Modern NDT techniques for concrete bridge decks utilize various physical
phenomena such as seismic, electric, thermal or electromagnetic to detect and

characterize deterioration in bridge decks.



In the Second Strategic Highway Research Program (SHRP2), multiple teams of
researchers assessed the capabilities and limitations of an array of NDT techniques in
detecting and characterizing four deterioration types — corrosion, delamination, vertical
cracking, and concrete degradation. Based on their findings, the team ranked the NDT
techniques, in terms of speed, accuracy, precision, ease of use and cost. The summarized
results of the project are presented in the table below. As is clear from the results,
Ultrasonic Surface-waves (USW) is the most effective technique in detecting and

characterizing concrete degradation.

Table 1.1 Grades for NDE techniques based on accuracy, precision, speed, ease of

use and cost (Gucunski N. , et al., 2013)

Precision Ease of Overall
Accuracy | (Repeatability) Speed Use Cost Deterioration
NDT Technology Deterioration Type WF =0.3 WF =0.3 WF=0.2 | WF=0.1 | WF=0.1 Type Grade
Impact echo Delamination 2.8 4.0 2.3 2.1 3.0 3.0
Ultrasonic surface Delamination 2.8 3.0 2.4 1.4 3.0 2.7
waves Crack depth 25 3.0 1.0 1.4 3.0 23
Concrete deterioration 3.8 4.0 2.4 1.4 3.0 3.3
Ground-penetrating Delamination 2.1 4.0 3.9 2.2 3.0 3.1
radar Corrosion 16 40 3.9 2.2 3.0 3.0
Half-cell potential Corrosion 3.0 3.0 3.8 3.4 4.0 3.3
Galvanostatic pulse Corrosion 2.4 3.0 2.4 2.6 4.0 2.8
measurement
Electrical resistivity Corrosion 3.0 4.0 3.8 3.6 4.0 3.6
Infrared thermography | Delamination 2.2 2.0 41 4.0 4.0 2.9
Chain dragging Delamination 2.2 3.0 3.2 4.0 3.0 2.9

Note: WF = weight factor.

Ultrasonic surface waves (USW) technique is an offshoot of the Spectral analysis of
surface-waves (SASW) method. It is used to evaluate the elastic moduli and layer
thicknesses of layered systems such as pavement systems. It is based on the dispersion

phenomenon of surface (Rayleigh) waves. Dispersive aspect makes it highly suitable for



generating a profile of the concrete bridge-deck. A modulus profile can provide critical
information about the health of the bridge-deck. By contrast, many of the other NDT
techniques such as impact echo focuses on the 2D planar surface of the concrete deck (by
using a preset grid for testing only on certain) and thereby miss valuable information

about the variations in material properties throughout the deck thickness.

SASW test consists of generation of Rayleigh waves by an impact on the surface of a
medium, and measurement of the subsequent vibrations at two receivers located a
specific distance from the impulse source. The detected signals are transformed into the
frequency domain using the fast Fourier transform (FFT). The phase of the cross-power
spectrum of the two sensor records is used to develop the dispersion curve of the profile.
By inverting the dispersion curve, information about the properties of the layers (e.g., the

thickness and shear-wave velocity) are obtained.

This method is commonly executed using a device called Portable Seismic Property
Analyzer (PSPA) that was developed at the University of Texas at EI Paso. The main
application of the PSPA device is in conducting quality assurance of the pavement top
layer and in bridge-deck testing. The PSPA device was designed and constructed as an
extension of the Seismic Pavement Analyzer (SPA). It is produced by Geomedia
Research and Development Inc., of El Paso, Texas (Nazarian, Baker, & Crain, 1997). The
device consists of a high-frequency source and two accelerometers. The receivers are
connected to a data acquisition system that consists of a portable computer with data
acquisition software. A test sequence typically requires less than 15 seconds, during

which the surface is hit multiple times by the source and the two accelerometers record



the vibrations of the surface. At the end of the test, the program plots the average

modulus for the point being tested.

While the USW method with the PSPA device certainly provides a good tool for concrete
bridge-deck testing, it has one main shortcoming which is its ability to do modulus
profiling. This is mainly because of the inversion algorithm used in this method PSPA
reports the average phase-velocity across the deck thickness for every test point. The
results are very sensitive to the location and the distance between receivers since only

two receivers are used.

In general, the conventional surface-wave testing technique suffers from inability to
extract higher modes because of its inefficient inversion algorithm. Detecting higher
modes-thereby increasing the richness of the measurements and accuracy of results, can
be made possible by utilizing multiple sensors instead of the single pair utilized in the

PSPA device (Ryden N. , Park, Ulriksen, & Miller, 2004).

These inaccuracies can be improved by using more sensors to collect data. Multi-channel
analysis of surface waves (MASW) is a technique that employs more sensors and hence
can overcome the earlier problems (Park, Miller, & Xia, 1998). The challenge in using
this method in practice stems from a single problem, which is the lack of an optimal
inversion technique. Most of the existing methods can easily take anywhere from a few
hours to a few days to provide complete results when multiple layers are present (Ryden
& Park, 2006; Hadidi & Gucunski, 2003). This research will outline a technique that can

eliminate the long processing times and deliver results in near real-time.



1.2 Research Goals

To summarize, the key problem that this study will address is that of a rapid and accurate
evaluation of concrete modulus profile in concrete bridge decks. To facilitate the
development, the fundamental simplifying assumption made in this study is that the
concrete deck consists of three layers with varying elastic modulus (Figure 1.1). The
desired goal is then to apply the USW to measure the shear-wave velocity and thickness
of the layers. A preliminary assumption is made where the concrete deck consists of a 3

layer system, the technigque can be extended to systems with more layers.

Top Layer

Middle Layer

Bottom Layer

Figure 1.1 A section of a bridge-deck with 3 layers.

This study will demonstrate how to complete a vertical profile for a concrete bridge-deck.
For this purpose it will go through the process of dispersion analysis using the multi-
channel analysis of surface waves (MASW). It will demonstrate the effects of higher
modes in systems with multiple layers. And finally it will develop an inversion technique

that can be executed in-situ with instant results.



2 Background on Wave Propagation

This chapter includes the description of the fundamental characteristics of stress-wave
propagation in elastic media. Different types of waves are introduced, and matrix

methods to solve the wave equations are discussed.

2.1 Introduction to wave propagation in solids

There are two types of waves in solids: body-waves and surface-waves. Body-waves
travel through the interior of a solid. Surface-waves diminish as they get further from the
surface. Body-waves consist of two wave groups: P-waves and S-Waves. P-waves are
pressure waves that travel faster than other waves through solids. They displace alongside
the direction of the propagation. Secondary waves (S-waves) arrive after the faster
moving P-waves and displace perpendicular to the direction of propagation. Figure 2.1
shows a schematic picture of how each type of body-waves propagates. Surface-waves

are discussed later in this chapter.

Waves in solids result from mechanical disturbance of the solid media. Their propagation
behavior is related to the material properties of the solid. Wave equation is a differential
equation, expressing the properties of motion in waves. The exact solution of the wave
equation can be obtained using continuum mechanics. For the purpose of this research,
the formulations will follow linear elasticity. This means that the materials are assumed
to be both homogeneous and linear elastic. Although concrete is neither homogeneous

nor linear-elastic, this assumption is necessary and acceptable for the purpose of



modeling the wave propagation. This is due to the small deformation of the medium

during the surface-wave testing.

Dilatation Compression
Undisturbed Medium
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Wavelength, p

Direction of Propagation
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Undisturbed Medium
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Figure 2.1 Body-waves propagation in solids. P-waves at the top and S-waves at

the bottom (Bolt, 1976)



Below are the main equations governing the linear elastic material, stress-strain field. E
and v are Young’s modulus and Poisson’s ratio, respectively. For the three-dimensional

case, shear modulus (G) and bulk modulus (K) parameters are defined as follows:

E
- Equati .
G 20+ V) quation 2.1
K = £ Equation 2.2
=30-m) quation 2.

Constraint modulus, for uniaxial loading and laterally constraint material, and also
Lame’s constants (u and A) are determined with the following equations. Notice that G
and u are equal. For a more detailed discussion, see (Graff, 1975; Achenbach, 1973;

Elmore & Heald, 1969)

__FA-w  _p 4 Equation 2.3
S @A+v) 1 -2v) 3 a '

Ev

= Equation 2.4
A DD quation
=G = £ Equation 2.5
U= =20+ quation 2.

31+ 2

E = u Equation 2.6
A+u

A .
Equation 2.7

"To+w



2.2 1-D Wave Propagation

Wave propagation in one dimension is the simplest form of the problem. Only P-waves

are considered in this case. If plane sections remain plain, density (p) and sectional area

(A) remain constant, and maintain a large wavelength with respect to the rod diameter,

Newton’s second law yields to the following:

2

aFA — AoA u
ox X T PR GR
F = AE Ou
- ox
Therefore we have:
0%u 1 0%u
dx2  Cp? ot?

So the propagation velocity is defined as follows:

2.3 3-D Wave Propagation

Equation 2.8

Equation 2.9

Equation 2.10

Equation 2.11

In this section the fundamentals of wave propagation in infinite elastic solids is discussed.

Many researchers (Graff, 1975; Kolsky, 1963; Rose, 2004; Wolf, 1985) have covered this
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topic in detail. Using Newton’s second law and given that acceleration and force are

partial derivatives of the displacement (u) and normal (c) and shear stress (t):

2., —
—PW U = Oy x t Txy,y t Tuzz
—pWV =Ty r + 0y + Ty, Equation 2.12

2., —
—PWW =Tyt +T5y, +0,,

p is the mass density of the infinitesimal cube element in the infinite elastic isotropic
solid. t represents time. The first subscript shows the direction of the stress, where the
second, denotes the direction of the normal of the infinitesimal area on which the stress
acts. The comma denotes a partial derivative. Using the strain-displacement equations we

have the following:

€Ex = U,
€y = Vy
€, =W,

Equation 2.13

Yoy = Uy + Uy

Vez = Uz + Wy

Vyz = Vg + Wy



Using the Hook’s law, the relationship between stress and strain is as follows:

1
=% (O'x - V0o, — vaz)

1
€y = E (—vax + 0, — vaz)
Equation 2.14

1
€ =% (—vo, —vo, + 0,)

_ Ixy _ Txz _ Yyz
Yoy = o Vaz = Vyz =

The basic wave equation in three dimensions for elastic, homogenous and isotropic

material can be written as follows:

w
Ve = —-—e
Cp
Equation 2.15
(1)2
Vz Q = ——2 Q
CS

VZis the Laplace operator, and e and Q are the volumetric strain and rotation strain,
respectively.
52 8% 42

Vi= + + Equation 2.16
o6x  &x%2  &x2 q

11



€=Uyt VU, +Ww, Equation 2.17
QuxtQy, +Q,,=0 Equation 2.18

Where
Qx,x = E(W,y - v,z)
1 ]
Q,, = > (U, —wy) Equation 2.19
Qx,x = 2 (Vx — u,y)

The variable Cp is identified as the dilatational wave velocity as follows:

Cp = EA-v) _ [M_ |A+26 Equation 2.20
1+v)(A-2v)p p p

And Cs is identified as shear-wave velocity as follows:

Cs = L = E Equation 2.21
20+v)p  |p
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2.3.1 Body-waves

The solution of Equation 2.15 is discussed here. Figure 2.2 and Figure 2.3 shows the

displacement associated with each type of body wave.

Direction of
- ¥ wave
e propagation

P- Wave

Wave
f Front

Figure 2.2 Displacement and direction of wave propagation for P-waves
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Direction of wave

SV- Wave’ _¥ propagation

SH- Wave

P- Wave

Wave
Front

Figure 2.3 Displacement and direction of wave propagation for shear-waves

For the definition of dilatation or P-wave, the corresponding displacements for each

direction are equal to the following:

u, = lyAp,exp

v, = l,Apexp

wy, = [ Ayexp

i ;
— (—lxx — lyy — lzz)

[ Cp

o )
g (—lxx — lyy — lzz)

Equation 2.22

2 (—lx — Ly — 1,2)
[ Cp ]

A, is the amplitude of the wave that coincides with the direction of the wave propagation.

The three scalars [y, I, and [, are the direction cosines of the straight line.
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L+L+12=1 Equation 2.23

As illustrated in Figure 2.2 and Equation 2.22 the direction of the propagation coincides
with the displacement vector. In addition, the direction of propagation is in positive s

direction with velocity c,,.

On the other hand, for the definition of S-wave, the corresponding displacements for

each direction are equal to the following:

_ (mym,Agy — m,Asy) lw
ug = —— exp |— (—m,x —myy
Jmg +m; Cs
- mzz)]
(mymZASV + mxASH) lw
Vg = exp | — (—myx —myy

ymz +mj s Equation 2.24
-m,z)|

lw
Wy = — /m,% + mjAsyexp [c_ (—mxx —m,y
N

- mzz)]

With
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mi;+mj+mZ =1 Equation 2.25
My Cy + My Cyy + My, =0 Equation 2.26

And
Asy = & Equation 2.27

Equation 2.28

The direction of the propagation is specified by direction cosines m,, m,, and m,. Also
the displacement vector of S-wave is decomposed into horizontal component Agy, and a
component lying in the plane, which contains the z-axis Ag,. Figure 2.2 shows that the

displacement vector is perpendicular to the direction of motion.

Also by introducing the material damping the wave velocities become as follows:

Cp = Cp /1 + 24,1 Equation 2.29

Cs = CgJ 1+ 2¢5i0 Equation 2.30

For simplicity, it is reasonable to imagine that the P- wave and S-wave lie on the same
plane, the x-z plane, for example. Combining Equation 2.22 and Equation 2.24 yields to

the following:
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Lx 1
u=LApexp lia) (— x* — Zf)l
¢ O

+ m,Agyexp [ia) (—

Cs Cs

myx mZZ)]

MeX MyZ .
v = Agyexp [iw (_ Ji - i )] Equation 2.31
CS CS
Lex Lz
w = l,Apexp Iiw (— = = >l
b Cp

Cs Cs

. meyx m,z
+ myAgyexp [La) (— )]

u and w lie in the x-z plane and depend on A, and Agy, whereas v depends on Agy and

forms the out-of-plane motion.
2.4 Guided Waves

In an infinite, homogenous and isotropic medium only body-waves exist. However, in
common structures such as plates and rods other types of waves also exist. These waves
are called guided waves and formed by the interaction between the P-waves and S-waves
at the interface. Guided waves traveling along the free surface are called surface-waves.
Rayleigh waves are a special type of guided waves that travel alongside the surface of a
plate. They represent the natural mode of wave propagation, and their schematic
propagation in solids is depicted in Figure 2.4. This means that Rayleigh waves exist

when there is no external force. Stiffness matrix method is one way of solving the wav
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equation. This method will be discussed in details later. Here we consider a simplified

version where the external surface loads are zero:

Su

Il
o

Equation 2.32
A nontrivial solution exists when the determinant of the stiffness matrix is equal to zero.
S| =0 Equation 2.33
This equation can be viewed as an eigenvalue problem.
—st(1+1t2)2 — (2(1+st) — (1 +£2))* = 0 Equation 2.34

Substituting the values for s and t and simplifying yields the following:

1
2 2\ 2 2
2-Ey2_y4 <1 _ z_{;)z (1 _ C_R>2 -0 Equation 2.35
p
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Figure 2.4 Rayleigh waves propagation in solids. (Bolt, 1976)

There is no frequency term in this equation. This proves that Rayleigh waves are non-
dispersive in half-space and Poisson’s ratio and shear velocity are the only variables that

affect the phase-velocity (Achenbach, 1973):

_ 0.862 + 1.14v
R 1+v s

Equation 2.36

The importance of Rayleigh waves in radiation of energy comes from the fact that they
dominate the transient part of surface response. Approximately 67% of the impact-
induced energy in a homogenous half-space propagates as Rayleigh waves (Richart,
1970). The body-waves (P and S waves) propagate through the interior of the medium
where R-waves propagate along the surface. Due to hemispherical wave propagation, the
amplitude of P- and S- waves which propagate in the interior attenuate with a factor of 1/r

and 1/r%; but the amplitude of propagation alongside the surface attenuates proportionally
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to 1/+/r due to cylindrical wave propagation. However, because of they are lower

velocity; they arrive after body-waves.

