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Autonomic Data Management for Extreme Scale Coupled

Scientific Workflows

By TONG JIN

Dissertation Director:

Manish Parashar

Advanced coupled scientific simulation workflows running at extreme scales are providing

new capabilities and new opportunities for high fidelity modeling and insights in a wide

range of application areas. These workflows compose multiple physical models along with

visualization and analysis services that share and exchange large amounts of data at runtime.

Due to the huge I/O overhead, traditional file-based coupling approaches become infeasible.

Instead, recent simulation-time data management approaches using in-memory data-staging

methods have been explored to address this challenge. However, due to the complexities

of emerging coupled applications and the architecture of current and future systems, these

data staging based solutions are also presenting several new challenges.

First, many of these scientific workflows containing dynamically adaptive formulations,

such as Adaptive Mesh Refinement (AMR), which exhibit dynamic runtime behaviors and

result in dynamically changing data volumes and imbalanced data distributions. Such dy-

namic runtime behaviors increase the complexity of managing and processing simulation

data. In addition, these behaviors introduce new challenges of managing the staging re-

sources as well as scheduling in-memory data processing while satisfying constraints on (1)

the amount of data movement, (2) the overhead on the simulation, and/or (3) the quality

of the simulations/analysis. Second, architectural trends indicate that emerging systems
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will have increasing numbers of cores per node and correspondingly decreasing amounts

of DRAM memory per core as well as decreasing memory bandwidth. These trends can

significantly impact the effectiveness of the online data management approaches for runtime

data processing pipelines, and especially their ability to support data intensive simulation

workflows.

To address the above dynamic data management challenges, this thesis explores an au-

tonomic approach to enable efficient runtime data management, which can dynamically

respond to the varying data management requirements. Specifically, it first formulates an

abstraction that can be used to realize autonomic data management runtimes for coupled

simulation workflows. To address the dynamic data management challenges in tightly cou-

pled simulation workflows containing dynamically adaptive formulations, this thesis then

presents a realization of this autonomic approach that uses runtime cross-layer adaptations.

This realization explores autonomic runtime adaptations at application layer, middleware

layer, and resource layer. It also exploits a coordinated approach that dynamically com-

bines these adaptations in a cross-layer manner. This thesis also presents an autonomic

multi-tiered data management runtime that leverages both DRAM and SSD to support au-

tonomic data management for loosely coupled scientific workflows. It demonstrates how an

autonomic data placement mechanism can dynamically manage and optimize data place-

ment across the DRAM and SSD storage levels in this multi-tiered runtime realization. The

research concepts and approaches have been prototyped and experimentally evaluated using

real application workflows on current high end computing systems, including the Intrepid

IBM BlueGene/P system at Argonne National Laboratory and the Titan Cray-XK7 system

at Oak Ridge National Laboratory.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Coupled Scientific Workflows

Advanced scientific simulation workflows running at extreme scales are providing new ca-

pabilities and new opportunities for insights in a wide range of application areas. These

workflows compose multiple physical models and codes along with data analytics and vi-

sualization services. For example, in the Community Earth System Model (CESM) [19]

application workflow, separate simulations are coupled as part of a multi-physics workflow

to model the interaction of the earth’s ocean, atmosphere, land surface and sea ice. An-

other example is the turbulent combustion workflow, where a direct numerical simulation

(DNS)[13] solver is coupled with multiple analytics components, e.g., descriptive statistics,

visualization, and topology analysis. These coupled codes interact and exchange data at

runtime to achieve high fidelity modeling for scientific discovery.

As system scale and application complexity grow, these workflows are exchanging very

large amounts of data that must be processed and managed. The traditional file-based

coupling approach, which supports data sharing between coupled applications within work-

flows using files, becomes infeasible and cost prohibitive from both performance and energy

perspectives. Instead, recent runtime data management approaches[30, 5, 92, 49, 95, 25]

using in-memory data-staging methods have been explored to efficiently support coupled

simulation workflows, which have the potential to accelerate the overall time-to-solution

process. In such an approach, the shared data will be stored using distributed in memory

buffer across different nodes, called a staging area. Furthermore, based on how and where

they are performed, the coupled applications can be deployed either in-situ or in-transit.
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Specifically, the coupled applications are performed in-situ on the same compute resource

where the primary simulation is running. In contrast, they can also be performed in-transit

where part or all of the data is offloaded to a dedicated group of nodes on the same system

for concurrent processing. For instance, in combustion simulation-analysis workflow[8], the

analysis codes, i.e., visualization, descriptive statistic, and topology analysis, extract the

output data at runtime and process them concurrently and in parallel while the primary

simulation is running.

1.1.2 Dynamic Runtime Data Management Requirements and Challenges

With the increasing complexities of coupled applications and the architecture development

of the High End Computing (HEC) systems, these coupled scientific simulation workflows

running on extreme-scale computing system are presenting several new challenges.

First, many of the scientific simulations are based on dynamically adaptive formula-

tions, which exhibit dynamic runtime behaviors and result in dynamically changing data

volumes and imbalanced data distributions. For example, in AMR(Adaptive Mesh Refine-

ment) based simulations, dynamic refinements can lead to imbalanced data distribution and

heterogeneous resource (memory, CPU, network bandwidth) requirements. Such dynamic

runtime behaviors increase the complexity of managing and processing the simulation data

onlie while satisfying the constraints on the amount of data movement and the overhead

on the simulation. They also impact on the management of the staging resources and the

schedule of in-situ and/or in-transit data processing under the level of analytics and resource

limitations. While current in-memory data management approaches can pre-configure the

simulation in relatively simple static workflows, they becomes ineffective when application

behaviors and data requirements become dynamic. Therefore, the effectiveness of runtime

data management approaches for dynamic workflow depends on the efficient and dynamic

mapping of workflow components, the size and distribution of the data and the resources

available in-situ and in-transit, and requires adaptive configuring the staging resources based

on dynamic application constraints and requirements.

Second, architectural trends indicate that emerging systems will have increasing numbers

of cores per node and correspondingly decreasing amounts of DRAM memory per core as
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well as decreasing memory bandwidth. These trends can significantly impact the effective-

ness of the data management approaches in the runtime data processing pipeline, especially

their ability to support data intensive simulation workflows and/or loosely coupled work-

flows that demand sufficient capacity for temporally caching a large volume of data. For

example, in a data-intensive coupled simulation workflow[14], data generated by one simu-

lation may have to be consumed by another simulation or by an analytics component before

it can be overwritten. As data volumes increase and memory capacity and bandwidth de-

crease, memory constraints can quickly become a bottleneck of performing in-situ/in-transit

processing. Furthermore, the coupled simulation and/or the analytics components may re-

quire the accumulation of data over multiple time steps[65], which can further accentuate

this problem. Fortunately, hardware development like the usage of non-volatile memory

devices, e.g. non-volatile memory (NVRAM) and solid state disks (SSDs), are becoming

more pervasive and have been deployed on a number of systems, such as Gordon at Sand

Diego Supercomputing Center (SDSC), Tsubame2 at Tokyo Institute of Technology, and

Sith at Oak Ridge National Laboratory, which provides the potential to help with this is-

sue. These new memory layers in extreme scale computers will provide a novel manner to

share information and data across different nodes and application components, as well as

maintain data persistence during simulation time. However, effectively using it may require

runtime support for applications to be explicitly aware of these memory hierarchy layers

and adaptively manage it in competition and coordination with other coupled components.

Besides, additional complexities associated with managing the placement of data in differ-

ent memory hierarchy levels and the data access by multiple concurrently executing tasks

still present significant challenges.

Clearly, to address the challenges mentioned above, making staging-based data man-

agement approaches effective on current high end computing systems with new hardware

technologies for these dynamic applications given performance, overhead and resource con-

straints requires autonomic approach and dedicated runtime support for runtime adapta-

tions, trade-offs, and capability of self-controlling.
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1.2 Problem Description

The dynamic characteristics of these applications and the trends in system architecture

bring in new complexities and challenges on data management. There are four primary

requirements and relevant challenges in the context of performing data management in

extreme scale coupled scientific workflows.

Computation scheduling and placement: To improve the overall end-to-end perfor-

mance and reduce in-network data movement, the coupled components have to be scheduled

and placed appropriately during the runtime. Specifically, when scheduling and placing

computations, several factors have to be considered, the sharing of processors, memory

availability, the data exchange interaction between coupled components, as well as the cost

of data movement. For example, AMR-based simulations involving local refinements can

dynamically increase the resources consumed by the simulation on a subset of nodes, which

in turn reduces the resources available for in-situ data processing. Meanwhile, the features

of coupled components, such as their scalability, may also impact scheduling and placement.

For example, some visualization and analysis routines are fundamentally memory-intensive

and others are intrinsically compute-intensive, which are not suitable for in-situ processing.

Furthermore, some applications, such as descriptive statistic analysis, can be performed

in-situ, while others, such as topology analysis that needs heavy communication, should be

performed in-transit.

Data placement: One of the key data management challenges and requirements is

effectively and adaptively managing the runtime placement of simulation data. With the

development of contemporary high performance systems and runtime data processing strate-

gies, simulation data can be placed at multiple locations within the system, such as DRAM

in primary computation resource, dedicated staging area, and/or levels of local deep mem-

ory hierarchy. Generally, the output data is supposed to be placed closer to the consuming

components, e.g., analysis/visualization, which enables quick data access with lower over-

head. In addition, it is important to assess the necessity and importance of data movement

following some specific rules, such as potential data access patterns, in order to avoid redun-

dant data movement horizontally through network and/or vertically across different levels
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of local memory hierarchy. Finally, data placement should also take into account the re-

source constraints (e.g. DRAM availability) at the location where the data will be placed

and managed. For example, in case of a loosely coupling workflow containing memory-

intensive simulations, it is better to move output data out of the DRAM at local primary

computation resource quickly, so that it does not run out of memory resource.

Data quality management: In coupled multi-physics multi-scale simulation work-

flows, such as the DNS-LES workflow, each simulation code could have its own discretization

of space and time, and generate or consume data at different levels of spatial and temporal

resolution. Similarly, in simulation-time data analysis workflows, the simulation generates

data at a finer-grained level, while the analysis code may only need data at coarser res-

olution. This mismatch of data quality levels between data producer and data consumer

can result in extra overhead due to both necessary data pre-processing and the movement

of redundant data across network for performing in-transit analytics. As a result, it is re-

quired to adjust and manage data resolution dynamically, in order to meet the data quality

requirement of coupled applications before data is moved. Additionally, the management

of data quality should also be performed in an adaptive manner, taking into consideration

resource constraints as well as evaluating appropriate tradeoffs such as performance and

overhead.

Utilization of staging resources: Coupled simulation workflow involving dynamic

behaviors will generate data in varying sizes and distributions at runtime, impacting the

amount of resource required to perform data processing and analysis at runtime. For exam-

ple, dynamic workflow increases the spatial and temporal resolutions of data, which in turn

increases the computational and storage requirements of staging resources. These varying

computational and storage requirements increase the complexity of configuring staging re-

sources and impact the resource utilization efficiency. As a result, existing static resource

pre-allocation strategies are not sufficient in such scenarios. In order to meet the needs of

these dynamic workflows, staging resources(including both computation and storage) must

have the ability to be dynamically allocated and utilized during runtime. This additional

functionality enable the in-staging data analysis and improve the overall effectiveness of

resource utilization.



6

1.3 Overview of Thesis Research

The overall goal of this thesis is to address the above dynamic data management chal-

lenges that scientists face in creating and managing simulation-time workflows in order to

expedite insights into critical scientific processes at extreme scales. This thesis presents

an autonomic approach to enable efficient data management at simulation-time, which can

dynamically respond to the varying data management requirements at runtime. Specifi-

cally, this autonomic data management approach can efficiently enable the application and

the runtime system to adapt their own behaviors – e.g., data quality adjustment, data

placement, analytic placement, and resource allocation – automatically by following pre-

defined strategies. These strategies are selected adaptively based on the varying operating

environment statuses and specific objectives.

This thesis first presents a high-level abstraction of the autonomic approach for coupled

scientific workflows running on extreme scale high end systems. Using this abstraction,

specific characteristics and requirements for enabling such an autonomic approach can be

identified. Specifically, it first describes the conceptual model of this approach, which con-

tains three key elements: autonomic objective, autonomic policy and autonomic mechanism,

which interact and coordinate with each other to achieve the overall autonomic data man-

agement goals. It then discusses how this autonomic approach can be realized on current

high performance systems with scientific workflows. The discussion of such possible realiza-

tion includes its runtime architecture, basic components, as well as the required capabilities

and functionalities of such an approach. Finally, this thesis presents the realizations of this

autonomic approach in two coupling cases and how it is used to effectively address different

data management requirements and challenges.

To address the dynamic data management challenges in tightly coupled simulation work-

flows containing dynamically adaptive formulations, this thesis presents a realization of this

autonomic data management approach by using runtime cross-layer adaptations. Specifi-

cally, this section of the work explores runtime adaptation policies and mechanisms imple-

mented as a part of the autonomic runtime at three different layers, viz., application layer,

middleware layer, and resource layer. The autonomic runtime is able to respond to dynamic

data processing requirements and resource constraints for coupled AMR-based simulation
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workflows. At the application layer, it dynamically adapts the spatial and temporal resolu-

tion of the data being written and processed under DRAM availability constraints and/or

application requirements; at the middleware layer, it adapts the in-situ and/or in-transit

placement and scheduling of data processing operations; and at the resource layer, it adapts

the allocation of in-transit resources. It also presents a coordinated management approach

that combines these adaptations in a cross-layer manner to further optimize the end-to-

end performance of the workflow and to address requirements or constrains that cannot be

effectively satisfied by adaptations at one layer alone. This runtime realization has been

deployed and evaluated with real world applications and shown to be effective in improving

overall performance and reducing unnecessary data movement.

This thesis also explores how the inclusion of a deep memory hierarchy, e.g., one in-

volving solid state devices, can be used for data staging to adaptively deal with data man-

agement dynamics in loosely coupled workflows at extreme scales. Specifically, it presents

an autonomic multi-tiered data staging runtime that leverages both DRAM and SSD to

support autonomic data staging for coupled data intensive simulation workflows. By uti-

lizing SSD, the presented hybrid staging approach can successfully accommodate larger

volumes of data that may exceed the available DRAM main memory within the staging

area, thereby supporting runtime code coupling and data management in a wider range

of workflows. However, the inclusion of SSDs into the autonomic runtime introduces the

additional levels of complexities. In order to overcome these challenges, this thesis also

presents an adaptive application-aware data placement mechanism that can dynamically

and automatically manage and optimize data placement across DRAM and SSD storage

layers using data access patterns and user provided hints. More specifically, applications

can specify and update spatial and temporal attributes describing their expected data ac-

cess patterns as hints along with the workflow. At the same time, data access patterns are

tracked at runtime and are used to predict future data access patterns. Furthermore, the

runtime takes advantage of both the user’s hints and the runtime prediction to assess the

access probabilities and importance of each data object, and then quantifies these data ac-

cess possibilities and importance by calculating and assigning a utility value. Data objects

with higher utility value will be prefetched from a lower level of the memory hierarchy (i.e.,
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SSD) to a higher one (i.e., local DRAM), and/or stay at higher memory hierarchy level

longer, which is demonstrated to reduce the concurrent data access overheads and improves

the overall time to solution.

1.4 Contributions

The primary contributions of the research in this thesis are insights into a systematic ap-

proach to support autonomic data management for extreme scale coupled scientific work-

flows. These insights will significantly enhance the capabilities and efficiency of scientific

discovery for a variety of application domains. The detailed contributions are presented as

follows.

• Systematic design and formulation of an autonomic data management abstraction

for coupled scientific workflows in extreme scale High End Computing (HEC) infras-

tructure based on dynamic runtime data management requirements, characteristics

of application behaviors, and environment of the system/resource. This provides the

foundation for the conceptual framework of the approach and allows for the specifi-

cation of its key components and required functionalities. This framework provides a

variety of mechanisms that will be automatically orchestrated at runtime to respond

to the heterogeneity and dynamics of the applications and the infrastructure.

• Design and development of effective cross-layer adaptation policies and mechanisms to

enable dynamic data management in tightly coupled workflows containing applications

exhibiting dynamic behaviors. These adaptations include (1) adaptation of the spatial

resolution at which the data is processed, (2) dynamic placement and scheduling

of data processing kernels, (3) dynamic allocation of in-transit resources, and (4)

coordinated adaptations that dynamically combine these adaptations at the different

layers automatically at runtime. This dynamic data management scheme reduces the

in-network data movement, improves overall time-to-solution and increases resource

efficiency at runtime.

• Design and development of a multi-tiered staging runtime that spans both DRAM and

a deep memory hierarchy layer – solid state disks (SSD) – to support both dynamic
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data management and code coupling for loosely coupled data intensive simulation

workflows. This hybrid staging runtime allows entire workflows to cache larger data

volumes that may exceed available DRAMmemory within the staging area for runtime

data management. In addition, this staging method can be deployed in future High

End Computing systems by replacing the SSD layer with another faster memory

hierarchy device, such as NVRAM.

• Design and implementation of an adaptive application-aware data placement mecha-

nism that can dynamically manage and optimize data placement across the DRAM

and SSD storage layers using data access patterns and user provided hints. This

mechanism can support effective data prefetching from a lower level of memory hier-

archy (i.e, SSD) to local DRAM in hybrid staging areas, reducing access overheads

and improving the end-to-end performance.

