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The significance of formative assessments has recently been underscored in the edu-
cational measurement literature. Formative assessments can provide more diagnostic
information to improve teaching and learning strategies compared to summative as-
sessments. Cognitive diagnosis models (CDMs) are psychometric models that have
been developed to provide a more detailed evaluation of assessment data. CDMs
aim to detect students’ mastery and nonmastery of attributes in a particular content
area. Another major research area in psychometrics is computerized adaptive testing
(CAT). It has been developed as an alternative to paper-and-pencil tests, and widely
used to deliver tests adaptively.

Although the traditional CAT seems to satisfy the needs of the current testing
market by providing summative scores, the use of CDMs in CAT can produce more
diagnostic information with an efficient testing design. With a general aim to address

needs in formative assessments, this dissertation aims to achieve three objectives:
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(1) to introduce two new item selection indices for cognitive diagnosis computerized
adaptive testing (CD-CAT); (2) to control item exposure rates in CD-CAT; and (3)
to propose an alternative CD-CAT administration procedure. Specifically, two new
item selection indices are introduced for cognitive diagnosis. In addition, high item
exposure rates that typically accompany efficient indices are controlled using two
exposure control methods. Finally, a new CD-CAT procedure that involves item
blocks is introduced. Using the new procedure, examinees would be able to review
their responses within a block of items. The impact of different factors, namely, item
quality, generating model, test termination rule, attribute distribution, sample size,
and item pool size, on the estimation accuracy and exposure rates was investigated
using three simulation studies. Moreover, item type usage in conjunction with the
examinees’ attribute vectors and generating models was also explored. The results
showed that the new indices outperformed one of the most popular indices in CD-
CAT, and also, they performed efficiently with the exposure control methods in terms
of classification accuracy and item exposure. In addition, a new blocked-design CD-
CAT procedure was promising for allowing item review and answer change during the

test administration with a small loss in the classification accuracy.
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Chapter 1

Introduction and Objectives

1.1 Introduction

Interest in formative assessment has rapidly grown in the psychological and educa-
tional measurement over the past decades. It includes a range of different assessment
procedures that provide more detailed feedback to improve teaching and learning
rather than just giving a single score. The use of formative assessment has several
advantages over summative assessment. For example, it enhances teaching and learn-
ing strategies by providing better feedback to teachers and students (DiBello & Stout,
2007). Based on the feedback that identifies individual strengths and weaknesses in a
particular content, teachers can design classroom activities to optimize student learn-
ing. Huebner (2010) also stated that such assessment fulfills the demands of recent
political decisions in education such as the No Child Left Behind Act (2001).

Largely to harness the benefits of the formative assessment, several cognitive di-
agnosis models (CDMs) have been introduced and developed in educational measure-
ment. CDMs are latent class models that can be used to detect mastery and nonmas-
tery of multiple fine-grained skills or attributes in a particular content domain (de la
Torre, 2009). These attributes are generally binary; however, they can also have poly-
tomous levels of mastery. Examples of binary attributes defined in the mixed fraction
subtraction domains are (1) converting a whole number to a fraction, (2) separating
a whole number from a fraction, (3) simplifying before subtracting (Tatsuoka, 1990).

Examples of attributes with binary and polytomous levels of mastery defined in the



proportional reasoning domain are (1) prerequisite skills; (2a) comparing and (2b)
ordering fractions; and (3a) constructing ratios and (3b) proportions (Tjoe & de la
Torre, 2014). By identifying the presence or absence of the attributes for particular
domains, CDMs can provide more diagnostic and informative feedback.

To date, a variety of models has been developed to increase the applicability of
CDMs. The deterministic inputs, noisy “and” gate (DINA; de la Torre, 2009; Haertel,
1989; Junker & Sijtsma, 2001) model, the deterministic input, noisy “or” gate (DINO;
Templin & Henson, 2006) model, the noisy input, deterministic “and” gate (NIDA;
Maris, 1999; Junker & Sijtsma, 2001) model, the noisy input, deterministic “or” gate
(NIDO; Templin & Henson, 2006) model, and fusion (Hartz, 2002; Hartz, Roussos, &
Stout, 2002) model are examples of constrained CDMs. Constrained CDMs require
specific assumptions about the relationship between attribute vector and task perfor-
mance (Junker & Sijtsma, 2001). Nonetheless, they provide results that can easily
be interpreted. In addition to constrained models, more generalized CDMs have also
been proposed: the log-linear CDM (Henson, Templin, & Willse, 2009), the general
diagnostic model (von Davier, 2008), and the generalized DINA model (G-DINA;
de la Torre, 2011). The general models relax some of the strong assumptions in
the constrained models, and provide more flexible parameterizations. However, gen-
eral models are more difficult to interpret compared to constrained models because
they involve more complex parametrizations. Therefore, the choice of using either a
constrained or a general model depends on the particular application.

Computerized adaptive testing (CAT) has also become a popular tool in educa-
tional testing since the use of personal computers became accessible (van der Linden
& Glas, 2002). It has been developed as an alternative to paper-and-pencil tests
because of the following advantages: CAT offers more flexible testing schedules for

individuals; the scoring procedure is faster with CAT; it makes wider range of items



with broader test contents available (Educational Testing Service, 1994); CAT pro-
vides shorter test-lengths; it enhances measurement precision; and offers tests on
demand (Meijer & Nering, 1999). A pioneering application of CAT was applied by
the US Department of Defense to carry out the Armed Services Vocational Aptitude
Battery in the mid 1980s. However, the transition from paper-and-pencil testing to
CAT truly began when the National Council of State Boards of Nursing used a CAT
version of its licensing exam, and it was followed by the Graduate Record Examina-
tion (van der Linden & Glas, 2002). At present, many testing companies offer tests
using within an adaptive environment (van der Linden & Glas, 2010).

A CAT procedure typically consists of three steps: “how to START”, “how to
CONTINUE”, and “how to STOP” (Thissen & Mislevy, 2000, p. 101). First, the
specification of the initial items determines the ability estimation at the early stage
of the test. Second, the ability estimate is updated by giving items appropriate to the
examinee’s ability level. Last, the test is terminated after reaching a predetermined
precision or number of items. In CAT, each examinee receives items appropriate to
his/her ability level from an item bank, and the ability level is estimated during or
at end of the test administration. Therefore, different tests, including different items
with different lengths, can be created for different examinees.

CAT procedures are generally built upon item response theory (IRT) models,
which provide summative scores based on the performance of the examinees. However,
different psychometric models (i.e., CDMs) can also be used in the CAT procedures.
Considering the advantages of CAT, the use of CDMs in CAT can provide better
diagnostic feedback with more accurate estimates of examinees’ attribute vectors. At
present, most of the research in CAT has been done in the context of IRT; however,
a small number of research has recently been conducted in cognitive diagnosis CAT
(CD-CAT). One of the reasons behind the limited research on CD-CAT is that some

of the concepts in traditional CAT (i.e., Fisher information) are not applicable in



CD-CAT because of the discrete nature of attributes.

1.2 Objectives

IRT and CAT are two well-studied research areas in psychometrics. Both have
received considerable attention from a number of researchers in the field (van der
Linden & Glas, 2002; Wainer et al., 1980). Although CAT in the context of IRT
seems to satisfy the needs of the current testing market, it may not be sufficient
in providing informative results to teachers and students to improve teaching and
learning strategies. In this regard, cognitive diagnosis modeling can be used with CAT
to obtain more detailed information about examinees’ strengths and weaknesses with
more efficient testing design. Despite its potential advantages in terms of efficiency
and more diagnostic evaluations, research on CD-CAT is rather scarce. The following
are examples of works in this area: Cheng (2009), Hsu, Wang, and Chen (2013),
McGlohen and Chang (2008), Wang (2013), and Xu, Chang, and Douglas (2003).

Other developments in CD-CAT pertain to the test termination rules. Hsu et al.
(2013) proposed two test termination rules based on the minimum of the maximum
of the posterior distribution of attribute vectors in CD-CAT. They also developed
a procedure based on the Sympson-Hetter method (1985) to control item exposure
rates. Their procedure was capable of controlling test overlap rates using variable
test-lengths. Recently, Wang (2013) proposed the mutual information item selection
method in CD-CAT, and she compared the different methods (i.e., the Kullback-
Leibler [K-L] information, Shannon entropy, and the posterior-weighted K-L index
[PWKL]) using short test lengths. Based on this study, the PWKL was shown to have
better efficiency. Additionally, the PWKL is easier to implement, thus making it a
popular item selection method in CD-CAT. Despite its advantages, two shortcomings
of the PWKL can be noted: the test lengths obtained from the PWKL were rather

long and it produced high exposure rates. Therefore, it remains to be seen whether



other methods can be used in place of the PWKL.

This dissertation has three primary objectives: (1) to introduce two new item
selection indices for CD-CAT, (2) to investigate item exposure rate control in CD-
CAT, and (3) to propose a new CAT administration procedure. Of the two new item
selection indices that were introduced for CD-CAT, one was based on the G-DINA
model discrimination index, whereas the other one was based on the PWKL. The
efficiency of the new indices was compared to the PWKL in the context of the G-
DINA model. The impact of item quality, generating model, and test termination
rule on the efficiency was investigated using a simulation study. In addition, high item
exposure rates resulting from the different indices were controlled using the restrictive
progressive and restrictive threshold methods (Wang, Chang, & Huebner, 2011). In
addition to the factors, namely, item quality, generating model, and test termination
rule, the impact of attribute distribution, item pool size, sample size, and prespecified
desired exposure rate on the exposure rates was examined. Finally, a different CD-
CAT procedure was introduced. Using the new procedure, examinees would be able
to review their responses within a block of items. A successful attainment of these
objectives would lead to a better understanding of CD-CAT, which in turn would
increase the applicability of the procedure.

Along with these objectives, a more efficient simulation design was proposed in this
dissertation. Using a small, but specific subset of the attribute vectors, and applying
appropriate weights to these vectors, the new design can be used to examine how
different attribute vector distributions can impact the results. With the proposed
design, item type usage, in conjunction with the examinees’ attribute vectors and

generating models, was explored.
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Chapter 2
Study I: New Item Selection Methods for CD-CAT

Abstract

This article introduces two new item selection methods, the modified posterior-
weighted Kullback-Leibler index (MPWKL) and the generalized deterministic inputs,
noisy “and” gate (G-DINA) model discrimination index (GDI), that can be used in
cognitive diagnosis computerized adaptive testing. The efficiency of the new methods
is compared with the posterior-weighted Kullback-Leibler (PWKL) item selection in-
dex using a simulation study in the context of the G-DINA model. The impact of
item quality, generating models, and test termination rules on attribute classification
accuracy or test length is also investigated. The results of the study show that the
MPWKL and GDI perform very similarly, and have higher correct attribute classifi-
cation rates or shorter mean test lengths compared with the PWKL. In addition, the
GDI has the shortest implementation time among the three indices. The proportion
of item usage with respect to the required attributes across the different conditions
is also tracked and discussed.

Keywords: cognitive diagnosis model, computerized adaptive testing, item selection

method

This chapter has been published and can be referenced as: Kaplan, M., de la Torre, J., & Barrada,
J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing.
Applied Psychological Measurement, 39, 167-188.
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2.1 Introduction

Recent developments in psychometrics put an increasing emphasis on formative
assessments that can provide more information to improve learning and teaching
strategies. In this regard, cognitive diagnosis models (CDMs) have been developed to
detect mastery and nonmastery of attributes or skills in a particular content area. In
contrast to the unidimensional item response models (IRTs), CDMs provide a more
detailed evaluation of the strengths and weaknesses of students (de la Torre, 2009).
Computerized adaptive testing (CAT) has been developed as an alternative to paper-
and-pencil test, and provides better ability estimation with a shorter and tailored test
for each examinee (Meijer & Nering, 1999; van der Linden & Glas, 2002). Most of
the research in CAT has been conducted in the traditional IRT context. However, a
small number of research has recently been done in the context of cognitive diagnosis
computerized adaptive testing (CD-CAT; Cheng, 2009; Hsu, Wang, & Chen, 2013;
McGlohen & Chang, 2008; Wang, 2013; Xu, Chang, & Douglas, 2003).

One of the main components of CAT is the item selection method. By choosing
more appropriate methods, better estimates of the examinees’ abilities or attribute
vectors can be expected. Because of the discrete nature of attributes, some of the con-
cepts in traditional CAT such as Fisher information are not applicable in CD-CAT.
The goal of this study is to introduce two new indices, the modified posterior-weighted
Kullback-Leibler index (MPWKL) and the generalized deterministic inputs, noisy
“and” gate (G-DINA) model discrimination index (GDI), as item selection meth-
ods in CD-CAT, and evaluate their efficiency under the G-DINA framework. Their
efficiency is compared with the posterior-weighted Kullback-Leibler index (PWKL;
Cheng, 2009). The effects of different factors are also investigated: The item quality
is manipulated; reduced versions of the G-DINA model are used for generating item

response data; and fixed-test lengths and minimum of the maximum (minimax) of
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the posterior distribution of attribute vectors (Hsu et al., 2013) are used as stop-
ping rules in the test administration. With respect to the stopping rules, the former
provides a comparison of the efficiency of the three indices under different fixed-test
lengths, whereas the latter provides tailored tests with different test lengths for each
examinee.

The remaining sections of the article are laid out as follows: The next section
gives a background in the G-DINA model and its reduced versions. In addition, the
item selection indices are discussed, and the use of the GDI as an item selection
method is illustrated. In the “Simulation Study” section, the design and the results
of the simulation study are presented, and the efficiency of the indices under different
conditions is compared. Finally, “Discussion and Conclusion” section presents with

a discussion of the findings of this work and directions for future research.

2.1.1 Cognitive Diagnosis Models

CDMs aim to determine whether examinees have or have not mastered a set of
specific attributes. The presence or absence of the attributes is represented by a binary
vector. Let a;={a;} be the examinee’s binary attribute vector for k = 1,2... K
attributes. The kth element of the vector is 1 when the examinee has mastered the
kth attribute, and it is 0 when the examinee has not mastered it. Similarly, let
X; = {x;;} be the binary response vector of examinee i for a set of J items in which
1=1,2...N,and j = 1,2...J. In CDM, the required attributes for each item are
represented in a Q-matrix (Tatsuoka, 1983), which is a J x K matrix. The element
of the jth row and the kth column, g, is 1 if the kth attribute is required to answer
the jth item correctly, and 0 otherwise.

A general CDM called generalized deterministic inputs, noisy “and” gate (G-
DINA) model was proposed by de la Torre (2011). It is a generalization of the de-

terministic inputs, noisy “and” gate (DINA; de la Torre, 2009; Haertel, 1989; Junker
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& Sijtsma, 2001) model, and it relaxes some of the strict assumptions of the DINA
model. Instead of two, the G-DINA model partitions examinees into 2%/ groups,
where K7 is the number of required attributes for item j. The mathematical rep-
resentation of the model consists of the combination of the baseline probability, the
main effects due to the attribute k, the interaction effects due to the attributes &
and k' (k # k'), and other higher-order interaction effects (for more details, see de la
Torre, 2011).

A few of commonly encountered CDMs are constrained versions of, and therefore,
are subsumed by the G-DINA model (de la Torre, 2011). These include the DINA
model, the deterministic input, noisy “or” gate (DINO; Templin & Henson, 2006)
model, and the additive CDM (A-CDM; de la Torre, 2011). As constrained CDMs,
the DINA model assumes that lacking one of the required attributes is as the same
as lacking all of the required attributes; the DINO model assumes that having one
of the required attributes is as the same as having all of the required attributes; and
the A-CDM assumes that the impacts of mastering the different required attributes

are independent of each other.

2.1.2 Computerized Adaptive Testing

CAT has become a popular tool to estimate examinees’ ability levels with shorter
test lengths. The main goal of CAT is to construct an optimal test for each examinee.
Appropriate items to each examinee’s ability level are selected from an item bank,
and the ability level is estimated during or end of the test administration. Therefore,
different tests including different items with different lengths can be created for dif-
ferent examinees. Weiss and Kingsbury (1984) listed the components of CAT, which
include item selection method and calibrated item pool. In addition, CAT can be
used with different psychometric frameworks such as IRT or CDM. The Fisher infor-

mation statistic (Lehmann & Casella, 1998) is widely used in the traditional CAT;
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however, it cannot be applied in CD-CAT because it requires continuous ability lev-
els, whereas the attribute vectors in cognitive diagnosis are discrete. Fortunately, the
Kullback-Leibler (K-L) information, which is an alternative information statistic, can
work under both continuous and discrete cases. This study focuses on item selection

methods in the cognitive diagnosis context, which include K-L-based indices.

2.1.2.1 The Posterior-Weighted Kullback-Leibler Index

The K-L information is a measure of distance between the two probability density
functions, f(x) and g(z), where f(x) is assumed to be the true distribution of the

data (Cover & Thomas, 1991). The function measuring the distance between f and

Ko = [ [z()g (%)} (@) 2.1)

Larger information allows easier differentiation between the two distributions or

g is given by

likelihoods (Lehmann & Casella, 1998). Xu et al. (2003) used the K-L information
as an item selection index in CD-CAT. Cheng (2009) proposed the PWKL, which
computes the index using the posterior distribution of the attribute vectors as weights.
Her simulation study showed that the PWKL outperformed the K-L information in

terms of estimation accuracy. The PWKL is given by

c=1

PWKL; (&™) Z[Z@( _mxﬁ;(:))) P(X; = 2]a)rP(a) |, (2.2)

where P(X; = x|a.) is the probability of the response x to item j given the attribute
vector o, and Wgt)(ac) is the posterior probability of examinee ¢ given the responses
to the ¢ items. The posterior distribution after tth response can be written as

) (ee) o m () LX),
where X ff) is the vector containing the responses of examinee 7 to the t items, 7r§°) (o)

is the prior probability of e, and L(X Z@\ac) is the likelihood of X §t) given the
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attribute vector a.. The (¢4 1)th item to be administered is the item that maximizes

the PWKL.

2.1.2.2 The Modified Posterior-Weighted Kullback-Leibler Index

The PWKL is calculated by summing the distances between the current estimate
of the attribute vector and the other possible attribute vectors using the K-L informa-

tion, and it is weighted by the posterior distribution of the attribute vectors. By using
(t)

the current estimate ¢, it assumes that the point estimate is a good summary of the

(®)

posterior distribution 7, (). However, this may not be the case particularly when

the test is still relatively short. Instead of using a point estimate, the new PWKL
proposes modifying by considering the entire posterior distribution, which involves
2K

attribute vectors. The resulting new index can be referred to as the MPWKL and

can be computed as

MPWKLY =
2K [ 2K 1
P(X; = z|ayg) (1) (1)
[ J P(X, = . ; (2.
2. le Og(P(Xj=a:|ac> (X; = aloa)mi{e) | mi(@a) | - (23)

Compared with the PWKL, by using the posterior distribution, the MPWKL does

not require estimating the attribute vector agt). Using an estimate in the numerator

of Equation 2.2 is tantamount to assigning a single attribute vector (i.e., agt)) a

probability of 1, which may not accurately describe the posterior distribution at the
early stages of the testing administration. In contrast, the numerator in Equation 2.3
considers all the possible attribute vectors, and weights them accordingly, hence, the

extra summation and posterior probability. Because the MPWKL uses the entire

() (*)

. (o) rather than just an estimate &, it can be expected to

posterior distribution

be more informative than the PWKL.
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2.1.2.3 The G-DINA Model Discrimination Index

The GDI, which measures the (weighted) variance of the probabilities of success of
an item given a particular attribute distribution, was first proposed by de la Torre and
Chiu (2010) as an index to implement an empirical Q-matrix validation procedure.
However, in this article, the index is used as an item selection method for CD-CAT.

