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ABSTRACT OF THE DISSERTATION

Computational study of water and ion distributions around

biomolecules

by Hung Tien Nguyen

Dissertation Director: Prof. David A. Case

Water and ions play a crucially important role in governing biomolecule structure, stability

and function. Knowledge of how water molecules and ions distribute around proteins and

nucleic acids at the molecular level has long been sought. Due to their highly mobile na-

ture, the hydration water and ion cloud are very hard to probe with traditional experiment

techniques such as X-ray crystallography, NMR or microscopy. Here we use a combination

of computational approaches and X-ray scattering experiment to investigate the water and

ion distribution around biomolecules.

In the �rst part, we describe a protocol to calculate X-ray scattering pro�les from atomic

models of macromolecules. We show that the quality of the Reference Interaction Site Model

(RISM) hydration closely approaches those from explicit molecular dynamics simulation

in terms of reproducing X-ray intensity signals. The intensity pro�les (which involve no

adjustable parameters) match experiment and molecular dynamics simulation up to wide

angle for relatively rigid biomolecules. For nucleic acid structures, we demonstrate that

an improvement in the intensity calculations could be made by using the conformational

ensemble obtained from MD simulation rather than using a single di�raction structure.

In the second part, we extend the X-ray scattering theory and describe a novel anal-

ysis method to extract water and ion distribution from X-ray scattering experiment. The
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analysis complements recent experimental techniques, showing both numbers of excess sol-

vent (water, ions) and aspects of their distributions around macromolecules. Comparisons

between experimental and theoretically predicted distributions are made for molecular dy-

namics and RISM theory, showing that although the total X-ray patterns are very similar,

the distributions from MD simulations are generally better than those from RISM. This

illustrate the potential power of this analysis to guide the development of computational

models of solvation.

Finally, we investigate a possible use of partial molar volume and number of excess sol-

vent (extracted from X-ray experiment and from other direct measurements) as a guide to

recalibrate force �elds. The partial molar volume (and the number of excess solvent) can be

conceptually divided into contributions of the solute excluded volume and hydration shell.

While the former depends only on the solute topology and can be computed once the solute

structure is known, the latter is more �interesting� and contains valuable information about

solute-solvent interaction. We show that current protein force �elds reproduce reasonably

the hydration shell term although more works are needed to achieve better solute-solvent

interaction balance. For nucleic acids, the solute-solvent interaction is strongly overesti-

mated and a recalibration is needed. As a proof of concept, we reoptimize the non-bonded

parameters for the phosphate groups in a DNA duplex and show that the predicted partial

molar volume and the number of excess hydration water around the DNA approach the

experimental value. Our parameters, however, currently cannot be used for dynamics study

unless a complete re�t of bonded parameters is carried out. Since the nucleic acid structure

depends tightly on the solute-solvent interaction, we believe that such a misbalance should

be corrected in the near future.
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Chapter 1

Introduction

1.1 Water in biology

1.1.1 Role of water and hydration

Water is the most important substance on planet Earth as it is a crucial solvent for life

to evolve and sustain. In living cells, water performs many important functions such as

transporting, stabilizing, lubricating, reacting, partitioning ... and thus cannot be considered

as a simple dilutent. It is widely accepted that biomolecules such as proteins and nucleic

acids will not function as usual without the presence of liquid water. (There are some

exceptions that the proteins could retain their function in nonaqueous solvent or at low

hydration condition, [20, 21] but in both cases there are still some tightly bound water

molecules remain.) The e�ect of water to life is extremely �ne-tuned to a degree that even

introducing heavy water is toxic to those processes.

There has been enormous e�ort to understand the role of water in molecular interaction,

for some recent excellent reviews see [22�30]. There is abundant experimental and theo-

retical evidence that the water molecules adjacent to the protein (referred to as �hydration

water�) has structural and dynamical properties very di�erent from the bulk water. However,

ambiguities appear once a rigorous de�nition for hydration water is required. Since an ex-

perimental technique can only probe one aspect of the hydration water, di�erent approaches

thus lead to di�erent operational de�nitions of hydration. [31]

It is worth noting that the thermodynamic and structural hydration is totally indepen-

dent of dynamic hydration. For example, one dynamical aspect of hydration water is the

residence time�the inverse of the �rst-order dissociation constant. A large residence time

of a water molecule does not mean that water molecule has a stronger a�nity towards the
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protein, nor does it contribute to the excess density of water at that location. It could

simply come from the fact that this water molecule is stuck inside a deep cavity, and since

the interior of proteins comprises mostly of hydrophobic residues, its interaction with the

protein is not necessarily stronger than the interfacial water molecules. Thermodynamic

and structural properties depend only on the local minima on the potential energy surface,

while dynamics are controlled by the barrier height and the saddle points. There are lots of

studies to investigate the e�ect of biomolecules onto dynamical aspect of hydration water

or vice versa. The interested readers are referred to excellent works in the literature, for

instance see reviews by Halle, [32] Bagchi, [23] Pal and Zewail [30] and Fogarty et al. [33]

This dissertation devotes only to study of the structural feature of hydration water.

1.1.2 Structure of hydration water

Currently, there is no experimental method with enough spatial and temporal resolution to

directly probe water molecules interacting with biomolecules. The current view of hydration

water mostly comes from more or less model-dependent interpretation of the experimental

data. X-ray crystallography is one of few methods successfully used to probed internal

water [34, 35] (water molecules occupy cavities within the protein and are conserved as

the amino acid sequence). Those water molecules are usually considered as the essential

and integral part of the protein structure. However, detecting external water molecules

with di�raction methods clearly requires more care. The hydration sites in the crystal

are not necessarily the same as in solution since water molecules in the crystal usually

meditate protein-protein interaction. Furthermore, the presence of salting-out agents, ions

and contaminants in the crystal could further complicates the situation. In fact, when

di�erent structures of the same protein are aligned, only a few hydration sites are found to

be conserved. [36]

X-ray and neutron scattering studies suggest that the density of the hydration layer

around globular proteins is approximately 10% denser than the bulk. [37, 38] This value

is later con�rmed by MD simulation by Merzel and Smith. [39] Noteworthy, two-thirds

of the observed density increase are merely caused by the protein surface existence. This
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Figure 1.1: Crystallographic structure of hen egg-white lysozyme (PDB 6LYZ). Also shown
in red spheres are water molecules revealed in the electron density maps (only water
molecules that are within 3 Å from the protein are shown).

contribution would arise even if the water molecules were not perturbed by the presence of

the protein. In their simulation, they also observed the shorten of water-water distance and

increase of the coordination number of water in the hydration shell.

1.1.3 Theoretical e�orts to study hydration structure

Pettitt and colleagues �nd that in general, a continuous distribution density of hydration

water is more appropriate than an atomistic description. [27, 40] Such an approach roots

back from the theory of liquid state in which the concept of pair distribution function is of

central importance. [41] Using molecular dynamics simulation, they showed that although

hundreds of hydration sites could be located for myoglobin, only half of them were occupied

at any time. Noteworthy, there was almost no signi�cant di�erence between the calculated

free energies between conserved and nonconserved solvent sites. They concluded that any

given set of ordered solvent molecules represents one of many possible con�gurations and

description of solvation based on such one�or even many�is incomplete. To construct the sol-

vent distribution density, they proposed the so-called proximal radial distribution functions

(pRDF) of hydration water based on the assumption that the solvent structure around the
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solute is dominated by the local interaction. Additional contributions from farther atoms

were assumed small and could be incorporated later as the perturbation to the distribution

function.

Similar e�orts include the work of Hummer et al. who used the potential of mean force

(PMF) to construct the solvent density map. [42, 43] In their approach, the distribution of

water around a biomolecule was approximated by the distribution of water around other

water molecules, with the position of those water molecules being at the location of the

electronegative atoms of the biomolecule (O, N, S), i.e. equating all electronegative atoms

in the solute to water oxygen with respect to their e�ect on ordering water. Additional

modi�cation was incorporated to include steric factors and hydrophobic regions (e.g. non-

polar atoms were treated as hard spheres ...) Other works including AquaSol, which rep-

resents the solvent as a collection of orientable dipoles with nonuniform concentration, and

semi-explicit assemble (SEA), which uses precomputed properties of water solvation around

simple molecules from explicit simulation to generate a combined solvation shells around an

arbitrary macromolecule, exist in the literature. [44, 45] Recent studies that use more intri-

cate treatment for water include those coming from the Integral Equation theory�Reference

Interaction Site Model (RISM, which will be discussed more detailed in Chapter 2) and its

relative �classical� density functional theory of solvation (which will not be considered in

this dissertation, readers are referred to [46�49]).

1.1.4 Molecular dynamics simulation

Molecular dynamics simulation is one widely used tool to investigate the hydration water

problem. Of course, simulation studies of hydration structure require both reasonably ac-

curate water models and mature biomolecular force �elds. Although there has been a vast

number of water models proposed (ranging from quantum, polarizable, �xed-charge, coarse-

grained models), [24, 50, 51] the steady appearance of new models in recent years indicates

that there are still lots of room of improvement and that the current widely used water mod-

els probably need a serious reconsideration. [52�55] To make matters worse, biomolecular

force �elds are built on those water models and therefore, strictly speaking, a force �eld only
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should be used with its corresponding water model. Integrating a new water model into the

simulation requires a systematic and serious validation which is tedious and usually takes

years to decades.

In the simulation, water-protein interaction strength undoubtedly plays a crucial role

governing the protein shape and fold. A change of water model used in the simulation has a

signi�cant e�ect onto protein stability and structure. [56�58] If the modeled water-protein

interaction is too strong compared with the internal protein interaction (between residue-

residue within the protein) then the protein tends to expand and unfold, maximizing its

exposed surface with water. On the other hand, if this interaction is weak then the protein

will remain compact. More and more evidence suggests that this is a very subtle balance, and

even a very small change of water-protein interaction could lead to a signi�cant di�erence

of protein structures observed in the simulation (see below). Current biomolecular force

�elds have always been built to work with folded structures. In fact, one of the earliest

criteria to validate a protein force �eld is the ability to maintain the protein near its crystal

structure. This could inadvertently put more weight onto the internal protein interaction

while underestimate the water-protein interaction.