• Integration of the prototype of the autonomic data management approach with real-

word coupled scientific simulation workflows, e.g., combustion and fusion applications;

and demonstrate its effectiveness in improving overall performance and accelerating

scientific discovery.

1.5 Outline

The rest of this thesis is organized as follows.

Chapter 2 presents driving applications in real-world coupled scientific workflows that

motivate the research work of this thesis. This chapter also summarizes the key parameters

and components of coupled scientific workflows at exa-scale, as well as the data attributes

(e.g. data resolution, data placement, etc.) that significantly impact the data management

requirements in most of these workflows.

Chapter 3 presents an overview of related research work.

Chapter 4 presents an overview of the autonomic data management approach and its

high-level abstraction, which contains the key elements and functions to support dynamic

and adaptive responses at runtime to different data management and processing require-

ments. Moreover, it describes the execution model and the conceptual architecture of such
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an approach, and characterizes the basic components needed for realizing it in different

coupled simulation workflows at extreme scales.

Chapter 5 presents the design, implementation, and evaluation of a concrete realiza-

tion of the autonomic approach for tightly coupled AMR-based simulation workflows at

extreme scales, which utilizes cross-layer adaptations to enable dynamic in-memory data

management. Specifically, it presents the detailed runtime adaptations at three different

layers, viz., application layer, middleware layer, and resource layer, as well as a coordinated

method that dynamically combines these adaptations at the different layers.

Chapter 6 presents the design, implementation, and evaluation of the other realization

of such autonomic data management approach – a multi-tiered data staging that leverages

both DRAM and SSD (solid state device) to support efficient and dynamic data processing in

loosely coupled data intensive workflows. This chapter also presents an adaptive application-

aware data placement mechanism that dynamically manages and optimizes data placement

across the layers of the distributed memory hierarchy, as well as coordinates data movement

and data sharing between the components of the application workflow so as to maximize

its utility to the application and reduce access costs.

Chapter 7 summarizes the research work of this thesis and presents future research

directions.
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Chapter 2

Driving Applications and Requirements

2.1 Motivating Applications

The research of this thesis is driven by the dynamic data management and processing

requirements of coupled data-intensive scientific workflows running at extreme scales. As

the scale and complexity of scientific workflows have grown, so has the amount of data

that they generate. Therefore, efficient data management is of paramount importance to

scientists running on high-end systems. In order to show the impact of this research, real-

world scientific applications with specific data coupling and data management requirements

are illustrated below. The data management requirements of these workflows make them

difficult to be realized with traditional data transfer and handling approaches. As a result,

such applications, spanning a variety of scientific communities, serve as the driving use cases.

Additionally, this chapter describes the abstraction of coupled simulation workflows and

summarizes the key parameters that impacts their runtime data management requirements.

2.1.1 AMR-based Polytropic Gas Simulation-Visualization Workflow

Workflow Description

3D AMR Polytropic Gas simulation is an Adaptive Mesh Refinement (AMR) based simu-

lation that simulates the behaviors of polytropic gas in a three-dimensional computational

domain. This compute-intensive application implements the Godunov unsplit algorithm[1]

for integrating systems of conservation laws (e.g., the Euler equations of gas dynamics),

which requires a lot of local memory. In addition, this AMR-based simulation involves

dynamic local grid refinements at runtime. As the simulation evolves, the data grid can be

refined or coarsened, which may result in varying spatial-temporal data resolutions. The
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dynamic changing data resolution will significantly impact the total size of output data

and result in imbalanced resources (e.g., DRAM and CPU) consumption across different

simulation nodes.

Moreover, a visualization code that allows scientists to visually monitor the simulation

results (e.g., the density probability distribution and the variation of gases) is coupled with

the AMR Polytropic Gas simulation. In such a workflow, the AMR-based simulation and the

visualization service are tightly coupled on the fly, exchanging data at every nth (n >= 1)

time step from simulation to visualization.

Data Management Requirements

The dynamic runtime behaviors of AMR-based simulation workflows increase the complex-

ities of managing and processing simulation data. In addition, these behaviors bring in

challenges of managing the staging resources as well as scheduling in-situ and/or in-transit

data processing while satisfying constraints on (1) the amount of data movement, (2) the

overhead on the simulation, and/or (3) the level of visualization. First, the increasing data

size and imbalanced data distribution caused by domain refinement/coarsening may impact

the execution of in-situ data visualization due to local DRAM resource unavailability. To

enable the continuity of the execution of the entire workflow under local storage resource

constraints, the workflow requires intelligent and effective data temporal-spatial resolution

adjustment in order to achieve a trade-off between data quality and limited DRAM resource

constraints. For example, the data resolution can be reduced under the tolerance of fidelity

loss before the visualization service is performed, so that the visualization could continue

executing without running out of memory. The data resolution adjustment must not im-

pact the data resolution desired for information discovery and the level of analysis. Second,

the varying data size and distribution may also affect the placement and scheduling of the

coupled visualization service. For example, performing the visualization service in-situ may

not always work in cases where the local DRAM cannot accommodate both the increasing

simulation data after refinement as well as the memory requirement for the visualization al-

gorithm. On the other hand, performing the visualization service in-transit introduces high

amounts of data movement across network. Therefore, it requires to place and schedule the
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analytics flexibly and dynamically on the fly. Lastly, after the computational grid is refined

in the AMR simulation and the visualization service has to be performed in-transit, the

workflow will experience a dramatic increase in data volume which results in a demand for

more DRAM availability and computing capabilities in staging area. Clearly, the existing

approaches that preallocate staging resources at the beginning of the workflow will impact

the overall utilization efficiency of in-transit computing resources. As a result, this workflow

requires dynamic system configurations and adaptive allocations of in-transit computational

and storage resources.

2.1.2 End-to-End Combustion Simulation-Analytics Workflow

Workflow Description

TS 1 TS 2 TS 3 TS 4 . . . TS n-1 TS n

S3D

Visualization

Statistic

Topology

Time

data ow

Figure 2.1: Illustration of data exchange and sharing flow and coupling relationship between
coupled applications in the combustion S3D simulation-analytics workflow. Three analytics
applications: visualization, descriptive statistic analysis, and topology analysis are cou-
pled with the S3D simulation and consume output data following different temporal-spatial
access patterns.

Massively parallel turbulent combustion simulations running at extreme scales introduce

spatial and temporal scales spanning typically at least 5 decades. A popular scientific com-

bustion workflow exhibiting this behavior is S3D [13], which performs first principles-based

direct numerical simulations of turbulent combustion in which both turbulence and chemical

kinetics associated with burning gas-phase hydrocarbon fuels. This kind of simulations can

generate large amounts of data. For example, a simulation of flame stabilization by auto-

ignition in a lifted hydrogen jet flame [89] produces more than 100GB data in approximately

17 seconds or less.
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Statistically stationary and temporally evolving flows are two important categories of

turbulent combustion problems simulated with S3D that require analytics to be performed

at a high frequency. Traditional file-based data analytics manner that accesses data every

few hundred time steps is cost-prohibitive and infeasible due to the fact that it cannot meet

high frequency data analysis requirements. Therefore, in this workflow, multiple analytics

codes, e.g., visualization, descriptive analysis, topology analysis, and etc., are coupled with

the S3D simulation, performing different temporal and spatial data access patterns[8] and

execution requirements.

Figure 2.1 illustrates the data exchange and sharing flow and coupling relationship

between these applications in a combustion simulation-analytics workflow example. As

shown in this figure, these analytics have varying degrees of coupling tightness respectively

with the simulation, and perform different temporal and spatial data access patterns. For

instance, topology analysis may access data less frequently than a descriptive statistic code

does, while they require data from the same region of the entire data domain.

Data Management Requirements

In this workflow, simulation output data may be consumed concurrently by multiple coupled

analysis code following different temporal and spatial data access patterns. As a result, the

output data must be cached in the workflow and persist during runtime until it is consumed.

Additionally, to preserve the spatial-temporal fidelity behind the data, the workflow requires

frequent and timely exchange of chemical species data from the S3D simulation to the

analysis services. This introduces overhead for the simulation that ultimately impacts the

overall time to solution of the workflow. Therefore, in order to overcome these challenges and

accelerate scientific discovery, the desired data must be effectively prepared and adaptively

placed closer to each application ahead of time.

2.1.3 Coupled Combustion Simulation DNS-LES Workflow

Workflow Description

S3D[13] is a massively parallel computational fluid dynamics (CFD) solver that performs

first principles based “direct numerical simulations” (DNS) of turbulent combustion. DNS
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Figure 2.2: Illustration of normal data exchange and interactions between coupled DNS-LES
simulation workflow. DSN and LES are tightly coupled together, performing concurrently
and sharing data 6 times per time steps in this example.
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Figure 2.3: Illustration of an example where DNS and LES simulations go out of sync
because of the lag of LES simulation, and then get recovered after 3 time steps. The data
generated during these three time steps needs to be cached on the fly before the lock-step
of data exchange recovers.
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is very expensive both in terms of FLOPS and data generation, since it resolves the entire

range of spatial and temporal scales in the continuum regime of a given problem. Another

paradigm of turbulent combustion simulations that is less expensive and more suitable for

engineering calculations is “large eddy simulations” (LES)[75], which only resolve the large

energy containing a range of scales and models the physics for smaller scales. Coupled DNS-

LES simulations are being considered as a rigorous, albeit expensive, test bed for assessing

models, by isolating and eliminating numerical errors. This is achieved by performing DNS

and LES in lockstep, where the base solution field from the well resolved DNS solution

is appropriately filtered, and then fed to the LES simulation, which is running in tandem

and is solving only one additional quantity of the model that is being tested. The grid

sizes and time steps in both the DNS and LES are kept identical to eliminate numerical

errors. Figure 2.2 illustrates an example of normal DNS-LES workflow and the flow of

data exchange between these two simulations. In this instance, DNS and LES execute

concurrently with internal one-directional data exchange to form a locked pipeline. Data

is transferred from DNS to LES several times per time step (in this figure, this value is

specifically 6 times per time step); and each of these exchanges costs a few seconds.

Data Management Requirements

The lock-step DNS-LES coupling requirement presents a number of data management re-

quirements and challenges. First, the simulations advance in time using a six-stage Runge-

Kutta scheme, which implies that the exchange of data between DNS and LES must happen

six times at every time step, with each time step typically taking a few seconds of wall-

clock time. This pattern leads to frequent exchanges of a large volume of data. Second,

due to several uncertainties during execution (e.g., lag of LES simulation, network issues

while transferring the data), the DNS and LES simulations often go out of sync for so many

time steps (as demonstrated in Figure 2.3). As a result, the exchanged data needs to be

cached during runtime over multiple time steps into a large capacity storage space, before

the lock-step data exchange can recover. However, DRAM-only staging approaches cannot

accommodate the large data sizes, because this data easily fills up the available DRAM

storage capacity.
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Figure 2.4: Illustration of data exchange and interactions between coupled plasma fusion
XGC1-XGCa workflow. Two types of data - turbulence data and particle data - are ex-
changed between XGC1 and XGCa.

2.1.4 Coupled Plasma Fusion Simulation XGC1-XGCa Workflow

Workflow Description

XGC1 [44] and XGCa are extreme-scale, first-principles particle-in-cell (PIC) codes for the

simulation of magnetically confined plasmas in nuclear fusion research. Due to numerical

dissipation, model equation errors and the huge computational costs of XGC1 simulations,

XGCa, which uses a coarse mesh for the Poisson solver and requires much fewer particles,

is coupled with XGC1 as a complimentary accelerator.

The execution of XGC1-XGCa workflow consists of multiple coupling cycles, as illus-

trated in Figure 2.4. In each coupling cycle, the workflow first executes XGC1 for up to n

time steps (n is 10 in this illustrated figure, but may be up to thousands in a regular case),

generating the turbulence information at each time step and particle state data once. After

the plasma has evolved to a quasi-steady turbulent state after an initial transient phase,

execution is switched from XGC1 to XGCa. All the recorded turbulence information and

the current state of the plasma are then read by XGCa in order to replay the pre-recorded

turbulence information and advance the plasma background. When the background has

evolved sufficiently to affect the turbulence, XGCa stops and returns the updated particle

data to XGC1. Then, the next cycle is executed.
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Data Management Requirements

When the workflow passes control between XGC1 and XGCa, it needs to transfer data

containing velocity and positions information of 1010 particles, the size of which is approx-

imately 85 bytes per particle. Based on scientists’ experience, the total amount of particle

data is about 4 Tera bytes for a typical XGC1 simulation of the DIII-D tokamak [59] run-

ning on 16,384 compute nodes on Titan, with 1.6 million particles per compute node and

2 particle species (ions and electrons). Furthermore, for the much larger tokamak ITER, it

may be 5 to 10 times or more because more particles are necessary to keep the sampling

noise low. Therefore, the workflow requires larger storage space to cache this large portion

of data on the fly, since it can easily exceed the storage capacity of a DRAM-only in-memory

staging area. Meanwhile, locality-aware data placement is also required and desirable so

that the overhead of concurrently querying such large quantities of data can be minimized.

2.2 Abstraction and Key Parameters of Coupled Scientific Workflow

Figure 2.5 illustrates the abstraction of coupled scientific simulation workflows, in which

the primary scientific simulation is the data producer and secondary simulations, analyt-

ics, and/or visualization applications serve as data consumers coupled to the producer.

These components run at different scales, produce and consume data at different rates, and

progress at different speeds. Moreover, they regularly perform data exchange at runtime

with different data size, data exchange frequencies, and spatial and temporal data access

patterns. Attributes of coupled computations, data attributes, and coupling relationship are

three of most important factors that impact the coupled scientific workflows and character-

ize the relevant execution and data management requirements. The following paragraphs

lists and summarize the key parameters of these three factors.
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Figure 2.5: Overview of the coupled simulation-analytics workflow. ”Primary Resources”
refer to where the main simulation is running, while ”secondary resources” refer to a dedi-
cated group of computing nodes running coupled simulation or analysis services.

2.2.1 Attributes of Coupled Computations

Locality of Coupled Computation: The most important key attribute of coupled com-

putations in a coupled simulation workflow is their locality, which determines the place-

ment of computation components to physical processor cores across the distributed com-

pute nodes. The placement of computation would influence the performance of the entire

workflow execution particularly in terms of the amount of network data movement and cost

of parallel communications, as well as the effectiveness of resource utilization. Generally,

the coupled computation components can be performed in-situ, in-transit, or in a hybrid

manner. The difference between them lies in how and where the computation is performed.

In-situ analysis typically shares the primary simulation compute resources. In contrast,

when analyses are performed in-transit, some or all of the data is transferred to different

processors, either on the same machine or on different computing resources all together.

Hybrid data processing combines both of these two methods, performing the scalable low-

overhead part of analysis in-situ, and the rest in-transit.



20

2.2.2 Data Attributes

Data Locality: Locality of data significantly impacts the coupling behaviors and data

management requirements in coupled scientific workflow at extreme scales. Different from

the traditional concept of data locality in memory hierarchy, data locality in relation to a

coupled simulation workflow generally refers to the places where the simulation output data

is put temporarily or persistently for data processing or management. There are two types

of locality of data: vertical locality, which defines the placement of data in different memory

hierarchy levels such as DRAM, NVRAM, SSD, and even in disk, and horizontal locality,

which refers to the placement of data on different computational resources in a coupled

simulation workflow, e.g., using the primary computational resource for in-situ processing

and/or the secondary computational resource for in-transit data management.

Data resolution: In scientific applications, the physical domain of a particular scien-

tific problem will be mapped into a computational domain, which is a simplified form of

the physical domain in terms of geometrical representation and boundary condition impo-

sition. This simplified form should keep all the important physical features of the scientific

domain problem by defining relevant data as variables in the computational domain. As the

simulation is running, values of element data variables in the computational domain keep

refreshing according to their physical behaviors. Data resolution refers to both the density

of the elements in a specific computational domain and the precision of a measurement with

respect to time, such as the frequency of data value refresh or the the frequency of data

access. The former is called data spatial resolution and the later is data temporal resolution.

The level of data resolution impacts on the size and distribution of the data to be man-

aged, analyzed and visualized, as well as the potential insights that can be gleaned from

the data. For example, in AMR-based simulations, the data regions maybe further refined

or coarsened as the simulations evolve, which can result in imbalanced data distribution

across parallel computing resources and corresponding resources constraints.

2.2.3 Coupling Relationship

Coupling tightness: Data interactions and computation coupling of a typical simulation

workflow can be categorized as either tight coupling or loose coupling, which indicates the
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ratio of the effort (e.g. wall-clock time) by inter-component data interactions versus intra-

component computation. In tightly coupled workflows, the coupled components exchange

data directly from component to component with high frequency (possibly at each time

step), as in the case of the polytropic gas simulation. The data consumer normally con-

sumes the data quickly on the fly. In loosely coupled workflows, the data is exchanged less

frequently, often asynchronously and possibly opportunistically. An example of this pat-

tern is the XGC1-XGCa [44] coupling in the end-to-end fusion simulation workflow. Usually,

data aggregation and accumulation occur in this coupling scenario, requiring the tempo-

rary caching or buffering of data (e.g. in the staging area or local deep memory hierarchy

devices) for later simulation-time usage.

