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ABSTRACT OF THE DISSERTATION
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Procedures for Cognitive Diagnosis Computerized

Adaptive Testing

by Mehmet Kaplan

Dissertation Director: Jimmy de la Torre

The significance of formative assessments has recently been underscored in the edu-

cational measurement literature. Formative assessments can provide more diagnostic

information to improve teaching and learning strategies compared to summative as-

sessments. Cognitive diagnosis models (CDMs) are psychometric models that have

been developed to provide a more detailed evaluation of assessment data. CDMs

aim to detect students’ mastery and nonmastery of attributes in a particular content

area. Another major research area in psychometrics is computerized adaptive testing

(CAT). It has been developed as an alternative to paper-and-pencil tests, and widely

used to deliver tests adaptively.

Although the traditional CAT seems to satisfy the needs of the current testing

market by providing summative scores, the use of CDMs in CAT can produce more

diagnostic information with an efficient testing design. With a general aim to address

needs in formative assessments, this dissertation aims to achieve three objectives:
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(1) to introduce two new item selection indices for cognitive diagnosis computerized

adaptive testing (CD-CAT); (2) to control item exposure rates in CD-CAT; and (3)

to propose an alternative CD-CAT administration procedure. Specifically, two new

item selection indices are introduced for cognitive diagnosis. In addition, high item

exposure rates that typically accompany efficient indices are controlled using two

exposure control methods. Finally, a new CD-CAT procedure that involves item

blocks is introduced. Using the new procedure, examinees would be able to review

their responses within a block of items. The impact of different factors, namely, item

quality, generating model, test termination rule, attribute distribution, sample size,

and item pool size, on the estimation accuracy and exposure rates was investigated

using three simulation studies. Moreover, item type usage in conjunction with the

examinees’ attribute vectors and generating models was also explored. The results

showed that the new indices outperformed one of the most popular indices in CD-

CAT, and also, they performed efficiently with the exposure control methods in terms

of classification accuracy and item exposure. In addition, a new blocked-design CD-

CAT procedure was promising for allowing item review and answer change during the

test administration with a small loss in the classification accuracy.
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Chapter 1

Introduction and Objectives

1.1 Introduction

Interest in formative assessment has rapidly grown in the psychological and educa-

tional measurement over the past decades. It includes a range of different assessment

procedures that provide more detailed feedback to improve teaching and learning

rather than just giving a single score. The use of formative assessment has several

advantages over summative assessment. For example, it enhances teaching and learn-

ing strategies by providing better feedback to teachers and students (DiBello & Stout,

2007). Based on the feedback that identifies individual strengths and weaknesses in a

particular content, teachers can design classroom activities to optimize student learn-

ing. Huebner (2010) also stated that such assessment fulfills the demands of recent

political decisions in education such as the No Child Left Behind Act (2001).

Largely to harness the benefits of the formative assessment, several cognitive di-

agnosis models (CDMs) have been introduced and developed in educational measure-

ment. CDMs are latent class models that can be used to detect mastery and nonmas-

tery of multiple fine-grained skills or attributes in a particular content domain (de la

Torre, 2009). These attributes are generally binary; however, they can also have poly-

tomous levels of mastery. Examples of binary attributes defined in the mixed fraction

subtraction domains are (1) converting a whole number to a fraction, (2) separating

a whole number from a fraction, (3) simplifying before subtracting (Tatsuoka, 1990).

Examples of attributes with binary and polytomous levels of mastery defined in the
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proportional reasoning domain are (1) prerequisite skills; (2a) comparing and (2b)

ordering fractions; and (3a) constructing ratios and (3b) proportions (Tjoe & de la

Torre, 2014). By identifying the presence or absence of the attributes for particular

domains, CDMs can provide more diagnostic and informative feedback.

To date, a variety of models has been developed to increase the applicability of

CDMs. The deterministic inputs, noisy “and” gate (DINA; de la Torre, 2009; Haertel,

1989; Junker & Sijtsma, 2001) model, the deterministic input, noisy “or” gate (DINO;

Templin & Henson, 2006) model, the noisy input, deterministic “and” gate (NIDA;

Maris, 1999; Junker & Sijtsma, 2001) model, the noisy input, deterministic “or” gate

(NIDO; Templin & Henson, 2006) model, and fusion (Hartz, 2002; Hartz, Roussos, &

Stout, 2002) model are examples of constrained CDMs. Constrained CDMs require

specific assumptions about the relationship between attribute vector and task perfor-

mance (Junker & Sijtsma, 2001). Nonetheless, they provide results that can easily

be interpreted. In addition to constrained models, more generalized CDMs have also

been proposed: the log-linear CDM (Henson, Templin, & Willse, 2009), the general

diagnostic model (von Davier, 2008), and the generalized DINA model (G-DINA;

de la Torre, 2011). The general models relax some of the strong assumptions in

the constrained models, and provide more flexible parameterizations. However, gen-

eral models are more difficult to interpret compared to constrained models because

they involve more complex parametrizations. Therefore, the choice of using either a

constrained or a general model depends on the particular application.

Computerized adaptive testing (CAT) has also become a popular tool in educa-

tional testing since the use of personal computers became accessible (van der Linden

& Glas, 2002). It has been developed as an alternative to paper-and-pencil tests

because of the following advantages: CAT offers more flexible testing schedules for

individuals; the scoring procedure is faster with CAT; it makes wider range of items
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with broader test contents available (Educational Testing Service, 1994); CAT pro-

vides shorter test-lengths; it enhances measurement precision; and offers tests on

demand (Meijer & Nering, 1999). A pioneering application of CAT was applied by

the US Department of Defense to carry out the Armed Services Vocational Aptitude

Battery in the mid 1980s. However, the transition from paper-and-pencil testing to

CAT truly began when the National Council of State Boards of Nursing used a CAT

version of its licensing exam, and it was followed by the Graduate Record Examina-

tion (van der Linden & Glas, 2002). At present, many testing companies offer tests

using within an adaptive environment (van der Linden & Glas, 2010).

A CAT procedure typically consists of three steps: “how to START”, “how to

CONTINUE”, and “how to STOP” (Thissen & Mislevy, 2000, p. 101). First, the

specification of the initial items determines the ability estimation at the early stage

of the test. Second, the ability estimate is updated by giving items appropriate to the

examinee’s ability level. Last, the test is terminated after reaching a predetermined

precision or number of items. In CAT, each examinee receives items appropriate to

his/her ability level from an item bank, and the ability level is estimated during or

at end of the test administration. Therefore, different tests, including different items

with different lengths, can be created for different examinees.

CAT procedures are generally built upon item response theory (IRT) models,

which provide summative scores based on the performance of the examinees. However,

different psychometric models (i.e., CDMs) can also be used in the CAT procedures.

Considering the advantages of CAT, the use of CDMs in CAT can provide better

diagnostic feedback with more accurate estimates of examinees’ attribute vectors. At

present, most of the research in CAT has been done in the context of IRT; however,

a small number of research has recently been conducted in cognitive diagnosis CAT

(CD-CAT). One of the reasons behind the limited research on CD-CAT is that some

of the concepts in traditional CAT (i.e., Fisher information) are not applicable in
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CD-CAT because of the discrete nature of attributes.

1.2 Objectives

IRT and CAT are two well-studied research areas in psychometrics. Both have

received considerable attention from a number of researchers in the field (van der

Linden & Glas, 2002; Wainer et al., 1980). Although CAT in the context of IRT

seems to satisfy the needs of the current testing market, it may not be sufficient

in providing informative results to teachers and students to improve teaching and

learning strategies. In this regard, cognitive diagnosis modeling can be used with CAT

to obtain more detailed information about examinees’ strengths and weaknesses with

more efficient testing design. Despite its potential advantages in terms of efficiency

and more diagnostic evaluations, research on CD-CAT is rather scarce. The following

are examples of works in this area: Cheng (2009), Hsu, Wang, and Chen (2013),

McGlohen and Chang (2008), Wang (2013), and Xu, Chang, and Douglas (2003).

Other developments in CD-CAT pertain to the test termination rules. Hsu et al.

(2013) proposed two test termination rules based on the minimum of the maximum

of the posterior distribution of attribute vectors in CD-CAT. They also developed

a procedure based on the Sympson-Hetter method (1985) to control item exposure

rates. Their procedure was capable of controlling test overlap rates using variable

test-lengths. Recently, Wang (2013) proposed the mutual information item selection

method in CD-CAT, and she compared the different methods (i.e., the Kullback-

Leibler [K-L] information, Shannon entropy, and the posterior-weighted K-L index

[PWKL]) using short test lengths. Based on this study, the PWKL was shown to have

better efficiency. Additionally, the PWKL is easier to implement, thus making it a

popular item selection method in CD-CAT. Despite its advantages, two shortcomings

of the PWKL can be noted: the test lengths obtained from the PWKL were rather

long and it produced high exposure rates. Therefore, it remains to be seen whether
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other methods can be used in place of the PWKL.

This dissertation has three primary objectives: (1) to introduce two new item

selection indices for CD-CAT, (2) to investigate item exposure rate control in CD-

CAT, and (3) to propose a new CAT administration procedure. Of the two new item

selection indices that were introduced for CD-CAT, one was based on the G-DINA

model discrimination index, whereas the other one was based on the PWKL. The

efficiency of the new indices was compared to the PWKL in the context of the G-

DINA model. The impact of item quality, generating model, and test termination

rule on the efficiency was investigated using a simulation study. In addition, high item

exposure rates resulting from the different indices were controlled using the restrictive

progressive and restrictive threshold methods (Wang, Chang, & Huebner, 2011). In

addition to the factors, namely, item quality, generating model, and test termination

rule, the impact of attribute distribution, item pool size, sample size, and prespecified

desired exposure rate on the exposure rates was examined. Finally, a different CD-

CAT procedure was introduced. Using the new procedure, examinees would be able

to review their responses within a block of items. A successful attainment of these

objectives would lead to a better understanding of CD-CAT, which in turn would

increase the applicability of the procedure.

Along with these objectives, a more efficient simulation design was proposed in this

dissertation. Using a small, but specific subset of the attribute vectors, and applying

appropriate weights to these vectors, the new design can be used to examine how

different attribute vector distributions can impact the results. With the proposed

design, item type usage, in conjunction with the examinees’ attribute vectors and

generating models, was explored.
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Chapter 2

Study I: New Item Selection Methods for CD-CAT

Abstract

This article introduces two new item selection methods, the modified posterior-

weighted Kullback-Leibler index (MPWKL) and the generalized deterministic inputs,

noisy “and” gate (G-DINA) model discrimination index (GDI), that can be used in

cognitive diagnosis computerized adaptive testing. The efficiency of the new methods

is compared with the posterior-weighted Kullback-Leibler (PWKL) item selection in-

dex using a simulation study in the context of the G-DINA model. The impact of

item quality, generating models, and test termination rules on attribute classification

accuracy or test length is also investigated. The results of the study show that the

MPWKL and GDI perform very similarly, and have higher correct attribute classifi-

cation rates or shorter mean test lengths compared with the PWKL. In addition, the

GDI has the shortest implementation time among the three indices. The proportion

of item usage with respect to the required attributes across the different conditions

is also tracked and discussed.

Keywords: cognitive diagnosis model, computerized adaptive testing, item selection

method

This chapter has been published and can be referenced as: Kaplan, M., de la Torre, J., & Barrada,
J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing.
Applied Psychological Measurement, 39, 167-188.
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2.1 Introduction

Recent developments in psychometrics put an increasing emphasis on formative

assessments that can provide more information to improve learning and teaching

strategies. In this regard, cognitive diagnosis models (CDMs) have been developed to

detect mastery and nonmastery of attributes or skills in a particular content area. In

contrast to the unidimensional item response models (IRTs), CDMs provide a more

detailed evaluation of the strengths and weaknesses of students (de la Torre, 2009).

Computerized adaptive testing (CAT) has been developed as an alternative to paper-

and-pencil test, and provides better ability estimation with a shorter and tailored test

for each examinee (Meijer & Nering, 1999; van der Linden & Glas, 2002). Most of

the research in CAT has been conducted in the traditional IRT context. However, a

small number of research has recently been done in the context of cognitive diagnosis

computerized adaptive testing (CD-CAT; Cheng, 2009; Hsu, Wang, & Chen, 2013;

McGlohen & Chang, 2008; Wang, 2013; Xu, Chang, & Douglas, 2003).

One of the main components of CAT is the item selection method. By choosing

more appropriate methods, better estimates of the examinees’ abilities or attribute

vectors can be expected. Because of the discrete nature of attributes, some of the con-

cepts in traditional CAT such as Fisher information are not applicable in CD-CAT.

The goal of this study is to introduce two new indices, the modified posterior-weighted

Kullback-Leibler index (MPWKL) and the generalized deterministic inputs, noisy

“and” gate (G-DINA) model discrimination index (GDI), as item selection meth-

ods in CD-CAT, and evaluate their efficiency under the G-DINA framework. Their

efficiency is compared with the posterior-weighted Kullback-Leibler index (PWKL;

Cheng, 2009). The effects of different factors are also investigated: The item quality

is manipulated; reduced versions of the G-DINA model are used for generating item

response data; and fixed-test lengths and minimum of the maximum (minimax) of
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the posterior distribution of attribute vectors (Hsu et al., 2013) are used as stop-

ping rules in the test administration. With respect to the stopping rules, the former

provides a comparison of the efficiency of the three indices under different fixed-test

lengths, whereas the latter provides tailored tests with different test lengths for each

examinee.

The remaining sections of the article are laid out as follows: The next section

gives a background in the G-DINA model and its reduced versions. In addition, the

item selection indices are discussed, and the use of the GDI as an item selection

method is illustrated. In the “Simulation Study” section, the design and the results

of the simulation study are presented, and the efficiency of the indices under different

conditions is compared. Finally, “Discussion and Conclusion” section presents with

a discussion of the findings of this work and directions for future research.

2.1.1 Cognitive Diagnosis Models

CDMs aim to determine whether examinees have or have not mastered a set of

specific attributes. The presence or absence of the attributes is represented by a binary

vector. Let αi={αik} be the examinee’s binary attribute vector for k = 1, 2 . . . K

attributes. The kth element of the vector is 1 when the examinee has mastered the

kth attribute, and it is 0 when the examinee has not mastered it. Similarly, let

X i = {xij} be the binary response vector of examinee i for a set of J items in which

i = 1, 2 . . . N , and j = 1, 2 . . . J . In CDM, the required attributes for each item are

represented in a Q-matrix (Tatsuoka, 1983), which is a J ×K matrix. The element

of the jth row and the kth column, qjk, is 1 if the kth attribute is required to answer

the jth item correctly, and 0 otherwise.

A general CDM called generalized deterministic inputs, noisy “and” gate (G-

DINA) model was proposed by de la Torre (2011). It is a generalization of the de-

terministic inputs, noisy “and” gate (DINA; de la Torre, 2009; Haertel, 1989; Junker
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& Sijtsma, 2001) model, and it relaxes some of the strict assumptions of the DINA

model. Instead of two, the G-DINA model partitions examinees into 2K
∗
j groups,

where K∗j is the number of required attributes for item j. The mathematical rep-

resentation of the model consists of the combination of the baseline probability, the

main effects due to the attribute k, the interaction effects due to the attributes k

and k′ (k 6= k′), and other higher-order interaction effects (for more details, see de la

Torre, 2011).

A few of commonly encountered CDMs are constrained versions of, and therefore,

are subsumed by the G-DINA model (de la Torre, 2011). These include the DINA

model, the deterministic input, noisy “or” gate (DINO; Templin & Henson, 2006)

model, and the additive CDM (A-CDM; de la Torre, 2011). As constrained CDMs,

the DINA model assumes that lacking one of the required attributes is as the same

as lacking all of the required attributes; the DINO model assumes that having one

of the required attributes is as the same as having all of the required attributes; and

the A-CDM assumes that the impacts of mastering the different required attributes

are independent of each other.

2.1.2 Computerized Adaptive Testing

CAT has become a popular tool to estimate examinees’ ability levels with shorter

test lengths. The main goal of CAT is to construct an optimal test for each examinee.

Appropriate items to each examinee’s ability level are selected from an item bank,

and the ability level is estimated during or end of the test administration. Therefore,

different tests including different items with different lengths can be created for dif-

ferent examinees. Weiss and Kingsbury (1984) listed the components of CAT, which

include item selection method and calibrated item pool. In addition, CAT can be

used with different psychometric frameworks such as IRT or CDM. The Fisher infor-

mation statistic (Lehmann & Casella, 1998) is widely used in the traditional CAT;
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however, it cannot be applied in CD-CAT because it requires continuous ability lev-

els, whereas the attribute vectors in cognitive diagnosis are discrete. Fortunately, the

Kullback-Leibler (K-L) information, which is an alternative information statistic, can

work under both continuous and discrete cases. This study focuses on item selection

methods in the cognitive diagnosis context, which include K-L-based indices.

2.1.2.1 The Posterior-Weighted Kullback-Leibler Index

The K-L information is a measure of distance between the two probability density

functions, f(x) and g(x), where f(x) is assumed to be the true distribution of the

data (Cover & Thomas, 1991). The function measuring the distance between f and

g is given by

K(f, g) =

∫ [
log

(
f(x)

g(x)

)]
f(x)dx. (2.1)

Larger information allows easier differentiation between the two distributions or

likelihoods (Lehmann & Casella, 1998). Xu et al. (2003) used the K-L information

as an item selection index in CD-CAT. Cheng (2009) proposed the PWKL, which

computes the index using the posterior distribution of the attribute vectors as weights.

Her simulation study showed that the PWKL outperformed the K-L information in

terms of estimation accuracy. The PWKL is given by

PWKLj(α̂
(t)
i ) =

2K∑
c=1

[
1∑

x=0

log

(
P (Xj = x|α̂(t)

i )

P (Xj = x|αc)

)
P (Xj = x|α̂(t)

i )π
(t)
i (αc)

]
, (2.2)

where P (Xj = x|αc) is the probability of the response x to item j given the attribute

vector αc, and π
(t)
i (αc) is the posterior probability of examinee i given the responses

to the t items. The posterior distribution after tth response can be written as

π
(t)
i (αc) ∝ π

(0)
i (αc)L(X

(t)
i |αc),

whereX
(t)
i is the vector containing the responses of examinee i to the t items, π

(0)
i (αc)

is the prior probability of αc, and L(X
(t)
i |αc) is the likelihood of X

(t)
i given the
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attribute vector αc. The (t+1)th item to be administered is the item that maximizes

the PWKL.

2.1.2.2 The Modified Posterior-Weighted Kullback-Leibler Index

The PWKL is calculated by summing the distances between the current estimate

of the attribute vector and the other possible attribute vectors using the K-L informa-

tion, and it is weighted by the posterior distribution of the attribute vectors. By using

the current estimate α̂
(t)
i , it assumes that the point estimate is a good summary of the

posterior distribution π
(t)
i (α). However, this may not be the case particularly when

the test is still relatively short. Instead of using a point estimate, the new PWKL

proposes modifying by considering the entire posterior distribution, which involves

2K attribute vectors. The resulting new index can be referred to as the MPWKL and

can be computed as

MPWKL
(t)
ij =

2K∑
d=1

 2K∑
c=1

[
1∑

x=0

log

(
P (Xj = x|αd)
P (Xj = x|αc)

)
P (Xj = x|αd)π(t)

i (αc)

]
π
(t)
i (αd)

 . (2.3)

Compared with the PWKL, by using the posterior distribution, the MPWKL does

not require estimating the attribute vector α
(t)
i . Using an estimate in the numerator

of Equation 2.2 is tantamount to assigning a single attribute vector (i.e., α
(t)
i ) a

probability of 1, which may not accurately describe the posterior distribution at the

early stages of the testing administration. In contrast, the numerator in Equation 2.3

considers all the possible attribute vectors, and weights them accordingly, hence, the

extra summation and posterior probability. Because the MPWKL uses the entire

posterior distribution π
(t)
i (α) rather than just an estimate α̂

(t)
i , it can be expected to

be more informative than the PWKL.
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2.1.2.3 The G-DINA Model Discrimination Index

The GDI, which measures the (weighted) variance of the probabilities of success of

an item given a particular attribute distribution, was first proposed by de la Torre and

Chiu (2010) as an index to implement an empirical Q-matrix validation procedure.

However, in this article, the index is used as an item selection method for CD-CAT.