Recent studies, while working with expanded protein conformations such as in protein

folding and intrinsically disordered proteins, reveal that there is probably a misbalance

between water-protein and protein-protein interactions. Best and coworkers report that

unfolded or disordered states of proteins are too collapsed using the current force �elds,

indicating that proteins are poorly solvated and the non-speci�c protein-protein interaction

appears to be too strong (compared with water-protein interaction). [59] The same conclu-

sion is also drawn from the work of Piana et al. who �nd that the water models signi�cantly

underestimate the dispersion interaction. [55] By increasing the water interaction, they show

that the disordered states of proteins are substantially more expanded and are generally in

better agreement with the experiment. Other works by di�erent groups have also reached

similar conclusions. [60�62]

Such a misbalance for nucleic acid force �elds also exists as illustrated by an interesting

work of Chen and Garcia. In their paper, they show that it is necessary to adjust both the
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base-base and water-base interactions to reversibly fold small RNA tetraloops from their

unfolded states. [63] The fact that the base-base stacking strength is increased while the

water-base interaction is reduced in their approach illustrates that the water-nucleic acid

interaction is probably too strong. In another relevant work, using a di�erent water model

which emphasizes the importance of electrostatics interaction, [53] Bergonzo and Cheatham

show that the structure of tetranucleotides is remarkably improved in the simulation when

comparing with NMR experiment. [64] Force �elds for nucleic acids are under very active

development, which focuses on the modi�cation of internal structural aspects of nucleic acids

via torsional angle parameters (see [65] and references therein). However, given the fact that

the structure is in�uenced strongly by water interaction, a recalibration of water-nucleic acid

interaction is another worth pursuing possibility.

1.2 Ion distribution

1.2.1 Introduction

Similar to water, ions are ubiquitous in living system and play important role in supporting

biomolecule function, stability, dynamics and folding. Monovalent salts (Na+, K+, Cl-)

are crucially vital in regulating the homeostasis and electric potentials of cells. Sodium is

the most abundant ion in human plasma and biological �uids. Transport of ions through

membranes is responsible for sound, smell, sight, taste and touch we (humans) perceive daily.

Ions are also known to actively participate in catalytic activity, and not just nonspeci�c ionic

bu�ering agents. [66]

Due to its high charge, nucleic acids need counterions to maintain their shape and fold.

[67�70] The interaction between nucleic acids could be changed dramatically, from repelling

to attracting, merely by adjusting the ionic strength of the solution. [71�73] The counterions

are therefore considered as an integral and essential part of the polyelectrolyte, with the

name �ion cloud� or �ionic atmosphere�. [74�76] As a result, the dynamics and interaction

between nucleic acids and their complexes with proteins cannot be fully understood without

a reasonable description of the ionic atmosphere. From a theoretical perspective, interaction

between counterions and nucleic acids is dominated by electrostatics, nevertheless there is
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also contribution from speci�c ion e�ect. This results two types of counterion in the ion

cloud: a loosely associated sheath of ions surrounding the macromolecules (at long distance,

due to the electrostatic interaction) and some tightly bound ions at speci�c location right on

the solute surface (due to speci�c ion e�ect). Furthermore, the �uctuating nature of both

the ion cloud and the polyelectrolyte makes understanding the ionic atmosphere challenging,

both experimentally and theoretically.

1.2.2 Theoretical e�orts to study the ion cloud

A natural treatment of the ion cloud is to ignore the speci�c e�ect and consider only the

electrostatic interaction between ions and the polyelectrolyte. Most of the theoretical e�orts

relies on the Poisson�Boltzmann (PB) equation, which roots from pioneering works of Gouy�

Chapman, Debye�Huckel, Onsager, Kirkwood, Tanford. As pointed out by Kirkwood, the

basic approximation of the PB equation is the replacing of the potential of mean force by

the mean electrostatic potential. [77] Short range interaction and ion-ion correlations are

ignored in the PB aproach. (Some modi�cations later are added into the theory to account

for �nite size of ions and include the ionic correlations. [78]) Still, the theory is capable to

make lots of successful predictions. [79�83]

One of the early theories that directly targets the ionic atmosphere around the nucleic

acids is the counterion condensation theory proposed by Manning. [84,85] In the theory, the

polyelectrolyte was assumed as an in�nite wire (or later, cylinder) with a uniform charge

density. The PB equation was then solved to obtain the ion distribution around the polyelec-

trolyte. Using this theory, Manning showed that counterions �condensed� near the polynu-

cleotide, neutralizing a portion of the solute charge to bring its e�ective charge down to a

critical value (for instance, the charge fractions of DNA neutralized by Na+ and Mg2+ in

aqueous solutions are, respectively, 76% and 88% of its total charge).

With the computational and algorithmic advance in the eighties and nineties of the

last century, more complicated and accurate treatments of the systems are allowed. The

solute eventually could be described with full atomic details, while solvent (including ions)

is still treated at the continuum level. [86,87] The PB equation can be solved numerically to
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obtain a 3-dimensional electrostatic potential map. In practice of this method, Honig and

coworkers showed that the deepest potentials around the B-DNA were located in the grooves

rather than near the phosphate regions, which was in accordance with earlier quantum

calculation. [88, 89] This partly explained why ions were found in both the major grooves

(GC-rich regions) and in narrow minor grooves (A-tracts). [90�93]

The groove binding pattern of counterions is also observed in early MD simulations.

[94�97] Na+ is shown to bind in both grooves with the preferred binding site in the minor

groove while K+ mostly binds to the major groove and close to the center of B-DNA. Direct

binding of ions to DNA bases are rarely observed during the simulation, but once it occurs,

the ion could remain there for an extended period of time (on the order of tens nanoseconds).

Binding to the phosphate group is more uniform. In all cases, there is always at least a water

molecule bridging the ion and the nucleic acid. Due to the �uctuating nature of the ion cloud,

however, there was always a question of convergence of the simulation during the last decade.

Recent e�orts, assisted by advances of computational algorithms and resources, expand the

time scale of the simulation (up to hundreds nanosecond) and investigate ion competition

towards nucleic acids. [9, 98�101]

1.2.3 Experimental studies

Compared with the theory side, quantitative experimental research of the ion atmosphere

notably lags behind. The reason is because the ion atmosphere is mostly invisible to tradi-

tional structural biology techniques. X-ray crystallography can only detects strongly bound

ions (mostly typically bound to speci�c sites on the biomolecules) which account for a small

fraction of the ion cloud. [102, 103] Similarly, NMR relaxation approach only assesses the

ions closely �attached� to the nucleic acids, but does not take into account the ions that are

distant away. [90, 104] Methods such as ion-speci�c �uorescent dyes also have been used to

count speci�c ions interacting with polynucleotides, but cannot determine the ion cloud as

a whole. [105]

A recent experiment technique, bu�er equilibration�atomic emission spectroscopy (BE�

AES) or �ion counting�, allows an assess of the full content of the ion cloud (see Fig. 1.2 for
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Figure 1.2: Scheme of the bu�er equilibration�atomic emission spectroscopy (BE�AES),
a.k.a. �ion counting� approach. Reprinted with permission from Bai et al. [7] Copyright
2007 American Chemical Society.

a schematic description of the experiment). [7] The bu�er around the nucleic acid sample

is �rst fully equilibrated. Then, by comparing the ion concentration (monitored by AES)

between the DNA-contained sample with the bu�er-only sample, the total number of excess

ions present in the ion cloud could be counted. The experiment shows that in order to

neutralize the DNA charge, not only counterions are attracted towards the polyelectrolyte

but also at the same time the co-ions (which have the same charge as the DNA) are expelled

far away. More importantly, the sum of the excess numbers of counterions and co-ions must

match the total charge of the DNA, i.e. the system is totally neutralized. However, this

kind of experiment does not provide any information about the shape of the ion atmosphere

(how far the counterions distribute themselves around the solute).

A di�erent method that can provide the number of excess ion is anomalous small-angle

X-ray scattering (ASAXS). [106] The method will be discussed in more details in Chapter 4.

Essentially the method employs the fact that the �e�ective number� of electrons in the ions

could be changed by varying the X-ray beam energy near a critical value (the ion absorbance

edge). This energy variation only a�ects the ions in the solution, and leaves those of the

other components unaltered. By comparing the total number of electrons in two (or several)

di�erent measurements, the total excess of ions in the solution could be deduced. In addition

to the number of excess ion, this method could also provide a qualitative picture of the ion

atmosphere.
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1.3 Motivation and Organization of the dissertation

As discussed above, water and ion distributions around biomolecules are very important for

their stability and function. A detailed description at the atomic level of hydration structure

and ion atmosphere has long been sought. This dissertation devotes to characterize the water

and ion distribution around proteins and nucleic acids by combining computational methods

and X-ray scattering experiment. The knowledge gained could be used to benchmark current

theoretical models, eventually to make improvements in how those theories treating water

molecules, ions and cosolvents in general.

Chapter 2 gives a brief introduction of the Integral Equation Theory�Reference In-

teraction Site Model (RISM). Key concepts and equations of the theory are introduced.

Some applications of the theory are then discussed, focusing on the hydration free energy

calculation and the solvent distribution problem.

Chapter 3 describes the element X-ray scattering theory and a protocol to compute

X-ray scattering signals from atomic models of macromolecules. The solvent distribution

computed from 3D-RISM alongside solute models is then used to test the protocol. The

intensity pro�les (which involve no adjustable parameters) match experiment and molecular

dynamics simulations up to wide angle for relatively rigid biomolecules. Calculation of nu-

cleic acid intensity pro�les using the conformational ensemble obtained from MD simulation

in the solution is in better agreement with experiment than those using a single di�raction

structure.

Chapter 4 presents a novel method to extract water and ion distribution from X-ray

scattering experiment. The method is shown approximate in nature and only applicable to

rigid biomolecules. Nevertheless, it is able to extract aspects of water and ion distributions

(beyond the total excess numbers) by combining experimental data for the complete system

with calculations for the solutes. The correlation between solute-ion or solute-water can

be displayed in both Fourier space (as partial intensities) or real space (as interatomic

distribution functions). The resulting ion and water distributions are then used to test

predictions from 3D-RISM and MD simulation for proteins and a DNA duplex.

Chapter 5 discusses the extension of X-ray scattering to extract partial molar volume
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and numbers of excess water molecules and ions from experimental data. We explore a

possible use of partial molar volume and the number of excess hydration water to recalibrate

solute-solvent interaction. A proof-of-concept example is illustrated as we reoptimize the

phosphate groups in a DNA duplex and show that the partial molar volume and number of

hydration water approach closer to the experiment.