To define the index, let the first K attributes be required for item j, and define

*

ay; as the reduced attribute vector consisting of the first K attributes, for ¢ =

1,...,2% . For example, if a q-vector is defined as (1,1,0,0,1) for K3 = 3 number of

required attributes, the reduced attribute vector is (a1,az,a5). Also, define 7(c};) as

*
cj

the probability of a;, and P(Xj; = 1|a};) as the success probability on item j given

a;;. The GDI for item j is defined as

=3 wlaly)[P(Xy = ;) — P (2.4)

.
o

where P; = Y77 w(ai;)P(Xy; = 1|ag;) is the mean success probability. In CD-
CAT applications, the posterior probability of the reduced attribute vector Wgt)(azj)
is used in place of m(a;). This implies that the discrimination of an item is not
static, and changes as the posterior distribution changes with t. The GDI measures
the extent to which an item can differentiate between the different reduced attribute
vectors based on their success probabilities, and is minimum (i.e., equal to zero) when
P(X;; = l]aj;) = P(X;; = 1|ag;) = P(X;; = 1\a;K;j) = P; (or, trivially, when the
posterior distribution is degenerate). It also attaches greater importance to reduced
attribute vectors with higher 7(.). As such, a larger GDI indicates a greater ability
to differentiate between reduced attribute vectors that matter. The GDI is computed

for each candidate item in the pool, and the candidate item with the largest GDI is

selected.
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The GDI has two important properties. First, instead of the original attribute
vector, a, it uses the reduced attribute vector, ;. Consequently, the GDI can be
implemented more efficiently than can the PWKL or MPWKL. For example, if K =5
and K7 = 2, computing the GDI involves 2K7 = 4 terms, whereas the PWKL and
MPWKL involve 25 = 32 and 2% x 2K = 1,024 terms, respectively.

Second, the GDI takes both the item discrimination and the posterior distribu-
tion into account. This property is illustrated using the example in Table 2.1. It
involves K = 3, and six items, three of which are of low discrimination (LD), and
the other three are of high discrimination (HD). For the low-discriminating items,
the difference between the lowest and the highest probabilities of success is 0.4; for
the high-discriminating items, this difference is 0.8. In addition, these items involve
one of the following g-vectors: g9, @109, and gq,;;. Four distributions are consid-
ered: (1) all attribute vectors are equally probable, as in, m(a.) = 0.125; in (2), (3),
and (4), the attribute vector, namely, (1,0,0), (1,1,0), and (1,1,1), respectively, has
a probability of .965 and was deemed dominant, whereas each of the remaining at-
tribute vectors has a probability of .005. In Condition 1, the impact of the posterior
distribution is discounted, whereas in Conditions 2, 3, and 4, one-attribute vector is

highly dominant. In this table, the GDI was computed using the DINA model.

Table 2.1: GDIs for Different Distribution, Item Discrimination, and Q-Vectors

Dominant Low Discrimination High Discrimination
Condition o d100 di10 d111 d100 di10 d111
1 None 0.090 0.068 0.039 0.160 0.120 0.070
2 (1,0,0) 0.007  0.004 0.002  0.013 0.006 0.003
3 (1,1,0) 0.007  0.010 0.002 0.013  0.019 0.003
4 (1,1,1) 0.007 0.010 0.012 0.013 0.019  0.022

Note. Numbers in bold represent the highest GDI in each condition for fixed item discrimination.
GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA = deterministic
inputs, noisy “and” gate.

Several results can be noted. First, for a fixed g-vector, the high-discriminating

items had higher GDI values compared to the low-discriminating items regardless of
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the posterior distribution. Second, when there was no dominant attribute vector,
one-attribute items had the highest GDI values for a fixed item discrimination. In
contrast, when one attribute vector was highly dominant, the items with g-vectors
matching the dominant attribute vectors had the highest GDI values. Finally, it can
also be observed that the low-discriminating items with g-vectors that match the
dominant attribute vectors can at times be preferred over the high-discriminating
items with g-vectors that do not. For example, for attribute vector (1,1,0), the GDI
for the low-discriminating item with g, is 0.010. This is higher than the GDI for
the high-discriminating item with q;,;, which is 0.003.

Based on the properties of the three indices discussed earlier, the authors expect
the GDI and the MPWKL will be more informative than the PWKL. In addition,
they expect the GDI to be faster than the PWKL in terms of implementation time,

which in turn will be faster than MPWKL.

2.2 Simulation Study

The simulation study aimed to investigate the efficiency of the MPWKL and GDI
compared to the PWKL under the G-DINA model context considering a variety of
factors, namely, item quality, generating model, and test termination rule. The correct
attribute and attribute vector classification rates, and a few descriptive statistics (i.e.,
minimum, maximum, mean, and coefficient of variation [CV]), of the test lengths
were calculated based on the termination rules to compare the efficiency of the item
selection indices. In addition, the time required to administer the test was also
recorded for each of the item selection indices. Finally, the item usage in terms of the

required attributes was tracked and reported in each condition.
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2.2.1 Design

2.2.1.1 Data Generation

Different item qualities and reduced CDMs were considered in the data generation.
First, due to documented impact of item quality on attribute classification accuracy
(e.g., de la Torre, Hong, & Deng, 2010), different item discriminations and variances
were used in the data generation. Two levels of item discrimination, HD and LD,
were combined with two levels of variance, high variance (HV) and low variance (LV),
in generating the item parameters. Thus, a total of four conditions, HD-LV, HD-HV,
LD-LV, and LD-HV, were considered in investigating the impact of item quality
on the efficiency of the indices. The item parameters were generated from uniform
distributions. For HD items, the highest and lowest probabilities of success, P(0)
and P(1), were generated from distributions with means of .1 and .9, respectively;
for LD items, these means were 0.2 and 0.8. For HV and LV items, the ranges of
the distribution were 0.1 and 0.2, respectively. The distributions for P(0) and P(1)
under different discrimination and variance conditions are given in Table 2.2. The
mean of the distribution determines the overall quality of the item pool, whereas the

variance determines the overall quality of the administered items.

Table 2.2: Ttem Parameters

Item Quality P(0) P(1)
HD-LV 07(0.05,0.15) 07(0.85,0.95)
HD-HV U(0.00,0.20) U(0.80, 1.00)
LD-LV U(0.15,0.25) U(0.75,0.85)
LD-HV U(0.10,0.30) U(0.70,0.90)

Note. HD-LV = high discrimination-low variance; HD-HV = high discrimination-high variance;
LD-LV = low discrimination-low variance; LD-HV = low discrimination-high variance.
Second, to investigate whether the efficiency of the indices is consistent across

different models, item responses were generated using three reduced models: the

DINA model, the DINO model, and the A-CDM. For the DINA and DINO models,
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the probability of success was set as shown in Table 2.2. For the A-CDM, in addition
to the success probabilities given in Table 2.2, intermediate success probabilities were
obtained by allowing each of the required attributes to contribute equally. The four
item qualities and three reduced models resulted in the 12 conditions of the simulation
study. The number of attributes was fixed to K = 5.

To design a more efficient simulation study, only a subset of the attribute vectors
was considered. The six attribute vectors were ag = (0,0,0,0,0), a; = (1,0,0,0,0),
a; = (1,1,0,0,0), a3 = (1,1,1,0,0), a4y = (1,1,1,1,0), and a5 = (1,1,1,1,1),
representing no mastery, mastery of a single attribute only, mastery of two attributes
only, and so forth. For each attribute vector, 1,000 examinees were generated for a

total of 6,000 examinees in each condition.

2.2.1.2 Test Termination Rules

Two test termination rules were considered in the simulation study: fixed-test
lengths and minimax of the posterior distribution of the attribute vectors. The former
allowed for a comparison of the efficiency of the indices with respect to classification
accuracy when the CAT administration was stopped after a prespecified test length
was reached for each examinee; the latter allowed for the comparison of the efficiency
of the indices in terms of test lengths when the CAT administration was terminated
after the largest posterior probability of an attribute vector was at least as large as
a prespecified minimax value, which corresponds to the first criterion by Hsu et al.
(2013). Three fixed-test lengths, 10, 20, and 40 items, were considered for the first
termination rule, and four minimax values, 0.65, 0.75, 0.85, and 0.95, were used for

the second rule.
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2.2.1.3 Item Pool and Item Selection Methods

The Q-matrix was created to have 40 items from each of 25 — 1 = 31 possible
g-vectors, resulting in 1,240 items in the pool. Three different item selection indices
were considered: the PWKL, the MPWKL, and the GDI. For greater comparability,
the first item administered to each examinee was chosen at random, and this item

was fixed across the three indices. In the case of PWKL, when oll(t)

was not unique,
a random attribute vector was chosen from the modal attribute vectors.

Let oy and &y be the kth true and estimated attribute in attribute vector [
for examinee 7, respectively. For each of the six attribute vectors considered in this

design, the correct attribute classification rates (CAC), and the correct attribute

vector classification rates (CVC) were computed as

1,000 5
CAC[ = 1 000 Z ZI ikl — azkl and
=1

1,000 5

CcCvV(C, = 1 000 Z H[ Qi = Qg

=1

(2.5)

where [ = 0,...,5, and [ is the indicator function.Using appropriate weights (de-
scribed later), the CAC and CVC were computed assuming the attributes were uni-
formly distributed for the fixed-test length conditions. The minimum, maximum,
mean, and CV of the test lengths were calculated, again with appropriate weights
where needed, when the minimax of the posterior distribution was used as the stop-
ping criterion. This study focused on attribute vectors that were uniformly dis-
tributed. To accomplish this, the results based on the six attribute vectors needed
to be weighted appropriately. For K = 5, the vector of the weights are 1/32, 5/32,
10/32, 10/32, 5/32, and 1/32, which represented the proportions of zero-, one-, two-,
three-, four-, and five-attribute mastery vectors among the 32 attribute vectors, re-

spectively. CV was calculated by taking the ratio of the standard deviation to the
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mearl.

2.2.2 Results

2.2.2.1 Fixed-Test Length

The sampling design of this simulation study can allow for results to be generalized
to different distributions of the attribute vectors. This study focused on attribute
vectors that were uniformly distributed. To demonstrate the efficiency of using such
a design, a small study comparing two sampling procedures for the DINA model with
HD-LV items was carried out. In the first procedure, which is the current sampling
design, only six selected attribute vectors, each with 1,000 replicates, were used; in
the second procedure, 32,000 attribute vectors were generated uniformly. The CAC
and the CVC in the former and the latter were computed using weighted and simple
averages, respectively. Table 2.3 shows that despite working with fewer attribute
vectors, using selected attribute vectors can give the CAC and the CVC that were
almost identical to those obtained using a much larger sample drawn randomly, and
this was true across the different test lengths. These findings can be expected to hold

across other CDMs and item qualities.

Table 2.3: Classification Accuracies Based on Two Sampling Procedures

Item CAC CVC
Quality J Weighted Simple Weighted Simple
HD-LV 10 0.969 0.969 0.875 0.876
20 0.999 0.999 0.996 0.996
40 1.000 1.000 1.000 1.000
Note. CAC = correct attribute classification; CVC = correct attribute vector classification;

J = test length; HD-LV = high discrimination-low variance.

For all conditions, the CAC rates were, as expected, higher than the CVC rates,
but both measures showed similar patterns. For this reason, only the CVC rates were

reported in this article. However, the results in their entirety can be requested from
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the first author. The CVC results using fixed-test lengths as a stopping rule under the
different factors are presented in Table 2.4 for all the generating models. Differences
in the CVC rates were evaluated using two cut points, 0.01 and 0.10. Differences
below 0.01 were considered negligible, between 0.01 and 0.10 were considered slight,
and above 0.10 were considered substantial.

Table 2.4: The CVC Rates using the DINA, DINO, and A-CDM

Ttem DINA DINO A-CDM
Quality J PWKL MPWKL GDI PWKL MPWKL GDI PWKL MPWKL GDI
HD-LV 10 0.752 0.878 0.887  0.749 0.855 0.849  0.839 0.817 0.826
20 0.989 0.996 0.996 0.986 0.995 0.996 0.992 0.992 0.991
40 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000
HD-HV 10 0.854 0.979 0.981 0.870 0.979 0.981 0.963 0.967 0.962
20 0.999 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000
40  1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000
LD-LV 10 0.454 0.589 0.604 0.441 0.551 0.557  0.515 0.524 0.511
20 0.814 0.892 0.890  0.803 0.872 0.871  0.855 0.857 0.859
40 0.987 0.995 0.995 0.984 0.993 0.992  0.987 0.990 0.990
LD-HV 10 0.569 0.723 0.719  0.596 0.703 0.704  0.658 0.666 0.660
20 0917 0.962 0.962  0.924 0.969 0.966  0.948 0.953 0.951
40 0.999 1.000 0.999  1.000 1.000 1.000  0.998 0.999 0.999

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and” gate; DINO = de-
terministic input, noisy “or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; J = test length;
PWKL = posterior-weighted Kullback-Leibler index; MPWKL = modified PWKL index; GDI = G-DINA model
discrimination index; G-DINA = generalized DINA; HD-LV = high discrimination-low variance; HD-HV = high

discrimination-high variance; LD-LV = low discrimination-low variance; LD-HV = low discrimination-high variance.

Using the DINA and the DINO as generating models in conjunction with a short
test length (i.e., 10 items), the differences in the CVC rates of the MPWKL and
the GDI were mostly negligible regardless of the item quality. The only exception
is the one condition, with 10 LD-LV items, where the CVC rate of the GDI was
slightly higher than the MPWKL. Under the same conditions, the CVC rates of the
two indices were substantially higher than the PWKL regardless of the item quality.
When the test lengths were longer (i.e., 20- and 40-item tests), all of the three indices
generally performed similarly using the DINA and DINO models. However, in one
condition (i.e., 20-item test with LD items and the DINA model), the MPWKL and
the GDI had slightly higher CVC rates compared with the PWKL.

Using the A-CDM as a generating model, the three indices had mostly similar
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CVC rates. Interestingly, using 10-item tests with HD-LV items, the PWKL had
slightly higher CVC rates compared to the MPWKL and the GDI.

Additional findings can be culled from Table 2.4. First, as expected, increasing the
test length improved the classification accuracy regardless of the item selection index,
item quality, and generating model. Using a long test (i.e., 40-item test) provided a
CVC rate of almost 1.00 for all of the indices. However, a clear distinction can be seen
on the efficiency of the indices when shorter test lengths, in particular 10-item test,
were used. For example, using the DINA model and HD-LV items, the 10-item test
yielded a maximum CVC rate of 0.89 for the MPWKL and the GDI. In comparison,
the PWKL had only a CVC rate of 0.75 under the same condition.

Second, the item quality had an obvious impact on the CVC rates: higher dis-
crimination and higher variance resulted in higher classification accuracy. As can
be seen from the results, HD items resulted in better rates compared with LD items
regardless of the variance. Similarly, items with HV showed higher classification rates
compared with LV items. Consequently, HD-HV items had the best classification ac-
curacy, whereas LD-LV items had the worst classification accuracy regardless of the
item selection index and generating model. To illustrate, using the DINA model and
a 10-item test, the highest and the lowest CVC rates of 0.98 and 0.60, were obtained
with HD-HV and LD-LV items, respectively, for both the MPWKL and GDI; in com-
parison, the CVC rates were 0.85 and 0.45 for HD-HV and LD-LV items, respectively,
for the PWKL.

To investigate how the item selection indices behaved for different attribute vec-
tors, the CVC rates for each attribute vector were calculated. Only the results for
10-item test with HD-HV and LD-LV items are presented (see Figure 2.1). Across
the different item quality conditions, the CVC rates of the MPWKL and GDI were
more similar for the different attribute vectors, whereas they were more varied for the

PWKL. A few conclusions can be drawn from this figure. First, for HD-HV items, the
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indices performed similarly for a4y and a5 when the DINA model was used. However,

under the same condition, the MWPKL and GDI had higher CVC rates compared

to the PWKL for the other four attribute vectors. Using the same item quality, the

indices performed similarly for ap and a; when the DINO model was used; however,

the CVC rates using the PWKL were lower for as, a3, ay, and as compared to the

other two indices. It can also be noted that the classification accuracy of the PWKL

was more varied than those of the MPWKL and GDI across the attribute vectors. As

can be seen from the graphs, the CVC rate of the PWKL could range from around

0.65 to 1.00, whereas these rates were mostly 1.00 for the MPWKL and GDI. The

three indices had almost the same results when the A-CDM was involved.
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Figure 2.1: CVC Rates for 6 Selected Attribute Vectors, J = 10
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Note: Blue, red, and green lines represent the PWKL, MWPKL and GDI, respectively. CVC =
correct attribute vector classification; PWKL = posterior-weighted Kullback-Leibler index;
MPWKIL = modified PWKL index; GDI = G-DINA model discrimination index; G-DINA =
generalized DINA; DINA = deterministic inputs, noisy “and” gate; DINO = deterministic input,
noisy “or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; HD-HV = high

discrimination-high variance; LD-LV = low discrimination-low variance.

Second, although the CVC rates were lower, the results for LD-LV items were

similar to those for HD-HV items. The MPWKL and GDI had higher CVC rates than

the PWKL for o, a1, ap, and a3 when the DINA model was used. In contrast, the

PWKL outperformed the MPWKL and GDI for a4 and a5 in the same condition.



25

Using the same item quality and the DINO model, the PWKL had higher CVC rates
for g and ;. However, the MPWKL and GDI had higher rates for the other four
attribute vectors. Again, the CVC rates of the PWKL had higher variability (0.26-
0.82) compared to those of the MPWKL and GDI (0.56-0.65). Finally, the efficiency
of the indices was similar for the A-CDM, but the extreme attribute vectors a and

a; can be better estimated than the remaining attribute vectors.

2.2.2.2 Minimax of the Posterior Distribution

For a fixed minimax of the posterior distribution, descriptive statistics of the test
lengths are shown in Tables 2.5, 2.6, and 2.7 for the DINA, DINO and A-CDM,
respectively. Differences in the mean were evaluated using two cut points, 0.5 and
1, and differences below 0.5 were considered negligible, between 0.5 and 1 slight, and

above 1 substantial.

Table 2.5: Descriptive Statistics of Test Lengths using the DINA Model

Item PWKL MPWKL GDI
Quality 7(a./X;) Min Max Mean CV Min Max Mean CV Min Max Mean CV

HD-LV 0.65 3 25 826 028 3 16 6.69 013 3 14 6.67 0.13
0.75 3 28 892 028 4 18 732 017 4 19 7.34 0.16
0.85 3 32 10.08 0.27 4 22 883 019 4 24 8.87 0.19
0.95 4 35 12.05 025 4 26 1099 0.19 4 31 1099 0.19
HD-HV 0.65 2 19 776 022 2 14 6.55 011 2 10 6.52 0.12
0.75 2 22 796 022 2 14 6.58 0.11 2 11 6.60 0.11
0.85 2 23 845 022 2 14 6.72 010 2 14 6.73 0.10
0.95 2 23 936 021 2 17 751 012 2 18 7.22  0.11
LD-LV 0.65 4 48 1348 037 5 32 1141 030 5 34 11.46 0.30
0.75 4 50 1521 0.36 6 40  13.02 029 6 38 13.08 0.29
0.85 ) 55 1711 035 6 53 1495 030 6 55 15.00 0.30
0.95 5 73 2143 032 7 56 1940 0.28 7 64 19.46 0.28
LD-HV 0.65 3 35 1045 032 4 28 8.60 024 4 28 8.57 0.24
0.75 4 36 11.71 032 5 29 9.86 026 5 31 9.93 0.26
0.85 4 42 1341 031 5 32 11.78 026 5 32 11.77 0.26
0.95 4 49 1570 029 6 43 1413 025 6 42 1417 0.25

Note. DINA = deterministic inputs, noisy “and” gate; PWKL = posterior-weighted Kullback-Leibler index; MPWKL =
modified PWKL index; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; CV = coefficient
of variation; HD-LV = high discrimination-low variance; HD-HV = high discrimination-high variance; LD-LV = low
discrimination-low variance; LD-HV = low discrimination-high variance.