To define the index, let the first K∗j attributes be required for item j, and define

α∗cj as the reduced attribute vector consisting of the first K∗j attributes, for c =

1, . . . , 2K
∗
j . For example, if a q-vector is defined as (1,1,0,0,1) for K∗j = 3 number of

required attributes, the reduced attribute vector is (a1,a2,a5). Also, define π(α∗cj) as

the probability of α∗cj, and P (Xij = 1|α∗cj) as the success probability on item j given

α∗cj. The GDI for item j is defined as

ς2j =
2
K∗

j∑
c=1

π(α∗cj)[P (Xij = 1|α∗cj)− P̄j]2, (2.4)

where P̄j =
∑2

K∗
j

c=1 π(α∗cj)P (Xij = 1|α∗cj) is the mean success probability. In CD-

CAT applications, the posterior probability of the reduced attribute vector π
(t)
i (α∗cj)

is used in place of π(α∗cj). This implies that the discrimination of an item is not

static, and changes as the posterior distribution changes with t. The GDI measures

the extent to which an item can differentiate between the different reduced attribute

vectors based on their success probabilities, and is minimum (i.e., equal to zero) when

P (Xij = 1|α∗1j) = P (Xij = 1|α∗2j) = P (Xij = 1|α∗
2
K∗

j j
) = P̄j (or, trivially, when the

posterior distribution is degenerate). It also attaches greater importance to reduced

attribute vectors with higher π(.). As such, a larger GDI indicates a greater ability

to differentiate between reduced attribute vectors that matter. The GDI is computed

for each candidate item in the pool, and the candidate item with the largest GDI is

selected.
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The GDI has two important properties. First, instead of the original attribute

vector, αc, it uses the reduced attribute vector, α∗cj. Consequently, the GDI can be

implemented more efficiently than can the PWKL or MPWKL. For example, if K = 5

and K∗j = 2, computing the GDI involves 2K
∗
j = 4 terms, whereas the PWKL and

MPWKL involve 2K = 32 and 2K × 2K = 1, 024 terms, respectively.

Second, the GDI takes both the item discrimination and the posterior distribu-

tion into account. This property is illustrated using the example in Table 2.1. It

involves K = 3, and six items, three of which are of low discrimination (LD), and

the other three are of high discrimination (HD). For the low-discriminating items,

the difference between the lowest and the highest probabilities of success is 0.4; for

the high-discriminating items, this difference is 0.8. In addition, these items involve

one of the following q-vectors: q100, q110, and q111. Four distributions are consid-

ered: (1) all attribute vectors are equally probable, as in, π(αc) = 0.125; in (2), (3),

and (4), the attribute vector, namely, (1,0,0), (1,1,0), and (1,1,1), respectively, has

a probability of .965 and was deemed dominant, whereas each of the remaining at-

tribute vectors has a probability of .005. In Condition 1, the impact of the posterior

distribution is discounted, whereas in Conditions 2, 3, and 4, one-attribute vector is

highly dominant. In this table, the GDI was computed using the DINA model.

Table 2.1: GDIs for Different Distribution, Item Discrimination, and Q-Vectors

Dominant Low Discrimination High Discrimination
Condition α q100 q110 q111 q100 q110 q111

1 None 0.090 0.068 0.039 0.160 0.120 0.070
2 (1,0,0) 0.007 0.004 0.002 0.013 0.006 0.003
3 (1,1,0) 0.007 0.010 0.002 0.013 0.019 0.003
4 (1,1,1) 0.007 0.010 0.012 0.013 0.019 0.022

Note. Numbers in bold represent the highest GDI in each condition for fixed item discrimination.
GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA = deterministic
inputs, noisy “and” gate.

Several results can be noted. First, for a fixed q-vector, the high-discriminating

items had higher GDI values compared to the low-discriminating items regardless of
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the posterior distribution. Second, when there was no dominant attribute vector,

one-attribute items had the highest GDI values for a fixed item discrimination. In

contrast, when one attribute vector was highly dominant, the items with q-vectors

matching the dominant attribute vectors had the highest GDI values. Finally, it can

also be observed that the low-discriminating items with q-vectors that match the

dominant attribute vectors can at times be preferred over the high-discriminating

items with q-vectors that do not. For example, for attribute vector (1,1,0), the GDI

for the low-discriminating item with q110 is 0.010. This is higher than the GDI for

the high-discriminating item with q111, which is 0.003.

Based on the properties of the three indices discussed earlier, the authors expect

the GDI and the MPWKL will be more informative than the PWKL. In addition,

they expect the GDI to be faster than the PWKL in terms of implementation time,

which in turn will be faster than MPWKL.

2.2 Simulation Study

The simulation study aimed to investigate the efficiency of the MPWKL and GDI

compared to the PWKL under the G-DINA model context considering a variety of

factors, namely, item quality, generating model, and test termination rule. The correct

attribute and attribute vector classification rates, and a few descriptive statistics (i.e.,

minimum, maximum, mean, and coefficient of variation [CV]), of the test lengths

were calculated based on the termination rules to compare the efficiency of the item

selection indices. In addition, the time required to administer the test was also

recorded for each of the item selection indices. Finally, the item usage in terms of the

required attributes was tracked and reported in each condition.



18

2.2.1 Design

2.2.1.1 Data Generation

Different item qualities and reduced CDMs were considered in the data generation.

First, due to documented impact of item quality on attribute classification accuracy

(e.g., de la Torre, Hong, & Deng, 2010), different item discriminations and variances

were used in the data generation. Two levels of item discrimination, HD and LD,

were combined with two levels of variance, high variance (HV) and low variance (LV),

in generating the item parameters. Thus, a total of four conditions, HD-LV, HD-HV,

LD-LV, and LD-HV, were considered in investigating the impact of item quality

on the efficiency of the indices. The item parameters were generated from uniform

distributions. For HD items, the highest and lowest probabilities of success, P (0)

and P (1), were generated from distributions with means of .1 and .9, respectively;

for LD items, these means were 0.2 and 0.8. For HV and LV items, the ranges of

the distribution were 0.1 and 0.2, respectively. The distributions for P (0) and P (1)

under different discrimination and variance conditions are given in Table 2.2. The

mean of the distribution determines the overall quality of the item pool, whereas the

variance determines the overall quality of the administered items.

Table 2.2: Item Parameters

Item Quality P (0) P (1)
HD-LV U(0.05, 0.15) U(0.85, 0.95)
HD-HV U(0.00, 0.20) U(0.80, 1.00)
LD-LV U(0.15, 0.25) U(0.75, 0.85)
LD-HV U(0.10, 0.30) U(0.70, 0.90)

Note. HD-LV = high discrimination-low variance; HD-HV = high discrimination-high variance;
LD-LV = low discrimination-low variance; LD-HV = low discrimination-high variance.

Second, to investigate whether the efficiency of the indices is consistent across

different models, item responses were generated using three reduced models: the

DINA model, the DINO model, and the A-CDM. For the DINA and DINO models,
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the probability of success was set as shown in Table 2.2. For the A-CDM, in addition

to the success probabilities given in Table 2.2, intermediate success probabilities were

obtained by allowing each of the required attributes to contribute equally. The four

item qualities and three reduced models resulted in the 12 conditions of the simulation

study. The number of attributes was fixed to K = 5.

To design a more efficient simulation study, only a subset of the attribute vectors

was considered. The six attribute vectors were α0 = (0, 0, 0, 0, 0), α1 = (1, 0, 0, 0, 0),

α2 = (1, 1, 0, 0, 0), α3 = (1, 1, 1, 0, 0), α4 = (1, 1, 1, 1, 0), and α5 = (1, 1, 1, 1, 1),

representing no mastery, mastery of a single attribute only, mastery of two attributes

only, and so forth. For each attribute vector, 1,000 examinees were generated for a

total of 6,000 examinees in each condition.

2.2.1.2 Test Termination Rules

Two test termination rules were considered in the simulation study: fixed-test

lengths and minimax of the posterior distribution of the attribute vectors. The former

allowed for a comparison of the efficiency of the indices with respect to classification

accuracy when the CAT administration was stopped after a prespecified test length

was reached for each examinee; the latter allowed for the comparison of the efficiency

of the indices in terms of test lengths when the CAT administration was terminated

after the largest posterior probability of an attribute vector was at least as large as

a prespecified minimax value, which corresponds to the first criterion by Hsu et al.

(2013). Three fixed-test lengths, 10, 20, and 40 items, were considered for the first

termination rule, and four minimax values, 0.65, 0.75, 0.85, and 0.95, were used for

the second rule.
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2.2.1.3 Item Pool and Item Selection Methods

The Q-matrix was created to have 40 items from each of 2K − 1 = 31 possible

q-vectors, resulting in 1,240 items in the pool. Three different item selection indices

were considered: the PWKL, the MPWKL, and the GDI. For greater comparability,

the first item administered to each examinee was chosen at random, and this item

was fixed across the three indices. In the case of PWKL, when α̂
(t)
i was not unique,

a random attribute vector was chosen from the modal attribute vectors.

Let αikl and α̂ikl be the kth true and estimated attribute in attribute vector l

for examinee i, respectively. For each of the six attribute vectors considered in this

design, the correct attribute classification rates (CAC), and the correct attribute

vector classification rates (CVC) were computed as

CACl =
1

1, 000

1,000∑
i=1

5∑
k=1

I[αikl = α̂ikl], and

CV Cl =
1

1, 000

1,000∑
i=1

5∏
k=1

I[αikl = α̂ikl],

(2.5)

where l = 0, . . . , 5, and I is the indicator function.Using appropriate weights (de-

scribed later), the CAC and CVC were computed assuming the attributes were uni-

formly distributed for the fixed-test length conditions. The minimum, maximum,

mean, and CV of the test lengths were calculated, again with appropriate weights

where needed, when the minimax of the posterior distribution was used as the stop-

ping criterion. This study focused on attribute vectors that were uniformly dis-

tributed. To accomplish this, the results based on the six attribute vectors needed

to be weighted appropriately. For K = 5, the vector of the weights are 1/32, 5/32,

10/32, 10/32, 5/32, and 1/32, which represented the proportions of zero-, one-, two-,

three-, four-, and five-attribute mastery vectors among the 32 attribute vectors, re-

spectively. CV was calculated by taking the ratio of the standard deviation to the
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mean.

2.2.2 Results

2.2.2.1 Fixed-Test Length

The sampling design of this simulation study can allow for results to be generalized

to different distributions of the attribute vectors. This study focused on attribute

vectors that were uniformly distributed. To demonstrate the efficiency of using such

a design, a small study comparing two sampling procedures for the DINA model with

HD-LV items was carried out. In the first procedure, which is the current sampling

design, only six selected attribute vectors, each with 1,000 replicates, were used; in

the second procedure, 32,000 attribute vectors were generated uniformly. The CAC

and the CVC in the former and the latter were computed using weighted and simple

averages, respectively. Table 2.3 shows that despite working with fewer attribute

vectors, using selected attribute vectors can give the CAC and the CVC that were

almost identical to those obtained using a much larger sample drawn randomly, and

this was true across the different test lengths. These findings can be expected to hold

across other CDMs and item qualities.

Table 2.3: Classification Accuracies Based on Two Sampling Procedures

Item CAC CVC
Quality J Weighted Simple Weighted Simple
HD-LV 10 0.969 0.969 0.875 0.876

20 0.999 0.999 0.996 0.996
40 1.000 1.000 1.000 1.000

Note. CAC = correct attribute classification; CVC = correct attribute vector classification;
J = test length; HD-LV = high discrimination-low variance.

For all conditions, the CAC rates were, as expected, higher than the CVC rates,

but both measures showed similar patterns. For this reason, only the CVC rates were

reported in this article. However, the results in their entirety can be requested from
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the first author. The CVC results using fixed-test lengths as a stopping rule under the

different factors are presented in Table 2.4 for all the generating models. Differences

in the CVC rates were evaluated using two cut points, 0.01 and 0.10. Differences

below 0.01 were considered negligible, between 0.01 and 0.10 were considered slight,

and above 0.10 were considered substantial.

Table 2.4: The CVC Rates using the DINA, DINO, and A-CDM

Item DINA DINO A-CDM
Quality J PWKL MPWKL GDI PWKL MPWKL GDI PWKL MPWKL GDI
HD-LV 10 0.752 0.878 0.887 0.749 0.855 0.849 0.839 0.817 0.826

20 0.989 0.996 0.996 0.986 0.995 0.996 0.992 0.992 0.991
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

HD-HV 10 0.854 0.979 0.981 0.870 0.979 0.981 0.963 0.967 0.962
20 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LD-LV 10 0.454 0.589 0.604 0.441 0.551 0.557 0.515 0.524 0.511
20 0.814 0.892 0.890 0.803 0.872 0.871 0.855 0.857 0.859
40 0.987 0.995 0.995 0.984 0.993 0.992 0.987 0.990 0.990

LD-HV 10 0.569 0.723 0.719 0.596 0.703 0.704 0.658 0.666 0.660
20 0.917 0.962 0.962 0.924 0.969 0.966 0.948 0.953 0.951
40 0.999 1.000 0.999 1.000 1.000 1.000 0.998 0.999 0.999

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and” gate; DINO = de-
terministic input, noisy “or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; J = test length;
PWKL = posterior-weighted Kullback-Leibler index; MPWKL = modified PWKL index; GDI = G-DINA model
discrimination index; G-DINA = generalized DINA; HD-LV = high discrimination-low variance; HD-HV = high
discrimination-high variance; LD-LV = low discrimination-low variance; LD-HV = low discrimination-high variance.

Using the DINA and the DINO as generating models in conjunction with a short

test length (i.e., 10 items), the differences in the CVC rates of the MPWKL and

the GDI were mostly negligible regardless of the item quality. The only exception

is the one condition, with 10 LD-LV items, where the CVC rate of the GDI was

slightly higher than the MPWKL. Under the same conditions, the CVC rates of the

two indices were substantially higher than the PWKL regardless of the item quality.

When the test lengths were longer (i.e., 20- and 40-item tests), all of the three indices

generally performed similarly using the DINA and DINO models. However, in one

condition (i.e., 20-item test with LD items and the DINA model), the MPWKL and

the GDI had slightly higher CVC rates compared with the PWKL.

Using the A-CDM as a generating model, the three indices had mostly similar
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CVC rates. Interestingly, using 10-item tests with HD-LV items, the PWKL had

slightly higher CVC rates compared to the MPWKL and the GDI.

Additional findings can be culled from Table 2.4. First, as expected, increasing the

test length improved the classification accuracy regardless of the item selection index,

item quality, and generating model. Using a long test (i.e., 40-item test) provided a

CVC rate of almost 1.00 for all of the indices. However, a clear distinction can be seen

on the efficiency of the indices when shorter test lengths, in particular 10-item test,

were used. For example, using the DINA model and HD-LV items, the 10-item test

yielded a maximum CVC rate of 0.89 for the MPWKL and the GDI. In comparison,

the PWKL had only a CVC rate of 0.75 under the same condition.

Second, the item quality had an obvious impact on the CVC rates: higher dis-

crimination and higher variance resulted in higher classification accuracy. As can

be seen from the results, HD items resulted in better rates compared with LD items

regardless of the variance. Similarly, items with HV showed higher classification rates

compared with LV items. Consequently, HD-HV items had the best classification ac-

curacy, whereas LD-LV items had the worst classification accuracy regardless of the

item selection index and generating model. To illustrate, using the DINA model and

a 10-item test, the highest and the lowest CVC rates of 0.98 and 0.60, were obtained

with HD-HV and LD-LV items, respectively, for both the MPWKL and GDI; in com-

parison, the CVC rates were 0.85 and 0.45 for HD-HV and LD-LV items, respectively,

for the PWKL.

To investigate how the item selection indices behaved for different attribute vec-

tors, the CVC rates for each attribute vector were calculated. Only the results for

10-item test with HD-HV and LD-LV items are presented (see Figure 2.1). Across

the different item quality conditions, the CVC rates of the MPWKL and GDI were

more similar for the different attribute vectors, whereas they were more varied for the

PWKL. A few conclusions can be drawn from this figure. First, for HD-HV items, the
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indices performed similarly for α4 and α5 when the DINA model was used. However,

under the same condition, the MWPKL and GDI had higher CVC rates compared

to the PWKL for the other four attribute vectors. Using the same item quality, the

indices performed similarly for α0 and α1 when the DINO model was used; however,

the CVC rates using the PWKL were lower for α2, α3, α4, and α5 compared to the

other two indices. It can also be noted that the classification accuracy of the PWKL

was more varied than those of the MPWKL and GDI across the attribute vectors. As

can be seen from the graphs, the CVC rate of the PWKL could range from around

0.65 to 1.00, whereas these rates were mostly 1.00 for the MPWKL and GDI. The

three indices had almost the same results when the A-CDM was involved.

Figure 2.1: CVC Rates for 6 Selected Attribute Vectors, J = 10
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Note: Blue, red, and green lines represent the PWKL, MWPKL and GDI, respectively. CVC =
correct attribute vector classification; PWKL = posterior-weighted Kullback-Leibler index;
MPWKL = modified PWKL index; GDI = G-DINA model discrimination index; G-DINA =
generalized DINA; DINA = deterministic inputs, noisy “and” gate; DINO = deterministic input,
noisy “or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; HD-HV = high
discrimination-high variance; LD-LV = low discrimination-low variance.

Second, although the CVC rates were lower, the results for LD-LV items were

similar to those for HD-HV items. The MPWKL and GDI had higher CVC rates than

the PWKL for α0, α1, α2, and α3 when the DINA model was used. In contrast, the

PWKL outperformed the MPWKL and GDI for α4 and α5 in the same condition.
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Using the same item quality and the DINO model, the PWKL had higher CVC rates

for α0 and α1. However, the MPWKL and GDI had higher rates for the other four

attribute vectors. Again, the CVC rates of the PWKL had higher variability (0.26-

0.82) compared to those of the MPWKL and GDI (0.56-0.65). Finally, the efficiency

of the indices was similar for the A-CDM, but the extreme attribute vectors α0 and

α5 can be better estimated than the remaining attribute vectors.

2.2.2.2 Minimax of the Posterior Distribution

For a fixed minimax of the posterior distribution, descriptive statistics of the test

lengths are shown in Tables 2.5, 2.6, and 2.7 for the DINA, DINO and A-CDM,

respectively. Differences in the mean were evaluated using two cut points, 0.5 and

1, and differences below 0.5 were considered negligible, between 0.5 and 1 slight, and

above 1 substantial.

Table 2.5: Descriptive Statistics of Test Lengths using the DINA Model

Item PWKL MPWKL GDI
Quality π(αc|Xi) Min Max Mean CV Min Max Mean CV Min Max Mean CV
HD-LV 0.65 3 25 8.26 0.28 3 16 6.69 0.13 3 14 6.67 0.13

0.75 3 28 8.92 0.28 4 18 7.32 0.17 4 19 7.34 0.16
0.85 3 32 10.08 0.27 4 22 8.83 0.19 4 24 8.87 0.19
0.95 4 35 12.05 0.25 4 26 10.99 0.19 4 31 10.99 0.19

HD-HV 0.65 2 19 7.76 0.22 2 14 6.55 0.11 2 10 6.52 0.12
0.75 2 22 7.96 0.22 2 14 6.58 0.11 2 11 6.60 0.11
0.85 2 23 8.45 0.22 2 14 6.72 0.10 2 14 6.73 0.10
0.95 2 23 9.36 0.21 2 17 7.51 0.12 2 18 7.22 0.11

LD-LV 0.65 4 48 13.48 0.37 5 32 11.41 0.30 5 34 11.46 0.30
0.75 4 50 15.21 0.36 6 40 13.02 0.29 6 38 13.08 0.29
0.85 5 55 17.11 0.35 6 53 14.95 0.30 6 55 15.00 0.30
0.95 5 73 21.43 0.32 7 56 19.40 0.28 7 64 19.46 0.28

LD-HV 0.65 3 35 10.45 0.32 4 28 8.60 0.24 4 28 8.57 0.24
0.75 4 36 11.71 0.32 5 29 9.86 0.26 5 31 9.93 0.26
0.85 4 42 13.41 0.31 5 32 11.78 0.26 5 32 11.77 0.26
0.95 4 49 15.70 0.29 6 43 14.13 0.25 6 42 14.17 0.25

Note. DINA = deterministic inputs, noisy “and” gate; PWKL = posterior-weighted Kullback-Leibler index; MPWKL =
modified PWKL index; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; CV = coefficient
of variation; HD-LV = high discrimination-low variance; HD-HV = high discrimination-high variance; LD-LV = low
discrimination-low variance; LD-HV = low discrimination-high variance.