Coupling cycle and frequency: Coupling cycle is the period over which all com-

ponents of the coupled scientific workflow have exchanged data at least once. Coupling

frequency determines the rate of data exchange for a given workflow. For example, in-

staging computation, especially for well-endowed staging nodes, probably can operate on

multiple output steps and will be bound by timing requirements determined by output fre-

quencies. Thus, it directly impacts the data management requirements and complexities on

the fly and consequently the strategy of the scheduling and placement of coupled analytics.
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Chapter 3

Background and Related Work

3.1 Simulation-time Data Processing

The increasing performance gap between computation and I/O in high-end computing en-

vironment is rendering traditional post-processing data analysis approaches based on disk

I/O infeasible and inefficient. As a result, simulation-time data processing approaches have

emerged, which operate on in-memory data before it is written to the disk or file systems.

Recently, a number of runtime data processing approaches have been proposed in order

to accelerate scientific discovery by performing in-memory data analysis, These research

projects have focused on three specific simulation-time analysis techniques, namely in-situ

processing, in-transit processing, and hybrid processing.

In-situ data processing: In-situ data processing typically shares the primary simula-

tion compute resources and allows direct access to in-memory simulation data. It has been

used in visualization [60], [90], [30], indexing building [41], data compression [45], multi-

physics coupling [92], etc. This technique greatly reduces the costs due to data movement

across the network because most data is available in local memory.

There are two primary branches of in-situ techniques recently: inline processing ap-

proach and helper cores approach, both of which utilize the same resource of primary as

simulations. Inline processing refers that analysis/visualization codes are synchronously

executed with the simulation at runtime iteratively. There are many applications e.g. Par-

aView [30] and VisIt [11] visualization using such approach for in-situ processing and visual-

izations. On the other head, helper cores approach, such as CoDS [92], leverages some local

CPU cores of nodes where simulation is running to perform dedicated analysis, processing,

or visualization in parallel. Examples include Functional Partitioning [49] and so on.

However, due to the resource sharing nature of in-situ processing, it can increase the
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overall time-to-solution and coupling complexities. Also, many data analysis algorithms are

global in nature and few of them have capability of scaling satisfactorily.

In-transit data processing: In-transit data processing offloads raw data to dedi-

cated compute resources, i.e., a set of additional compute nodes allocated by users when

launching the parallel simulations, and executes it there in parallel with the simulations

and thus minimizes the impact on the performance of the simulation and the overall

time-to-solution. Many projects have studied the use of dedicated ”staging” resources

to support potential in-transit operations, such as DataStager [5], PreDatA [95], DataS-

paces [27, 28]/ActiveSpaces [25], GLEAN [81] and Nessie [66].

PreDatA middleware (preparatory Data Analytics) [95] augments the current I/O stack

on HEC platform with data staging and processing by exploiting computational resources

in both compute nodes and dedicated staging nodes. Key features of PreDatA include

asynchronous data movement from compute to staging nodes, pluggable framework for

performing user-defined data analysis operations. Similarly, CLEAN [81] is a data staging

substrate that enables improved data movement between compute nodes and staging nodes,

interfacing to running simulations for in-transit co-analysis or in-situ analysis. GLEAN

exploits the network topology of IBM BlueGene/P system and proposes the design of a

topology-aware data movement and aggregation mechanism to improve the performance

of I/O forwarding. However, it does not specify user-level programming APIs to enable

a programmable data staging substrate. Another typical example is DataSpaces [27, 28],

which is a programming runtime targeted at current large scale systems and designed to

support dynamic interaction and coordination patterns between scientific applications. It

provides the programming APIs to enable flexible in-transit data processing, and utilizes

RDMA to support asynchronous data transfer between simulation resources and staging

resources. On the top of DataSpaces, ActiveSpaces [25] takes a step further to support

dynamic deployment of user-defined data processing routines onto dedicated staging nodes.

The runtime system distributes the serial data kernel to multiple staging nodes where the

queried data resides and gathers results returned by each kernel execution.

Most of these existing data staging solutions primarily focus on fast and asynchronous

data movement off simulation nodes to lessen the impact of expensive I/O operations. They



24

typically support limited data operations within the staging area, such as pre-processing,

and transformations, often resulting in under-utilization of the staging nodes’ compute

power. Also, the data movement across the network in this approach can introduce large

overheads as well as increase power consumption.

Hybrid data processing: To take advantage of both in-situ and in-transit data pro-

cessing approaches, recent research [8] has explored the benefits of combining both in-situ

and in-transit approaches on leadership class supercomputers, and demonstrated the im-

portance of executing the analytics in a hybrid in-situ/in-transit staging system. It forms a

multi-stage pipeline to support various simultaneous analyses by utilizing the data buffering

and computation capabilities of both local nodes and staging nodes. Another instance of

hybrid data processing is FlexIO [96], which explores the trade-offs between performing an-

alytics at different levels of the I/O hierarchy and supports a variety of simulation-analytics

workloads through flexible placement options. FlexIO enables users to tune the placement

of analytics under the objective of overall performance of data analytics workflows, and

then automatically configure the underlying transportation methods to support the compu-

tation placement decisions. JITStager [4] enables users to apply customized data operators

to simulation output data along with the entire I/O pipeline. It implements SmartTap to

execute data operations in-situ on processor cores that perform the simulation code. More-

over, Since JITStager is built on software DataStager [5], it can also extract data from

simulation nodes to staging nodes, execute the data customization operators in staging,

and then forward the data to downstream data analysis for further processing.

However, these research efforts target static application workflows and pre-schedule the

placement of the analysis components.

3.2 Autonomic Technologies and Related Work

Kephart and Chess [40] have defined autonomic computing as a general computing ap-

proach where computing systems can manage themselves given specific pre-defined objec-

tives. The ultimate goal of autonomic computing is to develop computing systems capable

of self-management to deal with the dramatically growing management complexities. Many
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research work have focused on this area with different objectives, such as improving applica-

tion performance [53], optimizing Quality of Service [85], increasing resource utilization [46].

Moreover, many comprehensive surveys [69, 23, 15, 24] of autonomic computing have also

been published.

Self* property of autonomic computing: The primary properties of a self-management

autonomic system are defined by IBM [37], referred to as self-star (self-*) properties, which

contain four properties: self-configuration, self-optimization, self-healing and self-protection.

Self-configuration refers that an autonomic computing system configures itself according to

high level goals. Self-optimization refers that an autonomic computing system optimizes

its use of resources to ensure the optimal functions by following specific requirements. Self-

healing refers that an autonomic system should be able to discover and correct itself from

faults. Self-protection refers that an autonomic system can protect itself from malicious

and arbitrary attacks.

Adaptation plans: Adaptation technologies can be integrated with runtime systems to

enable autonomic self-managed applications. There are many different types of adaptations

plans and strategies.

Control-based adaptation is derived from control theory and utilizes feedback control

to achieve defined goals. Many research efforts [74, 57] have investigated using feedback

or reactive control for resource and performance management. The techniques proposed

in these research work attempted to take corrective actions based on the observations of

current application states, in order to achieve specific objectives. Control-based adaptations

have been successfully applied to several of domains, such as web service QoS adaptation [6],

task scheduling [57], load balancing [56], and processor power management [74].

Model-based adaptation has been used in a variety of contexts by using specific adapta-

tion models. Most of these adaptation strategies focus on the usage of specific models, e.g.,

performance models to support load balancing, other than general problems. For exam-

ple, many researchers explore architectural models [67] for model-based adaptations, which

utilize specific styles of architectures in their systems. There are many of such cases –

Taylor’s work used a hierarchical publish-subscribe model through C2 [68]; and Magee used

bi-directional communication links via Darwin [63].
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Rule-based adaptation performs all the adaptations following the pre-defined and gen-

erated rules that target at the final objectives. For example, ACT [73] uses a rule-based

interceptor to adaptively weave new codes while executing applications. ALua [80] uses Lua

language to perform adaptations in an interpretive manner. RESAS [9] supports rule-based

adaptations for real-time software and provides programming tools to the users. In addition,

this adaptation technology has also been applied in scientific applications workflows, such

as Grid services [50] and I/O optimization [61]. Recent research work of a programming

framework ’Accord’ [51], which was designed for autonomic applications, also systematically

studied the rule-based adaptations.

Policy-based adaptation, similar to rule-based adaptation, essentially utilizes pre-defined

policies to determine the actions to take when a specific event occurs and/or certain con-

ditions are met. These polices are designed and described inside the computing systems,

specifying the adaptation plans of the systems. There are many examples of using such an

adaptation plan in scientific workflows. For example, [18] designs the policies of workflow

management for data intensive applications; and [7] attempts to use policy-based data

placement to improve overall workflow performance. Besides, [16, 17, 31] are all other

examples of research that rely on such an adaptation technology.

3.3 Single-Layer and Cross-Layer Adaptation

Previous research efforts have focused on improving performance by using a single-layer

adaptive approach. Tapus et al. [76] introduced Resource Specification Language (RSL),

a prototype language that performs adaptations by selecting appropriate program libraries

and adaptively adjusting application parameters to tune the overall performance. This

approach performs adaptations only at the application layer and does not adapt other layers.

Similarly, Hsu et al. [36] proposed an algorithm that specifically targets the hardware layer,

and automatically adapts CPU settings such as voltage and frequency to reduce power

consumption in HPC environment.

Meanwhile, many researchers have noted that cross-layer adaptation can achieve perfor-

mance improvements, especially when dealing with more complex workflows. For example,

cross-layer adaptation methods can result in encouraging energy savings for mobile devices.
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Sachs et al. [72] employs a hierarchical approach that performs exhaustive global adapta-

tion in conjunction with local adaptations. Although, at a smaller scale, they were able to

achieve greater energy efficiency at four system layers: hardware layer, network layer, oper-

ating system layer, and application layer. Similarly, the GRACE-1 [91] framework, designed

and implemented for mobile multimedia systems, supports application QoS under CPU and

energy constraints via coordinated adaptation at the hardware, OS, and application layers.

Moreover, the idea of cross-layer has been employed in gird computing environment to deal

with the issues related to dynamic resource management [48].

3.4 SSD in High Performance Computing

New technologies such as solid state storage (SSDs) and non-volatile memories (such as PCM

and memristors) provide a hardware based solution to this I/O performance bottleneck.

NAND flash-based SSDs have many advantages over magnetic hard disks. For example,

SSDs use less power than hard disks and at the same time provide lower access latency. As

a result, SSDs are being increasingly used in HPC storage systems at different levels and

for a variety of purposes.

One direction of SSD utilization is to use them as an intermediate storage level between

DRAM and hard disk for data checkpointing. Several studies such as [71, 49] have investi-

gated using compute node-local SSDs as storage buffers, for example, to temporarily cache

checkpoint data to support recovery from failures. Although these efforts reduce the I/O

overhead by selecting the appropriate memory hierarchy level as the data buffer between

DRAM and hard disk, their focus was not to improve or accelerate the data-to-insight

discovery process.

Research efforts have also explored using SSDs for data analysis. For example Active

Flash [78] proposes in-situ scientific data analysis by directly executing data analysis tasks

on emerging storage devices. Minerva [21] extends the conventional SSD architecture using

a FPGA-based storage controller to offload data or I/O intensive application code to the

SSD to accelerate data analysis. However, these solutions do not target data coupling for

coupled application workflows, where the data exchange and access patterns can be both

complex and dynamic. Furthermore, some of these solutions require hardware modifications
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or special access priorities to the HPC systems, which can limit their use to specific resources.

3.5 Data Placement and Access Pattern Prediction

Many research works have attempted to explore efficient data placement within scientific

workflows using different methods. For example, Stock [42] provides grid-based data place-

ment service and utilizes adaptive network protocols to improve data movement efficiency.

Reorganizing data inside file system, e.g., in research work [88, 77], is another popular

approach to optimize data placement and data access performance. In such an approach,

little effect has been involved in the overall workflow communication since parallel file sys-

tem itself has dedicated system storage and network resources for enabling the optimization.

Moreover, scientific workflow management systems, such as Kepler [58], Pegasus [22], and

DAGMan [64], also contain different data placement and management strategies by using

user provided information, e.g., the sequence of execution and/or the order of data exchange.

The data is stored in files and is moved amongst applications through workflow engines.

However, these systems have a limited capacity of handling dynamic workflows. Several

other research efforts have used replication to optimize placement for parallel/distributed

storage systems, such as HDFS [10] and GPFS-SNC [34]. In these approaches, multiple

copies of data files are placed at different locations; and then the systems [10, 34] would

select the ‘best’ (in terms of access cost) replica for accesses.

Besides the above data placement strategies, specific data access patterns have also been

commonly used in developing storage systems to improve I/O performance. For example,

GFS [32] is optimized for large data sets and appends accesses; EDO [77] explores space fill-

ing curve (SFC) based data organization to improve the data read performance for scientific

applications. PDLA [88] optimizes data layout based on I/O behaviors captured in traces,

to improve the data access performance of parallel I/O systems. However, please note that

the optimization techniques in these systems are designed for static access patterns, and

may become less effective when applications have dynamically varying data access patterns.

Due to the potential benefits of using data access patterns, the strategies of predicting

data access patterns have been widely investigated. Many of these work have been success-

fully applied to either prefetching, caching or scheduling. Basically, these methods can be
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classified as three categories: (1) statistical model based methods, (2) symbol-based meth-

ods, and (3) execution-based methods. In examples of model based methods, Madhyastha

and Reed [62] used hidden Markov models and artificial neural networks to classify access

patterns so as to improve the performance of file systems. Tran and Reed [79] used ARIMA

time series to model inter-arrival time between I/O requests to predict temporal data access

patterns. In examples of symbol-based methods, the contexts/symbols are used as param-

eters in some spatial access pattern prediction models [43]. Also, LZ77 sliding window

algorithm [35] had been proposed to perform pattern aware prefetching. Omnisc’IO [29]

built a grammar-based model of the I/O behavior of any HPC applications and used it to

predict the temporal feature of future I/O operations (i.e., inter-arrival time between two

I/O requests). After that, the spatial attribute of data access will be assessed (i.e., the

file being accessed as well as the starting point, offset and size of the data in file). In the

third category of method, Zhang et al. [94] utilized an extra new process to pre-execute the

code to get future access patterns, so that main process could leverage it as a spatial and

temporal access prediction. Other research work such as [12, 33] are also included into

this category. Please note here, many of these existing prediction approaches rely on offline

model training or pattern detection; and only a few of them can predict both temporal and

spatial future access patterns.
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Chapter 4

Autonomic Data Management Abstraction

4.1 Overview

Addressing the dynamic data management requirements of extreme scale coupled scientific

workflow requires fundamental changes are required in the way that the application work-

flows are executed at runtime. Specifically, an autonomic data management approach has

to be investigated, which should be able to monitor the operating environment and running

applications, and then adapt and tune the application behaviors and resource allocations

at runtime while meeting the data management requirements and constraints.

The overarching goal of this research work is to explore an efficient autonomic run-

time approach that can autonomically respond to runtime dynamic data management re-

quirements and resources constraints for coupled simulation workflows at extreme scale.

Specifically, this autonomic data management approach is able to support the applications

and/or the runtime to adapt and modify their behaviors, e.g. data resolution, data place-

ment, placement of analytic, or resource allocation, autonomically. This is achieved using

pre-defined strategies/policies that are triggered by the changes in operating environment.

Similar to the conventional concept of autonomic computing [69, 23, 15, 24], this research

concentrates using self-management to deal with the rapidly growing complexities and costs

of runtime data management at extreme scales.

This chapter gives a schematic abstraction of the autonomic data management approach

for extreme-scale high performance computing. It first presents a conceptual model for run-

time data management; and then, describes the autonomic data management components

as well as the overall autonomic execution model. Finally, it discusses the realization of

the autonomic approach on current High Performance Computing systems in the context

of coupled scientific workflows.
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Figure 4.1: A conceptual model of the autonomic data management approach for coupled
scientific workflows. Three key elements (AO, AP, and AM) and their associated relation-
ships are illustrated.

4.2 Conceptual model of Autonomic Data Management

In this section, a conceptual model of the autonomic data management approach for coupled

scientific workflows is presented and discussed. Conceptually, an autonomic data manage-

ment framework should comprise of three key elements: autonomic objective, autonomic

policy and autonomic mechanism. These three basic elements interact and coordinate with

each other to achieve the autonomic adaptations. The elements and relationships among

the elements are illustrated in Figure 4.1.

Autonomic Objective (AO): An AO represents the goal that has to be achieved

through adaptations. It corresponds with an application requirement that is typically de-

fined by a user/scientist at the beginning of the job. Examples of AO can be ”minimal

end-to-end time”, ”least data movement”, ”most efficient usage of resources”, ”minimal

power consumption”, etc. Please note that multiple AOs may be specified simultaneously

to be satisfied by following certain associative relationships.

Autonomic Policy (AP): An autonomic policy (AP) refers to a particular pre-defined

adaptation strategy or rule used to serve and accomplish user-defined AOs. For example,

”data placement policy” defines the rules of placing data adaptively; ”data movement pol-

icy” specifies the strategies of moving data across network; etc. One specific AP can be

triggered in different scenarios for serving different AOs; and multiple APs can also be

triggered in a combined manner to serve the same AO. As illustrated in Figure 4.1, Auto-

nomic Policies are driven and organized by one or more particular AOs, and then specify
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and utilize a set of specific autonomic mechanisms (AMs) to achieve the goals. Moreover,

an AP can be configured either statically at the beginning of the job or autonomically at

runtime by defining several of input arguments that are relevant to the application and the

runtime environment. These inputs coming from the runtime operating environment and

applications will then configure the APs to specify what autonomic mechanisms should be

selected and how to execute them.

