
BRANCH DEPENDENT SHEAR COEFFICIENTS AND
THEIR INFLUENCE ON THE FREE VIBRATION OF

MINDLIN PLATES

BY JOSEPH M. LAKAWICZ

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Mechanical & Aerospace Engineering

Written under the direction of

William J. Bottega

and approved by

New Brunswick, New Jersey

January, 2016



c© 2016

JOSEPH M. LAKAWICZ

ALL RIGHTS RESERVED



ABSTRACT OF THE THESIS

BRANCH DEPENDENT SHEAR COEFFICIENTS AND

THEIR INFLUENCE ON THE FREE VIBRATION OF

MINDLIN PLATES

by JOSEPH M. LAKAWICZ

Thesis Director:

William J. Bottega

The effect of the shear correction coefficient on the branches of the frequency spectrum for

the free vibrations of plates using Mindlin plate theory is studied. Each of the three branches

of the frequency spectrum for the Mindlin plate is identified through comparison with the

frequency spectrum of the infinite elastodynamic plate. The use of branch dependent shear

correction coefficients is proposed, in order to bring each of the three branches of the Mindlin

plate into best agreement with their corresponding elastodynamic branches. The general

solution presented is applied to plates with simply-supported, simply-supported/clamped,

and simply-supported/free edges and representative results for the frequency spectrum and

modal plots for each of the boundary conditions is discussed. It is shown that the use

of branch dependent shear correction coefficients improves the frequency predictions for

the free vibrations of Mindlin plates when compared to other studies in the literature.

The branches of the frequency spectrum contribute differently to the calculation of the

natural frequencies of the vibration modes of the plate for the various boundary conditions

considered. The insight gained into the interactions of the frequency branches improves

upon the physical understanding and interpretation, as well as the analysis of the free

vibration of the Mindlin plate, even for the classical case when a single shear correction

coefficient is employed.
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ā = b̄ = 10 and ν = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



6.17. Modal wave number combinations for the simply-supported/free Mindlin
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Chapter 1

Introduction

An elastic plate is mathematically a two-dimensional continuum that represents a thin and

flat three-dimensional body. This type of structure resists bending and in-plane shear,

while also resisting in-plane tension and compression. This thesis studies the free vibration

of plates in accordance with the theories of Kirchhoff and Mindlin. The three-dimensional

theory of elasticity is also studied in order to better understand the vibration frequency

spectrum predicted by Mindlin plate theory.

The classical theory of the bending of plates is attributed to Kirchhoff [12], as he is cred-

ited with developing a theory which is mathematically well-posed with regard to boundary

conditions. The Kirchhoff theory, however, neglects the effects of transverse shear stress and

is known to lose accuracy for high frequency (short wave-length) flexural vibration modes.

To improve upon the classical theory, R.D. Mindlin [17] and E. Reissner [26] separately

introduced theories for the bending of plates that account for the effects of transverse shear

deformation. Mindlin’s theory also accounts for the rotatory inertia of the plate and will

be the focus of study in this thesis.

While the Kirchhoff theory is formulated with the transverse displacement as the sole

measure of motion of the plate, the motion predicted by Mindlin theory is determined

by the transverse displacement as well as the transverse shear angles (or equivalently the

rotations due to bending of a cross-section with normal in the x and y-directions for a

rectangular plate). Mindlin [17] proposes a solution to his plate theory by expressing the

transverse displacement and bending rotations in terms of potentials. Mindlin et al. [18]

use this proposed solution to investigate the free vibration of a rectangular plate with four

simply-supported edges as well as a plate with free edges in one direction. The authors

found three anti-symmetric branches of the frequency spectrum for the vibration of the
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plate which they classified as flexural, thickness-shear, and thickness-twist. Many authors

proceeded to study the simply-supported Mindlin plate to address its accuracy or to attempt

to improve upon its results, some of which will be commented upon shortly. Hashemi and

Arsanjani [7] appear to be the first to consider a Mindlin plate simply-supported in one

direction with all other combinations of simply-supported, clamped, or free boundaries in

the opposite direction. The authors in that study applied the solution procedure of Mindlin

et al. [18]. Mindlin and Medick [19] later presented an alternate theory which included the

lowest symmetric thickness-stretch and thickness-shear frequency branches.

The most prominent method for analyzing the accuracy of a given plate theory in pre-

dicting the free vibration response of a plate, is to compare the results to that predicted by

the three-dimensional theory of elasticity. A general elastodynamic solution for a finite plate

of rectangular geometry is not known due to the difficulty of applying boundary conditions

at the edges around the periphery of the plate. Srinivas et al. [28] present an exact solution

satisfying the three-dimensional elastodynamic theory for the rectangular plate with all four

edges simply-supported, but the solution is not valid for other combinations of boundary

conditions. For finite plates of circular geometry, solutions have also been obtained for

specific boundary conditions, such as in Hutchinson [9] for stress free edges and in Lange

and Bottega [14] for rigid smooth boundaries. Due to the lack of a general elastodynamic

solution for all boundary conditions, it is common to compare the results found from plate

theory to that of the infinite plate.

The frequency spectrum, from elastodynamic theory, for wave propagation in an infinite

plate with traction free surfaces is attributed to Rayleigh [22] and Lamb [13]. They arrived

at the well known Rayleigh-Lamb frequency equations that govern the propagation of con-

tinuous straight crested waves in the infinite plate. The Rayleigh-Lamb frequency equations

cannot be solved analytically, which resulted in much research into the frequency spectrum

that they predict. Mindlin [20] summarized the contributions of various researchers in

studying the Rayleigh-Lamb frequency spectrum and presents the spectrum for both real

and imaginary wave numbers. Meeker and Meitzler [16] studied the general frequency spec-

trum for the inifinite elastodynamic plate by including the contributions of horizontal shear

waves with the vertical shear and longitudinal extensional waves of the Rayleigh-Lamb
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spectrum. A thorough derivation and summary of the frequency spectrum for the infinite

elastodynamic plate appears in Graff [6]. A review of the study of elastodynamics up to

the year 1983, which covers many of these developments, is presented by Pao [21].

The frequency spectrum from the three-dimensional theory of elasticity is also promi-

nently employed in determining the shear correction coefficient for the Mindlin plate. The

shear correction coefficient is used in many plate theories that include transverse shear de-

formation to account for the non-uniform distribution of the transverse shear stress through

the thickness of the plate. A summary of the various shear correction coefficients found in

the literature appears within Chapter 2 of this thesis. In the previously mentioned study by

Srinivas et al. [28], the authors used their results from the three-dimensional elastodynamic

theory for the rectangular plate with all four edges simply-supported to determine the ac-

curacy of the natural frequencies predicted by Mindlin et al. [18]. The results of Srinivas et

al. have been subsequently used as accepted values by many studies, but again, can only

be applied when analyzing plates with simply-supported bounding edges.

Mindlin plate theory is considered a first-order shear deformation theory as it allows for

a constant shear stress distribution through the thickness of the plate, with only the shear

correction coefficient allowing for the non-uniform distribution of the shear stress. Higher-

order shear deformation theories allow for a more complex distribution of the shear stress

through the thickness of the plate. Reddy [23] proposed a higher-order shear deformation

theory that allows for a parabolic distribution of the shear stress and hence, did not require

a shear correction coefficient. Reddy and Phan [24] presented exact solutions to that higher-

order theory for rectangular plates with four simply-supported edges and showed that their

results compared better to the exact results of Srinivas et al. [28] than did those of Mindlin

et al. [18].

A brief history of some notable studies in the literature for plate theories including shear

deformation with exact analytical solutions has been given here. A more complete summary

of the work done on shear deformable plate theories up to the year 1993, including research

done with approximate and finite element solution procedures, can be found in Liew et al.

[15]. The focus of more recent research has been on developing a shear deformable plate

theory that uses the transverse displacement due to bending and the transverse displacement
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due to shear as the two variables that define the motion of the plate rather than the total

transverse displacement and the rotations due to bending. Some examples of this research

can be found in Shimpi and Patel [27], Endo and Kimura [3], and Xiang and Xing [32].

1.1 Thesis Outline

There are seven chapters to this thesis. In the first chapter, an introduction to the history

of Mindlin plate theory is presented. Emphasis is placed upon research reported in the

literature using exact analytical solutions. The second chapter provides the kinematic, con-

stitutive, and kinetic relations for the Mindlin and Kirchhoff plate theories. A summary of

prominent values used for the shear correction coefficient used in the literature is included.

Chapter Three reviews the derivation of the frequency spectrum for the infinite elastody-

namic plate. In the fourth chapter, a general solution for the free vibration of the Mindlin

plate is presented, leading to the modal functions for the plate. A thorough analysis of

the frequency spectrum for the Mindlin plate is included, leading to the selection of branch

dependent shear correction coefficients-a major component of this thesis. Chapter Five

applies the derived general solution to the Mindlin plate for specific boundary conditions

to obtain the frequency equation and modal functions for each specific geometry. Square

plates with simply-supported boundaries in the x-direction and simply-supported, clamped,

or free boundaries in the y-direction are considered. In Chapter Six, the frequency equation

for each specific geometry of the plate is solved to obtain the natural frequencies for each

geometry. The natural frequencies obtained are used to plot the modal functions for sev-

eral of the vibration modes of the plate. Results are compared to those of relevant studies

published in the literature. The seventh chapter summarizes conclusions drawn from the

results of Chapter Six. The thesis concludes with a complete list of cited references.
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Chapter 2

A Review of Plate Theory

In this chapter, the kinematic relations, constitutive relations, governing equations, and

requisite boundary conditions for the plate theories attributed to Mindlin and Kirchhoff are

presented.

2.1 Kinematic Relations

We begin by considering a thin flat uniform, isotropic structure that lies with its mid-plane

in the xy-cartersian coordinate plane when in the undeformed configuration, with the z-axis

perpendicular to this plane as shown in Figure 2.1. The structure has a uniform thickness,

h, in the z-direction that is small when compared to the characteristic length scale, L, in

either direction of the mid-plane (h/L � 1). The plate is hence defined in the xy-plane

with its faces located at z = ±h/2.

Figure 2.1: Plate with coordinate system.

We assume a linear variation of the in-plane displacements through the thickness in

accordance with the Kirchhoff kinematic assumptions, with the deflections of the mid-plane
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of the plate given by u
(0)
x (x, y, t), u

(0)
y (x, y, t), and w(x, y, t) in the x, y, and z-directions

respectively. Hence,

ux(x, y, z, t) = u
(0)
x (x, y, t)− zϕx(x, y, t)

uy(x, y, z, t) = u
(0)
y (x, y, t)− zϕy(x, y, t)

uz(x, y, z, t) = w(x, y, t)

(2.1)

where ux(x, y, z, t), uy(x, y, z, t), and uz(x, y, z, t) are the displacements at any point through

the thickness of the plate and ϕx and ϕy are the rotations due to bending of a cross section

of the plate whose normal is in the direction indicated by the subscript.

In both the classical Kirchhoff plate theory and Mindlin plate theory, we incorporate

linear strain-displacement relationships consistent with infinitesimal small strain, small ro-

tation deformation. Hence, the normal strains are given by

εxx = ∂ux
∂x

εyy =
∂uy
∂y

(2.2)

and

εzz =
∂uz
∂z

=
∂w

∂z
= 0 (2.3)

Since the normal strain in the z-direction vanishes indentically, there is no change in thick-

ness of the plate as it deforms. The in-plane shear strain, also common to both theories, is

given by

εxy = εyx =
1

2
γxy =

1

2

{
∂uy
∂x

+
∂ux
∂y

}
(2.4)

where γxy is the in-plane shear angle.

Under the classical Kirchhoff theory of plates, the influence of transverse shear stress

is neglected and hence both transverse shear strain components are taken to be zero. In

Mindlin plate theory, the effects of transverse shear are included and hence the transverse

shear strains are given by

εxz = εzx =
1

2
γxz =

1

2

{
∂uz
∂x

+
∂ux
∂z

}
(2.5)

and

εyz = εzy =
1

2
γyz =

1

2

{
∂uz
∂y

+
∂uy
∂z

}
(2.6)

where γxz and γyz are the transverse shear angles.
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Substitution of Eqs. (2.1) into Eqs. (2.2) and (2.4) yields the distibution of the in-

plane strains through the thickness of the plate in accordance with the Kirchhoff kinematic

assumptions. Hence,

εxx(x, y, z, t) = ε
(0)
xx (x, y, t)− zχxx(x, y, t)

εyy(x, y, z, t) = ε
(0)
yy (x, y, t)− zχyy(x, y, t)

εxy(x, y, z, t) = εyx(x, y, z, t) = ε
(0)
xy (x, y, t)− zχxy(x, y, t)

(2.7)

where ε
(0)
xx , ε

(0)
yy , and ε

(0)
xy are the in-plane strains at the reference mid-plane of the plate and

are defined by

ε
(0)
xx = ∂u

(0)
x
∂x

ε
(0)
yy =

∂u
(0)
y

∂y

ε
(0)
xy = 1

2

{
∂u

(0)
y

∂x + ∂u
(0)
x
∂y

} (2.8)

and where

χxx = ∂ϕx

∂x

χyy =
∂ϕy

∂y

χxy = χyx = 1
2

{
∂ϕy

∂x + ∂ϕx

∂y

} (2.9)

are the changes of curvature of the reference surface in the direction indicated by the

subscript. The linear displacement distribution given by Eqs. (2.1) results in a linear dis-

tribution of the in-plane strains through the thickness of the plate as given by Eqs. (2.7).

The transverse shear strain distribution through the thickness of the Mindlin plate is

obtained from substitution of Eqs. (2.1) into Eqs. (2.5) and (2.6). Hence,

εxz(x, y, z, t) = ε(0)
xz (x, y, t) =

1

2
γ(0)
xz (x, y, t) =

1

2

[
∂w(x, y, t)

∂x
− ϕx(x, y, t)

]
(2.10)

and

εyz(x, y, z, t) = ε(0)
yz (x, y, t) =

1

2
γ(0)
yz (x, y, t) =

1

2

[
∂w(x, y, t)

∂y
− ϕy(x, y, t)

]
(2.11)

where ε
(0)
xz and ε

(0)
yz are the transverse shear strains at the reference mid-plane and γ

(0)
xz

and γ
(0)
yz are the transverse shear angles at the reference mid-plane of the plate. For the

Mindlin plate, Eqs. (2.10) and (2.11) show that the Kirchhoff kinematic assumptions for

displacements predict a uniform distribution of the transverse shear strain and shear angle

through the thickness of the plate.
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2.2 Constitutive Relations and Stress Resultants

In our analysis of plates, we will consider plates that exhibit linearly elastic and isotropic

material behavior. The stress-strain relationships for such materials are governed by Hooke’s

Law. Plate theory also assumes that the out-of-plane normal stress is negligible when

compared with the in-plane normal stresses (σzz � σxx and σzz � σyy). Hence, the in-

plane constitutive relations are reduced to the following form

σxx = E
1−ν2 (εxx + νεyy)

σyy = E
1−ν2 (εyy + νεxx)

σxy = 2Gεxy

(2.12)

The constitutive relations for the transverse shear stresses are

σxz = 2Gεxz

σyz = 2Gεyz

(2.13)

where in both sets of equations

G =
E

2(1 + ν)
(2.14)

In the above equations, E is the Young’s modulus, ν is the Poisson’s ratio, and G is the

shear modulus.

Substitution of Eqs. (2.10) and (2.11) into Eqs. (2.13) when considering Mindlin plate

theory, results in a predicted transverse shear stress distribution that is uniform through

the thickness of the plate. Under general loading, the actual transverse shear stress acting

on the plate will not be uniformly distributed through the thickness. Mindlin introduced

a shear correction coefficient similar to the Timoshenko shear correction coefficient used in

beam theory to account for this discrepancy. The effective transverse shear angles found

in Eqs. (2.10) and (2.11), which result from the Kirchhoff assumptions, are defined as the

weighted average of the actual transverse shear angle distribution. Hence,

γ
(0)
xz (x, y, t) = 1

κh

∫ h/2

−h/2
γxz(x, y, z, t) dz

γ
(0)
yz (x, y, t) = 1

κh

∫ h/2

−h/2
γyz(x, y, z, t) dz

(2.15)

where κ is the shear correction coefficient for the Mindlin plate. Evaluation of the shear

correction coefficient will be discussed in the next section.
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The stress resultants are resultant forces and moments that are statically equivalent to

the distribution of stresses through the thickness of the plate and are found by integrating

the stresses and their moments through the thickness of the plate. The resultant membrane

forces per unit length are found by integrating the stresses through the thickness of the

plate, with the strain distributions given by Eqs. (2.7). Hence,

Nxx(x, y, t) =

∫ h/2

−h/2
σxx dz = C

(
ε(0)
xx + νε(0)

yy

)
Nyy(x, y, t) =

∫ h/2

−h/2
σyy dz = C

(
ε(0)
yy + νε(0)

xx

)
Nxy(x, y, t) =

∫ h/2

−h/2
σxy dz = (1− ν)Cε(0)

xy

(2.16)

where the membrane stiffness, C, is given by

C =
Eh

1− ν2
(2.17)

The resultant bending and twisting moments per unit length are found by integrating the

moments of the stresses through the thickness of the plate, with the strain distribution

again given by Eqs. (2.7). Hence,

Mxx(x, y, t) =

∫ h/2

−h/2
σxxz dz = −D (χxx + νχyy)

Myy(x, y, t) =

∫ h/2

−h/2
σyyz dz = −D (χyy + νχxx)

Mxy(x, y, t) =

∫ h/2

−h/2
σxyz dz = −(1− ν)Dχxy

(2.18)

where the bending stiffness, D, is given by

D =
Eh3

12 (1− ν2)
=
Ch2

12
(2.19)

The resultant transverse shear forces per unit length are found by integrating the transverse

shear stresses through the thickness of the plate.

Qx(x, y, t) =

∫ h/2

−h/2
σxz dz = G

∫ h/2

−h/2
γxz(x, y, z, t) dz

Qy(x, y, t) =

∫ h/2

−h/2
σyz dz = G

∫ h/2

−h/2
γyz(x, y, z, t) dz

(2.20)

Substitution of Eqs. (2.15) into Eqs. (2.20) gives the resultant transverse shear forces as

Qx(x, y, t) = kγ
(0)
xz (x, y, t)

Qy(x, y, t) = kγ
(0)
yz (x, y, t)

(2.21)
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where the shear stiffness, k, is given by

k = κGh (2.22)

Further, substitution of Eqs. (2.10) and (2.11) into Eqs. (2.21) gives the resultant transverse

shear force per unit length in terms of the transverse displacement and the rotations due

to bending as

Qx(x, y, t) = k

(
∂w

∂x
− ϕx

)
(2.23a)

Qy(x, y, t) = k

(
∂w

∂y
− ϕy

)
(2.23b)

In the next section we provide a discussion of the shear correction coefficient.

2.2.1 The Shear Correction Coefficient

The shear correction coefficient, κ appearing in Eqs. (2.15) and (2.22) is used in plate

theories that include the effects of transverse shear deformation to account for the non-

uniform distribution of transverse shear stress through the thickness of the structure. The

correction coefficient appears in Mindlin’s mathematically two-dimensional plate theory, as

well as the mathematically one-dimensional analog–Timoshenko beam theory.

Values for the shear correction coefficient are often determined by theoretical or exper-

imental study of Timoshenko beams with transverse shear deformation. Timoshenko [30]

first determined a shear correction coefficient of κ = 2/3 by taking the effect of shear on

a rectangular beam to be equal to the shear angle of the centroidal surface. In a later

paper, Timoshenko [31] used κ = 8/9 to better bring his results into agreement with those

obtained using two-dimensional elasticity theory. Timoshenko used this value based on the

theoretical results of Filon [4]. Filon [5] later experimentally verified his own theoretical

results by studying the transmission of polarized light through a glass beam of rectangular

cross-section. Kaneko [11] states that although it is not explicitly presented, Timoshenko

[31] suggests the following relation for the shear correction coefficient for a beam under the

assumption of plane stress.

κ =
5(1 + ν)

6 + 5ν
(2.24)
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where ν is Poisson’s ratio for the material. Eq. (2.24) yields κ = 0.870 for ν = 1/3 and

a range of 0.833 ≤ κ ≤ 0.882 for 0 ≤ ν ≤ 1/2. Kaneko [11] also states that the study by

Higuchi et al. [8] on the flexural vibration of a thick beam leads to Eq. (2.24) through a two-

dimensional analysis of the equation of flexural motion for a beam. Cowper [2] integrates

the elasticity equations for a beam with the assumption of plane stress made to obtain

κ =
10(1 + ν)

12 + 11ν
(2.25)

for a rectangular cross-section. Based on his experimental results, Kaneko [11] determines

Eq. (2.24) to be the best theoretical expression for the shear correction coefficient for the

Timoshenko beam.