Using the DINA and DINO models, the mean test lengths of the MPWKL and

the GDI were generally similar (i.e., the differences were negligible), and they were
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Table 2.6: Descriptive Statistics of Test Lengths using the DINO Model

Item PWKL MPWKL GDI
Quality π(αc|Xi) Min Max Mean CV Min Max Mean CV Min Max Mean CV
HD-LV 0.65 3 24 8.37 0.28 3 24 6.89 0.15 3 19 6.83 0.15

0.75 3 27 9.08 0.28 4 27 7.58 0.18 4 21 7.58 0.18
0.85 3 29 10.32 0.27 4 28 8.91 0.19 4 23 8.89 0.19
0.95 4 34 12.23 0.25 4 30 11.09 0.20 4 27 11.04 0.20

HD-HV 0.65 2 17 7.78 0.23 2 10 6.60 0.11 2 10 6.53 0.11
0.75 3 18 8.04 0.22 3 13 6.71 0.10 3 10 6.60 0.11
0.85 3 22 8.61 0.23 3 14 7.24 0.10 3 11 6.80 0.10
0.95 3 26 9.51 0.22 3 17 8.10 0.10 3 20 7.66 0.11

LD-LV 0.65 4 49 13.73 0.35 5 40 11.88 0.29 5 37 11.85 0.29
0.75 4 50 15.43 0.34 6 43 13.61 0.29 6 43 13.61 0.29
0.85 5 59 17.41 0.33 6 57 15.57 0.30 6 62 15.60 0.30
0.95 5 67 21.83 0.31 7 69 20.10 0.29 7 68 20.07 0.29

LD-HV 0.65 3 32 10.45 0.31 4 24 8.81 0.23 4 24 8.75 0.23
0.75 4 33 11.79 0.30 5 36 10.18 0.25 5 29 10.08 0.25
0.85 4 36 13.45 0.30 5 36 12.13 0.24 5 42 12.11 0.25
0.95 5 45 15.75 0.28 6 40 14.40 0.25 6 43 14.35 0.26

Note. DINO = deterministic input, noisy “or” gate; PWKL = posterior-weighted Kullback-Leibler index; MPWKL =
modified PWKL index; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA = deterministic
inputs, noisy “and” gate; CV = coefficient of variation; HD-LV = high discrimination-low variance; HD-HV = high
discrimination-high variance; LD-LV = low discrimination-low variance; LD-HV = low discrimination-high variance.

substantially shorter compared with the test lengths of the PWKL. This was true

regardless of the minimax value and item quality. The largest mean test length

differences occurred when LD-LV items were involved − these differences were greater

than 2.0 and 1.8 for the DINA and DINO models, respectively. However, when the

A-CDM was used, all the three indices performed similarly except in the HD-HV and

0.85 minimax value condition, where the PWKL had a slightly longer test length

compared with the MPWKL and GDI.

It can also be noted that, as expected, increasing the minimax value resulted in

longer test lengths regardless of the item selection index, item quality, and generating

model. The change in the mean test length as a result of increasing the minimax value

from 0.65 to 0.95 was substantial for all of the conditions except for one − there was

only a slight change when the MPWKL and the GDI were used with HD-HV items. In

addition, as in the fixed-test length, the item quality had an impact on the efficiency

of the indices: Using items with higher discrimination or higher variance resulted

in shorter tests. Consequently, HD-HV and LD-LV items had the shortest and the
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Table 2.7: Descriptive Statistics of Test Lengths using the A-CDM

Item PWKL MPWKL GDI
Quality π(αc|Xi) Min Max Mean CV Min Max Mean CV Min Max Mean CV
HD-LV 0.65 6 13 6.99 0.10 6 13 6.92 0.08 6 12 6.93 0.08

0.75 6 14 7.86 0.14 7 14 7.75 0.12 7 15 7.76 0.12
0.85 9 18 9.98 0.14 9 19 9.74 0.13 9 20 9.79 0.13
0.95 11 25 12.84 0.16 11 26 12.82 0.15 11 26 12.84 0.15

HD-HV 0.65 6 10 6.83 0.08 6 7 6.75 0.06 6 7 6.70 0.07
0.75 6 14 7.18 0.12 6 8 6.83 0.06 6 8 6.80 0.06
0.85 6 17 7.87 0.15 6 11 7.18 0.07 6 11 7.04 0.06
0.95 6 17 8.71 0.16 6 15 8.79 0.09 7 16 8.79 0.10

LD-LV 0.65 10 32 12.67 0.21 10 30 12.65 0.22 10 29 12.62 0.22
0.75 11 33 14.66 0.23 11 34 14.67 0.23 11 34 14.64 0.23
0.85 12 50 17.80 0.24 12 49 17.84 0.24 12 52 17.82 0.24
0.95 16 59 24.41 0.23 16 74 24.39 0.23 16 74 24.37 0.23

LD-HV 0.65 8 22 9.04 0.17 8 21 9.04 0.17 8 18 9.03 0.17
0.75 9 26 11.25 0.19 9 24 11.30 0.19 9 24 11.26 0.19
0.85 11 27 13.29 0.19 11 32 13.20 0.18 11 29 13.20 0.18
0.95 13 39 17.43 0.20 13 38 17.49 0.19 13 41 17.48 0.20

Note. A-CDM = additive CDM; CDM = cognitive diagnosis model; PWKL = posterior-weighted Kullback-Leibler index;
MPWKL = modified PWKL index; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA =
deterministic inputs, noisy “and” gate; CV = coefficient of variation; HD-LV = high discrimination-low variance; HD-
HV = high discrimination-high variance; LD-LV = low discrimination-low variance; LD-HV = low discrimination-high
variance.

longest tests, respectively. In this study, using the minimax value of 0.95, GDI, and

DINA model, HD-HV items resulted in tests with a mean of 7.22; in contrast, for

LD-LV items, this mean was 19.46. Finally, generating model can have an impact on

the mean test lengths, but this moderated by the choice of the item selection index

− with the GDI, the DINA or DINO models consistently required shorter tests than

the A-CDM, but this pattern was not as obvious with the other two indices.

Other findings can be gleaned from Tables 2.5, 2.6, and 2.7. First, the minimum

test lengths of the three indices were similar for most of the conditions. Second,

increasing the minimax of the posterior distribution generally resulted in higher min-

imum and maximum test lengths, especially at the two extreme minimax values.

However, using HD-HV items with the DINA model, the minimum values remained

the same for the three indices. Third, the item quality had an impact on the minimum,

maximum, and CV of the test lengths: HD-HV items provided the smallest minimum,

maximum, and CV values, whereas LD-LV items provided the largest statistics for
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all of the indices. Finally, using the A-CDM, the indices had the smallest maximum

and CV values; however, they had the highest minimum test lengths compared to the

DINA and DINO models.

The mean test lengths for each attribute vector were calculated, and the results

using HD-HV and LD-LV items, and 0.65 as the minimax value are shown in Fig-

ure 2.2. For the DINA model, the PWKL required longer tests, on the average, for

the attribute vectors α0, α1, and α2 compared to the MPWKL and GDI; however,

these two indices required longer tests for α5. In contrast, the MPWKL and GDI

required longer tests for α0, and the PWKL required longer tests for α2, α3, α4,

and α5 with the DINO as the generating model. Using the A-CDM, the mean test

lengths were similar for each attribute vector.

Figure 2.2: Mean Test Lengths for 6 Selected Attribute Vectors, π(αc|Xi) = 0.65
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Note: Blue, red, and green represent the PWKL, MPWKL, and GDI, respectively. PWKL =
posterior-weighted Kullback-Leibler index; MPWKL = modified PWKL index; GDI = G-DINA
model discrimination index; G-DINA = generalized DINA; DINA = deterministic inputs, noisy
“and” gate; DINO = deterministic input, noisy “or” gate; A-CDM = additive CDM; CDM =
cognitive diagnosis model; HD-HV = high discrimination-high variance; LD-LV = low
discrimination-low variance.
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2.2.2.3 Item Usage

To gain a better understanding of how different models utilize the items in the

pool, the overall item usage in terms of the number of required attributes was recorded

for each condition. Only the results for the fixed-test lengths with HD-HV and LD-LV

items are shown in Table 2.8.

For the DINA and DINO models, items that required one, two, and three at-

tributes were generally used more often compared to those which required four and

five attributes regardless of the item selection index and item quality. The PWKL

mostly used two-attribute items for the same models except in one condition where a

10-item test with LD-LV items and the DINA were used. The MPWKL and GDI had

a similar pattern of item usage (i.e., one-attribute items were mostly used for 10- and

20-item tests with LD-LV items) across different test lengths and item qualities for

the DINA except in one condition where a 10-item test with HD-HV items was used.

However, for the A-CDM, one-attribute items were mostly used with a proportion of

at least 0.92 regardless of the item selection index and item quality.

Table 2.8: The Proportion of Overall Item Usage

PWKL MPWKL GDI
True Item Number of Required Attributes

Model Quality J 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
DINA HD-HV 10 0.25 0.45 0.23 0.06 0.01 0.38 0.27 0.31 0.02 0.01 0.34 0.34 0.28 0.03 0.01

20 0.25 0.48 0.22 0.04 0.01 0.27 0.39 0.30 0.03 0.01 0.27 0.37 0.29 0.05 0.02
40 0.28 0.49 0.18 0.04 0.01 0.24 0.44 0.27 0.05 0.01 0.24 0.39 0.30 0.05 0.01

LD-LV 10 0.26 0.30 0.34 0.08 0.02 0.50 0.30 0.16 0.03 0.01 0.52 0.29 0.15 0.03 0.01
20 0.29 0.34 0.28 0.07 0.02 0.37 0.35 0.23 0.04 0.01 0.38 0.34 0.22 0.05 0.01
40 0.25 0.34 0.31 0.08 0.02 0.27 0.35 0.30 0.07 0.02 0.28 0.35 0.29 0.07 0.02

DINO HD-HV 10 0.26 0.44 0.23 0.07 0.01 0.30 0.38 0.27 0.04 0.01 0.36 0.28 0.30 0.05 0.01
20 0.25 0.44 0.24 0.06 0.01 0.28 0.40 0.26 0.06 0.01 0.23 0.41 0.26 0.08 0.02
40 0.24 0.46 0.24 0.05 0.01 0.21 0.49 0.23 0.06 0.01 0.22 0.41 0.29 0.07 0.01

LD-LV 10 0.23 0.32 0.32 0.11 0.02 0.46 0.32 0.17 0.04 0.01 0.49 0.30 0.16 0.04 0.01
20 0.27 0.33 0.29 0.09 0.02 0.35 0.36 0.22 0.05 0.01 0.37 0.34 0.22 0.05 0.01
40 0.22 0.36 0.30 0.10 0.02 0.26 0.37 0.27 0.08 0.02 0.26 0.37 0.27 0.08 0.02

A-CDM HD-HV 10 0.92 0.03 0.03 0.02 0.00 0.92 0.03 0.03 0.02 0.00 0.92 0.03 0.03 0.02 0.00
20 0.95 0.02 0.02 0.01 0.00 0.96 0.02 0.02 0.01 0.00 0.96 0.02 0.02 0.01 0.00
40 0.93 0.06 0.01 0.00 0.00 0.96 0.03 0.01 0.00 0.00 0.98 0.01 0.01 0.00 0.00

LD-LV 10 0.92 0.03 0.03 0.02 0.00 0.92 0.03 0.03 0.02 0.00 0.92 0.03 0.03 0.02 0.00
20 0.96 0.02 0.02 0.01 0.00 0.96 0.02 0.02 0.01 0.00 0.96 0.02 0.02 0.01 0.00
40 0.98 0.01 0.01 0.00 0.00 0.98 0.01 0.01 0.00 0.00 0.98 0.01 0.01 0.00 0.00

Note. PWKL = posterior-weighted Kullback-Leibler index; MPWKL = modified PWKL index; GDI = G-DINA model discrimination index;
G-DINA = generalized DINA; DINA = deterministic inputs, noisy “and” gate; J = test length; DINO = deterministic input, noisy “or” gate;
A-CDM = additive CDM; CDM = cognitive diagnosis model; HD-LV = high discrimination-low variance; HD-HV = high discrimination-high
variance; LD-LV = low discrimination-low variance; LD-HV = low discrimination-high variance.
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To get a deeper understanding of the differences in item usage among the models,

the items were grouped based on their required attributes. To accomplish this, an

additional simulation study was carried out using the same factors except for one:

item quality. For this study, the lowest and highest success probabilities were fixed

across all of the items, specifically, P (0) = 0.1 and P (1) = 0.9. This design aimed to

eliminate the effect of the item quality on item usage. Due to the space constraint,

only the results for the GDI, 20-item test, and α3 are shown in Figure 2.3. Overall,

the DINA model showed the following pattern of item usage: It uses items that

required the same attributes as the examinee’s true attribute mastery vector, and

items that required single attributes which were not mastered by the examinee. For

α3, the DINA model used the items that required (1,1,1,0,0), and items that required

either (0,0,0,1,0) or (0,0,0,0,1). In contrast, the DINO showed a different pattern of

item usage: It uses items that required the same attributes as the examinee’s true

nonmastery vector, and items that required single attributes which were mastered by

the examinee. Again for α3, the DINO model used items that required (0,0,0,1,1),

and items that required (1,0,0,0,0), (0,1,0,0,0), and (0,0,1,0,0). The A-CDM used

items that required single attributes regardless of the true attribute vector. The

same pattern was observed for the other attribute vectors.

To further investigate how the models converged into those patterns of item usage,

the test administrations were divided into periods each comparing of five items. The

item usage was recorded in each period. Only the results for the GDI, 20-item test,

and α3 are shown (refer to Figure 2.4). In the first period, which includes the first five

items, one-attribute items were used mostly regardless of the generating model and

examinees’ true attribute vector. In the second, third, and fourth periods (items from

6 to 10, 11 to 15, and 16 to 20, respectively), the most common item types gradually

became more similar to the previous patterns of item usage for the DINA and DINO

models. However, the A-CDM favored one-attribute item at the rate of almost 1.00
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in each period. Again, the same pattern was observed for the other attribute vectors

in this study.

2.2.2.4 Average Time

The average item administration time per examinee was recorded separately for

each index. The CAT administration code was written in Ox (Doornik, 2011), and

run on a computer with processor of 2.5 GHz. Only the average times in milliseconds

using 10 HD-LV items and the DINA model are shown in Table 2.9. The table

shows that the MPWKL was the slowest, and the GDI was the fastest index in terms

of the administration time: the PWKL, MPWKL, and GDI took 6.49, 20.25, and

4.59 milliseconds, respectively. In other words, the GDI was 4.41 faster than the

MPWKL, and 1.41 faster than the PWKL. As mentioned earlier, the GDI works

with the reduced attribute vectors, and involves fewer terms compared to the PWKL

and MWPKL. The dimensions in the PWKL and MPWKL grow exponentially as the

number of attribute K increases. However, the GDI does not have the same problem

as long as the number of required attributes K∗j remains small. The advantage of

the GDI can be expected to be more apparent with the A-CDM because mostly

one-attribute items are picked by the different indices.

Table 2.9: Average Test Administration Time per Examinee (J = 10, HD-LV, and
DINA)

PWKL MPWKL GDI
Time 6.49 20.25 4.59
Ratio (Relative to GDI) 1.41 4.41 –

Note. HD-LV = high discrimination-low variance; DINA = deterministic inputs, noisy “and” gate;
PWKL = posterior-weighted Kullback-Leibler index; MPWKL = modified PWKL index; GDI =
G-DINA model discrimination index; G-DINA = generalized DINA.
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2.3 Discussion and Conclusion

Compared with traditional unidimensional IRT models, CDMs provide more infor-

mation that can be used to inform instruction and learning. These models can reveal

examinees’ strengths and weaknesses by diagnosing whether they have mastered a

specific set of attributes. CAT is a tool that can be used to create tests tailored for

different examinees. This allows for a more efficient determination of what students

know and do not know. In this article, two new item selection indices, the MPWKL

and the GDI, were introduced, and their efficiency was compared with the PWKL. In

addition, a more efficient simulation design was proposed in this study. This design

can allow for results to be generalized to different distributions of attribute vectors,

despite involving a smaller sample size. Based on the factors manipulated in the sim-

ulation study, the two new indices performed similarly, and they both outperformed

the PWKL in terms of classification accuracy and test length. The study also showed

that items with HD or HV provided better classification rates or shorter test lengths.

Moreover, generating models can have an impact on the efficiency of the indices: For

the DINA and DINO models, the results were more distinguishable; however, the

efficiency of the indices was essentially the same for the A-CDM, except in a few

conditions.

Although this study showed that the proposed indices, particularly the GDI, are

promising, more research needs to be done to determine their viability. First, some

constraints on the design of the Q-matrix and the size of the item pool need to be

investigated. The Q-matrix in this study involved all the possible q-vectors. However,

in practice, this may not be the case, particularly, when the CDMs are retrofitted to

existing data. Therefore, it would be important to examinee how the indices perform

when only a subset of the q-vectors exists in the pool. The current study uses a large

item pool, which may not be always possible in real testing situations. Considering
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smaller item pools, with or without constraints on the Q-matrix specifications, can

lead to a better understanding of how the proposed indices perform under more varied

conditions.

Second, although diagnostic assessments are primarily designed for low-stakes

testing situations, their use for high-stakes decisions cannot be totally precluded.

Because test security is a critical issue in high-stakes testing situations, item exposure

in CD-CAT needs also to be controlled. At present, there are procedures for item

exposure control in the context of CD-CAT. For example, Wang, Chang, and Huebner

(2011) proposed item exposure control methods for fixed-test lengths in CD-CAT.

However, the performance of these methods with the proposed indices has yet to be

investigated. In addition, controlling the exposure of the items with the MPWKL

and the GDI can also be examined when different termination rules are involved.

Third, each data set was generated using a single CDM in this study. However,

as with previous indices, the MPWKL and the GDI are sufficiently general that it

can simultaneously be applied to any CDMs subsumed by the G-DINA model. As

such, it would be interesting to examine how the new indices will perform when

the item pool is made up of various CDMs, which reflects what can be expected in

practice − different items might require different processes (i.e., CDMs). Finally, to

keep the scope of this work manageable, a few simplifications about factors affecting

the performance of CD-CAT indices were made. These include fixing the number of

attributes, using a single method in estimating the attribute vectors, and assuming

that the item parameters were known. To obtain more generalizable conclusions,

future research should consider varying these factors.



34

Figure 2.3: Overall Proportion of Item Usage for α3, GDI, and J = 20

!

!

!
Note: GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA =
deterministic inputs, noisy “and” gate; J = test length; DINO = deterministic input, noisy “or”
gate; A-CDM = additive CDM; CDM = cognitive diagnosis model.
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Chapter 3

Study II: Item Exposure Control for CD-CAT

Abstract

This article examines the use of two item exposure control methods, namely, the

restrictive progressive and restrictive threshold, in conjunction with the generalized

deterministic inputs, noisy “and” gate model discrimination index (GDI) as item

selection methods in cognitive diagnosis computerized adaptive testing. The efficiency

of the methods is compared with the GDI using a simulation study. The impact

of different factors, namely, item quality, generating model, attribute distribution,

item pool size, sample size, and prespecified desired exposure rate, on classification

accuracy and item exposure rates is also investigated. The results show that the GDI

performed efficiently with the exposure control methods in terms of classification

accuracy and item exposure. In addition, the impact of the factors on item exposure

rates vary based on the methods.

Keywords: cognitive diagnosis model, computerized adaptive testing, item exposure

control

3.1 Introduction

Although computerized adaptive testing (CAT) has become a popular tool in edu-

cational and psychological testing, several researchers noted that it has been criticized
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for security and item bank usage problems for several years. Security problems are re-

lated to overuse of items (i.e., overexposed items; Chen, Ankenmann, & Spray, 2003),

and item bank usage problems are related to the use of rarely selected items (i.e.,

underexposed items; Barrada, Veldkamp, & Olea, 2009). For example, in security

problems, test-takers can memorize the items and distribute them publicly (H.-H.

Chang, 2004). Moreover, because item selection methods tend to select items that

provide the most information about ability level, the indices choose some items (e.g.,

high-discriminating items) more often than others (e.g., low-discriminating items).

Thus, overuse of items can lead to information sharing among the examinees, and

can result in items being answered correctly regardless of the examinees’ ability lev-

els (Lee, Ip, & Fuh, 2007). Also, the reliability and the validity of the test become

questionable. Therefore, high item exposure rates must be controlled to lessen the

impact of item sharing.

Item exposure rates can be affected by the psychometric properties of the items,

the items available in the item pool, and the ability distribution of the examinees

(Revuelta & Ponsoda, 1998). Two points should be considered when item expo-

sure is controlled: preventing overexposure of some items and increasing the use of

rarely selected items. A series of studies proposed methods for item exposure control

in traditional CAT. Sympson and Hetter (1985) proposed an iterative procedure for

controlling item exposure. In that study, an item exposure parameter, the probability

of administering an item that had already been selected, was assigned to each item.

If the parameter of a particular item was as low as the prespecified desired exposure

rate, the item could not be administered when it was selected. However, the main

drawbacks of this method involved time-consuming iterations in calculating item ex-

posure parameters and not being able to maintain the exposure rates of all items at

or below the prespecified desired exposure rate (Barrada, Abad, & Veldkamp, 2009).