Using the DINA and DINO models, the mean test lengths of the MPWKL and

the GDI were generally similar (i.e., the differences were negligible), and they were
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Table 2.6: Descriptive Statistics of Test Lengths using the DINO Model

Item PWKL MPWKL GDI
Quality 7(a./X;) Min Max Mean CV Min Max Mean CV Min Max Mean CV

HD-LV 0.65 3 24 837 028 3 24 689 0.15 3 19 6.83 0.15
0.75 3 2T 9.08 028 4 2r 758 018 4 21 7.58 0.18
0.85 3 29 1032 027 4 28 891 019 4 23 8.89 0.19
0.95 4 34 1223 025 4 30  11.09 0.20 4 27 11.04 0.20
HD-HV 0.65 2 17 778 023 2 10 6.60 0.11 2 10 6.53 0.11
0.75 3 18 804 022 3 13 671 010 3 10 6.60 0.11
0.85 3 22 8.61 023 3 14 724 010 3 11 6.80 0.10
0.95 3 26 951 022 3 17 810 0.10 3 20 7.66 0.11
LD-LV 0.65 4 49 1373 035 5 40 1188 029 5 37 11.85 0.29
0.75 4 50 1543 034 6 43 1361 029 6 43 13.61 0.29
0.85 ) 59 1741 033 6 57 15,57 030 6 62 15.60 0.30
0.95 5 67 2183 031 7 69 20.10 029 7 68  20.07 0.29
LD-HV 0.65 3 32 1045 031 4 24 881 023 4 24 875 0.23
0.75 4 33 11.79 030 5 36 10.18 0.25 5 29 10.08 0.25
0.85 4 36 1345 030 5 36 1213 024 5 42 1211 0.25
0.95 5 45 1575 028 6 40 1440 025 6 43 1435 0.26

Note. DINO = deterministic input, noisy “or” gate; PWKIL = posterior-weighted Kullback-Leibler index; MPWKL =
modified PWKL index; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA = deterministic
inputs, noisy “and” gate; CV = coefficient of variation; HD-LV = high discrimination-low variance; HD-HV = high
discrimination-high variance; LD-LV = low discrimination-low variance; LD-HV = low discrimination-high variance.

substantially shorter compared with the test lengths of the PWKL. This was true
regardless of the minimax value and item quality. The largest mean test length
differences occurred when LD-LV items were involved — these differences were greater
than 2.0 and 1.8 for the DINA and DINO models, respectively. However, when the
A-CDM was used, all the three indices performed similarly except in the HD-HV and
0.85 minimax value condition, where the PWKL had a slightly longer test length
compared with the MPWKL and GDI.

It can also be noted that, as expected, increasing the minimax value resulted in
longer test lengths regardless of the item selection index, item quality, and generating
model. The change in the mean test length as a result of increasing the minimax value
from 0.65 to 0.95 was substantial for all of the conditions except for one — there was
only a slight change when the MPWKL and the GDI were used with HD-HV items. In
addition, as in the fixed-test length, the item quality had an impact on the efficiency
of the indices: Using items with higher discrimination or higher variance resulted

in shorter tests. Consequently, HD-HV and LD-LV items had the shortest and the
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Table 2.7: Descriptive Statistics of Test Lengths using the A-CDM

Item PWKL MPWKL GDI
Quality 7(a./X;) Min Max Mean CV Min Max Mean CV Min Max Mean CV

HD-LV 0.65 6 13 699 010 6 13 692 008 6 12 6.93 0.08
0.75 6 14 786 014 7 14 705 012 07 15 7776 0.12
0.85 9 18 998 014 9 19 974 013 9 20 9.79 0.13
0.95 11 25 1284 0.16 11 26 1282 0.15 11 26 12.84 0.15
HD-HV 0.65 6 10 683 008 6 7 6.75 006 ©6 7 6.70 0.07
0.75 6 14 718 012 6 8 6.83 006 6 8 6.80 0.06
0.85 6 17 787 015 6 11 718 0.07 6 11 7.04 0.06
0.95 6 17 871 016 6 15 879 009 7 16 8.79 0.10
LD-LV 0.65 10 32 12.67 0.21 10 30 12.65 0.22 10 29  12.62 0.22

0.75 11 33 14.66 0.23 11 34 14.67 0.23 11 34 14.64 0.23
0.85 12 50 17.80 0.24 12 49 17.84 024 12 52 17.82 0.24
0.95 16 59 2441 0.23 16 74 24.39 0.23 16 74 24.37 0.23
LD-HV 0.65 8 22 9.04 0.17 8 21 9.04 0.17 8 18 9.03 0.17
0.75 9 26 11.25 0.19 9 24 11.30 0.19 9 24 11.26  0.19
0.85 11 27 13.29 0.19 11 32 13.20 0.18 11 29 13.20 0.18
0.95 13 39 1743 0.20 13 38 1749 0.19 13 41 17.48 0.20
Note. A-CDM = additive CDM; CDM = cognitive diagnosis model; PWKL = posterior-weighted Kullback-Leibler index;
MPWKL = modified PWKL index; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA =
deterministic inputs, noisy “and” gate; CV = coefficient of variation; HD-LV = high discrimination-low variance; HD-
HV = high discrimination-high variance; LD-LV = low discrimination-low variance; LD-HV = low discrimination-high
variance.

longest tests, respectively. In this study, using the minimax value of 0.95, GDI, and
DINA model, HD-HV items resulted in tests with a mean of 7.22; in contrast, for
LD-LV items, this mean was 19.46. Finally, generating model can have an impact on
the mean test lengths, but this moderated by the choice of the item selection index
— with the GDI, the DINA or DINO models consistently required shorter tests than
the A-CDM, but this pattern was not as obvious with the other two indices.

Other findings can be gleaned from Tables 2.5, 2.6, and 2.7. First, the minimum
test lengths of the three indices were similar for most of the conditions. Second,
increasing the minimax of the posterior distribution generally resulted in higher min-
imum and maximum test lengths, especially at the two extreme minimax values.
However, using HD-HV items with the DINA model, the minimum values remained
the same for the three indices. Third, the item quality had an impact on the minimum,
maximum, and CV of the test lengths: HD-HV items provided the smallest minimum,

maximum, and CV values, whereas LD-LV items provided the largest statistics for
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all of the indices. Finally, using the A-CDM, the indices had the smallest maximum
and CV values; however, they had the highest minimum test lengths compared to the
DINA and DINO models.

The mean test lengths for each attribute vector were calculated, and the results
using HD-HV and LD-LV items, and 0.65 as the minimax value are shown in Fig-
ure 2.2. For the DINA model, the PWKL required longer tests, on the average, for
the attribute vectors ay, o, and ay compared to the MPWKL and GDI; however,
these two indices required longer tests for as. In contrast, the MPWKL and GDI
required longer tests for o, and the PWKL required longer tests for am, as, ay,
and as with the DINO as the generating model. Using the A-CDM, the mean test

lengths were similar for each attribute vector.

Figure 2.2: Mean Test Lengths for 6 Selected Attribute Vectors, 7(a.|X;) = 0.65
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Note: Blue, red, and green represent the PWKL, MPWKL, and GDI, respectively. PWKL =
posterior-weighted Kullback-Leibler index; MPWKL = modified PWKL index; GDI = G-DINA
model discrimination index; G-DINA = generalized DINA; DINA = deterministic inputs, noisy
“and” gate; DINO = deterministic input, noisy “or” gate; A-CDM = additive CDM; CDM =
cognitive diagnosis model; HD-HV = high discrimination-high variance; LD-LV = low
discrimination-low variance.
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2.2.2.3 Item Usage

To gain a better understanding of how different models utilize the items in the
pool, the overall item usage in terms of the number of required attributes was recorded
for each condition. Only the results for the fixed-test lengths with HD-HV and LD-LV
items are shown in Table 2.8.

For the DINA and DINO models, items that required one, two, and three at-
tributes were generally used more often compared to those which required four and
five attributes regardless of the item selection index and item quality. The PWKL
mostly used two-attribute items for the same models except in one condition where a
10-item test with LD-LV items and the DINA were used. The MPWKL and GDI had
a similar pattern of item usage (i.e., one-attribute items were mostly used for 10- and
20-item tests with LD-LV items) across different test lengths and item qualities for
the DINA except in one condition where a 10-item test with HD-HV items was used.
However, for the A-CDM, one-attribute items were mostly used with a proportion of

at least 0.92 regardless of the item selection index and item quality.

Table 2.8: The Proportion of Overall Item Usage

PWKL MPWKL GDI
True Ttem Number of Required Attributes
Model  Quality J 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
DINA HD-HV 10 0.25 045 0.23 0.06 0.01 0.38 0.27 0.31 0.02 0.01 0.34 034 0.28 0.03 0.01
20 0.25 0.48 0.22 0.04 0.01 027 039 030 0.03 0.01 027 037 029 0.05 0.02
40 0.28 049 0.18 0.04 0.01 0.24 0.44 0.27 0.05 0.01 0.24 0.39 0.30 0.05 0.01
LD-LV 10 0.26 0.30 0.34 0.08 0.02 0.50 0.30 0.16 0.03 0.01 0.52 0.29 0.15 0.03 0.01
20 0.29 0.34 0.28 0.07r 0.02 037 035 0.23 0.04 0.01 038 034 022 0.05 0.01
40 025 034 031 0.08 0.02 0.27 0.35 0.30 0.07 0.02 028 0.35 0.29 0.07 0.02
DINO HD-HV 10 0.26 0.44 0.23 0.07 0.01 030 0.38 0.27 0.04 0.01 0.36 0.28 0.30 0.05 0.01
20 0.25 0.44 0.24 0.06 0.01 028 040 0.26 0.06 0.01 0.23 041 0.26 0.08 0.02
40 024 046 0.24 005 0.01 0.21 049 0.23 0.06 0.01 022 041 0.29 0.07 0.01
LD-LV 10 0.23 0.32 032 0.11 0.02 046 0.32 0.17 0.04 0.01 049 0.30 0.16 0.04 0.01
20 0.27 0.33 0.29 0.09 0.02 0.35 0.36 0.22 0.05 0.01 037 0.34 0.22 0.05 0.01
40 0.22 036 0.30 0.10 0.02 0.26 0.37 0.27 0.08 0.02 026 0.37 0.27 0.08 0.02
A-CDM HD-HV 10 0.92 0.03 0.03 0.02 0.00 0.92 0.03 0.03 0.02 0.00 0.92 0.03 0.03 0.02 0.00
20 0.95 0.02 0.02 0.01 0.00 096 0.02 0.02 0.01 0.00 096 0.02 0.02 0.01 0.00
40 0.93 0.06 0.01 0.00 0.00 0.96 0.03 0.01 0.00 0.00 0.98 0.01 0.01 0.00 0.00
LD-LV 10 0.92 0.03 0.03 0.02 0.00 0.92 0.03 0.03 0.02 0.00 0.92 0.03 0.03 0.02 0.00
20 0.96 0.02 0.02 0.01 0.00 096 0.02 0.02 0.01 0.00 096 0.02 0.02 0.01 0.00
40 098 0.01 0.01 0.00 0.00 0.98 0.01 0.01 0.00 0.00 098 0.01 0.01 0.00 0.00
Note. PWKL = posterior-weighted Kullback-Leibler index; MPWKL = modified PWKL index; GDI = G-DINA model discrimination index;
G-DINA = generalized DINA; DINA = deterministic inputs, noisy “and” gate; J = test length; DINO = deterministic input, noisy “or” gate;
A-CDM = additive CDM; CDM = cognitive diagnosis model; HD-LV = high discrimination-low variance; HD-HV = high discrimination-high
variance; LD-LV = low discrimination-low variance; LD-HV = low discrimination-high variance.
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To get a deeper understanding of the differences in item usage among the models,
the items were grouped based on their required attributes. To accomplish this, an
additional simulation study was carried out using the same factors except for one:
item quality. For this study, the lowest and highest success probabilities were fixed
across all of the items, specifically, P(0) = 0.1 and P(1) = 0.9. This design aimed to
eliminate the effect of the item quality on item usage. Due to the space constraint,
only the results for the GDI, 20-item test, and a3 are shown in Figure 2.3. Overall,
the DINA model showed the following pattern of item usage: It uses items that
required the same attributes as the examinee’s true attribute mastery vector, and
items that required single attributes which were not mastered by the examinee. For
ag, the DINA model used the items that required (1,1,1,0,0), and items that required
either (0,0,0,1,0) or (0,0,0,0,1). In contrast, the DINO showed a different pattern of
item usage: It uses items that required the same attributes as the examinee’s true
nonmastery vector, and items that required single attributes which were mastered by
the examinee. Again for ag, the DINO model used items that required (0,0,0,1,1),
and items that required (1,0,0,0,0), (0,1,0,0,0), and (0,0,1,0,0). The A-CDM used
items that required single attributes regardless of the true attribute vector. The
same pattern was observed for the other attribute vectors.

To further investigate how the models converged into those patterns of item usage,
the test administrations were divided into periods each comparing of five items. The
item usage was recorded in each period. Only the results for the GDI, 20-item test,
and a3 are shown (refer to Figure 2.4). In the first period, which includes the first five
items, one-attribute items were used mostly regardless of the generating model and
examinees’ true attribute vector. In the second, third, and fourth periods (items from
6 to 10, 11 to 15, and 16 to 20, respectively), the most common item types gradually
became more similar to the previous patterns of item usage for the DINA and DINO

models. However, the A-CDM favored one-attribute item at the rate of almost 1.00
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in each period. Again, the same pattern was observed for the other attribute vectors

in this study.

2.2.2.4 Average Time

The average item administration time per examinee was recorded separately for
each index. The CAT administration code was written in Ox (Doornik, 2011), and
run on a computer with processor of 2.5 GHz. Only the average times in milliseconds
using 10 HD-LV items and the DINA model are shown in Table 2.9. The table
shows that the MPWKL was the slowest, and the GDI was the fastest index in terms
of the administration time: the PWKL, MPWKL, and GDI took 6.49, 20.25, and
4.59 milliseconds, respectively. In other words, the GDI was 4.41 faster than the
MPWKL, and 1.41 faster than the PWKL. As mentioned earlier, the GDI works
with the reduced attribute vectors, and involves fewer terms compared to the PWKL
and MWPKL. The dimensions in the PWKL and MPWKL grow exponentially as the
number of attribute K increases. However, the GDI does not have the same problem
as long as the number of required attributes K7 remains small. The advantage of
the GDI can be expected to be more apparent with the A-CDM because mostly

one-attribute items are picked by the different indices.

Table 2.9: Average Test Administration Time per Examinee (J = 10, HD-LV, and
DINA)

PWKL MPWKL GDI
Time 6.49 20.25 4.59
Ratio (Relative to GDI) 1.41 4.41 —

Note. HD-LV = high discrimination-low variance; DINA = deterministic inputs, noisy “and” gate;
PWKIL = posterior-weighted Kullback-Leibler index; MPWKL = modified PWKL index; GDI =
G-DINA model discrimination index; G-DINA = generalized DINA.
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2.3 Discussion and Conclusion

Compared with traditional unidimensional IRT models, CDMs provide more infor-
mation that can be used to inform instruction and learning. These models can reveal
examinees’ strengths and weaknesses by diagnosing whether they have mastered a
specific set of attributes. CAT is a tool that can be used to create tests tailored for
different examinees. This allows for a more efficient determination of what students
know and do not know. In this article, two new item selection indices, the MPWKL
and the GDI, were introduced, and their efficiency was compared with the PWKL. In
addition, a more efficient simulation design was proposed in this study. This design
can allow for results to be generalized to different distributions of attribute vectors,
despite involving a smaller sample size. Based on the factors manipulated in the sim-
ulation study, the two new indices performed similarly, and they both outperformed
the PWKL in terms of classification accuracy and test length. The study also showed
that items with HD or HV provided better classification rates or shorter test lengths.
Moreover, generating models can have an impact on the efficiency of the indices: For
the DINA and DINO models, the results were more distinguishable; however, the
efficiency of the indices was essentially the same for the A-CDM, except in a few
conditions.

Although this study showed that the proposed indices, particularly the GDI, are
promising, more research needs to be done to determine their viability. First, some
constraints on the design of the Q-matrix and the size of the item pool need to be
investigated. The Q-matrix in this study involved all the possible g-vectors. However,
in practice, this may not be the case, particularly, when the CDMs are retrofitted to
existing data. Therefore, it would be important to examinee how the indices perform
when only a subset of the g-vectors exists in the pool. The current study uses a large

item pool, which may not be always possible in real testing situations. Considering
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smaller item pools, with or without constraints on the QQ-matrix specifications, can
lead to a better understanding of how the proposed indices perform under more varied
conditions.

Second, although diagnostic assessments are primarily designed for low-stakes
testing situations, their use for high-stakes decisions cannot be totally precluded.
Because test security is a critical issue in high-stakes testing situations, item exposure
in CD-CAT needs also to be controlled. At present, there are procedures for item
exposure control in the context of CD-CAT. For example, Wang, Chang, and Huebner
(2011) proposed item exposure control methods for fixed-test lengths in CD-CAT.
However, the performance of these methods with the proposed indices has yet to be
investigated. In addition, controlling the exposure of the items with the MPWKL
and the GDI can also be examined when different termination rules are involved.

Third, each data set was generated using a single CDM in this study. However,
as with previous indices, the MPWKL and the GDI are sufficiently general that it
can simultaneously be applied to any CDMs subsumed by the G-DINA model. As
such, it would be interesting to examine how the new indices will perform when
the item pool is made up of various CDMs, which reflects what can be expected in
practice — different items might require different processes (i.e., CDMs). Finally, to
keep the scope of this work manageable, a few simplifications about factors affecting
the performance of CD-CAT indices were made. These include fixing the number of
attributes, using a single method in estimating the attribute vectors, and assuming
that the item parameters were known. To obtain more generalizable conclusions,

future research should consider varying these factors.



Figure 2.3: Overall Proportion of Item Usage for a3, GDI, and J = 20
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Chapter 3
Study II: Item Exposure Control for CD-CAT

Abstract

This article examines the use of two item exposure control methods, namely, the
restrictive progressive and restrictive threshold, in conjunction with the generalized
deterministic inputs, noisy “and” gate model discrimination index (GDI) as item
selection methods in cognitive diagnosis computerized adaptive testing. The efficiency
of the methods is compared with the GDI using a simulation study. The impact
of different factors, namely, item quality, generating model, attribute distribution,
item pool size, sample size, and prespecified desired exposure rate, on classification
accuracy and item exposure rates is also investigated. The results show that the GDI
performed efficiently with the exposure control methods in terms of classification
accuracy and item exposure. In addition, the impact of the factors on item exposure
rates vary based on the methods.