Alternate values are obtained for the shear coefficient when studying plates directly.

Reissner [25] assumes a linear distribution of bending stresses through the thickness of the

plate that results in κ = 5/6. Mindlin [17] investigates flexural and thickness-shear waves

in a plate. He compares his results to that obtained from the three-dimensional equations

of elasticity for straight-crested flexural waves in an infinite plate. To bring his results into

agreement with Rayleigh surface waves at very short wavelengths he found the following

expression for κ for flexural waves

4
√

(1− ακ) (1− κ) = (2− κ)2 (2.26)

where

α =
1− 2ν

2(1− ν)
(2.27)

Equation (2.26) yields κ = 0.870 for ν = 1/3 and a range of 0.764 ≤ κ ≤ 0.913 for

0 ≤ ν ≤ 1/2. For thickness-shear waves a value of κ = π2/12 is found.

In more recent work, Stephen [29] uses a second order truncation approximation to

match the lowest flexural mode of vibration of the Mindlin plate to the lowest flexural

branch of the Rayleigh-Lamb frequency spectrum for the infinite plate. He found the shear

coefficient that leads to the best matching of the flexural vibration frequencies to be

κ =
5

6− ν
(2.28)

Equation (2.28) yields κ = 0.882 for ν = 1/3 and a range of 0.833 ≤ κ ≤ 0.909 for

0 ≤ ν ≤ 1/2. Further inspection of Eq. (2.28) shows that it is the plane strain analog of
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the plane stress coefficient given in Eq. (2.24) if we replace ν in that equation by ν/(1− ν).

Stephen also comments that the value κ = π2/12 from Mindlin [17], gives exact agreement

with the horizontal shear vibrational frequencies of the elastodynamic infinite plate. In

his study of thick circular plates, Hutchinson [10] also determined that Eq. (2.28) and

κ = π2/12 are the best values of the shear coefficient for matching flexural and horizontal

shear vibrational frequencies in a plate, respectively.

Before proceeding, we note that the shear correction coefficient given in Eq. (2.24) for

the Timoshenko beam and Eq. (2.28) for the Mindlin plate both reduce to κ = 5/6 for

ν = 0, which is the value that results when making the assumptions in Reissner [25]. This

implies the results of Reissner would be most accurate when Poisson’s ratio is near zero and

would lose accuracy as Poisson’s ratio gets larger.

2.3 Mindlin Plate Theory

In this section, we present the force formulation for the equations of motion that govern the

isotropic, elastic Mindlin plate as derived in Bottega [1]. For this development, we consider

only geometrically linear plate theory, which results in the decoupling of the in-plane motion

and the out-of-plane transverse motion. As a result, the in-plane equations of motion will

not be presented.

We consider a plate subjected to a distributed transverse load, q(x, y, t), and distributed

body couples, bx(x, y, t) and by(x, y, t). Summing the forces acting on a differential plate

element in the transverse, z, direction, while only including geometrically linear terms, gives

the linear equation of transverse motion.

∂Qx
∂x

+
∂Qy
∂y

+ q(x, y, t) = m
∂2w

∂t2
(2.29)

Here, m is the mass per unit area of the plate.

We next consider the equations of rotational motion of the Mindlin plate. Taking the

moments about the y-axis and then the moments about the x-axis of the differential element

of the plate results in the equations that govern rotational motion of the plate. Hence,

Qx −
∂Mxx

∂x
− ∂Myx

∂y
= Iρ

∂2ϕx
∂t2

− bx(x, y, t) (2.30)



13

Qy −
∂Mxy

∂x
− ∂Myy

∂y
= Iρ

∂2ϕy
∂t2

− by(x, y, t) (2.31)

Here, Iρ is the rotatory inertia, or mass moment of inertia per unit area, of the plate. It is

the resistance to rotation of the plate due to its mass and is the same in both the x and

y-directions since we are considering isotropic plates. Eqs. (2.29)-(2.31) represent the force

formulation for the out-of-plane motion of the Mindlin plate.

When solving the equations of motion in Chapter 4, it will be desirable to represent

Eqs. (2.29)-(2.31) in terms of a displacement formulation. To convert to a displacement

formulation, we substitue Eqs. (2.18), (2.23a), and (2.23b) into Eqs. (2.29)-(2.31). The

equations of transverse and rotational motion are presented with the transverse displace-

ment, w, and the rotations due to bending, ϕx and ϕy, as the measures of the motion of

the plate. Hence,

m
∂2w

∂t2
− k

{
∂2w

∂x2
+
∂2w

∂y2

}
+ k

∂ϕx
∂x

+ k
∂ϕy
∂y

= q(x, y, t) (2.32)

Iρ
∂2ϕx
∂t2

− k∂w
∂x

+ kϕx −D
{
∂2ϕx
∂x2

+
(1− ν)

2

∂2ϕx
∂y2

}
−D (1 + ν)

2

∂2ϕy
∂x∂y

= bx(x, y, t) (2.33)

Iρ
∂2ϕy
∂t2

− k∂w
∂y
−D (1 + ν)

2

∂2ϕx
∂x∂y

+ kϕy −D
{
∂2ϕy
∂y2

+
(1− ν)

2

∂2ϕy
∂x2

}
= by(x, y, t) (2.34)

Since Eqs. (2.32)-(2.34) are coupled in terms of the variables w, ϕx, and ϕy, we will write

the equations of motion in matrix operator form as developed in Bottega [1]. Hence,

m
∂2u

∂t2
+ ku = F (2.35)

where

m =


m 0 0

0 Iρ 0

0 0 Iρ

 = m


1 0 0

0 r2
gyr 0

0 0 r2
gyr

 (2.36)

is the mass matrix and rgyr is the radius of gyration per unit width of a cross section of the

plate. In addition, the stiffness matrix is given by

k =


−k
{
∂2

∂x2
+ ∂2

∂y2

}
k ∂
∂x k ∂

∂y

−k ∂
∂x

{
k −D

(
∂2

∂x2
+ (1−ν)

2
∂2

∂y2

)}
−D (1+ν)

2
∂2

∂x∂y

−k ∂
∂y −D (1+ν)

2
∂2

∂x∂y

{
k −D

(
∂2

∂y2
+ (1−ν)

2
∂2

∂x2

)}


(2.37)
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the displacement matrix is

u =


w(x, y, t)

ϕx(x, y, t)

ϕy(x, y, t)

 (2.38)

and the force matrix is

F =


q(x, y, t)

bx(x, y, t)

by(x, y, t)

 (2.39)

The stiffness matrix given in Eq. (2.37) appears to be non-symmetric because of the sign

convention and coordinate system chosen in the derivation. If the first row of the matrix

Eq. (2.35) is multiplied by a negative sign, the stiffness matrix would appear symmetric

as expected. Equations (2.35)-(2.38) will be used to find a solution to the free vibration

of Mindlin plates in Chapter 4 in conjunction with the appropriate boundary and initial

conditions.

2.3.1 Boundary and Initial Conditions

Since the Mindlin plate has three unknown variables, it will be necessary to specify three

boundary conditions on a given bounding edge, S, of the plate. To satisfy the three degrees

of freedom one term in each of the expressions for the work of the transverse load Qnw, the

bending moment Mnnϕn, and the twisting moment Mnsϕs must be specified on each edge

of the plate as stated in Bottega [1]. Hence, we have

Qn|S = k

[
∂w

∂n
− ϕn

]
S

or w|S prescribed (2.40)

Mnn|S = −D
[
∂ϕn
∂n

+ ν
∂ϕs
∂s

]
S

or ϕn|S prescribed (2.41)

Mns|S = −D (1− ν)

2

[
∂ϕs
∂n

+
∂ϕn
∂s

]
S

or ϕs|S prescribed (2.42)

In the above relations, n represents the normal direction to the edge and s represents the

tangential direction to the edge.

Specification of the initial velocity and position of the plate is necessary to complete the

statement of the free vibration problem of the Mindlin plate. Hence,

w(x, y, 0) = w0(x, y) and
∂w

∂t

∣∣∣∣
t=0

= v0(x, y) (2.43)
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ϕx(x, y, 0) = ϕx0(x, y) and
∂ϕx
∂t

∣∣∣∣
t=0

= ϕ̇x0(x, y) (2.44)

ϕy(x, y, 0) = ϕy0(x, y) and
∂ϕy
∂t

∣∣∣∣
t=0

= ϕ̇y0(x, y) (2.45)

Equation (2.35), along with the appropriate boundary and initial conditions, constitutes

the formulation of the problem for the vibration of the Mindlin plate.

2.4 Kirchhoff Plate Theory

In this section, we present the equations of motion that govern the isotropic, elastic Kirchhoff

plate. As stated previously, this theory neglects transverse shear deformation so Eqs. (2.5)

and (2.6) are taken to be zero. When these transverse shear strains are taken to be zero in

Eqs. (2.10) and (2.11) we find

ϕx =
∂w

∂x
(2.46)

and

ϕy =
∂w

∂y
(2.47)

Summing the forces in the transverse, z, direction and the moments acting on a differential

plate element for the geometrically linear Kirchhoff plate gives the equations of transverse

and rotational motion identical to Eqs. (2.29)-(2.31) with Iρ = 0 since rotatory inertia is

also neglected. Eliminating Qx and Qy from the equations gives a single equation for the

transverse motion of the plate. Hence,

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
+ q(x, y, t)−

[
∂bx
∂x

+
∂by
∂y

]
= m

∂2w

∂t2
(2.48)

Further, substitution of Eqs. (2.18) with Eqs. (2.46) and (2.47) into Eq. (2.48) gives the

equation of motion as

m
∂2w

∂t2
+D

{
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

}
= q(x, y, t)−

[
∂bx
∂x

+
∂by
∂y

]
(2.49)

which governs the transverse displacement, w, for the Kirchhoff plate.
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2.4.1 Boundary and Initial Conditions

Kirchhoff plate theory requires the specification of two boundary conditions on a given

bounding edge, S, of the plate. Hence, we have[
Qn +

∂Mns

∂s

]
S

or w|S prescribed (2.50)

Mnn|S or
∂w

∂n

∣∣∣∣
S

prescribed (2.51)

In the above relations, n represents the normal direction to the edge and s represents the

tangential direction to the edge. The term on the left side of Eq. (2.50) represents the

Kirchhoff effective transverse shear force.

Specification of the initial velocity and position of the plate is necessary to complete the

statement of the free vibration problem of the Kirchhoff plate. Hence,

w(x, y, 0) = w0(x, y) and
∂w

∂t

∣∣∣∣
t=0

= v0(x, y) (2.52)

Equation (2.49), along with the appropriate boundary and initial conditions, constitutes

the formulation of the problem for the vibration of the Kirchhoff plate.
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Chapter 3

The Infinite Elastodynamic Plate

Here we consider the frequency spectrum for the infinite elastodynamic plate under the

theory of elasticity. This will later be used to assess the accuracy of the frequency spectrum

for the Mindlin plate. We present a review of the work done by Meeker and Meitzler [16]

which was later expanded upon in Graff [6]. Navier’s equation is the vector equation of

motion for an isotropic elastic medium without consideration of body forces. It is given as

µ∇2~u+ (λ+ µ)∇ (∇ · ~u) = ρ
∂2~u

∂t2
(3.1)

where ρ is the density, and λ and µ are the Lamé constants of elasticity. The displacement

vector, ~u, for the elastodynamic plate is given by

~u = ux(x, y, z, t)̂i+ uy(x, y, z, t)ĵ + uz(x, y, z, t)k̂ (3.2)

The Lamé constants are related to the Young’s modulus and Poisson’s ratio by

µ = G =
E

2(1 + ν)
(3.3)

and

λ =
2Gν

1− 2ν
=

Eν

(1 + ν)(1− 2ν)
(3.4)

Before proceeding, we introduce a non-dimensionalization of the given parameters with

respect to the thickness of the plate, h. Hence,

~̄u = ~u/h, x̄ = x/h, ȳ = y/h, z̄ = z/h, h̄ = 1 (3.5)

The non-dimensional Navier equation takes the form

µ

ρh2ω2
0

∇̄2~̄u+
λ+ µ

ρh2ω2
0

∇̄
(
∇̄ · ~̄u

)
=
∂2~̄u

∂t̄2
(3.6)
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where

t̄ = ω0t and ω0 =

√
D

mh4
(3.7)

The non-dimensional time has been scaled by ω0 to facilitate comparison with Mindlin plate

theory in the next chapter.

A solution to Eq. (3.6) for an infinite plate is formed by Helmholtz decomposition into

the combination of a vector potential function, ~ψ, and a scalar potential function, φ, related

by

~̄u = ∇̄φ+ ∇̄ × ~ψ (3.8)

where ~ψ and φ are solutions to the equations

∇̄2φ =
1

c̄2
d

∂2φ

∂t̄2
(3.9)

and

∇̄2 ~ψ =
1

c̄2
s

∂2 ~ψ

∂t̄2
(3.10)

with

∇̄ · ~ψ = 0 (3.11)

In Eqs. (3.9) and (3.10), c̄d is the non-dimensional dilatational wave velocity and c̄s is the

non-dimensional shear wave velocity. They are, respectively, given by

c̄d =
cd
hω0

=

√
12(1− ν)2

1− 2ν
(3.12)

and

c̄s =
cs
hω0

=
√

6(1− ν) (3.13)

where their dimensional forms are

cd =

√
λ+ 2µ

ρ
(3.14)

and

cs =

√
µ

ρ
(3.15)

We consider a plate bounded by traction free surfaces at z̄ = ±h̄/2 and infinite in extent in

the x̄ and ȳ-directions. A solution to the wave equation in Eq. (3.9) follows as

φ = (A cos ᾱz̄ +B sin ᾱz̄) ei(ξ̄x̄−ω̄t̄) (3.16)
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where ω̄ is the non-dimensional natural frequency, ᾱ and ξ̄ are non-dimensional wave num-

bers, and A and B are integration constants. The non-dimensional wave numbers and

natural frequency are related by

ᾱ2 + ξ̄2 = ω̄2/c̄2
d (3.17)

The non-dimensional parameters ω̄, ᾱ, and ξ̄ are related to their dimensional counterparts

by

ω̄ = ω/ω0, ᾱ = αh, ξ̄ = ξh (3.18)

The vector components of Eq. (3.10) yield solutions of similar form for the components of

~ψ. Hence,

ψx =
(
C cos β̄z̄ +D sin β̄z̄

)
ei(ξ̄x̄−ω̄t̄) (3.19)

ψy =
(
E cos β̄z̄ + F sin β̄z̄

)
ei(ξ̄x̄−ω̄t̄) (3.20)

ψz =
(
G cos β̄z̄ +H sin β̄z̄

)
ei(ξ̄x̄−ω̄t̄) (3.21)

where β̄ is a non-dimensional wave number and C-H are integration constants. The non-

dimensional wave numbers and natural frequency are related by

β̄2 + ξ̄2 = ω̄2/c̄2
s (3.22)

The non-dimensional parameter β̄ is related to its dimensional counterpart by

β̄ = βh (3.23)

The solutions given in Eq. (3.16) and Eqs. (3.19)-(3.21) propagate independently of the

ȳ-direction. This is because the infinite isotropic plate does not have a preferred direction

for the waves to travel, so we take the x̄-direction as the direction of wave propagation for

mathematical simplicity. The general solution for propagation in any arbitrary in-plane

coordinate system rotated by an angle θ about the z̄-axis is obtained by replacing ξ̄x̄ with

~̄ξ · ~̄x, where ~̄ξ = ξ̄(cos θî+ sin θĵ) and ~̄x = x̄î+ ȳĵ.

From Eq. (3.8), the components of ~̄u are given by

ūx =
∂φ

∂x̄
+
∂ψz
∂ȳ
− ∂ψy

∂z̄
(3.24)

ūy =
∂φ

∂ȳ
− ∂ψz

∂x̄
+
∂ψx
∂z̄

(3.25)
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ūz =
∂φ

∂z̄
+
∂ψy
∂x̄
− ∂ψx

∂ȳ
(3.26)

In addition, from Eq. (3.11), we have

∂ψx
∂x̄

+
∂ψy
∂ȳ

+
∂ψz
∂z̄

= 0 (3.27)

Substitution of Eq. (3.16) and Eqs. (3.19)-(3.21) into Eqs. (3.24)-(3.26), gives the compo-

nents of ~̄u in terms of the integration constants A-H as

ūx =
{
iξ̄ (A cos ᾱz̄ +B sin ᾱz̄) + β̄

(
E sin β̄z̄ − F cos β̄z̄

)}
ei(ξ̄x̄−ω̄t̄) (3.28)

ūy =
{
β̄
(
−C sin β̄z̄ +D cos β̄z̄

)
− iξ̄

(
G cos β̄z̄ +H sin β̄z̄

)}
ei(ξ̄x̄−ω̄t̄) (3.29)

ūz =
{
ᾱ (−A sin ᾱz̄ +B cos ᾱz̄) + iξ̄

(
E cos β̄z̄ + F sin β̄z̄

)}
ei(ξ̄x̄−ω̄t̄) (3.30)

For the infinite elastic plate with traction free surfaces, the boundary conditions on the

planar faces of the plate are

σ̄zz|±h̄/2 =
1

(1 + ν)(1− 2ν)

[
(1− ν)

∂ūz
∂z̄

+ ν

(
∂ūx
∂x̄

+
∂ūy
∂ȳ

)]
±h̄/2

= 0 (3.31)

σ̄zx|±h̄/2 =
1

2(1 + ν)

[
∂ūx
∂z̄

+
∂ūz
∂x̄

]
±h̄/2

= 0 (3.32)

σ̄zy|±h̄/2 =
1

2(1 + ν)

[
∂ūy
∂z̄

+
∂ūz
∂ȳ

]
±h̄/2

= 0 (3.33)

where

σ̄zz = σzz/E σ̄zx = σzx/E σ̄zy = σzy/E (3.34)

Imposing the boundary conditions given in Eqs. (3.31)-(3.33) on the displacement field given

by Eqs. (3.28)-(3.30) at z̄ = ±h̄/2 results in the following expressions

{
(1− ν)ᾱ2 + νξ̄2

} (
A cos ᾱh̄/2 +B sin ᾱh̄/2

)
+
{

(1− 2ν)iβ̄ξ̄
} (
E sin β̄h̄/2− F cos β̄h̄/2

)
= 0

(3.35)

{
(1− ν)ᾱ2 + νξ̄2

} (
A cos ᾱh̄/2−B sin ᾱh̄/2

)
−
{

(1− 2ν)iβ̄ξ̄
} (
E sin β̄h̄/2 + F cos β̄h̄/2

)
= 0

(3.36)

2iᾱξ̄
(
−A sin ᾱh̄/2 +B cos ᾱh̄/2

)
+
{
β̄2 − ξ̄2

} (
E cos β̄h̄/2 + F sin β̄h̄/2

)
= 0 (3.37)

2iᾱξ̄
(
A sin ᾱh̄/2 +B cos ᾱh̄/2

)
+
{
β̄2 − ξ̄2

} (
E cos β̄h̄/2− F sin β̄h̄/2

)
= 0 (3.38)
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β̄2
(
C cos β̄h̄/2 +D sin β̄h̄/2

)
+ iβ̄ξ̄

(
−G sin β̄h̄/2 +H cos β̄h̄/2

)
= 0 (3.39)

β̄2
(
C cos β̄h̄/2−D sin β̄h̄/2

)
+ iβ̄ξ̄

(
G sin β̄h̄/2 +H cos β̄h̄/2

)
= 0 (3.40)

In addition, Eq. (3.27) must be satisfied at z̄ = ±h̄/2, which results in

iξ̄
(
C cos β̄h̄/2 +D sin β̄h̄/2

)
+ β̄

(
−G sin β̄h̄/2 +H cos β̄h̄/2

)
= 0 (3.41)

iξ̄
(
C cos β̄h̄/2−D sin β̄h̄/2

)
+ β̄

(
G sin β̄h̄/2 +H cos β̄h̄/2

)
= 0 (3.42)

Equations (3.35)-(3.42) can be written in the form of an eight by eight matrix. Hence, this

is done in Eq. (3.43), which appears on the next page, where

f1 = (1− ν)ᾱ2 + νξ̄2 (3.44)

f2 = (1− 2ν)iβ̄ξ̄ (3.45)

f3 = β̄2 − ξ̄2 (3.46)

In order to obtain non-trivial solutions the determinant of the matrix given in Eq. (3.43)

must vanish. In finding the determinant of the matrix, we first simplify the matrix by row

reduction to obtain Eq. (3.47), which also appears on the next page. The determinant of the

matrix can now be found from the product of four submatrices. We will now consider the

determinant of each of the submatrices in Eq. (3.47) separately to determine the frequency

response of the infinite elastodynamic plate.