Later, Davey and Parshall (1995) proposed a method that aimed to minimize a
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set of items that appear together. Again, an exposure parameter was assigned to

each item, but the parameter was conditioned on the administered items for a partic-

ular examinee. In a set of studies, Stocking and Lewis (1995a, 1995b) proposed two

methods for controlling item exposure. The two methods, the unconditional multino-

mial and the conditional multinomial procedures, modified the method proposed by

Sympson and Hetter and employed a multinomial model for selecting items instead

of using optimal selection. S.-W. Chang and Twu (1998) conducted a study to com-

pare these item exposure control methods. The researchers found that the Sympson

and Hetter and the Stocking and Lewis unconditional methods yielded very similar

results under all conditions. In addition, the Stocking and Lewis conditional method

produced better results for the exposure rates; however, it also produced the highest

measurement error.

The other item exposure control methods can be grouped as stratified methods.

H.-H. Chang and Ying (1996) noted that selecting items based on information might

be less efficient at the early stages of CAT because of the poor interim ability esti-

mation. Moreover, item selection based on information could lead to highly skewed

item usage. For example, selecting items based on the maximum Fisher information

at the early stages of CAT resulted in the overuse of items with high discrimination

parameters (H.-H. Chang & Ying, 1999); however, those items might not discriminate

test takers well especially when the estimated ability level was not stable. To handle

this issue, H.-H. Chang and Ying (1999) proposed a multistage adaptive testing ap-

proach, namely, the α-stratified strategy, for item exposure control in which the item

bank was first divided into parts (i.e., strata) based on the discrimination parame-

ter. Then, at the early stages of the test, items were selected from a stratum that

had items with low discrimination. As the test progressed and the ability estimate

became more stable, items with high discrimination were selected according to an

optimization criterion (Georgiadou, Triantafillou, & Economides, 2007).
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However, one issue with the α-stratified approach occurred when the discrimina-

tion parameters were highly correlated with the difficulty parameters. To solve that

problem, H.-H. Chang, Qian, and Ying (2001) proposed another method, namely, the

α-stratified strategy with b-blocking. In this method, the item bank was first divided

into blocks based on the difficulty parameters in ascending order, and then each block

was divided into strata based on the discrimination parameters. In this method, the

discrimination parameters were distributed more evenly within each stratum, and the

average discrimination increased across the strata (Georgiadou et al., 2007). However,

these stratification methods did not control individual item exposure rates, and thus,

some items might exceed the prespecified desired exposure rate unless other item ex-

posure control methods (e.g., the Sympson-Hetter method) are implemented with the

item selection method (Deng, Ansley, & H.-H. Chang, 2010). Different versions of the

stratification methods (e.g., α-stratified strategy with content blocking, α-stratified

with unequal item exposure across strata, multidimensional stratification) have been

proposed in the literature, and a comprehensive literature review can be found in

Georgiadou et al. (2007).

There are, however, some drawbacks with the stratified methods (Han, 2012).

First, item stratification can cause a problem in limiting the number of available items

in each stratum, and can result in the overuse of certain items. Second, the impact

of the guessing parameter is generally ignored in those methods, and it can threaten

the quality of the test administration, especially if this parameter is correlated with

the difficulty and discrimination parameters (Barrada, Mazuela, & Olea, 2006). Last,

the stratification methods are not effective when variable-test lengths are used (Han,

2012; Wen, H. Chang, & Hau, 2000).

In another study, Revuelta and Ponsoda (1998) proposed an item exposure control

method, the restricted method, in which none of the items was allowed to be exposed

for more than a prespecified desired exposure rate. This method simply assigns either
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zero or one as an item exposure parameter for each item. This parameter is zero if the

exposure rate of an item is greater than or equal to the prespecified desired exposure

rate; otherwise, it is one (Barrada, Abad, & Veldkamp, 2009).

Another method, the progressive method, based on the maximum information

was originally proposed by Revuelta (1995), and Revuelta and Ponsoda (1996). The

method has two components, item information and random components. Revuelta

and Ponsoda (1998) defined the method as follows: Let x be the number of adminis-

tered items, and L be the number of total items in the test. Also, define a random

value (Hj) between zero and the highest information value to be drawn from uniform

distribution. A weight is computed considering a linear combination of random and

information components as

ωj =
(

1− x

L

)
Hj +

x

L
Ij, (3.1)

where Ij is the information for item j. The impact of the random component on the

item selection index is reduced, and the importance of the information increases as

the test progresses.

Later, Barrada, Olea, Ponsoda, and Abad (2008) proposed two functions that

can be applied to various item exposure control methods, including the progressive

method. Those functions aimed to control the speed of the move from random selec-

tion to selection based on information by acceleration parameters. In other words,

item selection can be mainly random at the beginning of the test, and then gradually

the information part becomes more important as the test progresses. Moreover, the

speed of this switch can be controlled by the functions. The researchers found that

the modified methods were efficient for improving the item exposure control methods

with very small losses in measurement accuracy. The idea of random selection at

the beginning of the test has also been supported by other studies that noted the
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random selection of items at the beginning of the test caused a very small decrease

in the measurement accuracy (Barrada et al., 2008; Li & Schafer, 2005; Revuelta &

Ponsoda, 1998).

Wang, Chang, and Huebner (2011) proposed a modification in which a stochastic

component was added to the item selection criterion in the progressive method. In

doing so, the item selection indices did not always pick the items with the most

information. The restrictive progressive (RP) method using an information index is

given by

RP -Ij =
(

1− expj
r

)[(
1− x

L

)
Rj +

Ijβx

L

]
, (3.2)

where expj is the preliminary exposure rate, r is the prespecified desired exposure rate,

x is the number of items administered, L is the test length, Rj ∼ Uniform(0, H∗)

in which H∗ = max(Ij) for the remaining items in the item pool, β > 0 is a weight

that will be described later, and Ij is the information index. As the items in the pool

are administered, the role of the information part increases, whereas the role of the

stochastic component, 1 − x/L, decreases. The β value is an arbitrary number to

give priority to test security or estimation accuracy. Small β values provide better

test security, whereas high values result in better estimation accuracy. A restriction

value r was also added to the model to control the maximum exposure rate. In their

simulation study, the RP method was successful in controlling high exposure rates.

In addition, Wang et al. (2011) proposed the restrictive threshold (RT) method,

which also has two components, restrictive and threshold components. The threshold

component creates a set of items whose information is close to the largest information.

Specifically, the interval for the threshold component is defined as

[max(Ij)− δ,max(Ij)] , (3.3)
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where δ specifies the length of the interval, and it is defined as

δ = [max(Ij)−min(Ij)]× f(x), (3.4)

where x is the number of items administered on the test, and f(x) is a monotone de-

creasing function. In this study, this function is defined as f(x) = (1− x/L)β where

β balances test security and estimation accuracy. The RT method was applied deter-

ministically such that when an item’s exposure rate reached the prespecified desired

exposure rate, the item was removed from the item pool for the next examinees. In

this article, the RP and RT methods were used with an item selection index to control

the item exposure rates.

3.1.1 Cognitive Diagnosis Models

In cognitive diagnosis, a binary attribute vector typically represents the presence

or absence of the specific skills or attributes in a particular content area. To achieve

this, let αi={αik} be the attribute vector of examinee i, where i = 1, 2, . . . , N ex-

aminees, and k = 1, 2, . . . , K attributes. The kth element of the vector is 1 when

the examinee has mastered the kth attribute, and it is 0 when the examinee has not.

Similarly, the responses of the examinees to J items are represented by a binary vec-

tor, Xi = {xij}, where xij is the ith examinee’s binary response for the jth item, and

j = 1, 2, . . . , J . A Q-matrix (Tatsuoka, 1983), which is a J×K matrix, represents the

required attributes for an item and the element of the jth row and the kth column,

qjk, is 1 if the kth attribute is required to answer the jth item correctly, and it is 0

otherwise.

To date, several constrained and general CDMs have been proposed in the lit-

erature. On one hand, the constrained models require specific assumptions about

the relationship between attribute vector and task performance (Junker & Sijtsma,
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2001). Nonetheless, they provide results that can easily be interpreted. On the other

hand, the general models relax some of the strong assumptions in the constrained

models, and provide more flexible parameterizations. However, general models are

more difficult to interpret compared to the constrained models because they involve

more complex parametrizations. One of the general models was proposed by de la

Torre (2011), and it is called the generalized deterministic inputs, noisy “and” gate

(G-DINA) model. A few of commonly encountered constrained CDMs can be sub-

sumed by the G-DINA model. These are the deterministic inputs, noisy “and” gate

(DINA; de la Torre, 2009; Haertel, 1989; Junker & Sijtsma, 2001) model, which as-

sumes that lacking at least one of the required attributes is as the same as lacking all

of the required attributes; the deterministic input, noisy “or” gate (DINO; Templin

& Henson, 2006) model, which assumes that having at least one of the required at-

tributes is as the same as having all of the required attributes; and the additive CDM

(A-CDM; de la Torre, 2011), which assumes that the impacts of mastering the differ-

ent required attributes are independent of each other. In Wang et al. (2011) paper,

they examined the Fusion model (Hartz, 2002; Hartz, Roussos, & Stout, 2002) with

the RP and RT methods; in this article, three constrained models, namely, DINA,

DINO, and A-CDM, were used in the data generation, but the CAT administration

was carried out under the G-DINA model context.

3.1.2 Computerized Adaptive Testing

CAT has become a popular tool in educational testing over the past few decades.

It has been developed as an alternative to paper-and-pencil tests, and offers faster

scoring and more flexible testing schedules for individuals. In addition, CAT provides

shorter test-lengths and enhanced measurement precision compared to paper-and-

pencil tests (Meijer & Nering, 1999). The components of CAT can be listed as

calibrated item pool, starting point, item selection method, scoring procedure, and
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stopping rule for the test administration (Weiss & Kingsbury, 1984). In this article,

we focused on the item exposure rates that used in conjunction with efficient item

selection methods.

Item selection methods based on the Fisher information are widely used in tra-

ditional CAT (Lord, 1980; Thissen & Mislevy, 2000). However, those methods are

not applicable in cognitive diagnosis computerized adaptive testing (CD-CAT) be-

cause they generally work with only continuous ability levels, whereas the equivalent

latent variables in cognitive diagnosis are discrete. Alternatively, the item selection

methods based on the Kullback-Leibler (K-L) information can be used in CD-CAT.

Xu, Chang, and Douglas (2003) first noted the issue and proposed two item selection

indices based on the Kullback-Leibler (K-L) information and Shannon entropy pro-

cedure in CD-CAT, and the results showed that both indices outperformed random

selection in terms of attribute classification. Later, Cheng (2009) proposed two item

selection indices, namely, the posterior-weighted K-L index (PWKL) and hybrid K-L

index (HKL), for CD-CAT. The calculation of the PWKL involves summing the dis-

tances between the current estimate of the attribute vector and the other possible

attribute vectors weighted by the posterior distribution of attribute vectors. The

results of her simulation study showed that the new indices performed similarly, and

had higher classification rates compared to the K-L and Shannon entropy procedure.

In another study, Kaplan, de la Torre, and Barrada (2015) proposed two new item

selection indices for CD-CAT. One of them is based on the G-DINA model discrimina-

tion index (GDI), and the other one is based on the PWKL, which is called modified

PWKL. The results showed that the two new indices performed very similarly and

higher attribute classification rates compared to the PWKL. In addition, the GDI

had the shortest administration time. In this article, the GDI was used as an item

selection index with the two item exposure control methods, namely, RP and RT

methods.
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The GDI was originally proposed as an index to implement an empirical Q-matrix

validation procedure (de la Torre & Chiu, 2015). It measures the (weighted) variance

of the probabilities of success of an item given a particular attribute distribution.

Later, Kaplan et al. (2015) used the index as an item selection method, and their

results showed that the index was promising in CD-CAT. To give a definition of the

index, let the first K∗j attributes be required for item j, and define α∗cj as the reduced

attribute vector consisting of the first K∗j attributes, for c = 1, . . . , 2K
∗
j . For example,

if a q-vector is defined as (1,1,0,0,1) for K∗j = 3 number of required attributes, the

reduced attribute vector is (a1,a2,a5). Also, define P (Xij = 1|α∗cj) as the success

probability on item j given α∗cj. The GDI for item j is defined as

ς2j =
2
K∗

j∑
c=1

π
(t)
i (α∗cj)[P (Xij = 1|α∗cj)− P̄j]2, (3.5)

where π
(t)
i (α∗cj) is the posterior probability of the reduced attribute vector and P̄j =∑2

K∗
j

c=1 π(α∗cj)P (Xij = 1|α∗cj) is the mean success probability.

3.2 Simulation Study

The goal of this study is to investigate the efficiency of the GDI in conjunction

with the RP and RT methods in terms of the item exposure rate and estimation

accuracy, and also simultaneously reduce the use of overexposed items and/or increase

the use of underexposed items. The design of the simulation study consisted of

investigating the impact of different factors. These factors included two levels of

item quality, three reduced CDMs, two attribute distributions, two sample sizes for

the data generation, and two test lengths for the test termination rule. In addition,

two item pool sizes, three item selection indices, including two different prespecified

desired exposure rates, rmax values, and three different β values were used for the
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item exposure control methods in the CAT administration.

3.2.1 Design

3.2.1.1 Data Generation

In the data generation, the impact of the item quality and generating model was

considered. First, because recent research has shown item quality affects the accuracy

of the attribute classification (e.g., de la Torre, Hong, & Deng, 2010; Kaplan et al.,

2015), different item discriminations and variances were used to generate the data.

Two levels of item quality, namely, low-quality (LQ) and high-quality (HQ), were con-

sidered. However, it should be noted that these two terms were used exclusively for

this study, and in other studies, they have been defined differently. For the purposes

of this study, HQ and LQ can also be viewed as more discriminating and less dis-

criminating, respectively. For LQ items, the lowest and highest success probabilities

(i.e., P (0) and P (1)) were generated from uniform distributions, U(0.15, 0.25) and

U(0.75, 0.85), respectively; and for HQ items, P (0) and P (1) were generated from

uniform distributions, U(0.00, 0.20) and U(0.80, 1.00), respectively. Second, item re-

sponses were generated using three reduced models: DINA model, DINO model, and

A-CDM. For the DINA and DINO models, the probabilities of success were set as

discussed above. In addition to these probabilities, the intermediate success probabil-

ities were obtained by allowing each of the required attributes to contribute equally

in the A-CDM. The number of attributes was fixed at K=5.

Third, the impact of attribute distribution on the efficiency of the indices was also

investigated. Using different attribute distributions allows greater generalizability of

the findings from the study. Two different distributions, uniform and higher-order

(HO) distributions, were used to generate the examinees’ attribute vectors. In the

former, the examinee attribute vectors were drawn from 2K possible attribute vectors
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uniformly, whereas in the latter, the attribute vectors were drawn considering a HO

latent trait. HO latent traits were introduced for cognitive diagnosis by de la Torre

and Douglas (2004). In their study, a method for modeling the joint distribution of

the attribute vectors based on HO specification was proposed. By positing an HO

variable θ, the difficulty of mastering a specific set of attributes can be parameterized.

The probability of α conditional on θ can be written as

p(α|θ) =
K∏
k=1

p(αk|θ). (3.6)

The particular model considered in the current paper expresses the logit in 3.6 as a

linear function of θ, as in:

p(αk|θ) =
exp(λ0k + λ1kθ)

1 + exp(λ0k + λ1kθ)
,

where λ0k is the difficulty parameter, λ1k is the discrimination parameter, and θ is

a latent continuous variable to account for the associations among the attributes.

In this study, the HO parameters, difficulty and discrimination, were fixed to λ0k =

{−2,−1, 0, 1, 2} and λ1 = 1 across all conditions, respectively. The HO latent trait θ

was drawn from a standard normal distribution. Last, the impact of the sample size

on the efficiency of the indices was investigated. Two sample sizes were considered,

N=500 and 1000.

3.2.1.2 Item Pool and Item Selection Methods

The impact of item pool size on the item exposure rates was investigated in this

study. The Q-matrix was created from 2K − 1 = 31 possible q-vectors for two sizes:

each with 20 and 40 items, resulting in 620 and 1240 items in the pool, respectively.

For the test termination rule, two fixed-test lengths, 10 and 20, were considered.

Two prespecified desired exposure rates, rmax of .1 and .2, were used. Three β
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values in the RP and RT methods were considered to balance the exposure rate

and the classification rates: β=0.5, 1.0, and 2.0. Three item selection indices were

considered: the GDI, RP-GDI, and RT-GDI. For greater comparability, the first item

was chosen randomly from the pool for each examinee, and this item was fixed across

the indices. In addition, ten replications were performed for the RP-GDI to get more

stable results.

To compare the efficiency of the indices in terms of the estimation accuracy, the

correct attribute classification (CAC) rates and the correct attribute vector classifi-

cation (CVC) rates were calculated. The CAC and CVC rates were computed as

CAC =
1

N

N∑
i=1

5∑
k=1

I[αik = α̂ik], and

CV C =
1

N

N∑
i=1

5∏
k=1

I[αik = α̂ik],

(3.7)

where I is the indicator function. Different statistics (e.g., chi-square statistic and

overlap rates) have been proposed to evaluate the item exposure rates associated with

different indices. In this study, a chi-square statistic (H.-H. Chang & Ying, 1999) and

the maximum of the item exposure rates for each condition were calculated. The

statistic was calculated as

χ2 =
J∑
i=1

(ri − r̄)2/r̄, (3.8)

where rj is the exposure rate for item j, and r̄ is the overall mean exposure rate for the

entire test. Smaller values indicate more even exposure rates. These statistics were

calculated before and after the exposure rates were controlled to investigate which of

the methods works better with the GDI in terms of the estimation accuracy and the

item exposure rate.
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3.2.2 Results

Due to space limitation, only partial results (see Table 3.1) are given; however,

the results in their entirety can be requested from the first author. Several results can

be noted. First, as expected, the CAC rates were higher than the CVC rates, but the

measures showed similar patterns for all conditions. In addition, the GDI resulted

in the highest, the RP-GDI had the second highest, and the RT-GDI had the lowest

CAC and CVC rates across all conditions. Last, the GDI yielded the highest, the

RT-GDI yielded the second highest, and the RP-GDI yielded the lowest maximum

and chi-square value of the item exposure rates for all conditions. Only the CVC rates

for the classification accuracy and only the chi-square values for the item exposure

rate were discussed in the following sections. In addition, the impact of the factors

on the attribute classification and item exposure rates were discussed in detail.

Table 3.1: The CVC rates, and the Maximum and the Chi-Square Values of Item
Exposure Rates Using the DINA, 10-Item Test, β = 0.5, and rmax = 0.1

GDI RP-GDI RT-GDI
IQ J N AD CVC Max χ2 CVC Max χ2 CVC Max χ2

LQ 620 500 U 0.55 0.95 269.88 0.44 0.03 1.04 0.40 0.10 8.02
HO 0.61 0.91 251.58 0.44 0.03 1.05 0.45 0.10 7.29

1000 U 0.56 0.96 265.60 0.43 0.03 0.93 0.40 0.10 7.48
HO 0.58 0.90 255.09 0.44 0.03 0.95 0.43 0.10 6.69

1240 500 U 0.55 0.96 608.93 0.47 0.02 2.83 0.40 0.10 13.12
HO 0.61 0.94 571.14 0.49 0.03 2.94 0.43 0.10 13.54

1000 U 0.60 0.95 590.22 0.47 0.02 2.70 0.43 0.10 11.19
HO 0.61 0.95 560.46 0.48 0.03 2.72 0.47 0.10 11.99

HQ 620 500 U 0.87 0.93 251.03 0.74 0.03 0.77 0.68 0.10 7.46
HO 0.92 0.86 235.40 0.72 0.03 0.96 0.71 0.10 6.85

1000 U 0.87 0.93 251.87 0.76 0.03 0.64 0.74 0.10 6.50
HO 0.90 0.84 230.22 0.72 0.03 0.89 0.73 0.10 6.59

1240 500 U 0.86 0.94 523.39 0.78 0.02 1.96 0.71 0.10 12.63
HO 0.87 0.92 494.70 0.77 0.02 2.43 0.68 0.10 13.46

1000 U 0.89 0.94 512.25 0.78 0.02 1.78 0.71 0.10 10.74
HO 0.89 0.91 473.53 0.76 0.02 2.25 0.71 0.10 11.85

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and” gate; GDI =
G-DINA model discrimination index; G-DINA = generalized DINA; RP-GDI = restrictive progressive GDI;
RT-GDI = restrictive threshold GDI; IQ = item quality; J = pool size; N = sample size; AD = attribute
distribution; LQ = low-quality; HQ high-quality; U = uniform; HO = higher-order.
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To gain a better understanding of how different exposure control methods behaved

in different conditions, the item exposure rates are shown in Figures 3.1 and 3.2 for

the 10-item test with the RP-GDI and RT-GDI using the DINA model and the A-

CDM, respectively. Several conclusions can be gleaned from the figures. First, the

RP method resulted in more uniform item exposure rates because of its probabilistic

nature, and the RT method yielded more skewed rates because it was implemented

deterministically. Second, the maximum exposure rates were always lower than the

desired rmax value when the RP method was used, whereas the maximum exposure

rates were equal to the desired rmax when the RT method was used. Third, more

items reached the desired rmax value using the A-CDM compared to the DINA and

DINO models, and those items were mostly one-attribute items. Last, using the A-

CDM resulted in more skewed item exposure rates compared to the DINA (or DINO)

model.