Chapter 6 gives general conclusions and suggests future directions.
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Chapter 2

Brief introduction of Integral Equation Theory and Reference

Interaction Site Model

2.1 Introduction

Theory of simple liquids is a subject with long history in which important concepts are

born (such as pair correlation function, virial coe�cient ...) and are successfully applied for

hard spheres and monatomic liquids (for a survey see [107]). Given a pairwise potential,

the theory allows to calculate g (r), the structure factor S (q) and other thermodynamic

properties of the liquid. RISM theory is an extension proposed by Chandler and Andersen to

treat molecular liquids. [108] The theory considers a molecule as a set of separate interaction

sites constrained by a strong intramolecular correlations to represent chemical bonds. The

partial charge distribution in a molecule is later added by the extended RISM theory (or

XRISM). [109] However, the dielectric constant predicted by XRISM is too small compared

to the experiment, leading to the enforced input of the dielectric constant into the theory

(the so-called dielectrically consistent RISM, or DRISM). [110] As both XRISM and DRISM

orientationally average all interactions, they are usually referred as 1D-RISM.

When treating biomolecules that are generally complex and have an arbitrary shape,

orientational averaging of interaction shows severe limits. This motivates the development

Figure 2.1: Illustration of the interaction-site model for two diatomic �molecules�.
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of the so-called 3D-RISM. [111�115] The theory only performs orientational averaging on

the solvent, while still treats the solute at a full atomistic 3-dimensional level. The method

naturally yields more accurate results compared with pure 1D-RISM and �nds a wide appli-

cation range (from simple ions, electrolyte solutions, ionic liquids to complex proteins and

nucleic acids). A wealth of information could be obtained from the theory, including the

radial distribution functions, potential of mean forces, solvation free energies, partial molar

volumes, compressibilities, etc. (See [116,117]). It should be noted that, however, the solute

degree of freedom is ignored by the theory and one must seek a di�erent way to incorporate

the solute �exibility, for instance via MD simulation. [118,119]

In this chapter, we give a very brief introduction of key features of RISM theory. We

then discuss the application of the theory, focusing on hydration free energy and solvent

distribution around biomolecules.

2.2 Theory

2.2.1 Ornstein�Zernike equation

The integral equation theory starts with the Ornstein�Zernike (OZ) equation, which can be

derived from classical theory of liquids (see [41]):

(2.1)h (r12,Ω1,Ω2) = c (r12,Ω1,Ω2) + ρ

∫
dr3dΩ3c (r13,Ω1,Ω3)h (r32,Ω3,Ω2)

where rij is the vector connecting particles i and j, Ωi and Ωj are the orientation of particles i

and j, respectively, relative to rij , c is the direct correlation function, h is the total correlation

function which is related directly to the distribution function g as:

(2.2)hij (rij ,Ωi,Ωj) ≡ gij (rij ,Ωi,Ωj)− 1

Eq. 2.1 can be rewritten by recursively eliminating h under the integral as:

h (r12,Ω1,Ω2) = c (r12,Ω1,Ω2) + ρ

∫
dr3dΩ3c (r13,Ω1,Ω3) c (r32,Ω3,Ω2)

+ ρ2

∫ ∫
dr3dΩ3dr4dΩ4c (r13, Ω1, Ω3) c (r34, Ω3, Ω4) c (r42, Ω4, Ω2) + ...

(2.3)
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The OZ equation e�ectively de�nes the direct correlation function c and can be inter-

preted as following: the total correlation between particles 1 and 2 can be considered as the

sum of the direct correlation between those two particles and other indirect parts due to the

e�ect of other particles present in the system. If the liquid is uniform and isotropic, the OZ

equation becomes:

(2.4)h (r) = c (r) + ρ

∫
c
(∣∣r− r′

∣∣)h (r′) dr′
Taking the Fourier transform of both sides gives the relationship between h and c:

(2.5)ĥ (k) =
ĉ (k)

1− ρĉ (k)

2.2.2 Closure equations

In order to solve Eq. 2.1, it is necessary to have a second, so-called closure, equation that

relates h and c, which is conventionally written as:

g (r12,Ω1,Ω2) = exp [−βu (r12,Ω1,Ω2) + h (r12,Ω1,Ω2)− c (r12,Ω1,Ω2) + b (r12,Ω1,Ω2)]

(2.6)

or in a shorter form

(2.7)g = exp [−βu+ h− c+ b]

Here u is the pair-wise potential energy function and b is an unknown �bridge function�.

Finding a good approximation for the bridge function is one important direction of integral

equation theory. In the hypernetted-chain approximation (HNC), b is simply set to zero,

giving:

(2.8)gHNC = exp [−βu+ h− c]

The HNC closure gives good results for ionic and polar systems, but poorer results for

neutral systems, and it can be di�cult to �nd converged solutions. [116,120,121] To address

the convergence issue, Kovalenko and Hirata introduced the KH closure as follows: [122]

(2.9)gKH =


exp [−βu+ h− c] if g ≤ 1

1− βu+ h− c if g > 1
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The partial series expansion of order-n (PSE-n) o�ers a way to interpolate between KH

and HNC, and thus improves the results of KH closure while circumventing the convergence

di�culty met in HNC closure: [123]

(2.10)gPSE−n =


exp [−βu+ h− c] if g ≤ 1∑n

i=0
[−βu+h−c]i

i! if g > 1

It is obvious that KH is the special case of PSE closure when n=1; and when n → ∞

HNC closure is obtained.

2.2.3 1D-RISM

To apply Eq. 2.1 for use with molecular liquids, the molecule is separated into interaction

sites. One critical approximation of RISM theory is to treat the direct correlation function

between two molecules c (1, 2) as site-site decomposable:

(2.11)c (1, 2) =
∑
αγ

cαγ (|rα − rγ |)

where α and γ are interaction sites in molecules 1 and 2, respectively. The intramolecular

correlation function ω is used to describe the structure of the molecule. For two sites α and

β of the same molecule:

(2.12)ωαβ (r) =
δ (r − rαβ)

4πr2
αβ

where δ is the Dirac delta function. The geometry of a molecule can be de�ned if all rαβ

are known. Eq. 2.1 then can be rewritten as: [108,116,124]

(2.13)hαγ (r) =

Nsite∑
λ

Nsite∑
β

ωαλ (r) ∗ cλβ (r) ∗ ωβγ (r) +

Nsite∑
λ

Nsite∑
β

ωαλ (r) ∗ cλβ (r) ∗ ρβhβγ (r)

with * is the convolution operator. The equation is usually written in the simpler matrix

form

(2.14)ρhρ = ω ∗ c ∗ ω + ω ∗ c ∗ ρhρ
= [I− ω ∗ c]−1ω ∗ c ∗ ω

where I is the unit matrix, ρ is a diagonal matrix of density values and ω, h , c are

matrices of site-site correlation. Eq. 2.13 is then coupled with a set of closure equations to
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numerically solve for hαγ (r). For example, the HNC closure equation for site-site interaction

is as following:

(2.15)hαγ (r) = exp [−βuαγ (r) + hαγ (r)− cαγ (r)]− 1

where uαγ (r) =
qαqγ
rαγ

+ εαγ

[(
Rmin,αγ
rαγ

)12
− 2

(
Rmin,αγ
rαγ

)6
]
is the pair interaction potential

between two sites, with parameters taken from a molecular mechanics force �eld.

The dielectric constant computed from the RISM equations is signi�cantly low compared

with experiment (for SPC/E water ε < 20), causing problems when ions at �nite concen-

tration are present in the solvent. The error was presumed to be caused by the long range

asymptotics of HNC-like closures. Perkyns and Pettitt introduced a bridge-like correction

ζ into Eq. 2.14: [110,120]

(2.16)ρhρ =
[
I− ω′ ∗ c

]−1
ω′ ∗ c ∗ ω′ + ζ

with ω′ = ω + ζ. The ζ matrix is determined by the input dielectric constant.

2.2.4 3D-RISM

The 3D-RISM considers a solution consisting of a molecular solvent and a single solute.

Similarly for 1D-RISM, one also has to assume that the solute-solvent direct correlation

function cuv (r12,Ω1,Ω2) can be decomposed into contributions of sites α of solvent molecule

2:

(2.17)cuv (r12,Ω1,Ω2) =
∑
α

cuvα (r1α)

For a vanishing solute density, the RISM-OZ equation splits up into the equation for pure

solvent and solute-solvent (with superscripts u and v denote solute and solvent, respectively):

(2.18)hvvαγ (rα, rγ) = cvvαγ (rα, rγ) +
∑
λ

ρvλ

∫
cvvαλ (rα, rλ)hvvλγ (rλ, rγ) drλ

(2.19)huvα (rs, rα) = cuvα (rs, rα) +
∑
λ

ρvλ

∫
cuvλ (rs, rλ)hvvλα (rλ, rα) drλ

Eq. 2.18 can be well approximated by Eq. 2.16. One can couple it with a set of closure

equations to obtain the solvent susceptibility χvvαγ (r), which contains all information about

the bulk solvent:
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(2.20)χvvαγ (r) = ωvvαγ (r) + ρvαh
vv
αγ (r)

The solvent susceptibility will be used (coupled with a set of 3D closure equations) to

numerically solve the so-called 3D-RISM equation:

(2.21)huvα (r) =
∑
λ

∫
cuvλ
(
r− r′

)
χuvλα

(
r′
)
dr′

For example, the HNC closure for 3D is as following:

(2.22)huvα (r) = exp [−βuuvα (r) + huvα (r)− cuvα (r)]− 1

with uuvα (r) is the interaction potential between the solute molecule and the α site of the

solvent, computed as a superposition of the site-site interaction between solute sites and α

site uuvα (r) =
∑M

a uaα (|ra − r|).

2.3 Application of RISM theory

Here we only focus on the calculation of solvation free energy, partial molar volume of the

solute and the distribution of solvents around the solute. There are other works exist in

the literature including hybridization of RISM with MD simulation, quantum mechanics or

Monte Carlo (see a recent review by Fedorov and coworkers [117]).

2.3.1 Solvation free energy

2.3.1.1 Analytical expression

One of the most important quantities can be computed directly from 3D-RISM is the sol-

vation free energy of the solute (or the excess chemical potential in in�nite dilution). In

RISM, the Kirkwood formula can be used to calculate the excess chemical potential from

the radial distribution function:

(2.23)∆Gsolv =

∫ 1

0
dλ

〈
∂U (r1, r2, ..., rN , λ)

∂λ

〉
λ

which can be rewritten as for the solute site α: [125]

(2.24)∆µα =
∑
γ

ργ

∫ 1

0

[∫
∂uαγ (r;λ)

∂λ
gαγ (r;λ) dr

]
dλ
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For HNC�like closures, the above equation can be solved analytically: [122,123]

(2.25)∆µα = kBT
∑
γ

ργ

∫ [
h2
αγ

2
− cαγ −

hαγcαγ
2

−
(
t∗αγ
)n+1

(n+ 1) !
Θ
(
t∗αγ
)]
dr

where t∗αγ = −βuαγ + hαγ − cαγ and Θ is the Heaviside step function (Θ (x) = 1 for x > 0

and Θ (x) = 0 otherwise). For n → ∞ the last term of the integrand vanishes and one

obtains the result for HNC closure. For n = 1, the equation gives KH ∆µ.