Case 1:

Here, we take the integration constants C and H to be non-zero while the other six inte-

gration constants are zero. This leaves the submatrix β̄2 cos β̄h̄/2 iβ̄ξ̄ cos β̄h̄/2

iξ̄ cos β̄h̄/2 β̄ cos β̄h̄/2

 C

H

 = 0 (3.48)

and the displacement field

ūx = 0 (3.49a)

ūy = −
(
Cβ̄ + iHξ̄

)
ei(ξ̄x̄−ω̄t̄) sin β̄z̄ (3.49b)

ūz = 0 (3.49c)
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iᾱ
ξ̄

co
s
ᾱ
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ᾱ
h̄
/2

0
0

f 3
co

s
β̄
h̄
/2

−
f 3

si
n
β̄
h̄
/2

0
0

0
0

β̄
2

co
s
β̄
h̄
/2

β̄
2

si
n
β̄
h̄
/2

0
0

−
iβ̄
ξ̄

si
n
β̄
h̄
/2

iβ̄
ξ̄

co
s
β̄
h̄
/2

0
0

β̄
2

co
s
β̄
h̄
/2
−
β̄

2
si

n
β̄
h̄
/2

0
0

iβ̄
ξ̄

si
n
β̄
h̄
/2

iβ̄
ξ̄

co
s
β̄
h̄
/2

0
0

iξ̄
co

s
β̄
h̄
/2

iξ̄
si

n
β̄
h̄
/2

0
0

−
β̄

si
n
β̄
h̄
/2

β̄
co

s
β̄
h̄
/2

0
0

iξ̄
co

s
β̄
h̄
/2

−
iξ̄

si
n
β̄
h̄
/2

0
0

β̄
si

n
β̄
h̄
/2

β̄
co

s
β̄
h̄
/2

                                 A B C D E F G H

                      =
0

E
q
u

at
io

n
(3

.4
3)

           f 1
si

n
ᾱ
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The displacement field has been included to identify the motion of the wave resulting from

this solution type. The resulting motion is a wave propagating in the x̄-direction causing

displacement solely in the ȳ-direction. We also see from Eq. (3.49b), that the displacement is

anti-symmetric through the thickness of the plate. Hence, waves of this nature are classified

as anti-symmetric horizontal shear waves since they result in in-plane motion perpendicular

to the direction of propagation. The frequency equation for waves of this type is found when

the determinant of Eq. (3.48) vanishes. Hence,

β̄
(
β̄2 + ξ̄2

)
cos2 β̄h̄/2 = 0 (3.50)

The roots of Eq. (3.50) will be used to plot the frequency spectrum of the infinite plate.

Case 2:

When the constants D and G are non-zero and all other constants are zero, we get similar

results to the previous case. The reduced submatrix for this case is −iβ̄ξ̄ sin β̄h̄/2 β̄2 sin β̄h̄/2

−β̄ sin β̄h̄/2 iξ̄ sin β̄h̄/2

 G

D

 = 0 (3.51)

and the displacement field is

ūx = 0 (3.52a)

ūy =
(
Dβ̄ − iGξ̄

)
ei(ξ̄x̄−ω̄t̄) cos β̄z̄ (3.52b)

ūz = 0 (3.52c)

Here, we have a wave propagating in the x̄-direction causing displacement solely in the

ȳ-direction that is symmetric through the thickness of the plate. Waves of this nature are

classified as symmetric horizontal shear waves. The frequency equation is found when the

determinant of Eq. (3.51) vanishes. Hence,

β̄
(
β̄2 + ξ̄2

)
sin2 β̄h̄/2 = 0 (3.53)

The roots of Eq. (3.53) will also be used to plot the frequency spectrum of the infinite plate.

Case 3:
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We next consider the case when the constants A and F are non-zero while the other con-

stants are zero. This leaves us with the submatrix f1 cos ᾱh̄/2 −f2 cos β̄h̄/2

−2iᾱξ̄ sin ᾱh̄/2 f3 sin β̄h̄/2

 A

F

 = 0 (3.54)

and the displacement field

ūx =
{
iAξ̄ cos ᾱz̄ − Fβ̄ cos β̄z̄

}
ei(ξ̄x̄−ω̄t̄) (3.55a)

ūy = 0 (3.55b)

ūz =
{
−Aᾱ sin ᾱz̄ + iF ξ̄ sin β̄z̄

}
ei(ξ̄x̄−ω̄t̄) (3.55c)

This wave propagating in the x̄-direction creates motion in both the x̄ and z̄-directions.

The in-plane motion in the x̄-direction and the out-of-plane motion in the z̄-direction are

the result of a dilatational wave coupled with a vertical shear wave. For this case, the

effects of the dilatational wave cannot be separated from the effects of the vertical shear

wave. The displacement field for this case is symmetric with respect to the mid-plane of the

plate. Solutions of this type result in motion classified as longitudinal waves. The frequency

equation is found when the determinant of Eq. (3.54) vanishes. Hence,

f1f3 cos ᾱh̄/2 sin β̄h̄/2− 2if2ᾱξ̄ sin ᾱh̄/2 cos β̄h̄/2 = 0 (3.56)

The frequency equation given above is then simplified to the following form

tan β̄h̄/2

tan ᾱh̄/2
= − 4ᾱβ̄ξ̄2(

ξ̄2 − β̄2
)2 (3.57)

Equation (3.57) is well-known as the symmetric Rayleigh-Lamb frequency equation. The

equation does not yield analytical results and must be solved numerically to obtain a re-

lationship between the natural frequency and the wave number for propagation in the

x̄-direction. The intricacies that must be considered when finding the roots of the equation

will be discussed when plotting the frequency spectrum.

Case 4:

The final case to consider is when the constants B and E are non-zero while the other

constants are zero. This results in the submatrix f1 sin ᾱh̄/2 f2 sin β̄h̄/2

2iᾱξ̄ cos ᾱh̄/2 f3 cos β̄h̄/2

 B

E

 = 0 (3.58)
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and the displacement field

ūx =
{
iBξ̄ sin ᾱz̄ + Eβ̄ sin β̄z̄

}
ei(ξ̄x̄−ω̄t̄) (3.59a)

ūy = 0 (3.59b)

ūz =
{
Bᾱ cos ᾱz̄ + iEξ̄ cos β̄z̄

}
ei(ξ̄x̄−ω̄t̄) (3.59c)

The wave motion for this case is similar to the motion found in Case 3. The in-plane motion

in the x̄-direction and the out-of-plane motion in the z̄-direction are again the unseparable

result of a dilatational wave coupled with a vertical shear wave. The displacement field for

this case is, however, anti-symmetric with respect to the mid-plane of the plate. Solutions

of this type result in motion classified as flexural waves. The frequency equation is found

when the determinant of Eq. (3.58) vanishes. Hence,

f1f3 sin ᾱh̄/2 cos β̄h̄/2− 2if2ᾱξ̄ cos ᾱh̄/2 sin β̄h̄/2 = 0 (3.60)

The frequency equation given above is then simplified to the following form

tan β̄h̄/2

tan ᾱh̄/2
= −

(
ξ̄2 − β̄2

)2
4ᾱβ̄ξ̄2

(3.61)

Equation (3.61) is well-known as the anti-symmetric Rayleigh-Lamb frequency equation.

As with the symmetric equation, the anti-symmetric equation does not yield analytical

results and must be solved numerically, which will be discussed when plotting the frequency

spectrum.

3.1 The Frequency Spectrum

We now have all of the requisite frequency equations established in order to plot the fre-

quency spectrum for the infinite elastodynamic plate. The frequency spectrum is presented

as a plot of the non-dimensional natural frequency of the plate, ω̄, against the wave number

governing propagation in the x̄-direction, ξ̄. Each of the frequency equations described in

the previous section, Eqs. (3.50), (3.53), (3.57), and (3.61), corresponds to a branch of the

frequency spectrum.
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We first consider the horizontal shear branches as governed by Eqs. (3.50) and (3.53).

The roots of Eq. (3.53) are the symmetric horizontal shear branches of the frequency spec-

trum. Hence, the roots are found to be

β̄h̄

2
=
nπ

2
for n = 0, 2, 4... (3.62)

The roots of Eq. (3.50) are the anti-symmetric horizontal shear branches of the frequency

spectrum and are found to be

β̄h̄

2
=
nπ

2
for n = 1, 3, 5... (3.63)

For both branches, the natural frequency is related to the wave number through Eq. (3.22),

with the non-dimensional shear wave velocity given in Eq. (3.13). Hence,

ω̄ =
√

6(1− ν)
(
n2π2 + ξ̄2

)  symmetric for n = 0, 2, 4...

anti-symmetric for n = 1, 3, 5...
(3.64)

The branches of the horizontal shear spectrum given in Eq. (3.64) are plotted in Figure 3.1.

In the figure, the lowest branches for both the symmetric and anti-symmetric branches are

Figure 3.1: The horizontal shear frequency spectrum for the infinite elastodynamic plate with
ν = 0.3.

labeled. When proceeding with the remainder of this thesis, the horizontal shear branches

will be referenced solely as the symmetric shear and the anti-symmetric shear branches.
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We next consider the Rayleigh-Lamb branches of the frequency spectrum, which are

governed by Eqs. (3.57) and (3.61). The frequency equations are solved numerically to

obtain the branches of the frequency spectrum. In doing so, Eqs. (3.17) and (3.22) are used

to express ᾱ and β̄ in terms of ξ̄ and ω̄. Hence,

ᾱ =
√
ω̄2/c̄2

d − ξ̄2 (3.65)

and

β̄ =
√
ω̄2/c̄2

s − ξ̄2 (3.66)

Using these relations, the roots of Eqs. (3.57) and (3.61) are numerically found for a given

value of ξ̄. These roots comprise the branches of the freqency spectrum appearing in Figure

3.2.

When root solving, attention must be paid to the changing behavior of the branches

in relation to the dilatational wave frequency and the shear wave frequency which appear

as lines labeled in Figure 3.2. The relationships for ᾱ and β̄ appearing in Eqs. (3.65) and

Figure 3.2: The Rayleigh-Lamb frequency spectrum for the infinite elastodynamic plate with ν =
0.3.

(3.66) respectively are in fact only valid when ω̄ > c̄dξ̄.
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When c̄sξ̄ < ω̄ < c̄dξ̄, the term within the square root of Eq. (3.65) becomes negative

and the relation that must be used for ᾱ when root solving is

ᾱ = i
√
ξ̄2 − ω̄2/c̄2

d (3.67)

while the relation for β̄ remains Eq. (3.66).

When ω̄ < c̄sξ̄, the term within the square root of both Eqs. (3.65) and (3.66) becomes

negative and Eq. (3.67) for ᾱ must again be used when root solving. In this case, the

relation for β̄ in Eq. (3.66) must also be rewritten as

β̄ = i
√
ξ̄2 − ω̄2/c̄2

s (3.68)

The relations in Eqs. (3.67) and (3.68) were used where appropriate in solving for both the

symmetric and the anti-symmetric branches of Figure 3.2.

In concluding this chapter, the four frequency branches found in Figures 3.1 and 3.2

have been combined in Figure 3.3 as the complete frequency spectrum for the infinite elas-

todynamic plate. The branches from Figure 3.1 have been identified as the symmetric shear

and anti-symmetric shear branches. The anti-symmetric branches of Figure 3.2 have been

Figure 3.3: The complete frequency spectrum for the infinite elastodynamic plate with ν = 0.3.

identified as the flexural branches while the symmetric branches have been identified as the
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longitudinal branches of the frequency spectrum. We have now reviewed the developments

of the frequency spectrum for the infinite elastodynamic plate that will be used to assess the

accuracy of the frequency spectrum for the Mindlin plate. In the next chapter, a solution

to the governing equations for the Mindlin plate presented in Section 2.3 is developed.
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Chapter 4

The General Free Vibration Response for the Mindlin Plate

Here, we present the general solution for the free vibration response of the Mindlin plate

theory presented in Section 2.3. The governing equation for the free vibration problem is

Eq. (2.35) with the forcing matrix, F, set equal to zero. We begin by non-dimensionalizing

the governing equations so that the resulting frequency spectrum for the Mindlin plate

can be directly compared to the frequency spectrum of the infinite elastodynamic plate as

presented in Chapter 3.

4.1 The Eigenvalue Problem and Non-Dimensionalization

To solve the free vibration problem given by Eq. (2.35), we first assume a solution by

separation of variables between the time and spatial variables of the plate which takes the

form

u(x, y, t) = U(x, y)eiωt (4.1)

where

U =


W (x, y)

ϑx(x, y)

ϑy(x, y)

 (4.2)

and W, ϑx, and ϑy are the modal displacement and modal bending rotations in the directions

indicated by the subscripts, respectively. Substitution of Eq. (4.1) into Eq. (2.35), with the

external excitation given by the force matrix set equal to zero, results in an eigenvalue

problem of the form [
k− ω2m

]
U(x, y) = 0 (4.3)

We will non-dimensionalize the given parameters in order to facilitate comparison of the

results with those of the previous chapter. In doing so, we will non-dimensionalize length



31

scales with respect to the thickness of the plate, h, which results in the non-dimensional

coordinates and modal displacement

x̄ = x/h, ȳ = y/h, h̄ = 1, W̄ (x̄, ȳ) = W (x, y)/h (4.4)

The modal bending rotations are non-dimensional in their current form. The remaining

non-dimensional parameters of the plate follow as

k̄ =
kh2

D
= 6(1− ν)κ (4.5)

and

r̄gyr =
rgyr
h

=
1√
12

(4.6)

The non-dimensional natural frequency and time scale are

ω̄ = ω/ω0 and t̄ = ω0t (4.7)

where

ω0 =

√
D

mh4
(4.8)

Substitution of Eqs. (4.4)-(4.8) into Eq. (4.3) results in the non-dimensional eigenvalue

problem [
k̄− ω̄2m̄

]
Ū(x̄, ȳ) = 0 (4.9)

When expanded, the matrix in Eq. (4.9) results in
−k̄
(
∂2

∂x̄2
+ ∂2

∂ȳ2

)
− ω̄2 k̄ ∂

∂x̄ k̄ ∂
∂ȳ

−k̄ ∂
∂x̄ k̄ − ω̄2r̄2

gyr − ∂2

∂x̄2
− 1−ν

2
∂2

∂ȳ2
−1+ν

2
∂2

∂x̄∂ȳ

−k̄ ∂
∂ȳ −1+ν

2
∂2

∂x̄∂ȳ k̄ − ω̄2r̄2
gyr − 1−ν

2
∂2

∂x̄2
− ∂2

∂ȳ2


(4.10)

and the non-dimensional modal matrix is

Ū(x̄, ȳ) =


W̄ (x̄, ȳ)

ϑx(x̄, ȳ)

ϑy(x̄, ȳ)

 (4.11)
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4.2 Solution Procedure

To solve the system of differential equations given by Eq. (4.9) we again assume a solution

by separation of variables, but now seek to separate the spatial coordinates, x̄ and ȳ. Hence,

Ū(x̄, ȳ) =


W̄ (x̄, ȳ)

ϑx(x̄, ȳ)

ϑy(x̄, ȳ)

 =


Ā

B̄

C̄

 eiη̄xx̄eiη̄y ȳ (4.12)

where the spatial exponents chosen represent the wave number of a vibrational wave trav-

eling in the direction indicated by the subscript. The method is similar to that found in

Bottega [1] with the exception that imaginary directional wave numbers have been chosen,

as they lead to propagating wave solutions. The non-dimensional directional wave numbers

are

η̄x = ηxh, η̄y = ηyh (4.13)

When Eq. (4.12) is substituted into Eq. (4.9), the system of differential equations becomes

an algebraic system of equations. It is given by
k̄
(
η̄2
x + η̄2

y

)
− ω̄2 ik̄η̄x ik̄η̄y

−ik̄η̄x Fxy
1+ν

2 η̄xη̄y

−ik̄η̄y 1+ν
2 η̄xη̄y Fyx




Ā

B̄

C̄

 =


0

0

0

 (4.14)

where

Fxy = k̄ − ω̄2r̄2
gyr + η̄2

x +
1− ν

2
η̄2
y (4.15)

and

Fyx = k̄ − ω̄2r̄2
gyr +

1− ν
2

η̄2
x + η̄2

y (4.16)

To solve the system of equations given by Eq. (4.14) we multiply the second row of the

matrix by η̄y and subtract the third row of the matrix multiplied by η̄x from it. This gives

B̄η̄y

[
Fxy −

1 + ν

2
η̄2
x

]
− C̄η̄x

[
Fyx −

1 + ν

2
η̄2
y

]
= 0 (4.17)

Here, algebraic manipulation shows that

Fxy −
1 + ν

2
η̄2
x = Fyx −

1 + ν

2
η̄2
y = F0

∗ (4.18)
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where

F0
∗ = k̄ − ω̄2r̄2

gyr +
1− ν

2

(
η̄2
x + η̄2

y

)
(4.19)

Hence, Eq. (4.17) is simplified as

[
B̄η̄y − C̄η̄x

]
F0
∗ = 0 (4.20)

and one or both of the two terms in the above equation must be equal to zero. We first

consider the case when the term in brackets is taken to be zero.

Case 1:

From Eq. (4.20) we have

B̄η̄y − C̄η̄x = 0 (4.21)

Substitution of this relation between B̄ and C̄ back into the second and third row of

Eq. (4.14) yields expressions for B̄ and C̄, respectively, in terms of Ā as

B̄ =
ik̄η̄x
F0

Ā (4.22)

and

C̄ =
ik̄η̄y
F0

Ā (4.23)

where

F0 = Fxy +
1 + ν

2
η̄2
y = Fyx +

1 + ν

2
η̄2
x = k̄ − ω̄2r̄2

gyr + η̄2
x + η̄2

y (4.24)

Substitution of Eqs. (4.22) and (4.23) into the first row of Eq. (4.14) results in

[{
k̄
(
η̄2
x + η̄2

y

)
− ω̄2

}
F0 − k̄2

(
η̄2
x + η̄2

y

)]
Ā = 0 (4.25)

For non-trivial solutions, Ā must be non-zero and the term in brackets must vanish. This

allows for Eqs. (4.22) and (4.23) to be rewritten in the form

B̄ = iη̄xg(η̄x, η̄y, ω̄)Ā (4.26)

and

C̄ = iη̄yg(η̄x, η̄y, ω̄)Ā (4.27)

where

g(η̄x, η̄y, ω̄) =
k̄

F0
=
k̄η̄2 − ω̄2

k̄η̄2
(4.28)
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with

η̄2 = η̄2
x + η̄2

y (4.29)

Further, substitution of the last form for F0 appearing in Eq. (4.24) into the square bracketed

term of Eq. (4.25) results in the frequency equation for the present case considered as

k̄
(
η̄2
)2 − ω̄2

[
k̄r̄2
gyr + 1

] (
η̄2
)

+ ω̄2
[
ω̄2r̄2

gyr − k̄
]

= 0 (4.30)

Eq. (4.30) is the characteristic frequency equation for the case when Eq. (4.21) holds. The

equation is quadratic and hence will lead to two roots for η̄2. Each root relates the directional

wave numbers to the natural frequencies of the plate and hence, acts as a branch of the

frequency spectrum for the Mindlin plate.

We will later find that the roots of Eq. (4.30) contribute to flexural motion of the plate

and hence, will refer to the resulting frequency branches as flexural branches. A detailed

explanation of the flexural frequency branches follows. The development improves upon the

solution found in Bottega [1] by identifying the physical interpretation of the wave numbers

for each branch of the spectrum separately. This leads to more clearly defined relationships

between the natural frequencies and wave numbers. The first flexural branch is given by

η̄2
1 = ω̄2F1 (4.31)

where

F1 =
1

2k̄1

[
k̄1r̄

2
gyr + 1 +

√(
k̄1r̄2

gyr − 1
)2

+ 4k̄2
1ω̄
−2

]
(4.32)

Further advancing on Bottega [1], k̄ has been given a subscript of one in Eq. (4.32) in this

study to indicate it is the non-dimensional shear stiffness associated with the first flexural

branch of the frequency spectrum. This will later be used when selecting the best value for

the shear correction coefficient.

Employing Eq. (4.31), we proceed to the determination of the form of η̄x and η̄y for

flexural branch one. Inspection of Eq. (4.32) shows that F1 will be positive for all values

of ω̄, while ω̄ must aways be positive as well. As a result, η̄2
1 must be strictly positive,

which means it is propagating in form. In order for this requirement to be satisfied, the

wave number in one coordinate direction must be strictly propagating in form. Hence,

we assume the x̄-direction will have a propagating wave number and take η̄x to be real
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valued as we initially assumed propagating solutions. This sugguests the plate will then

have simply-supported boundary conditions at each edge of the plate in the x̄-direction.