Figure 3.1: Item Exposure Rates for the DINA model
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Note: Red and blue lines represent the RP and RT, respectively; RP = restrictive progressive;
RT = restrictive threshold; DINA = deterministic inputs, noisy “and” gate; J = test length.
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Figure 3.2: Item Exposure Rates for the A-CDM
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Note: Red and blue lines represent the RP and RT, respectively; RP = restrictive progressive;
RT = restrictive threshold; A-CDM = additive CDM; CDM = cognitive diagnosis model; J = test
length.

In general, there is a trade-off between estimation accuracy and item exposure

rate (Way, 1998). In other words, reducing high item exposure rates will result

in lower classification rates, and vice versa. To better examine the impact of the

different factors, differences in the CVC rates were evaluated using a cut point of

0.05. Differences below 0.05 were considered negligible, whereas differences above

0.05 were considered substantial. In addition, the chi-square statistic ratios were

calculated to compare the efficiency of the indices under different factors, and the

ratios were evaluated using two cut points, 0.15 and 0.25. If the ratio was equal to

one, then the two chi-square values were considered equal to each other. If the ratio

was within the range of (0.85,1.15), it was considered negligible; within (0.75,0.85) or

(1.15,1.25), it was considered moderate; otherwise, it was considered substantial.
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3.2.2.1 The Impact of the Item Quality

As expected, using HQ items instead of LQ items resulted in higher classification

rates across different factors (e.g., generating model, item selection index). Moreover,

the increases in the CVC rates were greater when short tests (i.e., 10-item tests) were

used compared to long tests (i.e., 20-item tests). For example, the increases were

around 0.30 and 0.10 on average for the 10- and 20-item tests, respectively.

However, the impact of the item quality on the item exposure rates varied based

on the other factors. The chi-square ratios using the RP-GDI and RT-GDI are shown

in Table 3.2 for the DINA and DINO models. Several results can be noted. First, for

the GDI with the DINA and DINO models, the use of LQ items instead of HQ items

resulted in negligible differences in the chi-square values regardless of the other factors

except for short tests with a large pool in the DINA model, and short tests with a

large pool and the uniform distribution in the DINO model, where the differences were

moderate. Second, for the RT-GDI with the DINA and DINO models, the use of LQ

items instead of HQ items generally resulted in negligible to moderate differences in

the chi-square values regardless of the other factors except for some conditions. For

example, the differences were substantial when a small pool was used with the HO

distribution, a small β, and an rmax of .2 regardless of the test length and sample

size. Third, for the RP-GDI with the DINA and DINO models, the use of LQ items

mostly yielded larger chi-square values than HQ items, and there were more cases

where the differences in chi-square values were substantial compared to the RT-GDI.

However, there were some exceptions. For example, the differences were negligible to

moderate when the HO distribution was used with a small β regardless of the pool

size, sample size, test length, and rmax value. Last, for the A-CDM, the use of LQ

items instead of HQ items resulted in negligible differences in the chi-square values

across all the conditions.



55

T
ab

le
3.

2:
T

h
e

C
h
i-

S
q
u
ar

e
R

at
io

s
C

om
p
ar

in
g

L
Q

v
s.

H
Q

D
IN

A
D

IN
O

R
P

-G
D

I
R

T
-G

D
I

R
P

-G
D

I
R

T
-G

D
I

T
es

t
L

en
gt

h
10

20
10

20
10

20
10

20
rm

a
x

J
N

A
D

β
0.

1
0.

2
0.

1
0.

2
0.

1
0.

2
0.

1
0.

2
0.

1
0.

2
0.

1
0.

2
0.

1
0.

2
0.

1
0.

2
62

0
50

0
U

0.
5

1
.3

6
1
.4

6
1
.4

5
1
.6

3
1.

07
1.

21
1.

21
1.

20
1
.3

5
1
.4

4
1
.5

3
1
.6

4
1.

09
1.

20
1.

14
1.

08
2

1
.5

9
1
.4

2
2
.0

0
1
.7

4
1
.2

8
1
.3

1
1.

19
1
.3

1
1
.5

9
1
.4

2
2
.0

5
1
.7

6
1.

24
1
.3

2
1.

25
1
.2

7
H

O
0.

5
1.

09
1.

21
0.

81
0.

99
1.

06
1.

12
0.

98
1.

02
1.

09
1.

23
0.

87
1.

05
1.

03
1.

01
0.

95
0.

94
2

1
.3

2
1
.3

3
1.

15
1
.3

2
1.

16
1.

23
1.

14
1.

15
1
.3

5
1
.3

4
1.

19
1
.3

4
1.

17
1.

23
1.

14
1.

16
10

00
U

0.
5

1
.4

5
1
.4

7
1
.5

4
1
.7

5
1.

15
1.

20
1.

15
1.

12
1
.4

5
1
.4

9
1
.5

9
1
.7

6
1.

12
1.

12
1.

20
1.

14
2

1
.6

3
1
.4

5
2
.1

3
1
.7

5
1.

22
1
.3

4
1.

21
1
.2

7
1
.6

5
1
.4

4
2
.1

1
1
.7

6
1.

24
1
.3

3
1.

21
1
.2

9
H

O
0.

5
1.

07
1.

20
0.

81
1.

01
1.

01
1.

18
0.

98
0.

99
1.

08
1.

24
0.

82
1.

06
1.

05
1.

02
0.

95
0.

95
2

1
.3

5
1
.3

3
1.

17
1
.3

2
1.

16
1.

25
1.

16
1.

17
1
.3

7
1
.3

3
1.

20
1
.3

5
1.

18
1.

24
1.

15
1.

15
12

40
50

0
U

0.
5

1
.4

5
1
.4

4
1
.6

7
1
.6

7
1.

04
1.

24
1.

21
1.

22
1
.4

8
1
.4

4
1
.7

1
1
.7

0
1.

10
1.

10
1.

12
1.

12
2

1
.4

7
1
.3

8
1
.7

3
1
.4

8
1.

18
1.

20
1.

22
1.

23
1
.4

5
1
.3

7
1
.7

4
1
.4

7
1.

19
1
.2

7
1.

24
1.

23
H

O
0.

5
1.

21
1
.2

8
0.

99
1.

22
1.

01
0.

96
1.

00
1.

06
1.

21
1
.2

6
1.

05
1.

24
0.

98
1.

02
0.

98
1.

06
2

1
.3

3
1
.3

0
1
.3

3
1
.3

2
1.

16
1.

23
1.

16
1.

14
1
.3

4
1
.3

0
1
.3

2
1
.3

2
1.

19
1.

14
1.

16
1.

17
10

00
U

0.
5

1
.5

2
1
.4

6
1
.7

8
1
.6

9
1.

04
1.

03
1.

05
1.

08
1
.4

9
1
.4

5
1
.7

4
1
.7

0
1.

10
1.

15
1.

15
1.

17
2

1
.4

6
1
.3

8
1
.7

5
1
.4

8
1.

20
1.

24
1.

22
1.

25
1
.4

5
1
.3

7
1
.7

4
1
.4

8
1.

19
1.

25
1.

24
1.

24
H

O
0.

5
1.

21
1
.3

0
1.

03
1.

21
1.

01
1.

02
1.

02
1.

08
1.

23
1
.3

0
1.

02
1.

22
1.

02
0.

98
1.

07
1.

05
2

1
.3

4
1
.3

1
1
.3

4
1
.3

2
1.

15
1.

17
1.

16
1.

15
1
.3

5
1
.3

2
1
.3

4
1
.3

3
1.

19
1.

13
1.

18
1.

18

N
o
te

.
S

u
b

st
an

ti
al

d
iff

er
en

ce
s

a
re

sh
ow

n
in

b
ol

d
.

L
Q

=
lo

w
-q

u
al

it
y
;

H
Q

=
h

ig
h

-q
u

al
it

y
;

D
IN

A
=

d
et

er
m

in
is

ti
c

in
p

u
ts

,
n

oi
sy

“
an

d
”

ga
te

;
D

IN
O

=
d

et
er

m
in

is
ti

c
in

p
u

t,
n

oi
sy

“
or

”
ga

te
;

R
P

-G
D

I
=

re
st

ri
ct

iv
e

p
ro

gr
es

si
ve

G
D

I;
R

T
-G

D
I

=
re

st
ri

ct
iv

e
th

re
sh

o
ld

G
D

I;
G

D
I

=
G

-D
IN

A
m

o
d

el
d

is
cr

im
in

at
io

n
in

d
ex

;
G

-D
IN

A
=

ge
n

er
al

iz
ed

D
IN

A
;
J

=
p

o
ol

si
ze

;
N

=
sa

m
p

le
si

ze
;

A
D

=
a
tt

ri
b

u
te

d
is

tr
ib

u
ti

o
n

;
U

=
u

n
if

o
rm

;
H

O
=

h
ig

h
er

-o
rd

er
.



56

3.2.2.2 The Impact of the Sample Size

Increasing the sample size resulted in negligible differences in the classification

rates regardless of the other factors (e.g., item selection index, generating model, and

item quality) except for some conditions using the RT-GDI with the DINA model,

where the differences were substantial. For example, a large sample (i.e., N=1000)

yielded higher classification rates compared to a small sample (i.e., N=500) when the

uniform distribution and a small β, and the HO distribution and a large β were used

with short tests, HQ items, a small pool, and an rmax of .1.

Similarly, the impact of the sample size on the item exposure rates were negli-

gible across the different factors, based on the chi-square ratios shown in Table 3.3.

However, there were some conditions where the differences in the chi-square values

were either moderate or substantial. For example, the differences were moderate for

the RP-GDI when the DINA, short tests and HQ items were used with an rmax of

.1, a small β, a small pool, and the uniform distribution; and when the DINO, long

tests were used with an rmax of .1, a small β, a small pool, and the uniform distribu-

tion regardless of the item quality; for the RT-GDI when the DINA, LQ items were

used with a small β, a large pool, and the uniform distribution regardless of the test

length and the rmax; and when the DINO, short tests and HQ items were used with

an rmax of .1, and a small β, a large pool, and the HO distribution. In addition,

the differences were substantial for the DINA and DINO models when the RP-GDI,

long tests, and HQ items were used with an rmax of .1, a small β, a small pool, and

the uniform distribution; and when the RT-GDI, long tests, and HQ items were used

with an rmax of .1, a small β, a large pool, and the HO distribution.
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3.2.2.3 The Impact of the Attribute Distribution

Using the uniform distribution instead of the HO distribution in generating at-

tribute vectors resulted in negligible differences in the classification rates across differ-

ent factors (e.g., item selection index, generating model, and item quality). However,

in some conditions, the HO distribution yielded higher classification rates than the

uniform distribution, and the differences in the CVC rates were substantial. For ex-

ample, the HO distribution resulted in higher CVC rates in the following conditions:

using the GDI with short tests, LQ items, and a small sample regardless of the pool

size for the DINA model; using the RT-GDI with short tests, LQ items, a large pool,

a small sample, an rmax of .1, and a small β for the DINO model; and using the

RP-GDI with short tests, a small pool, a large sample, an rmax of .1, and a small β

regardless of the item quality for the A-CDM.

Likewise, the impact of the attribute distribution on the item exposure rates

was mostly negligible regardless of the other factors. The chi-square ratios using

the RP-GDI and RT-GDI are shown in Table 3.4 for the DINA and DINO models.

However, the differences in the chi-square values were moderate to substantial in

some conditions. Specifically, for the DINA and DINO models, the differences in the

chi-square values were substantial when the RP-GDI was used with long tests and

an rmax of .1 regardless of the item quality, pool size, sample size, and β, and those

differences were moderate when the RP-GDI was used with short tests, HQ items,

a small pool, a small sample, an rmax of .1, and a large β. In addition, there were

fewer cases where the differences in the chi-square values were substantial when the

RT-GDI was used instead of the RP-GDI.
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3.2.2.4 The Impact of the Test Length

As expected, increasing the test length resulted in higher classification rates. In

addition, the differences in the CVC rates were always substantial regardless of the

factors (e.g., item selection index, generating model). Moreover, using LQ items

yielded greater differences in the CVC rates compared to HQ items. For example, the

differences across all conditions were on average 0.31 and 0.11 for LQ and HQ items

when the GDI and the DINA model were used, respectively. Also, those differences

were greater when the RT-GDI was used instead of the RP-GDI.

The impact of the test length on the item exposure rates was mostly negligible to

moderate when the GDI and RT-GDI were used as the item selection indices across

different conditions. The chi-square ratios are shown in Table 3.5 for the DINA,

DINO, and A-CDM. However, interestingly, using short test lengths (i.e., 10-item

test) resulted in smaller chi-square values than long test lengths (i.e., 20-item test)

in some conditions when the RT-GDI was used with the A-CDM. For example, using

the RT-GDI yielded substantial differences in the chi-square values when a large pool

was used with a small β and an rmax of .1 regardless of the item quality, sample size,

and attribute distribution.

Using short test lengths (i.e., 10-item test) resulted in larger chi-square values

compared to the long test lengths (i.e., 20-item test), and the differences in the chi-

square values were generally substantial when the RP-GDI was used regardless of

the different factors. However, there were some conditions where the differences were

negligible to moderate when the RP-GDI was used as the item selection index. For

example, for the DINA and DINO models, the differences were negligible when an

rmax of .2 and a large β were used with a large pool and the HO distribution regardless

of the sample size and the item quality, and the differences were moderate when an

rmax of .2 and a large β were used with LQ items, a large pool, and the uniform
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distribution regardless of the sample size. Again, using long test lengths resulted in

larger chi-square values than short test lengths in some conditions where the RP-GDI

was used with the A-CDM.

3.2.2.5 The Impact of the Pool Size

The impact of the pool size on the classification rates was mostly negligible across

different factors (e.g., item selection index, generating model) except for some condi-

tions. For example, the difference in the CVC rates was substantial for the GDI and

the DINO model when short tests were used with LQ items, a small sample, and the

uniform distribution, where a large pool (i.e., J=1240) resulted in higher CVC rates

compared to a small pool (i.e., J=620), and the difference was 0.09. In addition, the

differences in the CVC rates were generally substantial regardless of the other factors,

and especially when the A-CDM was used.

For all the CDMs, increasing the pool size resulted in higher item exposure rates,

and the differences in the chi-square values were substantial across different condi-

tions, as shown by the chi-square ratios are shown in Table 3.6. However, there were

some conditions where the differences were moderate when the RT-GDI, long tests,

an rmax of .2, and a small β were used regardless of the item quality, sample size, and

attribute distribution.

3.2.2.6 The Impact of the Desired rmax Value

Increasing the rmax value generally resulted in negligible differences in the clas-

sification rates regardless of the other factors. However, there were some conditions

where the differences in the CVC rates were substantial especially when the RP-GDI

and RT-GDI were used with the A-CDM. For example, the differences were sub-

stantial for the RP-GDI and RT-GDI with the A-CDM, when long tests were used

regardless of the item quality, pool size, sample size, attribute distribution, and β
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(with a large β and HQ items as an exception, where the differences were negligible);

and when long tests were used with a small pool regardless of the item quality, sample

size, and attribute distribution.

As expected, increasing the rmax value resulted in higher item exposure rates

across different conditions. The chi-square ratios are shown in Table 3.7 for the

DINA, DINO, and A-CDM. Several results can be noted. First, long tests (i.e.,

20-item tests) yielded higher chi-square values than short tests (i.e., 10-item tests)

with respect to the rmax value. Second, the differences in the chi-square values were

always substantial when the RP-GDI was used as an item selection index. Third,

using a large rmax value mostly yielded substantial differences in the chi-square values

when RT-GDI was used; however, there were some conditions where the differences

were negligible to moderate. For example, for the DINA model, the differences were

negligible when short tests and a small β were used with HQ items, a small pool, and

a small sample regardless of the attribute distribution. Also, for the DINA model,

the differences were moderate when long tests and a small β were used with a large

sample regardless of the item quality, pool size, and attribute distribution.

3.2.2.7 The Impact of β

Increasing the β value resulted in negligible differences in the classification rates

for the RP-GDI using the DINA and DINO models; however, it generally yielded

substantial differences for the same index using the A-CDM. In addition, an increase

in the β value generally resulted in substantial differences in the CVC rates for the

RT-GDI regardless of the other factors (e.g., generating model, test length). For the

DINA model and the RP-GDI, the differences were substantial when short tests and

an rmax of .1 were used with LQ items, a small pool, a small sample, and the HO

distribution, where increasing the β value from 0.5 to 1.0 resulted in higher CVC rates

(i.e., the difference was 0.06); when short tests and an rmax of .2 were used with LQ
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items, a small pool, a small sample, and the uniform distribution where increasing

the β value from 0.5 to 1 resulted in higher CVC rates (i.e., the difference was 0.07);

and when long tests and an rmax of .2 were used with LQ items, a small pool, a small

sample, and the HO distribution where increasing the β value from 0.5 to 1.0 resulted

in higher CVC rates (i.e., the difference was 0.06).

Increasing the β value resulted in substantial differences in the chi-square values

regardless of the other factors. Moreover, for the RP-GDI, increasing the β value from

0.5 to 1.0 yielded greater differences in the chi-square values compared to increasing

the β value from 1.0 to 2.0. However, for the RT-GDI, increasing the β value from

1.0 to 2.0 yielded greater differences in the chi-square values compared to increasing

the β value from 0.5 to 1.0.
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3.3 Discussion and Conclusion

In this article, the efficiency of the new index, the GDI, was investigated in terms

of the classification accuracy and the item exposure using two item exposure control

methods, namely, RP and RT methods. In addition, the impact of different factors

on the item exposure was also examined. Based on the factors manipulated in the

simulation study, as expected, the RP method resulted in more uniform item expo-

sure rates compared to the RT method because of the method’s probabilistic nature.

Moreover, the factors, namely, the item quality, attribute distribution, test length,

pool size, prespecified desired exposure rate, and β, generally had a substantial impact

on the exposure rates when the RP method was used; however, fewer factors, such

as the pool size, prespecified desired exposure rate, and β, generally had a substan-

tial impact on the exposure rates when the RT method was used. The other factors

had moderate or negligible effects on the item exposure rates with some exceptions.

Overall, the results of this study suggest that, relative to other methods examined,

the RP-GDI is a more promising method for use in practice.

This study showed that the new index performed efficiently with the item exposure

control methods in terms of attribute classification accuracy and item exposure rates.

Nonetheless, more research must be done to ensure the index is practical. First,

the results were obtained using 10 replications in the RP method because it did

not yield stable results across the conditions. In more detail, the increase in the β

value did not increase the classification rates in all conditions because of the random

component. Results that are more stable without any replication in practice must be

obtained. Second, at present, the efficiency of only a limited number of item exposure

control methods has been examined in the context of CD-CAT. It would, therefore, be

instructive to examine the applicability of the other item exposure control methods

in traditional CAT (e.g., multiple maximum exposure rates; Barrada et al., 2009)
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in the context of CD-CAT. Third, some constraints in the design of the Q-matrix

should be investigated. The Q-matrix in this study involved all possible q-vectors.