Autonomic Mechanism (AM): An AM is a particular action that can be executed by

the application or the runtime to achieve specified AOs. In coupled scientific workflow, an

AM can be ”performing in-transit analysis”, ”doing in-situ data down-sampling”, ”moving

data”, ”adjusting CPU frequency”, etc. As illustrated in Figure 4.1, when and how should

the applications or the runtime systems execute these AMs are specified in autonomic

policies (APs).

In principle, these basic elements define (1) why the adaptations are needed, (2) how

these adaptations can be achieved, and (3) what actions should be exactly executed. To

better demonstrate the importance of these elements, Figure 4.2 presents examples of auto-

nomic elements relevant to a scientific computing environment, as well as their interaction

and coordination relationships. Additionally, it also presents example input information

sources, output controlling, and other interactive relationships between autonomic elements

and the external computing environment. As shown in the figure, there are two types of

input information sources, i.e., pre-configured information and runtime status information.

Pre-configured information refers to user-provided information, such as domain information,

application knowledge, etc., which can be defined through user interfaces or configuration

files at the beginning of the job. And runtime status information refers to information rel-

evant to operational state of systems and applications, e.g., resource availability (memory,

CPU cores), application execution time, the size of generated data, etc.

4.3 Realizing Autonomic Adaptation in Coupled Scientific Workflow

To realize an autonomic data management runtime in the context of coupled scientific

workflows on High End Computing systems, three important properties have to be achieved:

awareness, adaptive, and autonomic. Awareness states that an autonomic data management
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Figure 4.2: An illustration of the relationship amongst autonomic objectives, autonomic
policies and autonomic mechanisms; as well as their interactions with external environment
through necessary input/output.

system must be able to monitor the application behaviors and the statuses of operating en-

vironment, e.g., the runtime use of CPU, DRAM, network bandwidth, and other resources.

Furthermore, the attribute of adaptive states that the autonomic data management run-

time should be able to change the behaviors of applications and configuration of system at

runtime by following specific policies. The last property is autonomic, which means that

the triggering of adaptations should be self-managed at runtime without any other manual

or external help.

This section describes the basic autonomic element used to realize such an autonomic

approach, as well as how self-adaption and self-management are realized to meet the above

three-property requirement.

4.3.1 Defining Autonomic Manager and Managed Elements

An autonomic element contains two basic components: autonomic managers and their

managed elements.
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Managed Elements: These are the smallest functional units of the application and the

operating environment. The application behaviors and environment configuration can be

adapted and tuned by managing these elements and controlling/adjusting their attributes.

Examples of element include data objects, resource (CPU, memory, network bandwidth,

etc.), application algorithms, etc. In coupled simulation workflows, the attributes of these

elements, such as data locality, data quality, algorithm scalability, CPU frequency and

memory allocation, impact the runtime data managements.

Autonomic Manager: This component provides the capability of sensing and col-

lecting the runtime status information, and then performing the autonomic adaptations by

adapting the managed elements defined above. To achieve these functionalities, the follow-

ing two components are required. Monitor captures runtime status information from both

applications and operating environment on High End Computing systems. Status informa-

tion may include resource utilization and resource availability (memory, bandwidth, CPU

cores) as well as application execution time, analysis time and the size of the generated data.

Autonomic Execution Engine manages and adapts the execution of the targeted workflows

to address the data management dynamism. Specifically, it has three responsibilities: (1)

tuning the application and workflow behaviors, such as the placement of analytics, code

coupling, etc., (2) re-configuring resources as required, and (3) managing data objects. It

selects appropriate autonomic polices and then executes autonomic mechanisms based on

defined autonomic objectives and status information provided by monitor.

4.3.2 Execution of Autonomic Adaptations

As illustrated in Figure 5.3, there are three most important stages while executing the adap-

tations for a certain autonomic objective. Firstly, autonomic manager detects and collects

runtime status information through the monitor. After that, it selects the appropriate auto-

nomic policies based on the autonomic objective. Based on the analysis result of the runtime

information, the selected policies specify the appropriate autonomic mechanisms. Finally,

autonomic manager executes these mechanisms and controls particular managed elements

to finish the adaptations. These three stages compose the basic execution/control loop of
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Figure 4.3: Autonomic manager and managed elements in the context of coupled scientific
workflows.

an autonomic adaptation. In many coupled scientific workflows, since simulations and cou-

pled applications are both performed iteratively, it is typically appropriate to execute the

autonomic adaptation loop in each iteration.

4.4 Architecture of Autonomic Data Management Framework

The autonomic managements of coupled simulation workflows running on High End Com-

puting systems require coordination among the different runtime modules of the autonomic

framework. It also builds on underlying support of basic workflow and data operations, such

as workflow composition, data placement (e.g., placing applications in-situ or in-transit),

data transfer and message passing, etc. This section presents the architecture for the au-

tonomic data management approach developed in this thesis. Specifically, it includes an

autonomic data management module for adaptive runtime data managements, and builds

on the DataSpaces framework [27] for enabling basic data transfer, storage, index and query,

and coordination for coupled simulation workflows.

4.4.1 Autonomic Data Management Module

Autonomic data management module is designed and developed to support the overall exe-

cution of autonomic runtime adaptations. Figure 4.5 illustrates the layered structure of the
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Figure 4.4: An illustration of the three-stage execution loop of autonomic adaptation.

autonomic data management module. As shown in the figure, the overall structure can be

divided into three layers in vertical: application layer, middleware layer, and resource layer.

The runtime status information collected in the system comes from those layers and impacts

the decisions of the autonomic execution engine in terms of selecting appropriate autonomic

policies and triggering corresponding autonomic mechanisms on managed elements at dif-

ferent layers. Moreover, autonomic objectives and pre-configured information (e.g., domain

information) can be configured through specific user interfaces or configuration files.

4.4.2 Workflow Coordination and Data Communication Modules

DataSpaecs is a scalable data storage and sharing framework that is designed to enable

dynamic code couping and interaction and coordination patterns between coupled scientific

applications. Specifically, it provides a semantically tuple-based shared-space abstraction

using DRAM resources of a group of staging nodes, which can be associatively accessed by

the interacting applications of a simulation workflow. DataSpaces can support both in-situ

data processing and in-transit data processing through static configurations.

This thesis re-uses the workflow coordination and data movement modules from the
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Figure 4.5: A layered architectural view of the autonomic data management module. Three
layers and autonomic components are defined. Pre-configured information is user-provided
information that is defined at the beginning of the job and is provided by using application
interfaces or configuration files. Status information from each layer is collected as inputs
into the autonomic system, to help autonomic execution engine to make runtime adaptation
decisions.

DataSpaces framework [27] to realize of the autonomic data management approach. Fig-

ure 4.6 illustrates the full stack of the autonomic data management runtime architecture and

how it builds on the DataSpaces framework. As it shows, the runtime realization utilizes

the coordination layer of DataSpaces that provide services for asynchronous data indexing

and querying, as well as its data storage layer for in-memory data caching and storage.

In addition, it also leverages the data communication layer, DART [26] – an asynchronous

communication and data transport substrate based on RDMA one-sided communication –

to enable efficient data movement and message passing across network with low overhead.

4.5 Conclusion

This chapter presents an abstraction of the autonomic data management approach that can

fundamentally address the runtime data management requirements in coupled simulation

workflows at extreme scales. The autonomic data management approach can adaptively

respond to the dynamic data management requirements and resources constraints in coupled
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Figure 4.6: The full stack of autonomic data management framework. The shadowed area
are reused part from DataSpaces.

scientific workflows.

Specifically, this chapter first presents a conceptual model that includes Autonomic Ob-

jective, Autonomic Policy and Autonomic Mechanism to enable autonomic data manage-

ment at runtime. And then, it systematically investigated and discussed how this autonomic

data management approach can be realized for coupled scientific workflows. In the real-

ization, Autonomic Manager is responsible for the execution of autonomic adaptations and

the controls of Managed Elements across different layers to achieve the adaptation objec-

tives. Specifically, after defining a specific Autonomic Objective, an Autonomic Manager is

responsible for monitoring runtime application behaviors and the status of the operating

environment using Monitor, and managing and adapting the execution and resources of tar-

geted workflows in a coordinated manner using the Autonomic Execution Engine. Finally, it

presents the architecture for the autonomic data management approach that is developed in

this thesis. This architecture includes an autonomic data management module for adaptive

runtime data managements, and builds on the DataSpaces framework for enabling basic

workflow coordination and data communication.

The next chapters will present two separate realizations of such an autonomic data

management approach for different types of coupled simulation workflows.
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Chapter 5

Autonomic In-Memory Data Management using Cross-Layer

Adaptations

5.1 Overview

In tightly coulped scientific workflows, simulation data is quickly shared and exchanged

amongst different coupled applications for accelerating the overall scientific discovery. These

simulation workflows running at extreme scales are providing new capabilities and oppor-

tunities in a wide range of application areas. However, due to the scales, coupling and

coordination behaviors and overall data management complexities, they are also present-

ing new challenges that must be addressed before their potential can be fully realized. As

demonstrated in Chapter 2, many of such tightly coupled workflows contain simulations

based on dynamically adaptive formulations such as Adaptive Mesh Refinement (AMR),

which exhibit dynamic runtime behaviors and result in largely changed data volumes and

dynamic data distributions. Efficiently managing, transporting and analyzing the simula-

tion data in those workflows have become significant and immediate challenges.

This chapter presents an autonomic cross-layer adaption approach to address these chal-

lenges in tightly coupled workflows. It designs and pre-defines some effective adaptation

policies and related mechanisms within the autonomic data management runtime system.

Specifically, this approach explores the runtime adaptations at three different layers, viz.,

application layer, middleware layer, and resource layer. At the application layer, it dynam-

ically performs the adaptation of spatial and temporal resolution of data being written and

processed; at the middleware layer, it adapts the in-situ and/or in-transit placement and

scheduling of data processing operations; and at the resources layer it adapts the allocation

of in-transit resources. It also explores a coordinated management approach that combines

these adaptations in a cross-layer manner to further optimize the end-to-end performance



40

of the workflow and to address requirements or constrains that cannot be effectively sat-

isfied by adaptations at one layer alone. These adaptation policies and mechanims have

been implemented and integrated with an autonomic runtime and have been evaluated in

terms of their effectiveness of responding to dynamic data management requirements under

application objectives and resource constraints.

The autonomic cross-layer management runtime has been deployed on the Intrepid IBM

BlueGene/P system at Argonne National Laboratory and the Titan Cray-XK7 system at

Oak Ridge National Laboratory. With these deployments, a tightly coupled workflow that is

composed of Chombo [1]-based AMR simulation and a visualization service, has been used

to experimentally evaluated the behavior of the individual adaptations at each layer, as well

as its effectiveness in improving overall time-to-solution, increasing resource efficiency, and

mitigating I/O costs.

5.2 Background

As noted in Chapter 2, simulations containing dynamically adaptive formulations, e.g.,

AMR-based simulations, exhibit dynamic runtime behaviors and result in dynamically

changing data volumes, imbalanced data distributions and heterogeneous resource (mem-

ory, CPU, network bandwidth) requirements. To illustrate the dynamic data management

and processing requirements in such workflows, this section considers the 3-D AMR Poly-

tropic Gas application as an example, which is part of the Chombo package [1] developed

by the Lawrence Berkeley National Laboratory. This application implements the Godunov

unsplit algorithm for integrating systems of conservation laws (e.g., the Euler equations

of gas dynamics). Figure 5.1 plots parts of a profile of the distribution of the applica-

tion’s peak memory usage on 4000 CPU cores over 50 time steps. As it shows, memory

consumption varies significantly both across cores and over time. Specifically, besides mem-

ory consumption increases for each time step, the pace in which the memory consumption

increases is erratic. Moreover, the memory usage is not distributed evenly among these

processes. These characteristics of dynamic runtime behaviors increase the complexity of

managing and processing the data they produce, including managing the staging resources

and scheduling in-situ and/or in-transit data processing while satisfying constraints on the
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Figure 5.1: Distribution of the peak memory consumption for an AMR-based Polytropic
Gas simulation using the Chombo library.

amount of data movement, the overhead on the simulation, and/or the level of analytics.

For example, AMR-based simulations involve dynamic local refinements, which can sig-

nificantly increase the resources consumed by the simulation on a subset of nodes. This in

turn reduces the resources available for in-situ analytics. At the same time, it also increases

the spatial and temporal resolutions of data, and correspondingly the computational and

storage requirements for the analytics as well as the cost of data movement if the analytics

have to be executed in-transit. The increasing computational and storage requirements of

the analytics can also impact in-transit resource requirements. Note that as the simulations

evolves, refined regions maybe further refined or coarsened, which can result in different

sets of requirements and constraints.

Clearly, making staging and in-situ/in-transit processing approaches effective for these

dynamic applications given performance, overhead and resource constraints requires runtime

adaptations and tradeoffs. Furthermore, these adaptations may be explored at different

levels. At the application level, the application may be able to adapt the spatial and/or

temporal resolution of the analytics or limit the analytics to “interesting” regions, to meet

constraints on the type of analytics, the available resources, and/or acceptable overheads.
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Similarly, at the runtime level, the placement and scheduling of in-situ/in-transit tasks can

be adapted, and at the resource level, the number of in-transit resources can be adapted.

This chapter explores how these dynamic adaptations can be realized at runtime for AMR-

based simulation workflows on large-scale systems. It also presents the exploration of policies

and mechanisms for combining these adaptations in a coordinated and cross-layer manner

to better address application requirements and constraints.

5.3 Realizing Cross-Layer Adaptations

This section describes an approach for efficiently and scalably realizing runtime adaptations

for in-situ/in-transit implementations of coupled simulation workflows. The conceptual ar-

chitecture follows an autonomic approach and consists of three key components, a monitor,

the autonomic execution engine, and autonomic policies, as illustrated in Figure 5.2 and

described below. In this approach, users can provide two types of inputs. Autonomic objec-

tives define the objectives that users expect to achieve, such as minimizing time-to-solution,

minimizing data movement, using highest available data resolution, etc. User’s hints pro-

vide additional information to the adaptation engine based on the user’s knowledge of the

application workflow and on past experience, for example, tolerance to data downsampling,

nature of regions of interest, possible adaptation phases and/or patterns, etc.

TheMonitor captures runtime status information at the different layers, i.e., application,

middleware, and resource, and uses it to characterize the current operational state of the

system and application and trigger adaptations if appropriate. Status information includes

resource utilization and resource availability (memory, bandwidth, CPU cores) as well as

application execution time, analysis time and the size of the generated data. The Adaptation

Engine is responsible for selecting and executing appropriate adaptations based on user

objectives and hints, the operational state provided by the monitor, and adaptation policies.

Three adaptation mechanisms are explored in this chapter. In the first mechanism,

the application layer changes the spatial and/or temporal resolution of data generated in-

situ before its is moved to the in-transit resources for processing. This mechanism can

adjust the frequency of in-situ data reduction as well as the type of reduction performed

by appropriately selecting the parameters of the data reduction module (e.g., down-sample
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Figure 5.2: A conceptual architecture of an autonomic approach for realizing runtime adap-
tations for in-situ/in-transit implementations of coupled simulation workflows.

factor, compression rate, etc.). The second adaptive mechanism adapts the placement of

the data processing operations at middleware layer. Placements can be in-situ, in-transit

or hybrid (i.e., in-situ + in-transit). The third adaptation mechanism targets the resource

layer. It determines the number of in-transit resources needed and dynamically allocates

resources for in-transit processing if necessary.

The Adaptation Policies specify which adaptation mechanism(s) should be executed

based on user inputs and the operational state. The following Section presents the develop-

ment of adaptation policies at each of the layers as well as a policy for combined cross-layer

adaptation.

The overall adaption process is illustrated in Figure 5.3. The operational status of the

simulation workflow is periodically (e.g., after every specified number of simulation time

steps) sampled by theMonitor and forwarded to the Adaptation Engine, which determines

if an adaptation is required and triggers the appropriate adaptation(s).

5.4 Defining Adaptation Policies

This section presents a development of adaptation policies for an AMR-based simulation

workflow. Note that rather than finding optimal adaptations, the overall goal is to develop
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Figure 5.3: An overview of the autonomic adaptation process.
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Symbol Description

Sdata size of simulation output

X down-sampling factor

fdata reduce(Sdata, X) data reduction operation

Memdata reduce(Sdata, X) memory needed to perform data reduction

Memavailable total available memory

Tsum insitu total wallclock time at in-situ resources

Tsum intransit total wallclock time at in-transit resources

N number of simulation processors

M number of in-transit processors

ITER total number of iterations

Di final decision for executing analysis: 1 for in-situ, 0 for in-transit

Ti sim(N) execution time of the ith iteration of the simulation

Ti insitu(N,Si data) execution time for the ith in-situ analysis on N processors

Ti intransit(M,Si data) execution time for the ith in-transit analysis on M processors

Ti intransit wait idle time on the in-transit side

Ti insitu wait idle time on the in-situ side

Tj intransit remaining(M,Sj data) remaining execution time for the jth in-transit processing iteration

Meminsitu(Si data, N) memory cost for in-situ processing

Memintransit(Si data,M) memory cost for in-transit processing

Ti sd(Sdata) latency associated with sending data

Ti recv(Sdata) latency associated with receiving data

Table 5.1: Notation used in formulating adaptation policies.

policies that can be efficiently and scalably implemented at runtime on very large scale

system while satisfactorily addressing application requirements/constraints. Specifically,

it develops policies for each of the 3 layers as well as a cross-layer policy of coordinated

adaptations, which are described in the following subsections. Table 5.1 summarizes the

notation used in this discussion.