This leads to

η̄x = ±ᾱ = ±αh (4.33)

For this branch, we will also assume η̄y to be real valued which leads to

η̄y1 = ±γ̄ = ±γh (4.34)

For some boundary conditions, it is possible for η̄y1 to be imaginary valued at low frequen-

cies. For this possibility, η̄y1=±iγ̂=±iγh in Eq. (4.34), which must be considered when

applying boundary conditions but will not always lead to real valued solutions for the nat-

ural frequency. Hence, the real valued wave number represents the more robust form of the

solution.

For the first flexural branch, Eq. (4.33) and the real or imaginary form of Eq. (4.34) are

the components of η̄1 which are related through Eq. (4.31) as

ᾱ2 − γ̂2 = ω̄2F1 for
(
ᾱ2 > γ̂2

)
, or ᾱ2 + γ̄2 = ω̄2F1 (4.35)

For most geometries and magnitudes of the natural frequency, the expression on the right

in Eq. (4.35) will represent the relationship between the directional wave numbers and the

natural frequencies for this branch. When the expression on the left is a possible solution,

the magnitude of ω̄ will reach a value where ᾱ2 is no longer greater than γ̂2. Here, iγ̂ → γ̄

and the term on the right in Eq. (4.35) will govern the relationship between the directional

wave numbers and the natural frequencies for all subsequent values of ω̄.

The second flexural branch is given by

η̄2
2 = ω̄2F2 (4.36)

where

F2 =
1

2k̄2

[
k̄2r̄

2
gyr + 1−

√(
k̄2r̄2

gyr − 1
)2

+ 4k̄2
2ω̄
−2

]
(4.37)

This time, k̄ has been given a subscript of two in Eq. (4.37) to indicate it is the non-

dimensional shear stiffness associated with the second flexural branch of the frequency

spectrum. In order to relate this branch of the spectrum to the first flexural branch we take
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the directional wave number in the x̄-direction for this branch to be given by Eq. (4.33).

Now, we see that F2 < 0 for low values of ω̄. As a result, we consider an imaginary wave

number in the ȳ-direction

η̄y2 = ±iµ̂ = ±iµh (4.38)

where µ̂ is real valued and a hat has been used to signify that the directional wave number

corresponds to a non-propagating wave solution. When ω̄ >
√
k̄2/r̄2

gyr, we see that F2 > 0

and it is possible for ±iµ̂ → ±µ̄ in the above relation. For this branch, the magnitude of

ω̄ determines how the directional wave numbers given by Eqs. (4.33) and (4.38) are related

to the natural frequencies through Eq. (4.36).

When ω̄ <
√
k̄2/r̄2

gyr → F2 < 0:

ᾱ2 − µ̂2 = ω̄2F2 for
(
µ̂2 > ᾱ2

)
(4.39)

When ω̄ >
√
k̄2/r̄2

gyr → F2 > 0:

ᾱ2 − µ̂2 = ω̄2F2 for
(
ᾱ2 > µ̂2

)
, or ᾱ2 + µ̄2 = ω̄2F2 (4.40)

As ω̄ increases beyond
√
k̄2/r̄2

gyr, Eq. (4.39) will transition to the term on the left in

Eq. (4.40). Then, as ω̄ continues to increase there will reach a point when ᾱ2 is no longer

greater than µ̂2. Here, iµ̂ → µ̄ and the term on the right in Eq. (4.40) will govern the

relationship between the directional wave numbers and the natural frequencies for all sub-

sequent values of ω̄. We now proceed back to Eq. (4.20) to determine the behavior of the

remaining frequency branch.

Case 2:

When considering the latter term of Eq. (4.20) we have

F0
∗ = 0 (4.41)

Letting F0
∗ = 0 in Eq. (4.18) gives new relations for Fxy and Fyx that can be substituted

into Eq. (4.14) to obtain the alternate form
k̄η̄2 − ω̄2 ik̄η̄x ik̄η̄y

−ik̄η̄x 1+ν
2 η̄2

x
1+ν

2 η̄xη̄y

−ik̄η̄y 1+ν
2 η̄xη̄y

1+ν
2 η̄2

y




Ā

B̄

C̄

 =


0

0

0

 (4.42)
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The second and third row of the above matrix are now linearly dependent. Hence, we

multiply the first row of the matrix by ik̄η̄x and add the second row of the matrix multiplied

by
(
k̄η̄2 − ω̄2

)
to it. This results in the relation

C̄ = − η̄x
η̄y
B̄ (4.43)

Substitution of Eq. (4.43) into any row of Eq. (4.42) results in

Ā = 0 (4.44)

Hence, the solutions corresponding to the present case (Case 2) will not appear in the modal

displacement function. The integration constants of the modal bending rotation functions

for Case 2 are related through Eq. (4.43).

We will find that motion associated with Case 2 will correspond to shear motion and

hence, we will call this the anti-symmetric shear branch of the frequency spectrum or the

shear branch for short. Now, Eq. (4.41) is the frequency equation for Case 2 and setting

Eq. (4.19) equal to zero results in

η̄2
s = S (4.45)

where

S = − 2

(1− ν)

[
k̄s − ω̄2r̄2

gyr

]
(4.46)

Here, k̄ has been given a subscript of s in Eq. (4.46) to indicate it is the non-dimensional

shear stiffness associated with the shear branch of the frequency spectrum. As with the

flexural branches, the directional wave number in the x̄-direction is given by Eq. (4.33).

Similar to the second flexural branch, we see that S < 0 for low values of ω̄ and therefore

also consider an imaginary wave number in the ȳ-direction for this branch. This gives

η̄ys = ±iβ̂ = ±iβh (4.47)

where β̂ is real valued. When ω̄ >
√
k̄s/r̄2

gyr, we see that S > 0 and it is possible for

±iβ̂ → ±β̄ in the above relation. In the same manner as with flexural branch two, the

magnitude of ω̄ determines how the directional wave numbers given by Eqs. (4.33) and

(4.47) are related to the natural frequencies through Eq. (4.45). Considering both real and

imaginary values for η̄ys in Eq. (4.47) results in the admissible relations between the natural
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frequencies and the directional wave numbers.

When ω̄ <
√
k̄s/r̄2

gyr → S < 0:

ᾱ2 − β̂2 = S for
(
β̂2 > ᾱ2

)
(4.48)

When ω̄ >
√
k̄s/r̄2

gyr → S > 0:

ᾱ2 − β̂2 = S for
(
ᾱ2 > β̂2

)
, or ᾱ2 + β̄2 = S (4.49)

As ω̄ increases, Eqs. (4.48) and (4.49) will follow the same behavior as Eqs. (4.39) and (4.40)

did for the second flexural branch. In general, the natural frequency for which iβ̂ → β̄ will

not be the same as the frequency for which iµ̂→ µ̄.

With the relations between the integration constants of the modal functions and the

natural frequency-wave number relations for all three branches of the frequency spectrum

established, we proceed to obtain the general expressions for the modal functions.

4.3 The Modal Functions

The general solution for the modal functions is found by taking the linear combination of all

possible solutions obtained when substituting the admissible wave numbers into Eq. (4.12).

For the first flexural branch, the admissible wave numbers given by Eqs. (4.33) and (4.34),

which are related through Eq. (4.35), contribute to the modal displacement and bending

rotations as follows

W̄1(x̄, ȳ) = Ā1e
iᾱx̄eiγ̄ȳ + Ā2e

−iᾱx̄eiγ̄ȳ + Ā3e
iᾱx̄e−iγ̄ȳ + Ā4e

−iᾱx̄e−iγ̄ȳ (4.50)

ϑx1(x̄, ȳ) = B̄1e
iᾱx̄eiγ̄ȳ + B̄2e

−iᾱx̄eiγ̄ȳ + B̄3e
iᾱx̄e−iγ̄ȳ + B̄4e

−iᾱx̄e−iγ̄ȳ (4.51)

ϑy1(x̄, ȳ) = C̄1e
iᾱx̄eiγ̄ȳ + C̄2e

−iᾱx̄eiγ̄ȳ + C̄3e
iᾱx̄e−iγ̄ȳ + C̄4e

−iᾱx̄e−iγ̄ȳ (4.52)

When applying boundary conditions and interpreting results, it is advantageous to work

with the above equations in the form of trigonometric functions. The transverse modal

displacement for the first flexural branch, W̄1, given by Eq. (4.50) is rewritten as

W̄1(x̄, ȳ) = [A1 cos ᾱx̄+A2 sin ᾱx̄]× [A3 cos γ̄ȳ +A4 sin γ̄ȳ] (4.53)
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where

A1A3 = Ā1 + Ā2 + Ā3 + Ā4 A1A4 = i
{
Ā1 + Ā2 − Ā3 − Ā4

}
A2A3 = i

{
Ā1 − Ā2 + Ā3 − Ā4

}
A2A4 = −

{
Ā1 − Ā2 − Ā3 + Ā4

} (4.54)

When rewriting the modal bending rotation ϑx1 given by Eq. (4.51) in a form similar to

that of Eq. (4.53), we will also express the constants B̄1-B̄4 in terms of the constants Ā1-Ā4

as related by Eq. (4.26). Hence,

B̄1 = iᾱg1Ā1

B̄2 = −iᾱg1Ā2

B̄3 = iᾱg1Ā3

B̄4 = −iᾱg1Ā4

(4.55)

where, from Eqs. (4.28) and (4.35)

g1 = g(ᾱ, γ̄, ω̄) =
k̄1F1 − 1

k̄1F1
(4.56)

Using Eqs. (4.54) and (4.55), we rewrite ϑx1 as

ϑx1(x̄, ȳ) = −ᾱg1 [A1 sin ᾱx̄−A2 cos ᾱx̄]× [A3 cos γ̄ȳ +A4 sin γ̄ȳ] (4.57)

When rewriting the modal bending rotation ϑy1 given by Eq. (4.52) in a form similar to

that of Eq. (4.53), we will also express the constants C̄1-C̄4 in terms of the constants Ā1-Ā4

as related by Eq. (4.27). Hence,

C̄1 = iγ̄g1Ā1

C̄2 = iγ̄g1Ā2

C̄3 = −iγ̄g1Ā3

C̄4 = −iγ̄g1Ā4

(4.58)

Using Eqs. (4.54) and (4.58), we rewrite ϑy1 as

ϑy1(x̄, ȳ) = −γ̄g1 [A1 cos ᾱx̄+A2 sin ᾱx̄]× [A3 sin γ̄ȳ −A4 cos γ̄ȳ] (4.59)

The modal displacement and bending rotations for the first flexural branch are given by

Eqs. (4.53), (4.57), and (4.59).

If for low values of ω̄, there exists solutions such that γ̄ → iγ̂, the modal displacement

and bending rotations for the first flexural branch then take the form

W̄1(x̄, ȳ) = [A1 cos ᾱx̄+A2 sin ᾱx̄]× [A3 cosh γ̂ȳ +A4 sinh γ̂ȳ] (4.60)
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ϑx1(x̄, ȳ) = −ᾱg1 [A1 sin ᾱx̄−A2 cos ᾱx̄]× [A3 cosh γ̂ȳ +A4 sinh γ̂ȳ] (4.61)

ϑy1(x̄, ȳ) = γ̂g1 [A1 cos ᾱx̄+A2 sin ᾱx̄]× [A3 sinh γ̂ȳ +A4 cosh γ̂ȳ] (4.62)

The multiplicative combinations of the constants A1 and A2 with A3 and A4 are then related

to the constants Ā1-Ā4, B̄1-B̄4, and C̄1-C̄4 by relations similar to those that will be seen

for flexural branch two with the subscripts changed accordingly. The parameter g1 remains

defined by Eq. (4.56).

The admissible wave numbers for the second flexural branch are given by Eqs. (4.33)

and (4.38) and are related through Eq. (4.39) or Eq. (4.40) depending on the magnitude of

ω̄. In this development, we use Eq. (4.39) since it corresponds to lower values of ω̄. The

modal displacement and bending rotations follow as

W̄2(x̄, ȳ) = Ā5e
iᾱx̄e−µ̂ȳ + Ā6e

−iᾱx̄e−µ̂ȳ + Ā7e
iᾱx̄eµ̂ȳ + Ā8e

−iᾱx̄eµ̂ȳ (4.63)

ϑx2(x̄, ȳ) = B̄5e
iᾱx̄e−µ̂ȳ + B̄6e

−iᾱx̄e−µ̂ȳ + B̄7e
iᾱx̄eµ̂ȳ + B̄8e

−iᾱx̄eµ̂ȳ (4.64)

ϑy2(x̄, ȳ) = C̄5e
iᾱx̄e−µ̂ȳ + C̄6e

−iᾱx̄e−µ̂ȳ + C̄7e
iᾱx̄eµ̂ȳ + C̄8e

−iᾱx̄eµ̂ȳ (4.65)

Rewriting the modal functions of the second flexural branch in terms of trigonometric and

hyberbolic functions is done in a similar procedure to that of the first flexural branch. The

transverse modal displacement for the second flexural branch, W̄2, given by Eq. (4.63) is

rewritten as

W̄2(x̄, ȳ) = [A1 cos ᾱx̄+A2 sin ᾱx̄]× [A5 cosh µ̂ȳ +A6 sinh µ̂ȳ] (4.66)

where

A1A5 = Ā5 + Ā6 + Ā7 + Ā8 A1A6 = −
{
Ā5 + Ā6 − Ā7 − Ā8

}
A2A5 = i

{
Ā5 − Ā6 + Ā7 − Ā8

}
A2A6 = −i

{
Ā5 − Ā6 − Ā7 + Ā8

} (4.67)

When rewriting the bending rotation ϑx2 given by Eq. (4.64), the constants B̄5-B̄8 are

related to the constants Ā5-Ā8 by Eq. (4.26). Hence,

B̄5 = iᾱg2Ā5

B̄6 = −iᾱg2Ā6

B̄7 = iᾱg2Ā7

B̄8 = −iᾱg2Ā8

(4.68)
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where, from Eqs. (4.28) and (4.39)

g2 = g(ᾱ, iµ̂, ω̄) =
k̄2F2 − 1

k̄2F2
(4.69)

Using Eqs. (4.67) and (4.68), we rewrite ϑx2 as

ϑx2(x̄, ȳ) = −ᾱg2 [A1 sin ᾱx̄−A2 cos ᾱx̄]× [A5 cosh µ̂ȳ +A6 sinh µ̂ȳ] (4.70)

When rewriting the bending rotation ϑy2 given by Eq. (4.65), the constants C̄5-C̄8 are

related to the constants Ā5-Ā8 by Eq. (4.27). Hence,

C̄5 = −µ̂g2Ā5

C̄6 = −µ̂g2Ā6

C̄7 = µ̂g2Ā7

C̄8 = µ̂g2Ā8

(4.71)

Using Eqs. (4.67) and (4.71), we rewrite ϑy2 as

ϑy2(x̄, ȳ) = µ̂g2 [A1 cos ᾱx̄+A2 sin ᾱx̄]× [A5 sinh µ̂ȳ +A6 cosh µ̂ȳ] (4.72)

The modal displacement and bending rotations for the second flexural branch for low natural

frequencies are given by Eqs. (4.66), (4.70), and (4.72).

If ω̄ reaches sufficient magnitude such that iµ̂→ µ̄, the modal displacement and bending

rotations for the second flexural branch then take the form

W̄2(x̄, ȳ) = [A1 cos ᾱx̄+A2 sin ᾱx̄]× [A5 cos µ̄ȳ +A6 sin µ̄ȳ] (4.73)

ϑx2(x̄, ȳ) = −ᾱg2 [A1 sin ᾱx̄−A2 cos ᾱx̄]× [A5 cos µ̄ȳ +A6 sin µ̄ȳ] (4.74)

ϑy2(x̄, ȳ) = −µ̄g2 [A1 cos ᾱx̄+A2 sin ᾱx̄]× [A5 sin µ̄ȳ −A6 cos µ̄ȳ] (4.75)

The multiplicative combinations of the constants A1 and A2 with A5 and A6 are then

related to the constants Ā5-Ā8, B̄5-B̄8, and C̄5-C̄8 by relations similar to those of flexural

branch one with the subscripts changed accordingly. The parameter g2 remains defined by

Eq. (4.69).

From Eq. (4.44), we see that the shear frequency branch will not contribute to the

transverse modal displacement function. It does however, contribute to the modal bending
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rotations. The admissible wave numbers for the shear branch are given by Eqs. (4.33) and

(4.47) and are related through Eq. (4.48) or Eq. (4.49) depending on the magnitude of ω̄.

In this development we use Eq. (4.48) since it corresponds to lower values of ω̄. The modal

bending rotations follow as

ϑxs(x̄, ȳ) = B̄9e
iᾱx̄e−β̂ȳ + B̄10e

−iᾱx̄e−β̂ȳ + B̄11e
iᾱx̄eβ̂ȳ + B̄12e

−iᾱx̄eβ̂ȳ (4.76)

ϑys(x̄, ȳ) = C̄9e
iᾱx̄e−β̂ȳ + C̄10e

−iᾱx̄e−β̂ȳ + C̄11e
iᾱx̄eβ̂ȳ + C̄12e

−iᾱx̄eβ̂ȳ (4.77)

In this case, we rewrite the modal bending rotation ϑxs in terms of trigonometric and

hyperbolic functions. Hence, Eq. (4.76) becomes

ϑxs(x̄, ȳ) = [B7 cos ᾱx̄+B8 sin ᾱx̄]×
[
B9 cosh β̂ȳ +B10 sinh β̂ȳ

]
(4.78)

where

B7B9 = B̄9 + B̄10 + B̄11 + B̄12 B7B10 = −
{
B̄9 + B̄10 − B̄11 − B̄12

}
B8B9 = i

{
B̄9 − B̄10 + B̄11 − B̄12

}
B8B10 = −i

{
B̄9 − B̄10 − B̄11 + B̄12

} (4.79)

When rewriting the bending rotation ϑys given by Eq. (4.77), the constants C̄9-C̄12 are

related to the constants B̄9-B̄12 by Eq. (4.43). Hence,

C̄9 = i ᾱ
β̂
B̄9

C̄10 = −i ᾱ
β̂
B̄10

C̄11 = −i ᾱ
β̂
B̄11

C̄12 = i ᾱ
β̂
B̄12

(4.80)

Using Eqs. (4.79) and (4.80), we rewrite ϑys as

ϑys(x̄, ȳ) =
ᾱ

β̂
[B7 sin ᾱx̄−B8 cos ᾱx̄]×

[
B9 sinh β̂ȳ +B10 cosh β̂ȳ

]
(4.81)

The modal bending rotations for the shear branch for low natural frequencies are given by

Eqs. (4.78) and (4.81).

If ω̄ reaches sufficient magnitude such that iβ̂ → β̄, the modal bending rotations for the

shear branch then take the form

ϑxs(x̄, ȳ) = [B7 cos ᾱx̄+B8 sin ᾱx̄]×
[
B9 cos β̄ȳ +B10 sin β̄ȳ

]
(4.82)
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ϑys(x̄, ȳ) =
ᾱ

β̄
[B7 sin ᾱx̄−B8 cos ᾱx̄]×

[
B9 sin β̄ȳ −B10 cos β̄ȳ

]
(4.83)

In this development, Eqs. (4.79) and (4.80) would have different definitions for the relation-

ships between the integration constants B7-B10.

The total solution for the modal displacement and bending rotations for the free vibra-

tion of the Mindlin plate is obtained from the linear combination of the individual solutions

for each of the three branches of the frequency spectrum. The solution includes twelve in-

dependent integration constants as shown in Eqs. (4.54), (4.67), and (4.79). It was seen in

Section 2.3 that Mindlin plate theory requires the specification of three independent bound-

ary conditions on a given edge of a structure and hence twelve independent conditions on

the boundaries of a square or rectangular plate to solve for the twelve integration constants.