However, in practice, this may not be the case, particularly when the CDMs are

retrofitted to existing data. Also, the impact of Q-matrix misspecifications needs

to be investigated in the CAT framework. Third, only the item exposure control

methods that can work for fixed-length tests were used in this study. It would be

interesting to examine the efficiency of the methods when variable-length tests are

used. Finally, a few simplifications were made in the design of this study to keep

the scope of this work manageable. These simplifications include fixing the number

of attributes and assuming that the item parameters were known. To obtain more

generalizable conclusions, these factors should be varied in future research.
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Table 3.5: The Chi-Square Ratios Comparing Short vs. Long Test Length

DINA DINO A-CDM
RP-GDI RT-GDI RP-GDI RT-GDI RP-GDI RT-GDI

rmax

IQ J N AD β 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
LQ 620 500 U 0.5 3.27 2.32 0.87 0.96 3.27 2.33 0.86 0.96 2.66 1.67 1.01 0.67

2 2.47 1.45 1.14 1.00 2.47 1.47 1.08 0.99 1.58 0.95 1.36 0.86
HO 0.5 2.40 1.79 0.92 0.97 2.43 1.83 0.90 0.93 2.70 1.69 1.00 0.66

2 1.76 1.30 1.08 0.92 1.80 1.32 1.10 0.96 1.59 0.96 1.35 0.87
1000 U 0.5 3.53 2.40 0.91 1.03 3.52 2.39 0.90 0.98 2.67 1.68 1.00 0.66

2 2.54 1.50 1.12 1.03 2.60 1.49 1.13 1.02 1.59 0.95 1.36 0.86
HO 0.5 2.43 1.77 0.88 0.96 2.50 1.78 0.86 0.91 2.71 1.69 0.98 0.66

2 1.77 1.31 1.07 0.91 1.81 1.31 1.08 0.94 1.60 0.96 1.36 0.86
1240 500 U 0.5 2.42 1.75 1.00 1.15 2.48 1.78 1.05 1.13 1.71 1.17 0.69 0.79

2 1.55 1.19 1.03 0.93 1.54 1.18 1.03 0.95 0.98 0.78 0.89 0.91
HO 0.5 1.84 1.46 1.05 1.01 1.80 1.43 1.08 1.10 1.71 1.17 0.67 0.79

2 1.34 1.11 0.99 0.94 1.35 1.11 1.01 0.88 0.99 0.78 0.89 0.89
1000 U 0.5 2.56 1.79 1.05 1.13 2.50 1.73 1.02 1.22 1.71 1.17 0.67 0.80

2 1.55 1.18 1.04 0.93 1.54 1.17 1.01 0.94 0.98 0.78 0.89 0.90
HO 0.5 1.80 1.46 1.07 1.14 1.82 1.47 1.11 1.19 1.72 1.17 0.66 0.79

2 1.32 1.11 0.98 0.92 1.33 1.11 1.02 0.87 0.99 0.78 0.88 0.89
HQ 620 500 U 0.5 3.46 2.60 0.97 0.95 3.73 2.67 0.91 0.86 2.63 1.57 1.02 0.63

2 3.10 1.78 1.05 1.00 3.17 1.82 1.10 0.96 1.56 0.90 1.39 0.82
HO 0.5 1.78 1.48 0.85 0.89 1.94 1.56 0.84 0.86 2.68 1.64 1.03 0.64

2 1.53 1.29 1.06 0.86 1.58 1.32 1.07 0.90 1.58 0.92 1.39 0.82
1000 U 0.5 3.76 2.85 0.91 0.96 3.86 2.83 0.96 0.99 2.61 1.58 1.00 0.62

2 3.31 1.81 1.11 0.97 3.33 1.82 1.10 0.99 1.57 0.91 1.39 0.81
HO 0.5 1.84 1.48 0.85 0.81 1.91 1.52 0.78 0.85 2.71 1.62 0.99 0.63

2 1.54 1.30 1.07 0.86 1.58 1.32 1.05 0.88 1.59 0.93 1.39 0.82
1240 500 U 0.5 2.79 2.02 1.16 1.14 2.87 2.09 1.07 1.15 1.61 1.08 0.64 0.80

2 1.82 1.27 1.06 0.95 1.84 1.27 1.08 0.92 0.93 0.73 0.84 0.85
HO 0.5 1.51 1.39 1.05 1.12 1.56 1.40 1.08 1.14 1.66 1.10 0.65 0.78

2 1.34 1.13 0.98 0.88 1.33 1.12 0.98 0.91 0.95 0.73 0.84 0.85
1000 U 0.5 3.00 2.07 1.07 1.18 2.91 2.02 1.06 1.25 1.61 1.08 0.64 0.79

2 1.85 1.26 1.05 0.94 1.84 1.27 1.05 0.93 0.93 0.73 0.83 0.85
HO 0.5 1.53 1.35 1.08 1.21 1.52 1.39 1.17 1.28 1.66 1.09 0.64 0.79

2 1.32 1.12 0.98 0.91 1.33 1.11 1.01 0.91 0.95 0.74 0.83 0.85

Note. Substantial differences are shown in bold. DINA = deterministic inputs, noisy “and” gate; DINO = deterministic input, noisy
“or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; RP-GDI = restrictive progressive GDI; RT-GDI = restrictive
threshold GDI; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; IQ = item quality; J = pool size; N =
sample size; AD = attribute distribution; LQ = low-quality; HQ = high-quality; U = uniform; HO = higher-order.
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Table 3.7: The Chi-Square Ratios Comparing rmax of .1 vs. .2

DINA DINO A-CDM
RPGDI RTGDI RPGDI RTGDI RPGDI RTGDI

Test Length
IQ J N AD β 10 20 10 20 10 20 10 20 10 20 10 20
LQ 620 500 U 0.5 2.84 3.99 1.25 1.12 2.80 3.93 1.25 1.12 3.32 5.30 1.31 1.96

2 2.17 3.69 1.62 1.84 2.19 3.67 1.64 1.78 1.96 3.27 1.69 2.68
HO 0.5 2.81 3.77 1.20 1.14 2.83 3.75 1.21 1.17 3.32 5.29 1.32 2.00

2 2.16 2.92 1.62 1.89 2.19 2.99 1.57 1.80 1.96 3.26 1.69 2.63
1000 U 0.5 2.90 4.26 1.32 1.17 2.91 4.29 1.28 1.18 3.36 5.35 1.31 1.97

2 2.26 3.82 1.68 1.83 2.20 3.85 1.68 1.86 1.98 3.30 1.67 2.65
HO 0.5 2.89 3.97 1.28 1.16 2.88 4.04 1.25 1.18 3.35 5.38 1.32 1.97

2 2.17 2.95 1.62 1.91 2.16 2.99 1.63 1.87 1.98 3.30 1.69 2.65
1240 500 U 0.5 2.33 3.23 1.36 1.17 2.31 3.22 1.23 1.14 2.30 3.36 1.39 1.21

2 1.96 2.55 1.52 1.68 1.96 2.54 1.54 1.67 1.51 1.90 1.72 1.70
HO 0.5 2.29 2.89 1.22 1.27 2.26 2.85 1.27 1.24 2.30 3.37 1.42 1.20

2 1.91 2.32 1.58 1.65 1.93 2.35 1.44 1.64 1.51 1.92 1.72 1.72
1000 U 0.5 2.37 3.39 1.29 1.21 2.38 3.43 1.40 1.16 2.33 3.41 1.44 1.21

2 1.97 2.58 1.54 1.71 1.97 2.58 1.56 1.68 1.52 1.91 1.72 1.70
HO 0.5 2.37 2.93 1.31 1.23 2.37 2.94 1.30 1.21 2.33 3.40 1.44 1.21

2 1.94 2.31 1.58 1.68 1.96 2.36 1.44 1.70 1.52 1.93 1.74 1.71
HQ 620 500 U 0.5 2.66 3.54 1.10 1.13 2.62 3.66 1.13 1.18 3.13 5.23 1.28 2.08

2 2.43 4.25 1.59 1.67 2.46 4.28 1.54 1.76 1.84 3.17 1.59 2.70
HO 0.5 2.53 3.06 1.14 1.10 2.50 3.12 1.23 1.19 3.15 5.17 1.30 2.09

2 2.15 2.54 1.52 1.88 2.21 2.65 1.49 1.77 1.86 3.20 1.60 2.72
1000 U 0.5 2.86 3.77 1.26 1.20 2.84 3.87 1.28 1.24 3.18 5.24 1.30 2.10

2 2.55 4.66 1.53 1.74 2.52 4.62 1.57 1.74 1.85 3.20 1.59 2.73
HO 0.5 2.57 3.19 1.10 1.15 2.50 3.14 1.28 1.17 3.19 5.33 1.31 2.07

2 2.20 2.61 1.51 1.89 2.22 2.66 1.56 1.87 1.87 3.21 1.59 2.72
1240 500 U 0.5 2.34 3.22 1.14 1.16 2.37 3.25 1.22 1.15 2.15 3.21 1.41 1.13

2 2.09 2.99 1.50 1.66 2.07 3.01 1.44 1.68 1.42 1.80 1.62 1.59
HO 0.5 2.17 2.34 1.28 1.20 2.18 2.42 1.21 1.15 2.17 3.28 1.40 1.16

2 1.96 2.33 1.49 1.68 1.98 2.34 1.52 1.63 1.42 1.85 1.62 1.61
1000 U 0.5 2.46 3.56 1.30 1.17 2.45 3.52 1.34 1.13 2.18 3.24 1.43 1.16

2 2.08 3.05 1.49 1.67 2.09 3.03 1.48 1.68 1.44 1.81 1.62 1.58
HO 0.5 2.21 2.49 1.31 1.17 2.24 2.46 1.34 1.23 2.18 3.31 1.43 1.16

2 1.98 2.34 1.56 1.69 2.00 2.38 1.51 1.69 1.44 1.86 1.62 1.59

Note. Substantial differences are shown in bold. DINA = deterministic inputs, noisy “and” gate; DINO = deterministic input, noisy
“or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; RPGDI = restrictive progressive GDI; RTGDI = restrictive
threshold GDI; GDI = G-DINA model discrimination index; G-DINA = generalized DINA; IQ = item quality; J = pool size; N =
sample size; AD = attribute distribution; LQ = low-quality; HQ = high-quality; U = uniform; HO = higher-order.
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Chapter 4

Study III: A Blocked-CAT Procedure for CD-CAT

Abstract

This paper introduces a blocked-design procedure for cognitive diagnosis computer-

ized adaptive testing (CD-CAT), which allows examinees to review items and change

their answers during test administration. Four blocking versions of the new procedure

were proposed. In addition, the impact of several factors, namely, item quality, gen-

erating model, block size, and test length, on the classification rates was investigated.

Two popular item selection indices in CD-CAT were used and their efficiency was

compared using the new procedure. The results showed that the new procedure is

promising for allowing item review with a small loss in attribute classification accu-

racy under some conditions. This indicates that, as in traditional CAT, that the use

of block design in CD-CAT has the potential to address certain issues in practical

testing situations (e.g., correcting careless errors, reducing student anxiety).

Keywords: cognitive diagnosis model, computerized adaptive testing, item review

4.1 Introduction

The debate over whether to provide examinees the options to review items and

change answers during test administration has continued for several years. Test takers

and test developers have different attitudes toward these options. Test takers want

to benefit from item review and answer change, which reduce test anxiety and thus
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increase test scores legitimately. However, test developers are reluctant to provide

these options to test takers for several reasons (Vispoel, Clough, & Bleiler, 2005).

The two most common concerns are decreased testing efficiency (e.g., longer testing

times) and illegitimate score gains (e.g., test-taking strategies).

Wise (1996) classified score gains as legitimate and illegitimate. The former refers

to a score gain in which examinees, who possess the required knowledge to answer

an item correctly, increase their scores after they review the item and change their

answer. The latter refers to a score gain in which examinees, who do not possess the

required knowledge, are somehow able to answer the item correctly because they get

a clue from other items, for example. On one hand, examinees can obtain legitimate

score gains by using item review and answer change. In turn, the validity of the test

increases, and therefore, inferences from the test results become more meaningful

and appropriate. On the other hand, providing these options can decrease testing

efficiency by lengthening testing times and testing precision with higher errors in

ability estimates because of the illegitimate score gains (Vispoel, Rocklin, & Wang,

1994; Wise, 1996).

There is a common belief among examinees and college instructors that chang-

ing initial responses to items about which examinees are uncertain might lower the

examinees’ test scores (Benjamin, Cavell, & Schallenberger, 1984). In contrast to

this belief, researchers have shown that most examinees changed their answers when

they were allowed, and those changes were generally from incorrect to correct. So

much, those who made changes improved their test scores (Benjamin et al., 1984).

Moreover, the results in those studies showed that examinees changed their answers

for only a very small percentage of answers, but a large number of examinees made

changes for at least a few items.

Researchers have investigated the impact of item review and answer change on

paper-and-pencil tests for nearly 100 years (e.g., Benjamin et al., 1984; Crocker &
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Benson, 1980; Mathews, 1929; Mueller & Wasser, 1977; Smith, White, & Coop,

1979; Waddell & Blankenship, 1995), and the impact on computerized adaptive test-

ing (CAT) for the last two decades (e.g., Han, 2013; Liu, Bridgeman, Lixiong, Xu,

& Kong, 2015; Olea, Revuelta, Ximenez, & Abad, 2000; Stocking, 1997; Vispoel,

Hendrickson, & Bleiler, 2000; Wainer, 1993; Wise, 1996). However, there is still

doubt about providing item review and answer change to examinees in CAT. Re-

searchers have recently suggested that reviewable CAT might introduce bias in the

ability estimation and an increase in the standard error of measurement (Papanas-

tasiou & Reckase, 2007). In addition, providing these options in CAT requires more

complicated item selection algorithms and longer testing time, and results in lower

measurement precision and an increase in the possibility of artificially inflated scores

(Wise, 1996).

Reviewable CAT requires more complicated item selection algorithms because

most of the item selection algorithms in CAT rely on a provisional ability estimate to

select the next item. Changing the answer of an item during the test administration

can make the following items no longer appropriate for estimating the ability level

(Yen, Ho, Liao, & Chen, 2012). In addition, structures that are more flexible must

be developed for examinees’ diverse review styles. For example, some examinees like

to review item by item sequentially; however, others mark some of the items and

review them later (Wise, 1996). Researchers have also suggested that reviewable

CAT requires longer testing times. For example, study results showed that item

review in computer-based testing increased the average testing time by about 25%

(Revuelta, Ximenez, & Olea, 2003; Vispoel, Wang, de la Torre, Bleiler, & Dings,

1992). Moreover, Wise (1996) noted another concern related to testing time: he

postulated that only examinees who can quickly complete the test benefit from item

review if the testing time is limited.

As noted before, examinees can have illegitimate score increases even if they do
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not possess the required knowledge to answer the item correctly. This happens when

they can get a clue from the characteristics of other items on the test, or they can use

specific testing strategies (e.g., the Wainer strategy, the Kingsbury strategy, and the

generalized Kingsbury strategy). Although examinees may not be able to successfully

implement these strategies, standardized test preparation companies can teach them

how to do so (Vispoel et al., 2000).

In the Wainer strategy (Wainer, 1993), examinees intentionally give incorrect an-

swers to all items on the first pass, which leads them to gradually encounter relatively

easier items. After item review, the examinees replace all the answers with the correct

ones. To get the full benefit of using this strategy, an examinee must have all the

knowledge required to give correct answers on the second pass. Therefore, examinees

with high proficiency can generally benefit from this strategy, and increase their test

scores (Wise, 1996). However, using this strategy involves some risk. Failure on even

a single item might result in underestimation of the examinee’s ability level (Ger-

shon & Bergstrom, 1995). Also, researchers suggested that examinees who used the

Wainer strategy can be detected from the number of items whose answers changed

and the size of standard error of the estimates (Vispoel, Rocklin, Wang, & Bleiler,

1999). Similarly, restricted item review can be used to safe guard against the use of

the Wainer strategy.

Stocking (1997) proposed a blocked-design CAT in which item review was allowed

within a block of items and investigated the impact of the Wainer strategy with and

without item review on the test. She noted that the bias in the estimates and the

standard errors were at acceptable levels using this method. Later, several studies

supported the finding that there was no significant difference in the accuracy of ability

estimation between limited review and no review procedures when using the block

design (Vispoel, 2000; Vispoel, Clough, Bleiler, Hendrickson, & Ihrig, 2002; Vispoel et

al., 2005). Moreover, researchers have also shown that testing time increased by only



77

5-11% on average with the majority of examinees indicating that they had adequate

opportunity for item review and answer change in the blocked-design CAT (Vispoel et

al., 2005). However, Han (2013) noted that the blocked-design CAT still did not allow

test takers to skip items. He proposed an item pocket method in which examinees

had the option to skip items in addition to reviewing items and changing answers.

In the Kingsbury strategy (Green, Bock, Humphreys, Linn, & Reckase, 1984;

Kingsbury, 1996), the examinees know that the difficulty of an item depends on

the response to the previous item, and understand the correctness of their response

is based on the difficulty level of the current item. In other words, if the current

item is less difficult than the previous item, then the answer to the previous item is

likely incorrect. Kingsbury (1996) investigated the impact of this strategy in CAT

and found that using this strategy resulted in substantial score gains especially for

low-proficiency examinees, modest score gains for moderate-proficiency examinees,

and very small gains for high-proficiency examinees. However, it is not clear how

accurately examinees can detect the difficulty levels of the items. Green et al. (1984)

conducted a study in which examinees judged the difficulty of items, and the results

showed examinees did not successfully distinguish item difficulty. Moreover, Wise,

Finney, Enders, Freeman, and Severance (1999) found that examinees judged item

difficulty poorly without actually solving the items. Similar to the Kingsbury strategy,

in the generalized Kingsbury strategy (Wise et al., 1999), examinees distinguish the

difficulty of all item pairs on the test.

Having the options to review items and change answers during test administration

has several benefits for examinees. These options are beneficial for correcting typ-

ing/careless errors, misreading of items, temporary lapses in memory, reconceptual-

ization of answers to previously administered items, and test validity (Vispoel, 1998).

The results of studies on item review clearly showed that examinees highly endorsed

item review in computer-based test administration (e.g., Gershon & Bergstrom, 1995;
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Legg & Buhr, 1992; Vispoel, 1998; Vispoel & Coffman, 1994; Vispoel, 2000; Vispoel

et al., 2002, 2005). In addition, these options can alter careless errors made by ex-

aminees, and relax the testing environment for examinees who have high test anxiety

(Vispoel, 2000). Careless errors can result in inaccurate measurement of the exami-

nee’s ability, and this is a threat to test validity (Stone & Lunz, 1994).

Another procedure which allows item review and answer change is multistage

testing (MST). In MST, the test adaption occurs at the sets of item level or the testlet

level instead of the item level. In MST, items are preassembled into modules prior to

the test administration. In contrast, in the blocked-design CAT, items are grouped

into blocks on the fly or during the actual test administration. Hendrickson (2007)

summarized the MST procedure, which involves several adaptive stages within the

test administration. In the first stage, different items with a broad range of difficulty

levels are given to obtain initial estimates. Based on the results from the first stage,

a block of items with difficulty levels appropriate for the examinee’s ability level

is given in the next stage. When appropriate, this block includes different content

domains. Depending on the test, this stage can be repeated. The stage is useful in

differentiating ability within a narrower range. Several testing companies have started

using MST in their exams (e.g., Medical Licensure Examination, Graduate Record

Examination; Robin, Steffen, & Liang, 2014).

The advantages of using MST can be summarized as follows: it can increase test

construction and test form quality, control exposure rates of test materials, provide

better test security, obtain greater assurance of local independence, minimize item

ordering and context effects, and allow item review during the test administration

(Hendrickson, 2007). MST provides better test quality and security because several

blocks of items can be created in which content balance and item difficulty can be

considered within the block. Local independence requires the examinee’s response to

the current item should not have a relationship with previous items. If local item
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dependence exists among some items in the tests, it violates the local independence

assumption in IRT, which is widely used in item-level adaptive testing. MST also

allows examinees to review items and skip them within a block during the test ad-

ministration. Given these advantages, MST is a promising option in adaptive testing

that offers a more efficient testing design and environment compared to traditional

CAT.

However, several issues regarding MST have been reported. These issues include

identifying the optimal number of stages and the range of difficulty within the stages,

obtaining feasible statistical information for psychometric and exposure concerns, and

differentiating between scores and decisions based on number-correct and IRT scor-

ing procedures (Hendrickson, 2007). For example, the purpose of the test and the

characteristics of the population to be tested help determine the length and difficulty

of MST tests. Generally, more items are needed in MST to obtain sufficient mea-

surement precision compared to CAT. In addition, constructing the blocks of items

and combining them under MST require more work for content domain experts, item

developers, and psychometricians than for blocks of items in CAT. Finally, replacing

items that are independent within the same block to control item exposure can be

difficult in MST (Wainer & Kiely, 1987).

MST applications beyond unidimensional models are also limited. However, most

models used for diagnostic testing require a multidimensional latent trait. More

specifically, cognitive diagnosis modeling requires the estimation of a set of discrete

attributes, an attribute vector, which consists of several dimensions. Constructing

the blocks in MST for cognitive diagnosis can be challenging because there are no

difficulty parameters for every relevant dimension in CDMs. Multistage testing using

CDMs (CD-MST) was first noted by von Davier and Cheng (2014). They discussed

several heuristics that can be applied in the CD-MST selection stage and suggested

Shannon entropy for selecting the next block of items. However, the authors did not
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investigate further how a block of items in the context of cognitive diagnosis for MST

can be created.

To date, no research has been done to investigate the impact of item review and

answer change in the context of cognitive diagnosis CAT (CD-CAT). The goal of this

study was to propose a new CD-CAT administration procedure. In this procedure, a

block of items is the unit of administration. Because there were no difficulty param-

eters to partition the test into blocks in cognitive diagnosis, blocking was performed

based on the information using item selection indices. Therefore, different from MST,

content balancing and item difficulty were not applicable in the new procedure. Us-

ing this blocked design, examinees have an opportunity to review and change their

answers within the block.