2.3.1.2 Correction for ∆µ

It is known that the solvation free energy calculated by 3D-RISM is not in agreement with

the experiment. Palmer et al. recognize that the error of the predicted ∆µ correlates very

well with the calculated partial molar volume V by 3D-RISM and propose an empirical

formula to adjust the output free energy: [126]

(2.26)∆µUC = ∆µ+ a1ρV + a0

where a0 and a1 are two parameters obtained by pre-�tting small molecule hydration free

energies to experiment and ρ is the solvent bulk density.

Later, it is shown that 3D-RISM predicts the electrostatic component of the HFE accu-

rately but requires a modi�cation of the non-polar contribution. [127] By scaling only the

direct correlation function of solvent inside the excluded volume of the solute, the authors

propose the so-called cavity-corrected functional to compute the HFE from 3D-RISM:

(2.27)∆µCC = ∆µ+
1

2
kBTρ (1− γ)

∫
exclV

cnpo (r) dr

Here, cnpo (r) is the non-polar direct correlation of oxygen water which is calculated by

setting the solute charge to zero. The integral is only over the excluded volume of the solute.

This strategy leaves a single parameter remained, γ, which can be �tted by MD simulations

of simple Lennard�Jones solutes.

In a di�erent approach, Borgis and colleagues o�er an explanation to the partial molar

volume dependence of the calculated HFE errors. [128] This somewhat relates to the appre-

ciated thermodynamic inconsistency of approximate theories such as RISM. Basically, the

pressure in the system can be calculated by three di�erent routes: via the virial equation,
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via the compressibility equation and via the Helmholtz free energy (see Appendix 6). [41]

Values computed from di�erent routes are often widely di�erent from each other, and thus

the theory is considered thermodynamically inconsistent. The pressure computed for wa-

ter from RISM is around 3�4 orders of magnitude larger than experiment. [121] The high

pressure a�ects the HFE of the solute since:

(2.28)∆µ = ∆U − T∆S + P∆V

where U, T, S, P, V are the internal energy, temperature, entropy, pressure and volume,

respectively. The authors thus propose an ad hoc protocol to replace the incorrect pressure

by the experimental value to correct the HFE:

(2.29)∆µP = ∆µ− ρkBT
[
2− ρ

2
ĉs (0)

]
∆V

with ĉs (0) =
∫
cs (|r|) dr, cs is the solvent direct correlation function and ∆V is the partial

molar volume of the solute. At a �rst glance, it seems that Eq. 2.27 is similar to Eq. 2.29

and the two methods should be related. However, more careful inspection shows that cnpo (r)

in Eq. 2.27 is the solute-solvent correlation while cs (r) in Eq. 2.29 is the solvent-solvent

correlation. It is currently not clear whether the two approaches have any deeper relation.

Nonetheless, given that the partial molar volume directly relates to the solute-solvent total

correlation function c (r) (see Section 5.3, Eq. 5.21), it is therefore expected there should be

a link between the two correction methods. Eq. 2.29 could be recast in terms of the solvent

isothermal compressibility χT as:

(2.30)∆µP = ∆µ− 1

2
ρkBT (3ρkBTχT + 1) ∆V

Borgis et al. also suggest that the pressure computed by RISM should take the following

form:

(2.31)
P =

ns + 1

2
ρkBT −

1

2
kBTρ

2ĉ (0)

=
ns
2
ρkBT +

1

2χT

where ns is the number of site in the solvent molecule (ns = 3 for water).
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2.3.2 Ion and water distribution

3D-RISM allows the equilibrium density distribution of solvents (including water, ions and

cosolvents in general) around an arbitrary solute to be computed at a signi�cantly reduced

computational cost compared to explicit simulation. Since the 3-dimensional distribution

of solvent is the direct output from the theory, it should be straightforward to compare the

theory performance with experiment and explicit simulation.

Early works from Hirata and coworkers illustrate that 3D-RISM is capable of detecting

both water and ion binding sites in proteins with a reasonably good accuracy. [8, 129] The

method is later expanded to small molecules and ions (such as H3O+, Ne, NO, CO2, NH3,

urea, glycerol ...) to study their transport characterization through channels by computing

their spatial distribution and mapping the potentials of mean force. [130, 131] In principle,

any solvent, regardless how complex they are, should work with 3D-RISM. However, when

the number of interaction sites in the solvent increases (due to cosolvents and/or the com-

plexity of the solvent), the solution of RISM equations gets harder to �nd. It is currently

not clear where the problem is. An interesting way to deal with a complex solvent is to

perform separate calculations for fragments of the solvent (i.e. treating the fragments as

unique species), and then combine the spatial distributions in a way that maintains the

molecular solvent structure. [132] This approach shows much promise in in silico docking,

removing the need of an empirical scoring function that is still widely used today.

There are still questions that remained: how well does 3D-RISM hydration structure and

ion cloud compared to the much more expensive explicit MD simulation and ultimately, to

experimental data? Stumpe et al. perform a benchmark calculation to compare 3D-RISM

water structure with those from MD. [133] It has been shown that the water distribution

functions from two methods are very similar for a model protein. In a di�erent work, 3D-

RISM is also shown to accurately predict hydration patterns of a nucleic acid. [134] The

spine of hydration in the minor grooves is found to be similar with MD simulation. 3D-

RISM also has the ability to discriminate di�erent bases and their hydration structure.

In a recent study, the ion atmosphere around nucleic acids from 3D-RISM is predicted as
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Figure 2.2: Water distribution in the cavity of hen egg-white lysozyme calculated with 3D-
RISM compared with the crystallographic water sites (right). Left: the isosurface of water
oxygen (green) and hydrogen (pink) distribution functions with isovalue > 8. Center: the
most probable model of the hydration structure reconstructed from the isosurface plots.
Reprinted with permission from Imai et al. [8] Copyright 2005 American Chemical Society.

Figure 2.3: Comparison between theoretically predicted numbers of excess Na+ (left) and
Cl- (right) and experimental ion counting results. Reprinted from Giambasu et al. [9], with
permission from Elsevier.

multilayer structure and in overall the shape is in very good agreement with MD simula-

tion. Quantitative comparison of the number of excess ions around the DNA computed

by the theory is signi�cantly better than those from continuum models. Similarly to MD

simulation, 3D-RISM performs best around physiological concentration of salts and slightly

underestimates the counterion accumulation at high concentrations. The ability to model

very diluted solutions is one of the great asset of the theory, since MD simulation for those

is extremely costly to perform.
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Chapter 3

Calculation of X-ray scattering pro�les from atomic models

3.1 Introduction

Small angle X-ray scattering (SAXS) is a widely used di�raction tool to study biomolecule

structure. It shares very much the same governing principles with another closely related

method X-ray crystallography. While X-ray crystallography is used for structure determi-

nation of crystals, SAXS probes the molecular structure in the solution. X-ray scattering

signals are known to depend greatly on the protein-solvent interface and interaction. The

computation of scattering pro�les from atomic models can be a di�cult task, even in the

simplest case where the solute molecule adopts a known, single and relatively rigid con-

formation in solution. Because both solute and solvent contribute to the scattering, the

perturbation of the solvent (usually water and ions) by the biomolecule must be understood

and properly modeled in order to make comparisons to experiment.

Several methods have been developed to include the contribution of water to the overall

scattering pro�les. Most rely on the simpli�ed models of water to account for the scattering

of excluded volume and hydration shell. CRYSOL, for example, assumes a layer of uniform

excess hydration density around the surface of the protein. [135] However, the surface topol-

ogy, electrostatics and hydrophobicity patterns surely play a role as well. The water shell,

additionally, is composed of successive layers of excess and de�cient density relative to the

bulk. Di�erent approaches have been considered to describe the hydration shell more realis-

tically, from treating solvent as an assembly of freely orienting and interacting dipoles, [136]

to reconstructing the three-dimensional hydration shell by combining a set of proximal ra-

dial distribution functions for di�erent atom types extracted from MD simulations. [137] In
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principle, MD simulations can also provide such information, but these are di�cult to con-

verge (especially for ions in the vicinity of charged biomolecules), and are computationally

tedious and expensive.

The promising intermediate approach explored here uses integral equation theory to es-

timate thermally averaged water and ion distributions on a 3-dimensional grid surrounding

the biomolecule at a fraction of the cost of MD simulations. These estimates are certainly

imperfect ones, as they are based on simple force �eld models for the relevant atomic inter-

actions, and use approximate closures and averaging procedures to treat molecular solvents

like water. We show here that they are nevertheless accurate enough to provide good esti-

mates of X-ray scattering out to angles corresponding to q < 1.5 Å-1 (q = 4π sin θ/λ where

2θ is the scattering angle and λ is the X-ray wavelength). Once the force �eld and closure

are determined, there are no adjustable parameters in this model. The results can be of

particular use in treating salt solutions and for comparisons to experiments where an abso-

lute calibration near q = 0 is available. We do not consider here the �inverse� problem of

interpreting experimental data arising from an unknown structure, or from samples where

an ensemble of structures is contributing to the scattering. Nevertheless, the computations

described here are e�cient enough to be applied to large numbers of proposed structures (or

to structural ensembles), and are based on a physically-motivated model for solvent e�ects

that appears to be more accurate than any other currently-available procedure. It is likely

that these ideas could form the basis for model discovery and selection in a wide range of

problems.

The chapter �rst starts with some basic theory of di�raction and scattering of X-ray as

well as a very brief description of X-ray experiment. We then give an overview of di�erent

methods in the literature to calculate X-ray scattering pro�les from atomic models. Next,

we present our method based on the integral equation theory and make comparisons to both

experiment and MD simulations for relatively rigid proteins, several nucleic acid duplexes

and a dozen of biomolecules taken from the BioIsis.net database. The intensity pro�les

calculated from our method (which involve no adjustable parameters) match experiment

and MD simulations up to wide angle. We illustrate the importance of using an ensemble
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structure for calculation of nucleic acid pro�les rather than using a single �ber-di�raction

model. In cases where an absolute calibration of the experimental data at q = 0 is available,

we show that numbers of excess water and ions can be extracted from the experimental

data.

3.2 Principle of X-ray scattering

3.2.1 Scattering of X-ray by an electron

X-rays are high energy electromagnetic beam and therefore the interaction of X-ray with

matter is dominated almost completely by the interaction with electrons. There are two

di�erent processes involved in the scattering of the incident radiation by a free electron:

1. Elastic (or coherent or Thomson) scattering: the photon does not lose energy and the

emitted photon has the same frequency as the incoming photon.