The general form of the modal functions for a Mindlin plate are shown here

W̄ (x̄, ȳ) = W̄1 + W̄2

= [A1 cos ᾱx̄+A2 sin ᾱx̄]

× [A3 cos γ̄ȳ +A4 sin γ̄ȳ +A5 cosh µ̂ȳ +A6 sinh µ̂ȳ]

(4.84)

ϑx(x̄, ȳ) = ϑx1 + ϑx2 + ϑxs

= −ᾱ [A1 sin ᾱx̄−A2 cos ᾱx̄]

× [g1 {A3 cos γ̄ȳ +A4 sin γ̄ȳ}+ g2 {A5 cosh µ̂ȳ +A6 sinh µ̂ȳ}]

+ [B7 cos ᾱx̄+B8 sin ᾱx̄]×
[
B9 cosh β̂ȳ +B10 sinh β̂ȳ

]
(4.85)

ϑy(x̄, ȳ) = ϑy1 + ϑy2 + ϑys

= [A1 cos ᾱx̄+A2 sin ᾱx̄]

× [−γ̄g1 {A3 sin γ̄ȳ −A4 cos γ̄ȳ}+ µ̂g2 {A5 sinh µ̂ȳ +A6 cosh µ̂ȳ}]

+ ᾱ
β̂

[B7 sin ᾱx̄−B8 cos ᾱx̄]×
[
B9 sinh β̂ȳ +B10 cosh β̂ȳ

]
(4.86)

where g1 is given by Eq. (4.56) and g2 is given by Eq. (4.69). As noted earlier, if the

frequency range of interest is of sufficient magnitude, Eqs. (4.73)-(4.75) must be used when

iµ̂ → µ̄ and Eqs. (4.82)-(4.83) must be used when iβ̂ → β̄ in combining the individual

solutions to get Eqs. (4.84)-(4.86). If for low frequencies there exists solutions such that

γ̄ → iγ̂, Eqs. (4.60)-(4.62) must be used when combining the individual solutions to get

Eqs. (4.84)-(4.86).
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The solution for the modal functions of the Mindlin boundary value problem presented

in Eqs. (4.84)-(4.86) will not yield non-trivial solutions for every possible combination of

boundary conditions in the x̄ and ȳ-directions. If the plate has clamped or free edges in

the x̄-direction, it is found when applying boundary conditions that all of the integration

constants must vanish, the trivial solution. Hence, the solution presented in Eqs. (4.84)-

(4.86) requires the plate to have simply-supported boundaries in the x̄-direction. The

solution then allows for any combination of boundaries in the ȳ-direction.

A given structure will possess an infinite number of free vibration modes of the form

of Eqs. (4.84)-(4.86), corresponding to a specific combination of wave numbers and natural

frequency. Upon determining the specific form of the modal functions by the application of

boundary conditions, the solution to the eigenvalue problem expressed in Eq. (4.3) results

in the general free vibration response of the form

ū(x̄, ȳ, t̄) =

∞∑
j=1

∞∑
n=1

Ū
(jn)

(x̄, ȳ)Ā(jn) cos (ω̄jnt̄− φjn) (4.87)

where Ū
(jn)

(x̄, ȳ) is the matrix of modal functions, Ā(jn) is the amplitude, and φjn is

the phase angle. The amplitude and phase angle are determined by the initial conditions

imposed upon the plate.

4.4 The Frequency Spectrum and Selection of the Shear Correction Co-

efficient

In this section, we further examine the frequency equations of the Mindlin plate, Eqs. (4.31),

(4.36), and (4.45), to determine the optimal value of the shear correction coefficient to

use in applications. The best shear coefficient is determined here by comparison to the

elastodynamic frequency spectrum for the infinite plate as presented in Chapter 3. One

value considered here is Eq. (2.28), κ = 5/(6− ν), which Hutchinson [10] and Stephen [29]

determined best approximates the lowest flexural frequencies of the plate. The other value

is κ = π2/12 from Mindlin [17], which gives exact replication of the lowest anti-symmetric

shear branch of the elastodynamic spectrum (see Figure 3.1). In Figure 4.1, the frequency

spectrum for each of these values of the shear correction coefficient is plotted against the

anti-symmetric branches of the elastodynamic spectrum, which is shown in Figure 3.3 for
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a Poisson’s ratio of ν = 0.3. Poisson’s ratio is the only parameter that must be given a

numerical value in plotting the frequency spectrum in those figures.

Figure 4.1: Comparison of the Mindlin plate frequency spectrum to that of the infinite elastody-
namic plate for two values of the shear coefficient with ν = 0.3, where F1 and F2 indicate the flexural
branches and S indicates the shear branch.

Here, we see that κ = 5/(6− ν) provides a very good approximation of the frequencies

associated with the lowest flexural branch (F1) over the entire range of wavelengths and

frequencies considered. It does not provide very good agreement with either of the other

two elastodynamic branches in Figure 4.1, except for the second flexural branch (F2) at very

low frequencies. As mentioned previously, κ = π2/12 provides exact agreement with the

frequencies of the lowest anti-symmetric shear branch. It also gives better approximation

of the second flexural branch to a much higher frequency, while accurately predicting the

cut-off frequency for this branch of the elastodynamic spectrum.

Eqs. (4.31), (4.36), and (4.45) each represent a solution to the eigenvalue problem of the

Mindlin plate, Eq. (4.9), for a given value of the shear stiffness, k̄. In Section 4.2, the shear

stiffnesses corresponding to the solution for each branch were given a subscript to identify

which branch they were associated with. The total solution for the Mindlin plate was then

taken to be the linear combination of the contributions from each of the three frequency
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branches. From Figure 4.1, we see that the most accurate results for the frequency spectrum

of the Mindlin plate can be obtained by choosing different values of the shear correction

coefficient for the different branches of the spectrum. Hence, the shear stiffness for branch

one in Eq. (4.31), is calculated using

κ1 =
5

6− ν
(4.88)

The shear stiffnesses for the second flexural branch and the shear branch in Eqs. (4.36) and

(4.45) respectively, are calculated using

κ2 = κs =
π2

12
(4.89)

These values will result in the most accurate approximation of the frequency spectrum for

a plate using Mindlin theory.

The Mindlin frequency spectrum found using the shear correction coefficients as defined

in Eqs. (4.88) and (4.89) is superimposed over the elastodynamic frequency spectrum in

Figure 4.2, again for a Poisson’s ratio of ν = 0.3. The use of multiple shear correction

Figure 4.2: Comparison of the frequency spectrum for Kirchhoff plate theory, Mindlin plate theory,
and the infinite elastodynamic plate for κ1 = 5/(6− ν) and κ2 = κs = π2/12.

coefficients results in good approximation of the lowest flexural branch and exact values for
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the lowest anti-symmetric shear branch. The remaining Mindlin branch given by Eq. (4.36),

matches closely with the second flexural branch up to approximately a frequency of ω̄ = 8

before deviating from that branch. It then later matches closely with a higher longitudinal

branch of the elastodynamic spectrum for a range of frequencies beginning at approximately

ω̄ = 12. Stephen [29] argues that due to the “schizonphrenic nature” of this Mindlin branch

with respect to the elastodynamic spectrum, it should be disregarded. We argue here

that this Mindlin branch corresponds to the second flexural branch, with the theory losing

accuracy once the Mindlin branch deviates from the elastodynamic branch. In this light,

the use of multiple shear correction coefficients as presented herein results in highly accurate

frequency predictions up to approximately ω̄ = 8 for Mindlin plate theory.

The frequency spectrum predicted by Kirchhoff plate theory has also been included in

Figure 4.2. Assuming a solution to Eq. (2.49) by separation of variables similar to Eqs. (4.1)

and (4.12), results in the frequency equation for the Kirchhoff plate. Hence,

η̄2 = ω̄ (4.90)

where ω̄ is the same as that given for the non-dimensionalization for the natural frequencies

of the Mindlin plate in Eq. (4.7). The frequency branch for Eq. (4.90) in Figure 4.2 shows the

well known result that Kirchhoff theory is only accurate for low frequency flexural vibrations.

When compared to the elastodynamic theory in the figure, Kirchhoff theory results in

significant error beyond approximately ω̄ = 0.5 when predicting vibrational frequencies.

The frequency branches for the Mindlin plate in Figure 4.2 are plotted as continuous

paths which represent all of the possible vibration modes for a plate. The vibration modes

for a specific geometry correspond to a set of discrete points along the branch paths de-

termined when the boundary conditions are applied for a particular geometry and support

conditions. In the next chapter, we proceed to apply the general solution for the free

vibration modes of the Mindlin plate for specific combinations of boundary conditions.
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Chapter 5

Mindlin Theory Applied for Specific Boundary Conditions

In applying boundary conditions to the general solution for the Mindlin plate boundary

value problem as derived in Chapter 4, we consider a plate defined over the non-dimensional

domain from x̄ = 0 to x̄ = ā and from ȳ = 0 to ȳ = b̄ as shown in Figure 5.1 with thickness,

h̄. In accordance with the derived solution procedure, the plate must have simply-supported

Figure 5.1: Plate with coordinate system and dimensions.

edges in the x̄-direction. We will first apply the boundary conditions for simply-supported

edges in the x̄-direction and then proceed to consider simply-supported, clamped, and free

boundaries in the ȳ-direction. Mixed boundaries in the ȳ-direction will not be considered.

5.1 Simply-Supported Boundary Conditions in the x̄-direction

Along simply-supported edges, the structure is free to rotate in the direction perpendicular

to the edge but cannot displace or rotate in the direction tangential to the edge. Therefore,

in accordance with the possible boundary conditions specified in Section 2.3, the transverse
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displacement, the normal bending moment, and the tangential rotation along the edges in

the x̄-direction must vanish. Hence, the non-dimensional boundary conditions for the modal

functions along x̄ = 0 follow as

W̄ (0, ȳ) = 0 (5.1a)[
∂ϑx
∂x̄

+ ν
∂ϑy
∂ȳ

]
x̄=0

= 0 (5.1b)

ϑy(0, ȳ) = 0 (5.1c)

and along x̄ = ā

W̄ (ā, ȳ) = 0 (5.2a)[
∂ϑx
∂x̄

+ ν
∂ϑy
∂ȳ

]
x̄=ā

= 0 (5.2b)

ϑy(ā, ȳ) = 0 (5.2c)

Since the tangential rotations of Eqs. (5.1c) and (5.2c) vanish along the edges in the x̄-

direction, the following relations will also hold on those edges

∂ϑy
∂ȳ

∣∣∣∣
x̄=0

=
∂ϑy
∂ȳ

∣∣∣∣
x̄=ā

= 0 (5.3)

Incorporation of Eqs. (5.3) into Eqs. (5.1b) and (5.2b) simplifies those boundary conditions

to

∂ϑx
∂x̄

∣∣∣∣
x̄=0

= 0 (5.4a)

∂ϑx
∂x̄

∣∣∣∣
x̄=ā

= 0 (5.4b)

Imposing the boundary conditions given by Eqs. (5.1a), (5.1c), and (5.4a) upon the modal

functions given by Eqs. (4.84)-(4.86) results in the following respective relations

A1 [A3 cos γ̄ȳ +A4 sin γ̄ȳ +A5 cosh µ̂ȳ +A6 sinh µ̂ȳ] = 0 (5.5)

A1 [−γ̄g1 {A3 sin γ̄ȳ −A4 cos γ̄ȳ}+ µ̂g2 {A5 sinh µ̂ȳ +A6 cosh µ̂ȳ}]

−
(
ᾱ/β̂

)
B8

[
B9 sinh β̂ȳ +B10 cosh β̂ȳ

]
= 0

(5.6)

−ᾱA1 [g1 {A3 cos γ̄ȳ +A4 sin γ̄ȳ}+ g2 {A5 cosh µ̂ȳ +A6 sinh µ̂ȳ}]

+B8

[
B9 cosh β̂ȳ +B10 sinh β̂ȳ

]
= 0

(5.7)

In order for the relations given in Eqs. (5.5)-(5.7) to vanish identically, we require

A1 = B8 = 0 (5.8)
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Next, imposing the boundary conditions along the edge x̄ = ā given by Eqs. (5.2a), (5.2c),

and (5.4b) with Eq. (5.8) results in the following respective relations

A2 sin ᾱā [A3 cos γ̄ȳ +A4 sin γ̄ȳ +A5 cosh µ̂ȳ +A6 sinh µ̂ȳ] = 0 (5.9)

A2 sin ᾱā [−γ̄g1 {A3 sin γ̄ȳ −A4 cos γ̄ȳ}+ µ̂g2 {A5 sinh µ̂ȳ +A6 cosh µ̂ȳ}]

+
(
ᾱ/β̂

)
B7 sin ᾱā

[
B9 sinh β̂ȳ +B10 cosh β̂ȳ

]
= 0

(5.10)

−ᾱA2 sin ᾱā [g1 {A3 cos γ̄ȳ +A4 sin γ̄ȳ}+ g2 {A5 cosh µ̂ȳ +A6 sinh µ̂ȳ}]

−B7 sin ᾱā
[
B9 cosh β̂ȳ +B10 sinh β̂ȳ

]
= 0

(5.11)

The relations given by Eqs. (5.9)-(5.11) will vanish identically if the constants A2 and B7

vanish or if

sin ᾱā = 0 (5.12)

If the constants vanish, we will be left with the trivial solution of zero displacement. Hence,

for non-trivial modal displacements, Eq. (5.12) is satisfied for

ᾱ = ᾱj = jπ/ā (j=1,2,...) (5.13)

where j is any integer value and the integration constants A2 and B7 remain undetermined.

The boundary conditions in the x̄-direction have been fully implemented and incorpo-

ration of Eq. (5.8) reduces the modal functions to the following form

W̄ (x̄, ȳ) = A2 sin ᾱx̄ [A3 cos γ̄ȳ +A4 sin γ̄ȳ +A5 cosh µ̂ȳ +A6 sinh µ̂ȳ] (5.14)

ϑx(x̄, ȳ) = ᾱA2 cos ᾱx̄ [g1 {A3 cos γ̄ȳ +A4 sin γ̄ȳ}+ g2 {A5 cosh µ̂ȳ +A6 sinh µ̂ȳ}]

+B7 cos ᾱx̄
[
B9 cosh β̂ȳ +B10 sinh β̂ȳ

] (5.15)

ϑy(x̄, ȳ) = A2 sin ᾱx̄ [−γ̄g1 {A3 sin γ̄ȳ −A4 cos γ̄ȳ}+ µ̂g2 {A5 sinh µ̂ȳ +A6 cosh µ̂ȳ}]

+
(
ᾱ/β̂

)
B7 sin ᾱx̄

[
B9 sinh β̂ȳ +B10 cosh β̂ȳ

]
(5.16)

with ᾱ given by Eq. (5.13). The reduced modal functions above will hold for a plate with

any combination of boundary conditions in the ȳ-direction.
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5.2 Simply-Supported Boundary Conditions in the ȳ-direction

For simply-supported edges in the ȳ-direction, the transverse displacement, the normal

bending moment, and the tangential rotation must vanish as they did along the edges in

the x̄-direction. Hence, the non-dimensional boundary conditions for the modal functions

along ȳ = 0 follow as

W̄ (x̄, 0) = 0 (5.17a)[
∂ϑy
∂ȳ

+ ν
∂ϑx
∂x̄

]
ȳ=0

= 0 (5.17b)

ϑx(x̄, 0) = 0 (5.17c)

and along ȳ = b̄

W̄ (x̄, b̄) = 0 (5.18a)[
∂ϑy
∂ȳ

+ ν
∂ϑx
∂x̄

]
ȳ=b̄

= 0 (5.18b)

ϑx(x̄, b̄) = 0 (5.18c)

Since the tangential rotations of Eqs. (5.17c) and (5.18c) vanish along the edges in the

ȳ-direction, the following relations will also hold on those edges

∂ϑx
∂x̄

∣∣∣∣
ȳ=0

=
∂ϑx
∂x̄

∣∣∣∣
ȳ=b̄

= 0 (5.19)

Incorporation of Eqs. (5.19) into Eqs. (5.17b) and (5.18b) simplifies those boundary condi-

tions to

∂ϑy
∂ȳ

∣∣∣∣
ȳ=0

= 0 (5.20a)

∂ϑy
∂ȳ

∣∣∣∣
ȳ=b̄

= 0 (5.20b)

Imposing the boundary conditions given by Eqs. (5.17a), (5.17c), and (5.20a) upon the

reduced modal functions given by Eqs. (5.14)-(5.16) results in the following respective re-

lations

A2 sin ᾱx̄ [A3 +A5] = 0 (5.21)

ᾱA2 cos ᾱx̄ [g1A3 + g2A5] +B7B9 cos ᾱx̄ = 0 (5.22)

A2 sin ᾱx̄
[
−γ̄2g1A3 + µ̂2g2A5

]
+ ᾱB7B9 sin ᾱx̄ = 0 (5.23)
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In order for the relations given in Eqs. (5.21)-(5.23) to vanish identically, we require

A3 = A5 = B9 = 0 (5.24)

Next, imposing the boundary conditions along the edge x̄ = ā given by Eqs. (5.18a), (5.18c),

and (5.20b) with Eq. (5.24) results in the following respective relations

A2 sin ᾱx̄
[
A4 sin γ̄b̄+A6 sinh µ̂b̄

]
= 0 (5.25)

ᾱA2 cos ᾱx̄
[
g1A4 sin γ̄b̄+ g2A6 sinh µ̂b̄

]
+B7 cos ᾱx̄

[
B10 sinh β̂b̄

]
= 0 (5.26)

A2 sin ᾱx̄
[
−γ̄2g1A4 sin γ̄b̄+ µ̂2g2A6 sinh µ̂b̄

]
+ ᾱB7 sin ᾱx̄

[
B10 sinh β̂b̄

]
= 0 (5.27)

The relations given in Eqs. (5.25)-(5.27) will vanish simultaneously if the following condi-

tions are satisfied

A4 sin γ̄b̄ = 0 (5.28)

A6 sinh µ̂b̄ = 0 (5.29)

B10 sinh β̂b̄ = 0 (5.30)

Equation (5.28) is satisfied for

γ̄ = γ̄n = nπ/b̄ (n=1,2,...) (5.31)

where n is any integer value and the integration constant A4 remains undetermined. The

other conditions given in Eqs. (5.29) and (5.30) only have roots for imaginary values of the

spatial wave numbers, so we take the constants associated with those equations to vanish.

Hence,

A6 = B10 = 0 (5.32)

The wave numbers for the rectangular plate with all four edges simply-supported are given

by Eqs. (5.13) and (5.31). The natural frequencies for the free vibration modes are then

determined from the term on the right in Eq. (4.35). The natural frequency will be indexed

on both j and n and hence, given as ω̄jn.

The natural frequencies and spatial wave numbers are then substituted into the modal

functions to obtain the shape for each vibration mode. Substitution of Eqs. (5.24) and
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(5.32) into Eqs. (5.14)-(5.16) yields the modal functions for the Mindlin plate with simply-

supported edges in the ȳ-direction as

W̄
(jn)
1 (x̄, ȳ) = A(jn) sin ᾱj x̄ sin γ̄nȳ (5.33)

ϑ(jn)
x1 (x̄, ȳ) = ᾱjg

(jn)
1 A(jn) cos ᾱj x̄ sin γ̄nȳ (5.34)

ϑ(jn)
y1 (x̄, ȳ) = γ̄ng

(jn)
1 A(jn) sin ᾱj x̄ cos γ̄nȳ (5.35)

where

A(jn) = A2A4 (5.36)

The modal functions above have been given a subscript of one since only terms from the first

flexural solution branch, given in Eqs. (4.53), (4.57), and (4.59), remain in the total solution.

From Eq. (5.31), we also found that the spatial wave number γ̄n for the first flexural branch

was the only wave number to yield a natural frequency. Hence, in Eqs. (5.33)-(5.35) only

the first flexural frequency branch is active, while the other two branches do not effect the

vibrational motion for these modes. The modal functions are evaluated using the values of

ᾱj , γ̄n, and ω̄jn for a given mode.

Consideration is now given to the remaining frequency branches for the simply-supported

Mindlin plate. If we allow iµ̂jn → µ̄jn for the second flexural branch, then this branch will

also yield propagating solutions of the form

µ̄ = µ̄n = nπ/b̄ (n=1,2,...) (5.37)

This relation allows us to solve for the natural frequencies corresponding to the second

flexural branch through the term on the right of Eq. (4.40). We also see that the general

solution for propagating solutions of the second flexural branch, given in Eqs. (4.73)-(4.75),

takes a similar form to those of the first branch. As a result, they will satisfy the boundary

conditions for a rectangular plate with four simply-supported edges. Imposition of the

requisite boundary conditions yields the modal functions associated with the vibration

modes of the second flexural branch as

W̄
(jn)
2 (x̄, ȳ) = A(jn) sin ᾱj x̄ sin µ̄nȳ (5.38)

ϑ(jn)
x2 (x̄, ȳ) = ᾱjg

(jn)
2 A(jn) cos ᾱj x̄ sin µ̄nȳ (5.39)
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ϑ(jn)
y2 (x̄, ȳ) = µ̄ng

(jn)
2 A(jn) sin ᾱj x̄ cos µ̄nȳ (5.40)

where

A(jn) = A2A6 (5.41)

The modal functions for this branch are evaluated using the values of ᾱj , µ̄n, and ω̄jn for

a given mode.