Circular Footing
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Figure 2.5 Distribution of stress waves from a point source on a homogeneous,
isotropic, elastic half-space. The particle motion is visualized at a distance of
approximately 2.5 wavelengths from the source. The different wave types are

drawn in proportion to the velocity of each wave. (Richart, 1970)

Rayleigh-wave dispersion phenomena provide the basis for SASW and MASW methods.
The amplitude of such waves decreases exponentially with depth in the half-space, so the

effective depth is usually limited to one wavelength. Only longer wavelength waves can

penetrate into deeper layers.
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2.5 Lamb Waves in a Uniform plate

Introduced by Horace Lamb (1917), Lamb waves are guided waves that propagate in an
elastic, isotropic plate with free boundaries at the top and the bottom, as shown in
Figure 2.6. Lamb waves are formed by the interaction of compressional and shear-waves
at the plate boundaries. These waves represent a group of wave types that include
bending waves, Rayleigh waves and quasi-longitudinal waves. The equations that define

the interaction between these waves are called Lamb wave equations.

boundaries

A
Vi _
i Traction free
1 "
! / boundaries
;
1
1
d Plate I
p—— --??????????????????????%??????????+?+?+????? --------- >
1 X
1
1
I
1
Vacuum | R\\\ Traction free
:
1
I

Figure 2.6 Schematic of a plate with isotropic material and traction-free

boundaries

To obtain modal phase-velocity, the roots of the Lamb equations should be found. Plates
support two infinite sets of Lamb wave modes: Symmetrical and antisymmetrical modes
with respect to the middle of the plate. Equation 4.2 and Equation 4.3 are describing
symmetrical and antisymmetrical Lamb mode phase velocities. There is a unique phase-

velocity for each mode that is dispersive through different frequencies.
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d
tanf=»  4apk?

+ =0 Equation 2.37
tanag (kz _Bz)z
2
t d 2 232
anfz, k—BD_ ,
d 4afk? Equation 2.38
tanai
wz
a* = cz - ke Equation 2.39
2 — a)z kZ .
p* = C_sz - Equation 2.40

d is the full plate thickness, k is the wave number (k = %) where w is the circular

frequency, and c is the phase wave velocity. Cs and Cp are transverse (shear) and

longitudinal wave velocities, respectively.

These equations represent pure Lamb waves with particle motions in x and y directions.

To obtain the dispersive phase-velocity, a root-finding algorithm should be used.
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2.6 Matrix techniques for solution of wave propagation

In this section matrix techniques are used to simulate wave propagation in layered media.
Three methods maybe used to achieve this goal: The transfer-matrix method, the global-
matrix method, and the stiffness-matrix method. These methods will be introduced and

compared so that an appropriate method is selected for this study.

2.6.1 Transfer Matrix Method:

The transfer matrix method was introduced by Thomson (1950). It describes a matrix
that transfers the forces and displacements at the top of the layer to the bottom of the
layer. Layer matrices can be coupled to give the system transfer matrix for a layered
system. Later on Haskell (1953) corrected a small error in the derivation, so it is now
referred to Thomson-Haskell method. This method suffers from numerical of large fd.
fand d represent frequency and thickness respectively. The global-matrix method was

later proposed to solve this issue.

2.6.2 Global Matrix Method

Proposed by Knopoff (1964), the global matrix method offers an alternative to the
Transfer matrix method and can be specially used in cases of large fdA large matrix is
used that combines the information from different layers. The advantage of this method is
its robustness; however; in the case of many layers the solution can become quite slow.

Figure 2.7 shows a three-layer plate with semi-infinite half-space at the bottom.
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Figure 2.7 A three layers plate with half-space at the bottom (Lowe, 1995)

Displacement in the second layer can be expressed as both amplitudes at the bottom of

the second layer and at the top of the third layer:

A(L+)
A(L—- .
[D]izpottom = AE5+§ Equation 2.41

A(S_) l

A(L+)
A(L—- .
[D]i3,t0p = AES+§ Equation 2.42

()55

A(L +)& A(L —) are the amplitudes of longitudinal waves in the positive and negative
directions. A(S +)& A(S —) are the amplitudes of shear-waves in the positive and

negative directions. They can be combined into one equation:

24



[[Da] [—Ds¢ell =

25

[A(L+),]
A(L_)z
A(SH),
A(S_)z
A(L+),
A(L_)g
A(S+),
_A(S_)g_

= {0} Equation 2.43

t and b refer to the top and bottom of the layer where 2 and 3 refer to (2 and [3 layers.

The difference with the transfer-matrix method and the global matrix method is that the

origin for all waves in the layers is their point of entry to the layer, which could be top or

bottom, as opposed to the top of the layer for transfer-matrix method. D matrix for the top

and bottom of the layer is as follows:

[D¢]
[ kl klga
=| Coz —Lada
[ ipB ipBgq
2ipk1B*Cq  —2ipk1B*Coga
[Dp]
[ k194 ky
_ | CaGa —Cq
[ ipBga ipB
2ipk1B?Coga  —2ipkiB2C,

Cp —Cp9p 1

—ky —kigp Equation 2.44
ipB ipBgg

Cpgp  —Cp 1

—kig9p —k1 Equation 2.45

—2ipk,B*Cpyp ZipklﬁZCﬁJ
ipBgg ipB



26

gq = e'Ca¥2 gp = e'®F*z  Equation 2.46
1/2
2
12 Equation 2.47
2
B = w? — 2B%k? Equation 2.48

Here k is the wavenumber vector and w is the angular velocity. The wavenumber is in the
direction of the wave propagation and contains its velocity and wavelength. a&f describe
the longitudinal and shear-wave velocity. The global matrix contains 4n unknowns and

4(n-1) equations. For the Figure 2.7 the global matrix is as follows:

[[le] [—Dy¢] 1

S — [D25] [—D3¢]
[D3p] [—Da¢]

[Dsp]  [—Ds:]

Equation 2.49
({A1h
{42}
{43}y = {0}
{A4}
{45}

{A,} is an abbreviation of A4y Ay As+),A(s—) for each layer. Each row in

Equation 2.49 represents each interface and each column represents each layer utilizing
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the top and bottom half-spaces. For surface-wave applications the top surface is free.
In order to avoid modification to the D matrix, Lowe (Lowe, 1995) suggests assuming
arbitrary bulk wave velocity values for a and 8 and zero density for bulk density. By this
way, the same matrices can be used for both vacuum and half-space. For more detailed
discussion, see (Lowe, 1995). The stiffness matrix method follows the same global
structure and benefits from higher computational speed (Kausel E. , 2006). This method

will be discussed next.

2.6.3 Stiffness Matrix Method:

The stiffness matrix method was first proposed by Eduardo Kausel in 1981 to resolve the
numerical instability of the transfer matrix method. There are several advantages to the

stiffness matrix method (Kausel E. , 2006):

1. Stiffness matrices only involve displacements, reducing the number of degrees of
freedom. This is half compared to the transfer matrix, which involves both
displacements and stresses.

2. They are symmetric rather than non-symmetric transfer matrices.

3. The speed of computations is almost 8 times faster; by a factor of 2 because of
symmetry and a factor of 4 due to bandwidth. (Kausel E. , 2006) Despite the
stability problems of transfer matrices in thick layers or higher frequencies,
stiffness matrices remain stable throughout the frequency range.

4. Naturally, when solving for zero loading the stiffness matrix is accompanied by
the solution of an eigenvalue problem, which leads to the normal modes without

any extra step.
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5. Different mode participation amplitudes result from solving the eigenvalue
equation. These amplitudes are of main interest for analyzing the characteristics

of layered media.

The stiffness matrix was later presented in slightly modified form by Wolf (1985). The
following paragraphs summarize the stiffness matrix method presented by this author and

the variables needed.

The stiffness matrix method in wave propagation in layered media is very similar to the
displacement method in structural analysis. The key difference is that the domain of

analysis is frequency-wave number instead of the common spatial domain.

While the description of the next two sections are not used directly in this research, it is

provided to give the reader necessary background on the topic.

2.6.3.1 In Plane Wave Motion

The nomenclature of in-plane wave propagation is shown in Figure 2.8. Displacement in

the x direction for both P and SV waves can be separated by its variables, x and z:

u(z,x) = u(z)exp(—ikx) Equation 2.50

w(z,x) = w(z)exp(—ikx) Equation 2.51

Where k is the frequency wavenumber and c is the velocity defined as follows:
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Equation 2.52

c=—=— Equation 2.53
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Figure 2.8 Nomenclature of wave propagation in a layer representing In-Plane

motion (Wolf, 1985)

By satisfying the boundary conditions at the top and the bottom of the layer shown in

Figure 2.8, the in-plane displacement can be expressed as follows:
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u(z) =1, [Ap exp(iksz) + Bpexp(—iksz)]
— m,t[Agy exp(iktz)

Equation 2.54
— Bsyexp(—iktz)]

w(z) = —l,s[A, exp(iksz) — B,exp(—iksz)]

—m,[Agy exp(iktz)
xLsv E5P Equation 2.55
+ Bgyexp(—iktz)]

Where w(z) and u(z) are the amplitudes of the wave travelling in the x direction and

1 .
s=—i ’1 - Equation 2.56
X

t=—i [1—— Equation 2.57

A, and B, are the amplitudes of the P-wave traveling in the positive and negative

directions, respectively. As,and By, are the amplitudes of the shear-wave traveling in the

positive and the negative directions.

The amplitudes of the shear and normal stresses are then expressed as follows:
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0,(2) = 1 (u, +w,) + 2G*'w, Equation 2.58
Tor(2) = G*(uy + wy) Equation 2.59

By imposing the boundary conditions at the top and the bottom of the layer we have the

following

zZ = 0 Pl = _szl and R1 = _0'21

Z:d P2:szzand R2=O'Zz

By eliminating the displacement amplitudes the transfer matrix between the top and the

bottom of the layer is formed as following:

Uz Tin Tiz Tiz Tig Uy
W2 ( _ ; Ty Tz Toz Tou|) wy
Txz2 1+ t2 T31 T32 T33 T34 Txz1
0z2 Tar Taz Taz Taal ™ 01

Ty, = 2cosksd + (t* — 1) cos ktd
Equation 2.60

2

sin ksd +i2tsin ktd

T12:i

sin ksd + sin ktd

_ 1 t
B 7 ksG* kG*
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i

i
Ty = k_G*COS ksd — G cos ktd
42
Ty, = —2issinksd — i sin ktd

T,, = (t? — 1) cosksd + 2 cos ktd

L I
Ty3 = ——cosksd — —— d
23 = 7w COSks kG*COSkt

S sin ksd + sin ktd

Ty = —
27 LGr ktG*

. (1-t%)?
T3, = —4kG*ssinksd — kG* fsm ktd

T3, = i2kG*(t? — 1) cos ksd — i2kG*(t? — 1) cos ktd

Ty3 = 2cosksd + (t* — 1) cos ktd

2

sin ktd

T34 = —2issinksd — i

Ty = i2kG*(t? — 1) cos ksd — i2kG*(t? — 1) cos ktd

(1-t52 .
Ty = —kG*fsm ksd — 4kG™t sin ktd

1—t?

Ty =1 sin ksd + 2it sin ktd

Ty = (t2 — 1) cos ksd + 2 cos ktd



Performing a partial inversion on a transfer matrix will result in a stiffness matrix that

is faster to solve and more stable than the transfer matrix.

Py S11 Siz2 S13 Sua]ug
iRy ( _ (1+t—2)kG* Sy1 Siz S23 Saa|)iwg
P, D S31 S32 Saz Sz | W2
IR, Sa1 Saz Saz Sl NW2

1
S11 = 7 cos ksd sin ktd + s sin ksd cos ktd

3 —t?
S12 =85, = 1712 (1 — cos ksd cos ktd)
1+ 2s%t?2 —t? _
St £ £9) sin ksd sin ktd
1 .
Si13 = 831 = —ssinksd — ?sin ktd Equation 2.61

S14 = S41 = cos ksd — cos ktd

1
Sop = 5 sinksd cos ktd + t cos ksd sin ktd

Sp3 = S3, = —cos ksd + cos ktd

1
Son =S4y = —;sin ksd — tsin ktd

1
S33 = 7 cos ksd sin ktd + s sin ksd cos ktd

33
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t? -3
S34 =843 = m(l — cos ksd cos ktd)
t? —2s%t?2 -1
st(1+ t?)

sin ksd sin ktd

1
S4a = 3 sin ksd cos ktd + t cos ksd sin ktd

Where

D = 2(1 — cos ksd cos ktd) + (st

1. ] Equation 2.62
+ E) sin ksd sin ktd

As a special case of out-of-plane motion, the dynamic stiffness matrix for half-space is
derived by considering only the outgoing wave incident A, = Ay, = 0. This leads to the

following:

is(1+t%) 1+ t?
Py } 1+ st 1+ st|fUo -
. = kG* : Equation 2.63
{lRo 14+t it(1+t%) {lWo} f

_1+st 1+ st

The subscript O refers to the free surface of the half-space.
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2.6.3.2 Out of Plane Wave Motion

The nomenclature of in-plane wave propagation is shown in Figure 2.9. Using the same

procedure as in-plane motion for out-of-plane motion we have the following:

v(z,x) = v(z)exp(—ikx) Equation 2.64

Ql
X 1 /
> = Vig

Bsie e

P

Figure 2.9 Nomenclature of wave propagation in a layer representing out of plane

motion (Wolf, 1985)

The transfer matrix in this case is as follows:



{6
TyZZ

= kG*

Equation 2.65
cos ktd (ktG*)~'sin ktd { V1 } quation

—ktG* sin ktd cos ktd Tyz1

And stiffness matrix is as follows:

kG* — .
{Ql} - [COS ketd 1 {vl} Equation 2.66
Q2) sinktdl —1  cosktd!\v;

For half-space when there is no incoming wave incident, the force at the free surface

equals the following:

Qo = tktG v, Equation 2.67
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For solving the stiffness matrix problem, one needs to take the following steps. First, the

sources should be transformed from the space-time domain into the frequency-

wavenumber domain. This step is done in closed-form solution for ideal load. Next, for

each frequency and wavenumber, the stiffness matrix of each layer, and by superposition,

the stiffness matrix of the whole layered system is formed (or assembled). By solving this

matrix, the displacements are obtained in the frequency-wavenumber domain. Finally
performing an inverse transform into the space-time domain will produce the desired

results.

The next chapter discusses the basis for acoustic testing of concrete decks, including

SASW and MASW.
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3 Ultrasonic Seismic Methods for Concrete NDT

The material property of concrete is an essential parameter in bridge-deck evaluation.
Several surface-wave seismic methods have been developed to enable in-situ evaluation
of material properties. Ultrasonic seismic methods have gained popularity among the in-
situ methods in the recent decade because of their accuracy in detecting certain types of
defects (Gucunski N. , et al., 2013). They are also excellent candidates for post-
construction quality control. They work by measuring the properties of the ultrasonic
waves like velocity attenuation, and various wave propagation phenomena, like
dispersion. Three ultrasonic seismic methods are commonly used: impact echo (IE),
ultrasonic body-waves (UBW) and ultrasonic seismic waves (USW). IE is a reflection
base method. It measures and characterizes reflections from internal flaws and external
surfaces and can determine the extent and location of the internal flaws. UBW and USW
work by measuring body wave and surface-wave velocities. Due to the relationships
between velocity and elastic modulus of the material, USW and UBW results can be
related to material properties. Figure 3.1 shows the schematic basics of USW, UBW and

IE.



38

UBW - USW

¢ T=1,/2V,
f

.
travel time elastic
L—4 Vo = modulus froreUmM o ihickness

frequency
Vs

—

=

Figure 3.1 Basics of USW,UBW and IE (Gucunski, Consolazio, & Maher, 2000)

Evaluating material properties of concrete using nondestructive ultrasonic seismic
methods is of primary interest for this research. Due to the higher amplitude of surface-
waves, USW has an advantage over the other seismic methods in NDT testing of bridge-
decks. In the following sections a brief introduction to commonly used surface-wave

methods is presented.

3.1 Spectral Analysis of Surface-Waves (SASW)

The spectral analysis of surface-waves (SASW) method is a surface seismic method for
measuring in-situ elastic modulus and thicknesses developed for soils and commonly
used on pavements. The method was first introduced by Heisey et al (Heisey, Stokoe I1,
& Meyer, 1982) and then developed by other researchers at University of Austin

(Nazarian, Stokoe 11, & Hudson, 1983; Nazarian, Stokoe Il, Briggs, & Rogers, 1987).
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Several publications describe the SASW method in detail (Aoud, 1993; Stokoe I,
Wright, Bay, & Roesset, 1994; Stokoe Il & Santamarina, 2000; Sevensson, 2001). The
method works based on measuring the surface-wave velocity (phase-velocity) between

two sensors.

N HARD

DRIVE COMPUTER
= EEQBBE
| o wmev O ¢ l— BBE
WAVE FORM =} 8 R
ANALYZER 2i=80sa3
Sw 8820 09,6

IMPACT NEAR FAR
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L s X _l)
I b e |

Figure 3.2 A Schematic procedure of SASW test (Gucunski & Woods, 1992)

The SASW testing is divided into three phases: 1) data collection in the field, 2)
dispersion curve analysis, and 3) inversion process to obtain the shear-wave velocity
profile. A schematic of the method is presented in Figure 3.2. Elastic waves are generated
by an impact on the surface of the system. Two receivers are used to detect the wave

signal at fixed locations. These signals are recorded and analyzed by the signal analyzer
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to develop dispersion curve. To reduce the effect of noise the test is repeated multiple

times.