2. Inelastic (or incoherent or Compton) scattering: the electron accepts some momentum

from the incoming photon and the emitted photon has smaller frequency (or longer

wavelength) compared with the incoming photon.

The latter is very weak at small angles and is neglected in SAXS. The scattered intensity Ie

is therefore can be computed from the incoming intensity I0 by Thomson formula:

(3.1)Ie (θ) = I0
e4

m2c4r2

(
1 + cos2 2θ

2

)
with e, m are the charge and mass of the electron, respectively, and r is the distance from

the electron to the point of observation. The term in the bracket is practically equal to 1

for the small angles used in SAXS, and thus Ie is considered a constant. For the sake of

brevity, this intensity and the magnitude of its amplitude will be set to 1 from now on.

3.2.2 Scattering of X-ray by an atom

As the energy of an X-ray photon is very large compared to the binding energy of an atom

(except heavy atom, which relates to the so-called anomalous scattering), all electrons are

e�ectively free (i.e. not in�uenced by the nucleus). Every electron becomes the source
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of a scattered waves with the same intensity but with di�erent phases. Thus the atomic

scattering factor can be computed by summing up all contributions from the electron cloud:

(3.2)f (q) =

∫
ρ (r) exp (−iq.r) dr

with ρ (r) is the electron density, and q is the momentum transfer with its magnitude relates

to the X-ray wavelength λ and the scattering angle 2θ as following q = 4π
λ sin θ. The atomic

scattering factor is thus the Fourier transform of the electron density. In the case of forward

scattering (q = 0), then f (0) = Z. Eq. 3.2 can also be written as following, considering the

electron density is spherically symmetric (using 〈exp (−iq.r)〉 = sin(qr)
qr ):

(3.3)f (q) = 4π

∫
ρ (r)

sin (qr)

(qr)
r2dr

The atomic scattering factor can be computed from �rst principles from electronic wave

functions. In practice, it is desirable to have an empirical formula for fast evaluation of the

atomic factor. Cromer and Mann �t f (q) as the sum of 4 Gaussian functions and a constant

c: [138]

(3.4)f (q) =

4∑
i

ai exp

(
−bi

q2

16π2

)
+ c

with a and b are the tabulated constants (available for atoms and monatomic ions). Oth-

ers suggest to get rid of the constant c, and instead �t f (q) with N Gaussians (with N

determined based on the desired accuracy). [139]

3.2.3 Scattering of X-ray by a molecule

We now proceed to the calculation of X-ray scattering for a molecule in vacuum. Similarly

to the atomic scattering factor, the amplitude of the scattering wave from a molecule can

be computed as a superposition of all partial waves from all atoms in the molecule:

(3.5)F (q) =
∑
α

fα (q) exp (−iq.rα)

where fα (q) is the atomic scattering factor of atom α. For randomly oriented molecules,

the scattering intensity needs to be averaged all over every direction:
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(3.6)
I (q) =

1

4π

∫
Ω
F (q)F ∗ (q) dΩ

=
∑
α

∑
β

fα (q) fβ (q)
sin (qrαβ)

qrαβ

where F ∗ (q) is the complex conjugate of F (q). Eq. 3.6 is the well-known Debye's formula

to calculate the scattering intensity.

3.2.4 Anomalous scattering

If the X-ray beam energy is very close to the binding energy of the atom then the situation

becomes more complex. Some photons are scattered normally. Some photons are absorbed

and re-emitted at lower energy (�uorescence). Some photons are absorbed and re-emitted

at the same energy, however with a gain to its phase (i.e. it is retarded compared to a

normally scattered photon). The atomic scattering factor becomes a complex number:

(3.7)f (q, E) = f0 (q) + f ′ (E) + f ′′ (E) i

where f0 (q) is the regular atomic scattering factor discussed above; f ′ (E) and f ′′ (E) are

the real and imaginary parts, respectively, of the anomalous scattering factor. They are

practically independent of the scattering angle (or q) and only depend on the X-ray energy

E. The imaginary part is proportional to the atomic absorption coe�cient µ and therefore

could be determined experimentally:

(3.8)f ′′ (E) =
πmc

2e2h
Eµ (E)

The real part can be obtained by the Kramers�Kronig equation (or Hilbert transform):

(3.9)f ′ (E) =
2

π

∫ ∞
0

E′f ′′ (E′)

E2 − E′2
dE′

As one uses lower and lower X-ray energy beam, the X-ray absorption of water increases

and therefore preventing the use of anomalous scattering for biologically relevant elements

such as O, N, C, Na, Mg, K. Figure 3.1 shows the anomalous scattering factors of Rb and

Sr as an example. Note that f ′ is always negative and f ′′ is very close to zero near the

absorption edge. Therefore, using the X-ray beam with the energy right below the element

absorption edge is equivalent to reducing the �e�ective� number of electrons in that element.

This fact will be used extensively to study the ion distribution and will be discussed later.
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Figure 3.1: Anomalous scattering factors for Rb and Sr at di�erent X-ray beam energy.
Data from �http://skuld.bmsc.washington.edu/scatter/AS_form.html� (accessed on Nov
21st, 2015).

3.2.5 Experimental measurement of biomolecule X-ray scattering

Before attempting to calculate the X-ray scattering signal, it is useful to understand what is

measured experimentally and how the experiment is carried out. Here we give a very brief

sketch of X-ray scattering experiment. For a more in-depth description, we refer to some

excellent books and reviews elsewhere. [140�144]

Solution X-ray scattering experiment is conceptually simple as schematically shown in

Figure 3.2. A monochromatic X-ray beam is brought to a sample from which only a small

amount of the X-ray scatters, while most pass through the sample without interacting with

it. The X-ray scattering pattern is then detected at a detector by counting how many

photons reach the detector. The 2-dimensional pattern is then radially averaged to obtain

the sample scattering curve. A similar experiment is repeated with the sample replaced by

the pure solvent. The solvent scattering curve is subsequently subtracted from the sample

scattering pro�le to obtain the scattering pro�le caused by only the macromolecules. The

forward scattering signal (q = 0) cannot be detected in the experiment due to the strong
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Figure 3.2: Scheme of SAXS experiment. a) An X-ray beam targets the sample and the
scattered photons are collected on a detector. The signal is radially averaged to get the
scattering curve. b) Two separate measurements are carried out: the �sample� with the
protein present (black curve) and the �bu�er� with only pure solvent and/or bu�er (red
curve). The scattering pattern is the di�erence between those two curves (blue curve).
Figure taken from Blanchet and Svergun. [10]
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non-interacting forward beam, instead it must be obtained by extrapolation.

3.3 Calculation of X-ray scattering signals from atomic models

As in section 3.2.3, we so far only consider the calculation of the molecule in vacuum. Since

the experimental scattering pro�le is the di�erence of the scattering data between the sample

and solvent, one also needs to take into account of the solvent. The solvent a�ects the solute

scattering signal in two ways:

• Reduce the scattering contrast of the solute since the background now is bulk water

with the electron density of 0.333 e/Å3. The average electron density of a globular

protein is around 0.44 e/Å3. The scattering contrast of a protein in water is, therefore,

only 1/4 compared with that in gas phase.

• Contribute to the scattering signal through the solvation shell. It is known both

experimentally and theoretically that the water density around the protein is higher

than the bulk value. [38, 39] The contribution from the solvation shell thus needs to

be taken into account to achieve a good accuracy.

It is obvious that the calculation of X-ray scattering for molecules in vacuum is straightfor-

ward. The most challenged part is how to incorporate the solvent e�ect into the computation.

We here give a brief review of current widely used methods to calculate X-ray scattering in-

tensity of biomolecules in solution, focusing on their way of treating solvation shell. Next we

present our method using 3D-RISM as the hydration model and illustrate that our method

is better than current competing models.

3.3.1 Overview of di�erent methods

It is worth noting that most (if not all) methods found in the literature involve adjustable

parameters to �t the calculated pro�les with experimental data. The omnipresence of pa-

rameters highlight the lack of a good hydration model that can be used to compute SAXS

signals in the past. Recently, using of explicit MD simulation allows SAXS pro�les to be

computed at a very good accuracy without �tting parameters. However, MD simulation
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is quite expensive since two separate simulations need to be performed: one for the �sam-

ple� with proteins and another for pure solvent. Here we review di�erent approaches for

SAXS calculation, emphasizing the hydration shell modeling. Other di�erent methods exist

such as: coarse-graining the solute, using di�erent quadrature and approximate protocols to

evaluate the spherical averaging, etc. [145]

3.3.1.1 CRYSOL

CRYSOL is, arguably, the most successful tool for evaluating SAXS pro�les for bio-molecules

in solution and is still a de facto standard today due to its simplicity and fast execution. [135]

The hydration shell in CRYSOL is approximated by a border layer with a uniform excess

density ∆ρ relative to the bulk value (see Figure 3.3). The thickness of that hydration layer

is kept constant at 3 Å while ∆ρ is allowed to vary. The intensity is calculated as:

(3.10)I (q) = 〈F (q)F ∗ (q)〉Ω

with the excess scattering amplitude:

(3.11)F (q) = Fvac (q)− ρFc (q) + ∆ρFhyd (q)

where Fvac (q) is the scattering amplitude from the molecule in vacuo, Fc (q) and Fhyd (q) are

the scattering amplitudes from the excluded volume and the hydration layer, respectively.

The excluded term is calculated as the form factor of a ghost-solute, where everything is

similar to the real solute (radius and position of the atoms) except the scattering contrast

is of the bulk solvent. Multipole expansion is used to carry out the spherical averaging in

Eq. 3.10, leading to the working equation to compute SAXS pro�les:

(3.12)I (q) =
L∑
l=0

l∑
m=−l

[Alm (q)− ρClm (q) + ∆ρBlm (q)]2

where the truncation L determines the accuracy of the method; A (q), B (q), C (q) are the

multipole expansion coe�cients of Fvac (q), Fhyd (q) and Fc (q), respectively. The intensity

can be �tted to experiment using two parameters: (i) the contrast of the hydration shell

∆ρ and (ii) the e�ective atomic radius of the biomolecule (for calculating the contribution

of the excluded volume C (q)). Additionally, the overall scaling factor is also needed if one

compares with absolute intensity data.
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Figure 3.3: Illustration of a protein in aqueous solution and its solvation shell.

3.3.1.2 FoXS

FoXS uses the Debye's formula for computing SAXS pro�les: [146,147]

(3.13)I (q) =
N∑
i

N∑
j

fi (q) fj (q)
sin (qdij)

qdij

where dij is the distance between atoms i and j, N is the number of atoms in the molecule.