Keywords: cognitive diagnosis model, computerized adaptive testing, item exposure

control

3.1 Introduction

Although computerized adaptive testing (CAT) has become a popular tool in edu-

cational and psychological testing, several researchers noted that it has been criticized
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for security and item bank usage problems for several years. Security problems are re-
lated to overuse of items (i.e., overexposed items; Chen, Ankenmann, & Spray, 2003),
and item bank usage problems are related to the use of rarely selected items (i.e.,
underexposed items; Barrada, Veldkamp, & Olea, 2009). For example, in security
problems, test-takers can memorize the items and distribute them publicly (H.-H.
Chang, 2004). Moreover, because item selection methods tend to select items that
provide the most information about ability level, the indices choose some items (e.g.,
high-discriminating items) more often than others (e.g., low-discriminating items).
Thus, overuse of items can lead to information sharing among the examinees, and
can result in items being answered correctly regardless of the examinees’ ability lev-
els (Lee, Ip, & Fuh, 2007). Also, the reliability and the validity of the test become
questionable. Therefore, high item exposure rates must be controlled to lessen the
impact of item sharing.

Item exposure rates can be affected by the psychometric properties of the items,
the items available in the item pool, and the ability distribution of the examinees
(Revuelta & Ponsoda, 1998). Two points should be considered when item expo-
sure is controlled: preventing overexposure of some items and increasing the use of
rarely selected items. A series of studies proposed methods for item exposure control
in traditional CAT. Sympson and Hetter (1985) proposed an iterative procedure for
controlling item exposure. In that study, an item exposure parameter, the probability
of administering an item that had already been selected, was assigned to each item.
If the parameter of a particular item was as low as the prespecified desired exposure
rate, the item could not be administered when it was selected. However, the main
drawbacks of this method involved time-consuming iterations in calculating item ex-
posure parameters and not being able to maintain the exposure rates of all items at
or below the prespecified desired exposure rate (Barrada, Abad, & Veldkamp, 2009).

Later, Davey and Parshall (1995) proposed a method that aimed to minimize a
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set of items that appear together. Again, an exposure parameter was assigned to
each item, but the parameter was conditioned on the administered items for a partic-
ular examinee. In a set of studies, Stocking and Lewis (1995a, 1995b) proposed two
methods for controlling item exposure. The two methods, the unconditional multino-
mial and the conditional multinomial procedures, modified the method proposed by
Sympson and Hetter and employed a multinomial model for selecting items instead
of using optimal selection. S.-W. Chang and Twu (1998) conducted a study to com-
pare these item exposure control methods. The researchers found that the Sympson
and Hetter and the Stocking and Lewis unconditional methods yielded very similar
results under all conditions. In addition, the Stocking and Lewis conditional method
produced better results for the exposure rates; however, it also produced the highest
measurement error.

The other item exposure control methods can be grouped as stratified methods.
H.-H. Chang and Ying (1996) noted that selecting items based on information might
be less efficient at the early stages of CAT because of the poor interim ability esti-
mation. Moreover, item selection based on information could lead to highly skewed
item usage. For example, selecting items based on the maximum Fisher information
at the early stages of CAT resulted in the overuse of items with high discrimination
parameters (H.-H. Chang & Ying, 1999); however, those items might not discriminate
test takers well especially when the estimated ability level was not stable. To handle
this issue, H.-H. Chang and Ying (1999) proposed a multistage adaptive testing ap-
proach, namely, the a-stratified strategy, for item exposure control in which the item
bank was first divided into parts (i.e., strata) based on the discrimination parame-
ter. Then, at the early stages of the test, items were selected from a stratum that
had items with low discrimination. As the test progressed and the ability estimate
became more stable, items with high discrimination were selected according to an

optimization criterion (Georgiadou, Triantafillou, & Economides, 2007).
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However, one issue with the a-stratified approach occurred when the discrimina-
tion parameters were highly correlated with the difficulty parameters. To solve that
problem, H.-H. Chang, Qian, and Ying (2001) proposed another method, namely, the
a-stratified strategy with b-blocking. In this method, the item bank was first divided
into blocks based on the difficulty parameters in ascending order, and then each block
was divided into strata based on the discrimination parameters. In this method, the
discrimination parameters were distributed more evenly within each stratum, and the
average discrimination increased across the strata (Georgiadou et al., 2007). However,
these stratification methods did not control individual item exposure rates, and thus,
some items might exceed the prespecified desired exposure rate unless other item ex-
posure control methods (e.g., the Sympson-Hetter method) are implemented with the
item selection method (Deng, Ansley, & H.-H. Chang, 2010). Different versions of the
stratification methods (e.g., a-stratified strategy with content blocking, a-stratified
with unequal item exposure across strata, multidimensional stratification) have been
proposed in the literature, and a comprehensive literature review can be found in
Georgiadou et al. (2007).

There are, however, some drawbacks with the stratified methods (Han, 2012).
First, item stratification can cause a problem in limiting the number of available items
in each stratum, and can result in the overuse of certain items. Second, the impact
of the guessing parameter is generally ignored in those methods, and it can threaten
the quality of the test administration, especially if this parameter is correlated with
the difficulty and discrimination parameters (Barrada, Mazuela, & Olea, 2006). Last,
the stratification methods are not effective when variable-test lengths are used (Han,
2012; Wen, H. Chang, & Hau, 2000).

In another study, Revuelta and Ponsoda (1998) proposed an item exposure control
method, the restricted method, in which none of the items was allowed to be exposed

for more than a prespecified desired exposure rate. This method simply assigns either
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zero or one as an item exposure parameter for each item. This parameter is zero if the
exposure rate of an item is greater than or equal to the prespecified desired exposure
rate; otherwise, it is one (Barrada, Abad, & Veldkamp, 2009).

Another method, the progressive method, based on the maximum information
was originally proposed by Revuelta (1995), and Revuelta and Ponsoda (1996). The
method has two components, item information and random components. Revuelta
and Ponsoda (1998) defined the method as follows: Let = be the number of adminis-
tered items, and L be the number of total items in the test. Also, define a random
value (H;) between zero and the highest information value to be drawn from uniform
distribution. A weight is computed considering a linear combination of random and
information components as

X

xT
Wj:(l——>Hj+L

where [; is the information for item j. The impact of the random component on the
item selection index is reduced, and the importance of the information increases as
the test progresses.

Later, Barrada, Olea, Ponsoda, and Abad (2008) proposed two functions that
can be applied to various item exposure control methods, including the progressive
method. Those functions aimed to control the speed of the move from random selec-
tion to selection based on information by acceleration parameters. In other words,
item selection can be mainly random at the beginning of the test, and then gradually
the information part becomes more important as the test progresses. Moreover, the
speed of this switch can be controlled by the functions. The researchers found that
the modified methods were efficient for improving the item exposure control methods
with very small losses in measurement accuracy. The idea of random selection at

the beginning of the test has also been supported by other studies that noted the
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random selection of items at the beginning of the test caused a very small decrease
in the measurement accuracy (Barrada et al., 2008; Li & Schafer, 2005; Revuelta &
Ponsoda, 1998).

Wang, Chang, and Huebner (2011) proposed a modification in which a stochastic
component was added to the item selection criterion in the progressive method. In
doing so, the item selection indices did not always pick the items with the most
information. The restrictive progressive (RP) method using an information index is

given by

RP-I; = (1 - eﬁpj> {(1 - %) R; + [jfﬂ : (3.2)

where exp; is the preliminary exposure rate, r is the prespecified desired exposure rate,
x is the number of items administered, L is the test length, R; ~ Uniform(0, H*)
in which H* = max(l;) for the remaining items in the item pool, 8 > 0 is a weight
that will be described later, and I; is the information index. As the items in the pool
are administered, the role of the information part increases, whereas the role of the
stochastic component, 1 — z/L, decreases. The [ value is an arbitrary number to
give priority to test security or estimation accuracy. Small 5 values provide better
test security, whereas high values result in better estimation accuracy. A restriction
value r was also added to the model to control the maximum exposure rate. In their
simulation study, the RP method was successful in controlling high exposure rates.
In addition, Wang et al. (2011) proposed the restrictive threshold (RT) method,
which also has two components, restrictive and threshold components. The threshold
component creates a set of items whose information is close to the largest information.

Specifically, the interval for the threshold component is defined as

(max(I;) — &, max(1;)], (3.3)
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where § specifies the length of the interval, and it is defined as

§ = [max(l;) —min(I;)] x f(x), (3.4)

where z is the number of items administered on the test, and f(z) is a monotone de-
creasing function. In this study, this function is defined as f(z) = (1 — 2/L)” where
B balances test security and estimation accuracy. The RT method was applied deter-
ministically such that when an item’s exposure rate reached the prespecified desired
exposure rate, the item was removed from the item pool for the next examinees. In
this article, the RP and RT methods were used with an item selection index to control

the item exposure rates.

3.1.1 Cognitive Diagnosis Models

In cognitive diagnosis, a binary attribute vector typically represents the presence
or absence of the specific skills or attributes in a particular content area. To achieve
this, let a;={a;} be the attribute vector of examinee i, where i = 1,2,..., N ex-
aminees, and £k = 1,2,..., K attributes. The kth element of the vector is 1 when
the examinee has mastered the kth attribute, and it is 0 when the examinee has not.
Similarly, the responses of the examinees to .J items are represented by a binary vec-
tor, X; = {;;}, where z;; is the ith examinee’s binary response for the jth item, and
j=1,2,...,J. A Q-matrix (Tatsuoka, 1983), which is a J x K matrix, represents the
required attributes for an item and the element of the jth row and the kth column,
¢jk, is 1 if the kth attribute is required to answer the jth item correctly, and it is 0
otherwise.

To date, several constrained and general CDMs have been proposed in the lit-
erature. On one hand, the constrained models require specific assumptions about

the relationship between attribute vector and task performance (Junker & Sijtsma,
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2001). Nonetheless, they provide results that can easily be interpreted. On the other
hand, the general models relax some of the strong assumptions in the constrained
models, and provide more flexible parameterizations. However, general models are
more difficult to interpret compared to the constrained models because they involve
more complex parametrizations. One of the general models was proposed by de la
Torre (2011), and it is called the generalized deterministic inputs, noisy “and” gate
(G-DINA) model. A few of commonly encountered constrained CDMs can be sub-
sumed by the G-DINA model. These are the deterministic inputs, noisy “and” gate
(DINA; de la Torre, 2009; Haertel, 1989; Junker & Sijtsma, 2001) model, which as-
sumes that lacking at least one of the required attributes is as the same as lacking all
of the required attributes; the deterministic input, noisy “or” gate (DINO; Templin
& Henson, 2006) model, which assumes that having at least one of the required at-
tributes is as the same as having all of the required attributes; and the additive CDM
(A-CDM,; de la Torre, 2011), which assumes that the impacts of mastering the differ-
ent required attributes are independent of each other. In Wang et al. (2011) paper,
they examined the Fusion model (Hartz, 2002; Hartz, Roussos, & Stout, 2002) with
the RP and RT methods; in this article, three constrained models, namely, DINA,
DINO, and A-CDM, were used in the data generation, but the CAT administration

was carried out under the G-DINA model context.

3.1.2 Computerized Adaptive Testing

CAT has become a popular tool in educational testing over the past few decades.
It has been developed as an alternative to paper-and-pencil tests, and offers faster
scoring and more flexible testing schedules for individuals. In addition, CAT provides
shorter test-lengths and enhanced measurement precision compared to paper-and-
pencil tests (Meijer & Nering, 1999). The components of CAT can be listed as

calibrated item pool, starting point, item selection method, scoring procedure, and
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stopping rule for the test administration (Weiss & Kingsbury, 1984). In this article,
we focused on the item exposure rates that used in conjunction with efficient item
selection methods.

Item selection methods based on the Fisher information are widely used in tra-
ditional CAT (Lord, 1980; Thissen & Mislevy, 2000). However, those methods are
not applicable in cognitive diagnosis computerized adaptive testing (CD-CAT) be-
cause they generally work with only continuous ability levels, whereas the equivalent
latent variables in cognitive diagnosis are discrete. Alternatively, the item selection
methods based on the Kullback-Leibler (K-L) information can be used in CD-CAT.
Xu, Chang, and Douglas (2003) first noted the issue and proposed two item selection
indices based on the Kullback-Leibler (K-L) information and Shannon entropy pro-
cedure in CD-CAT, and the results showed that both indices outperformed random
selection in terms of attribute classification. Later, Cheng (2009) proposed two item
selection indices, namely, the posterior-weighted K-L index (PWKL) and hybrid K-L
index (HKL), for CD-CAT. The calculation of the PWKL involves summing the dis-
tances between the current estimate of the attribute vector and the other possible
attribute vectors weighted by the posterior distribution of attribute vectors. The
results of her simulation study showed that the new indices performed similarly, and
had higher classification rates compared to the K-L and Shannon entropy procedure.
In another study, Kaplan, de la Torre, and Barrada (2015) proposed two new item
selection indices for CD-CAT. One of them is based on the G-DINA model discrimina-
tion index (GDI), and the other one is based on the PWKL, which is called modified
PWKL. The results showed that the two new indices performed very similarly and
higher attribute classification rates compared to the PWKL. In addition, the GDI
had the shortest administration time. In this article, the GDI was used as an item
selection index with the two item exposure control methods, namely, RP and RT

methods.
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The GDI was originally proposed as an index to implement an empirical Q-matrix
validation procedure (de la Torre & Chiu, 2015). It measures the (weighted) variance
of the probabilities of success of an item given a particular attribute distribution.
Later, Kaplan et al. (2015) used the index as an item selection method, and their
results showed that the index was promising in CD-CAT. To give a definition of the
index, let the first K7 attributes be required for item j, and define af; as the reduced
attribute vector consisting of the first K attributes, for c =1,..., 257 . For example,
if a g-vector is defined as (1,1,0,0,1) for K7 = 3 number of required attributes, the
reduced attribute vector is (aj,az,a5). Also, define P(X;; = 1|aj;) as the success

probability on item j given a;. The GDI for item j is defined as

25
¢ =Y m(al)[P(Xy; = 1ag) - PP, (3:5)

c=1

(®)

i

*

where 7 =;) is the posterior probability of the reduced attribute vector and P =

(a
2%5

> ooy T(a) P(Xi; = 1]a;) is the mean success probability.

3.2 Simulation Study

The goal of this study is to investigate the efficiency of the GDI in conjunction
with the RP and RT methods in terms of the item exposure rate and estimation
accuracy, and also simultaneously reduce the use of overexposed items and/or increase
the use of underexposed items. The design of the simulation study consisted of
investigating the impact of different factors. These factors included two levels of
item quality, three reduced CDMs, two attribute distributions, two sample sizes for
the data generation, and two test lengths for the test termination rule. In addition,
two item pool sizes, three item selection indices, including two different prespecified

X

desired exposure rates, " values, and three different § values were used for the
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item exposure control methods in the CAT administration.

3.2.1 Design

3.2.1.1 Data Generation

In the data generation, the impact of the item quality and generating model was
considered. First, because recent research has shown item quality affects the accuracy
of the attribute classification (e.g., de la Torre, Hong, & Deng, 2010; Kaplan et al.,
2015), different item discriminations and variances were used to generate the data.
Two levels of item quality, namely, low-quality (LQ) and high-quality (HQ), were con-
sidered. However, it should be noted that these two terms were used exclusively for
this study, and in other studies, they have been defined differently. For the purposes
of this study, HQ and LQ can also be viewed as more discriminating and less dis-
criminating, respectively. For L(Q) items, the lowest and highest success probabilities
(i.e., P(0) and P(1)) were generated from uniform distributions, U(0.15,0.25) and
U(0.75,0.85), respectively; and for HQ items, P(0) and P(1) were generated from
uniform distributions, U(0.00,0.20) and U(0.80, 1.00), respectively. Second, item re-
sponses were generated using three reduced models: DINA model, DINO model, and
A-CDM. For the DINA and DINO models, the probabilities of success were set as
discussed above. In addition to these probabilities, the intermediate success probabil-
ities were obtained by allowing each of the required attributes to contribute equally
in the A-CDM. The number of attributes was fixed at K=5.

Third, the impact of attribute distribution on the efficiency of the indices was also
investigated. Using different attribute distributions allows greater generalizability of
the findings from the study. Two different distributions, uniform and higher-order
(HO) distributions, were used to generate the examinees’ attribute vectors. In the

former, the examinee attribute vectors were drawn from 2% possible attribute vectors
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uniformly, whereas in the latter, the attribute vectors were drawn considering a HO
latent trait. HO latent traits were introduced for cognitive diagnosis by de la Torre
and Douglas (2004). In their study, a method for modeling the joint distribution of
the attribute vectors based on HO specification was proposed. By positing an HO
variable 6, the difficulty of mastering a specific set of attributes can be parameterized.

The probability of ax conditional on # can be written as

K

p(al0) = [ plasl6). (3.6)

k=1

The particular model considered in the current paper expresses the logit in 3.6 as a

linear function of #, as in:

plagl6) = exp(Aox + Airb) |

1+ exp(Aok + A1xb)
where Ao is the difficulty parameter, Ay is the discrimination parameter, and € is
a latent continuous variable to account for the associations among the attributes.
In this study, the HO parameters, difficulty and discrimination, were fixed to Agx =
{=2,—1,0,1,2} and A\; = 1 across all conditions, respectively. The HO latent trait 6
was drawn from a standard normal distribution. Last, the impact of the sample size

on the efficiency of the indices was investigated. Two sample sizes were considered,

N=500 and 1000.

3.2.1.2 Item Pool and Item Selection Methods

The impact of item pool size on the item exposure rates was investigated in this
study. The Q-matrix was created from 2% — 1 = 31 possible g-vectors for two sizes:
each with 20 and 40 items, resulting in 620 and 1240 items in the pool, respectively.
For the test termination rule, two fixed-test lengths, 10 and 20, were considered.

Two prespecified desired exposure rates, r™%* of .1 and .2, were used. Three [
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values in the RP and RT methods were considered to balance the exposure rate
and the classification rates: §=0.5, 1.0, and 2.0. Three item selection indices were
considered: the GDI, RP-GDI, and RT-GDI. For greater comparability, the first item
was chosen randomly from the pool for each examinee, and this item was fixed across
the indices. In addition, ten replications were performed for the RP-GDI to get more
stable results.

To compare the efficiency of the indices in terms of the estimation accuracy, the
correct attribute classification (CAC) rates and the correct attribute vector classifi-

cation (CVC) rates were calculated. The CAC and CVC rates were computed as

L N
CAC = NZZI[O% = k), and

i=1 k=1

1 N 5
cve = NZH[[QM = dik])

i=1 k=1

(3.7)

where [ is the indicator function. Different statistics (e.g., chi-square statistic and
overlap rates) have been proposed to evaluate the item exposure rates associated with
different indices. In this study, a chi-square statistic (H.-H. Chang & Ying, 1999) and
the maximum of the item exposure rates for each condition were calculated. The

statistic was calculated as
J
X2 =) (ri— 1)/, (3.8)
i=1

where r; is the exposure rate for item j, and 7 is the overall mean exposure rate for the
entire test. Smaller values indicate more even exposure rates. These statistics were
calculated before and after the exposure rates were controlled to investigate which of
the methods works better with the GDI in terms of the estimation accuracy and the

item exposure rate.
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3.2.2 Results

Due to space limitation, only partial results (see Table 3.1) are given; however,
the results in their entirety can be requested from the first author. Several results can
be noted. First, as expected, the CAC rates were higher than the CVC rates, but the
measures showed similar patterns for all conditions. In addition, the GDI resulted
in the highest, the RP-GDI had the second highest, and the RT-GDI had the lowest
CAC and CVC rates across all conditions. Last, the GDI yielded the highest, the
RT-GDI yielded the second highest, and the RP-GDI yielded the lowest maximum
and chi-square value of the item exposure rates for all conditions. Only the CVC rates
for the classification accuracy and only the chi-square values for the item exposure
rate were discussed in the following sections. In addition, the impact of the factors

on the attribute classification and item exposure rates were discussed in detail.