4.1.1 Cognitive Diagnosis Models

CDMs aim to determine whether or not examinees have a mastery of a set of

typically binary attributes. A binary attribute vector represents the presence or

absence of the skill or attribute. Let αi={αik} be the attribute vector of examinee i,

where i = 1, 2, . . . , N examinees, and k = 1, 2, . . . , K attributes. The kth element of

the vector is 1 when the examinee has mastered the kth attribute, and it is 0 when the

examinee has not. In cognitive diagnosis, examinees are classified into latent classes

based on the attribute vectors. Each attribute vector corresponds to a unique latent

class. Therefore, K attributes create 2K latent classes or attribute vectors. Similarly,

the responses of the examinees to J items are represented by a binary vector. Let

Xi = {xij} be the ith examinee’s binary response vector for a set of j = 1, 2, . . . , J

items. The required attributes for an item are represented in a Q-matrix (Tatsuoka,

1983), which is a J × K matrix. The element of the jth row and the kth column,

qjk, is 1 if the kth attribute is required to answer the jth item correctly, and it is 0

otherwise.
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To date, a variety of general CDMs has been proposed to increase their applicabil-

ity. For example, the log-linear CDM (Henson, Templin, & Willse, 2009), the general

diagnostic model (von Davier, 2008), and the generalized deterministic inputs, noisy

“and” gate model (G-DINA; de la Torre, 2011) are examples of general CDMs. The

G-DINA model relaxes some of the strict assumptions of the deterministic inputs,

noisy “and” gate (DINA; de la Torre, 2009; Haertel, 1989; Junker & Sijtsma, 2001)

model, and it partitions examinees into 2K
∗
j groups, where K∗j =

∑K
k=1 qjk is the

number of required attributes for item j. A few constrained CDMs can be derived

from the G-DINA model using different constraints (de la Torre, 2011). These in-

clude the DINA model, which assumes that lacking one of the required attributes is

as the same as lacking all of the required attributes; the deterministic input, noisy

“or” gate (DINO; Templin & Henson, 2006) model, which assumes that having one

of the required attributes is as the same as having all of the required attributes; and

the additive CDM (A-CDM; de la Torre, 2011), which assumes that the impacts of

mastering the different required attributes are independent of each other.

4.1.2 Computerized Adaptive Testing

CAT has become a popular tool in testing because it allows examinees to receive

different tests, with possibly different lengths. Compared to paper-and-pencil tests,

the mode of test administration changes from paper to computer, and the test de-

livery algorithms change from linear to adaptive (van der Linden & Pashley, 2010).

Therefore, it provides a tailored test for each examinee, and better ability estima-

tion with shorter test lengths (Meijer & Nering, 1999). A typical CAT procedure

involves selecting appropriate items to each examinee’s ability level from an item

pool, estimating the ability level during or end of the test, and scoring the examinee’s

performance.

One of the crucial components of CAT is the item selection methods. In traditional
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CAT, item selection methods based on the Fisher information are widely used (Lord,

1980; Thissen & Mislevy, 2000); however, those methods are not applicable in CD-

CAT because the equivalent latent variables in cognitive diagnosis are discrete. This

issue was first noted by Xu, Chang, and Douglas (2003), and they proposed two item

selection indices for CD-CAT based on the Kullback-Leibler (K-L) information and

Shannon entropy procedure. The efficiency of these indices was compared to random

selection using a simulation study. The results of their study showed that both indices

outperformed random selection in terms of attribute classification accuracy. Later,

Cheng (2009) proposed two item selection indices in CD-CAT, and both were based on

the K-L information, namely, the posterior-weighted K-L index (PWKL) and hybrid

K-L index (HKL). The results showed that the new indices performed similarly, but

both had higher classification rates than the K-L and Shannon entropy procedure.

Therefore, the PWKL has become popular in the research of CD-CAT because of its

better classification rates and easier implementation.

Recently, Kaplan, de la Torre, and Barrada (2015) proposed two new item selec-

tion indices based on the PWKL and the G-DINA model discrimination index (GDI)

for CD-CAT. The results showed that the two new indices performed very similarly

and higher attribute classification rates compared to the PWKL. In addition, the

GDI had the shortest administration time. In this article, the PWKL and GDI will

be used as item selection indices with the new CD-CAT administration procedure.

4.1.2.1 Item Selection Methods

4.1.2.1.1 The Kullback-Leibler Information Index

The K-L information is a non-symmetric measure of distance between the two

probability distributions, X and Y , where X is assumed to be the true distribution

of the data (Cover & Thomas, 1991). The function measuring the distance between
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the two distributions is given by

K(f, g) =

∫ [
log

(
f(x)

g(x)

)]
f(x)dx, (4.1)

where f(x) and g(x) are the probability density functions of the distributions X

and Y , respectively. Larger information gives easier differentiation between the two

distributions (Lehmann & Casella, 1998). The item selection methods based on the K-

L information have been used in traditional and nontraditional CAT (Chang & Ying,

1996; Xu & Douglas, 2006; McGlohen & Chang, 2008; Xu et al., 2003). All findings

showed that the item selection methods based on the K-L information produced good

estimation accuracy, and they can work under both continuous and discrete variables

(i.e., attribute vectors in CDMs). Thus, the K-L information can be used as an

alternative to the Fisher information in CD-CAT.

4.1.2.1.2 The Posterior-Weighted Kullback-Leibler Index

The developments in CD-CAT required more detailed evaluation of the CAT com-

ponents by the researchers. Therefore, Cheng (2009) proposed the PWKL as an item

selection method based on the K-L information. The PWKL is a modified version

of the K-L information using the posterior distribution of the attribute vectors as

weights. The calculation of the PWKL involves summing the distances between the

current estimate of the attribute vector and the other possible attribute vectors, and

it is based on the K-L information. The PWKL is given by

PWKLj(α̂
(t)
i ) =

2K∑
c=1

[
1∑

x=0

log

(
P (Xj = x|α̂(t)

i )

P (Xj = x|αc)

)
P (Xj = x|α̂(t)

i )π
(t)
i (αc)

]
, (4.2)

where P (Xj = x|αc) is the probability of the response x to item j given the attribute

vector αc, and π
(t)
i (αc) is the posterior probability of examinee i given the responses

to the t items. The (t+ 1)th item to be administered is the item that maximizes the
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PWKL.

4.1.2.1.3 The G-DINA Model Discrimination Index

The G-DINA model discrimination index (GDI) was first proposed by by de la

Torre and Chiu (2015) as an index to implement an empirical Q-matrix validation

procedure. It measures the (weighted) variance of the probabilities of success of an

item given a particular attribute distribution. Later, Kaplan et al. (2015) used

it as an item selection index for CD-CAT. To give a summarized definition of the

index, define α∗cj as the reduced attribute vector consisting of the first K∗j attributes,

for c = 1, . . . , 2K
∗
j . For example, if a q-vector is defined as (1,1,0,0,1) for K∗j = 3

number of required attributes, the reduced attribute vector is (a1,a2,a5). Also, define

P (Xij = 1|α∗cj) as the success probability on item j given α∗cj. The GDI for item j is

defined as

ς2j =
2
K∗

j∑
c=1

π
(t)
i (α∗cj)[P (Xij = 1|α∗cj)− P̄j]2, (4.3)

where π
(t)
i (α∗cj) is the posterior probability of the reduced attribute vector and P̄j =∑2

K∗
j

c=1 π(α∗cj)P (Xij = 1|α∗cj) is the mean success probability.

4.2 Simulation Study

One of the most important issues with traditional CAT administration is that

examinees cannot review their responses to previous items. In this article, a new CD-

CAT administration procedure was proposed. In this procedure, a block of items,

instead of one item, is administered at a time. Examinees then can review their re-

sponses within the same block. Four methods (unconstrained, constrained, hybrid-1,

and hybrid-2) were considered in this blocked-design CAT. In the unconstrained ver-

sion, a block of Js items was randomly administered first to calculate the examinee’s

posterior distribution, which was needed to compute the item selection indices. The
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most informative Js items remaining in the pool were administered together, and the

posterior distribution was updated. This cycle continued until the test termination

rule was satisfied. The unconstrained version of the new procedure is shown in the

left panel of Figure 4.1.

Figure 4.1: The New CD-CAT Procedures

Start with Js items 
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Stopping rule satisfied?  

Terminate testing 

Administer Js item with the largest 
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Update the posterior distribution 
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Stopping rule satisfied?  

Terminate testing 

Administer Js item with  
the largest information,  

whose q-vectors are different 

Yes 

No 

The Unconstrained CD-CAT Procedure The Constrained CD-CAT Procedure 

In the constrained version, items were selected based on constraint on the q-

vectors. Specifically, none of the items within the same block are allowed to have the

same q-vector. A previous study showed that item selection indices did not provide

relevant information when the same type of items (e.g., the same q-vector) were

administered repeatedly (Kaplan et al., 2015). As with the unconstrained version,

the first Js items were randomly selected from the pool; however, the q-vectors of

the items were constrained to be different from each other. Again, the posterior

distribution was calculated, and the next Js items were selected from the pool based

on the item selection index, with the same constraint. This procedure continued

until the termination criterion was satisfied. The right panel of Figure 4.1 shows the

constrained version of the proposed procedure.
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In the hybrid-1 version, a block of Js items with the same constraint as in the

constrained version was administered during the first half of the test, and the second

half of the test was performed without constraint. In the hybrid-2 version, no con-

straint was applied during the first half of the test, but the constraint was applied

in the second half. The viability of the new procedure was examined in a simulation

study. The impact of different factors on the attribute classification accuracy of the

new procedures were investigated.

4.2.1 Design

4.2.1.1 Data Generation

The impact of the item quality and generating model was considered in the data

generation. In addition, a subset of attribute vectors was used to generate the ex-

aminees’ attribute vectors. Two levels of item quality, namely, low-quality (LQ) and

high-quality (HQ), were considered. However, it should be noted that these two

terms were used exclusively for this study, and in other studies, they have been de-

fined differently. For the purposes of this study, HQ and LQ can also be viewed as

more discriminating and less discriminating, respectively. For LQ items, the lowest

and highest success probabilities (i.e., P (0) and P (1)) were generated from uniform

distributions, U(0.15, 0.25) and U(0.75, 0.85), respectively; and for HQ items, P (0)

and P (1) were generated from uniform distributions, U(0.00, 0.20) and U(0.80, 1.00),

respectively. Item responses were generated using three reduced models: the DINA

model, the DINO model, and the A-CDM. The probability of success was set as

discussed above for the DINA and DINO. In addition to these probabilities, the in-

termediate success probabilities were obtained by allowing each required attribute to

contribute equally for the A-CDM. The number of attributes was fixed at K = 5.

A more efficient simulation design from Kaplan et al. (2015)’s paper was also used
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in this study. One representative of each attribute vector (i.e., no mastery, mastery of

a single attribute only, mastery of two attributes only, and so forth) was used and the

appropriate weights are applied. Two thousand examinees were generated for each

attribute vector, resulting in a total of 12,000 examinees.

4.2.1.2 Item Pool and Item Selection Methods

The Q-matrix was created from 2K−1 = 31 possible q-vectors, each with 40 items.

The pool then totaled 1240 items. Only the fixed test lengths were used as a test

termination rule. The test lengths were set to 8, 16, and 32 items, and the size of the

blocks was set to Js=1, 2, and 4. In fact, Js=1 corresponds to traditional CD-CAT

administration. Two item selection indices were considered: the PWKL and the GDI.

For greater comparability, a uniform distribution of the attribute vectors was used as

the prior distributions for the indices across all conditions. In the case of the PWKL,

when the estimate of the attribute vector was not unique, a random attribute vector

was chosen from the modal attribute vectors.

To compare the efficiency of the indices, the means of the correct attribute clas-

sification (CAC) rate and the correct attribute vector classification (CVC) rate were

computed for each condition when the fixed test length was used as the termination

rule. For each of the six attribute vectors considered in the design, let αikl and α̂ikl be

the kth true and estimated attribute in attribute vector l, l = 0, 1 . . . 5, for examinee

i, respectively. The CAC and CVC rates were computed as

CACl =
1

2, 000

2,000∑
i=1

5∑
k=1

I[αikl = α̂ikl], and

CV Cl =
1

2, 000

2,000∑
i=1

5∏
k=1

I[αikl = α̂ikl],

(4.4)

where I is the indicator function. Using appropriate weights (described below), the

CAC and the CVC were computed assuming the attributes were uniformly distributed
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for the fixed test-length conditions. This study focused on uniformly distributed

attribute vectors. Thus, the results based on the six attribute vectors had to be

weighted appropriately. For K = 5, the vector of the weights were 1/32, 5/32, 10/32,

10/32, 5/32, and 1/32, which represented the proportions of zero-, one-, two-, three-,

four-, and five-attribute mastery vectors among the 32 attribute vectors, respectively.

4.2.2 Results

4.2.2.1 Classification Accuracy

This study focused on attribute vectors that were uniformly distributed; however,

the sampling design of the study can allow for results to be generalized to different

distributions of the attribute vectors (e.g., higher-order; de la Torre & Douglas, 2004).

The CAC and CVC rates were computed using appropriate weighted averages. For

all conditions, the CAC rates were, as expected, higher than the CVC rates, but the

measures showed similar patterns. Thus, only the CVC rates are discussed. The CVC

rates under the different factors are presented in Tables 4.1, 4.2, and 4.3 for the DINA,

the DINO, and the A-CDM, respectively. In Kaplan et al. (2015), differences in the

classification rates were evaluated using different cut points to better summarize the

findings. Similarly, in this study, differences in the CVC rates were evaluated using

two cut points, 0.03 and 0.10. Differences below 0.03 were considered negligible,

differences between 0.03 and 0.10 were considered moderate, and differences above

0.10 were considered substantial. In addition, 8-item tests were considered as short,

16-item tests were considered as medium-length, and 32-item tests were considered

as long tests.

Using the PWKL with the DINA and the DINO as the generating models, the

constrained version with the PWKL had the best classification accuracy among the

other blocking versions, whereas the unconstrained version with the PWKL had the
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Table 4.1: The CVC Rates Using the DINA Model

PWKL GDI
IQ J Js UC H2 H1 C UC H2 H1 C
LQ 8 1 0.41 0.41 0.41 0.41 0.53 0.53 0.53 0.53

2 0.28 0.30 0.33 0.36 0.52 0.53 0.52 0.53
4 0.20 0.26 0.32 0.35 0.45 0.45 0.46 0.49

16 1 0.75 0.75 0.75 0.75 0.83 0.83 0.83 0.83
2 0.58 0.65 0.70 0.73 0.80 0.81 0.80 0.81
4 0.42 0.58 0.63 0.71 0.71 0.76 0.77 0.79

32 1 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98
2 0.91 0.94 0.96 0.96 0.98 0.98 0.98 0.98
4 0.80 0.90 0.94 0.95 0.97 0.97 0.97 0.97

HQ 8 1 0.85 0.85 0.85 0.85 0.98 0.98 0.98 0.98
2 0.54 0.60 0.68 0.73 0.98 0.98 0.97 0.97
4 0.37 0.49 0.59 0.70 0.96 0.96 0.96 0.96

16 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.97 0.99 0.99 0.99 1.00 1.00 1.00 1.00
4 0.84 0.96 0.97 0.99 0.99 1.00 1.00 1.00

32 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and”
gate; PWKL = posterior-weighted Kullback-Leibler index; GDI = G-DINA model discrimina-
tion index; G-DINA = generalized DINA; UC = unconstrained; H2 = hybrid-2; H1 = hybrid-1;
C = constrained; IQ = item quality; J = test length; Js = block size; LQ = low-quality; HQ =
high-quality.

worst classification accuracy regardless of the block size, test length, and item qual-

ity except on the 32-item test with the HQ item conditions where the classification

accuracy was perfect. However with the GDI, using different blocking versions with

the GDI resulted in different classification accuracies based on the factors; however,

those differences were mostly negligible. In the following section, the impact of the

factors (block size, test length, and item quality) on the CVC rates is discussed.

4.2.2.1.1 The Impact of the Block Size

4.2.2.1.1.1 Short Tests with LQ Items

For short tests with LQ items, increasing the block size generally resulted in lower

classification rates regardless of the blocking version and item selection index except
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Table 4.2: The CVC Rates Using the DINO Model

PWKL GDI
IQ J Js UC H2 H1 C UC H2 H1 C
LQ 8 1 0.42 0.42 0.42 0.42 0.59 0.59 0.59 0.59

2 0.26 0.31 0.36 0.40 0.53 0.53 0.53 0.53
4 0.20 0.28 0.31 0.40 0.52 0.51 0.48 0.46

16 1 0.74 0.74 0.74 0.75 0.84 0.84 0.84 0.84
2 0.58 0.65 0.70 0.74 0.83 0.83 0.82 0.83
4 0.45 0.59 0.67 0.73 0.78 0.80 0.78 0.79

32 1 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98
2 0.92 0.94 0.96 0.97 0.98 0.98 0.98 0.98
4 0.81 0.91 0.95 0.96 0.97 0.97 0.97 0.97

HQ 8 1 0.85 0.85 0.85 0.85 0.99 0.99 0.99 0.99
2 0.61 0.69 0.73 0.78 0.98 0.98 0.98 0.98
4 0.45 0.60 0.65 0.74 0.96 0.95 0.96 0.97

16 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00
4 0.86 0.97 0.97 0.99 1.00 1.00 1.00 1.00

32 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and”
gate; PWKL = posterior-weighted Kullback-Leibler index; GDI = G-DINA model discrimina-
tion index; G-DINA = generalized DINA; UC = unconstrained; H2 = hybrid-2; H1 = hybrid-1;
C = constrained; IQ = item quality; J = test length; Js = block size; LQ = low-quality; HQ =
high-quality.

for several conditions. First, for the DINA model and the PWKL, increasing the

block size from one to two resulted in substantial differences for the unconstrained and

hybrid-2 versions, and moderate differences for the hybrid-1 and constrained versions.

For the DINO model and the PWKL, this increase resulted in substantial differences

for the unconstrained, hybrid-1, and hybrid-2 versions; the differences were negligible

for the constrained version. For example, in the DINA model, the differences were 0.13

and 0.11 for the unconstrained and hybrid-2 versions, and 0.05 and 0.08 for the hybrid-

1 and constrained versions, respectively. Moreover, for the DINA model, increasing

the block size from two to four resulted in moderate differences for the unconstrained

and hybrid-2 versions; however, the differences were negligible when the constrained

and hybrid-1 versions were used. For the DINO model, increasing the size from two
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Table 4.3: The CVC Rates Using the A-CDM

PWKL GDI
IQ J Js UC H2 H1 C UC H2 H1 C
LQ 8 1 0.46 0.46 0.46 0.46 0.50 0.50 0.50 0.50

2 0.45 0.45 0.45 0.45 0.50 0.45 0.50 0.45
4 0.45 0.44 0.45 0.42 0.39 0.44 0.47 0.38

16 1 0.81 0.81 0.81 0.81 0.79 0.79 0.79 0.79
2 0.79 0.78 0.79 0.77 0.78 0.77 0.78 0.78
4 0.73 0.73 0.70 0.70 0.74 0.73 0.73 0.73

32 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
2 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96
4 0.96 0.93 0.95 0.92 0.96 0.93 0.95 0.93

HQ 8 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
2 0.93 0.93 0.96 0.93 0.97 0.96 0.97 0.96
4 0.72 0.85 0.82 0.90 0.96 0.95 0.96 0.95

16 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
4 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99

32 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and”
gate; PWKL = posterior-weighted Kullback-Leibler index; GDI = G-DINA model discrimina-
tion index; G-DINA = generalized DINA; UC = unconstrained; H2 = hybrid-2; H1 = hybrid-1;
C = constrained; IQ = item quality; J = test length; Js = block size; LQ = low-quality; HQ =
high-quality.

to four resulted in moderate differences for the unconstrained and hybrid-1 versions;

however, the increase resulted in negligible differences for the constrained and hybrid-

2 versions. For the A-CDM and the PWKL, increasing the block size from two to four

resulted in negligible differences in the CVC rates regardless of the blocking version

except for the constrained version. In that blocking version, the increase resulted in

a moderate difference.

For the DINA model and the GDI, increasing the block size from one to two

resulted in negligible differences in the CVC rates regardless of the blocking version.

However, for the DINO model and the GDI, the same increase in the block size

resulted in moderate differences in the CVC rates regardless of the blocking version.
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For example, using the unconstrained version with the GDI, the differences were 0.01

and 0.06 for the DINA and DINO models, respectively. Moreover, for the DINA

model, increasing the block size from two to four resulted in moderate differences

regardless of the blocking version. For the DINO model, the differences were moderate

for the constrained and hybrid-1 versions and negligible for the unconstrained and

hybrid-2 versions. For the A-CDM and the GDI, increasing the block size from one to

two resulted in moderate differences in the CVC rates for the constrained and hybrid-

1 versions and negligible differences for the unconstrained and hybrid-2 versions. For

example, the differences were 0.05 for the constrained and hybrid-1 versions and 0.00

for the unconstrained and hybrid-2 versions. Finally, increasing the block size from

two to four resulted in moderate differences in the CVC rates for the unconstrained

and constrained versions, and negligible differences for the hybrid-1 and hybrid-2

versions.