5.4.1 Policy for Adaptation at the Application Layer

The application layer adaptive mechanism controls the resolution of the data that is for-

warded to the analysis methods, and enables a trade-off between the time and resources

spent on analysis and the resolution at which the analysis is performed. For example, it

may be beneficial to have some analysis done even if it is performed at a lower resolu-

tion. The goal of this adaptation is to determine the data resolution that can be effectively

processed in-situ or transferred to in-transit resources given autonomic objectives and the

current operational state. Specifically, it determines the factor (X) by which to downsample

the simulation data. This is either selected from a set of acceptable downsampling factors

provided by the user as a hint, or generated automatically based on information content of



46

interest. The selection is made based on the available memory and the memory needed to

implement downsampling factor X, and the smallest value of X that can be used given the

memory constrains is selected. The downsampling factor for the ith simulation iteration is

determined by the following policy:

Maximize

Sdata − fdata reduce(Sdata, X) (5.1)

Subject to

Memdata reduce(Sdata, X) 6 Memavailable (5.2)

(memory requirement)

whenXǫ{X1, X2, · · · , Xn} (5.3)

(set of acceptable down-sample factors)

5.4.2 Policy for Adaptation at the Middleware Layer

Adaptations at the middleware layer target the placement of the analytics, in-situ, in-transit

or hybrid, to minimize the overall time-to-solution under the current resource constraints.

The policy considers three cases: (1) If there are sufficient memory resources to perform the

analysis either in-transit or in-situ but not both, the adaptation will place the analysis at

the location where the memory resources are available. (2) If there are sufficient memory

resources at both locations and in-transit CPU resources are available, the analysis will

be placed in-transit since the analysis can run in parallel with the simulation. (3) If the

in-transit cores are busy processing simulation data generated at previous time steps, the

adaptation engine will estimate the remaining time for such in-transit data processing as well

as the execution time if the current data is processed in-situ. If the in-situ data processing

is estimated to be faster, the analysis will be performed in-situ. Otherwise, the data will

be asynchronously transferred to the in-transit nodes and will be processed as soon as in-

transit cores become available. These latter two cases are illustrated in Figure 5.4 and are

expressed in the formulations below:

Since
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Figure 5.4: Illustration of the analysis placement adaptation policy. For adaptation at
ts=1 and 2, in-transit resources are idle, and as a result analysis is placed in-transit. For
adaptations at ts=30, since in-transit resources are busy, the analysis time for in-situ and in-
transit processing are estimated, and the analysis is placed in-situ is the estimated processing
time there is shorter. Note that the data transfer is asynchronous and its is assumed that
the effective time for transferring the data is much smaller than the time for processing the
data.
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Tsum insitu ≃
∑ITER

i=1
{Ti sim(N) +Di · (Ti insitu(N,Si data))

+D̄i · (Ti insitu wait)} (5.4)

Tsum intransit ≃
∑ITER

i=1
{D̄i · Ti intransit(M,Si data)

+Ti intransit wait} (5.5)

Minimize

max{Tsum insitu, Tsum intransit} (5.6)

(minimized time-to-solution)

Subject to

D̄i · (Tj intransit remaining(M,Sj data) < Ti insitu(N,Si data))

= 1, j < i; (5.7)

(execution time estimation)

Di · (Memintransit(Si data,M) < Sdata) + D̄i · (Memavailable

6 Meminsitu(Si data, N)) = 1 (5.8)

(resource constraints).

5.4.3 Policy for Adaptation at the Resource Layer

Performing analysis in-transit minimizes its impacts on the simulation and can achieve bet-

ter time-to-solution. However, this approach reduces the computational resource available

to the simulation, which in turn can offset this advantage.

The resource layer adaptation targets this trade-off between minimizing the impacts of

analysis on the simulation (i.e., improving time-to-solution) and minimizing the resources

used for in-transit processing. For in-transit processing, the ideal time-to-solution can be

achieved if in-transit analysis on simulation data generated during the ith time step finishes

before data from the (i+1)th simulation time step is ready to be sent. In other words, the

smaller the idle time at the in-transit resources, the more efficiently the in-transit resources

are utilized. On the other hand, sufficient in-transit resources are needed to cache the
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simulation data generated at current time step. Therefore, the resource layer adaptation

first determines the minimum number of in-transit cores required based on the size of the

simulation data and the required in-transit memory resources. It then estimates the in-

transit processing time, and if this time is greater than the time required for a simulation

time step, the number of in-transit cores is increased until the ideal in-transit processing time

is achieved, i.e., time for the in-transit analysis is less than the time for a simulation time

step and the in-transit idle time is minimized. This policy is expressed in the formulations

below:

Minimize M

Subject to

Ti+1 sim(N) + Ti+1 sd(Si+1 data) = Ti intransit(M,Sdata)

+Ti recv(Si data) (5.9)

(Expected same execution time on both simulation side and in-transit side)

and

Memintransit > Sdata (5.10)

(in-transit memory constraint)

5.4.4 Policy for Combined Cross-Layer Adaptation

The cross-layer adaptation policy explores the coordinated use of the adaptive mechanisms

at the three layers described above to satisfy user objective or constraints, e.g., for desired

time-to-solution or acceptable data movement, that cannot be satisfied using adaptations

at one layer alone, or to further improve performance. Specifically, this section presents a

heuristic root-leaf policy for the selection of adaptation mechanisms across the three layers.

This policy consists of three steps: selecting root mechanisms, selecting leaf mechanisms,

and executing selected mechanisms. Consider “minimizing time-to-solution” as an example

objective to illustrate these steps of the policy. First, the policy selects the mechanisms

that can address the objectives of the cross-layer adaptation, and marks them as root mech-

anisms. Based on the descriptions of adaptation mechanisms above, the middleware layer

adaptation can address the example object of minimizing time-to-solution and should be
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automatically included in the set of root mechanisms. Second, the policy goes through the

formulation of root mechanisms and looks for data dependencies with mechanisms at other

layers not in the set. In this example, the data size Si data and the number of in-transit

cores M are two significant inputs for root mechanism, i.e., the middleware layer adapta-

tion mechanism, and these parameters also impacted by the application layer adaptation

mechanism for data reduction and resource layer adaptation mechanism. Therefore, these

mechanisms are marked as leaf mechanisms. Finally, once both root mechanisms and leaf

mechanisms are selected, the policy executes these adaptations, first the leaf mechanisms

and then the root mechanisms. If there are data dependencies among the selected leaf

mechanisms, the execution is in the order of the dependencies, i.e, leaf mechanisms that do

not rely on outputs from the other selected mechanisms are executed first, followed by the

mechanisms that depend on their outputs. In this example, the application layer adapta-

tion will be executed first since its output Si data will impact the resource layer adaptation

mechanism, i.e., the other selected leaf mechanism. The middleware adaptation mechanism

will be executed last as it is the root mechanism in example.

Similarly, if the user-defined objective is to maximize in-transit resource utilization, the

policy would select resource layer adaptation as the root mechanism and the application

layer adaptation as the leaf mechanism. The middleware layer adaptation mechanism will

not be included in this case since it has no data dependency with the root mechanism.

5.5 Experiment Evaluation

This section presents an experimental evaluation of the autonomic data management frame-

work presented in this chapter. It first evaluates adaptations at each of the three layers

individually, and then evaluates combined cross-layer adaptations.

5.5.1 Experiment Setup

AMR-based Simulation Workflow

The evaluation presented in this section uses a simulation workflow that is composed of a

Chombo [1]-based AMR simulation and a visualization service, which are described below.
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Chombo-based AMR Simulations: These experiments use two different AMR-based

simulations that are distributed as part of the Chombo AMR package [1]. Both these simu-

lations implement the AMR Godunov unsplit algorithm but show very different performance

characteristics. The AMR Advection-Diffusion simulation implements an adaptive conser-

vative transport (advection-diffusion) solver, while the AMR Polytropic Gas implements

the AMR Godunov unsplit algorithm for integrating systems of conservation laws (e.g., the

Euler equations of gas dynamics). While both simulations exhibit runtime adaptations, the

latter is more memory and compute intensive, especially in 3-D.

Visualization Service: The visualization service implements the marching cubes algo-

rithm [55, 84], the de facto standard isosurface extraction algorithm in scientific visualiza-

tion, to construct triangular meshes from AMR data according to user specified isovalues.

The algorithm scans each cell and conducts triangulation depending only on the values

of the current cell, and thus the isosurface construction is performed locally. The ghost

regions are managed by Chombo, and there is nearly no communication needed for the

marching cubes algorithm. This algorithm can extract isosurfaces from full-resolution data

in-situ, which can generate a high-quality triangular mesh to capture the fine structural

information.

Implementation of the prototype of Autonomic Runtime

The autonomic runtime is implemented on the top of DataSpaces data-management sub-

strate [8, 28, 27]. DataSpaces provides distributed interaction and coordination services

to support in-situ and in-transit simulation-analysis workflows on very large-scale systems,

and its data transport layer provides the required asynchronous communication and data

transfer services.The Adaptation Engine is integrated with DataSpace to enable runtime

coordination and adaptation at different the layers. In addition, the embedded perfor-

mance tools within Chombo provides runtime system information such as memory usage

and execution time, and are used by the Monitor.

The autonomic approach has been implemented and integrated with Chombo. In par-

ticular, only minimal modification is needed for the simulation side. In the AMR class of

Chombo, a virtual function named AMR::insituProcess is added and called periodically
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during AMR::run. The AMR::insituProcess function can be implemented in AMR’s de-

rived classes for each particular case. Through a derived class, it can customize the in-situ

processing tasks, access simulation data, and minimize the interference to Chombo. More-

over, the Chombo’s MPI communicator can be accessed simply through the global variable

Chombo MPI::comm. During the MPI initialization stage, the processors are partitioned into

three groups for simulation and in-situ processing, data transferring, and in-transit pro-

cessing, respectively. This way can further minimize the possible interference between the

simulation and the other processing. This approach is easy to understand and simple to

integrate with the exiting real-world large simulations.

Systems

The experiments were conducted on the Intrepid IBM BlueGene/P system at Argonne

National Laboratory and Titan Cray-XK7 systems at Oak Ridge National Laboratory.

Intrepid consists of totally 40960 nodes, each of which has quad-core processor and 2GB

RAM (i.e., 500MB per core). Its peak performance can reach 557 teraflops.

Titan has 18,688 nodes connected through the Gemini internal interconnect, and each

node has a single 16-core AMD 6200 series Opteron processor and 32GB RAM (i.e., 2GB

per core). The total system memory is 600 terabytes and the system peak performance can

reach 20 petaflops. Besides, it has 18688 K20 Keplers GPUs, although they are not used in

experiments.

5.5.2 Evaluation and Discussion

Evaluation of Adaptations at the Application Layer

These experiments used a memory intensive 3-D AMR Polytropic Gas application with a

domain size of 128×64×64 at the base level. The experiments were performed on 4K cores

of the Intrepid IBM BGP system, which has only 500MB of memory per core. Furthermore,

the experiments were performed with two different types downsampling approaches that can

be used by the application layer adaptation mechanism as described below.

User-defined range-based data downsampling: In this experiment, the application

layer adaptation mechanism used an in-situ downsampling method with user-defined ranges
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Figure 5.5: Evaluation of application layer adaptation of the spatial resolution of the data
using user-defined downsampling factors, and based on runtime memory availability. Note
that at the 31st time step, the spatial data resolution is reduced due to limited availability
of memory resources, and at the 40th time step, the data resolution reaches the minimal
value.

of down-sampling factors. These ranges of acceptable down-sampling factors were specified

as user hints, and were {2, 4} for the first half of the simulation, and {2, 4, 8, 16} for the

second half.

In this experiment, the peak memory used on a processor varied from 20MB to >

300MB. Figure 5.5 plots the runtime memory availability for a single processor over 40 time

steps. The Figure also shows the actual memory usage during the same period when using

adaptive downsampling factors, as well as the memory requirements when maximum and

minimum acceptable spatial resolutions were used for the data. When sufficient memory

was available (between time step 0 to 30), the adaptive mechanism correctly selected the

minimum down-sampling factor, which produced a larger data volume at a higher spatial

resolution. However, starting at the 31st time step, the available memory could no longer

support this higher spatial resolution. As a result, the adaptive mechanism increased the

downsampling factor as seen in the figure.
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Entropy based data down-sampling: In these experiments, the down-sampling fac-

tors used by the application layer adaptation mechanism were automatically tuned based

on information theory, which provided users with a theoretical framework to measure the

information content of a variable [82]. For each data block within the AMR dataset, it com-

putes the entropy value to quantify the distribution of its variables. For a discrete random

variable χ and probability mass function p(x), x ∈ χ, the entropy of X can be defined as

H(X) = −
∑

x∈χ

p(x)logp(x) (5.11)

where p(x) ∈ [0, 1],
∑

x∈χ p(x) = 1.0, and −logp(x) represents the information associated

with a single occurrence of x. The higher the value of H(x), the more information the data

block contains. The unit of H(X) is a bit. For example, at the 60th time step for the

Polytropic Gas case, the entropy values of the data blocks at the finest level are between

5.14 and 9.85. Therefore, the data blocks can be adaptively downsampled based on their

entropy values by specifying a set of thresholds. Figure 5.6 compares visualizations using

the full-resolution data and the adaptively down-sampled data. It can be seen that the

fine structural information is well preserved for regions with higher entropy values, while

regions with lower entropy values can potentially be reduced aggressively without losing

much information or impacting the understanding of the data.

These results clearly show that the proposed approach successfully adapts the down-

sampling factor at runtime to meet the constraints on acceptable data resolution at the

application layer as well as constraints due to the limited size of available memory at the

resource layer. The results also show that such adaptations can potentially allow memory

intensive simulation workflows to run on systems with contained memory resources.

Evaluation of Adaptations at the Middleware Layer

These experiments used the AMR Advection-Diffusion simulation and evaluated both, an

adaptive placement and a static placement of the visualization service within the application

workflow. The experiments were performed on Titan and evaluated how middleware layer

adaptations can optimize overall time-to-solution at different scales. The simulation were

performed on 2K, 4K, 8K and 16K cores, with a 16:1 ratio of the number of the simulation
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(a)

(b)

Figure 5.6: Evaluation of application layer adaptation of the spatial resolution of the data
using entropy based data down-sampling. (a) shows a simultaneous rendering of two isosur-
faces of the full-resolution Polytropic Gas simulation data set. The surfaces are extracted
from the density variable at the 60th time step, corresponding the isovalues 1.23 (red) and
4.18 (green), respectively. The right and left images show close up views of the two regions.
(b) shows the result after the dynamic adaptation of its spatial resolution. The right region
has its entropy value (at 5.14) that is lower than the specified threshold and thus is down-
sampled at every 4th grid point. The left region has a higher entropy value (at 9.21) and
its resolution is not changed.
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tive in-situ/in-transit placement of the visualization service. The end-to-end overhead plot-
ted is the overhead on the overall time-to-solution and includes data processing time, data
transfer time, and other system overheads.

core to the number of the in-transit cores. The initial 3D grid domain sizes used in the

experiments were 1024 × 1024 × 512 for the 2K case, 1024 × 1024 × 1024 for the 4K case,

2048× 1024× 1024 for the 8K case, and 2048× 2048× 1024 for the 16K case.

End-to-end execution time (or time-to-solution) was used as the key metric in perfor-

mance evaluation and is composed of two components as seen in Figure 5.7: end-to-end

simulation time and end-to-end overhead. End-to-end overhead includes the data process-

ing time, data transfer times and other system overheads such as due to adaptation. The

adaptive in-situ/in-transit placement approach shows significant benefits as compared to a

static approach in terms of the time-to-solution – it achieves the smallest cumulative end-to-

end execution time, which demonstrates that this policy achieves its goal, i.e., to minimizes

time-to-solution using adaptive placement. Quantitatively, the cumulative end-to-end ex-

ecution overhead for the adaptive placement case decreased by 50.00%, 50.31%, 50.50%,

56.30% compared with static in-situ placement, and 75.42%, 38.78%, 21.29%, 48.22% as
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Figure 5.8: Comparison of total data movement between static and adaptive in-situ/in-
transit placement of the visualization service.

compared with static in-transit placement, for the 2K, 4K, 8K, and 16K core cases re-

spectively. The end-to-end overhead in all these cases were less than 6% percent of the

simulation time. Furthermore, since the analysis at some time steps were adaptively per-

formed in-situ, the overall data movement for adaptive placement was reduced by 50.00%,

48.00%, 47.90%, 39.04% as compared to static placement for the 2K, 4K, 8K, and 16K core

cases respectively, as shown in Figure 5.8.

Evaluation of Adaptations at the Resource Layer

This experiment performed local adaptations at the resource layer to dynamically change

the number of cores allocated for in-transit processing. With 4,096 simulation cores, the

initial number of cores available as in-transit processing was 256. The rest of the setup for

this experiment was the same as that described in Section 5.5.2. The goal of the experiment

was to evaluate how effectively the resource layer mechanism respond to dynamic in-transit

resource requirements while achieving efficient resource utilization.

Figure 5.9 plots the number of in-transit cores used at each time step. At the beginning
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of the simulation, the size of data generated and processed in-transit is relatively small.

Therefore, only around 50 in-transit cores are needed. However, as the grid gets refined,

the size of the data generated increases, and additional in-transit resources are required to

satisfy memory requirement for in-transit analysis as well as time-to-solution constraints.