In order to calculate the dispersion curve, the phase difference between the two recorded
signals is computed using the phase of the cross power spectrum to obtain the phase
velocity between the two time histories. The result is a wrapped phase angle within the
limits of -180 and 180 degrees. After unwrapping the phase difference, phase-velocity is
determined using Equation 3.1, where Axis the distance between sensors, w is the
frequency, A@ is the phase difference and V,, is the phase-velocity. Phase-velocity is
plotted against wavelength to better represent the wave propagation through the cross
section of the medium. Figure 3.3 shows the steps for developing a dispersion curve for a
20cm concrete bridge-deck with a uniform thickness. The dashed line shows the
unwrapped phase angle where the solid line is the wrapped version. The dispersion curve
is plotted in both frequency and depth domains

_ wAx

Von = a0 Equation 3.1
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Figure 3.3 a) Unwrapped and rapped phase angle in the top left b) phase-

velocity vs. frequency in the bottom left and c) phase-velocity vs. wavelength in

the bottom right calculated for a 20cm solid concrete bridge-deck with a Rayleigh

wave velocity of 2200m/s

After the experimental dispersion curve is established, the shear-wave velocity profile is

obtained using the inversion process. This process has proven to be challenging. Earlier,

Nazarian (Nazarian S. , 1984) modeled and compared all the possible scenarios to

precisely match the measured dispersion curve with the theoretical curve This process
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was time consuming and not accurate enough (Williams & Gucunski, 1995). Artificial
Intelligence (Al) methods such as Neural Network (Williams & Gucunski, 1995; Wu,
Wang, Abdallah, & Nazarian, 2002) and genetic algorithms (Al-Hunaidi, 1998) were
then used to match the results. All these efforts have improved the overall performance of
SASW method. However, the main limitation of this method is that only one phase-
velocity can be evaluated at each frequency because just two sensors are used. The
SASW method cannot detect different modes of propagation over a pavement system as
described earlier in the Lamb wave discussion; it simply measures the superposition of all

the propagating waves at the specific receiver location.

There have been multiple efforts to commercialize the use of seismic methods for the
testing of pavements and bridge decks. Portable seismic property analyzer (PSPA) is one
of these devices. While the description of the approach below is not used directly in this

research, it is provided to give the reader necessary background on the topic.

3.2 Portable Seismic Property Analyzer (PSPA)

The PSPA was developed as a pavement-testing device, that integrates all three of the
ultrasonic techniques previously described (UBW, USW, IE). It is an extension of the
seismic pavement analyzer (SPA) at the University of Texas at El Paso and is produced
by Geomedia Research and Development, Inc., EL Paso. As illustrated in Figure 3.4 a,
the device consists of three main elements. The core of the system is a sensor box: a box
that contains a solenoid-type impact hammer and two high-frequency accelerometers. All
controls and data acquisition are in a computer that is connected by a serial cable to the

sensor box.
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In order to simplify the bridge-deck evaluation, information is collected at preset
locations. In case of PSPA, these locations usually follow a 1X1 ft. to 2X2 ft. grid,
depending on the needed spatial resolution of the concrete modulus (Figure 3.4 b).
Testing via the PSPA is simple and relatively fast. A single point takes less than 30
seconds (Gucunski, Slabaugh, Wang, Fang, & Maher, 2007). The sensor box is placed at
the test point and a series of impacts (6-10) of 50 us duration are applied. The
acceleration histories are recorded and analyzed. The frequency range of testing is

between 2 and 30 kHz and it is fairly insensitive to traffic-induced vibrations.
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Figure 3.4 a) PSPA sensor box. b) The grid system used for PSPA for

bridge-deck testing c) Testing with PSPA using grid system
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A snapshot of PSPA program menu is presented in Figure 3.5. The frequency range
that is used in the dispersion analysis is marked by a yellow bar. The dispersion curve for

the test point is plotted across the thickness, and averaged for the test point.

3.2.1 Examples of Field Implementation of PSPA

PSPA testing results are commonly described in terms of shear and Young’s moduli (or
P- and S-wave velocity) distributions. A bridge-deck evaluation was conducted during
September 17-22, 2009, in Haymarket, VA, on U.S. Route 15 (James Madison Highway)
over Interstate 66 (1-66), approximately 38 miles west of Washington, DC. The elastic
modulus distribution for the deck is shown in Figure 3.6. While in this particular case,
variations in moduli are rather large; variation in concrete modulus along the deck does
not necessarily indicate deterioration. Such variations can often be introduced at the time
of construction as a result of material variation and placement procedures. Therefore,
only periodic measurements to detect changes in the concrete modulus can be useful in

identifying the deterioration processes (Gucunski & Nazarian, 2010).
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Figure 3.5 PSPA software program user interface
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Figure 3.6 Modulus variation maps for the Virginia bridge survey 2011 from

Usw

As shown in Figure 3.5 the final results in PSPA testing for a specific point are given in
the form of average modulus of concrete through the thickness. By using the average

modulus for each test point one can get an estimate of the concrete quality (Figure 3.6).
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In recent years a newer method of surface-wave testing, called multi-channel analysis

of surface-waves (MASW), has been implemented in the assessment of concrete slabs
(Ryden, Choon, & Miller, 2003). The basics of this method are similar to those of SASW.
The major difference is in the number of sensors that are used to gather the information.
The MASW method can facilitate a more accurate inversion process because of the extra

available information. In the next section, the MASW method will be discussed.
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3.3 Multichannel Analysis of Surface-waves (MASW)

The MASW method overcomes some of the common practical issues associated with
using the SASW method. In general the advantages of using the MASW method can be

summarized as following (Park, Miller, & Xia, 1998):

1. Multiple sensors enable us to be free of the effect of the sensor location on any
specific Lamb wave mode of interest. Still, the receiver positioning still has to be
taken into account during analysis.

2. It has the benefit of avoiding the data reduction and forming (or evaluating) the
experimental dispersion curve

3. It is considerably faster, as it covers more area and takes less time to post process
the data

4. The MASW method emphasizes the near-field and far-field effects whereas

SASW is known to have problems with such effects.

When using only a pair of sensors, the source and receiver arrangement should be
established based on the site properties (Roesset, Chang, Stokoe 11, & Auoad, 1990); this
can be challenging because of uniqueness of each site. The effect of the noise recorded in
only one pair of receivers is another issue that makes it appealing to use more sensors.
The dispersion analysis for the SASW method is complicated and needs the operator’s
best judgment. This is a common issue known as near-field and far field effects. There is
also less need to repeat the test, because more sensors are recording at the same time

(Ryden N. , 2004).
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As mentioned earlier, the basics of the MASW are similar to those of the SASW
except the number of sensors and the dispersion analysis. It is based on N equally spaced
signals collected at the surface. Each sensor is connected to a multichannel recording
device. The same impact source as in SASW method (i.e. a small ball or a solenoid)
could be used. The frequency content of the generated wave is defined by the
characteristics of the test site and impact source. Based on these characteristics a specific
size of the actuator is chosen. For bridge decks because of similarity in site characteristics
this is constant. The smaller the impact source is, the higher the frequency content of the

generated wave become.

As in SASW, the testing procedure for MASW surveys usually consists of three steps:
Data Acquisition, dispersion analysis and inversion analysis. Multichannel shot gatherers
are used. The data is transformed into velocity-frequency domain. Despite the SASW
method the multichannel approach does not attempt to calculate individual phase-velocity
lines, but constructs an image-space plot in which dispersion trends are identified from
the pattern of energy accumulation in this space (Park, Miller, & Xia, 1998). The detailed

dispersion analysis of the MASW method will be discussed in chapter 5.
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4 Dispersion Analysis for Wave Propagation in Layered Media

4.1 Dispersion Analysis

In order to study the dispersive characteristics of surface-waves, an appropriate imaging
process is needed. Conventionally, this process was done by analyzing a pair of
observations. SASW method is illustrated here using FEM simulation of the test. The
first step is to transfer the recorded signals from the time domain into the frequency
domain. Then the phase of cross-power spectrum and the coherence, between the two
records are calculated. In areas of high coherence the phase-shift is unwrapped and used

to calculate the phase-velocity from Equation 3.1:

v _a)Ax
ph — AQ

Sometimes it is necessary to apply a window function on the recorded signal to reduce

the effects of reflections and body-waves on the phase-velocity.

Figure 4.1 shows the accelerations recorded from a FEM model of a concrete specimen.
The sensors are 5 cm apart, and the shear-wave velocity of the slab is 2500 m/s. The
acceleration spectra of the records are represented in Figure 4.2. Using the records from
locations at 10 cm and 25 cm, the SASW analysis was performed. Figure 4.3 shows the
phase angle of cross-power spectrum. The dashed line shows the unwrapped phase angle
where the solid line is the wrapped version. The dispersion curve is plotted in both

frequency and depth domains. Since the signals are recorded synthetically, the coherence
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is 1 in the absence of environmental noise. The dispersion curve approaches the
Rayleigh wave velocity of the deck at higher frequencies. At lower frequencies at
Figure 4.3-c the dispersion curve is branching. This phenomenon is caused by the
existence of multiple modes with strong amplitudes. With just two sensors, the effect of

multiple modes cannot be separated.
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Figure 4.3 Typical SASW analysis on signals recorded at 10 cm and 25 cm from

the source obtained from FEM of a concrete deck a) Phase of cross-power

spectrum, b) Dispersion Curve vs. Frequency, c) Dispersion Curve vs. Depth

Using several records simultaneously, like in the MASW testing, offers some advantages

over the conventional SASW method. The main advantage is that all of the data is used to

construct the final dispersion surface. Therefore, there is no subjective selection of data,

i.e. no time history windowing or filtering of low-coherence frequencies. Also multiple

modes can be detected at each frequency that can be useful in the inversion process.
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The MASW method takes advantage of this benefit. In the MASW method, the time-
space domain is transformed into either the frequency-wavenumber or the frequency-
phase-velocity domain. Several methods have been developed to extract the dispersion
curve from the multichannel test data. The traditional f-k method (Gabriels, Snieder, &
Nolet, 1987) is the former type, whereas the pi-omega transformation (McMechan & and
Yedlin, 1981) and the phase-shift method (Park, Miller, & Xia, 1998) are two instances
of the latter type. The phase-shift method achieves higher resolution than the pi-omega
method (Park, Miller, & Xia, 1998; Moro, Pipan, Forte, & Finetti, 2003), and is used in

this research.

A multi-channel recording set is illustrated in Figure 4.4. In the phase-shift method, a N-
channel record mry is defined as an array of N traces collected: mry = r; (i=1, 2, ..., N).
And in the frequency domain as it is MRy(w) = R;(w) = FFT[r;]. R;(w) can be

decomposed into its amplitude A;(w) and phase P;(w).

R;(w) = A;(w)P;(w) =12, ....N Equation 4.1

Since the amplitude does not carry much information about the phase-velocity, R;(w) can

be normalized without any significant loss of information.
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Figure 4.4 Multi-channel recording schematic
The phase-shift method can be divided into the following steps (Olafsdottir, 2014):

1. The first step is to transfer all the data into the frequency domain by
performing a fast Fourier transform (FFT). The data is thus decomposed into
individual frequency steps.

2. Then second step is to normalize the data by dividing the complex value by its

amplitude (Figure 4.5 a and b).

Ri(w) Equation 4.3
=P,
Re(@) )

Ri,norm ((‘)) =
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3. Inthe third step, for a given testing phase-velocity and frequency in the
range of interest, a number of phase-shifts are calculated to compensate for

the time delay that corresponds with a specific offset.

5. = w (1 + (@ - 1)dX)/C Equation 4.4
,T T

4. The phase-shifts are then applied to individual components of each trace, and
summed together (Equation 4.5). Cis phase-velocity and A, (w, Cy) is the

energy.

As(w,Cr) = e_iSI'TRi,norm(w) + e_i(sz'TRz,norm(w) + -

. Equation 4.5
+ e_uSN'TRN,norm ((U) q

5. Steps 3 and 4 are then repeated for all of the frequency steps using the varying
phase-velocity steps.
6. The summed amplitude of the transformed energy is then plotted in the

frequency-phase-velocity domain.

Figure 4.5 illustrates 40 synthetic sinusoidal signals that were collected at 5¢cm steps. The
frequency of the propagation is 10 kHz and the phase-velocity is 1000 m/s. Each line is
showing one sinusoidal signal in time domain. Using the phase-shift to calculate the
amplitude of the summed sinusoid curves, the 2D scanned curve is plotted in Figure 4.6

across the different phase velocities. This plot has one main lope that the peak
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corresponds to the designated phase-velocity. The sharpness affects the resolution of

the dispersion curve. Figure 4.6 shows the effect of the number of the traces on the

sharpness of the main lope. The solid line represents using 40 traces. In case of a dashed

line, only 4 traces are used to calculate the summed amplitude. A parametric study is

performed in chapter 5 to determine the optimal sensor arrangement.
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Figure 4.6 Normalized summed amplitudes for different number of traces. Solid

line represents N=40 and dashed line is for N=4.

To identify the dispersion curve, the above process is repeated for all the different
frequency components. The 2D curves for summed amplitudes are gathered and plotted
as a 3D image that is a function of frequency and phase-velocity. Display of all summed

energy in frequency-phase-velocity space shows a pattern of energy accumulation that

represents the dispersion curve.
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4.2 Wave Propagation in a Uniform plate

Wave propagation in a uniform plate is discussed here. Lamb theory discussed in chapter
2 is used to for this analysis. A root-finding algorithm called LAMBDISPERSE is
developed in MATLAB to solve Equation 2.37 and Equation 2.38 . Figure 4.7 shows the

Lamb modes in wave propagation in a uniform plate along with the plate specifics.

The two fundamental modes, Ag and Sy, are the only modes that exist at the very low
frequency. Sy starts at a quasi-longitudinal wave velocity that is the same as P-wave
velocity. On the other hand, both of these modes approach the Rayleigh wave velocity at
the higher frequencies. In this example, Rayleigh wave motion develops at around 20
kHz. It can be shown analytically that Equation 4.2 and Equation 4.3 reduce to the
Rayleigh wave dispersion equation at the infinity frequency. This is because, at these
high frequencies, the plate with finite thickness can be considered as a semi-infinite
medium for the propagating wave. All of the other higher modes approach to the shear-
wave velocity at higher frequencies. Another fact about wave propagation in uniform
plates is that all the symmetric modes have a straight segment in which the phase-velocity

is equal to the quasi-longitudinal wave velocity.
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Lamb wave Dispersion Curve in a Free Plate
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Figure 4.7 Lamb wave dispersion curve for a free concrete plate. Solid line

represents the antisymmetric modes and dashed line is for symmetric modes.

A sensitivity analysis was performed to determine the effect of plate properties on Lamb
wave modes. Figure 4.8 shows the effect of 10% increase in elastic modulus, density,
Poisson's ratio, and plate thickness on Lamb wave modes (shown as a dashed line). This
result is then compared to the reference model (which is shown as a solid line). A; mode
is widely used in bridge-deck evaluations. From Figure 4.8 it is clear that this mode is not
very sensitive to the plate properties. In order to increase the sensitivity of the testing
information gathered from higher modes should be utilized. Also the Poisson's ratio has the

least effect on the Lamb modes, especially in a higher frequency range. At higher
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Poisson's ratios, this affect is more visible (Ryden, Choon, & Miller, 2003).
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Figure 4.8 Effect of 10% increase in plate properties on the Lamb wave modes.

Solid line represents the base model.

Lamb wave propagation in plates is similar to ripples cause by a splash (Graff, 1975).
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The velocity of individual ripples is just like phase-velocity. They can travel faster than
the group, and in effect originate at the end of the group and die out at front. The in-plane
velocity of energy propagation is called group velocity and is defined by the slope of

dispersion curve.

_dw

= Equation 4.6
dk

Ce

4.3 Wave Propagation in a Layered Medium

When waves propagate through a layered medium, the theoretical dispersion can be
calculated using matrix techniques that are based on wave propagation theory. Surface
wave test can be described as an axisymmetric problem with circular loading at the
middle. This study uses the stiffness matrix technique proposed by Kausel and Roesset
(Kausel & Roesset, 1981). The formulation for this method is presented in chapter 2. The
stiffness matrix of a layer relates forces and displacements at the top and the bottom of a
layer. In case of a half-space, the boundary conditions are met only for the top. In a
layered medium a global matrix is built by combining the layer matrices for different
layers that overlap at their interfaces. This matrix is then called a global stiffness matrix
or system stiffness matrix. Figure 4.9 shows the schematic assembly process for a 3-layer

system.
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Top Layer

Middle Layer

. Bottom Layer |

Figure 4.9 Schematic representation of 3-layer matrix assembly for the global

stiffness matrix.

The following system of equations governs the dynamic response in layered media.