4.2.2.1.1.2 Medium-Length Tests with LQ Items

For the medium-length tests with LQ items, increasing the block size resulted

in lower classification rates for the PWKL when the DINA and DINO models were

used, and negligible differences when the A-CDM was used as the generating models.

However, increasing the block size resulted in negligible to moderate differences in the

classification rates for the GDI regardless of the blocking version and generating model

except for several conditions. First, for the DINA and DINO models and the PWKL,

increasing the block size resulted in substantial differences in the CVC rates for the

unconstrained version, moderate differences for the hybrid-1 and hybrid-2 versions,

and negligible differences for the constrained version. The differences were 0.17, 0.02,

0.05, and 0.10 for the unconstrained, constrained, hybrid-1, and hybrid-2 versions

in the DINA model, respectively. For the A-CDM and the PWKL, increasing the

block size from one to two resulted in negligible differences in the CVC rates for three
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blocking versions. However, for the constrained version, the difference was moderate.

Increasing the block size from two to four resulted in moderate differences regardless

of the blocking version.

For the DINA model and the GDI, increasing the block size resulted in negligible

differences in the CVC rates for the constrained and hybrid-1 versions and moderate

differences for the unconstrained and hybrid-2 versions. For the DINO model and the

GDI, increasing the block size resulted in negligible differences for the unconstrained

and hybrid-2 versions and moderate differences for the constrained and hybrid-1 ver-

sions. For the A-CDM and the GDI, increasing the block size from one to two resulted

in negligible differences in the CVC rates regardless of the blocking version; however,

increasing the block size from two to four resulted in moderate differences regardless

of the blocking version.

4.2.2.1.1.3 Long Tests with LQ Items

For long tests with LQ items, increasing the block size resulted in negligible dif-

ferences in the CVC rates regardless of the blocking version, generating model, and

item selection index except for several conditions. First, for the DINA and DINO

models using the PWKL, the unconstrained version resulted in moderate differences

when the block size was increased from one to two and substantial differences when

the block size was increased from two to four. For the A-CDM and the PWKL, the

constrained version yielded moderate differences when the block size was increased

from two to four.

4.2.2.1.1.4 Short Tests with HQ Items

For short tests with HQ items, increasing the block size resulted in moderate to

substantial differences in the classification rates when the PWKL was used; however,

increasing the block size resulted in negligible differences when the GDI was used.

Several additional findings should be noted. For the DINA model and the PWKL,
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increasing the block size from one to two resulted in substantial differences for all

four blocking versions. For the DINO model and the PWKL, increasing the block

size resulted in substantial differences for the unconstrained, hybrid-1, and hybrid-2

versions; for the constrained version, the difference was moderate. For example, for

the DINA and models and the unconstrained version, the differences were 0.31 and

0.24, respectively.

For the DINA model and the PWKL, increasing the block size from two to four

resulted in substantial differences for the unconstrained and hybrid-2 versions, moder-

ate differences for the hybrid-1 version, and negligible differences for the constrained

version. For the DINO model and the PWKL, the same size increase resulted in

substantial differences for the unconstrained version and moderate differences for the

hybrid-2, hybrid-1, and constrained versions.

For the A-CDM and the PWKL, increasing the block size from one to two re-

sulted in moderate differences in the CVC rates for the unconstrained, hybrid-2, and

constrained versions, and in a negligible difference for the hybrid-1 version. In addi-

tion, increasing the block size from two to four yielded substantial differences for the

unconstrained and hybrid-1 versions, moderate differences for the hybrid-2 version,

and negligible differences for the constrained version.

4.2.2.1.1.5 Medium-Length and Long Tests with HQ Items

For medium-length and long tests with HQ items, increasing the block size resulted

in negligible differences in the classification rates regardless of the blocking version,

generating model, and item selection index, except for the 16-item test involving the

PWKL with the unconstrained version. Increasing the block size from two to four

resulted in substantial differences for the DINA and DINO models. The differences

were 0.13 and 0.11 for the DINA and DINO models, respectively.
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4.2.2.1.2 The Impact of the Test Length

4.2.2.1.2.1 LQ Items

As expected, increasing the test length resulted in substantial increases in the

classification rates regardless of the blocking version, generating model, and block

size. Moreover, the increases for the PWKL were greater than those for the GDI. For

example, for the DINA model with the block size of one, increasing the test length

from 8 to 16 resulted in 0.34 and 0.30 increases in the CVC rates for the PWKL and

the GDI, respectively. Although the PWKL had higher augmentation in the CVC

rates, the GDI still had higher classification accuracy when LQ items were used.

4.2.2.1.2.2 HQ Items

For a small block (i.e., Js=1 and 2), increasing the test length resulted in negligi-

ble differences in the classification rates regardless of the blocking version, generating

model, and item selection index except for the DINA and DINO models with the

PWKL regardless of the blocking version. For the A-CDM with the PWKL, the dif-

ferences were substantial for the unconstrained, hybrid-2, and constrained versions.

In addition, for the A-CDM, the hybrid-2 and constrained versions resulted in mod-

erate differences when small blocks were used. For the DINA and DINO models with

the PWKL, increasing the test length from 8 to 16 resulted in substantial differences

(i.e., 0.43) for the unconstrained version when the block size was two.

For a large block (i.e., Js=4) and the PWKL, increasing the test length from 8

to 16 resulted in substantial differences in the classification rates regardless of the

blocking version and generating model, except for the constrained version using the

A-CDM−the difference was moderate. However, for a large block with the GDI,

the same increase in the test length resulted in negligible to moderate increases in

the classification rates. For the DINA model and the GDI, the hybrid-1, hybrid-

2, and constrained versions resulted in moderate differences, and the unconstrained
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version resulted in negligible differences. For the DINO model and the same index,

the unconstrained and hybrid-2 versions resulted in moderate differences, and the

constrained and hybrid-1 versions resulted in negligible differences. For the A-CDM

and the same index, the unconstrained, hybrid-2, and constrained versions resulted in

moderate differences, whereas the hybrid-1 version resulted in negligible differences.

For a large block, increasing the test length from 16 to 32 resulted in negligible

differences in the classification rates regardless of the blocking version, generating

model, and item selection index, except for the DINA and DINO models and using

the PWKL with the unconstrained version, where the differences were substantial.

4.2.2.1.3 The Impact of the Item Quality

As expected, using HQ items instead of LQ items resulted in substantial differ-

ences in the classification rates when the test length was shorter (i.e., 8- and 16-item

tests) regardless of the blocking version, generating model, and item selection index.

However, for long tests (i.e., 32-item tests), varying results were observed.

For a small block (i.e., Js=1), using HQ items instead of LQ items resulted in

negligible differences in the classification rates regardless of the blocking version,

generating model, and item selection index. For large blocks (i.e., Js=2 and 4) and

the DINA and DINO models, using HQ items resulted in moderate differences for the

PWKL, except for the unconstrained version, where the difference was substantial

when the block size was four. Moreover, for the same block size and models, the GDI

yielded negligible differences in the CVC rates regardless of the blocking version.

For the A-CDM, when the block size was two, using HQ items resulted in moderate

differences for the unconstrained and hybrid-1 versions and negligible differences for

the hybrid-2 and constrained versions regardless of the item selection index. Last, for

the A-CDM, using HQ items yielded moderate differences regardless of the blocking

version and item selection index when the block size was two.
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4.2.2.2 Item Usage

To get a deeper understanding of the differences in item usage across the different

blocking versions, items were grouped based on their required attributes. An addi-

tional simulation study was carried out using the same factors except for one: item

quality. For this study, the lowest and highest success probabilities were fixed across

all of the items, specifically, P (0)=0.1 and P (1)=0.9. This design aimed to elimi-

nate the effect of item quality on item usage. The test administration was divided

into periods that each compared four items. The item usage was recorded in each

period. Only the results for the GDI, 8-item tests, and α3 using the unconstrained

and hybrid-1 versions are shown in Figures 4.2, 4.4, and 4.6, and using the hybrid-2

and constrained versions are shown in Figures 4.3, 4.5, and 4.7 for the DINA model,

the DINO model, and the A-CDM, respectively.

In the first period, which includes the first four items, single attribute items were

mostly used regardless of the blocking version, generating model, and block size. For

a small block (i.e., Js=1), single attribute items, whose q-vectors were different, were

mostly administered in the first period. Because the uniform distribution was used as

before for each blocking version and item selection index at the beginning of the test,

the four single attribute items were the same regardless of the blocking version and

generating model when the block size was one. For example, items with the q-vectors

of (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), and (0,0,0,0,1) were used in the first period for

each blocking version and generating model when the block size was one. However,

for large blocks (i.e., Js=2 and Js=4), the blocking versions resulted in different item

types. For example, the unconstrained and hybrid-2 versions used two types of single

attribute items (e.g., items whose q-vectors were (0,0,1,0,0) and (0,0,0,1,0)) when

the block size was two, and only one type of single attribute item (e.g., items whose

q-vector was (0,0,1,0,0)) when the block size was four regardless of the generating
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model. Moreover, because of the constraint, the hybrid-1 and constrained versions

used four single attribute items, whose q-vectors were different, in the first period

regardless of the generating model.

In the second period, item usage differed based on the blocking versions, gener-

ating model, and block size. When the block size was one, the item usage patterns

were similar to those observed in the first part of the study. For example, the DINA

model showed the following pattern for item usage: The model used items that re-

quired single attributes which were not mastered by the examinee (e.g., items whose

q-vectors were (0,0,0,1,0) with 10% and (0,0,0,0,1) with 8% usage) and items that

required the same attributes as the examinee’s true attribute mastery vector (e.g.,

items whose q-vectors were (1,1,1,0,0) with 8% usage).

The DINO model showed the following pattern of item usage: The model used

items that required single attributes which were mastered by the examinee (e.g.,

items whose q-vectors were (1,0,0,0,0) with 13%, (0,1,0,0,0) with 8%, and (0,0,1,0,0)

with 10% usage) and items that required the same attributes as the examinee’s true

attribute nonmastery vector (e.g., items whose q-vectors were (0,0,0,1,1) with 8%

usage). The A-CDM used items that required single attributes regardless of the true

attribute vector. In addition to the item usage in each model, the single attribute item

with the q-vector of (1,0,0,0,0) was used 13% of the time regardless of the blocking

version and generating model in the second period.

When the block size was two and four, the blocking versions resulted in dif-

ferent item usage patterns. The unconstrained version used only single attribute

items for the large block regardless of the generating model. For example, the DINA

model mostly used items whose q-vectors were (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), and

(0,0,0,0,1) when the block size was two, and items with (0,0,1,0,0) and (0,0,0,1,0)

when the block size was four. The hybrid-2 version mostly used single attribute

items in addition to the two-attribute items when the block size was larger for the
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DINA and DINO models. For example, the DINA and DINO models used all single

attribute items and items with the q-vector of (1,0,1,0,0) when the block size was

two. The hybrid-1 and constrained versions yielded the same item usage patterns for

the generating model when the block size was two. However, it used only one type

of single attribute items when the block size was four. Again, the A-CDM used only

single attribute items regardless of the blocking version and block size.

In addition, the unconstrained version used certain item types for a certain block

size regardless of the generating model. For example, when the block size was two,

the most commonly used items were (0,0,1,0,0) and (0,0,0,1,0) in the first period,

and (0,1,0,0,0) and (0,0,0,0,1) in the second period; when the block size was four, the

items were (0,0,0,1,0) in the first period and (0,0,1,0,0) in the second period regardless

of the generating model. In other words, as expected, different types of one-attribute

items were used in different periods because a block of items was administered at a

time, and the item selection index tended to administer only one-attribute items until

it can obtain enough information to proceed to the other item types.

Longer test lengths (i.e., 16- and 32-item tests) yielded similar item usage patterns

in the first period as on the 8-item test. Moreover, in the last periods, the blocking

versions yielded similar item usage patterns for the generating models, except for the

block size of four in which different types of items were used because of the constraint.

4.3 Discussion and Conclusion

Item review and answer change have several benefits for test takers such as re-

duced test anxiety, the opportunity to correct careless errors, and, most importantly,

increased testing validity. However, these options have several drawbacks, including

decreased testing efficiency and demand of more complicated item selection algo-

rithms. In a blocked-design CAT, item review was allowed within a block of items,
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and several studies showed that there was no significant difference in the accuracy

of the ability estimated with limited review and no review procedures. Another pro-

cedure that allows item review and answer change is MST in which test adaption

occurs at the sets of item level instead of the item level. In this paper, a new CD-

CAT procedure was proposed to allow item review and answer change during test

administration. In this procedure, a block of items was administered with and with-

out a constraint on the q-vectors of the items. Different from MST, content balancing

and item difficulty were not applicable in the new procedure. Based on the factors

in the simulation study, using the new procedure with the GDI is promising for item

review especially with HQ items and long tests without too large decrease in the

classification accuracy. In addition, the different blocking versions yielded similar

classification rates. However, the constrained version with the PWKL had the best

classification accuracy, whereas the unconstrained version with the PWKL had the

worst classification accuracy regardless of the block size, test length, and item quality

except on long tests with HQ items. The results of this study suggest several find-

ings that are of practical value. First, it is not advisable to use the PWKL with the

blocked-design CD-CAT especially with larger block sizes because of the substantial

decrease in the classification rates across many conditions. Second, from this study,

the practitioners, so as to allow students to review and change their answers, can

determine the tolerable level of loss in classification accuracy in deciding the appro-

priate block size to be used. Last, item usage patterns revealed in this study can be

helpful in test construction strategies in the context of cognitive diagnosis.

Although this study showed promise with respect to item review for CD-CAT,

more research must be conducted to determine the viability of the blocked-design

CD-CAT. First, only a single constraint on the q-vectors was considered in the cur-

rent study; however, it would be interesting to examine different possible constraints

(e.g., hierarchical structures) on items. Second, further research needs to be done in
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the multistage applications for cognitive diagnosis. For example, CDMs are multidi-

mensional models, and there is no difficulty parameter for every relevant dimension.

Therefore, it is still challenging to construct the blocks in MST for cognitive diagnosis.

Third, the impact of the number of attributes and item pool size was not considered;

these factors also affect the performance of the indices in real CAT applications. Last,

the data sets were generated using a single reduced CDM. It would be more practical

to examine the use of a more general model, which allows the item pool to be made

up of various CDMs.
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Chapter 5

Summary

Compared to unidimensional item response theory (IRT) models, cognitive diag-

nosis models (CDMs) provide more detailed evaluations of students’ strengths and

weaknesses in a particular content area and, therefore, provide more information that

can be used to inform instruction and learning (de la Torre, 2009). Computerized

adaptive testing (CAT) has been developed as an alternative tool to paper-and-pencil

tests and can be used to create tests tailored to each examinee (Meijer & Nering, 1999;

van der Linden & Glas, 2002). CAT procedures are generally built on IRT models;

however, different psychometric models (i.e., CDMs) can also be used in CAT pro-

cedures. Considering the advantages of CAT, the use of CDMs in CAT can provide

better diagnostic evaluations with more accurate estimates of examinees’ attribute

vectors.

At present, most of the research in CAT has been performed in the context of IRT;

however, a small number of studies have recently been conducted in CD-CAT. One

reason the research on CD-CAT is limited is that some of the concepts in traditional

CAT (i.e., Fisher information) cannot be applied in CD-CAT because of the discrete

nature of attributes. With a general aim to address needs in formative assessments,

this dissertation introduced new item selection indices that can be used in CD-CAT,

showed the use of item exposure control methods with one of the new indices, proposed

an alternative CD-CAT administration procedure in which examinees have the benefit

of item review and answer change options, and introduced a more efficient simulation

design that can be generalized to different distributions of attribute vectors, despite
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involving a smaller sample size.

In the first study, two new item selection indices, the modified posterior-weighted

Kullback-Leibler index (MPWKL) and the generalized deterministic inputs, noisy

“and” gate (G-DINA) model discrimination index (GDI), were introduced for CD-

CAT. The efficiency of the indices was compared with the posterior-weighted Kullback-

Leibler index (PWKL). The results showed that compared to the PWKL, the MP-

WKL and the GDI performed very similarly and had higher attribute classification

rates or shorter mean test lengths depending on the test termination rule. Moreover,

item quality had an obvious impact on the classification rates: Higher discrimination

and higher variance resulted in higher classification accuracy. Thus, the combina-

tion of higher-discriminating items with higher variance had the best classification

accuracy and/or shortest test lengths, whereas low-discriminating items with lower

variance had the worst classification accuracy and/or longest test lengths regardless

of the item selection index and the generating model. Moreover, generating models

can affect the efficiency of the indices: For the DINA and DINO models, the results

were more distinguishable; however, the efficiency of the indices was essentially the

same for the A-CDM, except in a few conditions.

To get a deeper understanding of the differences in item usage among the models,

the items were grouped based on their required attributes and item usage in terms

of the number of required attributes recorded for each condition. Overall, the DINA

model showed the following pattern of item usage: The model used items that required

the same attributes as the examinee’s true attribute mastery vector and items that

required single attributes that were not mastered by the examinee. In contrast, the

DINO model showed a different pattern of item usage: This model used items that

required the same attributes as the examinee’s true nonmastery vector and items

that required single attributes that were mastered by the examinee. The A-CDM

used items that required single attributes regardless of the true attribute vector. The
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GDI had the shortest implementation time among the three indices.

In the second study, the use of two item exposure control methods, restrictive

progressive (RP) and restrictive threshold (RT), in conjunction with the GDI was

introduced. When new item selection indices are proposed in CAT, the measurement

accuracy and the test security the indices provide are commonly investigated (Bar-

rada, Olea, Ponsoda, & Abad, 2008). Typically, high item exposure rates accompany

efficient item selection indices, and it is crucial to decrease the use of overexposed

items and increase the use of underexposed items. In this study, the efficiency of the

GDI was investigated in terms of the classification accuracy and the item exposure

using the RP and RT methods. Based on the factors manipulated in the simulation

study, as expected, the RP method resulted in more uniform item exposure rates

and higher classification rates compared to the RT method. Moreover, the factors,

including the item quality, test length, pool size, prespecified desired exposure rate,

and β, generally had a substantial impact on the exposure rates when the RP method

was used; however, fewer factors, such as the pool size, prespecified desired exposure

rate, and β, generally had a substantial impact on the exposure rates when the RT

method was used. The other factors had moderate or negligible effects on the item

exposure rates with some exceptions.

In the third study, a new CD-CAT administration procedure, where blocks of

items are administered, was introduced. Using the new procedure, examinees would

be able to review their responses within a block of items. Originally, Stocking (1997)

proposed a blocked-design CAT in which item review was allowed within a block of

items, and the results showed that there was no significant difference in the accuracy

of the ability estimated with limited review and no review procedures. In this study, a

block of items was administered with and without a constraint on the q-vectors of the

items. Four blocking versions of the new procedure (i.e., unconstrained, constrained,

hybrid-1, and hybrid-2) were proposed. Based on the factors in the simulation study,
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the constrained version with the PWKL had the best classification accuracy, whereas

the unconstrained version with the PWKL had the worst classification accuracy re-

gardless of the block size, test length, and item quality except on long tests with

HQ items. However, the differences between the blocking versions were negligible

when the GDI was used. Using the new procedure with the GDI is promising for

item review especially with HQ items and long tests without too large a decrease in

classification accuracy.

In this dissertation, new item selection indices were proposed for CD-CAT that

can be used instead of traditional CAT procedures when more detailed evaluations

of examinees’ strengths and weaknesses are needed. The dissertation’s first study

was important in understanding how different information statistics can be used as

item selection methods in the CAT administration. The second study was useful

in examining how to implement item exposure control methods with a new item

selection index and what factors should be taken into account when controlling high

item exposure rates. The third study was essential in obtaining more accurate validity

of tests by providing an adequate opportunity for item review and answer change to

examinees. Finally, this dissertation helped deepen our understanding of how different

item selection indices behaved in terms of item usage with respect to different CDMs

and examinee true attribute vectors using a more efficient simulation design.

A successful realization of these objectives led to a deeper understanding of the

CDMs and CAT, and increased the joint applicability of these procedures. Nonethe-

less, there are still questions that need to be investigated in the context of CD-CAT.

For example, in simulation studies, the response data are mostly generated based on

a model, and therefore, it provides a perfect model fit. However, it would be interest-

ing to analyze the efficiency of the new indices using real data, especially when the

response data do not fit any existing model. In addition, one of the most difficult

parts of traditional CAT procedures is the item pool development. This also applies
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to CD-CAT procedures. With respect to this point, a successful implementation of

CD-CAT depends on several factors, including a well-developed item pool, accurately

estimated item parameters, and a well-constructed Q-matrix.
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