The adaptation approach uses fewer in-transit processor cores to achieve the same time-

to-solution, compared with using a static number of in-transit cores. As a result, the resource

utilization of the in-transit staging area is greatly improved. To quantify the improvement

in CPU utilization, the cpu utilization efficiency can be defined as follows:

∑TS
j=1

∑Mj

i=1
{Tintransit analysis i j}

∑TS
j=1

∑Mj

i=1
{Tintransit total i j}

(5.12)

where TS is the maximum time step, Mj is the number of in-transit cores allocated at

the jth time step, Tintransit analysis i j is the execution time at the ith in-transit cores for

data analysis at the jth time step, Tintransit total i j is the total execution time at the ith

in-transit cores at the jth time step.

Using this definition of utilization efficiency, it can be found that the utilization efficiency



59

Cases Total Time Steps No. of Time Steps for Different Utilizations

No. of Sim Cores : No. of Staging Cores 100% Cores 75% Cores 50% Cores < 50% Cores

2K:128 27 25 2 - -

4K:256 42 8 13 4 17

8K:512 49 4 23 22 -

16K:1024 41 10 12 10 9

Table 5.2: Actual utilization of in-transit cores while performing in-transit analysis.

when using resource layer adaptations is 87.11% as compared to only 54.57% in the static

allocation case.

Evaluation of Time-to-Solution Aware Cross-layer Adaptations

Adaptations at a single layer may not meet the scientists’ requirements in some scenarios.

For example, the scientists often attempt to find abnormities in an AMR-based simulation

by visualizing the output data on-the-fly. In these cases visualizing data with lower spatial

resolution is often sufficient and is more efficient. Furthermore, this visualization must be

performed in-situ and/or in-transit while satisfying constraints on the overheads on the

simulation, the resources used, and the overall execution time. Achieving this requires

coordinated adaptations at the application layer to adapt the data resolution, and the

middleware layer to appropriately place the visualization.

This experiment evaluates such a combined cross-layer adaptation across multiple lay-

ers. The objective is defined as minimizing time-to-solution, and to facilitate comparison,

the basic experiment setup is the same as that used for the experiments described in Sec-

tion 5.5.2. The experiment also used the same acceptable user-defined data sampling rates

that were used in the experiments described in Section 5.5.2, which were once again provided

as user inputs for possible application layer adaptations.

The experiment results demonstrate that, in this case, adaptations at all three layers

are triggered and execute in a coordinated manner. Figure 5.10 plots the values of overall

cumulative end-to-end overhead, which decrease by 52.16%, 84.22%, 97.84%, 88.87% for

the combined cross-layer adaptation cases (i.e., global adaptations) for the 2K, 4K, 8K

and 16K core cases respectively, as compared to the corresponding middleware layer only

adaptations (i.e., local adaptations) that were presented in Section 5.5.2. Since the data

is reduced in-situ using downsampling, the time required for in-situ analysis and in-transit
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analysis decreases due to the decreasing data volume. On the other hand, faster in-transit

analysis implies that there is a greater possibility that in-transit resources will be idle

between simulation time steps. In this case, middleware layer adaptations policy places the

analysis in-transit more frequently, as demonstrated by the result in Table 5.2.

While performing more of the analysis in-transit implies a larger amount of data transfer,

Figure 5.11 shows that the data reduction achieved due to the application layer adaptation

dominates and the overall amount of data transfer actually decreased by 45.93%, 17.25%,

5.76%, and 32.41% or the 2K, 4K, 8K and 16K core cases respectively, as compared to

the corresponding middleware layer only adaptations (i.e., local adaptations) that were

presented in Section 5.5.2. Meanwhile, Table 5.2 shows that fewer in-transit cores are used

to achieve the same time-to-solution, which demonstrates another benefit of this combined

cross-layer adaptation. Specifically, for the 4K and 16K core cases, the fraction of the

initially allocated in-transit cores used drops to less than 50% for some of the time steps.

In summary, the cross-layer adaptation approach can be triggered and can dynamically

respond at runtime to meet user-defined objectives under varying resource limitation and

user’s constraints. Compared to static approaches, both the local adaptations at a single

layer and global combined cross-layer adaptations demonstrate significant benefits in terms

of time-to-solution, data movement, and resource utilization efficiency. Since the experi-

ments use Chombo-based applications and a third-party adjustable visualization code, the

cross-layer autonomic runtime can be used with other adaptive application frameworks, as

well as other scalable analysis services with no/rare communications, such as descriptive

statistic analysis, data subsetting, etc.

5.6 Conclusion

This chapter explored autonomic cross-layer adaptations to address the dynamic data vol-

umes and data processing requirements of adaptive simulation workflows, such as those

based on SAMR formulations. Specifically, it focussed on run-time adaptations across three

different layers: application layer, middleware layer, and resource layer and demonstrated

that such adaptations are necessary for meeting application requirements while meeting

application and system constraints. The experimental evaluation presented results using
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AMR-based simulation codes implemented within the Chombo framework, and running on

bot, the Intrepid IBM BlueGene/P system at ANL and the Titan Cray-XK7 system at

ORNL. The evaluation results demonstrated the effectiveness of adaptation at each layer in

terms of reducing network data movement, improving resource utilization and minimizing

time-to-solution.
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Chapter 6

Autonomic Data Placement in Multi-Tiered Data Staging

6.1 Overview

Architectural trends indicate that emerging systems will have increasing numbers of cores

per node and correspondingly decreasing amounts of DRAM memory per core as well as

decreasing memory bandwidth. These trends can significantly impact the effectiveness of

in-memory staging solutions and their ability to support data-intensive simulation work-

flows. For example, in a loosely coupled data-intensive simulation workflow, data generated

by one simulation may have to be consumed by another simulation or by an analysis service

before it can be overwritten. As data volumes increase and memory capacity and band-

width decrease, memory constraints can quickly become a bottleneck of in-situ/in-transit

processing. Furthermore, the coupled simulation, the analytics, and/or the visualization

components may require the accumulation of data over multiple time steps, which can

further accentuate this problem in such a type of coupled simulation workflows.

Fortunately, non-volatile memory devices, such as solid state disks (SSDs), are becoming

more pervasive and have been deployed on a number of systems, such as Gordon at San Diego

Supercomputing Center (SDSC), Tsubame2 at Tokyo Institute of Technology, and Sith at

Oak Ridge National Laboratory. SSDs offer several benefits over traditional hard disks due

to their lower data access latency, lower power consumption, and stability. Furthermore,

these lower costs and larger capacities as compared to DRAM make the SSD an attractive

candidate as an intermediate data storage level to address the performance and latency

gaps between DRAM and magnetic disk [87]. As a result, several existing HPC research

efforts explore using SSDs, for example, as storage buffers to temporally cache checkpoint

data [71], or for caching data before it is stored onto disks [49].

However, additional complexities associated with managing placement of data across
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multiple layers of the memory hierarchy and its access by multiple concurrently executing

tasks present significant challenges. As a result, these intermediate memory levels have

not been extensively used for supporting in-situ/in-transit data staging and processing for

coupled simulation workflows. In fact, system support and runtime mechanisms for dynam-

ically managing data placement across the layers of a deep memory hierarchy, coordinating

data movement and data sharing between the components of a coupled simulation workflow

remain research challenges.

This chapter explores how a SSD-based level of deep memory hierarchy can be used

for data staging, coupled with the autonomic data management approach to address the

challenges outlined above in loosely coupled workflows. Specifically, it presents a multi-

tiered data staging runtime that leverages both DRAM and SSD to support dynamic data

staging and runtime data management for coupled data intensive simulation workflows. The

presented hybrid staging approach allows us to accommodate larger data volumes that may

exceed available DRAM main memory within the staging nodes, and to support runtime

data sharing, code coupling, and data management required by simulation workflows. It also

presents an adaptive application-aware data placement mechanism that can dynamically

manage and optimize data placement across the DRAM and SSD storage layers using data

access patterns and user provided hints. More specifically, applications can specify and

update spatial and temporal attributes describing their expected data access patterns as

hints along with the workflow. At the same time, data access patterns are tracked at

runtime and are used to anticipate future accesses. The adaptive runtime uses both the

users hints and the runtime predictions to assess the access probabilities and importance

of each data object, and then quantifies these data access possibilities and importance by

calculating and assigning a utility value. Data objects with higher utility value will be

prefetched from a lower level of the memory hierarchy (i.e., SSD) to a higher one (i.e., local

DRAM), and/or stay at higher memory hierarchy level longer, which is demonstrated to

reduce the concurrent data access overheads and improves the overall time to solution.

This data staging runtim has been implemented and deployed on two different systems at

the Oak Ridge Leadership Computing Facility (OLCF): the Sith Infiniband system and the

Titan Cray XK7 system. Since Titan is not equipped with SSDs, a simple emulator is used,
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which utilizes part of the available DRAM to mimic data write/read behaviors to SSD, and

models the performance of SSDs by introducing delays. These implementations are designed

and used to experimentally evaluate the behavior and performance of the staging runtime

using two application workflows: the S3D[13] (DNS-LES) combustion simulation workflow

and the XGC1-XGCa confined high-temperature plasma fusion simulation workflow [20, 44].

6.2 Data Management Challenges

As scientific simulations grow in size, the efficient management of the data they generate

becomes imperative in order to enable scientists to glean insights from them in a timely

manner. This section describes the specific data challenges present in today’s scientific

workflows.

Figure 5.2 illustrates a coupled simulation workflow, wherein the primary scientific sim-

ulation is the data producer and secondary simulations, analytics, and/or visualization

applications serve as data consumers coupled to the producer. These components run at

different scales, produce and consume data at different rates, and progress at different

speeds. They also regularly exchange data at runtime with differing exchange patterns,

frequencies, and data sizes. The key challenges are then to manage the runtime placement

of this data and to optimize the end-to-end performance of the workflow by orchestrating

an ensemble-based execution of the various components. This approach must also account

for the complexities of the data exchanges that will occur between each of the components.

In-memory data-staging approaches are addressing these challenges, i.e., previous work

DataSpaces, which provides a semantically specialized shared-space abstraction and un-

derlying runtime mechanisms to support in-situ/in-transit workflows using compute and

storage resources at a set of staging nodes, as well as asynchronous data exchange via

RDMA [93, 28].

Despite the advantages that in-memory staging solutions offer, increasing data volumes,

as well as non-uniform input/output staging rates and varying data sizes, can still result in

situations where data no longer fits within the local DRAM staging area. Furthermore, some

analytic components, e.g., feature tracking[47] and trajectory tracking visualizations[86],

may require data generated at multiple simulation time steps. This results in a large amount
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Figure 6.1: A typical data staging workflow to enable coupled simulation/analytics compo-
nents.

of data that would have to be cached in the staging area, but DRAM capacity is limited

on these computational resources. Recent architecture trends suggest that future high

end computing resources will likely add more cores and compute power, while decreasing

the amount of DRAM per core; therefore, solutions that only aim to allocate additional

resources to the staging area are not feasible or desirable, and new approaches must be

considered.

6.3 Design of the Multi-tiered Staging Framework

The overarching goal of this part of research is to develop an efficient runtime staging frame-

work that can leverage multiple levels of the memory hierarchy to support data intensive

coupled simulation workflows. Specifically, this approach extends existing staging solutions

vertically by spanning two levels of local memory resources – DRAM and SSD. The result-

ing multi-tiered staging framework allows us to accommodate larger data volumes that may

exceed available DRAM memory in the staging area, and to support runtime data sharing,

code coupling, and data management required by data-intensive simulation workflows. This

research also includes a development of an adaptive application-aware runtime mechanism

to manage data placement across the memory levels and orchestrate data movement. More

specifically, this approach uses data access patterns and user provided hints to assess the
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Figure 6.2: Coupling and data-exchange pattern for the XGC1-XGCa coupled simulation
workflow. Two types of data is exchanged between XGC1 and XGCa in each coupling step.

utility of data objects and appropriately place the data in the multi-tiered staging area.

A schematic overview of the architecture of the multi-tiered staging framework is pre-

sented in Figure 6.3. The framework builds on DataSpaces [28], and directly leverages its

Coordination Layer and Data Communication Layer, reusing its data transport, indexing

and querying capabilities. Following the DataSpaces architecture, the framework consists

of a client side subsystem that is co-located with the workflow applications and a server

side subsystem that runs on the staging cores. The key modules of the multi-tiered staging

framework, Application Interface, Data Object Storage Layer and Data Object Management

Module, are described below.

6.3.1 Application Interface

The spatial and temporal data domain, which is typically based on a discretization of the

physical domain, is widely used in scientific applications to specify data regions of interest

as well as the frequency of data processing. This framework uses this information to assist

in data placement. Specifically, a set of APIs on the client side are defined through the

Application Interface to enable users to explicitly annotate the workflow specification with

hints in the form of spatial and temporal attributes describing their expected data access
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patterns. These hints are transferred to the staging server and decoded by the Data Object

Management Module to help optimize data placement. The specific APIs are described in

the next section.

6.3.2 Data Object Management Module

The Data Object Management Module implements both the multi-tiered staging mechanism

at the staging servers and the data placement within the staging area. Specifically, it

implements the application-aware data placement mechanism that uses hints along with

history-based predictions of data access patterns to assess the probability of accessing data

objects in the staging area. Once this probability is assessed, it can prefetch data objects

accordingly from a lower level of the memory hierarchy, i.e., SSD, to local DRAM, thus

reducing access overheads and improving the overall time to solution. It is also responsible

for managing the versions of data stored in the staging area and the associated metadata,

and handling garbage collection along with other utility functions.

6.3.3 Data Object Storage Layer

The Data Object Storage Layer spans the primary DRAM storage level, which has relatively

limited capacity but lower latencies, and the secondary SSD storage level, which has rela-

tively larger capacity but higher latency. Data objects are appropriately stored at different

storage levels across distributed staging nodes as defined by the Data Object Management

Module.

6.4 Application-aware data placement mechanism

During the execution of a simulation workflow using a staging-based approach such as

DataSpaces, at the end of a time step, the simulation issues a data write request and

then proceeds with its next time step. Meanwhile, data produced by the simulation is

asynchronously transported to the staging nodes using RDMA. Therefore, the progress of

the simulation is not impacted by whether the data is placed in DRAM or SSD at the

staging nodes. However, a delay in data retrieval can directly impact the execution of a

coupled simulation and/or analytics component, and may significantly increase the overall
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Figure 6.3: System architecture of multi-tiered staging framework. The shadowed area
represents components of DataSpaces that are reused by the framework.

execution time of the workflow. As a result, an adaptive application-aware data placement

mechanism is designed, which focuses on moving data across the levels of the memory

hierarchy at the staging nodes in order to optimize data retrieval requests. Generally, it

attempts to ensure that data is moved to DRAM prior to a read request from a coupled

simulation or analytics component in order to avoid any penalty from reading data from a

lower level of the memory hierarchy, i.e., the SSD level.

To achieve this goal, this research quantifies the utility (or value) of data objects in the

staging area based on anticipated data read patterns. If a specific data object is part of a

possible future data read patterns, its data utility value increases. Data objects with higher

data utility value are kept longer in the staging area and have a greater chance of being

moved to a higher level in the memory hierarchy. Data read patterns are anticipated using

information from two sources: (1) domain information and hints about expected data read

patterns provided by the user along with the workflow, and (2) the predictions from an

adaptive data read pattern predictor that utilizes both application-level data locality and

data access history. The data read pattern predictor is designed to address inaccuracies

in the user-provided hints (e.g., the observed reading patterns conflict with the provided

hints) and to cases where there is no information about reading patterns provided by the

user (e.g., in case irregular data read patterns). Details of the adaptive application-aware



70

x

Y

Time Step

     (ts)

ts=1

ts=2

ts=3

ts=N-1

ts=N

... 
...

Figure 6.4: An illustration of spatial and temporal data read patterns for a 2D data domain
with N time steps. The gray regions indicate data written into the staging area, while the
yellow regions and checkered regions are read by two different applications.

data placement mechanism are described below.

6.4.1 Identifying Key Attributes of Data Read Pattern

It has been shown in previous research [54] that the data access in scientific application work-

flows has well-defined domain specific access patterns, which can be leveraged to increase

I/O performance, especially for complex simulation workflows involving coupled codes. The

key idea underlying this data placement strategy is to similarly leverage these spatial and

temporal data read patterns in coupled simulation workflows. With the help from ap-

plication scientists, the key spatial and temporal attributes that influence data reading

performance have been identified. A Temporal attribute indicates when and how frequently

an application will read data, e.g., the LES code reads data generated by all DNS time

steps. A Spatial attribute defines regions within the application data domain where data is

accessed.
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6.4.2 Specifying Hints

Users can specify the temporal and spatial data access attributes identified above in the

form of hints as follows:

access hint{T, S,N}

T = {[TSstart, frequency, TSend]};

S = {[Coordinateslower, Coordinatesupper], T,Ndim};

A temporal hint uses a start time step TSstart and an end time step TSend to define

the time interval during which data is accessed, as well as the data access frequency within

this interval. Similarly, the spatial hint specifies the bounding boxes for the region of data

access using boundary coordinates and the number of dimensions. N indicates how many

times this data object will be read. This formulation can represent most of the regular data

read patterns in real scientific applications. Besides, multiple hints can be defined to enable

the specification of more complex read patterns. For example, the following hints specify

a data access pattern that reads data four times in the region {(0, 0), (1, 1)} for every two

time steps in the time interval 10 to 20, and in the region {(2, 2), (3, 3)} for every time step

in the time interval 40 to 45, both for a 2D data domain:

access hint{T1, S1, 4} ∪ access hint{T2, S2, 4} :

T1 = {[10, 2, 20]}, S1 = {[(0, 0), (1, 1)], T1, 2};

T2 = {[40, 1, 45]}, S2 = {[(2, 2), (3, 3)], T2, 2}.