Table 3.1: The CVC rates, and the Maximum and the Chi-Square Values of Item
Exposure Rates Using the DINA, 10-Item Test, 5 = 0.5, and r™** = 0.1

GDI RP-GDI RT-GDI

Q J N AD CVC Max y* CVC Max x? CVC Max 2
LQ 620 500 U 0.55 095 269.88 044 0.03 1.04 0.40 0.10 8.02
HO 0.61 0.91 251.58 044 0.03 1.05 045 0.10 7.29
10000 U 056 096 265.60 043 0.03 093 040 0.10 7.48
HO 0.58 0.90 255.09 044 0.03 095 043 0.10 6.69
1240 500 U 0.55 096 608.93 047 0.02 283 040 0.10 13.12
HO 0.61 094 571.14 049 0.03 294 043 0.10 13.54
1000 U 0.60 095 590.22 047 0.02 270 043 0.10 11.19
HO 0.61 0.95 560.46 0.48 0.03 2.72 047 0.10 11.99
HQ 620 500 U 0.87 093 251.03 0.74 0.03 0.77 0.68 0.10 7.46
HO 092 0.86 23540 0.72 0.03 096 071 0.10 6.85
1000 U 0.87 093 251.87 0.76 0.03 0.64 0.74 0.10 6.50
HO 090 0.84 230.22 0.72 0.03 0.89 0.73 0.10 6.59
1240 500 U 0.86 094 52339 0.78 0.02 196 0.71 0.10 12.63
HO 0.87 0.92 494.70 0.77 0.02 243 0.68 0.10 13.46
1000 U 0.89 094 51225 0.78 0.02 1.78 071 0.10 10.74
HO 0.89 091 47353 076 0.02 225 071 0.10 11.85

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and” gate; GDI =
G-DINA model discrimination index; G-DINA = generalized DINA; RP-GDI = restrictive progressive GDI;

RT-GDI = restrictive threshold GDI; IQ = item quality; J = pool size; N = sample size; AD = attribute
distribution; LQ = low-quality; HQ high-quality; U = uniform; HO = higher-order.
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To gain a better understanding of how different exposure control methods behaved
in different conditions, the item exposure rates are shown in Figures 3.1 and 3.2 for
the 10-item test with the RP-GDI and RT-GDI using the DINA model and the A-
CDM, respectively. Several conclusions can be gleaned from the figures. First, the
RP method resulted in more uniform item exposure rates because of its probabilistic
nature, and the RT method yielded more skewed rates because it was implemented
deterministically. Second, the maximum exposure rates were always lower than the

desired r™%*

value when the RP method was used, whereas the maximum exposure
rates were equal to the desired r™* when the RT method was used. Third, more
items reached the desired r™** value using the A-CDM compared to the DINA and
DINO models, and those items were mostly one-attribute items. Last, using the A-
CDM resulted in more skewed item exposure rates compared to the DINA (or DINO)

model.

Figure 3.1: Item Exposure Rates for the DINA model
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Note: Red and blue lines represent the RP and RT, respectively; RP = restrictive progressive;
RT = restrictive threshold; DINA = deterministic inputs, noisy “and” gate; J = test length.
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Figure 3.2: Ttem Exposure Rates for the A-CDM
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Note: Red and blue lines represent the RP and RT, respectively; RP = restrictive progressive;
RT = restrictive threshold; A-CDM = additive CDM; CDM = cognitive diagnosis model; J = test
length.

In general, there is a trade-off between estimation accuracy and item exposure
rate (Way, 1998). In other words, reducing high item exposure rates will result
in lower classification rates, and vice versa. To better examine the impact of the
different factors, differences in the CVC rates were evaluated using a cut point of
0.05. Differences below 0.05 were considered negligible, whereas differences above
0.05 were considered substantial. In addition, the chi-square statistic ratios were
calculated to compare the efficiency of the indices under different factors, and the
ratios were evaluated using two cut points, 0.15 and 0.25. If the ratio was equal to
one, then the two chi-square values were considered equal to each other. If the ratio
was within the range of (0.85,1.15), it was considered negligible; within (0.75,0.85) or

(1.15,1.25), it was considered moderate; otherwise, it was considered substantial.
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3.2.2.1 The Impact of the Item Quality

As expected, using HQ items instead of LQ items resulted in higher classification
rates across different factors (e.g., generating model, item selection index). Moreover,
the increases in the CVC rates were greater when short tests (i.e., 10-item tests) were
used compared to long tests (i.e., 20-item tests). For example, the increases were
around 0.30 and 0.10 on average for the 10- and 20-item tests, respectively.

However, the impact of the item quality on the item exposure rates varied based
on the other factors. The chi-square ratios using the RP-GDI and RT-GDI are shown
in Table 3.2 for the DINA and DINO models. Several results can be noted. First, for
the GDI with the DINA and DINO models, the use of LQ items instead of HQ items
resulted in negligible differences in the chi-square values regardless of the other factors
except for short tests with a large pool in the DINA model, and short tests with a
large pool and the uniform distribution in the DINO model, where the differences were
moderate. Second, for the RT-GDI with the DINA and DINO models, the use of LQ
items instead of HQ items generally resulted in negligible to moderate differences in
the chi-square values regardless of the other factors except for some conditions. For
example, the differences were substantial when a small pool was used with the HO

distribution, a small 5, and an r™**

of .2 regardless of the test length and sample
size. Third, for the RP-GDI with the DINA and DINO models, the use of LQ items
mostly yielded larger chi-square values than HQ items, and there were more cases
where the differences in chi-square values were substantial compared to the RT-GDI.
However, there were some exceptions. For example, the differences were negligible to
moderate when the HO distribution was used with a small 3 regardless of the pool
size, sample size, test length, and r™** value. Last, for the A-CDM, the use of LQ

items instead of HQ items resulted in negligible differences in the chi-square values

across all the conditions.
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3.2.2.2 The Impact of the Sample Size

Increasing the sample size resulted in negligible differences in the classification
rates regardless of the other factors (e.g., item selection index, generating model, and
item quality) except for some conditions using the RT-GDI with the DINA model,
where the differences were substantial. For example, a large sample (i.e., N=1000)
yielded higher classification rates compared to a small sample (i.e., N=500) when the
uniform distribution and a small 3, and the HO distribution and a large 8 were used
with short tests, HQ items, a small pool, and an ™% of .1.

Similarly, the impact of the sample size on the item exposure rates were negli-
gible across the different factors, based on the chi-square ratios shown in Table 3.3.
However, there were some conditions where the differences in the chi-square values
were either moderate or substantial. For example, the differences were moderate for
the RP-GDI when the DINA, short tests and HQ items were used with an r™** of
.1, a small 3, a small pool, and the uniform distribution; and when the DINO, long
tests were used with an r™%* of .1, a small 3, a small pool, and the uniform distribu-
tion regardless of the item quality; for the RT-GDI when the DINA, LQ items were
used with a small 3, a large pool, and the uniform distribution regardless of the test
length and the r™**; and when the DINO, short tests and HQ items were used with
an "™ of .1, and a small 5, a large pool, and the HO distribution. In addition,
the differences were substantial for the DINA and DINO models when the RP-GDI,

mar of 1, a small £, a small pool, and

long tests, and HQ items were used with an r
the uniform distribution; and when the RT-GDI, long tests, and HQ items were used

with an 7% of .1, a small 3, a large pool, and the HO distribution.
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3.2.2.3 The Impact of the Attribute Distribution

Using the uniform distribution instead of the HO distribution in generating at-
tribute vectors resulted in negligible differences in the classification rates across differ-
ent factors (e.g., item selection index, generating model, and item quality). However,
in some conditions, the HO distribution yielded higher classification rates than the
uniform distribution, and the differences in the CVC rates were substantial. For ex-
ample, the HO distribution resulted in higher CVC rates in the following conditions:
using the GDI with short tests, LQ items, and a small sample regardless of the pool
size for the DINA model; using the RT-GDI with short tests, LQ items, a large pool,
a small sample, an ™% of .1, and a small g for the DINO model; and using the
RP-GDI with short tests, a small pool, a large sample, an r™** of .1, and a small
regardless of the item quality for the A-CDM.

Likewise, the impact of the attribute distribution on the item exposure rates
was mostly negligible regardless of the other factors. The chi-square ratios using
the RP-GDI and RT-GDI are shown in Table 3.4 for the DINA and DINO models.
However, the differences in the chi-square values were moderate to substantial in
some conditions. Specifically, for the DINA and DINO models, the differences in the
chi-square values were substantial when the RP-GDI was used with long tests and
an ™% of .1 regardless of the item quality, pool size, sample size, and [, and those
differences were moderate when the RP-GDI was used with short tests, HQ items,

max

a small pool, a small sample, an r of .1, and a large 5. In addition, there were

fewer cases where the differences in the chi-square values were substantial when the

RT-GDI was used instead of the RP-GDI.
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3.2.2.4 The Impact of the Test Length

As expected, increasing the test length resulted in higher classification rates. In
addition, the differences in the CVC rates were always substantial regardless of the
factors (e.g., item selection index, generating model). Moreover, using LQ items
yielded greater differences in the CVC rates compared to HQ items. For example, the
differences across all conditions were on average 0.31 and 0.11 for LQ and HQ items
when the GDI and the DINA model were used, respectively. Also, those differences
were greater when the RT-GDI was used instead of the RP-GDI.

The impact of the test length on the item exposure rates was mostly negligible to
moderate when the GDI and RT-GDI were used as the item selection indices across
different conditions. The chi-square ratios are shown in Table 3.5 for the DINA,
DINO, and A-CDM. However, interestingly, using short test lengths (i.e., 10-item
test) resulted in smaller chi-square values than long test lengths (i.e., 20-item test)
in some conditions when the RT-GDI was used with the A-CDM. For example, using
the RT-GDI yielded substantial differences in the chi-square values when a large pool

mat of |1 regardless of the item quality, sample size,

was used with a small  and an r
and attribute distribution.

Using short test lengths (i.e., 10-item test) resulted in larger chi-square values
compared to the long test lengths (i.e., 20-item test), and the differences in the chi-
square values were generally substantial when the RP-GDI was used regardless of
the different factors. However, there were some conditions where the differences were
negligible to moderate when the RP-GDI was used as the item selection index. For
example, for the DINA and DINO models, the differences were negligible when an
r™ of .2 and a large [ were used with a large pool and the HO distribution regardless
of the sample size and the item quality, and the differences were moderate when an

max

r of .2 and a large [ were used with LQ items, a large pool, and the uniform
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distribution regardless of the sample size. Again, using long test lengths resulted in
larger chi-square values than short test lengths in some conditions where the RP-GDI

was used with the A-CDM.

3.2.2.5 The Impact of the Pool Size

The impact of the pool size on the classification rates was mostly negligible across
different factors (e.g., item selection index, generating model) except for some condi-
tions. For example, the difference in the CVC rates was substantial for the GDI and
the DINO model when short tests were used with LQ items, a small sample, and the
uniform distribution, where a large pool (i.e., J=1240) resulted in higher CVC rates
compared to a small pool (i.e., J=620), and the difference was 0.09. In addition, the
differences in the CVC rates were generally substantial regardless of the other factors,
and especially when the A-CDM was used.

For all the CDMs, increasing the pool size resulted in higher item exposure rates,
and the differences in the chi-square values were substantial across different condi-
tions, as shown by the chi-square ratios are shown in Table 3.6. However, there were
some conditions where the differences were moderate when the RT-GDI, long tests,
an " of .2, and a small 8 were used regardless of the item quality, sample size, and

attribute distribution.

3.2.2.6 The Impact of the Desired r"** Value

* value generally resulted in negligible differences in the clas-

Increasing the r™®
sification rates regardless of the other factors. However, there were some conditions
where the differences in the CVC rates were substantial especially when the RP-GDI
and RT-GDI were used with the A-CDM. For example, the differences were sub-
stantial for the RP-GDI and RT-GDI with the A-CDM, when long tests were used

regardless of the item quality, pool size, sample size, attribute distribution, and
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(with a large 5 and HQ items as an exception, where the differences were negligible);
and when long tests were used with a small pool regardless of the item quality, sample
size, and attribute distribution.

¥ value resulted in higher item exposure rates

As expected, increasing the r™®
across different conditions. The chi-square ratios are shown in Table 3.7 for the
DINA, DINO, and A-CDM. Several results can be noted. First, long tests (i.e.,
20-item tests) yielded higher chi-square values than short tests (i.e., 10-item tests)
with respect to the r™%* value. Second, the differences in the chi-square values were
always substantial when the RP-GDI was used as an item selection index. Third,

M yalue mostly yielded substantial differences in the chi-square values

using a large r
when RT-GDI was used; however, there were some conditions where the differences
were negligible to moderate. For example, for the DINA model, the differences were
negligible when short tests and a small g were used with HQ items, a small pool, and
a small sample regardless of the attribute distribution. Also, for the DINA model,

the differences were moderate when long tests and a small 5 were used with a large

sample regardless of the item quality, pool size, and attribute distribution.

3.2.2.7 The Impact of §

Increasing the § value resulted in negligible differences in the classification rates
for the RP-GDI using the DINA and DINO models; however, it generally yielded
substantial differences for the same index using the A-CDM. In addition, an increase
in the [ value generally resulted in substantial differences in the CVC rates for the
RT-GDI regardless of the other factors (e.g., generating model, test length). For the
DINA model and the RP-GDI, the differences were substantial when short tests and
an ™ of .1 were used with LQ items, a small pool, a small sample, and the HO
distribution, where increasing the /3 value from 0.5 to 1.0 resulted in higher CVC rates

(i.e., the difference was 0.06); when short tests and an ™% of .2 were used with LQ
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items, a small pool, a small sample, and the uniform distribution where increasing
the 8 value from 0.5 to 1 resulted in higher CVC rates (i.e., the difference was 0.07);
and when long tests and an r™* of .2 were used with LQ items, a small pool, a small
sample, and the HO distribution where increasing the g value from 0.5 to 1.0 resulted
in higher CVC rates (i.e., the difference was 0.06).

Increasing the [ value resulted in substantial differences in the chi-square values
regardless of the other factors. Moreover, for the RP-GDI, increasing the  value from
0.5 to 1.0 yielded greater differences in the chi-square values compared to increasing
the g value from 1.0 to 2.0. However, for the RT-GDI, increasing the [ value from
1.0 to 2.0 yielded greater differences in the chi-square values compared to increasing

the 3 value from 0.5 to 1.0.
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3.3 Discussion and Conclusion

In this article, the efficiency of the new index, the GDI, was investigated in terms
of the classification accuracy and the item exposure using two item exposure control
methods, namely, RP and RT methods. In addition, the impact of different factors
on the item exposure was also examined. Based on the factors manipulated in the
simulation study, as expected, the RP method resulted in more uniform item expo-
sure rates compared to the RT method because of the method’s probabilistic nature.
Moreover, the factors, namely, the item quality, attribute distribution, test length,
pool size, prespecified desired exposure rate, and (3, generally had a substantial impact
on the exposure rates when the RP method was used; however, fewer factors, such
as the pool size, prespecified desired exposure rate, and 3, generally had a substan-
tial impact on the exposure rates when the RT method was used. The other factors
had moderate or negligible effects on the item exposure rates with some exceptions.
Overall, the results of this study suggest that, relative to other methods examined,
the RP-GDI is a more promising method for use in practice.

This study showed that the new index performed efficiently with the item exposure
control methods in terms of attribute classification accuracy and item exposure rates.
Nonetheless, more research must be done to ensure the index is practical. First,
the results were obtained using 10 replications in the RP method because it did
not yield stable results across the conditions. In more detail, the increase in the /3
value did not increase the classification rates in all conditions because of the random
component. Results that are more stable without any replication in practice must be
obtained. Second, at present, the efficiency of only a limited number of item exposure
control methods has been examined in the context of CD-CAT. It would, therefore, be
instructive to examine the applicability of the other item exposure control methods

in traditional CAT (e.g., multiple maximum exposure rates; Barrada et al., 2009)
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in the context of CD-CAT. Third, some constraints in the design of the Q-matrix
should be investigated. The Q-matrix in this study involved all possible g-vectors.
However, in practice, this may not be the case, particularly when the CDMs are
retrofitted to existing data. Also, the impact of Q-matrix misspecifications needs
to be investigated in the CAT framework. Third, only the item exposure control
methods that can work for fixed-length tests were used in this study. It would be
interesting to examine the efficiency of the methods when variable-length tests are
used. Finally, a few simplifications were made in the design of this study to keep
the scope of this work manageable. These simplifications include fixing the number
of attributes and assuming that the item parameters were known. To obtain more

generalizable conclusions, these factors should be varied in future research.
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Table 3.5: The Chi-Square Ratios Comparing Short vs. Long Test Length
DINA DINO A-CDM
RP-GDI  RI-GDI  RP-GDI _ RI-GDI _ RP-GDI __ RI-GDI
,r,'maz

IQ J N AD g 01 02 01 02 01 02 01 02 01 02 01 02
LQ 620 500 U 05 3.27 2.32 087 096 3.27 2.33 086 096 2.66 1.67 1.0l 0.67
2 247 1.45 114 1.00 2.47 1.47 108 099 1.58 095 1.36 0.86
HO 05 2.40 1.79 092 097 2.43 1.83 090 093 2.70 1.69 1.00 0.66
2 176 1.30 1.08 092 1.80 1.32 110 096 1.59 096 1.35 0.87
1000 U 05 3.53 2.40 091 1.03 3.52 2.39 090 098 2.67 1.68 1.00 0.66
2 254 1.50 1.12 1.03 2.60 1.49 113 1.02 1.59 0.95 1.36 0.86
HO 0.5 2.43 1.77 088 096 2.50 1.78 0.86 091 2.71 1.69 0.98 0.66
2 177 1.31 107 091 1.81 1.31 1.08 094 1.60 096 1.36 0.86
1240 500 U 05 242 1.75 100 1.15 2.48 1.78 1.05 113 1.71 117 0.69 0.79
2 155 119 1.03 093 1.54 118 1.03 095 098 078 089 091
HO 05 1.84 1.46 105 1.0l 1.80 1.43 1.08 110 1.71 117 0.67 0.79
2 1.34 111 099 094 1.35 1.11 1.01 088 099 078 089 0.89
1000 U 05 2.56 1.79 1.05 1.13 2.50 1.73 1.02 122 1.71 117 0.67 0.80
2 1.55 118 1.04 093 1.54 117 101 094 098 078 0.89 0.90
HO 05 1.80 1.46 107 1.14 1.82 1.47 111 119 1.72 117 0.66 0.79
2 1.32 111 098 092 1.33 111 1.02 087 099 078 088 0.89
HQ 620 500 U 05 3.46 2.60 097 095 3.73 2.67 091 086 2.63 1.57 1.02 0.63
2 310 1.78 105 1.00 3.17 1.82 110 096 1.56 090 1.39 0.82
HO 05 1.78 1.48 085 089 1.94 1.56 084 086 2.68 1.64 1.03 0.64
2 1.53 1.29 1.06 086 1.58 1.32 1.07 090 1.58 0.92 1.39 0.82
1000 U 05 3.76 2.85 091 0.96 3.86 2.83 0.96 099 2.61 1.58 1.00 0.62
2 331 1.81 111 097 3.33 1.82 110 099 1.57 091 1.39 081
HO 05 1.84 1.48 085 081 1.91 1.52 0.78 085 2.71 1.62 0.99 0.63
2 1.54 1.30 1.07 0.86 1.58 1.32 1.05 088 1.59 093 1.39 0.82
1240 500 U 05 279 2.02 116 1.14 2.87 2.09 1.07 115 1.61 108 0.64 0.80
2 1.82 1.27 106 095 1.84 1.27 1.08 092 093 0.73 084 085
HO 05 1.51 1.39 105 1.12 1.56 1.40 1.08 114 1.66 110 0.65 0.78
2 1.34 113 098 088 1.33 112 098 091 095 0.73 084 085
1000 U 05 3.00 2.07 1.07 1.18 2.91 2.02 1.06 1.25 1.61 1.08 0.64 0.79
2 1.85 1.26 1.05 094 1.84 1.27 1.05 093 093 0.73 083 085
HO 05 1.53 1.35 108 121 1.52 1.39 1.7 1.28 1.66 109 0.64 0.79
2 1.32 112 098 091 1.33 111 101 091 095 0.74 083 085

Note. Substantial differences are shown in bold. DINA = deterministic inputs, noisy “and
“or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; RP-GDI = restrictive progressive GDI; RT-GDI = restrictive
threshold GDI; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; IQ = item quality; J = pool size; N =
sample size; AD = attribute distribution; LQ = low-quality; HQ = high-quality; U = uniform; HO = higher-order.