Su Equation 4.7

I
<

S represents the stiffness matrix, u represents the vector of displacement at layer
interfaces and q is the external loading vector. Each point of the dispersion curve
represents a solution to S that satisfies all the boundary conditions. To acquire Rayleigh-

Lamb modes, the external load should be zero. The dispersion equation then becomes:

f(f k) = det[S] =0 Equation 4.8

This equation can also be considered as an eigenvalue problem where eigenvalues are the

phase velocities and the displacement vector is the mode shape as a function of depth.

Using the cylindrical coordination, the source is represented as a circular loading with

intensity p and radius Ry at the surface. It will be transformed from the spatial domain
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into the frequency wave-number domain by using Fourier and Henkel’s

transformation. Equation 4.9 represents this transformation (Wolf, 1985).

q(k,n) =a, foo C,(k,1) an(nH)P(r, 0)dodr
0

r= 6=0

Nz forn=0
an = |73
- forn+0
For a symmetric case
|cos né|
D(no) = | —sinné|
|cosné| Equation 4.9
For an anti-symmetric case
|sinnf|
D(nf) = |cosné|
|sinn@|
d,(kr) n
| =5 whtn 0|
Co(k,r) =[n 0Jn(kr)
[E]n(kr) ka,r 0
0 0 —J.(kr)

For this study only the symmetric case is of interest. q(k, n) and P(r, 8) are the loading
vectors in frequency wave number domain and spatial domain respectively. J,, (kr)is the
Bessel function of the first kind and n order. In an axisymmetric case with uniform

loading with intensity of p, and radius of R, Equation 4.9 is simplified to the following:
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qo(k) = — (kRy) Equation 4.10

By solving the matrix equation (Equation 4.7) the displacement components in the
axisymmetric case (w(k), u(k)) will be obtained. The next step is to transform the
displacement components from the frequency wavenumber domain back into the spatial
domain. This is achieved by using the inverse Hankel’s transform. The general equation

is as follows:

u,(r,0) = Z D) [ kC, 0,1 ull,m)d Equation 4.11

k=0

Here, u,; and u represent the displacement vector in the spatial and frequency wave-
number domains, respectively. For the case of surface displacements in an axisymmetric

model surface Equation 4.11 will be simplified into the following:

0Jo (kr)
usO (r)] f Oar [uo (r)] dk Equation 4.12
Wso (r) k=0 iy (k) wo (1)

By combining Equation 4.12 with Equation 4.10 in the case of unit vertical loading,

vertical displacement can be written as follows:
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o)

Wso (T) = _pORO jl(kRo)jo(kr)Wol(k)dk Equation 4.13
k=0
The algorithm used to solve the wave equation using stiffness matrix method was the
program DISPER developed by Gucunski & Woods (Gucunski & Woods, 1991). This
algorithm uses the stiffness matrix approach to evaluate the response of a layered

medium to unit loading in the frequency-phase velocity domain.

Figure 4.10 shows Lamb wave dispersion curves for a three-layer system with air as half-
space using the stiffness matrix method. Uniform plate dispersion curves are plotted as a
dotted line for comparison purposes. The Lamb modes in the uniform plate match with
the high-amplitude areas of dispersion surface. In the case of a layered system, most of
the energy is concentrated in the fundamental modes, Apand Sy. There are traces of A;
and S; modes in the dispersion curve, but the amplitudes decrease as the number of
higher modes increases. Next, the shear wave velocity of each of the three layers is
reduced to one half of the other two layers to study the effects of layer shear wave

velocity on Lamb modes.
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Figure 4.10 Lamb wave modes in case of a uniform plate shown as dotted lines,

Figure 4.11 represents the Lamb dispersion curve for a 3-layer system with a soft top

and a 3-layer homogenous system with half-space using matrix techniques

layer. Most of the energy is concentrated in the fundamental modes. Comparing this case

to the uniform plate case, it can be observed that almost all of the Lamb modes have a



different trend. The fundamental modes converge to the top layer’s Rayleigh wave

velocity. This velocity is less than the uniform case. It should be noted that the anti-

symmetric mode in the frequency range of 0 to 5 kHz follows a similar to that of the

uniform plate case. Also the fundamental symmetric mode converges to the original P-

wave velocity that is the same as lower and middle layer P-wave velocity. This can be

used as the signature feature of this case.
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Figure 4.11 Lamb wave modes in case of a uniform plate shown as dotted lines
and a 3-layer system with softer top layer and air as half-space using matrix

techniques

Figure 4.12 represents a 3-layer system with a soft layer in the middle. In this case we see
more of the higher modes having brighter spots that indicate higher dispersion curve
amplitudes. The modal amplitudes in the lowest and highest frequencies are similar to the
uniform case. So a soft layer trapped in between hard layers excites the Lamb modes in
the middle frequency range (i.e. 10 kHz to 30 kHz). The only mode that can be directly

compared to the uniform plate case is the fundamental anti-symmetric mode.
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Figure 4.12 Lamb wave modes in case of a uniform plate shown as dotted lines
and a 3-layer system with softer middle layer and air as half-space using matrix

techniques

Figure 4.13 represents a 3-layer system with a soft bottom layer. In terms of the modal

amplitudes, it is similar to the 3-layer uniform case. The first few modes have high



73
amplitudes and higher modes are hard to notice. Compared to the uniform plate case,
the Spand Ag have similar trends to the dotted lines, which represent the uniform plate
case. However, the S; and A; modes have high amplitudes and different frequency-
velocity content. This feature can be used as additional beneficial information in the

inversion process.

As it is shown in Figure 4.13 the change in the properties of the bottom layer is reflected
in S;and A; modes. Since they have high amplitude and are detectable on the surface
using the full dispersion surface of Lamb modes can help to identify defects in such

Cases.
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Figure 4.13 Lamb wave modes in case of a uniform plate shown as dotted lines
and a 3-layer system with softer bottom layer and air as half-space using matrix

techniques
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4.4 Parametric Study

In order to better understand the effect of layer parameters on the Lamb wave dispersion
surface, a series of parametric studies was performed. Equation 4.14 shows the
parameters involved in calculating the dispersion surface for multi-layer media. Next,
each of these variables is examined for a 3-layer system with a very low velocity half-

space.

f(VSi, dil pi,vi) i:1, 2, 3... Equatlon 4.14

4.4.1 Shear-wave Velocity

Shear-wave velocity is the main variable of interest for NDE of bridge decks. The effects
of each layer’s shear-wave velocity on dispersion curve are discussed here. The medium
to investigate is three-layered system profiles. The layered systems consist of three
equally thick layers with material properties in a range typically found for sound to

deteriorated concrete, and a half-space with air-like properties.
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Table 4.1 Fixed layer parameters for layer shear velocity parametric study

Layer Vs(m/s) p(kg/m®) d/T v

1 Variable 2500 1/3 0.167

2 2500 2500 1/3 0.167

3 2500 2500 1/3 0.167

Figure 4.14 shows the dispersion surface for the first set of three-layered systems in this
section. This set is for studying the change in the top layer’s shear-wave velocity. It is the
2500 m/s case in the top plot, 2000m/s in the middle plot, and 1250 m/s in the bottom
plot. Other than the parameter of the interest, all the parameters are kept identical to those
presented in Table 4.1. The most significant effect of this parameter is on the phase-
velocity at high frequencies. At higher frequencies, the phase-velocity represents the
Rayleigh wave velocity of the close to surface material, which is the top layer. So, the
Rayleigh wave velocity of the top layer can be directly calculated from this feature and
then converted into the shear-wave velocity. This feature is used later in the inversion
algorithim. From the top to bottom, the phase-velocity decreases in the high-frequency

section of plots. This is directly correlated with the decrease of the parameter of interest.

The second observation to make from Figure 4.14 is that the frequency content of the

modes shift slightly toward lower frequencies.
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Figure 4.14 The variation in dispersion surface caused by changing the top layer’s

shear-wave velocity

Figure 4.15 shows the dispersion surface for the second set of three-layered systems. This
set is prepared to study the effect of change of the middle layer’s shear-wave velocity. All
of the parameters are kept identical (Table 4.1) except the shear-wave velocity of the
middle layer. It is 2500 m/s in the top plot, 2000m/s in the middle plot and 1250 m/s in
the bottom plot. The most significant effect of this parameter is on the participation of

higher modes. In Figure 4.15-a only the Ap and Sp modes are fully present. However, in
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Figure 4.15-c the first 8 modes can be observed well. The same frequency content shift

can be seen as in the previous case, which is slightly towards lower frequencies.
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Figure 4.15 The variation in dispersion surface caused by changing the middle

layer’s shear-wave velocity

Figure 4.16 shows the dispersion surface for the third set of three-layered systems in this
section. This set is for studying the change in the shear-wave velocity of the bottom layer.

All the parameters are kept identical except the shear-wave velocity at the bottom layer.
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This variable is 2500 m/s in plot a, 2000m/s in plot b and 1250 m/s in plot c. In
general, the shear-wave velocity of the bottom layer has less effect on the dispersion
surface than the other two layers. The biggest impact is on the lower frequency content of
the Ag mode. The amplitudes are lower reflecting the lower mode participation. The next

few modes also have higher amplitudes, relative to the identical layer case.
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Figure 4.16 The variation in dispersion surface caused by changing the bottom

layer’s shear-wave velocity
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4.4.2 Thickness of Weak Layer

In this section, the effects of the layer’s thickness variation on the dispersion surface are
discussed. The layer of interest has a lower shear-wave velocity than the rest of the layers
(about half). The layer thickness will vary from 1/6 to 2/3 of the total thickness. Other
than the variable of interest, all the other parameters are identical and described in

Table 4.2. This analysis can provide an understanding of how the dispersion surface is
affected during the progressive stages of any defect that can result in the modulus

decrease in a section of a bridge-deck.

Table 4.2 Fixed layer parameters for thickness of weak layer parametric study

Layer | p (kg/m®) | Vs(m/s) | v

1,2,3 2500 2500 |0.167

Figure 4.17 shows the dispersion surface for the first set of three-layered systems in this

section. This set is for studying the change in the thickness of the top layer. This variable
is 1/6 in plot a, 1/3 in plot b and 2/3 in plot c. As the weak layer extends from the top, the
number of modes involved in the frequency/velocity range of interest increases. The first

few dominant modes also shift toward lower frequencies.
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Figure 4.17 The variation in dispersion surface caused by changing the weak top

layer’s thickness

Figure 4.18 shows the dispersion surface for the second set of three-layered systems in

this section. This set is for studying the change in the thickness of the middle layer. The

variable of interest is 1/6 of the deck thickness in plot a, 1/3 in plot b and 2/3 in plot c.

Other than the variable of the interest, all the other parameters are identical and described

in Table 4.2. As in the previous case the increase in the thickness of the weak layer

increases the number of mode shapes in the dispersion surface. The difference is that here
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the higher modes have higher amplitudes, especially in the extreme case represented in

Figure 4.18-c.
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Figure 4.18 The variation in dispersion surface caused by changing the weak

middle layer’s thickness

Figure 4.19 shows the dispersion surface for the third set of three-layered systems. This
set is for studying the change in the thickness of the bottom layer. The variable of interest

is 1/6 of the deck thickness in plot, 1/3 in plot b, and 2/3 in plot c. Other than the variable
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of the interest all the other parameters are identical and described in Table 4.2. As the
weak layer extends from the bottom of the layer higher modes are amplified. The higher
frequency content remains the same. This is because the top layer’s properties are not

changed in this case.
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Figure 4.19 The variation in dispersion surface caused by changing the weak

bottom layer’s thickness
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4.4.3 Location of the Weak Layer

In this section, the effects of the location of the weak layer on the dispersion surface are
discussed. The thickness of the weak layer is constant and its location is moved from the
top to the bottom of the deck to study the changes in the dispersion surface. All the other
layer parameters, including the layer thickness, remain constant. Considering .the weak
layer as the representative of flaw, one use of this analysis is to develop understanding of

how the dispersion surface is affected by the location of a flaw in the bridge-deck.

Figure 4.20 shows the dispersion surface for the first set of three-layered systems in this
section. This set is for studying the dispersion surface caused by changing the location of
a hypothetical weak layer. In this case the weak layer thickness is 1/6 of total thickness.
The other two layers have thicknesses) of 1/3T and 1/2T. Other than the variable of the
interest all the other parameters are identical and described in Table 4.2. At the right hand
side of each plot, there is a schematic figure to show the size and location of the weak
layer. As the weak layer changes its location from the top to the bottom, the mode

amplitudes and frequency content change throughout the dispersion surface.
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Figure 4.20 The variation in dispersion surface caused by changing the location of

the weak layer with thickness of 1/6T

Figure 4.21 shows the dispersion surface for the second set of three-layered systems in
this section. This set is for studying the dispersion surface caused by changing the
location of a hypothetical weak layer. In this case, the weak layer thickness is 1/3 of total
thickness. The other two layers have thicknesses of 1/3T. Other than the variable of

interest, all the other parameters are identical and described in Table 4.2. At the right
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hand side of each plot there is a schematic showing the size and location of the weak
layer. More dispersion modes are involved in this case with 1/3 weak layer than in the

previous case with thinner weak layer.
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Figure 4.21 The variation in dispersion surface caused by changing the location of

the weak layer with thickness of 1/3T

Figure 4.22 shows the dispersion surface for the third set of three-layered systems in this
section In this case the weak layer thickness is 2/3 of total thickness. The other two layers

have thicknesses of 1/6T. Again, all the other parameters are identical and described in



88
Table 4.2. At the right hand side of each plot there is a schematic figure to show the
size and location of the weak layer. The same trend continues here. As the weak layer’s

thickness increase, more modes are present in the dispersion surface.
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4.4.4 Layer Density

In this section the effects of the density of each layer on the dispersion surface are
discussed. The density of the layer of interest varies from 833 kg/m® to 2500 kg/m®.
Other than the parameter of the interest, all the parameters are kept identical and are

presented in Table 4.3.

Figure 4.23 shows the dispersion surface for the first set of three-layered systems,. This
set is for studying the effects of the top layer’s density. The variable of interest is 2500
kg/m® in plot a, 1666 kg/m®in plot b and 833 kg/m®in plot c. The phase-velocity
amplitudes in the frequency range of 5-10 kHz show higher amplitudes than the rest of
the plot. This can be due to the lower density of the deck at this frequency range which is

related to the top.

Table 4.3 Fixed layer parameters for layer density parametric study

Layer | Vs(m/s) |d/T| v

1,23 | 2500 1/3 | 0.167
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Figure 4.23 The variation in dispersion surface caused by changing the density of

the top layer

Figure 4.24 shows the dispersion surface for the second set of three-layered systems in
this section. This set is for studying the effects of the middle layer’s density. The variable
of interest is 2500 kg/m® in plot a, 1666 kg/m’in plot b and 833 kg/m®in plot c. The gap
between the first mode (Ap) and the rest of the modes increases as the density of the

second layer decreases.
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Figure 4.24 The variation in dispersion surface caused by changing the density of

the middle layer

Figure 4.25 shows the dispersion surface for the third set of three-layered systems in this
section. This set is for studying the effects of the bottom layer’s density. The variable of
interest is 2500 kg/m? in plot a, 1666 kg/m®in plot b and 833 kg/m®in plot c. There is not
much observable change in the dispersion surface following the effects of the bottom

layer’s density.
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Figure 4.25 The variation in dispersion surface caused by changing the density of

the bottom layer
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4.45 Layer Poisson’s ratio

In this section the effects of the density of each layer on the dispersion surface are
discussed. The Poisson’s ratio of the layer of interest varies from 0.0835 to 0.25. Other
than the parameter of the interest all the parameters are kept identical as presented in

Table 4.4.

Figure 4.26 shows the dispersion surface for the first set of three-layered systems in this
section. This set is for studying the effects of the top layer’s Poisson’s ratio. The variable
of interest is 0.25 in plot a, 0.167 in plot b and 0.0835 in plot c. The Poisson’s ratio of the
top layer does not have a major impact on the dispersion surface. All the symmetric
modes have an almost flat portion that is representative of the longitudinal wave velocity
in the plate. As the Poisson’s ratio of the top layer decreases the corresponding speed also

decreases and the flat portion moves towards lower phase-velocity.