These hints can be updated at runtime as the simulation evolves, allowing data place-

ment for irregular and dynamically changing data read patterns. The specific application

prgoramming interfaces for initializing and updating user hints are listed in Table 6.1. Note

that while the research work in this thesis has focused on data domains represented using

Cartesian coordinates, this approach can be extended to other coordinate systems.

6.4.3 Adaptive Data Read Pattern Prediction

When user-provided hints are found to be inaccurate or are not provided, the data place-

ment mechanism uses an adaptive data read pattern predictor. The predictor utilizes both

application-level data locality and data reading history. Application-level data locality is
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similar to the conventional notion of data locality but at a different granularity, and implies

that if data objects for certain regions of the data domain are generated at the current time

step and read by a component of the application workflow, then data objects in the same

and nearby data regions that are generated during the next few time steps will likely be

read by the same component. For example, the checkered data objects at time step 1 is

read by one application in Figure 6.4, and consequently it is assumed that data objects in

regions {(2, 0), (3, 1)} will likely be read for time step 2, 3, and 4. Application-level data

locality relies on the fact that data generated in nearby regions and time steps will probably

contain related data objects, which is true for many scientific simulations.

However, application-level temporal data locality may not work in some cases, for ex-

ample, for slow time-varying simulations where scientists are likely more interested in the

phenomena across longer time intervals rather than shorter ones. Also, in other cases,

such as importance-driven visualizations [83], data values impact the decision of which data

objects to read, which is not fully captured by the application-level temporal data local-

ity attribute. Therefore, the predictor tracks the history of temporal data read patterns

starting from the beginning of the workflow and uses them to predict future ones following

a simple prediction algorithm that is low overhead and sufficiently accurate. Specifically,

this algorithm tracks and counts data read accesses at every two continuous time steps,

fills up a state table, and then calculates the probabilities for all transitions. Once these

probabilities have been calculated, the data read result at the current time step can be

used to predict next and future ones. Table 6.2 shows an example prediction table that

tracks the history of data read accesses for a data object for the previous 15 time steps (i.e.,

010011010100110, where 1 represents an access and 0 represents no access) and predicts the

data reading decision at the 16th. Since the data generated at the 15th time step was not

read by this application, according to the state transition possibilities, it could predict that

data generated at the 16th time step will not be read either. If the transition possibility

is 50%, it will be predicted to read. The predicted number of times a data object will be

accessed simply follows the last history record. At the beginning of a simulation, the size

of the data generated is still small enough that it can be accommodated in DRAM storage

within the staging area, which means that the read access information acquired during this
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hint init(*hint, app) Application app initializes hint

hint update(*hint, TS, app) Application app updates hint from time step TS

Table 6.1: Programming interfaces for initializing and updating user hints.

Current TS Next TS Access History Probability

0 0 5 71.4%

0 1 2 28.6%

1 0 2 33.3%

1 1 4 66.6%

Table 6.2: Example of a temporal data read pattern prediction table. The data read pattern
history for the first 15 time steps is 010011010100110 (1/0: data generated at this time step
is/isn’t read by a specific workflow component), the data generated at the 16th time step
will be predicted as 0 (i.e., not read) due to a transition probability of 71.4%.

time can serve as a good initialization of access history for the predictor.

6.4.4 Data Utility Management

The final objective of predicting data read pattern is to quantify the utility value of data

objects, which is then used for data placement and management across different memory

hierarchy levels. If a data object generated at a certain time step has been predicted to

be read by an application, its utility value increases by the predicted number of times it

will be accessed, and if a data object has been read by an application, its utility value

decreases accordingly. When a data object is written to the staging area with sufficient

available memory, it will be kept in DRAM irrespective of what its data utility value is.

However, if DRAM space is constrained, data objects with higher data utility values will

replace existing data objects with lower data utility values in DRAM memory, and these

replaced objects will be placed directly into SSD storage.

This approach combines static and dynamic optimizations – user hints enable data

placement based on static data read patterns, while the adaptive data read pattern predictor

handles dynamic data read patterns. The effectiveness of this approach is experimentally

evaluated in the next section.
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6.5 Experimental Evaluation

This section presents the experimental results of adaptive application-aware data placement

mechanism by using synthetic codes under different data read patterns. It also presents the

performance evaluation of this multi-tiered staging approach as utilized by two applications:

combustion DNS-LES simulation and plasma fusion XGC1-XGCa simulation.

The experiments were performed on ORNL’s Sith InfiniBand system and Titan Cray

XK7 system. Sith is an Opteron-based InfiniBand cluster equipped with SSD storage. The

Sith cluster contains 40 compute nodes, each node has 4 2.3GHz 8-core AMD Opteron

processors, 64GB of memory, and three 512GB Samsung 840 Pro SSDs. Titan has 18,688

compute nodes connected through a Gemini interconnect, each node has a single 16-core

AMD 6200 series Opteron processor and 32GB of memory. The total system memory is

600 Terabytes. Since Titan has not been equipped with SSDs, an simple emulator is used,

which utilized part of the available DRAM to mimic data writing/reading behaviors and

introduced artificial delays to closer emulate real-life SSD performance.

6.5.1 Impact of Application-aware Data Placement

This experiment evaluates the data reading performance of this multi-tiered staging ap-

proach with internal adaptive application-aware data placement mechanism in scenarios

with different data read patterns. As stated in previous sections, the data read access rate

in coupled simulation workflows will impact the overall end-to-end time and performance

of data-to-insight discovery. To better understand the performance and effectiveness of

this approach, the experiment selected five test cases with typical data read patterns from

real scientific simulation workflows. Table 6.4 summarizes these test cases and their char-

acteristics. These tests were implemented and performed with three other data placement

mechanisms in the staging area: DRAM-only placement (place data in DRAM all the time),

SSD-only placement (place data in SSD all the time, no data prefetching), and application-

level data locality based placement (predict and prefetch data from SSD to DRAM based on

application-level temporal and spatial localities without user’s hints). To avoid the influence

of OS’s data caching, the block cache was explicitly flushed during the experiments.
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Number of cores 608

No. of parallel writer cores 8× 8× 8 = 512

No. of staging cores 32

No. of parallel reader cores 64

Volume size 1024× 1024× 512

In staging data size (20 TSs) 80 GB

Table 6.3: Configuration of core-allocations, data domain information, and size of data
cached in staging area for data placement tests using synthetic codes.

Case # # of readers Data domain Read frequency Analytics techniques

1 One Whole Every single time step Visualization[60]

2 One Whole
Twenty consecutive time steps

out of thirty time steps
Feature tracking[38],

data trajectories visualization[86]

3 One Partial Every ten time steps
Interactive visualization,
descriptive statistics[70]

4 one Partial Irregular temporal access pattern importance-driven visualization[83]

5 Two Whole
Every ten time steps for one,
five time steps for the other

Visualization and topology
analysis simultaneously[8]

Table 6.4: This table summaries the characteristics of five test cases using synthetic codes .

Two synthetic application codes were used to emulate simple and generic end-to-end

data movement behavior in real coupled simulation workflows: one to write data of varying

sizes into the staging area and the other to read the data from the staging area. The

shared computation domain in test cases is a 3-dimensional Cartesian grid, wherein each

application assigns a different number of processors for each dimension, i.e., X×Y ×Z. Each

data element caches one double type variable, the location of which can be represented by

using its geometric domain information, e.g., (x, y, z).

In these five cases, the data for the entire domain over all of the simulation time steps

are written into the staging area, but the data read pattern varies. For each case, the

average data read access time over all 300 time steps was measured. The setup for these

experiments is described in Table 6.3. At most, 20 time steps worth of output data is cached

in the staging area at the same time. The experimental results are demonstrated in Fig. 6.5,

followed by a detailed discussion and analysis of each.
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Figure 6.5: Comparison of average data reading response time amongst four different data
placement mechanisms in five test cases with different reading patterns. MEM: DRAM-
only placement (place data in DRAM all the time); SSD: SSD-only placement (place data
in SSD all the time, no data prefetching); LOCALITY: application-level data locality based
placement (predict and prefetch data from SSD to DRAM based on application-level data
temporal and spatial localities without hints); and ADAPT: adaptive application-aware
mechanism. The reading pattern used in each case is described in Table 6.4.
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Case 1 - Entire data domain for all time steps

The data of the entire domain is read for every simulation time step. Many analysis codes,

e.g. visualizations[60], use this type of data read pattern for full data resolution analysis,

because it allows users to gain insights into all the physical, scientific information that

is available in the output data. Obviously, when all the data is cached in DRAM, the

results show the smallest average data reading response time. In contrast, the results for

the SSD-only method showed the worst read access performance, because of the time cost

incurred by moving data from the SSD to DRAM on demand during every data read request.

The adaptive application-aware mechanism can predict and prefetch the data before each

read request occurs; therefore, their performance is better than the SSD-only approach and

worse than fully caching data into DRAM, due to the execution overhead. Furthermore, the

adaptive mechanism in this research involves more operations after each data read, which

causes a slight increase in time taken as opposed to the locality-based mechanism.

Case 2 - Entire data domain for multiple consecutive time steps

In analyses such as feature tracking[38] or data trajectories visualization[86], data generated

over the course of multiple, consecutive time steps is needed. In this case, data reading

occurs at the first consecutive 20 time steps of every 30 time steps. As the figure shows,

both the application-level data locality based mechanism and the mechanism proposed here

show good performance for data reading, with the latter being slightly better. The data

prefetching works most of time while performing both mechanisms. Only non-consecutive

data reads may cause a prefetching miss when using the application-level data locality based

mechanism.

Case 3 - Subset data domain for every 10 time steps

In this case, data of a subset of a particular domain is read at a constant frequency, in

this case, every 10 time steps. This data read pattern is usually observed in analytics that

require coarse temporal and/or spatial data resolution, such as interactive visualizations

and descriptive statistic analysis[70]. The application-level data locality based mechanism

shows much worse performance than application-aware mechanism does. One reason for
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this is, in the locality based mechanism, the data to be read is out of the temporal locality

range, resulting in a prefetching miss. In contrast, the user hint provided to mechanism has

already provided the data read pattern information to the middleware, so the data objects

matching the hint will be prefetched from the lower memory level to a higher one. For

example, after the data of time step 10 has been read, the mechanism will prefetch the data

of time step 20 directly because of the user hint, but the application-level data locality based

mechanism would only prefetch the data from time steps 11-15 to the memory. Since the

data being read is a small subset of the original domain, the DRAM can even be leveraged

to cache multiple subsets whose future access is either likely or predefined by user hints.

With the help of such hints, an application-aware mechanism can more effectively utilize

the limited DRAM capacity by caching as many target data sets as it deems soon-to-be

accessed, resulting in an overall better data read performance.

Case 4 - Subset data domain with irregular temporal access pattern

This case differs from the previous case in that an irregular temporal access pattern is used.

For data generated in each time step, it randomly decides whether to read it or not. This

pattern may happen in a few cases, e.g., importance-driven visualization[83], wherein the

coupled analytic will dynamically make the decision on the data fetching according to pre-

defined rules. In this case, user hints are less helpful. However, with the help of the data

read pattern prediction algorithm, the mechanism shows a performance advantage over the

application-level data locality mechanism on overall average data read time.

Case 5 - Entire data domain for two readers with different reading frequencies

To reduce integration efforts required by the user and minimize performance impacts on the

simulation, multiple analytics tools may be coupled with the simulation, as demonstrated

in work[8, 39]. This case represents this scenario by using two readers to fetch data of an

entire domain at different reading frequencies. Reader 1 fetched data every 10 time steps,

while Reader 2 fetched data every 5 time steps. Data prefetching misses occurred in the

locality-based mechanism when Reader 2 tries to read data out of the temporal locality

range. For example, after the data of time step 20 is read by Reader 1, the locality-based
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mechanism will prefetch data of time steps 20-25 to DRAM. However, the Reader 2 has not

fetched data of time step 15 yet, which causes the miss penalty. In contrast, the reference

number can show that data of time step 15 will be read again soon and the mechanism can

guarantee the data objects to remain in DRAM until Reader 2 fetches them. Therefore, the

data read performance of this application-aware mechanism is much better than that of the

locality-based mechanism. From this data, it can infer that, as more readers with varying

data reading frequencies are required of a workflow, this solution will provide much better

data reading performance than the other methods.

6.5.2 Performance Evaluation with Application Drivers

Besides the test cases with synthetic codes, the experiment integrated the staging approach

with two application drivers - combustion DNS-LES coupling case and plasma fusion XGC1-

XGCa coupling case, and then tested its performance on Sith cluster. The objective of

these real case studies is to validate the performance of the approach in real scientific data

intensive simulation environment.

DNS-LES coupling application

As described in Section II, the one way data exchange happened from DNS to LES six

times every time steps. To help the lock-step behavior recovered from the out of sync

situation caused by uncertainties, 20 time steps of simulation output data will be cached in

multi-tiered staging area. For comparison purpose, it performs BP-file [52] based staging,

DataSpaces in-memory staging, and multi-tiered staging to temporarily cache the data in

this application case, and measured the cumulative time of data reading over all 120 time

steps. Table 6.5 presents the detailed experimental configuration.

Figure 6.6 demonstrates the comparison result of cumulative reading time over all of

the 120 time steps by using three types of staging with DNS-LES application. At each

scale, result of BP-file based staging always shows the worst performance due to the heavy

I/O overhead and the DRAM based staging is the best, obviously. The multi-tiered stag-

ing shows around 31.5%, 15.2%, and 9.8% performance benefit over BP file based staging

at different scales, and 23.3%, 4.5% and 5.6% performance lose over in-memory method.
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Number of cores 130 260 520

No. of DNS cores 4× 4× 4 = 64 8× 4× 4 = 128 8× 8× 4 = 256

No. of staging cores 4 8 16

No. of LES cores 64 128 256

Volume size 320× 320× 320 320× 320× 320 320× 320× 320

No. of variables 5 5 5

In staging data size (20 TSs) 146.5 GB 146.5 GB 146.5 GB

Table 6.5: Experiment configuration for three test scenarios: 130, 260, and 520 cores. It
cached data generated from 20 DNS simulation Time Steps in staging for DNS-LES lock-
step recovery.
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Moreover, as the increasing number of cores are used in the experiments, the performance

of multi-tiered staging method approaches that of in-memory staging method. There are

two primary reasons for this phenomenon: 1) the size of the data object decreases with the

increasing number of simulation cores, which reduces the penalty for each data prefetching

miss accordingly; and meanwhile 2) the increasing number of smaller data objects will help

application-aware data placement mechanism achieve higher hit rate of data prefetching

by flexibly fitting target data objects in DRAM – as evaluated in the previous experiment

section.

XGC1-XGCa coupling application

XGC1-XGCa coupling workflow consists of multiple coupling steps with double-way data

exchange, as presented in Section II. For testing purpose, it performed two XGC1-XGCa

coupling circles, each of which contains only 10 instead of thousands of time steps – because

the particle data in the current coupling scheme dominates anyway. In addition, the number

of particles per process was set to 1.5 million. The other experiment configuration is showed

in Table 6.6. Same as the previous experiment, this test integrated and compared BP-file

based staging, DataSpaces in-memory staging, and multi-tiered staging approach in this

experiment.

Figure 6.7 shows the timing breakdown of the cumulative data reading time at each

test case. As expected, the overall reading performance of this approach is between that

of file-based staging and in-memory staging, which is the same as what is observed in

previous experiments. However, may find some interesting results on these breakdowns.

While the approach shows almost as good performance result as in-memory staging does

for turbulence data reading, it does not show too much advantages on particle data reading.

This is resulted from the imbalanced data coupling behavior in XGC1-XGCa application.

Due to the small size, turbulence data could be cached in DRAM level of staging area, which

will be kept there until it is retrieved. In contrast, after large size particle data is inserted,

DRAM is quickly filled up and some of particle data objects have to been stored into SSD.

When the data placement mechanism is performed before the coming retrieval request of

entire particle data, the limited DRAM capability cannot cache all the particle data object
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Number of cores 528 792 1056

No. of XGC1 cores 256 384 512

No. of staging cores 16 24 32

No. of XGCa cores 256 384 512

In staging data size per coupling circle ∼ 30 GB ∼ 45 GB ∼ 60 GB

Table 6.6: Experiment configuration fo three test scenarios: 528, 792, and 1056 cores. It
cached all the data generated from each coupling circle for data exchange between XGC1
and XGCa.

Number of cores 2112 4224 8448

No. of XGC1 cores 1024 2048 4096

No. of staging cores 64 128 256

No. of XGCa cores 1024 2048 4096

In staging data size per coupling circle ∼ 120 GB ∼ 240 GB ∼ 480 GB

Table 6.7: This table contains the configuration of core-allocations and size of data cached
in staging area for 2K, 4K, and 8K emulation test cases.

at the same time, which forces the data prefetching miss to happen across different particle

data objects and delays the overall data reading.

Based on these experimental results, it is also notable that this multi-tiered staging ap-

proach can support runtime data processing and code coupling for data intensive simulation

by only allocating less than extra 5% of the simulation cores on staging area.