The solvent e�ect is implicitly incorporated into the model by modifying the atomic scat-

tering factor as:

(3.14)f (q) = fv (q)− c1fs (q) + c2sfw (q)

with fv (q) is the regular atomic scattering factor in vacuo, fs (q) is the form factor of the

dummy atom that represents the displaced solvent, s the fraction of solvent accessible surface

of the atom and fw (q) is the water form factor. Aside from the overall scaling constant,

two parameters exist in the model: c1 to adjust the total excluded volume of the atom and

c2 to modify the density of water in the hydration layer.

3.3.1.3 AXES

Instead of treating the hydration shell implicitly, Bax and colleagues suggest to use explicit

water molecules to model the hydration shell. [148] A pure water box is pre-equilibrated by

MD simulation and N snapshots are extracted after the water density reaches equilibrium.

The biomolecule is then placed into those boxes and water molecules that are too far away
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from the biomolecule are removed (only keep water within 3 Å from the solute). The re-

mained water is then separated into two set: the displaced set including water molecules that

clash with the solute and the surface set including the rest of water molecules. The SAXS

pro�le is then computed by averaging the intensity over all orientations and N snapshots of

the equilibrated solvent box:

(3.15)I (q) = 〈〈F (q)F ∗ (q)〉Ω〉N

(3.16)F (q) = Fvac (q)− Fdisp (q) + ∆ρFsurf (q)

where Fvac (q), Fdisp (q) and Fsurf (q) are the form factor of the biomolecule in vacuo,

the water molecules in the displaced set and surface set, respectively. The model uses two

adjustable parameters to �t with experiment: ∆ρ to scale the scattering contrast of water

molecules near the surface of the protein and another one (not discussed here) to take into

account the source of experimental data variability. If absolutely calibrated pro�les are

available, a scaling factor is also needed.

3.3.1.4 AquaSAXS

AquaSAXS represents solvent distribution around a biomolecule using a 3-dimensional grid.

[136] The solvent is no longer treated as a homogeneous dielectric medium but modeled

as self-orienting interacting dipoles with varying density and dielectric constant, the so-

called Poisson�Boltzmann�Langevin formalism. [44,149] The excess scattering amplitude is

computed as:

(3.17)F (q) = Fvac (q)− ρFsev (q) + ρFhyd (q)

where Fsev (q) is the form factor of the excluded volume, calculated by the ghost-solute

approach, similarly to CRYSOL. The hydration shell contribution is evaluated by summing

all the excess density of the solvent as following:

(3.18)Fhyd (q) = c

Ngrid∑
j

a3 [g (r)− 1] exp (−iq.rj)

with g (r) is the normalized water density and a is the grid resolution. The AquaSAXS

approach still needs to keep three parameters to adjust the agreement with experimental
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data: the e�ective atomic radius (as in CRYSOL for computing the excluded term), the

constant c in Eq. 3.18 to re�ect the contribution of the hydration term and the overall

scaling constant.

3.3.1.5 HyPred

Originating from the works of Pettitt and colleagues, [150] Virtanen et al. construct a set

of proximal radial distribution function (pRDF) for di�erent types of atoms in proteins

by explicit simulation. [151] Those pRDFs are then used to generate the solvent distribu-

tion around a biomolecule for SAXS calculation. [137] Electrons are �distributed� into a

3-dimensional grid based on those pRDFs and the contribution of the grid is determined by

(which is known as the CUBE method [152]):

(3.19)Fgrid (q) =

N∑
n

8∆ρ
sin
( qxa

2

)
sin
( qya

2

)
sin
( qza

2

)
qxqyqz

exp (−iq.rn)

where ∆ρ is the excess electron density at each grid point. The scattering amplitude for the

solute and then the total X-ray intensity are evaluated similarly as in other methods. It is

not reported in their paper how many �tting parameters are used in the calculation, but we

show later that at least the overall scaling constant is needed to compare with absolutely

calibrated experimental data.

3.3.2 SAXS pro�le calculation based on 3D-RISM

3.3.2.1 Formulation

Here, we propose another method to calculate SAXS pro�les for biomolecules. The solvent

distribution (including water and ions) is computed by employing 3D-RISM. X-ray pro�les

are then calculated from this distribution alongside with the solute geometry.

We �rst summarize the derivation from Park et al. to compute X-ray scattering curve

from MD simulations. [11] Other relevant works include [153�156]. The electron density

of the system Ã (r) is separated into contribution from the solute plus its hydration shells

Ã1 (r), and the bulk solvent Ã0 (r) that is not in the hydration shells:

(3.20)Ã (r) = Ã1 (r) + Ã0 (r)
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The intensity is the Fourier transform of correlations in this electron density (where 〈〉

denotes an ensemble average):

(3.21)

〈
|A (q)|2

〉
=

∫ [〈
Ã0 (r) Ã0

(
r′
)〉

+
〈
Ã1 (r) Ã1

(
r′
)〉

+
〈
Ã1 (r) Ã0

(
r′
)〉

+
〈
Ã0 (r) Ã1

(
r′
)〉]

e−iq.(r−r
′)drdr′

In the �blank�, we separate B̃ (r) into contribution of the water droplet B̃1 (r) and the rest

B̃0 (r) (where the water droplet is all the water within the grid where Ã1 (r) is non-zero),

and thus similarly to Eq. 3.20 we have:

(3.22)B̃ (r) = B̃1 (r) + B̃0 (r)

and an equation for
〈
|B (q)|2

〉
analogous to Eq. 3.21.

For the bulk solvent regions, we can write:

(3.23)
〈
Ã0 (r)

〉
=
〈
B̃0 (r)

〉

(3.24)
〈
Ã0 (r) Ã0

(
r′
)〉

=
〈
B̃0 (r) B̃0

(
r′
)〉

Write the cross term as:

(3.25)
〈
Ã1 (r) Ã0

(
r′
)〉

=
〈
Ã1 (r)

〉〈
Ã0

(
r′
)〉

+ α
(
r, r′

)
where α (r, r′) is the correlation between these two points r and r'. Similarly for pure solvent

system:

(3.26)
〈
B̃1 (r) B̃0

(
r′
)〉

=
〈
B̃1 (r)

〉〈
B̃0

(
r′
)〉

+ β
(
r, r′

)
With a big enough hydration shell, we can set α (r, r′) = β (r, r′), since the solvent in

the A0 or B0 region will be far from the solute and is little perturbed by it.

The intensity is now computed as the di�erence between a sample containing the solvent

and the corresponding region in the pure solvent:

(3.27)I (q) =
〈
|A (q)|2

〉
−
〈
|B (q)|2

〉
Substituting Eqs. 3.21, 3.25 and 3.26 into Eq. 3.27, and using the fact that α (r, r′) =

β (r, r′) yields:
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I (q) =

∫ [〈
Ã1 (r) Ã1

(
r′
)〉
−
〈
B̃1 (r) B̃1

(
r′
)〉

+
〈
Ã1 (r)

〉〈
Ã0

(
r′
)〉

+
〈
Ã0 (r)

〉〈
Ã1

(
r′
)〉

−
〈
B̃1 (r)

〉〈
B̃0

(
r′
)〉
−
〈
B̃0 (r)

〉〈
B̃1

(
r′
)〉]

e−iq.(r−r
′)drdr′

(3.28)

or

(3.29)I (q) = [〈A1 (q)A∗1 (q)〉 − 〈B1 (q)B∗1 (q)〉]
+ [〈A1 (q)〉 − 〈B1 (q)〉] 〈B∗0 (q)〉+ 〈B0 (q)〉 [〈A∗1 (q)〉 − 〈B∗1 (q)〉]

which is Eq. 18 in Park et al. [11] From Eq. 3.22 we have

(3.30)〈B0 (q)〉 = 〈B (q)〉 − 〈B1 (q)〉

where 〈B (q)〉 =
∫ 〈

B̃ (r)
〉
e−iq.rdr is the Fourier transform of the shape of the entire

scattering volume. In MD simulation and RISM calculation, this volume reaches in�nity

and thus 〈B (q)〉 = 0 everywhere except at q = 0, where its value is the number of electrons

in that volume. The q = 0 point is regarded as a singularity. To make our scattering curve

continuous at q=0, we assume 〈B (0)〉 = 0, too. Hence Eq. 3.30 can be rewritten:

(3.31)〈B0 (q)〉 = −〈B1 (q)〉

which is essentially the Babinet's principle. Substitute that into Eq. 3.29 we have:

(3.32)I (q) = [〈A1 (q)A∗1 (q)〉 − 〈B1 (q)B∗1 (q)〉]
− [〈A1 (q)〉 − 〈B1 (q)〉] 〈B∗1 (q)〉 − 〈B1 (q)〉 [〈A∗1 (q)〉 − 〈B∗1 (q)〉]

From this we obtain a working formula for the total intensity:

I (q) = [〈A1 (q)〉 − 〈B1 (q)〉]2 +
[〈
|A1 (q)|2

〉
− |〈A1 (q)〉|2

]
−
[〈
|B1 (q)|2

〉
− |〈B1 (q)〉|2

]
(3.33)

In RISM, only the ensemble-averaged distribution of water around the solute is obtained

and there is no information about the time-dependent �uctuations of A1(q) and B1(q), so

that the second and third terms are not accounted for by the RISM theory. For RISM�SAXS

calculation, we use the following formula:

(3.34)I (q) = [〈A1 (q)〉 − 〈B1 (q)〉]2
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3.3.2.2 Computation of SAXS pro�les

Above we show that we can approximately calculate SAXS pro�les by:

(3.35)I (q) ' [〈A1 (q)〉 − 〈B1 (q)〉]2

where A1 (q) and B1 (q) are Fourier transforms for the sample and blank, respectively, but

here only considering regions where there is excess/de�cit electron density relative to the

bulk. This approach has several considerable computational advantages for grid-based rep-

resentations of the solvent. First, we do not need to include the bulk into the calculation

as in Eq. 3.27, so that the three-dimensional grid need only cover regions where the solvent

is perturbed by the solute. Although we only consider local regions around the solute, the

fact that we compute the di�erence between the two amplitudes as in Eq. 3.35 e�ectively

treats an in�nitely large system (in the bulk region, A = B) and therefore does not intro-

duce any arti�cial boundary whose shape could in�uence the result. Second, the amplitude

computation (as in Eqs. 3.37 and 3.38 below) is linear in the number of grid points, whereas

an intensity calculation (e.g. from a Debye sum) is quadratic in the number of grid points.

(A recent study by Berlin et al. [157] describes an alternative approach to the Debye sum

which scales with O (N logN), which might also be adapted to the grid representation used

here.) The excess intensity calculation consists of two major steps, which are outlined in

the following sections.