Table 4.4 Fixed layer parameters for layer Poisson’s ratio parametric study

Layer | Vs (m/s) | d /T | p (kg/m®)

1,23 | 2500 1/3 2500
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Figure 4.26 The variation in dispersion surface caused by changing the Poisson’s

ratio of the top layer

Figure 4.27 shows the dispersion surface for the second set of three-layered systems in
this section. This set is for studying the effects of the middle layer’s Poisson’s ratio. The
variable of interest is 0.25 in plot a, 0.167 in plot b, and 0.0835 in plot c. As the Poisson’s
ratio of the middle layer decreases the corresponding quasi-longitudinal wave speed also

decreases and the flat part moves towards lower phase-velocity.
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Figure 4.27 The variation in dispersion surface caused by changing the density of

the middle layer

Figure 4.28 shows the dispersion surface for the third set of three-layered systems in this
section. This set is for studying the effects of the bottom layer’s Poisson’s ratio. The
variable of interest is 0.25 in plot a, 0.167 in plot b, and 0.0835 in plot c. As the Poisson’s
ratio of the bottom layer decreases the corresponding quasi-longitudinal wave speed also

decreases and the flat part moves towards lower phase-velocity.
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Figure 4.28 The variation in dispersion surface caused by changing the density of

the bottom layer

The difference between the three sets is minor. Different frequency ranges get amplified
under closer investigation under the influence of the corresponding layer with variable

Poisson’s ratio.
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4.4.6 Conclusion

The parametric study shows that different model parameters each contribute to certain
signatures in the dispersion surface. An intelligent inversion algorithm can utilize these
signatures for a faster and more accurate inversion. The most significant signature is the
effect of top layer’s shear-wave velocity, which will be directly implemented into the

inversion process later in chapter 6.
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5 Finite-element Analysis

A numerical study is conducted to investigate the complex pattern of transient seismic
wave propagation within layered concrete bridge deck. As mentioned earlier, there is no
analytical solution for the Rayleigh-Lamb equation. Therefore, there are two ways to
study the interaction of propagating waves within a layered concrete media: 1) solve the
wave propagation equation numerically using the stiffness matrix method, and 2) perform

a finite-element analysis (FEA) for numerical estimation, which will be discussed here.

FEA, also called the finite-element method (FEM), is used in this chapter to study the
interaction of propagating seismic waves with idealized layers in concrete bridge decks.
It is a numerical procedure for obtaining approximate solutions to differential equations
governing idealized physical problems. The continuum is first divided into a finite
number of discrete parts: finite elements. This discretized representation of the continuum
is referred to as a finite-element model (mesh). For applications involving stress and
displacement analysis, variation of stresses or displacements within each element in the
model is described by a set of assumed functions, called shape functions. Energy
principles are used to formulate force-displacement equations for each element. These
element equations are then combined to construct global equations that describe the
behavior of the entire model. Solutions of these global equations are used to approximate
displacements or stresses at any point within the continuum. (Cook R. D., 2002;

Sansalone, Carino, & Hsu, 1987)
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The results obtained from a finite-element analysis are approximations to the desired
exact solutions. It is important to evaluate the accuracy of the numerical simulation
results. Performing a preliminary FEA on a simplified model and comparing the obtained
numerical solution to available analytical or experimental results can achieve this
purpose. Such analysis parameters should be selected with extra care when FEM is
applied to obtain the solution of dynamic problems involving wave propagation
(Sansalone M. C., 1987; Sansalone, Carino, & Hsu, 1987; Ganji, Gucunski, & Maher,
1997; Bathe, 1996; Zerwer, 2002). FEA has been proven to be successful in studying the
stress-wave propagation in layered concrete plates when the required accuracy of the

parameters is satisfied (Sansalone M. C., 1987; Sansalone, Carino, & Hsu, 1987).

In this study, surface-waves are numerically modeled using commercially available
ABAQUS Standard, CAE and Explicit 6.13-3 package (ABAQUS, 2013). The numerical
study here was conducted on two-dimensional (2D) finite-element axisymmetric models.
According to Sansalone et al. (Sansalone, Carino, & Hsu, 1987) a 2D finite-element
model provides a considerably fast and sufficiently accurate way to investigate wave

propagation in in-plain cases.

To investigate the effectiveness and limitation of surface-wave testing and to come up
with an optimal sensor and actuator setting, a number of two-dimensional analyses on
simplified finite-element models are performed. For the axisymmetric simulation, four-
node axisymmetric elements (CAX4) are selected. CINAX4 elements are applied at the
simulation model boundary, at the far edge of the zone, to simulate an infinite energy-

absorbing boundary. Material properties are assumed to be homogeneous. Because a low
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strain level is induced in the medium by applying the simulated impact, concrete is

modeled as a linearly elastic material with Poisson’s ratio /7=0.167, density

r =2500kg / m® and elastic modulus E = 35 x 10° NZ. The shear-wave velocity in

m

concrete for the given parameters is

E
= ’— = 2449
Cs 20 +v)p m/s

while the compression wave velocity is

= EQA-v) 3873
P= [A+na-2vp m/s

and Rayleigh wave velocity is

. = 0.862 + 1.14v
R 1+v

C, =2208m/s

Equation 5.1

Equation 5.2

Equation 5.3

Rayleigh damping is considered in the governing equation of motion.

[C] = alK] + B[M]

Equation 5.4

To introduce material Rayleigh damping, the stiffness matrix multiplier a is set to 0.4 and

S the mass matrix multiplier is set to 1.085 x 1071, This choice was made after
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performing a series of analyses of wave propagation in sound decks with varying

values of f and o and comparing the attenuation levels to those from available field

records.

The controlling parameters for the FEM analysis are the following: element size, time
step, size of the model and impact duration. The effect of these parameters and acceptable

ranges needed to ensure the accuracy of the numerical results are also discussed here.

5.1 Element Size

In wave propagation applications, the element size depends on the highest frequency of
interest and the lowest velocity wave (VR). Very large elements will filter higher
frequencies while very small elements can introduce numerical stability. An approximate
element size (g) can be estimated from the following relationship according to Zerwer

(Zerwer, 2002):

9 < Xnin Equation 5.5
Cr
Amin = Frax Equation 5.6

The constant y must be less than 0.5 because of the Nyquist limit (Zerwer, 2002) , and
depending on the mass matrices it could be taken as 0.25 or 0.2 for consistent or lumped
mass matrices. It is assumed that elements have square dimensions in this formulation.

However, this article adopts the value suggested by Moser et al. (Moser, Jacobs, & Qu,
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1999), which is the most conservative resolution, utilizing 20 elements to describe the
minimum wavelength.
Assuming the maximum frequency of interest f,,,, = 50KHz, the minimum wavelength

for surface-wave components is obtained.

=—=0.04m Equation 5.7

<—=2mm Equation 5.8

Figure 5.1 shows the schematic of the element size in a 2mX0.2m FEM model.
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Figure 5.1 Schematic of element size for a 2mX0.2m FEM model

5.2 Overall dimensions of the model:

5.2.1 Absorbing Boundaries

Lysmer-Kuhlemeyer (LK) boundaries are often used as infinite boundaries in FEM
analysis. The basis is a simple viscous damper that has appropriate damping constants
and is connected to the boundary node to absorb wave energy. LK boundaries apply

distributed damping to absorb the incident wave energy.

Oxx = —dpliy Equation 5.9
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Oxy = —dslly, Equation 5.10

Oyy = —dglly Equation 5.11

Oxx IS the axial stress and oy, &a,, are shear stress. The 1, & 1u,, are the derivative of the
displacement in x and y direction. ds and d,, are constants for damping applied to
attenuate longitudinal and shear-wave energy respectively (Lysmer, 1969). The LK
boundary is available in the ABAQUS FE software package where it is named “infinite-
element”. The values of damping coefficient are embedded in the software formulations
and do not need to be defined by the user. The LK boundaries have some limitations, but
work quite well when the dominant direction of propagation is orthogonal to the

boundaries (Cohen, 1983).

5.2.2 Model Size

The model should be large enough so that the reflected waves from the artificial model
boundaries do not contaminate records obtained at desired locations during the prescribed
recording time. Even though absorbent boundaries will be used in this model, the
behavior of such elements in ABAQUS has been questioned by many researchers (Liu,
2003; Kausel E. , 1998). So, first the dimension of the model is calculated by ignoring the
absorbing boundaries. Then these boundaries are factored in. In reference to the
parameters shown in Figure 5.2, these criteria can be summarized in the following

equation:
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min(2d — x .
max (VR—) Equation 5.12
1 .
d> 2 (Crtmax + Xmax) Equation 5.13

where t,,4,= duration of the time record, d= the shortest distance between the impact
source and the artificial boundary of the model, x1= distance between the impact source

and any receiving transducer, x,,4,= the distance between the impact source and the

furthest receiving transducer.
DAQE@

x10@ ‘dx Xnaxd

>
< >

25@mA
ConcretefDeck?

d@

A

v

Figure 5.2 Source and the sensor arrangement on a concrete bridge-deck

The duration of the records is set to 1 millisecond. So using Equation 5.13:

1 .
d> 5(2208 x 0.001 +1) =1.6m Equation 5.14



Figure 5.3 show the normalized acceleration recoded at 20 cm from the source in
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different model sizes. It is obvious that, despite using infinite boundary elements, there is

still a slight reflection affecting the record. For this reason, the size of the element is set

to 2m.
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1
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Figure 5.3 Normalized acceleration at 20 cm from the source using a) 0.5m b) 1m

c) 2m axisymmetric FEM model.

Also the thickness of the deck is set to 25 cm to represent the majority of the concrete

bridge decks in practice.

5.3 Time step:

In simple terms, the time step used in the analysis should be small enough to prevent the
compression wave from “jumping over” the smallest element in the model. At the same
time, using a very small time step will result in spurious oscillations (Gibb’s

phenomenon) in the numerical results.

If L represents the “effective length” of a finite-element, then

h

e

At =2
&

Equation 5.15
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The effective length and corresponding time step must be able to represent the
complete wave propagation accurately. They are chosen depending on the characteristics
of the finite-elements used.
To simulate the surface-wave test and find the acceleration field due to a short duration
impact, an explicit transient dynamic analysis was performed. The ABAQUS program
uses the explicit dynamic integration method, which is also known as the forward Euler
or central difference algorithm (ABAQUS, 2013), to solve the equations of motion in
transient dynamic analysis. An integration time step At = 0.1 us was used in this study.
This time step satisfies the criteria stated in Equation (3-5) when L, = 0.001m (the

smallest element size in the mesh)

At < —=———==0.26ps Equation 5.16

5.4 Impact duration:

In practice, acoustic waves are generated by a short mechanical impact, usually by
tapping a steel sphere or a hammer with a metal tip on the surface of the structure to be
examined. To simulate this in FEM, the input pulse can be approximated by a half-sine
curve, whereas its contact time or duration depends primarily on the size of the impact
source used and the stiffness and roughness of the concrete surface. The effective use of

sinusoidal function in simulating the transient contact force has been studied by the

previous researchers (Hughes, 1987; Kim JH, 2008).
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The impact point source was applied on the free surface of half-space at the axis of
symmetry (i.e., r=0) (see Figure 5.2). The force function of the transient impact source is

as follows:

t
f(t) = sin® (7%) O0St=T Equation 5.17

f@®) =0 t>T Equation 5.18

Figure 5.4 shows normalized acceleration at 20 cm from the source for a solid 2m
concrete slab using different sin shape functions simulated in ABAQUS. Gibbs
phenomenon appears in numerical solutions, as shown by the finite-element analysis
results. This is a numerical error that occurs at simple discontinuities. Applying
numerical damping or using a higher order shape function will avoid this phenomenon
(Cook R. D., 2002; Kim & Kwak, 2008). The above sin function is not differentiable at
t=0 and t=T if n=1 and spurious oscillations occur when simulating the behavior of
discontinuous function. Given that displacement, velocity and acceleration needing 1%,
2" and 3" order differentiability n=3 is the minimum order required to be used if
acceleration is the desired response. All the analyses are done using a third order sin

impact function.



0.5

0.0001

0.0002

0.0003 0.0004 0.0005

0.5

0.0001

0.0002

0.0003 0.0004 0.0005

0.5

-1.5

0.0001

0.0002

0.0003 0.0004 0.0005

110



111

0.5 +

-1.5 T T T T 1
0 0.0001 0.0002 0.0003 0.0004 0.0005

Figure 5.4 Normalized acceleration at 20 cm from the source in 2m concrete slab

using a)n=4 b)n=3 c)n=2 d)n=1 sin shape functions

The duration of impact is an important impact characteristic, as it determines the
frequency content of the generated stress waves and may also introduce Gibbs
phenomenon if not chosen wisely. Figure 5.5 illustrates how choosing an impact too short
can cause numerical instability and lead to the Gibbs phenomenon. By using impact

duration of 10pus in Figure 5.5-c the results exhibit spurious oscillations.
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Figure 5.5 Normalized acceleration recorded at 20 cm from the source using 3"

order sin impact function and a) T=50us b) T=30pus ¢) T=10us
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Generally the duration of the impact (T) should be less than following:

Equation 5.19

Sh|—

where £, is the central frequency of the interest. For practical purposes this frequency is
assumed to be 30 KHz. This is considering the range of central frequency for

accelerometers in the market.

1 .
<——=33. Equation 5.20
T < 30000 33.3 us q
The default duration of impact in this study is 30 ps. Figure 5.6 shows the spectral
magnitude of this function. For the frequency range of interest (i.e. less than 40 kHz) this

function generates decent amount of energy.
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Figure 5.6 Spectral magnitude of a 3 order sin function with impact duration of

30ps
5.5 Visual Examination of Wave Propagation in Layered Media

One way to investigate the phenomena of wave propagation in layered media is by visual
examination. The ABAQUS visualization module allows for step-by-step contoured field

outputs for any variable of interest. Using this feature a number of cases are examined.

The location of the impact is the upper left corner of each time step contour. All the

model parameters are kept identical except for the layer shear wave velocity. The fixed
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parameters are the same as previously discussed optimized values and are presented

at Table 5.2.

The following cases of layer shear-wave velocities are examined (Table 5.1).

Table 5.1 The shear-wave velocity of each layer for visualization cases

Case Name Vs;(m/s) Vs;(m/s) Vsz(m/s) Purpose

V02 1250 2500 2500 Weak Top Layer

V04 2500 2500 1250 Weak Bottom Layer

V06 1250 2500 1250 Hard Middle Layer
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Table 5.2 Finite Element Model Parameters

Dimension 2mX0.2M

Element Size 1mm

Time Steps 0.1us

Impact Duration 30 ps

5.5.1 Case V01

Figure 5.7 shows the progressive snapshots of contoured velocity magnitude in the solid
concrete deck FEM model. The wavefront is continuous throughout the layers as
expected. From time step 90us onwards the reflections from the bottom of the model

reflections affect the wavefront.
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Solid

Figure 5.7 Snapshots of velocity magnitude in case V01, a solid concrete

specimen, impacted at time 0. The step time is shown on each snapshot.

5.5.2 Case V02

Figure 5.8 shows the progressive snapshots of contoured velocity magnitude in the

layered concrete deck FEM model with a weak top layer. The speed of propagation is
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slower due to the lower shear-wave velocity of the top layer. Figure 5.9 compares the
current case with case VO1. Aside from the lower propagation speed, the wavefront fades
away in the middle and bottom layer. This is because a considerable amount of energy is
reflected before entering the lower velocity medium and the amplitude of the acceleration

in the lower layers is relatively less than the top layer.
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T

Figure 5.8 Snapshots of velocity magnitude in case V02 , a three-layer concrete
specimen with weak top layer, impacted at time 0. The step time is shown on each

snapshot.
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Figure 5.9 Snapshots of velocity magnitude in a three-layer concrete specimen

with identical layers at right and with weak top layer at left at 90us and 130ps.

5.5.3 Case V03

Figure 5.10 shows the progressive snapshots of contoured velocity magnitude in a
layered concrete deck FEM model with a weak middle layer. The wavefront flattens
towards the horizontal axis after entering the middle layer. This is due to the lower shear-
wave velocity of this layer. After exiting the middle layer the propagation angle changes
again. There are more wavefronts in the middle layer when compared to the uniform case

in Figure 5.11.
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Figure 5.10 Snapshots of velocity magnitude in case V03 ,a three-layer concrete
specimen with weak middle layer, impacted at time 0. The step time is shown on

each snapshot.
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Figure 5.11 Snapshots of velocity magnitude in a three-layer concrete specimen

with identical layers at right and with weak middle layer at left at 90us and 130ps.

5.5.4 Case V04

Figure 5.12 shows the progressive snapshots of contoured velocity magnitude in the
layered concrete deck FEM model with a weak bottom layer. The wavefront flattens
towards the horizontal axis after entering the bottom layer. This is due to the lower shear-
wave velocity of this layer. There are more wavefronts in the bottom layer than in the

uniform case depicted in Figure 5.13.
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Figure 5.12 Snapshots of velocity magnitude in a three-layer concrete specimen
with weak bottom layer impacted at time 0. The step time is shown on each

snapshot.
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Figure 5.13 Snapshots of velocity magnitude in a three-layer concrete specimen

with identical layers at right and with weak bottom layer at left at 90us and 130ps.