6.5.3 Large Scale Emulation with XGC1-XGCa Application

This multi-tiered data staging approach has also been performed and tested at large scale

with plasma fusion XGC1-XGCa application on Titan. Meanwhile, in-memory staging has

been deployed and measured as well, whose performance will used as a baseline. Since there

is no SSD devices on Titan, a simple emulator is built based on the performance profiling

results of SSD on Sith, and then used DRAM for storage with this emulator to emulate the

data writing/reading behaviors and performance of SSDs by introducing artificial delays.

Before using the emulator in Titan, its functionality and performance has been validated

with testing data on Sith.

The I/O performance of SSD is relevant to many factors: device manufacture, file system,
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Figure 6.7: Comparison of timing breakdown of the cumulative data reading time in XGC1-
XGCa coupling application.

Figure 6.8: Comparison of timing breakdown of the cumulative data reading time in large
scale testing with XGC1-XGCa coupling application on Titan cluster.
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SSD controller, device deployment and etc. To build this simple emulator, a two-week

profiling test was performed to measure the average time of copying 4KB page size data

in memory and those of writing/reading same page size of data to/from SSD attached

in a single node on Sith cluster. To match the deployment of CPU cores on Titan, the

same deployment (16 CPU cores and 1 SSD per node) is used in this profiling test. After

truncating the error results and statistically processing the profiling data within the worst

20% performance, data writing performance and data reading performance were evaluated

respectively using 12 times and 4 times the cost of in-memory copy over the same data size.

It is worth noting that the objective of this large scale experiments is to test the ability of

this approach to respond to concurrent data reading at large scales and qualitatively check

its overhead.

Figure 6.8 illustrates the experimental results while performing multi-tiered staging

approach with XGC1-XGCa coupling application. Compared to the results of small scale

experiments, it shows better performance on particle data reading and turbulence data

reading at different scales. In addition, it shows good overall scalability and acceptable

overhead with the number of application processors and data size, compared to the baseline

in-memory staging approach. It can induce that the real performance of runtime would be

even better than the emulation result since the performance ratios selected for the emulator

are from the profiling cases with worst performance.

6.6 Conclusion

This chapter presented the design, implementation, and evaluation of a multi-tiered data

staging runtime that leverages both DRAM and SSD to enable dynamic data staging for

data-intensive coupled simulation workflows running on High End Computing systems. Un-

derlying the runtime, it also presented the design of an adaptive application-aware data

placement mechanism that dynamically manages and optimizes data placement across the

DRAM and SSD storage layers using user provided hints and learned data access patterns.

In addition, the prototype of this multi-tiered data staging runtime has been deployed on

the Sith InfiniBnad cluster and the Titan Cray XK7 at Oak Ridge National Lab, and been
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experimentally evaluated using Combustion DNS-LES workflow and Plasma Fusion XGC1-

XGCa application workflows. The experiments demonstrated that this autonomic runtime

can dynamically manage and optimize data placement across deep memory hierarchy levels

to efficiently support loosely coupled data intensive simulation workflows.
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Chapter 7

Conclusion and Future Work

7.1 Conlustion

Emerging coupled scientific simulation workflows running at extreme scales on leadership-

class High End Computing (HEC) systems are composed of multiple applications that

need exchange and share data at runtime. As system scales and application complexity

grow, there are very large amounts of data that must be exchanged and shared across

different coupled applications for scientific discovery and/or high fidelity modeling. Due

to the huge I/O overhead, traditional file based code coupling models become infeasible.

Recent simulation-time data management approaches such as in-situ/in-transit data pro-

cessing using in-memory data-staging have been investigated to support large scale coupled

data-intensive simulation workflows. However, with the increasing complexities of coupled

applications and the architecture development of the High End Computing (HEC) systems,

these coupled scientific simulation workflows running on extreme-scale computing system

are presenting several new challenges.

First, many of the scientific simulations are based on dynamically adaptive formula-

tions, which exhibit dynamic runtime behaviors and result in dynamically changing data

volumes and imbalanced data distributions. For example, in AMR(Adaptive Mesh Refine-

ment) based simulations, dynamic refinements can lead to imbalanced data distribution and

heterogeneous resource (memory, CPU, network bandwidth) requirements. Such dynamic

runtime behaviors increase the complexity of managing and processing the simulation data

onlie while satisfying the constraints on the amount of data movement and the overhead

on the simulation. They also impact on the management of the staging resources and the

schedule of in-situ and/or in-transit data processing under the level of analytics and resource

limitations. While current in-memory data management approaches can pre-configure the
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simulation in relatively simple static workflows, they becomes ineffective when application

behaviors and data requirements become dynamic. Therefore, the effectiveness of runtime

data management approaches for dynamic workflow depends on the efficient and dynamic

mapping of workflow components, the size and distribution of the data and the resources

available in-situ and in-transit, and requires adaptive configuring the staging resources based

on dynamic application constraints and requirements.

Second, architectural trends indicate that emerging systems will have increasing num-

bers of cores per node and correspondingly decreasing amounts of DRAM memory per

core as well as decreasing memory bandwidth. These trends can significantly impact the

effectiveness of the data management approaches in the runtime data processing pipeline,

especially their ability to support data intensive simulation workflows and/or loosely cou-

pled simulation workflows that demand sufficient capacity for temporally caching a large

volume of data. For example, in a data-intensive coupled simulation workflow[14], data

generated by one simulation may have to be consumed by another simulation or by an

analytics component before it can be overwritten. As data volumes increase and memory

capacity and bandwidth decrease, memory constraints can quickly become a bottleneck of

performing in-situ/in-transit processing. Furthermore, the coupled simulation and/or the

analytics components may require the accumulation of data over multiple time steps[65],

which can further accentuate this problem.

This thesis identifies and addresses the above key runtime data management require-

ments for coupled simulation workflows at extreme scales. Specifically, this thesis explores

an autonomic data management approach to enable efficient data management at runtime

in an adaptive manner that can dynamically respond to the varying data management re-

quirements. The presented autonomic data management approach can efficiently enable

the applications and the runtime system to adapt and tune their own behaviors – e.g., data

quality, data placement, placement of analytics, and resource allocation – automatically by

following pre-defined strategies and policies. These strategies and policies are selected adap-

tively based on the varying operating environment statuses and specific data management

objectives. This thesis makes the following contributions:
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• Formulation of an autonomic data management abstraction for coupled scientific work-

flows in extreme scale High End Computing (HEC) systems based on dynamic run-

time data management requirements, characteristics of application behaviors, and

environment of the system/resource. This provides the foundation for the conceptual

framework of the approach and allows for the specification of its key components and

required functionalities. This framework provides a variety of mechanisms that will be

automatically orchestrated at runtime to respond to the heterogeneity and dynamics

of the applications and the infrastructure.

• Design and development of effective cross-layer adaptation policies and mechanisms to

enable dynamic data management in tightly coupled workflows containing applications

exhibiting dynamic behaviors. These adaptations include (1) adaptation of the spatial

resolution at which the data is processed, (2) dynamic placement and scheduling

of data processing kernels, (3) dynamic allocation of in-transit resources, and (4)

coordinated adaptations that dynamically combine these adaptations at the different

layers automatically at runtime. This dynamic data management scheme reduces

the in-network data movement, improves overall performance and increases resource

efficiency at runtime.

• Design and development of a multi-tiered staging runtime that spans both DRAM and

a deep memory hierarchy layer – solid state disks (SSD) – to support both dynamic

data management and code coupling for loosely coupled data intensive simulation

workflows. This multi-tiered staging runtime allows entire workflows to cache larger

data volumes that may exceed available DRAM memory within the staging area for

runtime data management. In addition, this staging method can be deployed in future

High End Computing systems by replacing the SSD layer with another faster memory

hierarchy device, such as NVRAM.

• Design and implementation of an adaptive application-aware data placement mecha-

nism that can dynamically manage and optimize data placement across the DRAM

and SSD storage layers using data access patterns and user provided hints. This
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mechanism can support effective data prefetching from a lower level of memory hier-

archy (i.e, SSD) to local DRAM in hybrid staging areas, reducing access overheads

and improving the end-to-end performance.

• Integration of the prototype of the autonomic data management approach with real-

word coupled scientific simulation workflows, e.g., combustion and fusion applications;

and demonstrate its effectiveness in improving overall performance and accelerating

scientific discovery.

7.2 Future Work

This thesis proposed an autonomic data management approach, explained its design and

prototype development, and experimentally demonstrated its effectiveness in supporting

dynamic runtime data managements, and in improving overall performance. This research

work can be extended in several directions, as summarized below:

• Exploring power-constrained data management: The data management poli-

cies and mechanisms in this thesis are mostly designed and implemented from a per-

formance perspective. One of the potential future research directions is to explore the

impacts of this autonomic data management approach in terms of the energy con-

sumption, as well as power and performance trade-offs for data intensive simulation

workflows with different data management algorithms and policies. By developing

relevant autonomic policies, the autonomic data management abstraction can incor-

porate with power/energy efficiency and power/performance trade-offs as part of the

autonomic objectives. Additionally, the impact of the different deep memory hierar-

chy levels and different runtime data placement strategies with respect to the energy

consumption can be explored.

• Utilizing multiple memory hierarchy levels This thesis focuses on utilizing one

extra memory level, i.e., SSDs. However, there are many new fast storage technologies.

For example, Cray announced ”burst buffer”[2], which is an intermediate, high-speed

layer of storage that is positioned between DRAM and the parallel file system (PFS).

Burst buffer can firstly cache the bulk data produced by the applications at a rate
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that is a hundred times higher than using PFS; and then seamlessly drains the data

to PFS in the background. This burst buffer is built from NVRAM devices that have

several desirable properties, such as high I/O throughput, low access latency, and

higher reliability. Moreover, the planned extreme scale supercomputer ”Summit”[3],

which is being built by IBM and will be installed at Oak Ridge National lab in 2018,

also has NVRAM devices installed as an additional memory layer. Therefore, another

direction is to further expand the staging area and data processing approaches by

adding intermediate storage layers between DRAM and SSD using NVRAM devices.

Effective and adaptive data placement mechanisms also have to address the runtime

data placement and management challenges.

• Domain-specific programming abstractions The third research direction is to

design and formalize programming abstractions to support autonomic adaptations

and dynamic data management. This abstraction must enable users to express auto-

nomic objectives and constraints as well as to formulate autonomic policies. Besides,

as described in this thesis, domain specific information can be leveraged to better

support data management adaptations and optimizations in coupled simulation work-

flows. Therefore, programming support of effectively expressing these information is

required. Last but not least, the programming abstraction should enable users to ac-

cess resources of different memory hierarchy levels explicitly and to place data objects

across these levels easily.
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F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic communications.
ACM Trans. Auton. Adapt. Syst., 1(2):223–259, Dec. 2006.

[24] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey. Fulfilling the vision of autonomic
computing. Computer, 43(1):35–41, Jan 2010.

[25] C. Docan, M. Parashar, J. Cummings, and S. Klasky. Moving the Code to the Data
- Dynamic Code Deployment Using ActiveSpaces. In Proc. 25th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’11), May 2011.

[26] C. Docan, M. Parashar, and S. Klasky. DART: A Substrate for High Speed Asyn-
chronous Data IO. In Proc. of 17th International Symposium on High Performance
Distributed Computing (HPDC’08), June 2008.

[27] C. Docan, M. Parashar, and S. Klasky. DataSpaces: An Interaction and Coordina-
tion Framework for Coupled Simulation Workflows. In Proc. of 19th International
Symposium on High Performance and Distributed Computing (HPDC’10), June 2010.

[28] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction and coordination
framework for coupled simulation workflows. Cluster Computing, 15(2):163–181, 2012.

[29] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross. Omnisc’io: A grammar-based ap-
proach to spatial and temporal i/o patterns prediction. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’14, pages 623–634, Piscataway, NJ, USA, 2014. IEEE Press.

[30] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Gevecik, M. Rasquin,
and K. Jansen. The paraview coprocessing library: A scalable, general purpose in situ
visualization library. In IEEE Symposium on Large Data Analysis and Visualization
(LDAV), October 2011.

[31] K. Geebelen, E. Kulikowski, E. Truyen, and W. Joosen. A mvc framework for policy-
based adaptation of workflow processes: A case study on confidentiality. In Web
Services (ICWS), 2010 IEEE International Conference on, pages 401–408, July 2010.

[32] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. volume 37, Oct.
2003.

[33] C. Gniady, A. R. Butt, and Y. C. Hu. Program-counter-based pattern classification
in buffer caching. In Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, OSDI’04, pages 27–27, Berkeley, CA,
USA, 2004. USENIX Association.

[34] K. Gupta, R. Jain, I. Koltsidas, H. Pucha, P. Sarkar, M. Seaman, and D. Subhraveti.
Gpfs-snc: An enterprise storage framework for virtual-machine clouds. IBM Journal
of Research and Development, 2011.

[35] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-H. Sun. I/o
acceleration with pattern detection. In Proceedings of the 22Nd International Sym-
posium on High-performance Parallel and Distributed Computing, HPDC ’13, pages
25–36, New York, NY, USA, 2013. ACM.



94

[36] C.-H. Hsu and W. chun Feng. A power-aware run-time system for high-performance
computing. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Con-
ference, page 1, nov. 2005.

[37] IBM. Autonomic computing: Ibm’s perspective on the state of information technology.

[38] T. Jin, F. Zhang, M. Parashar, S. Klasky, N. Podhorszki, and H. Abbasi. A scal-
able messaging system for accelerating discovery from large scale scientific simulations.
In Proc. IEEE International Parallel and Distributed Processing Symposium (HiPC),
December 2012.

[39] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu, S. Klasky, N. Podhorszki, and
H. Abbasi. Using cross-layer adaptations for dynamic data management in large scale
coupled scientific workflows. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13, 2013.

[40] J. Kephart and D. Chess. The vision of autonomic computing. Computer, 36(1):41–50,
Jan 2003.

[41] J. Kim, H. Abbasi, L. Chacon, C. Docan, S. Klasky, Q. Liu, N. Podhorszki, A. Shoshani,
and K. Wu. Parallel in situ indexing for data-intensive computing. In Large Data
Analysis and Visualization (LDAV), 2011 IEEE Symposium on, pages 65 –72, oct.
2011.

[42] T. Kosar and M. Livny. Stork: making data placement a first class citizen in the grid.
In Distributed Computing Systems, 2004. Proceedings. 24th International Conference
on, pages 342–349, 2004.

[43] T. M. Kroeger and D. D. E. Long. The case for efficient file access pattern modeling.
In Proceedings of the The Seventh Workshop on Hot Topics in Operating Systems,
HOTOS ’99, pages 14–, Washington, DC, USA, 1999. IEEE Computer Society.

[44] S. Ku, C. Chang, and P. Diamond. Full-f gyrokinetic particle simulation of centrally
heated global itg turbulence from magnetic axis to edge pedestal top in a realistic
tokamak geometry. Nuclear Fusion, 49(11):115021, 2009.

[45] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-H. Ku, S. Ethier,
J. Chen, C. Chang, S. Klasky, R. Latham, R. Ross, and N. Samatova. Isabela-qa:
Query-driven analytics with isabela-compressed extreme-scale scientific data. In High
Performance Computing, Networking, Storage and Analysis (SC), 2011 International
Conference for, pages 1 –11, nov. 2011.

[46] P. Lama and X. Zhou. Aroma: Automated resource allocation and configuration of
mapreduce environment in the cloud. In Proceedings of the 9th International Confer-
ence on Autonomic Computing, ICAC ’12, pages 63–72, New York, NY, USA, 2012.
ACM.

[47] S. Lasluisa, F. Zhang, T. Jin, I. Rodero, H. Bui, and M. Parashar. In-situ feature-
based objects tracking for data-intensive scientific and enterprise analytics workflows.
Cluster Computing, pages 1–12, 2014.

[48] C. Li and L. Li. Three-layer control policy for grid resource management. J. Netw.
Comput. Appl., 32(3):525–537, May 2009.



95

[49] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim, C. Engelmann, and
G. Shipman. Functional partitioning to optimize end-to-end performance on many-
core architectures. In Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’10, 2010.

[50] H. Liu, V. Bhat, M. Parashar, and S. Klasky. An autonomic service architecture for
self-managing grid applications. In Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, GRID ’05, pages 132–139, Washington, DC, USA, 2005.
IEEE Computer Society.

[51] H. Liu and M. Parashar. Accord: a programming framework for autonomic appli-
cations. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 36(3):341–352, May 2006.

[52] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky, R. Tchoua,
J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani, M. Wolf,
K. Wu, and W. Yu. Hello adios: the challenges and lessons of developing leadership
class i/o frameworks. Concurrency and Computation: Practice and Experience, 2013.

[53] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein, and S. Parekh. Online response
time optimization of apache web server. In Proceedings of the 11th International Con-
ference on Quality of Service, IWQoS’03, pages 461–478, Berlin, Heidelberg, 2003.
Springer-Verlag.

[54] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield, M. Wolf, and
Q. Liu. Six degrees of scientific data: Reading patterns for extreme scale science io.
In Proceedings of the 20th International Symposium on High Performance Distributed
Computing, HPDC’11, 2011.

[55] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface con-
struction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, Aug. 1987.

[56] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online data migration with perfor-
mance guarantees. In Proceedings of the 1st USENIX Conference on File and Storage
Technologies, FAST ’02, Berkeley, CA, USA, 2002. USENIX Association.

[57] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-time scheduling:
Framework, modeling, and algorithms*. Real-Time Syst., 23(1/2):85–126, July 2002.
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