Similarly, if we allow iβ̂jn → β̄jn, then the solutions of the shear branch will yield

propagating results of the form

β̄ = β̄n = nπ/b̄ (n=1,2,...) (5.42)

which allows us to solve for the natural frequencies corresponding to the shear branch

through the term on the right of Eq. (4.49). In this case, the general solution for propagating

solutions of the shear branch, given in Eqs. (4.82) and (4.83), will also satisfy the boundary

conditions for a rectangular plate with four simply-supported edges. Imposition of the

requisite boundary conditions yields the modal functions associated with the vibration

modes of the shear branch as

W̄ (jn)
s (x̄, ȳ) = 0 (5.43)

ϑ(jn)
xs (x̄, ȳ) = A(jn) cos ᾱj x̄ sin β̄nȳ (5.44)

ϑ(jn)
ys (x̄, ȳ) = −

(
ᾱj/β̄n

)
A(jn) sin ᾱj x̄ cos β̄nȳ (5.45)

where

A(jn) = B7B10 (5.46)

The modal functions for this branch are evaluated using the values of ᾱj , β̄n, and ω̄jn for a

given mode.

The solution for which γ̄ → iγ̂ at low frequencies will not yield solutions for simply-

supported boundaries. For the case of the simply-supported Mindlin plate, we have found

that only one of the three frequency branches is active for a given vibration mode. Since

the frequency branches do not interact, we are able to solve for a natural frequency along

each of the three branches for a given real valued η̄ obtained from the modal indices j and

n. When considering other combinations of boundary conditions in the ȳ-direction we will
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find that all three frequency branches must remain active in order for a given vibration

mode to satisfy the requisite boundary conditions.

5.3 Clamped Boundary Conditions in the ȳ-direction

Along clamped edges, the structure cannot displace or rotate in either direction. Therefore,

along the edges in the ȳ-direction the displacement, the normal rotation, and the tangential

rotation must vanish. Hence, along ȳ = 0

W̄ (x̄, 0) = 0 (5.47a)

ϑx(x̄, 0) = 0 (5.47b)

ϑy(x̄, 0) = 0 (5.47c)

and along the edge ȳ = b̄

W̄ (x̄, b̄) = 0 (5.48a)

ϑx(x̄, b̄) = 0 (5.48b)

ϑy(x̄, b̄) = 0 (5.48c)

We continue by imposing the boundary conditions along the edge ȳ = 0 given by Eqs. (5.47)

upon the reduced modal functions given by Eqs. (5.14)-(5.16), which results in the following

respective relations

A2 sin ᾱx̄ [A3 +A5] = 0 (5.49)

cos ᾱx̄ [ᾱA2 {g1A3 + g2A5}+B7B9] = 0 (5.50)

sin ᾱx̄
[
A2 {γ̄g1A4 + µ̂g2A6}+ (ᾱ/β̂)B7B10

]
= 0 (5.51)

Since the trigonometric functions of x̄ in the above relations do not vanish identically,

Eq. (5.49) yields

A5 = −A3 (5.52)

When Eq. (5.52) is substituted into Eq. (5.50) and the resulting expression is simplified, we

obtain the relation

B7B9 = ᾱA2A3 (g2 − g1) (5.53)
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We also simplify Eq. (5.51) to the following form

B7B10 = −(β̂/ᾱ)A2 {γ̄g1A4 + µ̂g2A6} (5.54)

which will be used along with Eqs. (5.52) and (5.53) to simplify the relations obtained when

imposing the boundary conditions on the final edge of the plate.

We next impose the boundary conditions along the edge ȳ = b̄ given by Eqs. (5.48) upon

the reduced modal functions given by Eqs. (5.14)-(5.16) while also substituting Eq. (5.52)

into these expressions, which results in the following respective relations

A2 sin ᾱx̄
[
A3

(
cos γ̄b̄− cosh µ̂b̄

)
+A4 sin γ̄b̄+A6 sinh µ̂b̄

]
= 0 (5.55)

ᾱA2 cos ᾱx̄
[
A3

(
g1 cos γ̄b̄− g2 cosh µ̂b̄

)
+A4g1 sin γ̄b̄+A6g2 sinh µ̂b̄

]
+B7 cos ᾱx̄

[
B9 cosh β̂b̄+B10 sinh β̂b̄

]
= 0

(5.56)

A2 sin ᾱx̄
[
−A3

(
γ̄g1 sin γ̄b̄+ µ̂g2 sinh µ̂b̄

)
+A4γ̄g1 cos γ̄b̄+A6µ̂g2 cosh µ̂b̄

]
+
(
ᾱ/β̂

)
B7 sin ᾱx̄

[
B9 sinh β̂b̄+B10 cosh β̂b̄

]
= 0

(5.57)

In order for Eq. (5.55) to be satisfied, the bracketed terms must vanish since the trigono-

metric function of x̄ does not. Solving that expression for the constant A6, results in the

following relation

A6 =
1

sinh µ̂b̄

[
A3

(
cosh µ̂b̄− cos γ̄b̄

)
−A4 sin γ̄b̄

]
(5.58)

Substitution of Eqs. (5.53), (5.54), and (5.58) into both Eqs. (5.56) and (5.57) allows us to

rewrite Eqs. (5.56) and (5.57) in matrix form as follows H11 H12

H21 H22

 A2A3

A2A4

 =

 0

0

 (5.59)

where

H11 = ᾱ2 sinh µ̂b̄ (g1 − g2)
(

cos γ̄b̄− cosh β̂b̄
)

+ β̂µ̂g2 sinh β̂b̄
(
cos γ̄b̄− cosh µ̂b̄

)
(5.60)

H12 = ᾱ2 (g1 − g2) sinh µ̂b̄ sin γ̄b̄+ β̂ sinh β̂b̄
(
µ̂g2 sin γ̄b̄− γ̄g1 sinh µ̂b̄

)
(5.61)

H21 = sinh µ̂b̄
[
ᾱ2 (g2 − g1) sinh β̂b̄− β̂γ̄g1 sin γ̄b̄− β̂µ̂g2 sinh µ̂b̄

]
+ β̂µ̂g2

(
cosh µ̂b̄− cosh β̂b̄

) (
cosh µ̂b̄− cos γ̄b̄

) (5.62)
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H22 = β̂µ̂g2 sin γ̄b̄
(

cosh β̂b̄− cosh µ̂b̄
)

+ β̂γ̄g1 sinh µ̂b̄
(

cos γ̄b̄− cosh β̂b̄
)

(5.63)

To achieve non-trivial solutions for the modal displacements, the determinant of the square

matrix appearing in Eq. (5.59) must vanish. The equation that results upon taking the

determinant of the matrix is the frequency equation for the simply-supported/clamped

Mindlin plate. Hence, the determinant of the square matrix in Eq. (5.59) is

FC = H11H22 −H12H21 = 0 (5.64)

When Eqs. (5.60)-(5.63) are substituted into Eq. (5.64), the final form of the frequency

equation for the Mindlin plate with clamped edges in the ȳ-direction is obtained as

FC =

[(
β̂µ̂g2

)2
−
(
β̂γ̄g1

)2
+ ᾱ4 (g2 − g1)2

]
sin γ̄b̄ sinh µ̂b̄ sinh β̂b̄

+ 2ᾱ2β̂µ̂g2 (g2 − g1) sin γ̄b̄
(

1− cosh µ̂b̄ cosh β̂b̄
)

+ 2β̂2µ̂γ̄g1g2 sinh β̂b̄
(
1− cosh µ̂b̄ cos γ̄b̄

)
− 2ᾱ2β̂γ̄g1 (g2 − g1) sinh µ̂b̄

(
1− cosh β̂b̄ cos γ̄b̄

)
= 0

(5.65)

The roots of Eq. (5.65) represent the vibration modes of the plate and can be obtained

through numerical root solving. There will be an infinite number of modes corresponding

to unique combinations of the natural frequencies and spatial wave numbers. In accordance

with the solution derived in this chapter there will be a single spatial wave number in the

x̄-direction, which is given by Eq. (5.13) and repeated here as

ᾱj = jπ/ā (5.66)

where in physical interpretation, the index j represents the number of half sine waves

occurring in the modal displacement of the plate in the x̄-direction. For a given index j in

the x̄-direction, there will be an infinite number of combinations of the wave numbers in

the ȳ-direction, which will be given the index n. Each of the spatial wave numbers in the

ȳ-direction will be indexed on both j and n (γ̄jn, µ̂jn, and β̂jn). The normalized natural

frequencies will also be determined for a given ᾱj and hence will also be indexed on both

j and n (ω̄jn). In this sense, there will be a single natural frequency for a given pair of ᾱj

and the combination of γ̄jn, µ̂jn, and β̂jn that satisfy the roots of Eq. (5.65).

The natural frequencies and spatial wave numbers in the ȳ-direction are related by

Eqs. (4.35), (4.39) or (4.40), and (4.48) or (4.49) through the wave number ᾱj . Hence, from
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Eq. (4.35)

γ̄jn =
√
ω̄2
jnF1 − ᾱ2

j =
√
ω̄2
jnF1 − (jπ/ā)2 (5.67)

from Eq. (4.39)

µ̂jn =
√
ᾱ2
j − ω̄2

jnF2 =
√

(jπ/ā)2 − ω̄2
jnF2 (5.68)

and from Eq. (4.48)

β̂jn =
√
ᾱ2
j − S =

√
(jπ/ā)2 − S (5.69)

where F1, F2, and S are given by Eqs. (4.32), (4.37), and (4.46), respectively. For each

value of j, Eq. (5.65) can be numerically solved to obtain values for ω̄jn, γ̄jn, µ̂jn, and β̂jn

using the relations presented in Eqs. (5.67)-(5.69).

When ω̄jn has reached sufficient magnitude and iµ̂jn → µ̄jn in Eq. (5.65), then Eq. (5.68)

is replaced by the following when root solving

µ̄jn =
√
ω̄2
jnF2 − ᾱ2

j =
√
ω̄2
jnF2 − (jπ/ā)2 (5.70)

When ω̄jn has reached sufficient magnitude and iβ̂jn → β̄jn in Eq. (5.65), then Eq. (5.69)

is replaced by the following when root solving

β̄jn =
√
S − ᾱ2

j =

√
S − (jπ/ā)2 (5.71)

If both situations occur simultaneously, then both substitutions must be made when root

solving.

If solutions exist such that, γ̄ → iγ̂ in Eq. (5.65), then Eq. (5.67) is replaced by the

following when root solving

γ̂jn =
√
ᾱ2
j − ω̄2

jnF1 =
√

(jπ/ā)2 − ω̄2
jnF1 (5.72)

Solutions incorporating Eq. (5.72) will not exist for every combination of boundary condi-

tions.

The natural frequencies and spatial wave numbers are then substituted into the modal

functions to obtain the shape for each vibration mode. The first line of Eq. (5.59) yields

the relation between the undetermined constants A2A3 and A2A4 of Eq. (5.59). Hence,

A2A4 = −H
(jn)
11

H
(jn)
12

A(jn) (5.73)
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with

A(jn) = A2A3 (5.74)

where j and n are the modal indices.

Substitution of Eqs. (5.52)-(5.54), (5.58), and (5.73) into Eqs. (5.14)-(5.16) yields the

modal functions for the Mindlin plate with clamped edges in the ȳ-direction

W̄ (jn)(x̄, ȳ) = A(jn) sin ᾱj x̄

[
cos γ̄jnȳ −

H
(jn)
11

H
(jn)
12

sin γ̄jnȳ − cosh µ̂jnȳ + H̃(jn) sinh µ̂jnȳ

]
(5.75)

ϑ
(jn)
x (x̄, ȳ) = ᾱjA

(jn) cos ᾱj x̄

[
g

(jn)
1

{
cos γ̄jnȳ −

H
(jn)
11

H
(jn)
12

sin γ̄jnȳ

}
− g(jn)

2

{
cosh µ̂jnȳ − H̃(jn) sinh µ̂jnȳ

}
+
(
g

(jn)
2 − g(jn)

1

)
cosh β̂jnȳ +

β̂jn
ᾱ2
j
Ĥ(jn) sinh β̂jnȳ

] (5.76)

ϑ
(jn)
y (x̄, ȳ) = A(jn) sin ᾱj x̄

[
−γ̄jng(jn)

1

{
sin γ̄jnȳ +

H
(jn)
11

H
(jn)
12

cos γ̄jnȳ

}
− µ̂jng(jn)

2

{
sinh µ̂jnȳ − H̃(jn) cosh µ̂jnȳ

}
+

ᾱ2
j

β̂jn

(
g

(jn)
2 − g(jn)

1

)
sinh β̂jnȳ + Ĥ(jn) cosh β̂jnȳ

] (5.77)

where

H̃(jn) =
H

(jn)
11

H
(jn)
12

sin γ̄jnb̄

sinh µ̂jnb̄
+

cosh µ̂jnb̄− cos γ̄jnb̄

sinh µ̂jnb̄
(5.78)

and

Ĥ(jn) = γ̄jng
(jn)
1

H
(jn)
11

H
(jn)
12

− µ̂jng(jn)
2 H̃(jn) (5.79)

The modal functions are evaluated using the values for ω̄jn, γ̄jn, µ̂jn, and β̂jn obtained from

Eq. (5.65) for a given mode. When ω̄jn has reached sufficient magnitude, iµ̂jn → µ̄jn and

iβ̂jn → β̄jn in the above set of equations. If such solutions exist, γ̄ → iγ̂ in the above set of

modal equations. In the modal functions for the Mindlin plate with clamped edges in the

ȳ-direction, the solutions corresponding to each of the three frequency branches are active

in comprising a given vibration mode. The implications of this in solving for the natural

frequencies will be discussed further when presenting numerical results in the next chapter.

5.4 Free Boundary Conditions in the ȳ-direction

Along free edges, the structure is free to displace and rotate in either direction. Therefore,

along the edges in the ȳ-direction the resultant normal bending moment, twisting moment,
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and transverse shear force must vanish. Hence, along ȳ = 0[
∂ϑy
∂ȳ

+ ν
∂ϑx
∂x̄

]
ȳ=0

= 0 (5.80a)

[
∂ϑy
∂x̄

+
∂ϑx
∂ȳ

]
ȳ=0

= 0 (5.80b)[
k̄1

(
∂W̄1

∂ȳ
− ϑy1

)
+ k̄2

(
∂W̄2

∂ȳ
− ϑy2

)
− k̄2ϑys

]
ȳ=0

= 0 (5.80c)

and along the edge ȳ = b̄ [
∂ϑy
∂ȳ

+ ν
∂ϑx
∂x̄

]
ȳ=b̄

= 0 (5.81a)[
∂ϑy
∂x̄

+
∂ϑx
∂ȳ

]
ȳ=b̄

= 0 (5.81b)[
k̄1

(
∂W̄1

∂ȳ
− ϑy1

)
+ k̄2

(
∂W̄2

∂ȳ
− ϑy2

)
− k̄2ϑys

]
ȳ=b̄

= 0 (5.81c)

where in Eqs. (5.80c) and (5.81c) the resultant transverse shear force is taken to be the linear

combination of the three solution branches substituted into the non-dimensional form of the

transverse shear force given by Eq. (2.23b). In those equations, the shear stiffness for the

shear branch, k̄s, has been set equal to k̄2 in accordance with Eq. (4.89).

We continue by imposing the boundary conditions along the edge ȳ = 0 given by

Eqs. (5.80) upon the reduced modal functions given by Eqs. (5.14)-(5.16), which results

in the following respective relations

sin ᾱx̄ [A2 {−g1Z1A3 + g2Z2A5}+ ᾱ(1− ν)B7B9] = 0 (5.82)

cos ᾱx̄

[
ᾱA2 {2γ̄g1A4 + 2µ̂g2A6}+

(
ᾱ2

β̂
+ β̂

)
B7B10

]
= 0 (5.83)

sin ᾱx̄
[
A2

{
k̄1γ̄ (1− g1)A4 + k̄2µ̂ (1− g2)A6

}
− k̄2

(
ᾱ/β̂

)
B7B10

]
= 0 (5.84)

where

Z1 = γ̄2 + νᾱ2 (5.85)

Z2 = µ̂2 − νᾱ2 (5.86)

Since the trigonometric function of x̄ in Eq. (5.82) does not vanish identically, the bracketed

term in that equation yields

B7B9 =
1

ᾱ(1− ν)
[g1Z1A2A3 − g2Z2A2A5] (5.87)
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Similarly, Eqs. (5.83) and (5.84) yield

A2A6 = − γ̄Z4

µ̂Z5
A2A4 (5.88)

and

B7B10 =
2β̂ᾱγ̄

Z3Z5
(g2Z4 − g1Z5)A2A4 (5.89)

where

Z3 = ᾱ2 + β̂2 (5.90)

Z4 = 2k̄2ᾱ
2g1 + k̄1 (1− g1)Z3 (5.91)

Z5 = 2k̄2ᾱ
2g2 + k̄2 (1− g2)Z3 (5.92)

We next impose the boundary conditions along the edge ȳ = b̄ given by Eqs. (5.81) upon

the reduced modal functions given by Eqs. (5.14)-(5.16) while also substituting Eqs. (5.87)-

(5.89) into these expressions. This results in the following system of equations
Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33




A2A3

A2A4

A2A5

 =


0

0

0

 (5.93)

where

Λ11 = µ̂g1Z1Z3Z5

[
cosh β̂b̄− cos γ̄b̄

]
(5.94)

Λ12 = 2(1−ν)ᾱ2β̂γ̄µ̂ (g2Z4 − g1Z5) sinh β̂b̄− µ̂g1Z1Z3Z5 sin γ̄b̄− γ̄g2Z2Z3Z4 sinh µ̂b̄ (5.95)

Λ13 = µ̂g2Z2Z3Z5

[
cosh µ̂b̄− cosh β̂b̄

]
(5.96)

Λ21 = g1Z5

[
Z1Z3 sinh β̂b̄− 2(1− ν)ᾱ2β̂γ̄ sin γ̄b̄

]
(5.97)

Λ22 = 2(1− ν)ᾱ2β̂γ̄
[
g1Z5 cos γ̄b̄− g2Z4 cosh µ̂b̄+ (g2Z4 − g1Z5) cosh β̂b̄

]
(5.98)

Λ23 = g2Z5

[
2(1− ν)ᾱ2β̂µ̂ sinh µ̂b̄− Z2Z3 sinh β̂b̄

]
(5.99)

Λ31 = Z3Z5

[
−k̄1(1− ν)β̂γ̄ (1− g1) sin γ̄b̄− k̄2g1Z1 sinh β̂b̄

]
(5.100)

Λ32 = (1− ν)β̂γ̄
[
k̄1 (1− g1)Z3Z5 cos γ̄b̄− k̄2 (1− g2)Z3Z4 cosh µ̂b̄

− 2k̄2ᾱ
2 (g2Z4 − g1Z5) cosh β̂b̄

] (5.101)

Λ33 = k̄2Z3Z5

[
g2Z2 sinh β̂b̄+ (1− ν)β̂µ̂ (1− g2) sinh µ̂b̄

]
(5.102)
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To achieve non-trivial solutions for the modal displacements, the determinant of the square

matrix appearing in Eq. (5.93) must vanish. The equation that results from this is the

frequency equation for the simply-supported/free Mindlin plate. Hence, the determinant of

the square matrix in Eq. (5.93) is

FF = Λ11 (Λ22Λ33 − Λ32Λ23)−Λ12 (Λ21Λ33 − Λ23Λ31)+Λ13 (Λ21Λ32 − Λ22Λ31) = 0 (5.103)

When Eqs. (5.94)-(5.102) are substituted into Eq. (5.103), the final form of the frequency

equation for the Mindlin plate with free edges in the ȳ-direction is obtained as

FF =
[
Z3

{
(g1µ̂Z1Z5)2 − (g2γ̄Z2Z4)2

}
+ 4ᾱ4Z6 (g2Z4 − g1Z5)

{
β̂γ̄µ̂(1− ν)

}2
]

sin γ̄b̄ sinh µ̂b̄ sinh β̂b̄

− 2ᾱ2γ̄2β̂µ̂(1− ν)g2Z2Z4 {Z3Z6 − g2Z4 + g1Z5} sin γ̄b̄
(

cosh µ̂b̄ cosh β̂b̄− 1
)

+ 2ᾱ2µ̂2β̂γ̄(1− ν)g1Z1Z5 {Z3Z6 − g2Z4 + g1Z5} sinh µ̂b̄
(

cosh β̂b̄ cos γ̄b̄− 1
)

+ 2µ̂γ̄g1g2Z1Z2Z3Z4Z5 sinh β̂b̄
(
cosh µ̂b̄ cos γ̄b̄− 1

)
= 0

(5.104)

where

Z6 = k̄2g1 − k̄1g2 + g1g2

(
k̄1 − k̄2

)
(5.105)

The roots of Eq. (5.104) represent the vibration modes of the plate and can be obtained

through numerical root solving. There will be an infinite number of modes corresponding

to unique combinations of the natural frequencies and spatial wave numbers. The method

of solving for pairs of ω̄jn, γ̄jn, µ̂jn, and β̂jn for a given ᾱj is the same as described in the

previous section for plates with clamped edges in the ȳ-direction.