5.5.5 Case V05

Figure 5.14 shows the progressive snapshots of contoured velocity magnitude in the
layered concrete deck FEM model with a hard top layer. This case is similar to case V03
except the weak layer is extended to the bottom of the specimen. The wavefront flattens
towards the horizontal axis after entering the middle layer and continues to propagate
with this angle until it reaches the bottom. There are more wavefronts in the middle layer

when compared to the uniform case in Figure 5.15.
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Figure 5.14 Snapshots of velocity magnitude in a three-layer concrete specimen

with hard top layer impacted at time 0. The step time is shown on each snapshot.
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Figure 5.15 Snapshots of velocity magnitude in a three-layer concrete specimen

with identical layers at right and with hard top layer at left at 90us and 130us

5.5.6 Case V06

Figure 5.16 shows the progressive snapshots of contoured velocity magnitude in a
layered concrete deck FEM model with a hard middle layer. The speed of propagation is
slower due to the lower shear-wave velocity of the top layer. Figure 5.17 compares the
current case with case VO1. Aside from a lower propagation speed, the wavefront fades

away in the middle and bottom layer.
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Figure 5.16 Snapshots of velocity magnitude in a three-layer concrete specimen
with hard middle layer impacted at time 0. The step time is shown on each

snapshot.
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Figure 5.17 Snapshots of velocity magnitude in a three-layer concrete specimen

with identical layers at right and with hard middle layer at left at 90us and 130us.

5.5.7 Case V07

Figure 5.18 shows the progressive snapshots of contoured velocity magnitude in the
layered concrete deck FEM model with a hard bottom layer. The speed of propagation is
slower due to the lower shear-wave velocity of the top layer. Figure 5.19 compares the
current case with case VO1. Aside from lower propagation speed, the wavefront fades

away in the bottom.
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Figure 5.18 Snapshots of velocity magnitude in a three-layer concrete specimen
with hard middle layer impacted at time 0. The step time is shown on each

snapshot.
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Figure 5.19 Snapshots of velocity magnitude in a three-layer concrete specimen

with identical layers at right and with hard bottom layer at left at 90us and 130ps.

5.5.8 Visualization Conclusions

After examining the visualization cases the following conclusions are reached:

1. In almost all the cases with soft top-layer, the wavefront amplitude disappears
after entering the lower layer with higher shear-wave velocity.
2. In cases of harder top layer once the wavefront enter the softer lower layer, it

flattens out and divides into more ripples.
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3. The speed of wave propagation along the surface depends only on the

shear-wave velocity of the top layer.
5.6 Source and Sensor Arrangement

In order to come up with an efficient source and sensor set up, a series of parameter
studies has been carried over. The examined parameters will include the total number of
sensors, the distance between the source and first sensor, and the spacing between the

Sensors.

In MASW method the dispersion curve is obtained by transforming the surface-wave
fields from the offset-time domain into the phase-frequency domain by using a phase-
shift method (Park, Miller, & Xia, 1998). This method is described in details in section
4.1. The governing equations are repeated here. A N-channel record mry, is defined as an
array of N traces collected: mry = r; (i=1, 2, ...,N). And in the frequency domain as it is
MRy(w) = R;(w) = FFT|[r;]. R;(w) can be decomposed into its amplitude A; (w) and

phase P;(w).

AS(CT) = e_wl'TRi,norm((‘)) + e_iaz'TRz,norm(w) + -

. Equation 5.21
+ e_laN'TRN,norm (w) q

+ (- 1)d
5ie =1 F U= D), Cr Equation 5.22
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Where

R;(w)
|R; (w)]

Rinorm(w) = Equation 5.23

A is the summed amplitude of N traces. R is the Fourier transform of source wave at
each sensor location. Since A is a complex number, to evaluate the resolution of
dispersion curve there are two approaches: 1-to use the absolute form of the complex
number 2-to use the real part of the complex number. For the sake of simplicity of the
analysis, the absolute form is used in this research. Also, it has been shown that x1,the
factor for general closeness of the sensor array, does not cause a significant change in the
resolution (Park, Miller, & Xia, 2001). For this reason, it is assumed that x1 is the same

as dx.

Figure 5.20 shows the changing trend of the normalized absolute value with a different
number of sensors. The data is extracted from numerical simulation of a 3-layer system
with soft middle layer (case V03) using ABAQUS. For the full dispersion surface refer to
Figure 5.26. The frequency and array length are kept constant at 8 kHz and 2m
respectively. The number of receivers is changing from 100 to 10. Here it is expected to
see dominant peak between 1500m/s and 2000 m/s. It is clear that increasing the number
of sensor increases the resolution of the amplitude at different velocities. An excessively
coarse spacing increases the spatial aliasing problem, which becomes problematic at

lower phase-velocities.
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Figure 5.20 Changing trend of the normalized absolute value showing how the
resolution of dispersion curve changes with the number of sensors assuming a

constant array size (Xmax)
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Figure 5.21 shows the effect of the array size (Xmax) in the resolution of the amplitude
assuming a constant number of sensors. The same numerical simulation is used here as in
previous case. The sharper the peak at the expected frequency will result in a higher
resolution dispersion surface. It is shown that spreading the sensors out further can
increase the resolution and decrease the aliasing noise issues. It should also be noted that,
even though the longer array seems to increase the signal quality; it is in reality limited
because of the material damping. When doing field experiments, the near-field and far-

field effects should also be taken into account.
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Figure 5.21 Changing trend of the normalized absolute value showing how the

resolution increases by spreading the sensors apart
5.7 Finite-element Model Validation

In order to verify the accuracy of the results from the FEM model, a number of dispersion
surface are compared to the results from the forward problem discussed in the previous
chapter. All the sensor locations in the original FEM model are considered for this
analysis. The sensors are 1mm apart in this case. The forward problem results are
obtained from DISPER program. The dispersion surface consists of 67X67 elements.
This matrix represents 67 phase-velocity amplitudes in the range of 0 to 5000 m/s in 67

frequency steps in the range of 0 to 40 kHz.
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Since the shear-wave velocity of the each layer is the most important variable
affecting the dispersion curve, the validation is done for three different values of each
layer’s shear-wave velocity. The values are the minimum, median and maximum of the
range of values considered for the inversion analysis, as shown in Table 5.3. All the other
model parameters are kept identical to the values discussed earlier in this chapter and are
the same for all three layers. Figure 5.22 Figure 5.28 compare the dispersion surface from

the FEM to the forward model for different layer shear velocities.

Table 5.3 Shear-wave velocity values used to validate the FEM Model

Minimum (m/s) | Median (m/s) | Maximum (m/s)

1250 1750 2500
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Figure 5.22 Dispersion surface from FEM model at the top compared to the

forward model for the uniform case.
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Figure 5.23 Dispersion surface from FEM model at the top compared to the

forward model for case with median shear-wave velocity for top layer.
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Figure 5.24 Dispersion surface from FEM model at the top compared to the

forward model for case with minimum shear-wave velocity for top layer.
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Figure 5.25 Dispersion surface from FEM model at the top compared to the

forward model for case with median shear-wave velocity for middle layer.
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Figure 5.26 Dispersion surface from FEM model at the top compared to the

forward model for case with minimum shear-wave velocity for top layer.
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Figure 5.27 Dispersion surface from FEM model at the top compared to the

forward model for case with median shear-wave velocity for bottom layer
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Figure 5.28 Dispersion surface from FEM model at the top compared to the

forward model for case with minimum shear-wave velocity for bottom layer.
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5.7.1 Conclusion

Based on the comparisons between the dispersion surface from the FEM model and
DISPER, the results from the FEM model are consistent with DISPER results. However

there are few differences:

1. The lower frequency content of the dispersion surface is significantly noisier
than DISPER results.

2. In the case with minimum phase velocity at the top layer, there is a significant
energy in the higher modes. This is due to the reflection from the interface of
harder layer. This can make the inversion process challenging.

3. In the case with the median phase velocity at the top layer, the asymmetric 0"
mode is dominating the FEM results. The symmetric 0" mode is not
observable in FEM results despite being present in DISPER dispersion
surface.

4. In the uniform case and the cases with soft bottom layer the higher modes are

not visible in the FEM results.
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6 Inversion Analysis

6.1 Introduction (Background)

In the context of bridge-deck testing, the inversion of the surface-wave testing means the
estimation of bridge-deck’s properties from the measured surface-wave data. Researchers
have used various types of surface-wave data for the purpose of estimation. Several
authors (Nazarian & Stokoe 11, 1984; Gucunski & Woods, 1991; Ganji, Gucunski, &
Nazarian, 1998; Nazarian S. , 1984) used the dispersion curve(s), (Hadidi & Gucunski,
2003) used the raw field record and (Ryden & Park, 2006) used the dispersion surface.
Regardless of the input data, the inversion process cannot be solved directly, as it is non-
unique and nonlinear. It is nonlinear because a small change in layer properties can result
in big changes in the surface-wave data, and vice versa. It is non-unique because multiple
profiles can exist for one set of surface-wave data. An optimization technique must be
used to find the most probable solution. Two approaches can be utilized for this solution.
The first are deterministic approaches, in which the objective is to find a model that its
theoretical response best fits the observed data. The second are probabilistic approaches,
which offer statistical techniques to include a priori information about the solution and to

evaluate uncertainty measures.

When using discrete dispersion curves in inversion, the detection of correct mode
numbers becomes a difficult task (Zhang & Chan, 2003). The proposed method is based
on a full dispersion surface. The first advantage of using the dispersion surface is that it

involves using the maximum amount of information available. Therefore, the problems
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with mode jumps and misidentification are avoided. The second advantage is in the
speed of the process. There is no need for data reduction and extraction of an
experimental dispersion curve. The full process from data collection to layer

identification is automated.

The procedure for the study of any physical inversion problem can be divided into the

following steps (Tarantola, 2005):

1. Parameterization of the system: In this process, as minimum number of model
parameters that can completely describe the system are selected.

2. Forward Modeling: Discovery of the governing physical laws needed to
express the observable values from a gives set of model parameters values.

3. Inverse Modeling: Use of the results of measurements to form observable

variables from which to infer model parameter values.

6.2 Forward Modeling (Theoretical Dispersion Surface)

The forward model is calculated from an assumed layer model. The stiffness-matrix
technique described in chapters 2 and 3 is used. This method relates the displacements
and the forces at the layer intervals. Then these matrices are assembled to form the global
stiffness matrix. Each layer is assumed to be homogenous with respect to density, layer
thickness, phase wave velocity and Poisson’s ratio. The vertical displacement at the
surface is calculated as a function of phase-velocity and frequency. The phase velocities

of interest are considered to be less than 5000 m/s for concrete. Also, considering the
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modal contents of the dispersion surface and the sensitivity of the available

accelerometers, the upper frequency boundary is defined as 40 kHz.

6.3 Error Function

Once the theoretical multimodal dispersion surface is obtained, the next step is to
compare it with the experimental dispersion surface. In order to compare the results from

the forward model with the observation an appropriate error function is needed:

Cops — Cfrw =AC Equation 6.1

The frequency range and the frequency sampling have the largest influence on the error
function. In practice the DAQ system and the sensors in use dictate these parameters. In
FEM simulations, the time steps and the duration of the record define the frequency
parameters. The frequency steps for the forward problem here are set to match those of
the FEM model. The dispersion surface consists of 67X67 elements. This matrix
represents 4489 amplitudes at 67 phase-velocity steps in the range of 0 to 5000 m/s
across 67 frequency steps in the range of 0 to 40 kHz. For each frequency the maximum
phase-velocity amplitude is normalized to 1. As mentioned in chapter 4, the bright lines
are representative of Lamb modes. Since there is no mode selection process, all the
modes in this frequency range are considered in the error function regardless of their
amplitudes. The brighter the lines are the more these Lamb modes participate in the

dispersion surface. The strength and weakness of the modes affect the error function. The
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minimum error function will search for the closest amplitude and frequency content

of each mode.

Figure 6.1 shows the element by element comparison between the observed dispersion
surface and the forward problem. The AC matrix contains the difference between the

4489 elements.
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Figure 6.1 Observed dispersion surface is compared to the forward problem

element by element for the entire 67X67 elements in the dispersion surface matrix

Generally, the difference between the theoretical and experimental dispersion curves is

measured using the Root Mean Squares (RMS) error:

YVACH
N

Equation 6.2

RMS, =

where, AC; is the differences between the amplitude of the experimental and theoretical
phase velocities at each frequency, and N is the number of elements in matrix AC. All the
modes are treated equally and are included in the procedure. The dispersion surface

elements are calculated by transferring the time history records at different sensor
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locations, into frequency-phase velocity domain using phase-shift method described

in the previous chapter.

Different error functions have been used in the past for inversion of surface-waves. In
order to gauge the performance of the error function in bridge-deck testing applications,

an experimental study is performed using the following error functions.

>YAC;

MEAN(AC) = AC = m Equation 6.3
— Equation 6.4
Stdv(AC) = Zi(AG; — AC)? !
v(AC) = N1
w Cobs; Equation 6.5
Cobs 1 Cfrw
MEAN =
(Cfrw) N

It is assumed that adding to the sensor spacing will increase the amount of noise in the
system. So error functions are ranked in terms of their response to the added noise. The
changes in these error functions are compared to the RMSe function in Figure 6.2. RMSe
function has the sharpest reaction to the variation in the sensor spacing and will be used

for the inversion calculations in this research.
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Figure 6.2 Comparing the change in different error functions by changing the

receiver spacing in a 3-layer FEM model

6.4 Sensitivity Analysis (Parameterization of the System)

It is important to find out which parameters in the layer model have a noticeable

influence on the dispersion surface. To understand this, sensitivity analysis needs to be

performed on all the layer model parameters. First, the layer model parameters are

introduced in Figure 6.3. Then a layer model is chosen as a reference to compare with the

new models. The properties of this reference layer model are presented in Table 6.1

Top Layer

Py, Vg, di vy

Middle Layer

P2 Vg, 4y,

Bottom Layer

P3, Vs, ds,V3
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Figure 6.3 Model parameters for a 3-layer bridge-deck system

Table 6.1 Reference layer model for sensitivity analysis

Layer Vs(m/s) d(m) p (kg/m3)

2500

2500 0.083 0.167

2500 0.083 0.167 2500

2500 0.083 0.167 2500

Figure 6.4 shows the effect of a +%10 change of each layer parameter on the error
function using the reference model in Table 6.1. The first layer’s shear-wave velocity has
the highest influence on the dispersion surface. Other important factors are the second
and third shear-wave velocity and layer thicknesses. Poisson's ratio and density have the

least effect in this case.
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Figure 6.4 The effect of a £%10 change in the error function using the layer

model in Figure 6.3

Next, a one-dimensional sensitivity analysis for each parameter in the reference layer
model is performed. In order to better understand the effect of each parameter on the
error function, its variation is plotted for the parameter value changing from -%50 to

+%50 compared to the reference model. All of the other layer parameters are kept

identical to the reference model. Figure 6.5 shows the effect of the shear-wave velocity of

each layer on the error function. The first layer’s phase-velocity has the strongest effect

on the error function in the variation range. The other shear wave velocities have a

similar, but still weaker effect.

The effect of thickness of different layers is shown in Figure 6.6 followed by the effects

of density and Poisson's ratio in Figure 6.7 and Figure 6.8.
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Figure 6.6 RMSe variation with change in thickness of each layer
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Figure 6.8 RMSe variation with change in Poison ratio of each layer

The one-dimensional sections of parameter space can give a good estimate of RMSe
function behavior. However, further difficulties can arise from correlated parameters and

local minima in the parameter space. In order to gauge the effect of the parameter
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correlation in the error minimization process, two-dimensional plots of the model
space are presented in Figure 6.9 to Figure 6.13. Each plot is describing the error function
by changing the values of two of the model parameters in the range of +%50 of their
original value. Five pairs of parameters are selected for this analysis based on the results
in the one dimensional sensitivity analysis. The darker locations are representative of
error function minima and vice versa. It can be observed that the change in the error
function is not necessarily linear with the underlying parameter and there are local

minima and maxima in each set.
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Figure 6.9 Two-dimensional variation of error function by changing the shear-
wave velocity of the top layer and middle layer .The darker points are indicators

of lower errors.
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Figure 6.10 Two-dimensional variation of error function by changing the shear-
wave velocity of the top layer and bottom layer .The darker points are indicators

of lower errors.
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Figure 6.11 Two-dimensional variation of error function by changing the
Poisson's ratio of the top layer and shear-wave velocity of top layer .The darker

points are indicators of lower errors.
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Figure 6.12 Two-dimensional variation of error function by changing the density

of the middle layer and shear-wave velocity of top layer .The darker points are

indicators of lower errors.
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Figure 6.13 Two-dimensional variation of error function by changing the
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thickness of the middle layer and shear-wave velocity of top layer .The darker

points are indicators of lower errors.

The local minima and parameter correlations can make the inversion of the concrete

decks a challenging task. In order to overcome these difficulties an efficient global search

method is necessary.
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6.5 Inversion Algorithm

The objective of inversion algorithm is to find a phase-velocity dispersion surface from a
profile that matches with the measured dispersion surface. This is achieved by using the
error function described earlier. Each inversion problem is unique because of the number
of influential model parameters and the lower and upper boundaries for each value. On
the other hand the inversion process cannot be solved directly and needs an optimization
technique to find the most suitable answers. The optimization technique can be
deterministic, probabilistic, or a combination of both (Park C. B.). The benefit of the
deterministic technique is in finding the global minimum, but the drawback is the speed
when dealing with a large number of parameters. There are two probabilistic approaches
to perform inversion: a local search method and a global search method. The local search
method is performed by an iterative search for the minimum error in the vicinity of the
starting point. In the global method, however, a stochastic procedure is performed over
the solution space to find the global minimum. The main advantage of the global method
is that the local minimums are avoided. Also, the problem can be solved in a non-linear
form. The disadvantage of this method is that it can be slow, if the number of the model

parameters is large. The global search is performed in the following steps:

1. The model values are chosen.
2. The forward model is solved based on the chosen values.
3. The error is calculated based on comparing the forward model to the

observation.
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4. If the error is in the acceptable range, the model parameters are saved and
the process is stopped.
5. Steps 1-4 are repeated either for all the points in the solution space or for a

randomly selected subset of this universe.