Computing the excess amplitude

We �rst compute the excess amplitude of the system (equivalent to 〈A1 (q)〉 − 〈B1 (q)〉 in

the context of Eq. 3.35):

(3.36)A1 (q)−B1 (q) = F (q)

= Fsolu (q) + Fgrid (q)

where

(3.37)Fsolu (q) =
∑
j

fj (q) exp

(
−Bjq

2

16π2

)
exp (−iq.rj)

is the form factor of the solute. The Debye�Waller factor Bj roughly accounts for thermal

motion, discussed in more details in Section 3.4.1.1.
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The contribution from the solvent Fgrid(q) is computed by performing a 3D Fourier

transformation of the excess electron density, using the so-called CUBE method: [137,152]

(3.38)Fgrid (q) =

Ngrid∑
j

fj (q) e−iq.rj

(3.39)fj (q) = 8
sin
( qxa

2

)
sin
(
qyb
2

)
sin
( qzc

2

)
qxqyqz

ρ(j)
xe

where ρ(j)
xe is the excess electron density in the jth cell of the rectangular grid, with length,

width and height a, b, c. ρ
(j)
xe , in turn, is calculated by summing up all excess densities

from individual atom types in the solution (for instance, Hwat, Owat, Na+ and Cl- in NaCl

solution):

(3.40)ρ(j)
xe =

∑
k

Zkρk [gk (rj)− 1]

with ρk and Zk as the bulk density and the atomic number of the k th atom or ion, respec-

tively. At each grid point the excess density is accounted for by the term [g (r)− 1] from

the solution of the 3D-RISM equations. In Eq. 3.40, all the electrons of an atom/ion from

the grid are assumed to reside within the cell where the nucleus is, in our case, a cube of

length 0.5 Å. (We show in Section 3.4.1.1 below that a more realistic assignment of electron

density to the grid has a negligible e�ect on the computed pro�les.)

Computing the X-ray intensity

We next compute the excess intensity by performing spherical averaging:

(3.41)I (q) =
1

4π

∫
|F (q)|2 dΩ

One of the fastest and most accurate ways to perform spherical integration is to use Lebedev

quadrature, which is analogous to Gaussian quadrature in a linear dimension: [158,159]

(3.42)
∫
|F (q)|2 dΩ ≈

Np∑
i

wi |F (qi)|2

where the points are at pre-de�ned directions in a unit sphere (forming a 2-dimensional

grid on the sphere surface) with the weights wi. Since I (q) = I (−q) we gain additional



38

speed-up by evaluating the scattering vectors in only one hemisphere. As q increases, more

points are needed to estimate the integral with high accuracy. For example we use 38 grid

points at q = 0.01 Å-1 and 1202 grid points at q = 1.00 Å-1 which is su�cient to keep the

relative errors within 10-3 (data not shown).

3.3.3 Computational details

We take two proteins � lysozyme and myoglobin � and di�erent 25-bp duplex nucleic acid

structures as test cases for validating the RISM�SAXS method. (Additional tests for BioI-

sis.net database are reported in Table 3.1.) The coordinates for the proteins are taken

from Protein Data Bank with PDB ID 1WLA and 6LYZ for Myo and Lys, respectively.

The nucleic acid starting structures are all built by the web server w3DNA [160] The DNA

structure is assumed to be in B and B'-form, while the RNA is built in A-form. A-tract

initial structure is taken from the server (poly d(A):poly d(T) in Na salt). Since hybrid

DNA:RNA in general is known to adopt an intermediate structure between the A and B-

form in solution, [161�164] we build both forms as initial structures and ran two separate MD

simulations. The DNA and RNA sequence are GCAXCXGGGCXAXAAAAGGGCGXCG

(where X=T for DNA and U for RNA).

3.3.3.1 MD simulation

For explicit solvent simulations, the all-atom Amber force �eld �99-bsc0 was used. [165]

Additional corrections for dihedral angles ε/ζ OL1 [166] and χ OL4 [167] were employed

for DNA, and χ OL3 [168] was used for RNA. Those corrections were found to improve

the quality of the structure from MD simulation in comparison with NMR data. Since the

choice of water model has been known to have a moderate e�ect on nucleic acid simulations,

[169�171] di�erent water models were employed here: SPC/E, [172] TIP3P, [173] TIP4PEW

[174] and OPC [53]. Monovalent ion parameters were taken from Joung�Cheatham ion

model. [175] We also ran simulations using CHARMM36 force �eld with TIP3P water.

[176,177] Parmed in AmberTools was employed to convert CHARMM parameter and topology

�les into Amber formats. All simulations were performed using the GPU accelerated pmemd
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code (pmemd.cuda). [178�180]

Each nucleic acid was immersed in a preequilirated cubic water box with a bu�er distance

of 20 Å. Na+ and Cl- ions were added to neutralize the negative charges from the nucleic

acids and reach the concentration of 100mM. Nonbonded interaction cuto� was set at 9.0

Å. The long-range electrostatic interaction is calculated by using the smooth particle mesh

Ewald method. [181, 182] Equations of motion were integrated by employing the leap-frog

Verlet algorithm with a 2 fs time step. Covalent bond lengths involving hydrogen atoms were

constrained using SHAKE. [183] The system was �rst minimized with 2000 steps of steepest

descent, followed by 3000 steps of conjugate gradient method to remove bad contacts. The

equilibration was then performed at 298.15 K with successive solute atom restraints of

10.0, 1.0 and 0.1 kcal/(mol.Å2) for a total of 20 ns. Temperature was regulated by using

Langevin thermostat with a collision frequency of 2.0 ps-1 while pressure was maintained

using Berendsen barostat. The production run was subsequently carried out without any

restraints using Langevin thermostat and Monte Carlo barostat for each system for a total

of 1 µs.

Implicit simulations were also carried out by using the GB-neck2 for nucleic acid model.

[184] It was shown to give improvement results for nucleic acid simulation compared with

the old GB-neck. In�nite cuto� was utilized. Salt concentration was speci�ed at 100mM.

The temperature was maintained at 298.15 K by the Langevin thermostat with a collision

frequency of 1.0 ps-1. For each system, dynamics were propagated for 500ns and then

subjected to the clustering analysis.

Clustering analysis

Clustering analysis was performed on each trajectory using cpptraj in AmberTools 15. In

brief, snapshots at every 40 ps were recorded with water molecules and ions stripped out.

Clustering was performed on all atoms of the nucleic acids using the hierarchical agglomer-

ative technique to extract 20 most representative clusters. The 20 centroid structures were

subsequently subjected to 3D-RISM and SAXS calculations. The resulting intensities were

then re-weighted based on each cluster size to create a single SAXS curve for each system.
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3.3.3.2 RISM calculation

All calculations are performed using the rism1d and rism3d.snglpnt codes from Amber-

Tools. [119] We use Amber �12SB force �eld for describing the proteins and �99-bsc0 for

DNA. (Since there is no histidine-bound heme group parameter for Amber force �eld, we use

the cysteine-bound heme parameter for Cytochrome P450 taken from Shahrokh et al. [185])

Monovalent ions (alkali, halide) parameters are taken from Joung�Cheatham ion model. [175]

Sr2+ ion is taken from Li et al. (we here report the IOD set results as we �nd that there

are no di�erence between SAXS calculation using these three sets). [186] The water model

used in this study is cSPC/E; [119] we also did some calculations on cTIP3P water, but

found that the SAXS pro�les are not sensitive such a change. [119] First the 1D-RISM is

carried out with only the solvent (water + ion if any) to obtain the solvent susceptibility

χV Vαβ which contains all the information about the bulk solvent. This will be subsequently

used for 3D-RISM to compute the solvent structure around a solute of choice. Thus one

needs to perform only one 1D-RISM step, and use the resulting χV V for all subsequent

3D-RISM calculations which are at the same condition (salt concentration, temperature,

pressure, etc). The output from RISM program is g(r) for each atomic sites in solvents (for

instance, Hw and Ow in water). These distribution functions re�ect the excess or de�cit of

each solvent site relative to bulk concentration around the solute in real space, and can be

directly used to compute SAXS pro�les.

The modi�ed direct inversion of the iterative subspace solver (MDIIS) [187] was used

to iteratively solve the RISM equations to a residual tolerance of 10-12 and 10-5 for 1D and

3D-RISM, respectively at 298.15K. For 1D-RISM, the 0.025 Å grid spacing is used with

16,384 and 32,768 grid points for pure water and 100mM NaCl solution, respectively. With

more diluted solutions (10mM SrCl2 for example), the grid points are doubled until we get

the results converged. For 3D-RISM, a 3D grid with 0.5 Å grid spacing is used with the

bu�er region of 20 Å for proteins and 40 Å for DNA in 100mM NaCl and up to 80 Å for

10mM SrCl2.
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3.3.3.3 SAXS calculation

The output from 3D-RISM program is 3-dimensional g (r) for each atomic site in solvents

(for instance, Hw and Ow in water), re�ecting the excess or de�cit of each solvent site

relative to bulk concentration around the solute in real space. Those are then served as

inputs to compute SAXS pro�les using our saxs_rism code in AmberTools.

For simple and neutral protein in water (such as lysozyme, myoglobin), the RISM cal-

culation takes 13 secs (using 1.0 Å grid spacing, 20 Å bu�er), SAXS takes ~ 5 mins (q = 1

Å-1) on a conventional desktop. For complex system (DNA in NaCl/water), a much bigger

and �ner box (0.5 Å grid spacing, bu�er 40 Å) is required to obtain good ion distribution,

RISM takes 20 mins and SAXS takes additional ~ 1 hour using 16 CPU cores.

3.4 Results and Discussions

3.4.1 Protein test cases

3.4.1.1 Lysozyme and Myoglobin

It has long been recognized that the solvent shell around a protein signi�cantly impacts

the shape of the measured SAXS pro�le. As a �rst test of the RISM�SAXS method which

e�ciently generates the solvent distribution around a speci�ed solute, Figure 3.4 compares

the calculated pro�les of lysozyme and myoglobin with experiment and with MD simulation

results reported earlier. [11] The results are shown in both logarithmic and linear scale to

exploit the bene�ts of both � the log scale can show the overall shape of the curve, whereas

a linear scale can show more clearly the details at intermediate angles.