The natural frequencies and spatial wave numbers for the simply-supported/free plate

are then substituted into the modal functions to obtain the shape for each vibration mode.

The undetermined coefficients from Eq. (5.93) are related as follows

A2A4 =
Λ

(jn)
23 Λ

(jn)
11 − Λ

(jn)
21 Λ

(jn)
13

Λ
(jn)
22 Λ

(jn)
13 − Λ

(jn)
23 Λ

(jn)
12

A(jn) = Λ
(jn)
1 A(jn) (5.106)

and

A2A5 = −

[
Λ

(jn)
12

Λ
(jn)
13

Λ
(jn)
1 +

Λ
(jn)
11

Λ
(jn)
13

]
A(jn) = −Λ

(jn)
2 A(jn) (5.107)

with

A(jn) = A2A3 (5.108)
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where j and n are the modal indices.

Substitution of Eqs. (5.87)-(5.89), (5.106), and (5.107) into Eqs. (5.14)-(5.16) yields the

modal functions for the Mindlin plate with free edges in the ȳ-direction

W̄ (jn)(x̄, ȳ) = A(jn) sin ᾱj x̄
[
cos γ̄jnȳ + Λ

(jn)
1 sin γ̄jnȳ

− Λ
(jn)
2 cosh µ̂jnȳ − Λ

(jn)
1

γ̄jnZ
(jn)
4

µ̂jnZ
(jn)
5

sinh µ̂jnȳ

] (5.109)

ϑ
(jn)
x (x̄, ȳ) = ᾱjA

(jn) cos ᾱj x̄
[
g

(jn)
1

{
cos γ̄jnȳ + Λ

(jn)
1 sin γ̄jnȳ

}
− g(jn)

2

{
Λ

(jn)
2 cosh µ̂jnȳ + Λ

(jn)
1

γ̄jnZ
(jn)
4

µ̂jnZ
(jn)
5

sinh µ̂jnȳ

}
+ 1

ᾱ2
j (1−ν)

Λ̃(jn) cosh β̂jnȳ + β̂jnΛ̂(jn) sinh β̂jnȳ

] (5.110)

ϑ
(jn)
y (x̄, ȳ) = A(jn) sin ᾱj x̄

[
−γ̄jng(jn)

1

{
sin γ̄jnȳ − Λ

(jn)
1 cos γ̄jnȳ

}
− µ̂jng(jn)

2

{
Λ

(jn)
2 sinh µ̂jnȳ + Λ

(jn)
1

γ̄jnZ
(jn)
4

µ̂jnZ
(jn)
5

cosh µ̂jnȳ

}
+ 1

β̂jn(1−ν)
Λ̃(jn) sinh β̂jnȳ + ᾱ2

j Λ̂
(jn) cosh β̂jnȳ

] (5.111)

where

Λ̃(jn) = g
(jn)
1 Z

(jn)
1 + Λ

(jn)
2 g

(jn)
2 Z

(jn)
2 (5.112)

and

Λ̂(jn) = Λ
(jn)
1

2γ̄jn

Z
(jn)
3 Z

(jn)
5

(
g

(jn)
2 Z

(jn)
4 − g(jn)

1 Z
(jn)
5

)
(5.113)

The modal functions are evaluated using the values for ω̄jn, γ̄jn, µ̂jn, and β̂jn obtained

from Eq. (5.104) for a given mode. When ω̄jn has reached sufficient magnitude, iµ̂jn → µ̄jn

and iβ̂jn → β̄jn in the above set of equations. If such solutions exist, γ̄ → iγ̂ in the

above set of modal equations. As for the case of clamped edges in the ȳ-direction, all three

frequency branches remain active in calculating a given natural frequency for free edges in

the ȳ-direction. In the next chapter, numerical results are presented for each of the three

combinations of boundary conditions considered in this chapter.



64

Chapter 6

Results and Discussion

This chapter presents numerical simulations for the Mindlin plate with the various boundary

conditions covered in the previous chapter. Analysis of both the modal frequency spectrum

and the modal displacement functions is performed for representative values of Poisson’s

ratio and the thickness to length ratio of the plate.

6.1 Simply-Supported Boundary Conditions in the ȳ-direction

We begin by solving for the natural frequencies of the simply-supported Mindlin plate.

For the first flexural branch, the frequencies are obtained from the term on the right in

Eq. (4.35), with ᾱj and γ̄n given by Eqs. (5.13) and (5.31), respectively. Hence,(
jπ

ā

)2

+
(nπ
b̄

)2
=
(
ω̄

(1)
jn

)2
F1 (6.1)

where j and n are integers identifying the vibration modes and F1 is given in Eq. (4.32).

In the above equation ω̄jn has been given a superscript of (1) to identify it with the first

flexural branch.

The calculated values for the natural frequencies of this branch appear in Table 6.1 in

the rows labeled as Present. Since the frequencies are symmetric with respect to the indices

j and n, only half of the figure has been populated with values. In Table 6.1, the results from

several other studies found in the literature have also been included, the most important

of which being the work of Srinivas et al. [28]. Srinivas et al. presented a solution for the

simply-supported plate that satisfies the three-dimensional elastodynamic equations. The

resulting natural frequencies computed from their solution are therefore taken to be the

exact values. The non-dimensional natural frequencies used in the present study are related
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to the non-dimensional values used in Srinivas et al. by

ω̃ = ω̄

√
1

6(1− ν)
= ωh

√
ρ

G
(6.2)

where ω̃ is the non-dimensionalization appearing in Srinivas et al..

The results found in the literature from three additional studies have been included in

Table 6.1. The results of Mindlin et al. [18] and Hashemi and Arsanjani [7] are, like the

present study, calculated using the first-order shear deformation theory of Mindlin [17].

Mindlin et al. [18] were the first to present frequency results and has been included as a

j ω̄
(1)
j1 ω̄

(1)
j2 ω̄

(1)
j3 ω̄

(1)
j4 ω̄

(1)
j5

Present

1

0.1909 0.4562 0.8546 1.3458 1.8975
Srinivas et al. [28] 0.1909 0.4562 0.8549 1.3466* 1.8993
Mindlin et al. [18] 0.1906 0.4545 0.8493 1.3337* 1.8756

Reddy and Phan [24] 0.1908 0.4554 0.8521 1.3413 1.8916
Hashemi and Arsanjani [7] 0.1908 0.4558 0.8537 1.3436 1.8934*

Present

2 -

0.7009 1.0733 1.5382 2.0662
Srinivas et al. [28] 0.7010 1.0737 1.5393 2.0685*
Mindlin et al. [18] 0.6972 1.0652 1.5229 2.0410*

Reddy and Phan [24] 0.6990 1.0700 1.5331 2.0603
Hashemi and Arsanjani [7] 0.7002 1.0718 1.5354* 2.0616*

Present

3 - -

1.4110 1.8397 2.3339
Srinivas et al. [28] 1.4119 1.8414* 2.3370*
Mindlin et al. [18] 1.3978 1.8189* 2.3030*

Reddy and Phan [24] 1.4063 1.8340 2.3283
Hashemi and Arsanjani [7] 1.4086* 1.8359* 2.3282*

Present

4 - - -

2.2287 2.6843
Srinivas et al. [28] 2.2315 2.6885*
Mindlin et al. [18] 2.2001 2.6454*

Reddy and Phan [24] 2.2230 -
Hashemi and Arsanjani [7] 2.2234* 2.6771*

Present

5 - - - -

3.1005
Srinivas et al. [28] 3.1064
Mindlin et al. [18] 3.0515

Reddy and Phan [24] -
Hashemi and Arsanjani [7] 3.0914*

Table 6.1: Natural frequencies for the first flexural branch of the simply-supported Mindlin plate
with sides ā = b̄ = 10 and ν = 0.3 (*values did not appear in publication and have been calculated).

historical benchmark. A shear correction coefficient of κ = π2/12, was used in Mindlin et

al. to obtain the tabulated natural frequencies. The results of Hashemi and Arsanjani [7]

have been included as it is the only study found that considers all other combinations of
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boundary conditions in addition to the plate that is simply-supported on all four of its edges.

Hashemi and Arsanjani used a shear correction coefficient of κ = 0.86667 in calculating the

tabulated natural frequencies. Reddy and Phan [24] used a higher-order shear deformation

theory that allows for a parabolic distribution of the shear stress through the thickness of

the plate and hence, does not require a shear correction coefficient.

In analyzing Table 6.1, we see that the results of the present study best match with the

exact results of Srinivas et al. [28]. While the higher-order shear theory of Reddy and Phan

[24] did improve upon the results of Mindlin et al. [18], it falls behind the results of the

present study and Hashemi and Arsanjani [7]. Hence, use of a first-order shear theory with

the proper selection of the shear correction coefficient can lead to more accurate frequency

results than those of a higher-order theory. As the natural frequency increases in magnitude,

each of the approximate studies deviate further from the exact value. However, this still

only results in a maximum percentage difference of 0.18% for ω̄
(1)
55 of the present study for

the first flexural branch.

For the second flexural branch, the frequencies are obtained from the term on the right

in Eq. (4.40), with ᾱj and µ̄n given by Eqs. (5.13) and (5.37), respectively. Hence,(
jπ

ā

)2

+
(nπ
b̄

)2
=
(
ω̄

(2)
jn

)2
F2 (6.3)

where j and n are integers identifying the vibration modes and F2 is given in Eq. (4.36).

In the above equation ω̄jn has been given a superscript of (2) to identify it with the second

flexural branch.

The calculated values for the natural frequencies of this branch appear in Table 6.2 in

the rows labeled as Present. Since the frequencies are again symmetric with respect to the

indices j and n, only half of the figure has been populated with values. The results from

Srinivas et al. [28] are again taken to be the exact values for the natural frequencies of this

branch. The results from Mindlin et al. [18] do not appear in Table 6.2 because the shear

correction coefficient selected in Section 4.4 for the second flexural branch was κ = π2/12,

which is the same value used by Mindlin et al.. With the same value used for the shear

correction coefficient, the same value is calculated for the natural frequencies of this branch.

Table 6.2 does not provide results from Reddy and Phan [24] either, since values were not
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j ω̄
(2)
j1 ω̄

(2)
j2 ω̄

(2)
j3 ω̄

(2)
j4 ω̄

(2)
j5

Present
1

6.6683 6.9909 7.4822 8.0996 8.8086
Srinivas et al. [28] 6.6533 6.9542 7.4106 7.9801* 8.6277
κ = 0.86667** 6.8360 7.1547 7.6412 8.2533 8.9571

Present
2 -

7.2917 7.7554 8.3450 9.0288
Srinivas et al. [28] 7.2339 7.6632 8.2051 8.8272*
κ = 0.86667** 7.4524 7.9119 8.4968 9.1758

Present
3 - -

8.1825 8.7336 9.3813
Srinivas et al. [28] 8.0562 8.5596* 9.1448*
κ = 0.86667** 8.3355 8.8826 9.5259

Present
4 - - -

9.2423 9.8484
Srinivas et al. [28] 9.0199 9.5622*
κ = 0.86667** 9.3879 9.9901

Present
5 - - - -

10.4118
Srinivas et al. [28] 10.0596
κ = 0.86667** 10.5501

Table 6.2: Natural frequencies for the second flexural branch of the simply-supported Mindlin plate
with sides ā = b̄ = 10 and ν = 0.3 (*values did not appear in publication and have been calculated,
**shear coefficient used in Hashemi and Arsanjani [7]).

provided for the natural frequencies of the second flexural branch in that study.

The final set of data included in Table 6.2 is labeled as κ = 0.86667, corresponding to

the shear correction coefficient used in Hashemi and Arsanjani [7]. The authors of that

study did not discuss the second flexural branch for the simply-supported plate, but those

are the natural frequencies they would have obtained. The values have been included to

further illustrute numerically the improved accuracy of the frequency predictions when

using branch dependent shear correction coefficients. By employing κ1 and κ2 as defined in

Eqs. (4.88) and (4.89), respectively, the present study has led to the results that best match

the exact values for both flexural branches. The calculated values again lose accuracy as

the magnitude of the natural frequency increases with a maximum percentage difference of

3.5% for ω̄
(2)
55 of the present study for the second flexural branch.

For the shear branch, the frequencies are obtained from the term on the right in

Eq. (4.49), with ᾱj and β̄n given by Eqs. (5.13) and (5.42), respectively. Hence,(
jπ

ā

)2

+
(nπ
b̄

)2
= S (6.4)

where j and n are integers identifying the vibration modes and S is given in Eq. (4.46). In

S, ω̄jn is given a superscript of (s) to identify it with the shear branch.
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The calculated values for the natural frequencies of this branch appear in Table 6.3 in

the rows labeled as Present. With this branch again using a shear correction coefficient of

κ = π2/12 for the present study, it gives identical values to the results of Mindlin et al.

[18]. When employing this value of the shear correction coefficient for the shear branch, the

j ω̄
(s)
j1 ω̄

(s)
j2 ω̄

(s)
j3 ω̄

(s)
j4 ω̄

(s)
j5

Present
1

6.5024 6.5973 6.7526 6.9641 7.2270
Srinivas et al. [28] 6.5024 6.5973 6.7526 6.9641* 7.2270
κ = 0.86667** 6.6715 6.7641 6.9156 7.1223 7.3796

Present
2 -

6.6909 6.8441 7.0529 7.3126
Srinivas et al. [28] 6.6909 6.8441 7.0529 7.3126*
κ = 0.86667** 6.8554 7.0049 7.2091 7.4633

Present
3 - -

6.9938 7.1983 7.4529
Srinivas et al. [28] 6.9938 7.1983* 7.4529*
κ = 0.86667** 7.1513 7.3514 7.6009

Present
4 - - -

7.3971 7.6451
Srinivas et al. [28] 7.3971 7.6451*
κ = 0.86667** 7.5462 7.7895

Present
5 - - - -

7.8853
Srinivas et al. [28] 7.8853
κ = 0.86667** 8.0254

Table 6.3: Natural frequencies for the anti-symmetric shear branch of the simply-supported Mindlin
plate with sides ā = b̄ = 10 and ν = 0.3 (*values did not appear in publication and have been
calculated, **shear coefficient used in Hashemi and Arsanjani [7]).

calculated values for the natural frequencies also match identically with the exact values

of Srinivas et al. [28]. As with the second flexural branch, Reddy and Phan [24] does

not provide frequency values for the shear branch and Hashemi and Arsanjani [7] does not

discuss this frequency branch. The rows labeled κ = 0.86667 are the frequencies Hashemi

and Arsanjani would have obtained if the authors had considered the frequencies for this

branch and have been included to again emphasize the improved accuracy of employing

branch dependent shear correction coefficients.

The natural frequencies for the present study tabulated in Tables 6.1-6.3 correspond to

the vibration modes for the Mindlin plate. The vibration modes are plotted superimposed

upon the frequency branches from Eqs. (4.31), (4.36), and (4.45) in Figure 6.1. This illus-

trates how the frequency branches correspond to an infinite number of possible vibration

modes, with the active vibration modes labeled as discrete points along the path determined
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through imposition of the boundary conditions for the plate.

Figure 6.1: The vibration modes for the simply-supported Mindlin plate with sides ā = b̄ = 10 and
ν = 0.3.

Figure 6.1 also illustrates how the vibration modes for a given real valued η̄ will align

vertically along each of the three branches for the simply-supported plate. This is shown

in the figure by a dashed vertical line for mode j = 1 and n = 1, which corresponds to

η̄ = (
√

2π)/10. The line passes through the modes corresponding to the natural frequencies

ω̄
(1)
11 , ω̄

(s)
11 , and ω̄

(2)
11 as it intersects with each respective frequency branch. For each of the

vibration modes, only the branch which the mode lies upon is active and the mode does not

interact with the other two branches. This behavior is unique to the plate simply-supported

on all four of its edges. For other combinations of boundary conditions, all three branches of

the frequency spectrum are active for a given mode and the interpretation of the vibration

modes changes significantly.

6.1.1 Modal Plots

We now proceed to an analysis of the modal plots corresponding to the vibration modes of

the simply-supported Mindlin plate tabulated in Tables 6.1-6.3. The modal functions for
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the first flexural branch are given in Eqs. (5.33)-(5.35) and are plotted for the first mode,

j = 1 and n = 1, in Figure 6.2. The modal functions for the second flexural branch are

given in Eqs. (5.38)-(5.40) and are plotted for the first mode in Figure 6.3. The modal

functions for the shear branch are given in Eqs. (5.43)-(5.45) and are plotted for the first

mode in Figure 6.4. All of the modal plots presented are scaled by their maximum value

in order to compare the distribution of the functions over the span of the plate for a given

mode.

Figure 6.2: The modal functions for the first vibration mode of the first flexural branch for the
simply-supported Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.

Figure 6.3: The modal functions for the first vibration mode of the second flexural branch for the
simply-supported Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.

Figure 6.4: The modal functions for the first vibration mode of the anti-symmetric shear branch
for the simply-supported Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.

The modal displacements for the first and second flexural branches are seen to be of

the same shape, since they are given by the same function for a given modal index. The
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differences in behavior between the branches is identified through the modal bending rota-

tion. From Figures 6.2 and 6.3, we find that the bending rotations for these branches have

opposite sign and vastly differ in magnitude. To better understand this discrepancy, it is

also instructive to examine the distribution of the shear angle over the span of the Mindlin

plate. To do this, we first define the modal shear angles in the x̄ and ȳ-directions as Γ
(jn)
x

and Γ
(jn)
y , respectively. In accordance with Eqs. (2.10) and (2.11) for the transverse shear

angle we obtain the modal shear angles as

Γ(jn)
x =

∂W̄ (jn)

∂x̄
− ϑ(jn)

x (6.5)

and

Γ(jn)
y =

∂W̄ (jn)

∂ȳ
− ϑ(jn)

y (6.6)

Substitution of the modal functions into Eqs. (6.5) and (6.6) for a given mode yields the

function for the shear angle of that mode.

The modal shear angles for the first and second flexural branches are plotted in Figures

6.5 and 6.6, respectively. Comparison of the modal shear angles with the modal bending

rotations shows the full picture of how the deformation mechanisms for the first and sec-

ond flexural branches manifest themselves and yet result in the same shape for the modal

displacement. For the first branch, the shear angle and bending rotation act in the same

direction and combine together to form the total angle change of the plate. For the second

branch, the shear angle and bending rotation act in opposite directions and compete with

each other. The shear angle has a larger magnitude and hence determines the direction of

the overall angle change.

Figure 6.5: The modal shear angles for the first vibration mode of the first flexural branch for the
simply-supported Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.
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Figure 6.6: The modal shear angles for the first vibration mode of the second flexural branch for
the simply-supported Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.

For the shear branch in Figure 6.4, the distribution for the modal bending rotations is

given, although for this branch the modal displacement vanishes. In taking into account the

modal shear angles given in Eqs. (6.5) and (6.6), we see that for this branch the bending

rotation must act in the opposite direction of the shear angle with equal magnitude. As a

result the bending rotation will cancel out the effects of the shear angle deformation and

the displacement of the plate is zero.

In concluding the discussion of the modal plots for the simply-supported Mindlin plate,

the modal displacements for several other vibration modes are displayed in Figure 6.7.

All of the displacement modes shown are for the first flexural branch, although we have

previously established these will also be the shapes for the second flexural branch as well.

It is evident from the figure, as well as from inspection of the modal functions, that the

indices of the vibration mode determine the number of half-sine waves appearing in the

modal displacement distribution. For example, vibration mode j = 2 and n = 3 has two

half-sine waves in the x̄-direction and three half sine waves in the ȳ-direction.

The modal bending rotations in the x̄ and ȳ-directions of the first flexural branch are

displayed in Figures 6.8 and 6.9, respectively. The modal bending rotations for the other

two branches have been omitted for brevity. The physical interpretation of the relationship

between the modal displacements, bending rotations, and shear angles is the same for these

vibration modes as it was for the lowest vibration mode discussed in detail earlier. In the

next section, we proceed to an analysis of the numerical simulations for the Mindlin plate

with clamped edges in the ȳ-direction.
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Figure 6.7: The modal displacements for several representative vibration modes of the first flexural
branch for the simply-supported Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.
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Figure 6.8: The modal bending rotations in the x̄-direction for several representative vibration
modes of the first flexural branch for the simply-supported Mindlin plate with sides ā = b̄ = 10 and
ν = 0.3.
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Figure 6.9: The modal bending rotations in the ȳ-direction for several representative vibration
modes of the first flexural branch for the simply-supported Mindlin plate with sides ā = b̄ = 10 and
ν = 0.3.
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6.2 Clamped Boundary Conditions in the ȳ-direction

We begin with a detailed explanation of the process of solving for the natural frequencies for

the simply-supported/clamped Mindlin plate. The process is different when compared to the

plate that is simply-supported on all four of its edges, as all three branches of the frequency

spectrum governing the free vibration of the plate must be active for a given vibration mode

when considering mixed boundary conditions. In order to obtain the natural frequencies,

we must numerically solve for the roots of the frequency equation given by Eq. (5.65). For

a given natural frequency there will be a unique combination of three wave numbers in the

ȳ-direction to pair with ᾱj in the x̄-direction. We seek solutions where the wave numbers

associated with the ȳ-direction are given by Eqs. (5.67)-(5.69).