By taking advantage of the information about the model space, the inversion search can
be limited. In bridge decks we deal with plate like concrete structures. Dividing the deck
profile into three layers with variable thicknesses can provide the required accuracy for
practical bridge deck inversion problems. The rest of the influential parameters are
chosen based on the results of sensitivity analyses on all the model parameters. For
further simplification the axes of dispersion surface could be normalized for any given
Poisson’s ratio. This can be achieved by dividing the phase-velocity axis to the shear

velocity and multiplying the frequency axis by the thickness of the bridge-deck.

The boundary limits of each of the material property parameters are limited to certain
physical boundaries. In concrete bridge decks, the physical boundaries are set by the
upper and lower values of each variable found in existing bridges. The model parameter

boundaries used in this research are shown in Table 6.2.



Table 6.2 Limits for model parameters considering bridge-deck material

Model Parameter Limits

Shear-wave Velocity 1250-2500 m/s

Layer thickness (1/6 -2/3) of deck thickness

Table 6.3 Parameters of the database for a concrete bridge-deck

di/d do/d dis/d Vsi/Veo VsofVsor VsslVg

To further reduce the search time, a search grid is developed. Each model parameter

range is divided into practically important intervals. Table 6.3 shows the grid used for

163
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layer parameters in the inversion algorithm. The parameters are defined in terms of
the dimensionless layer thickness d;/d and dimensionless shear phase-velocity Vsi/Vy.. d
is the deck thickness, po is the reference density and V is the reference shear-wave

velocity. The reference values are from Table 6.1.

Each of the three layers can have the thickness from 1/6 to 2/3 of the total thickness. The
sum of the three layers should add up to the deck thickness. With this constraint in mind,

the list of iteration cases involving the layer thicknesses are shown in Table 6.4.

Table 6.4 Layer thickness cases

Top Layer Thickness/ Middle Layer Thickness/ Bottom Layer Thickness/

Total Thickness Total Thickness Total Thickness
1/6 1/6 2/3
1/6 2/3 1/6
1/6 1/2 1/3
1/6 1/3 1/2
1/3 1/6 1/2
1/3 1/2 1/6
1/3 1/3 1/3
1/2 1/3 1/6
1/2 1/6 1/3

2/3 1/6 1/6
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The total number of solution grid size is:

Grid size = Layer Cases
X Shear wave velocity Cases

Equation 6.6
=10 x 63 = 2160

The phase-velocity at the high end of the dispersion curve can be directly correlated to
the shear-wave velocity of the top layer (Xia, Miller, & Park, 1999). The shear-wave of
the top layer is calculated from the average phase-velocity between 30kHz to 40kHz and

from the Poisson’s ratio:

0862 + 1.14v

= =0. Equation 6.7
R T C, = 0.91C; q

A combination of the deterministic and the probabilistic approach is used in this research
with a global optimization technique. This is because of the dimensions of the inverse

problem and the computational power available at the time of the research.

In order to further accelerate the process, a database of dispersion surface is generated
from the numerical simulation of MASW test using the DISPER Program (Gucunski &

Woods, 1991). This database is stored as part of the inversion package.

The required capacity to store this database is follows:
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Required Memory = forward problem dispesion curve file size X Grid Size

= 46kb x 2160 = 97 Mb

A MATLAB program DECKINVERSE is generated to implement the inversion
algorithm discussed here. A summary of the required steps for the inversion algorithm is

shown in Figure 6.14.

Experimental Results Database of Forward models using
DISPER
Rayleigh wave velocity of the top Pick the layer model parameters
layer is estimated based on the from the median of the 5 profiles
phase velocity at high frequency with the lowest RMSe

! I

Global scan through all the case of
the database with the same top
layer shear wave velocity and
score them based on RMSe

Shear velocity of the top layeris
estimated based the Rayleigh >
wave velocity

Figure 6.14 Inversion algorithm
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6.6 Inversion Examples Using Finite-element Models

In order to evaluate the performance of the inversion algorithm a series of finite-element
examples are inverted. These examples are in two categories. In the first category, all the
model parameters of the FEM are identical to one of the forward models in the database.
On the other hand, category two contains examples in which there is at least one

parameter that does not match exactly with the database.

To simulate a real case, testing environment acceleration time histories were collected
with 0.05 m steps over the range of 0.05-2.00 m using a cubic sine function as the

trigger. The fixed model parameters are described in Figure 6.15.
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Figure 6.15 Model parameters of FEM model used for inversion process

6.6.1 Examples with the Same Parameters as the Database

The inverted and reference layer parameters are presented in Table 6.5 and Table 6.6 for

all the cases in this section. The dispersion surface for the reference model is calculated
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by using DISPER program (Gucunski & Woods, 1991) using the same model

parameters as the FEM model.

Figure 6.16 to Figure 6.23 show a schematic of layer structures and the dispersion surface
for both finite-element and inverted models. The shear-wave velocity of the top layer is
inverted accurately in almost all cases except case INO5. As described in Figure 6.20, the
FEM dispersion surface for this case is very noisy. Because of the high velocity noise
present in the higher frequency range, the algorithm cannot locate the correct Rayleigh
wave velocity. This might be because of a numerical error due to high contrast between
the shear-wave velocity of the top and middle layer. Case INO6, which exhibits less

contrast, is inverted properly and exhibits less noisy FEM dispersion surface.

The second case in which the algorithm has difficulty finding the right match is case
INO3. Both the layer thicknesses and the shear-wave velocity of the middle layer are
misinterpreted. The results are better when there is less contrast of shear-wave velocity
between the middle layer and the bottom layer in case INO4. However, it is still not ideal
due to misinterpretation of layer thicknesses. This is mainly because surface-wave is
carrying less information about the deeper layers compared to the shallower ones. So, the
inversion results become less accurate for the deeper layers. That being said, compared to
the traditional SASW method, using multiple modes of dispersion spectra, MASW based

inversion methods still provided better inversion results.
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Table 6.5 Shear-wave velocity for the inverted models vs. their reference.

Shear-wave Velocity TL | Shear-wave Velocity ML | Shear-wave Velocity BL

Case Figure (mis) (mls) (mls)
Number number

Reference Inverted Reference Inverted Reference Inverted
INO1 Figure 6.16 2500 2500 1250 1250 2500 2250
INO2 Figure 6.17 2500 2500 1750 1750 2500 2250
INO3 Figure 6.18 2500 2500 2500 1250 1250 1250
INO4 Figure 6.19 2500 2500 2500 2250 1750 1500
INO5 Figure 6.20 1250 2500 2500 1250 2500 2250
INO6 Figure 6.21 1750 1750 2500 2250 2500 2500
INO7 Figure 6.22 2500 2500 1750 1750 2500 2500
INO8 Figure 6.23 2500 2500 2500 2250 1750 1750




Table 6.6 Layer thicknesses for the inverted models vs. their reference.

Case Number

TL Thickness (cm)

ML Thickness (cm)

BL Thickness (cm)

Reference | Inverted | Reference | Inverted | Reference | Inverted
INO1 8.33 8.33 8.33 8.33 8.33 8.33
INO2 8.33 8.33 8.33 8.33 8.33 8.33
INO3 8.33 4.2 8.33 4.2 8.33 16.7
INO4 8.33 4.2 8.33 16.7 8.33 4.2
INO5 8.33 8.33 8.33 8.33 8.33 8.33
INO6 8.33 8.33 8.33 8.33 8.33 8.33
INO7 4.2 4.2 4.2 4.2 16.7 16.7
INO8 16.7 16.7 4.2 4.2 4.2 4.2

170
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Figure 6.16 Comparison between the dispersion surface from FEM at the top, the
inverted profile at the middle and the reference database model at the bottom for

Case INO1.
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Figure 6.17 Comparison between the dispersion surface from FEM at the top, the
inverted profile at the middle and the reference database model at the bottom for

Case INO2.
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Figure 6.18 Comparison between the dispersion surface from FEM at the top, the
inverted profile at the middle and the reference database model at the bottom for

Case INO3.



174

FEM Inverted
i | RE et
- VsE1T150m/s -} [TVES1500 mis

Observed Dispersion Spectra

=

&

=

‘o

o

Q

=

@

w

[

¥ =

a 0 05 1 15 2 5k 3 35 4
x 10"

Reference Dispersion Spectra

0 05 1 15 2 25 3 35 4
Frequency (Hz) T

Figure 6.19 Comparison between the dispersion surface from FEM at the top, the
inverted profile at the middle and the reference database model at the bottom for

Case INO4.
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Figure 6.20 Comparison between the dispersion surface from FEM at the top, the
inverted profile at the middle and the reference database model at the bottom for

Case INO5.
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Figure 6.21 Comparison between the dispersion surface from FEM at the top, the
inverted profile at the middle and the reference database model at the bottom for

Case INO6.
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Figure 6.22 Comparison between the dispersion surface from FEM at the top, the
inverted profile at the middle and the reference database model at the bottom for

Case INO7.
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Figure 6.23 Comparison between the dispersion surface from FEM at the top, the

inverted profile at the middle and the reference database model at the bottom for

Case INO8.
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In an attempt to increase the accuracy of the inversion algorithm a number of
thresholds were applied to the dispersion surface prior to the error function calculation.
The objective was to reduce the effect of low amplitude noise on the inversion results.
Despite reducing the effect of the low amplitude content in the dispersion surface, the
inversion results did not change. Figure 6.24 and Figure 6.25 show a schematic of layer
structures and the dispersion surface for both finite-element and inverted models using
threshold values of 0.1 and 0.5 respectively for case INO3. As shown in the figures the

inverted profiles are identical to no threshold one in Figure 6.18.
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Figure 6.24 Comparison between the dispersion surface from FEM at the top, the

inverted profile at the middle using threshold value of 0.1 for Case INO3
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Figure 6.25 Comparison between the dispersion surface from FEM at the top, the

inverted profile at the middle using threshold value of 0.5 for Case INO3
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6.6.2 Examples with Parameters different than those in the Database

In order to test the inversion algorithm outside of the database models, a series of
examples with different parameters than the models in the database are considered. Since
the layer shear-wave velocity has the biggest impact on the dispersion spectra, the
examples in the category have the values for shear-wave velocity different from those in
the database. The density and the Poisson’s ratio for all the layers in FEM models have
fixed values. These values are represented in Table 6.7. The inverted and reference layer
parameters are compared based on the shear-wave velocity of each layer in Table 6.8 and

the thickness of each layer in Table 6.9 for all the cases in this section.

Table 6.7 Fixed layer parameters for the FEM models

Layer p(kg/m®) v

1,2,3 2500 0.167

Figure 6.26 to Figure 6.28 show a schematic of layer structures and the dispersion surface
for both finite-element and inverted models. Except for the middle layer in cases IN10
and IN11, the shear-wave velocities of all the layers are inverted with less than 10%

errors. The errors for those two cases are 25% and 18% respectively.
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Table 6.8 Shear-wave velocity for the out of database inverted models vs.

their closest reference.

Shear-wave Velocity Shear-wave Velocity Shear-wave Velocity
Case Number | Figure number TL (m/s) ML (m/s) BL (/s)
Reference | Inverted Reference | Inverted | Reference | Inverted
IN10 Figure 6.26 1875 1750 2375 2000 2375 2500
IN11 Figure 6.27 2375 2250 1875 1500 2375 2500
IN12 Figure 6.28 2375 2250 2375 2500 1875 2000

Table 6.9 Layer thicknesses for the out of database inverted models vs. their

closest reference.

Case TL Thickness (cm) ML Thickness (cm) BL Thickness (cm)
Number Reference | Inverted | Reference | Inverted | Reference | Inverted
INO1 8.33 4.2 8.33 8.33 8.33 125
INO2 8.33 16.7 8.33 4.2 8.33 4.2
INO3 8.33 4.2 8.33 8.3 8.33 125
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Figure 6.26 Comparison between the dispersion surface from FEM at the top and

the inverted profile at the bottom for Case IN10.



185

FEM Inverted

Observed Dispersion Spectra

4000

2000

Inverted Dispersion Spectra

4000

2000

Phase Velocity(m/s)

Figure 6.27 Comparison between the dispersion surface from FEM at the top and

the inverted profile at the bottom for Case IN11.
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Figure 6.28 Comparison between the dispersion surface from FEM at the top and

the inverted profile at the bottom for Case IN12.
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7 Experimental Study

7.1  Design of Experiment

In order to evaluate and validate the results obtained from the recently developed
inversion algorithm, an experimental test is performed. A three-layer slab is designed to
represent the properties of an actual bridge-deck with different layer properties. Three
control specimens from the material used in each layer are built to act as control
specimens for each layer. The dimension of the main specimen is chosen based on the
wave propagation speed in concrete to reduce the effects of boundary reflections.
Another factor used in choosing the dimension of the slabs was budget limitation.

Table 7.1 gives a description of the test slabs.
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Table 7.1 Concrete specimens used in the experimental study

Width and Length Thickness
Type of Material
(feet) (inches)
3 Regular Concrete 3
Light weight
S01 4X6 3
Concrete
Regular Concrete 3
LCO1 4X4 1 Regular Concrete 9
Light weight
LC02 4X4 1 9
Concrete
LCO03 4X4 1 Regular Concrete 9

These specimens are designed and built in the asphalt laboratory of Rutgers University
located at Livingstone campus, Edison, NJ. SO1 is the main three-layer specimen built to
study the wave propagation in layered media using he DECKINVERSE inversion

algorithm.

To make lightweight concrete, special expanded glass aggregates are used in the design

mix. The technical data sheet for this material is shown in Table 7.2.
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Table 7.2 Technical fact sheet for Poraver expanded glass aggregates

(Poraver.com, 2015)

PROPERTIES

STANDARD

PORAVER" STANDARD

PORAVER® SPECIAL

GRAIN SIZES GRAIN SIZES
Grain size [mm) 0.1-0.3 | 0.25-0.5 0.5-1 1-2 2-4 0.04-0.125 4-8
Particle size (mesh #) e 140-50 | 60-35 | 3518 | 18-10 | 10-5 || 400-120 | 5.5/16"
Fineness modulus 0.66 1.92 2.72 3.81 4.7 on request 5.73
AU P N N N R
o e R
tke/m') e B2 B | R B | B || corewes| 3%
oo ey b/t c128 53.1 425 28.1 25.6 28 || gon 18.7
284 +56 +44 +36 ) equest 527
Comsaie i (MPa] EN 28 26 2 16 14 on request 1.2
[PSI) 130551 406 377 290 232 203 onrequest | 174
Water absorption by mass’ [Mass. %) ASTM C128 35 28 20 20 23 on request 20
Water absorption by volume™  [Vol. %] ASTM C128 22 15 9 7 7 on request 5
Organic impurities ASTM C40 no injurious compounds no injurious compounds
Staining index (index number) ASTM C641 0 0
Loss on ignition %] ASTM C114 ~1 ~1
Clay lumps and friable particles (%] ASTM C142 BT eI <2
Oversize EN < 10% by mass < 10% by mass
130551

Undersize

5 15% by mass

< 15% by mass

The following data are valid for all grain sizes:

I % absorption determined after 5 minutes submerged in water

pH value 9-12 9-12
Moisture content on delivery <05% <05%
Softening point approx. 700°C / 1300°F approx. 700°C / 1300°F
Color creamy white creamy white
W/m-K) 0.072 0.072
Thermal ductivity
[BTU-in/hr-it=°F) 0.486% 0.486%

The strength grades may vary within the tolerance range of bulk densities.
The availability and delivery conditions for special grain sizes will be agreed on an individual basis.

2 calculated valves DIBt according to approval 2-.23.11-114

PORAVER NORTH AMERICA INC. - 2429 Bowman Street - Innisfil, Ontario, L9S 3V6, Canada
Phone +1 705 431 0022 - Fax +1 705 431 2701 - info@poraver.com - www.poraver.com

Also the design mix suggested by the manufacturer is represented in Table 7.3. For this

study 800 kg/m3 density is chosen (the last row in Table 7.3). Other than Poraver
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aggregates (1-2mm and 4-8mm), DaraFill air-entraining agent (Figure 7.1) and fly

ash are used to obtain the desired lightweight concrete.