? gate; DINO = deterministic input, noisy
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Table 3.7: The Chi-Square Ratios Comparing r™** of .1 vs. .2
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DINA DINO A-CDM

RPGDI RTGDI RPGDI RTGDI RPGDI RTGDI
Test Length

1Q J N AD g 10 20 10 20 10 20 10 20 10 20 10 20
LQ 620 500 U 05 2.84 399 125 112 2.80 3.93 125 1.12 3.32 5.30 1.31 1.96
2 217 3.69 1.62 1.84 2.19 3.67 1.64 1.78 1.96 3.27 1.69 2.68
HO 05 2.81 3.77 120 1.14 2.83 3.75 121 1.17 3.32 5.29 1.32 2.00
2 216 292 1.62 1.89 2.19 299 1.57 1.80 1.96 3.26 1.69 2.63
1000 U 0.5 290 4.26 1.32 1.17 2.91 4.29 1.28 1.18 3.36 5.35 1.31 1.97
2 226 3.82 1.68 1.83 220 3.85 1.68 1.86 198 3.30 1.67 2.65
HO 05 2.89 3.97 1.28 116 2.88 4.04 125 118 3.35 5.38 1.32 1.97
2 217 295 1.62 191 2.16 2.99 1.63 1.87 1.98 3.30 1.69 2.65
1240 500 U 0.5 2.33 3.23 1.36 1.17 2.31 3.22 123 114 2.30 3.36 1.39 1.21
2 196 255 1.52 1.68 1.96 2.54 1.54 1.67 1.51 1.90 1.72 1.70
HO 05 229 2.89 1.22 1.27 2.26 2.85 1.27 124 2.30 3.37 142 120
2 191 232 1.58 1.65 193 235 144 1.64 151 192 1.72 1.72
1000 U 05 2.37 3.39 1.29 121 238 343 140 1.16 2.33 3.41 144 1.21
2 197 258 1.54 1.71 1.97 2.58 1.56 1.68 1.52 1.91 1.72 1.70
HO 05 237 293 1.31 1.23 237 294 130 121 233 3.40 144 121
2 194 231 1.58 1.68 1.96 2.36 1.44 1.70 1.52 1.93 1.74 1.71
HQ 620 500 U 05 266 3.54 110 113 2.62 3.66 1.13 118 3.13 5.23 1.28 2.08
2 243 4.25 1.59 1.67 246 4.28 154 1.76 1.84 3.17 1.59 2.70
HO 05 2.53 3.06 1.14 1.10 2.50 3.12 1.23 1.19 3.15 5.17 1.30 2.09
2 215 254 1.52 1.88 2.21 2.65 1.49 1.77 1.86 3.20 1.60 2.72
1000 U 05 2.86 3.77 1.26 120 2.84 3.87 1.28 124 3.18 5.24 1.30 2.10
2 2.55 4.66 1.53 1.74 2.52 4.62 1.57 1.74 1.85 3.20 1.59 2.73
HO 05 2.57 3.19 1.10 115 2.50 3.14 1.28 1.17 3.19 5.33 1.31 2.07
2 220 261 1.51 1.89 2.22 266 156 1.87 1.87 3.21 1.59 2.72
1240 500 U 05 2.34 3.22 114 116 2.37 3.25 122 115 215 3.21 1.41 1.13
2 209 299 1.50 1.66 2.07 3.01 1.44 1.68 1.42 1.80 1.62 1.59
HO 05 217 2.34 1.28 120 218 242 121 1.15 217 3.28 1.40 1.16
2 196 233 149 1.68 1.98 2.34 1.52 1.63 1.42 1.85 1.62 1.61
1000 U 0.5 246 3.56 1.30 1.17 2.45 3.52 1.34 113 2.18 3.24 1.43 1.16
2 208 3.05 1.49 1.67 2.09 3.03 148 1.68 1.44 1.81 1.62 1.58
HO 05 2.21 249 1.31 117 2.24 2.46 1.34 123 2.18 3.31 1.43 1.16
2 198 234 1.56 1.69 2.00 2.38 1.51 1.69 1.44 1.86 1.62 1.59

Note. Substantial differences are shown in bold. DINA = deterministic inputs, noisy “and” gate; DINO = deterministic input, noisy
“or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; RPGDI = restrictive progressive GDI; RTGDI = restrictive
threshold GDI; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; IQ = item quality; J = pool size; N =
sample size; AD = attribute distribution; LQ = low-quality; HQ = high-quality; U = uniform; HO = higher-order.
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Chapter 4
Study III: A Blocked-CAT Procedure for CD-CAT

Abstract

This paper introduces a blocked-design procedure for cognitive diagnosis computer-
ized adaptive testing (CD-CAT), which allows examinees to review items and change
their answers during test administration. Four blocking versions of the new procedure
were proposed. In addition, the impact of several factors, namely, item quality, gen-
erating model, block size, and test length, on the classification rates was investigated.
Two popular item selection indices in CD-CAT were used and their efficiency was
compared using the new procedure. The results showed that the new procedure is
promising for allowing item review with a small loss in attribute classification accu-
racy under some conditions. This indicates that, as in traditional CAT, that the use
of block design in CD-CAT has the potential to address certain issues in practical
testing situations (e.g., correcting careless errors, reducing student anxiety).

Keywords: cognitive diagnosis model, computerized adaptive testing, item review

4.1 Introduction

The debate over whether to provide examinees the options to review items and
change answers during test administration has continued for several years. Test takers
and test developers have different attitudes toward these options. Test takers want

to benefit from item review and answer change, which reduce test anxiety and thus
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increase test scores legitimately. However, test developers are reluctant to provide
these options to test takers for several reasons (Vispoel, Clough, & Bleiler, 2005).
The two most common concerns are decreased testing efficiency (e.g., longer testing
times) and illegitimate score gains (e.g., test-taking strategies).

Wise (1996) classified score gains as legitimate and illegitimate. The former refers
to a score gain in which examinees, who possess the required knowledge to answer
an item correctly, increase their scores after they review the item and change their
answer. The latter refers to a score gain in which examinees, who do not possess the
required knowledge, are somehow able to answer the item correctly because they get
a clue from other items, for example. On one hand, examinees can obtain legitimate
score gains by using item review and answer change. In turn, the validity of the test
increases, and therefore, inferences from the test results become more meaningful
and appropriate. On the other hand, providing these options can decrease testing
efficiency by lengthening testing times and testing precision with higher errors in
ability estimates because of the illegitimate score gains (Vispoel, Rocklin, & Wang,
1994; Wise, 1996).

There is a common belief among examinees and college instructors that chang-
ing initial responses to items about which examinees are uncertain might lower the
examinees’ test scores (Benjamin, Cavell, & Schallenberger, 1984). In contrast to
this belief, researchers have shown that most examinees changed their answers when
they were allowed, and those changes were generally from incorrect to correct. So
much, those who made changes improved their test scores (Benjamin et al., 1984).
Moreover, the results in those studies showed that examinees changed their answers
for only a very small percentage of answers, but a large number of examinees made
changes for at least a few items.

Researchers have investigated the impact of item review and answer change on

paper-and-pencil tests for nearly 100 years (e.g., Benjamin et al., 1984; Crocker &
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Benson, 1980; Mathews, 1929; Mueller & Wasser, 1977; Smith, White, & Coop,
1979; Waddell & Blankenship, 1995), and the impact on computerized adaptive test-
ing (CAT) for the last two decades (e.g., Han, 2013; Liu, Bridgeman, Lixiong, Xu,
& Kong, 2015; Olea, Revuelta, Ximenez, & Abad, 2000; Stocking, 1997; Vispoel,
Hendrickson, & Bleiler, 2000; Wainer, 1993; Wise, 1996). However, there is still
doubt about providing item review and answer change to examinees in CAT. Re-
searchers have recently suggested that reviewable CAT might introduce bias in the
ability estimation and an increase in the standard error of measurement (Papanas-
tasiou & Reckase, 2007). In addition, providing these options in CAT requires more
complicated item selection algorithms and longer testing time, and results in lower
measurement precision and an increase in the possibility of artificially inflated scores
(Wise, 1996).

Reviewable CAT requires more complicated item selection algorithms because
most of the item selection algorithms in CAT rely on a provisional ability estimate to
select the next item. Changing the answer of an item during the test administration
can make the following items no longer appropriate for estimating the ability level
(Yen, Ho, Liao, & Chen, 2012). In addition, structures that are more flexible must
be developed for examinees’ diverse review styles. For example, some examinees like
to review item by item sequentially; however, others mark some of the items and
review them later (Wise, 1996). Researchers have also suggested that reviewable
CAT requires longer testing times. For example, study results showed that item
review in computer-based testing increased the average testing time by about 25%
(Revuelta, Ximenez, & Olea, 2003; Vispoel, Wang, de la Torre, Bleiler, & Dings,
1992). Moreover, Wise (1996) noted another concern related to testing time: he
postulated that only examinees who can quickly complete the test benefit from item
review if the testing time is limited.

As noted before, examinees can have illegitimate score increases even if they do
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not possess the required knowledge to answer the item correctly. This happens when
they can get a clue from the characteristics of other items on the test, or they can use
specific testing strategies (e.g., the Wainer strategy, the Kingsbury strategy, and the
generalized Kingsbury strategy). Although examinees may not be able to successfully
implement these strategies, standardized test preparation companies can teach them
how to do so (Vispoel et al., 2000).

In the Wainer strategy (Wainer, 1993), examinees intentionally give incorrect an-
swers to all items on the first pass, which leads them to gradually encounter relatively
easier items. After item review, the examinees replace all the answers with the correct
ones. To get the full benefit of using this strategy, an examinee must have all the
knowledge required to give correct answers on the second pass. Therefore, examinees
with high proficiency can generally benefit from this strategy, and increase their test
scores (Wise, 1996). However, using this strategy involves some risk. Failure on even
a single item might result in underestimation of the examinee’s ability level (Ger-
shon & Bergstrom, 1995). Also, researchers suggested that examinees who used the
Wainer strategy can be detected from the number of items whose answers changed
and the size of standard error of the estimates (Vispoel, Rocklin, Wang, & Bleiler,
1999). Similarly, restricted item review can be used to safe guard against the use of
the Wainer strategy.

Stocking (1997) proposed a blocked-design CAT in which item review was allowed
within a block of items and investigated the impact of the Wainer strategy with and
without item review on the test. She noted that the bias in the estimates and the
standard errors were at acceptable levels using this method. Later, several studies
supported the finding that there was no significant difference in the accuracy of ability
estimation between limited review and no review procedures when using the block
design (Vispoel, 2000; Vispoel, Clough, Bleiler, Hendrickson, & Thrig, 2002; Vispoel et

al., 2005). Moreover, researchers have also shown that testing time increased by only
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5-11% on average with the majority of examinees indicating that they had adequate
opportunity for item review and answer change in the blocked-design CAT (Vispoel et
al., 2005). However, Han (2013) noted that the blocked-design CAT still did not allow
test takers to skip items. He proposed an item pocket method in which examinees
had the option to skip items in addition to reviewing items and changing answers.

In the Kingsbury strategy (Green, Bock, Humphreys, Linn, & Reckase, 1984;
Kingsbury, 1996), the examinees know that the difficulty of an item depends on
the response to the previous item, and understand the correctness of their response
is based on the difficulty level of the current item. In other words, if the current
item is less difficult than the previous item, then the answer to the previous item is
likely incorrect. Kingsbury (1996) investigated the impact of this strategy in CAT
and found that using this strategy resulted in substantial score gains especially for
low-proficiency examinees, modest score gains for moderate-proficiency examinees,
and very small gains for high-proficiency examinees. However, it is not clear how
accurately examinees can detect the difficulty levels of the items. Green et al. (1984)
conducted a study in which examinees judged the difficulty of items, and the results
showed examinees did not successfully distinguish item difficulty. Moreover, Wise,
Finney, Enders, Freeman, and Severance (1999) found that examinees judged item
difficulty poorly without actually solving the items. Similar to the Kingsbury strategy,
in the generalized Kingsbury strategy (Wise et al., 1999), examinees distinguish the
difficulty of all item pairs on the test.

Having the options to review items and change answers during test administration
has several benefits for examinees. These options are beneficial for correcting typ-
ing/careless errors, misreading of items, temporary lapses in memory, reconceptual-
ization of answers to previously administered items, and test validity (Vispoel, 1998).
The results of studies on item review clearly showed that examinees highly endorsed

item review in computer-based test administration (e.g., Gershon & Bergstrom, 1995;
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Legg & Buhr, 1992; Vispoel, 1998; Vispoel & Coffman, 1994; Vispoel, 2000; Vispoel
et al., 2002, 2005). In addition, these options can alter careless errors made by ex-
aminees, and relax the testing environment for examinees who have high test anxiety
(Vispoel, 2000). Careless errors can result in inaccurate measurement of the exami-
nee’s ability, and this is a threat to test validity (Stone & Lunz, 1994).

Another procedure which allows item review and answer change is multistage
testing (MST). In MST, the test adaption occurs at the sets of item level or the testlet
level instead of the item level. In MST, items are preassembled into modules prior to
the test administration. In contrast, in the blocked-design CAT, items are grouped
into blocks on the fly or during the actual test administration. Hendrickson (2007)
summarized the MST procedure, which involves several adaptive stages within the
test administration. In the first stage, different items with a broad range of difficulty
levels are given to obtain initial estimates. Based on the results from the first stage,
a block of items with difficulty levels appropriate for the examinee’s ability level
is given in the next stage. When appropriate, this block includes different content
domains. Depending on the test, this stage can be repeated. The stage is useful in
differentiating ability within a narrower range. Several testing companies have started
using MST in their exams (e.g., Medical Licensure Examination, Graduate Record
Examination; Robin, Steffen, & Liang, 2014).

The advantages of using MST can be summarized as follows: it can increase test
construction and test form quality, control exposure rates of test materials, provide
better test security, obtain greater assurance of local independence, minimize item
ordering and context effects, and allow item review during the test administration
(Hendrickson, 2007). MST provides better test quality and security because several
blocks of items can be created in which content balance and item difficulty can be
considered within the block. Local independence requires the examinee’s response to

the current item should not have a relationship with previous items. If local item
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dependence exists among some items in the tests, it violates the local independence
assumption in IRT, which is widely used in item-level adaptive testing. MST also
allows examinees to review items and skip them within a block during the test ad-
ministration. Given these advantages, MST is a promising option in adaptive testing
that offers a more efficient testing design and environment compared to traditional
CAT.

However, several issues regarding MST have been reported. These issues include
identifying the optimal number of stages and the range of difficulty within the stages,
obtaining feasible statistical information for psychometric and exposure concerns, and
differentiating between scores and decisions based on number-correct and IRT scor-
ing procedures (Hendrickson, 2007). For example, the purpose of the test and the
characteristics of the population to be tested help determine the length and difficulty
of MST tests. Generally, more items are needed in MST to obtain sufficient mea-
surement precision compared to CAT. In addition, constructing the blocks of items
and combining them under MST require more work for content domain experts, item
developers, and psychometricians than for blocks of items in CAT. Finally, replacing
items that are independent within the same block to control item exposure can be
difficult in MST (Wainer & Kiely, 1987).

MST applications beyond unidimensional models are also limited. However, most
models used for diagnostic testing require a multidimensional latent trait. More
specifically, cognitive diagnosis modeling requires the estimation of a set of discrete
attributes, an attribute vector, which consists of several dimensions. Constructing
the blocks in MST for cognitive diagnosis can be challenging because there are no
difficulty parameters for every relevant dimension in CDMs. Multistage testing using
CDMs (CD-MST) was first noted by von Davier and Cheng (2014). They discussed
several heuristics that can be applied in the CD-MST selection stage and suggested

Shannon entropy for selecting the next block of items. However, the authors did not
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investigate further how a block of items in the context of cognitive diagnosis for MST
can be created.

To date, no research has been done to investigate the impact of item review and
answer change in the context of cognitive diagnosis CAT (CD-CAT). The goal of this
study was to propose a new CD-CAT administration procedure. In this procedure, a
block of items is the unit of administration. Because there were no difficulty param-
eters to partition the test into blocks in cognitive diagnosis, blocking was performed
based on the information using item selection indices. Therefore, different from MST,
content balancing and item difficulty were not applicable in the new procedure. Us-
ing this blocked design, examinees have an opportunity to review and change their

answers within the block.

4.1.1 Cognitive Diagnosis Models

CDMs aim to determine whether or not examinees have a mastery of a set of
typically binary attributes. A binary attribute vector represents the presence or
absence of the skill or attribute. Let a;={ay} be the attribute vector of examinee 1,
where 1 = 1,2,..., N examinees, and k = 1,2, ..., K attributes. The kth element of
the vector is 1 when the examinee has mastered the kth attribute, and it is 0 when the
examinee has not. In cognitive diagnosis, examinees are classified into latent classes
based on the attribute vectors. Each attribute vector corresponds to a unique latent
class. Therefore, K attributes create 2 latent classes or attribute vectors. Similarly,
the responses of the examinees to J items are represented by a binary vector. Let
X,; = {x;;} be the ith examinee’s binary response vector for a set of j =1,2,...,.J
items. The required attributes for an item are represented in a Q-matrix (Tatsuoka,
1983), which is a J x K matrix. The element of the jth row and the kth column,
¢jk, is 1 if the kth attribute is required to answer the jth item correctly, and it is 0

otherwise.
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To date, a variety of general CDMs has been proposed to increase their applicabil-
ity. For example, the log-linear CDM (Henson, Templin, & Willse, 2009), the general
diagnostic model (von Davier, 2008), and the generalized deterministic inputs, noisy
“and” gate model (G-DINA; de la Torre, 2011) are examples of general CDMs. The
G-DINA model relaxes some of the strict assumptions of the deterministic inputs,
noisy “and” gate (DINA; de la Torre, 2009; Haertel, 1989; Junker & Sijtsma, 2001)
model, and it partitions examinees into 257 groups, where K ;= Zszl ¢;r is the
number of required attributes for item j. A few constrained CDMs can be derived
from the G-DINA model using different constraints (de la Torre, 2011). These in-
clude the DINA model, which assumes that lacking one of the required attributes is
as the same as lacking all of the required attributes; the deterministic input, noisy
“or” gate (DINO; Templin & Henson, 2006) model, which assumes that having one
of the required attributes is as the same as having all of the required attributes; and
the additive CDM (A-CDM; de la Torre, 2011), which assumes that the impacts of

mastering the different required attributes are independent of each other.