Figure 6.10: Modal wave number combinations for the simply-supported/clamped Mindlin plate
with sides ā = b̄ = 10 and ν = 0.3.

The process of solving for the natural frequencies and modal wave number pairings is

further explained graphically by Figure 6.10. A natural frequency that satisfies Eq. (5.65) is

found when a specific combination of the wave numbers γ̄jn, µ̂jn, and β̂jn form horizontally

aligned intersection points on each of the three branches. The intersection point with one of
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the branches represents its contribution to that vibration mode. The solution combination

for the lowest mode is labeled in Figure 6.10. Each of the wave numbers in the ȳ-direction

interact with ᾱ1 = π/ā to calculate real or imaginary values of η̄, such that a point intersects

with each of the three branches in horizontal alignment. The dashed line through the points

for mode j = 1 and n = 1 corresponds to the magnitude of ω̄11.

Figure 6.10 also includes the wave number combinations for mode j = 9 and n = 9,

used to determine the magnitude of ω̄99. This is the lowest natural frequency for which the

frequency value surpasses the “cut-off”frequency (the frequency at which η̄ transitions from

imaginary to real valued) for the shear and second flexural branches. In this case, the wave

numbers associated with these branches are still related to ᾱj by Eqs. (5.68) and (5.69).

They are however, now governed by the term on the left in Eqs. (4.40) and (4.49) rather

than by Eqs. (4.39) and (4.48).

If we continued to solve for increasing values of ω̄jn, there will reach a magnitude of

ω̄jn for which iµ̂jn → µ̄jn and also a magnitude for which iβ̂jn → β̄jn. When this occurs,

Eq. (5.70) replaces Eq. (5.68) and/or Eq. (5.71) replaces Eq. (5.69), respectively as the wave

number combinations used for solving the frequency equation. The geometry and material

properties considered herein for the simply-supported/clamped Mindlin plate will not result

in solutions for which γ̄jn → iγ̂jn, and Eq. (5.72) is not needed. For other geometries and

material properties the solution may exist, so it should be considered when solving for the

natural frequencies in those cases.

The calculated values for the natural frequencies of the simply-supported/clamped

Mindlin plate are tabulated in Table 6.4. Unlike for simply-supported boundary conditions,

the frequencies are no longer symmetric with respect to the indices j and n so the entire

figure has been populated with frequency values. The frequencies calculated by Hashemi

and Arsanjani [7], using a shear correction coefficient of κ = 0.86667 are tabulated in Table

6.5. An exact analysis for the simply-supported/clamped Mindlin plate does not exist in

the literature for comparison. It is believed that Hashemi and Arsanjani was the first to

consider all possible boundary conditions for the Mindlin plate in closed analytical form.

In comparing Tables 6.4 and 6.5, it is evident that the calculated natural frequencies

in the present study are very close to the values found by Hashemi and Arsanjani. The
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j ω̄j1 ω̄j2 ω̄j3 ω̄j4 ω̄j5

1 0.2673 0.5947 1.0203 1.5126 2.0501

2 0.4928 0.7923 1.1977 1.6727 2.1950

3 0.8730 1.1279 1.4953 1.9386 2.4342

4 1.3558 1.5707 1.8944 2.2979 2.7585

5 1.9032 2.0860 2.3693 2.7316 3.1541

Table 6.4: Natural frequencies for the present study of the simply-supported/clamped Mindlin plate
with sides ā = b̄ = 10 and ν = 0.3.

j ω̄j1 ω̄j2 ω̄j3 ω̄j4 ω̄j5

1 0.2674 0.5948 1.0202 1.5118* 2.0482*

2 0.4926 0.7920 1.1970 1.6713* 2.1923*

3 0.8721 1.1268 1.4935* 1.9359* 2.4301*

4 1.3536 1.5681* 1.8912* 2.2935* 2.7527*

5 1.8992* 2.0815* 2.3640* 2.7252* 3.1461*

Table 6.5: Natural frequencies from Hashemi and Arsanjani [7] for the simply-supported/clamped
Mindlin plate with sides ā = b̄ = 10 and ν = 0.3 (*values did not appear in publication and have
been calculated).

results between these studies match much more closely than did the frequencies for the

shear and second flexural branches of the simply-supported plate. Hence, even when all

three branches of the frequency spectrum are required to be active simultaneously, the

accuracy of the frequency prediction is largely determined for these cases by the accuracy

of the first flexural branch of the spectrum. As the frequency increases in magnitude, there

is an increase in the difference between the calculated frequency between the two studies,

but even up to the mode j = 10 and n = 10 the percentage difference is under 0.5%.

Though an exact study is not available in the literature for comparison for these boundary

conditions, it is assumed that the present study results in slightly more accurate frequency

results due to its increased accuracy for the simply-supported plate.

Since all frequency branches for these boundary conditions must be active for a given

mode, the frequency spectrum cannot be plotted as a function of η̄ as it was for the simply-

supported case. Hence, we postulate plotting the frequency spectrum as a function of the

wave number in the x̄-direction, ᾱj . The suggested frequency spectrum is displayed in

Figure 6.11 using the values tabulated in Table 6.4. Here we are able to clearly identify the

natural frequencies in a way that cannot be represented on a plot of the branches of the
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frequency spectrum due to the interaction of the branches in forming a vibration mode.

Figure 6.11: Frequency spectrum for the simply-supported/clamped Mindlin plate with sides ā =
b̄ = 10 and ν = 0.3.

6.2.1 Modal Plots

We proceed to an analysis of the modal functions for the simply-supported/clamped Mindlin

plate. To obtain the modal functions for a given mode, the natural frequency and the

corresponding wave number pairs found from the roots of Eq. (5.65) are substituted into

Eqs. (5.75)-(5.77).

The modal displacement and bending rotations corresponding to the mode j = 1 and

n = 1 appear in Figure 6.12. For this mode, we note that a single half-sine wave is formed

in the x̄-direction of the modal displacement plot, since this is specified by the parameter j

in ᾱj . The displacement in the ȳ-direction also retains the appearance of a single half-sine

wave but it is not a true half-sine wave due to the interaction of the three wave numbers in

this direction.

Even though Eqs. (5.75) and (5.76) for the modal displacement and the modal bending

rotation in the x̄-direction, respectively, are more complex for the clamped case as compared

to those for the simply-supported case, their plots in Figure 6.12 appear very similar to

the corresponding plots in Figure 6.2. This is due to the fact that the boundary conditions
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Figure 6.12: The modal functions for the first vibration mode of the simply-supported/clamped
Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.

imposed on those two functions specifically have not changed as the simply-supported edges

were replaced with clamped edges. The distribution of the modal bending rotation in the

ȳ-direction has changed shape, since with clamped edges the function must now vanish on

all four edges.

The modal shear angles for clamped boundaries in the ȳ-direction are obtained through

substitution of the modal displacement and bending rotation functions given in Eqs. (5.75)-

(5.77) into Eqs. (6.5) and (6.6). Figure 6.13 gives the distribution of the modal shear angles

for mode j = 1 and n = 1. The modal shear angle in the x̄-direction, Γ
(11)
x , exhibits a more

complex distribution than it did for the case of the fully simply-supported plate. We now

see increased shear behavior near the boundaries ȳ = 0 and ȳ = b̄ where the clamped edges

have replaced the simply-supported edges.

We also compare the modal bending rotation in the ȳ-direction, ϑ
(11)
y , and the modal

shear angle in that direction, Γ
(11)
y . The bending rotation is seen to be zero on all edges

of the plate as simply-supported edges do not allow for tangential bending rotation and

clamped edges do not allow for normal bending rotation. The shear angle is also zero over

the edges x̄ = 0 and x̄ = ā as there cannot be an angle change due to shear in the tangential

direction of a simply-supported edge. Along the edges ȳ = 0 and ȳ = b̄ we see that the

shear angle remains non-zero on these edges. While clamped boundaries resist normal

bending rotations, they do not provide resistance to normal shear rotation. Hence, a plate

theory that does not account for the effects of transverse shear deformation would yield

different results near an edge of this type. In general, the effects of including transverse

shear deformation will have the most influence near the boundaries of the plate.
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Figure 6.13: The modal shear angles for the first vibration mode of the simply-supported/clamped
Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.

The modal plots for various other vibration modes given in Figure 6.4 for the simply-

supported/clamped Mindlin plate follow, with the modal displacements in Figure 6.14,

the modal bending rotations in the x̄-direction in Figure 6.15, and the modal bending

rotations in the ȳ-direction in Figure 6.16. The modal displacements and the modal bending

rotations in the x̄-direction again show similar behavior to their counterparts for the fully

simply-supported case. The distribution of the modal bending rotations in the ȳ-direction

is different in order to satisfy the new condition of zero normal rotation on the clamped

edges in the ȳ-direction.

Substitution of any of the natural frequency and wave number pairs found from the

roots of Eq. (5.65) into the modal functions given in Eqs. (5.75)-(5.77) will give the modal

plots for that vibration mode of the simply-supported/clamped Mindlin plate. However,

additional plots have been omitted for brevity. In the next section, we consider the Mindlin

plate with free boundaries in the ȳ-direction.

6.3 Free Boundary Conditions in the ȳ-direction

For the simply-supported/free Mindlin plate, all three of the frequency branches must be

active for a given vibration mode when solving for the natural frequencies. The natural

frequencies are calculated by numerically solving for the roots of Eq. (5.104) in the same

manner as was described for the plate with clamped edges in the ȳ-direction. As for those

boundary conditions, for a given natural frequency there is a unique combination of the
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Figure 6.14: The modal displacements for several representative vibration modes of the simply-
supported/clamped Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.
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Figure 6.15: The modal bending rotations in the x̄-direction for several representative vibration
modes of the simply-supported/clamped Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.



84

Figure 6.16: The modal bending rotations in the ȳ-direction for several representative vibration
modes of the simply-supported/clamped Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.
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three wave numbers in the ȳ-direction to pair with ᾱj in the x̄-direction.

A graphical depiction of the wave number combination for the lowest vibration mode,

ω̄jn, is shown in Figure 6.17 superimposed upon the frequency branches for the Mindlin

plate. For free boundary conditions, a solution exists such that γ̄jn → iγ̂jn for low values

of the modal index n. Hence, in solving for ω̄11, Eq. (5.72) is used to relate γ̂11 to ᾱ1 and

ω̄11. The combination of wave numbers leading to the next highest natural frequency, ω̄12,

Figure 6.17: Modal wave number combinations for the simply-supported/free Mindlin plate with
sides ā = b̄ = 10 and ν = 0.3.

is also shown in Figure 6.17. This is the lowest frequency for j = 1 in which the solution

moves to γ̄jn and the natural frequency-wave number relation is again given by Eq. (5.67).

For a given modal index j, we must check for solutions for which γ̄jn → iγ̂jn for the lowest

modal indices of n when considering this combination of boundary conditions.

As for the case of clamped edges, if we continued to solve for increasing values of ω̄jn,

there will reach a magnitude of ω̄jn for which iµ̂jn → µ̄jn and also a magnitude for which

iβ̂jn → β̄jn. When this occurs, Eq. (5.70) replaces Eq. (5.68) and/or Eq. (5.71) replaces

Eq. (5.69), respectively as the wave number combinations used for solving the frequency

equation.

The calculated values for the natural frequencies of the simply-supported/free Mindlin

plate are tabulated in Table 6.6. In a manner similar to that for the simply-supported/
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clamped boundary conditions, the frequencies are no longer symmetric with respect to

the indices j and n so the entire figure has been populated with frequency values. The

frequencies calculated from the solutions for which γ̄jn → iγ̂jn have been denoted in Table

6.6 by an asterisk.

The frequencies calculated by Hashemi and Arsanjani [7], using a shear correction co-

efficient of κ = 0.86667 are tabulated in Table 6.7. As with clamped boundaries, an exact

analysis for the simply-supported/free Mindlin plate does not exist in the literature for com-

parison. In comparing Tables 6.6 and 6.7, it is again evident that the calculated natural

frequencies in the present study are very close to the values found by Hashemi and Arsan-

jani for free boundaries. It is seen that, as the frequency increases in magnitude, there is

an increase in the difference between the calculated frequency between the two studies, but

now the percentage difference is under 0.4% up to the mode j = 10 and n = 10. Though an

exact study is not available in the literature for comparison for these boundary conditions,

it is again assumed that the present study results in slightly more accurate frequency values

due to its increased accuracy for the simply-supported plate.

j ω̄j1 ω̄j2 ω̄j3 ω̄j4 ω̄j5

1 0.0945* 0.1540 0.3392 0.6643 1.1064

2 0.3644* 0.4289 0.6234 0.9304 1.3394

3 0.7697* 0.8277 1.0154 1.3048 1.6824

4 1.2679* 1.3171 1.4898 1.7568 2.1042

5 1.8256* 1.8666 2.0227 2.2654 2.5831

Table 6.6: Natural frequencies for the present study of the simply-supported/free Mindlin plate
with sides ā = b̄ = 10 and ν = 0.3 (*correspond to solutions for which γ̄jn → iγ̂jn).

j ω̄j1 ω̄j2 ω̄j3 ω̄j4 ω̄j5

1 0.0945 0.1541 0.3392 0.6637 1.1047*

2 0.3642 0.4289 0.6233 0.9297* 1.3374*

3 0.7690 0.8272 1.0147* 1.3035* 1.6799*

4 1.2662* 1.3157* 1.4880* 1.7543* 2.1005*

5 1.8224* 1.8638* 2.0194* 2.2613* 2.5778*

Table 6.7: Natural frequencies from Hashemi and Arsanjani [7] for the simply-supported/free
Mindlin plate with sides ā = b̄ = 10 and ν = 0.3 (*values did not appear in publication and
have been calculated).
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As for the case of clamped boundaries, the frequency spectrum cannot be plotted as a

function of η̄ due to the interaction of the frequency branches in forming a vibration mode

for these boundary conditions. The frequency spectrum is plotted as a function of the wave

number in the x̄-direction, ᾱj , in Figure 6.18 using the values tabulated in Table 6.6. Here

we are able to clearly identify the natural frequencies that cannot be represented on a plot of

the branches of the frequency spectrum due to the requirement that all branches are active

for a given vibration mode. For a given value of ᾱj , the two lowest natural frequencies are

very close in value as the solution changes from employing γ̂jn to employing γ̄jn.

Figure 6.18: Frequency spectrum for the simply-supported/free Mindlin plate with sides ā = b̄ = 10
and ν = 0.3.

6.3.1 Modal Plots

We proceed to an analysis of the modal functions for the simply-supported/free Mindlin

plate. To obtain the modal functions for a given mode, the natural frequency and the

corresponding wave number pairs found from the roots of Eq. (5.104) are substituted into

Eqs. (5.109)-(5.111).

The modal displacement and bending rotations corresponding to the mode j = 1 and

n = 1 appear in Figure 6.19. For this mode, we note that a single half-sine wave is formed

in the x̄-direction of the modal displacement plot, since this is specified by the parameter

j in ᾱj . This has not changed for any of the cases considered, as the boundaries in the
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x̄-direction are simply-supported for all three cases. The displacement in the ȳ-direction

no longer retains the appearance of a single half-sine wave for the mode j = 1 and n = 1

with free boundaries. The modal displacement has a slight bend in the ȳ-direction, but

Figure 6.19: The modal functions for the first vibration mode of the simply-supported/free Mindlin
plate with sides ā = b̄ = 10 and ν = 0.3.

more closely resembles a zeroth mode in this direction. For consistency with the other

boundary conditions considered, we shall leave the mode indexed as j = 1 and n = 1 but it

would more appropriately be labeled as mode j = 1 and n = 0 corresponding to a natural

frequency labeled ω̄10.

As with the other boundary conditions, the modal bending rotations are better under-

stood in conjunction with the modal shear angles which are obtained through substitution of

the modal displacement and bending rotation functions for free boundaries in the ȳ-direction

given in Eqs. (5.109)-(5.111) into Eqs. (6.5) and (6.6). Figure 6.20 gives the distribution of

the modal shear angles for mode j = 1 and n = 1. Here, we again see the most significant

Figure 6.20: The modal shear angles for the first vibration mode of the simply-supported/free
Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.

contributions of the shear angle in the vicinity of the bounding edges. The modal shear

angle in the x̄-direction, Γ
(11)
x , is zero over most of the span and then takes on a non-zero
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value near the free edges at ȳ = 0 and ȳ = b̄. The modal shear angle in both directions has a

small magnitude when compared to the modal bending rotations in Figure 6.19, signifying

the contribution of the shear angle is small for the plate with free edges in the ȳ-direction.

The modal plots for various other vibration modes given in Table 6.6 for the simply-

supported/free Mindlin plate follow, with the modal displacements in Figure 6.21, the modal

bending rotations in the x̄-direction in Figure 6.22, and the modal bending rotations in the ȳ-

direction in Figure 6.23. Substitution of any of the natural frequency and wave number pairs

found from the roots of Eq. (5.104) into the modal functions given in Eqs. (5.109)-(5.111)

will give the modal plots for that vibration mode of the simply-supported/free Mindlin

plate. Additional plots have been omitted for brevity. Conclusions from the numerical

simulations presented herein follow in the final chapter of this thesis.
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Figure 6.21: The modal displacements for several representative vibration modes of the simply-
supported/free Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.
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Figure 6.22: The modal bending rotations in the x̄-direction for several representative vibration
modes of the simply-supported/free Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.
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Figure 6.23: The modal bending rotations in the ȳ-direction for several representative vibration
modes of the simply-supported/free Mindlin plate with sides ā = b̄ = 10 and ν = 0.3.
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Chapter 7

Conclusions

The free vibration of a plate using Mindlin plate theory has been studied. The kinematic,

constitutive, and kinetic relations for Mindlin plate theory are presented, with a summary

of prominent values for the shear correction coefficient used in the literature included. A

review of the frequency spectrum for the elastodynamic plate is presented in order to analyze

the accuracy of the frequency spectrum for the Mindlin plate.

A general analytical solution is presented for the equations of motion governing the

free vibration of the Mindlin plate. The three branches of the frequency spectrum for

this plate theory are identified through comparison with the frequency spectrum of the

infinite elastodynamic plate. Based on physical interpretation and correspondence with

the elastodynamic branches, the use of branch dependent shear correction coefficients is

proposed. The branch dependent coefficients bring each of the three branches of the Mindlin

plate into best agreement with the elastodynamic branches.

The general solution is applied to plates with simply-supported, simply-supported/

clamped, and simply-supported/free edges. Upon imposition of the boundary conditions for

the simply-supported plate, it is found that only one of the three branches of the frequency

spectrum is active for a given vibration mode. Since the frequency branches do not interact

for a given vibration mode, natural frequencies for each of the branches are calculated for

a given propagating value of the wave number η̄. The modal behavior corresponding to

each of the branches is analyzed and distinctions in the mechanisms of deformation for each

branch are drawn. When compared to other studies in the literature, the predicted natural

frequencies calculated using branch dependent shear correction coefficients best matched

those assessed through the exact elastodynamic analysis for all three branches.
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For both the cases of the plate with simply-supported/clamped and with simply-sup-

ported/free edges, all three branches of the frequency spectrum are active for a given vi-

bration mode. That is, each mode is seen to be comprised of a contribution from each of

the three wave numbers in the ȳ-direction of the plate. Hence, a point is found on each

of the branches that aligned horizontally upon the branches of the frequency spectrum,

which corresponds to the natural frequencies for these boundary conditions. The natural

frequency spectrum is presented as a functional component of the wave number ᾱ in the

x̄-direction, and modal plots are also presented for both cases. An elastodynamic analysis

is not available in the literature for comparison for these cases but, based on the results

from the simply-supported plate, it is assumed that branch dependent shear correction

coefficients slightly improved the frequency results.

In conclusion, the use of branch dependent shear correction coefficients has improved

the frequency predictions for the free vibrations of Mindlin plates. The thesis has also

provided insight into the nuances that must be considered when solving for the natural

frequencies of the Mindlin plate for various boundary conditions. The insight provided into

the interactions of the frequency branches improves upon the physical understanding and

interpretation, as well as the analysis of the free vibration of the Mindlin plate even for the

classical case when a single shear correction coefficient is employed. The most important

of which is the recognization that when considering simply-supported boundaries a single

branch of the frequency spectrum is active for a given vibration mode while for mixed

boundaries all three branches of the frequency spectrum must be active to form a given

vibration mode.
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