Figure 7.1 DaraFill air entertainer agent

The addition of DaraFill generates stable air contents of 15 to 30%, and significantly
reduces mix water, and improves flow ability (grace.com, 2015). This also helps to

reduce the concrete density by 15- 30%.
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Table 7.3 Suggested design mix for Poraver aggregates (Poraver.com, 2015)

P raverd

by Dennert

Lightweight concrete with Poraver® expanded glass

Non-binding guide formulations*

* The product information is given in good faith, but without
warranty. This also applies to proprietary rights of third parties.
The above information does not release from own tests of the
products as to their suitability for the intended purpose and
procedures. The application, use and processing of our
products and the products manufactured by you on the basis
of our technical advice are beyond our control and, therefore,
entirely your own responsibility.

density guide formulations characteristics
Poraver © cement water fillers ¥ |additives ¥ density compressive | strength |  thermal
strength class | conductivity 2
Ka/m? 05-1mm | 1-2mm 2-4mm 4-8mm | CEMI42.5R wet 105°C 28d
g/m dm? dm3 dm3 dm3 kg kg kg g kg/dm? kg/dm3 N/mm? W/m*K)
- - 875 (166 kg) - 110 80 - 550 0.6 0.31 0.4 0.08
300 - - - |eooussky| 125 80 - 500 05 0.30 08 '
- - 820 (156 kg) - 200 155 - 470 0.49 0.41 2.2
400 - - - 800 (136 kg) 225 130 - 500 0.49 0.40 2.0 0.11
480 (125 kg) - 480 (91 kg) - 130 120 - 430 0.48 0.39 25
4509 - 435 (100 kg) - 620(111kg)| 200 125 - 250 0.51 0.44 44 LAC2| o0.112
- - 800 (152 kg) - 285 160 - 500 060 0.51 4.9
500 - - - 800 (136 kg) 300 160 - 500 0.61 0.50 4.0 0.132
470 (122 kg) - 470 (89 kg) - 195 150 - 470 0.58 0.50 4.8
- - 800 (152 kg) - 360 180 - 500 0.70 0.60 6.4
600 450 (117 kg) - 450 (86 kg) - 290 165 - 490 0.67 0.56 7.8 0.162
- - - 800 (136 kg) 400 200 - 500 0.72 0.60 7.0
700 - - 800 (152 kg) - 380 220 60 500 0.81 0.68 11.0 0182
- - - 800 (136 kg) 425 230 100 500 0.84 0.70 7.0
7004 - 452 (118 kg) - 627(113kg) | 325 190 60 510 0.79 0.66 100 |LAC5| 0.182
800 - - 800 (152 kg) - 425 225 95 480 0.90 0.76 11.2 0212
- 200 (46 kg) | 200(38kg) | 400 (68 kg) 425 260 175 500 0.98 0.80 10.0 :
8004 - 452 (104 kg) - 630 (113 kg) 360 205 120 500 0.91 0.78 13.0 |LAC8| 0212
e, g. fly ash 3 air-entraining agent

ditor StK / Author DM

2 calclated values DIBt according to technical approval Z. 3.42 - 44
>> thermal conductivities beyond the technical approval are determined DIN 4108

7.2 Construction of Validation Slabs

4 formulations ** *poraFORM according to technical approval
9 the bulk density may vary within the tolerance range

In order to cast the specimens, a plywood mold was designed and built to house the fresh

concrete. Figure 7.2 depicts the molds built for the 4 validation specimens. The molds

consist of 5/8” plywood. The walls are supported by pieces of 2X4 at each foot to

withstand the forces applied during the casting process. The floor sits on 2X4s spaced

one foot apart to act as beams. These beams create a 4-inches gap between the specimen

and the ground. This gap is helpful for transporting the slabs with a forklift. Two layers
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of mesh reinforcement are used at 2.5” from the top and the bottom of the specimens.
In order to keep this mesh in place while pouring, it sits on small pieces of #4 rebar

drilled through the plywood.

v/msEERmICHm) I

77777771 AT AT R NN

/08 VR
77777711 N EEEmaRT.
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Figure 7.2 Plywood molds for validation specimens

For the layered specimen (S01), the time of casting each layer is an important factor.
There should be enough time between each cast so that each layer gains enough strength
to withstand pressure from the layer above. On the other hand, if the concrete sits for too
long, the new layer cannot properly bond with the old one. To satisfy these conditions
S01 was cast over three consecutive days, thus giving approximately one day for each
layer to harden. The casting procedure for each layer along and the control specimen is

discussed next.
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7.2.1 Day 1-Premixed Concrete Delivery

Premixed concrete was delivered from Clayton Concrete, Edison, NJ. The nominal
compression strength of the batch was stated as 4000-psi (27.5 MPa). This concrete was
used in specimen LCO1 and the bottom layer of the SO1 specimen. Figure 7.3 shows the
casting process for this phase. A hand-held needle vibrator was used for concrete

compaction. After the pouring was complete, the surface was smoothed with a 2X4 piece.
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Figure 7.3 Casting Process - Day 1

7.2.2 Day 2- Light Weight Concrete Casting

Lightweight concrete was mixed at the Rutgers asphalt laboratory located in Livingstone
campus, NJ. As shown in Figure 7.4 the concrete mix consists of two sizes of aggregates
(1-2mm and 4-8mm), water, air entertainer, fly ash as filler and cement (fly ash and
cement not shown in the picture). These elements were measured and then hand mixed in
plastic trays as shown in Figure 7.5. Because of the lightweight aggregates, a power
mixer was not used. The higher speed of the power mixer causes the lighter material to
float and thereby segregate from the rest of the mix. Specimen LCO02 and the second layer
of specimen S01 were filled using the design mix mentioned earlier for 800 kg/m? density

in the manual for Poraver materials.
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Figure 7.4 a) Coarse aggregate b) Fine aggregate c) Air-entertainer ¢) water
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Figure 7.5 Light weight concrete mixing procedure-Day 2

7.2.3 Day 3- Premixed Concrete Delivery

In day 3 the premixed concrete was delivered from the same vendor, with the same
nominal compression strength (27.5 MPa). This concrete was used in specimen LCO03 and

the top layer of the SO1 specimen. Figure 7.6 shows the casting process for this phase.
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Figure 7.6 Casting Process — Day 3
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7.3 Experimental Test Setup

The down side of using the MASW method is that the testing procedure is lengthier and
the testing setup is more expensive because of the number of sensors. In order to
overcome the cost issue for this test, only 2 sensors and one impact source, were used.
Experimental tests were performed using Agilent DAQ model 35670A (Figure 7.7). The

Key specifications of this device are as follows (keysight.com):

o BEEEEREE

f

Figure 7.7 Agilent DAQ Model 35670A (keysight.com)

e 102.4 kHz at 1 channel, 51.2 kHz at 2 channel, 25.6 kHz at 4 channel
e 100, 200, 400, 800 and 1600 lines of resolution

e 90 dB dynamic range, 130 dB in swept-sine mode

Since 2 channels were utilized the highest frequency range would be 51.2 kHz. The two
channels are filled with PCB 352A60 sensors. The specifications of these sensors are
illustrated in Table 7.4. The sensors are very sensitive and can pick up anything between

the ranges of 5-60 kHz. Because of the relatively rough surface in concrete, the ideal



bounding between the surface and the sensor cannot be achieved. The highest

recorded frequency is therefore expected to be lower than the sensors range.

Table 7.4 PCB 352A60 Specifications (PCB.com, 2014)

ENGLISH SI
Performance
Sensitivity (15 %) 10 mV/g 1.02 mV/(m/s?)
Measurement Range +500 g pk +4905 m/s? pk
Frequency Range (3 dB) 5 to 60000 Hz 5 to 60000 Hz
Electrical Filter Corner Frequency 45 kHz 45 kHz
Electrical Filter Roll-off 10 dB/decade 10 dB/decade
Resonant Frequency >95 kHz >95 kHz
Broadband Resolution (1 to 10000 0.002 g rms 0.02 m/s? rms
Non-Linearity <1% <1 %
Transverse Sensitivity <5% <5%
Environmental
Overload Limit +5000 g pk 49050 m/s? pk
Temperature Range -65 to 250 °F -54to +121 °C
Base Strain Sensitivity <0.05 g/ue <0.49 (m/s?)/ue
Electrical
Excitation Voltage 18'to 30 VDC 18't0 30 VDC
Constant Current Excitation 210 20 mA 21020 mA
Output Impedance <100 Ohm <100 Ohm
Output Bias Voltage 8to 12 VDC 8t0 12 VDC

200



Discharge Time Constant
Spectral Noise (10 Hz)
Spectral Noise (100 Hz)
Spectral Noise (1 kHz)
Spectral Noise (10 kHz)

Physical
Size - Height
Weight
Sensing Element
Size - Hex
Sensing Geometry
Housing Material
Sealing
Electrical Connector
Electrical Connection Position
Mounting

Mounting Thread

There are two ways to simulate the true multi-channel results using only two sensors:

0.02 to 0.06 sec

160 pug/NHz
40 pg/\NHz
15 pg/NHz

10 pg/\VHz

0.81in
0.21 0z
Ceramic
3/8in
Shear
Stainless Steel
Welded
5-44 Coaxial
Top
Integral Stud

10-32 Male

0.02 to 0.06 sec
1570
390 (um/sec2)/NHz
147 (um/sec2)/NHz

98 (um/sec2)/\VHz

21.6 mm
6.0 gm
Ceramic
3/8in
Shear
Stainless Steel
Welded Hermetic
5-44 Coaxial
Top
Integral Stud

10-32 Male
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1. Inone method the source location is fixed along with one of the sensors. The

other sensor is moved step by step to the specific sensor locations. At each

location the hammer is triggered and the results are recoded. The fixed sensor

is used as a reference. The DAQ starts recording once the fixed sensor reaches
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a certain level of amplitude. Each record is normalized to the maximum
amplitude.

2. In the second method the source is moved along with the control sensor. The
down side of this method is that it takes longer and is not as accurate as the
previous method. Every time the source is moved, a number of initial triggers
are needed to stabilize the results. The dust and loose particles at the impact
location are the reason for the impact calibration. Calibration significantly

decreases the speed of the testing.

Sensors are fixed using petroleum wax or super glue. Both methods were tested for this
study. The fixed source method was chosen, as it had more consistent records at each try.
Figure 7.8 shows the experimental test setup in the top, a step of recording in fixed source
method in the middle and a step of fixed sensor method at the bottom. As seen in the
pictures, the PSPA device is used as the impact source. The signal is recorded when the

control sensor detects a certain level of amplitude.
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Figure 7.8 a)Experimental test setup b)Recording with fixed source ¢) Recording

with fixed sensor.

Figure 7.9 shows the time histories recorded at 32 sensor locations, each of which was

placed 5 cm apart using the fixed source method.
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Figure 7.9 Time histories at each sensor location by using the fixed sensor
method. The Y-axis shows the distance from the source in meters where the X-

axis represents time in seconds

Figure 7.10 shows the normalized spectra of the 32 time histories in a stacked format.
The frequency content of the records seems similar except for locations at 10 cm and
55cm apart from the source. This could be either because of the loose material at the
impact location or because of insufficient bonding between the sensors and the concrete

surface. These two records were excluded from the analysis.
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Figure 7.10 Normalized spectra of the time histories at different sensor locations

7.4 Results and Discussion

Using the SASW method on the control specimens, the surface-wave velocity of each
layer is calculated. Using the PSPA the control specimens are measured for the elastic
modulus. Table 7.5 shows modulus measurement results on the control specimens along
with the standard deviation, mean and median for each specimen. Median results are
chosen as reference points for to compare with the inversion results. Also Figure 7.11 to
Figure 7.13 show the screen shots of PSPA software for the median measurement in each

specimen.
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Table 7.5 PSPA measurements on the control specimens

Test# Bottom Layer (Ksi) Middle Layer(ksi) Top Layer (ksi)

4040 890 5320
4670 760 5520
3700 560 5170
4120 1050 5010
4001 930 4980
3670 850 5150
4820 910 5290
411 143 174
Mean 4145 850 5205

Median 4040 890 5170
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Figure 7.13 Median of modulus measurements for LC03 Specimen

Based on these results and density measurements from cylindrical specimens, the layer
parameters are presented in Figure 7.14. The measured density of the middle layer is

close to the design mix specification used, which is almost one third of regular concrete.
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Table 7.6 The Specimen Layer Properties Based on the Measured Results

Layer Measured Measured Measured Measured
Type of
Layer Thickness/ Modulus Modulus Density shear-wave
Material
Total Thickness (ksi) (MPa) (1/m®) velocity (m/s)

Light weight
Middle 1/3 890 6,138 854 1,731
Concrete

Using the phase-shift method the dispersion surface is plotted in Figure 7.14. The overall

dispersion surface seems noisier than FEM results due to the environmental and

instrumental noise introduced in experimental tests.



211

ST
- A

3500 |
3 |
E 3000
=
8
S 285m0 f
=
@ 2000 b
=
o
1500 |-
(l L ! § ] u-¥1 ‘ i
1000 Ry o T e L
0 i k' T | w"u'l
500 Il Jnr' % A ".','" .
1 Ak J.a'.L" A
0e [ 1 o |'|'xlxlll baly ! n'll Illf.ll
0 05 1 15 2 25 3 35 4 45 5

Frequency {Hz) w10t

Figure 7.14 Dispersion surface of the fixed source experiment

Next in Figure 7.15 the dispersion surface is compared to the inverted and the reference
dispersion surface. In the lower frequency range the experimental result is very noisy.
This area is marked with red on the left side of Figure 7.15. Since the bottom layer
properties are directly related to this frequency range this can affect the accuracy of the
results for this layer. The overall trend of the dominant mode is clear in the results and so
is the higher frequency content. These areas are related to the top and middle layers

properties. There is also moderate amount of noise present in the mid-frequency range.
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Figure 7.15 Comparison between the observed, inverted and the reference

dispersion spectra

Table 7.7 shows the results from DECKINVERSE algorithm compared to the measured

values.
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Table 7.7 Inverted Layer parameters vs the expected results

Expected shear-wave velocity (m/s) Inverted shear-wave velocity (m/s) Inverted Thickness ratio

2,525 2500 1/3
1,731 1750 1/3
2,268 1250 1/3

The top and middle layer’s velocity is inverted accurately, however the bottom layer
configuration still proves to be challenging. Compared to the traditional method this
method provides more details for layer properties. Using the PSPA the average modulus
is calculated for each test location. No information is given regarding the change of
modulus throughout the thickness. This method divides the thickness into three
hypothetical layers with variable thicknesses and calculates the shear-wave velocity for

each one.
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8 Closure

8.1 Conclusion

Based on the results obtained from this research the following can be concluded:

1. Compared to SASW method use of multiple sensors results in presentation of
results in terms of the dispersion surface instead of dispersion curve. This
leads to the separation of Lamb modes in the dispersion surface. Use of
dispersion surface provides more for the inversion process.

2. MASW dispersion analysis methods enable the automation of data analysis
after data acquisition. The field data can be processed without any user input.
This is particularly important when multiple dominant modes of propagation
are present.

3. The use of full dispersion surface allows for the inversion process to be more
accurate and sensitive to model parameters. Based on the parametric study
each model parameter has a distinct effect on the dispersion surface. This
allows for identification of more model parameters though the inversion
process.

4. The proposed inversion algorithm is fast and accurate enough for practical
purposes. In the past, the main concern regarding the use of multiple sensors
has been the computational time for the inversion process (Ryden & Park,
2006). With this method the inversion simultaneously with the data collection.

This is mainly due to the segmentation of the data space in the database and
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pre-calculation of dispersion surfaces. At every run the algorithm
minimizes the error function without the lengthy solution for the forward
problem. Further optimization is done by utilizing the signatures present in the

dispersion surface.

8.2 Recommendation for Future Work

The following describes the author’s recommendation for further improvement of multi

sensor surface-wave based testing methods in bridge decks:

1.

Improvement of the inversion algorithm: As shown in the inversion example
INO5, when there is high concentration of noise present in the dispersion
surface, the result of inversion algorithm is not accurate. One solution to this
problem is to develop smart pre-filtering of the dispersion surface prior the
inversion process. This filter would exclude specific areas of noise and
artifacts from the error function. Figure 8.1 shows the high noise and artifacts
areas in the observed dispersion surfaces, marked by red boxes, for example
INO5.By removing all or parts of these areas the inversion results should be

improved.
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Observed Dispersion Spectra
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Figure 8.1 Potential high noise areas to be excluded in the inversion process

marked with red on dispersion surface

2. Construction of a full-scale multi sensor array for a more comprehensive
study of the DECKINVERSE algorithm: Using an array of sensors to gather
the information at once for all sensor locations is expected to reduce noise in
the dispersion surface. It will also increase the speed of data collection.
Recording the time histories at once can potentially improve the accuracy of
the inversion process.

3. An experimental study on actual bridge decks: The testing condition on
different bridge decks can introduce unforeseen practical issues in the testing
procedure. Therefore, the proposed method should be implemented on a

variety of concrete bridge decks and the inversion process adjusted for those.
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