4.1.2 Computerized Adaptive Testing

CAT has become a popular tool in testing because it allows examinees to receive
different tests, with possibly different lengths. Compared to paper-and-pencil tests,
the mode of test administration changes from paper to computer, and the test de-
livery algorithms change from linear to adaptive (van der Linden & Pashley, 2010).
Therefore, it provides a tailored test for each examinee, and better ability estima-
tion with shorter test lengths (Meijer & Nering, 1999). A typical CAT procedure
involves selecting appropriate items to each examinee’s ability level from an item
pool, estimating the ability level during or end of the test, and scoring the examinee’s
performance.

One of the crucial components of CAT is the item selection methods. In traditional
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CAT, item selection methods based on the Fisher information are widely used (Lord,
1980; Thissen & Mislevy, 2000); however, those methods are not applicable in CD-
CAT because the equivalent latent variables in cognitive diagnosis are discrete. This
issue was first noted by Xu, Chang, and Douglas (2003), and they proposed two item
selection indices for CD-CAT based on the Kullback-Leibler (K-L) information and
Shannon entropy procedure. The efficiency of these indices was compared to random
selection using a simulation study. The results of their study showed that both indices
outperformed random selection in terms of attribute classification accuracy. Later,
Cheng (2009) proposed two item selection indices in CD-CAT, and both were based on
the K-L information, namely, the posterior-weighted K-L index (PWKL) and hybrid
K-L index (HKL). The results showed that the new indices performed similarly, but
both had higher classification rates than the K-L and Shannon entropy procedure.
Therefore, the PWKL has become popular in the research of CD-CAT because of its
better classification rates and easier implementation.

Recently, Kaplan, de la Torre, and Barrada (2015) proposed two new item selec-
tion indices based on the PWKL and the G-DINA model discrimination index (GDI)
for CD-CAT. The results showed that the two new indices performed very similarly
and higher attribute classification rates compared to the PWKL. In addition, the
GDI had the shortest administration time. In this article, the PWKL and GDI will

be used as item selection indices with the new CD-CAT administration procedure.

4.1.2.1 Item Selection Methods

4.1.2.1.1 The Kullback-Leibler Information Index
The K-L information is a non-symmetric measure of distance between the two
probability distributions, X and Y, where X is assumed to be the true distribution

of the data (Cover & Thomas, 1991). The function measuring the distance between
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the two distributions is given by

KG9 - [ [log (M)} f(w)dr, (4.1)

g9()

where f(z) and g(z) are the probability density functions of the distributions X
and Y, respectively. Larger information gives easier differentiation between the two
distributions (Lehmann & Casella, 1998). The item selection methods based on the K-
L information have been used in traditional and nontraditional CAT (Chang & Ying,
1996; Xu & Douglas, 2006; McGlohen & Chang, 2008; Xu et al., 2003). All findings
showed that the item selection methods based on the K-L information produced good
estimation accuracy, and they can work under both continuous and discrete variables
(i.e., attribute vectors in CDMs). Thus, the K-L information can be used as an

alternative to the Fisher information in CD-CAT.

4.1.2.1.2 The Posterior-Weighted Kullback-Leibler Index

The developments in CD-CAT required more detailed evaluation of the CAT com-
ponents by the researchers. Therefore, Cheng (2009) proposed the PWKL as an item
selection method based on the K-L information. The PWKL is a modified version
of the K-L information using the posterior distribution of the attribute vectors as
weights. The calculation of the PWKL involves summing the distances between the
current estimate of the attribute vector and the other possible attribute vectors, and

it is based on the K-L information. The PWKL is given by

2K 1 ~ (t
PWEL(&") =3 |3 o PX; = ale”) PX; = z|aM)rD(a) |, (4.2)
J 7 g P(XJ _ x’ac) 7 i i c 9 .

where P(X; = x|a.) is the probability of the response z to item j given the attribute
vector o, and Wgt)(ac) is the posterior probability of examinee ¢ given the responses

to the ¢ items. The (¢ + 1)th item to be administered is the item that maximizes the
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PWKL.

4.1.2.1.3 The G-DINA Model Discrimination Index

The G-DINA model discrimination index (GDI) was first proposed by by de la
Torre and Chiu (2015) as an index to implement an empirical Q-matrix validation
procedure. It measures the (weighted) variance of the probabilities of success of an
item given a particular attribute distribution. Later, Kaplan et al. (2015) used
it as an item selection index for CD-CAT. To give a summarized definition of the
index, define af; as the reduced attribute vector consisting of the first K7 attributes,
for ¢ = 1,...,2%/. For example, if a g-vector is defined as (1,1,0,0,1) for K; =3
number of required attributes, the reduced attribute vector is (aq,aq,a5). Also, define

P(Xi; = 1]a};) as the success probability on item j given a;. The GDI for item j is

defined as
o7
t * * D
¢ =m0 (e [P(xy = 1lay) - B, (4:3)
c=1
where 7T§t) (az;) is the posterior probability of the reduced attribute vector and P =

.
oK

> o1 T(ak) P(Xi; = 1ay;) is the mean success probability.

4.2 Simulation Study

One of the most important issues with traditional CAT administration is that
examinees cannot review their responses to previous items. In this article, a new CD-
CAT administration procedure was proposed. In this procedure, a block of items,
instead of one item, is administered at a time. Examinees then can review their re-
sponses within the same block. Four methods (unconstrained, constrained, hybrid-1,
and hybrid-2) were considered in this blocked-design CAT. In the unconstrained ver-
sion, a block of J, items was randomly administered first to calculate the examinee’s

posterior distribution, which was needed to compute the item selection indices. The
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most informative J; items remaining in the pool were administered together, and the
posterior distribution was updated. This cycle continued until the test termination
rule was satisfied. The unconstrained version of the new procedure is shown in the
left panel of Figure 4.1.

Figure 4.1: The New CD-CAT Procedures

The Unconstrained CD-CAT Procedure The Constrained CD-CAT Procedure

=

Update the posterior distribution

Start with J, items
whose g-vectors are different

) ’ Update the posterior distribution k—
Calculate the information of the y
remaining items Calculate the information of the
J remaining items
Administer J; item with the largest !
information Administer J; item with
the largest information,
No whose g-vectors are different

Stopping rule satisfied?

Stopping rule satisfied?
Yo

€s
Terminate testing

In the constrained version, items were selected based on constraint on the q-

Yes
Terminate testing

vectors. Specifically, none of the items within the same block are allowed to have the
same g-vector. A previous study showed that item selection indices did not provide
relevant information when the same type of items (e.g., the same g-vector) were
administered repeatedly (Kaplan et al., 2015). As with the unconstrained version,
the first J; items were randomly selected from the pool; however, the g-vectors of
the items were constrained to be different from each other. Again, the posterior
distribution was calculated, and the next J, items were selected from the pool based
on the item selection index, with the same constraint. This procedure continued
until the termination criterion was satisfied. The right panel of Figure 4.1 shows the

constrained version of the proposed procedure.
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In the hybrid-1 version, a block of J; items with the same constraint as in the
constrained version was administered during the first half of the test, and the second
half of the test was performed without constraint. In the hybrid-2 version, no con-
straint was applied during the first half of the test, but the constraint was applied
in the second half. The viability of the new procedure was examined in a simulation
study. The impact of different factors on the attribute classification accuracy of the

new procedures were investigated.

4.2.1 Design

4.2.1.1 Data Generation

The impact of the item quality and generating model was considered in the data
generation. In addition, a subset of attribute vectors was used to generate the ex-
aminees’ attribute vectors. Two levels of item quality, namely, low-quality (LQ) and
high-quality (HQ), were considered. However, it should be noted that these two
terms were used exclusively for this study, and in other studies, they have been de-
fined differently. For the purposes of this study, HQ and LQ can also be viewed as
more discriminating and less discriminating, respectively. For LQ items, the lowest
and highest success probabilities (i.e., P(0) and P(1)) were generated from uniform
distributions, U(0.15,0.25) and U(0.75,0.85), respectively; and for HQ items, P(0)
and P(1) were generated from uniform distributions, U(0.00,0.20) and U(0.80, 1.00),
respectively. Item responses were generated using three reduced models: the DINA
model, the DINO model, and the A-CDM. The probability of success was set as
discussed above for the DINA and DINO. In addition to these probabilities, the in-
termediate success probabilities were obtained by allowing each required attribute to
contribute equally for the A-CDM. The number of attributes was fixed at K = 5.

A more efficient simulation design from Kaplan et al. (2015)’s paper was also used
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in this study. One representative of each attribute vector (i.e., no mastery, mastery of
a single attribute only, mastery of two attributes only, and so forth) was used and the
appropriate weights are applied. Two thousand examinees were generated for each

attribute vector, resulting in a total of 12,000 examinees.

4.2.1.2 Item Pool and Item Selection Methods

The Q-matrix was created from 2% —1 = 31 possible g-vectors, each with 40 items.
The pool then totaled 1240 items. Only the fixed test lengths were used as a test
termination rule. The test lengths were set to 8, 16, and 32 items, and the size of the
blocks was set to J,=1, 2, and 4. In fact, J,=1 corresponds to traditional CD-CAT
administration. Two item selection indices were considered: the PWKL and the GDI.
For greater comparability, a uniform distribution of the attribute vectors was used as
the prior distributions for the indices across all conditions. In the case of the PWKL,
when the estimate of the attribute vector was not unique, a random attribute vector
was chosen from the modal attribute vectors.

To compare the efficiency of the indices, the means of the correct attribute clas-
sification (CAC) rate and the correct attribute vector classification (CVC) rate were
computed for each condition when the fixed test length was used as the termination
rule. For each of the six attribute vectors considered in the design, let ay; and gy be
the kth true and estimated attribute in attribute vector [, [ = 0,1...5, for examinee

1, respectively. The CAC and CVC rates were computed as

2,000 5

CAC[ 2 000 Z Z ] ikl = ozlkl and

i=1 k=1
2,000 5 (4'4)

CV(C = 3,000 Z HI ikl = Q]

i=1 k=1

where [ is the indicator function. Using appropriate weights (described below), the

CAC and the CVC were computed assuming the attributes were uniformly distributed



88

for the fixed test-length conditions. This study focused on uniformly distributed
attribute vectors. Thus, the results based on the six attribute vectors had to be
weighted appropriately. For K = 5, the vector of the weights were 1/32, 5/32, 10/32,
10/32, 5/32, and 1/32, which represented the proportions of zero-, one-, two-, three-,

four-, and five-attribute mastery vectors among the 32 attribute vectors, respectively.

4.2.2 Results

4.2.2.1 Classification Accuracy

This study focused on attribute vectors that were uniformly distributed; however,
the sampling design of the study can allow for results to be generalized to different
distributions of the attribute vectors (e.g., higher-order; de la Torre & Douglas, 2004).
The CAC and CVC rates were computed using appropriate weighted averages. For
all conditions, the CAC rates were, as expected, higher than the CVC rates, but the
measures showed similar patterns. Thus, only the CVC rates are discussed. The CVC
rates under the different factors are presented in Tables 4.1, 4.2, and 4.3 for the DINA,
the DINO, and the A-CDM, respectively. In Kaplan et al. (2015), differences in the
classification rates were evaluated using different cut points to better summarize the
findings. Similarly, in this study, differences in the CVC rates were evaluated using
two cut points, 0.03 and 0.10. Differences below 0.03 were considered negligible,
differences between 0.03 and 0.10 were considered moderate, and differences above
0.10 were considered substantial. In addition, 8-item tests were considered as short,
16-item tests were considered as medium-length, and 32-item tests were considered
as long tests.

Using the PWKL with the DINA and the DINO as the generating models, the
constrained version with the PWKL had the best classification accuracy among the

other blocking versions, whereas the unconstrained version with the PWKL had the



Table 4.1: The CVC Rates Using the DINA Model

89

PWKL GDI

IQ J Js UC H2 H1 C ucC H2 H1 C
LQ 8 1 041 041 041 041 053 053 053 0.53
2 028 030 033 036 052 053 052 0.53
4 020 026 032 035 045 045 046 0.49
16 1 0.75 0.7 07 07 083 083 083 0.83
2 058 065 070 073 08 081 0.80 0.81
4 042 058 063 071 071 076 077 0.79
32 1 097 097 097 097 098 098 098  0.98
2 091 094 096 096 098 098 098  0.98
4 0.80 090 094 095 097 097 097 097
HQ 8 1 08 08 08 0.8 098 098 098  0.98
2 054 060 068 073 098 098 097 097
4 037 049 059 070 096 096 096  0.96
16 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 097 099 099 099 1.00 1.00 1.00 1.00
4 084 096 097 099 099 1.00 1.00 1.00
32 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and”
gate; PWKL = posterior-weighted Kullback-Leibler index; GDI = G-DINA model discrimina-
tion index; G-DINA = generalized DINA; UC = unconstrained; H2 = hybrid-2; H1 = hybrid-1;
C = constrained; IQ = item quality; J = test length; J; = block size; LQ = low-quality; HQ =

high-quality.

worst classification accuracy regardless of the block size, test length, and item qual-

ity except on the 32-item test with the HQ item conditions where the classification

accuracy was perfect. However with the GDI, using different blocking versions with

the GDI resulted in different classification accuracies based on the factors; however,

those differences were mostly negligible. In the following section, the impact of the

factors (block size, test length, and item quality) on the CVC rates is discussed.

4.2.2.1.1 The Impact of the Block Size

4.2.2.1.1.1 Short Tests with LQ Items

For short tests with LQ items, increasing the block size generally resulted in lower

classification rates regardless of the blocking version and item selection index except
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Table 4.2: The CVC Rates Using the DINO Model

PWKL GDI

IQ J Js UC H2 H1 C ucC H2 H1 C
LQ 8 1 042 042 042 042 059 059 059  0.59
2 026 031 036 040 053 053 053  0.53
4 020 028 031 040 052 051 048 0.46
16 1 074 074 074 07 084 084 084 0.84
2 058 065 070 074 083 08 082 0.83
4 045 059 067 073 078 080 0.78 0.79
32 1 097 097 097 097 098 098 098  0.98
2 092 094 096 097 098 098 098  0.98
4 081 091 095 09 097 097 097 097
HQ 8 1 08 08 08 0.8 099 099 099 0.99
2 0.61 069 073 078 098 098 098  0.98
4 045 060 065 074 096 095 096 097
16 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 097 099 099 100 1.00 1.00 1.00 1.00
4 08 097 097 099 1.00 1.00 1.00 1.00
32 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and”
gate; PWKL = posterior-weighted Kullback-Leibler index; GDI = G-DINA model discrimina-
tion index; G-DINA = generalized DINA; UC = unconstrained; H2 = hybrid-2; H1 = hybrid-1;
C = constrained; IQ = item quality; J = test length; J; = block size; LQ = low-quality; HQ =
high-quality.

for several conditions. First, for the DINA model and the PWKL, increasing the
block size from one to two resulted in substantial differences for the unconstrained and
hybrid-2 versions, and moderate differences for the hybrid-1 and constrained versions.
For the DINO model and the PWKL, this increase resulted in substantial differences
for the unconstrained, hybrid-1, and hybrid-2 versions; the differences were negligible
for the constrained version. For example, in the DINA model, the differences were 0.13
and 0.11 for the unconstrained and hybrid-2 versions, and 0.05 and 0.08 for the hybrid-
1 and constrained versions, respectively. Moreover, for the DINA model, increasing
the block size from two to four resulted in moderate differences for the unconstrained

and hybrid-2 versions; however, the differences were negligible when the constrained

and hybrid-1 versions were used. For the DINO model, increasing the size from two



Table 4.3: The CVC Rates Using the A-CDM

91

PWKL GDI

IQ J Js UC H2 H1 C ucC H2 H1 C
LQ 8 1 046 046 046 046 050 0.50 0.50  0.50
2 045 045 045 045 050 045 050  0.45
4 045 044 045 042 039 044 047 0.38
16 1 081 08 08 08 079 079 079 0.79
2 079 o0vs 079 077 078 077 078 0.78
4 073 073 070 070 074 073 0.73  0.73
32 1 097 097 097 097 097 097 097 097
2 097 096 097 096 097 096 097  0.96
4 096 093 09 092 096 093 095 093
HQ 8 1 097 097 097 097 097 097 097 097
2 093 093 096 093 097 096 097 0.96
4 072 08 082 090 096 095 096 0.95
16 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 099 1.00 1.00 1.00 1.00
4 099 099 099 099 100 1.00 099 0.99
32 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and”
gate; PWKL = posterior-weighted Kullback-Leibler index; GDI = G-DINA model discrimina-
tion index; G-DINA = generalized DINA; UC = unconstrained; H2 = hybrid-2; H1 = hybrid-1;
C = constrained; IQ = item quality; J = test length; J; = block size; LQ = low-quality; HQ =

high-quality.

to four resulted in moderate differences for the unconstrained and hybrid-1 versions;

however, the increase resulted in negligible differences for the constrained and hybrid-

2 versions. For the A-CDM and the PWKL, increasing the block size from two to four

resulted in negligible differences in the CVC rates regardless of the blocking version

except for the constrained version. In that blocking version, the increase resulted in

a moderate difference.

For the DINA model and the GDI, increasing the block size from one to two

resulted in negligible differences in the CVC rates regardless of the blocking version.

However, for the DINO model and the GDI, the same increase in the block size

resulted in moderate differences in the CVC rates regardless of the blocking version.



92

For example, using the unconstrained version with the GDI, the differences were 0.01
and 0.06 for the DINA and DINO models, respectively. Moreover, for the DINA
model, increasing the block size from two to four resulted in moderate differences
regardless of the blocking version. For the DINO model, the differences were moderate
for the constrained and hybrid-1 versions and negligible for the unconstrained and
hybrid-2 versions. For the A-CDM and the GDI, increasing the block size from one to
two resulted in moderate differences in the CVC rates for the constrained and hybrid-
1 versions and negligible differences for the unconstrained and hybrid-2 versions. For
example, the differences were 0.05 for the constrained and hybrid-1 versions and 0.00
for the unconstrained and hybrid-2 versions. Finally, increasing the block size from
two to four resulted in moderate differences in the CVC rates for the unconstrained
and constrained versions, and negligible differences for the hybrid-1 and hybrid-2

versions.

4.2.2.1.1.2 Medium-Length Tests with LQ Items

For the medium-length tests with LQ items, increasing the block size resulted
in lower classification rates for the PWKL when the DINA and DINO models were
used, and negligible differences when the A-CDM was used as the generating models.
However, increasing the block size resulted in negligible to moderate differences in the
classification rates for the GDI regardless of the blocking version and generating model
except for several conditions. First, for the DINA and DINO models and the PWKL,
increasing the block size resulted in substantial differences in the CVC rates for the
unconstrained version, moderate differences for the hybrid-1 and hybrid-2 versions,
and negligible differences for the constrained version. The differences were 0.17, 0.02,
0.05, and 0.10 for the unconstrained, constrained, hybrid-1, and hybrid-2 versions
in the DINA model, respectively. For the A-CDM and the PWKL, increasing the

block size from one to two resulted in negligible differences in the CVC rates for three
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blocking versions. However, for the constrained version, the difference was moderate.
Increasing the block size from two to four resulted in moderate differences regardless
of the blocking version.

For the DINA model and the GDI, increasing the block size resulted in negligible
differences in the CVC rates for the constrained and hybrid-1 versions and moderate
differences for the unconstrained and hybrid-2 versions. For the DINO model and the
GDI, increasing the block size resulted in negligible differences for the unconstrained
and hybrid-2 versions and moderate differences for the constrained and hybrid-1 ver-
sions. For the A-CDM and the GDI, increasing the block size from one to two resulted
in negligible differences in the CVC rates regardless of the blocking version; however,
increasing the block size from two to four resulted in moderate differences regardless

of the blocking version.

4.2.2.1.1.3 Long Tests with LQ Items

For long tests with LQ items, increasing the block size resulted in negligible dif-
ferences in the CVC rates regardless of the blocking version, generating model, and
item selection index except for several conditions. First, for the DINA and DINO
models using the PWKL, the unconstrained version resulted in moderate differences
when the block size was increased from one to two and substantial differences when
the block size was increased from two to four. For the A-CDM and the PWKL, the
constrained version yielded moderate differences when the block size was increased

from two to four.

4.2.2.1.1.4 Short Tests with HQ Items
For short tests with HQ items, increasing the block size resulted in moderate to
substantial differences in the classification rates when the PWKL was used; however,

increasing the block size resulted in negligible differences when the GDI was used.

Several additional findings should be noted. For the DINA model and the PWKL,
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increasing the block size from one to two resulted in substantial differences for all
four blocking versions. For the DINO model and the PWKL, increasing the block
size resulted in substantial differences for the unconstrained, hybrid-1, and hybrid-2
versions; for the constrained version, the difference was moderate. For example, for
the DINA and models and the unconstrained version, the differences were 0.31 and
0.24, respectively.

For the DINA model and the PWKL, increasing the block size from two to four
resulted in substantial differences for the unconstrained and hybrid-2 versions, moder-
ate differences for the hybrid-1 version, and negligible differences for the constrained
version. For the DINO model and the PWKL, the same size increase resulted in
substantial differences for the unconstrained version and moderate differences for the
hybrid-2, hybrid-1, and constrained versions.

For the A-CDM and the PWKL, increasing the block size from one to two re-
sulted in moderate differences in the CVC rates for the unconstrained, hybrid-2, and
constrained versions, and in a negligible difference for the hybrid-1 version. In addi-
tion, increasing the block size from two to four yielded substantial differences for the
unconstrained and hybrid-1 versions, moderate differences for the hybrid-2 version,

and negligible differences for the constrained version.

4.2.2.1.1.5 Medium-Length and Long Tests with HQ Items

For medium-length and long tests with HQ items, increasing the block size resulted
in negligible differences in the classification rates regardless of the blocking version,
generating model, and item selection index, except for the 16-item test involving the
PWKL with the unconstrained version. Increasing the block size from two to four
resulted in substantial differences for the DINA and DINO models. The differences

were 0.13 and 0.11 for the DINA and DINO models, respectively.
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4.2.2.1.2 The Impact of the Test Length
4.2.2.1.2.1 LQ Items

As expected, increasing the test length resulted in substantial increases in the
classification rates regardless of the blocking version, generating model, and block
size. Moreover, the increases for the PWKL were greater than those for the GDI. For
example, for the DINA model with the block size of one, increasing the test length
from 8 to 16 resulted in 0.34 and 0.30 increases in the CVC rates for the PWKL and
the GDI, respectively. Although the PWKL had higher augmentation in the CVC

rates, the GDI still had higher classification accuracy when LQ items were used.

4.2.2.1.2.2 HQ Items

For a small block (i.e., Js=1 and 2), increasing the test length resulted in negligi-
ble differences in the classification rates regardless of the blocking version, generating
model, and item selection index except for the DINA and DINO models with the
PWKL regardless of the blocking version. For the A-CDM with the PWKL, the dif-
ferences were substantial for the unconstrained, hybrid-2, and constrained versions.
In addition, for the A-CDM, the hybrid-2 and constrained versions resulted in mod-
erate differences when small blocks were used. For the DINA and DINO models with
the PWKL, increasing the test length from 8 to 16 resulted in substantial differences
(i.e., 0.43) for the unconstrained version when the block size was two.

For a large block (i.e., J;=4) and the PWKL, increasing the test length from 8
to 16 resulted in substantial differences in the classification rates regardless of the
blocking version and generating model, except for the constrained version using the
A-CDM—the difference was moderate. However, for a large block with the GDI,
the same increase in the test length resulted in negligible to moderate increases in
the classification rates. For the DINA model and the GDI, the hybrid-1, hybrid-

2, and constrained versions resulted in moderate differences, and the unconstrained
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version resulted in negligible differences. For the DINO model and the same index,
the unconstrained and hybrid-2 versions resulted in moderate differences, and the
constrained and hybrid-1 versions resulted in negligible differences. For the A-CDM
and the same index, the unconstrained, hybrid-2, and constrained versions resulted in
moderate differences, whereas the hybrid-1 version resulted in negligible differences.

For a large block, increasing the test length from 16 to 32 resulted in negligible
differences in the classification rates regardless of the blocking version, generating
model, and item selection index, except for the DINA and DINO models and using

the PWKL with the unconstrained version, where the differences were substantial.

4.2.2.1.3 The Impact of the Item Quality

As expected, using HQ items instead of LQ items resulted in substantial differ-
ences in the classification rates when the test length was shorter (i.e., 8- and 16-item
tests) regardless of the blocking version, generating model, and item selection index.
However, for long tests (i.e., 32-item tests), varying results were observed.

For a small block (i.e., Js=1), using HQ items instead of LQ items resulted in
negligible differences in the classification rates regardless of the blocking version,
generating model, and item selection index. For large blocks (i.e., J;=2 and 4) and
the DINA and DINO models, using HQ items resulted in moderate differences for the
PWKL, except for the unconstrained version, where the difference was substantial
when the block size was four. Moreover, for the same block size and models, the GDI
yielded negligible differences in the CVC rates regardless of the blocking version.
For the A-CDM, when the block size was two, using HQ items resulted in moderate
differences for the unconstrained and hybrid-1 versions and negligible differences for
the hybrid-2 and constrained versions regardless of the item selection index. Last, for
the A-CDM, using HQ items yielded moderate differences regardless of the blocking

version and item selection index when the block size was two.
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4.2.2.2 Item Usage

To get a deeper understanding of the differences in item usage across the different
blocking versions, items were grouped based on their required attributes. An addi-
tional simulation study was carried out using the same factors except for one: item
quality. For this study, the lowest and highest success probabilities were fixed across
all of the items, specifically, P(0)=0.1 and P(1)=0.9. This design aimed to elimi-
nate the effect of item quality on item usage. The test administration was divided
into periods that each compared four items. The item usage was recorded in each
period. Only the results for the GDI, 8-item tests, and a3 using the unconstrained
and hybrid-1 versions are shown in Figures 4.2, 4.4, and 4.6, and using the hybrid-2
and constrained versions are shown in Figures 4.3, 4.5, and 4.7 for the DINA model,
the DINO model, and the A-CDM, respectively.

In the first period, which includes the first four items, single attribute items were
mostly used regardless of the blocking version, generating model, and block size. For
a small block (i.e., J;=1), single attribute items, whose g-vectors were different, were
mostly administered in the first period. Because the uniform distribution was used as
before for each blocking version and item selection index at the beginning of the test,
the four single attribute items were the same regardless of the blocking version and
generating model when the block size was one. For example, items with the g-vectors
of (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), and (0,0,0,0,1) were used in the first period for
each blocking version and generating model when the block size was one. However,
for large blocks (i.e., Js=2 and Jy=4), the blocking versions resulted in different item
types. For example, the unconstrained and hybrid-2 versions used two types of single
attribute items (e.g., items whose g-vectors were (0,0,1,0,0) and (0,0,0,1,0)) when
the block size was two, and only one type of single attribute item (e.g., items whose

g-vector was (0,0,1,0,0)) when the block size was four regardless of the generating
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model. Moreover, because of the constraint, the hybrid-1 and constrained versions
used four single attribute items, whose g-vectors were different, in the first period
regardless of the generating model.

In the second period, item usage differed based on the blocking versions, gener-
ating model, and block size. When the block size was one, the item usage patterns
were similar to those observed in the first part of the study. For example, the DINA
model showed the following pattern for item usage: The model used items that re-
quired single attributes which were not mastered by the examinee (e.g., items whose
g-vectors were (0,0,0,1,0) with 10% and (0,0,0,0,1) with 8% usage) and items that
required the same attributes as the examinee’s true attribute mastery vector (e.g.,
items whose q-vectors were (1,1,1,0,0) with 8% usage).

The DINO model showed the following pattern of item usage: The model used
items that required single attributes which were mastered by the examinee (e.g.,
items whose g-vectors were (1,0,0,0,0) with 13%, (0,1,0,0,0) with 8%, and (0,0,1,0,0)
with 10% usage) and items that required the same attributes as the examinee’s true
attribute nonmastery vector (e.g., items whose g-vectors were (0,0,0,1,1) with 8%
usage). The A-CDM used items that required single attributes regardless of the true
attribute vector. In addition to the item usage in each model, the single attribute item
with the g-vector of (1,0,0,0,0) was used 13% of the time regardless of the blocking
version and generating model in the second period.

When the block size was two and four, the blocking versions resulted in dif-
ferent item usage patterns. The unconstrained version used only single attribute
items for the large block regardless of the generating model. For example, the DINA
model mostly used items whose g-vectors were (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), and
(0,0,0,0,1) when the block size was two, and items with (0,0,1,0,0) and (0,0,0,1,0)
when the block size was four. The hybrid-2 version mostly used single attribute

items in addition to the two-attribute items when the block size was larger for the
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DINA and DINO models. For example, the DINA and DINO models used all single
attribute items and items with the g-vector of (1,0,1,0,0) when the block size was
two. The hybrid-1 and constrained versions yielded the same item usage patterns for
the generating model when the block size was two. However, it used only one type
of single attribute items when the block size was four. Again, the A-CDM used only
single attribute items regardless of the blocking version and block size.

In addition, the unconstrained version used certain item types for a certain block
size regardless of the generating model. For example, when the block size was two,
the most commonly used items were (0,0,1,0,0) and (0,0,0,1,0) in the first period,
and (0,1,0,0,0) and (0,0,0,0,1) in the second period; when the block size was four, the
items were (0,0,0,1,0) in the first period and (0,0,1,0,0) in the second period regardless
of the generating model. In other words, as expected, different types of one-attribute
items were used in different periods because a block of items was administered at a
time, and the item selection index tended to administer only one-attribute items until
it can obtain enough information to proceed to the other item types.

Longer test lengths (i.e., 16- and 32-item tests) yielded similar item usage patterns
in the first period as on the 8-item test. Moreover, in the last periods, the blocking
versions yielded similar item usage patterns for the generating models, except for the

block size of four in which different types of items were used because of the constraint.

4.3 Discussion and Conclusion

Item review and answer change have several benefits for test takers such as re-
duced test anxiety, the opportunity to correct careless errors, and, most importantly,
increased testing validity. However, these options have several drawbacks, including
decreased testing efficiency and demand of more complicated item selection algo-

rithms. In a blocked-design CAT, item review was allowed within a block of items,
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and several studies showed that there was no significant difference in the accuracy
of the ability estimated with limited review and no review procedures. Another pro-
cedure that allows item review and answer change is MST in which test adaption
occurs at the sets of item level instead of the item level. In this paper, a new CD-
CAT procedure was proposed to allow item review and answer change during test
administration. In this procedure, a block of items was administered with and with-
out a constraint on the g-vectors of the items. Different from MST, content balancing
and item difficulty were not applicable in the new procedure. Based on the factors
in the simulation study, using the new procedure with the GDI is promising for item
review especially with HQ items and long tests without too large decrease in the
classification accuracy. In addition, the different blocking versions yielded similar
classification rates. However, the constrained version with the PWKL had the best
classification accuracy, whereas the unconstrained version with the PWKL had the
worst classification accuracy regardless of the block size, test length, and item quality
except on long tests with HQ items. The results of this study suggest several find-
ings that are of practical value. First, it is not advisable to use the PWKL with the
blocked-design CD-CAT especially with larger block sizes because of the substantial
decrease in the classification rates across many conditions. Second, from this study,
the practitioners, so as to allow students to review and change their answers, can
determine the tolerable level of loss in classification accuracy in deciding the appro-
priate block size to be used. Last, item usage patterns revealed in this study can be
helpful in test construction strategies in the context of cognitive diagnosis.
Although this study showed promise with respect to item review for CD-CAT,
more research must be conducted to determine the viability of the blocked-design
CD-CAT. First, only a single constraint on the g-vectors was considered in the cur-
rent study; however, it would be interesting to examine different possible constraints

(e.g., hierarchical structures) on items. Second, further research needs to be done in
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the multistage applications for cognitive diagnosis. For example, CDMs are multidi-
mensional models, and there is no difficulty parameter for every relevant dimension.
Therefore, it is still challenging to construct the blocks in MST for cognitive diagnosis.
Third, the impact of the number of attributes and item pool size was not considered;
these factors also affect the performance of the indices in real CAT applications. Last,
the data sets were generated using a single reduced CDM. It would be more practical
to examine the use of a more general model, which allows the item pool to be made

up of various CDMs.
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Chapter 5

Summary

Compared to unidimensional item response theory (IRT) models, cognitive diag-
nosis models (CDMs) provide more detailed evaluations of students’ strengths and
weaknesses in a particular content area and, therefore, provide more information that
can be used to inform instruction and learning (de la Torre, 2009). Computerized
adaptive testing (CAT) has been developed as an alternative tool to paper-and-pencil
tests and can be used to create tests tailored to each examinee (Meijer & Nering, 1999;
van der Linden & Glas, 2002). CAT procedures are generally built on IRT models;
however, different psychometric models (i.e., CDMs) can also be used in CAT pro-
cedures. Considering the advantages of CAT, the use of CDMs in CAT can provide
better diagnostic evaluations with more accurate estimates of examinees’ attribute
vectors.

At present, most of the research in CAT has been performed in the context of IRT;
however, a small number of studies have recently been conducted in CD-CAT. One
reason the research on CD-CAT is limited is that some of the concepts in traditional
CAT (i.e., Fisher information) cannot be applied in CD-CAT because of the discrete
nature of attributes. With a general aim to address needs in formative assessments,
this dissertation introduced new item selection indices that can be used in CD-CAT,
showed the use of item exposure control methods with one of the new indices, proposed
an alternative CD-CAT administration procedure in which examinees have the benefit
of item review and answer change options, and introduced a more efficient simulation

design that can be generalized to different distributions of attribute vectors, despite
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involving a smaller sample size.

In the first study, two new item selection indices, the modified posterior-weighted
Kullback-Leibler index (MPWKL) and the generalized deterministic inputs, noisy
“and” gate (G-DINA) model discrimination index (GDI), were introduced for CD-
CAT. The efficiency of the indices was compared with the posterior-weighted Kullback-
Leibler index (PWKL). The results showed that compared to the PWKL, the MP-
WKL and the GDI performed very similarly and had higher attribute classification
rates or shorter mean test lengths depending on the test termination rule. Moreover,
item quality had an obvious impact on the classification rates: Higher discrimination
and higher variance resulted in higher classification accuracy. Thus, the combina-
tion of higher-discriminating items with higher variance had the best classification
accuracy and/or shortest test lengths, whereas low-discriminating items with lower
variance had the worst classification accuracy and/or longest test lengths regardless
of the item selection index and the generating model. Moreover, generating models
can affect the efficiency of the indices: For the DINA and DINO models, the results
were more distinguishable; however, the efficiency of the indices was essentially the
same for the A-CDM, except in a few conditions.

To get a deeper understanding of the differences in item usage among the models,
the items were grouped based on their required attributes and item usage in terms
of the number of required attributes recorded for each condition. Overall, the DINA
model showed the following pattern of item usage: The model used items that required
the same attributes as the examinee’s true attribute mastery vector and items that
required single attributes that were not mastered by the examinee. In contrast, the
DINO model showed a different pattern of item usage: This model used items that
required the same attributes as the examinee’s true nonmastery vector and items
that required single attributes that were mastered by the examinee. The A-CDM

used items that required single attributes regardless of the true attribute vector. The
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GDI had the shortest implementation time among the three indices.

In the second study, the use of two item exposure control methods, restrictive
progressive (RP) and restrictive threshold (RT), in conjunction with the GDI was
introduced. When new item selection indices are proposed in CAT, the measurement
accuracy and the test security the indices provide are commonly investigated (Bar-
rada, Olea, Ponsoda, & Abad, 2008). Typically, high item exposure rates accompany
efficient item selection indices, and it is crucial to decrease the use of overexposed
items and increase the use of underexposed items. In this study, the efficiency of the
GDI was investigated in terms of the classification accuracy and the item exposure
using the RP and RT methods. Based on the factors manipulated in the simulation
study, as expected, the RP method resulted in more uniform item exposure rates
and higher classification rates compared to the RT method. Moreover, the factors,
including the item quality, test length, pool size, prespecified desired exposure rate,
and 3, generally had a substantial impact on the exposure rates when the RP method
was used; however, fewer factors, such as the pool size, prespecified desired exposure
rate, and (3, generally had a substantial impact on the exposure rates when the RT
method was used. The other factors had moderate or negligible effects on the item
exposure rates with some exceptions.

In the third study, a new CD-CAT administration procedure, where blocks of
items are administered, was introduced. Using the new procedure, examinees would
be able to review their responses within a block of items. Originally, Stocking (1997)
proposed a blocked-design CAT in which item review was allowed within a block of
items, and the results showed that there was no significant difference in the accuracy
of the ability estimated with limited review and no review procedures. In this study, a
block of items was administered with and without a constraint on the g-vectors of the
items. Four blocking versions of the new procedure (i.e., unconstrained, constrained,

hybrid-1, and hybrid-2) were proposed. Based on the factors in the simulation study,
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the constrained version with the PWKL had the best classification accuracy, whereas
the unconstrained version with the PWKL had the worst classification accuracy re-
gardless of the block size, test length, and item quality except on long tests with
HQ items. However, the differences between the blocking versions were negligible
when the GDI was used. Using the new procedure with the GDI is promising for
item review especially with HQ items and long tests without too large a decrease in
classification accuracy.

In this dissertation, new item selection indices were proposed for CD-CAT that
can be used instead of traditional CAT procedures when more detailed evaluations
of examinees’ strengths and weaknesses are needed. The dissertation’s first study
was important in understanding how different information statistics can be used as
item selection methods in the CAT administration. The second study was useful
in examining how to implement item exposure control methods with a new item
selection index and what factors should be taken into account when controlling high
item exposure rates. The third study was essential in obtaining more accurate validity
of tests by providing an adequate opportunity for item review and answer change to
examinees. Finally, this dissertation helped deepen our understanding of how different
item selection indices behaved in terms of item usage with respect to different CDMs
and examinee true attribute vectors using a more efficient simulation design.

A successful realization of these objectives led to a deeper understanding of the
CDMs and CAT, and increased the joint applicability of these procedures. Nonethe-
less, there are still questions that need to be investigated in the context of CD-CAT.
For example, in simulation studies, the response data are mostly generated based on
a model, and therefore, it provides a perfect model fit. However, it would be interest-
ing to analyze the efficiency of the new indices using real data, especially when the
response data do not fit any existing model. In addition, one of the most difficult

parts of traditional CAT procedures is the item pool development. This also applies
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to CD-CAT procedures. With respect to this point, a successful implementation of
CD-CAT depends on several factors, including a well-developed item pool, accurately

estimated item parameters, and a well-constructed Q-matrix.
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