It can be seen in both cases that RISM reproduces the peaks and troughs of the SAXS

pro�les and is on par with MD simulations up to q ' 1.5 Å-1. Obtaining good results beyond

that threshold with RISM is di�cult as �uctuation e�ects emerge that depress the excess

intensities (see Figure 3.5 in Section 3.4.1.1 below). The computed results are promising

if one considers that RISM is an �implicit� solvent theory; however it di�ers from other

implicit solvent programs (for example CRYSOL [135]) because RISM directly computes the

solvent distribution around the solute considering only interactions between the solute and
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Figure 3.4: SAXS pro�les of lysozyme (left) and myoglobin (right) calculated from RISM
with KH and PSE3 closures, plotted in log scale (top) and linear scale (bottom). Exper-
imental data (error bars) and MD curves (red curve) are taken from Park et al. [11] The
data are o�set for visual comparison with experiment (for the logarithmic plot, the scaling
factor is 10 while for the linear plot, the o�set factor is 4x104).
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Figure 3.5: SAXS of lysozyme computed by MD simulation with (red) and without (black)
the �uctuation. The inset shows two curves in linear scale at high angle.

solvent, without further assumptions or �tting parameters. The agreement between RISM�

SAXS with explicit solvent models (MD) and experiment indicates that we can capture the

hydration shells and SAXS curves by using RISM theory, at a fraction of the computational

time associated with MD.

E�ect of density �uctuations

To see the e�ect of the density �uctuations on the SAXS curve, Figure 3.5 illustrates the

e�ects of ignoring the second and the third terms, using an MD simulation of Lys. It is

obvious that the density �uctuations do not a�ect the low angle region (near q = 0), only

moderate and high angle regions. At high angle (q > 1.5 Å-1), the �uctuation is in the same

order with the �rst term, even making the intensity negative (near q = 2 Å-1).

E�ect of grid �neness

We check the convergence for SAXS computation as a a function of the grid spacing in

3D-RISM (Figure 3.6). The scattering pro�les at 0.5 and 1 Å grid spacing show negligible

di�erences while at 2 Å discrepancies start showing up. Note that this is not to say scattering
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Figure 3.6: E�ect of grid spacing of RISM calculation onto the scattering pro�le of lysozyme.

technique is able to probe the di�erence down to 2 Å but only show that at least a 1 Å grid

spacing is needed for distribution function computed in 3D-RISM to converge.

E�ect of thermal disorder

Even in the simplest case where the solute adopts a known, single and relatively rigid

conformation, the scattering pro�les are still a�ected by small thermal �uctuations of the

solute. Modeling these variations as a Debye�Waller factor, as in Eq. 3.37, sometimes

improves comparisons between predicted and experimental scattering pro�les. [188,189] As

pointed out by Moore, [190] the B-factor is only a rough guide to thermal disorder in solution,

at least because B-factors are usually obtained from crystallography and are not necessarily

comparable to solution scattering. In addition, correlated thermal motions (not modeled

by Debye�Waller factors) contribute to scattering in solution. Fortunately, these e�ects are

often minor, although more study is warranted. Figure 3.7 shows the e�ect of incorporating

these e�ects into the calculation of Lys pro�les via the B-factor as described in Eq. 3.37.

Only the moderate and high angle, but not the low angle region as expected, are impacted

by thermal �uctuation. The lowest scattering angle at which the thermal �uctuation e�ect

is signi�cant can be computed from Eq. 3.37, and is inversely related to the average B-

factor. [190]
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Figure 3.7: E�ect of thermal �uctuation onto scattering of lysozyme. Black and red lines
are scattering curves of lysozyme computed by RISM�SAXS with and without B-factor
included, respectively.

Electron density calculation

The RISM model provides the density of each type of solvent component (hydrogen and

oxygen of waters, plus ions) on a three-dimensional grid surrounding the solute. This needs

to be converted to an electron density representation in order to compute SAXS pro�les. In

the simplest model (described above) atomic densities at each grid point are simply multi-

plied by the number of electrons in each component. In fact, the distribution of electrons

around the nucleus spreads out beyond a single cube. We performed calculations where we

redistribute the electrons of water over 26 neighboring cells based on the spatial distribution

of electron around a single water molecule, and �nd the SAXS pro�les are not changed up

to q = 2.0 Å-1 (data not shown). This is expected since at even high angle region, the reso-

lution in real space is still not �ne enough to look at electron in atom (for example q = 2.0

Å-1 corresponds to r ≈ 3 Å).

3.4.1.2 Comparison with other methods

Figure 3.8 shows SAXS pro�les calculated by some widely used tools (CRYSOL, [135]

FoXS, [146] AXES, [148] AquaSAXS [136] and HyPred [137]). For lysozyme, all of them do

relatively well at small angle. CRYSOL, despite its simplicity, is able to provide an excellent
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Figure 3.8: Comparison between other methods for calculation SAXS of lysozyme (left) and
myoglobin (right): CRYSOL, FoXS, AXES, AquaSAXS and Hypred, plotted in log scale
(top) and linear scale (bottom). The data are o�set to facilitate visual comparison with
experiment.

�t with the experiment up to 1.5 Å-1, but overestimates scattering near q = 0 region. For

myoglobin, no tools could predict the scattering curve satisfactorily, even at small angle

region, except RISM�SAXS and, less satisfactorily, HyPred and AXES. It also should be

noted that, a scaling factor is needed to plot the predicted pro�les from other tools in order

to match with the experiment whereas nothing similar needed in RISM�SAXS.

We have also performed calculations with structures that have experimental SAXS curves

in the BioIsis.net database. A measure of the discrepancy between the experimental and

predicted pro�les is computed as:

(3.43)χ2 =
∑
i

[
Iexp (qi)− aIcal (qi)

σexp (qi)

]2

with a is the scaling constant and σ is the experimental uncertainty. As discussed above, we
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do not need any adjustable parameter to �t to experiments that have an absolute calibration

(say against pure water); however the experimental curves in BioIsis.net database are all

relative, and a scaling factor is needed.

Table 3.1 reports χ values between the predicted and experimental SAXS curves for

several widely used tools for predicting scattering pro�les with comparison with RISM. The

default parameters in all these tools are used (no �tting attempt has been made). The

HyPred server is not able to process nucleic acid pdb �les (28BPDD and 2SAMRR), so

those are not included in the statistics.

The RISM performance is encouraging, showing the best results for all tools tested with

the average χ = 5.92. However, it does encounter some di�culties, for instance in glucose

isomerase (χ = 13.82) and superoxide dismutase (χ = 7.69). There are also structures

that have highly �exible loops extending away from the protein core (Human regulator

of chromosome condensation and glycosyl hydrolase+C-terminus), and thus are impossible

to �t to experiment using only a single conformation. Whenever RISM fails, other tools

also do. The model imposes a computational cost as discussed above; computation usually

takes several minutes for small molecules to half an hour for biomolecules on a conventional

desktop. This is faster than MD, but slower than most competing methods, and requires a

force �eld representation before the integral equations are solved. Further study is needed

to optimize this approach, especially in the presence of conformational heterogeneity.
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Molecule PDB BioIsis�ID qmax(Å) CRYSOL AXES FoXS AquaSAXS Hypred RISM

28 bp DNA - 28BPDD 0.33 1.11 2.19 1.66 1.42 - 0.73

Immunoglobulin-like domains

3PXJ LAR12P 0.33 4.52 8.05 3.82 24.30 3.72 3.531 and 2 of the protein

tyrosine phosphatase LAR3

S-adenosylmethionine
2GIS 2SAMRR 0.30 2.52 2.53 2.10 9.22 - 2.12

riboswitch mRNA

Superoxide dismutase 1HL5 APSODP 0.62 16.21 7.43 30.71 28.34 14.27 7.69

Abscisic acid receptor PYR1 3K3K 1PYR1P 0.33 7.89 8.95 3.24 28.54 16.37 4.48

Glycosyl hydrolase + C-terminus 1EDG AT5GHP 0.60 21.12 19.70 20.01 30.25 31.06 19.41

Ubiquitin-like modi�er-activating
3T7E ATG7CP 0.33 3.04 7.88 5.56 7.02 3.29 2.64

enzyme ATG7 C-terminal domain

DNA double-strand break
3AV0 MRERAP 0.33 2.00 20.44 5.10 9.34 26.77 4.26

repair protein MRE11 + ATP

Glucose isomerase 2G4J GISRUP 0.56 16.95 46.43 36.75 26.35 78.30 13.82

Complement C3b + Efb-C - C3BEFP 0.33 4.02 21.70 5.74 - 2.47 3.44

Xylanase 1REF 1XYNTP 0.31 3.51 3.42 4.13 6.44 1.73 1.20

Pyrococcus furiosus
2E2G 1AHRHP 0.31 5.29 7.51 5.50 6.81 6.14 5.32

decameric product

Ketoreductase-enoylreductase
- ZGDWKP 0.31 2.76 4.43 4.41 5.93 3.92 2.82

didomain

Human Regulator of
- HRCC1P 0.33 9.92 15.68 16.05 9.97 2.72 11.37

Chromosome Condensation

Average 7.20 12.60 10.34 14.92 15.90 5.92

Standard deviation 6.42 11.83 11.24 10.69 22.04 5.39

Median 4.27 7.97 5.30 9.34 5.03 3.90

Table 3.1: Performance comparison (χ value) for RISM�SAXS and other tools. Structures and experimental SAXS are all taken from the
BioIsis.net database.
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3.4.2 Duplex DNA in salt solution

3.4.2.1 The ion atmosphere around duplex DNA

Few experimental techniques can directly probe the spatial distribution of ions in the pos-

itively charged cloud around DNA. [7, 191] Popular theoretical models include counter-ion

condensation [84, 85] or Poisson�Boltzmann (PB) theories, [192, 193] although PB results

for duplex DNA are in poor agreement with results from dialysis-type experiments. [9] MD

simulation can also provide atomic details and in principle can describe the ionic atmosphere

with great accuracy. [170, 194, 195] However, the computational cost is large, especially for

the sampling of ions. Recently, RISM has been employed as a relatively cheap method to

obtain a picture of the ion atmosphere around DNA, comparable to that of MD simula-

tions. [9, 134]

Figure 3.9 shows an experimentally acquired SAXS pro�le of a 25-bp duplex DNA in

100 mM NaCl solution. This mixed sequence duplex is expected to assume the B-form.

Also shown are di�erent scattering pro�les computed by RISM, including the two helical

forms of DNA that best resemble the data: B and B' forms. All models are built with the

w3DNA web server [160] (see Figure 3.10). The B'-form has a slightly wider major groove

and narrower minor groove (the all heavy atom, i.e. without hydrogens, RMSD between

these two structures is only 0.71 Å). This �gure demonstrates the sensitivity of SAXS to

the helical topology of the DNA, as mentioned above. The scattering from the B-form

is in better agreement with experiment at the lowest and highest (q > 0.6 Å-1) angles,

but varies around q = 0.4 Å-1. To further emphasize the di�erence in scattering pro�les

between these two forms at high angle, a Kratky plot of I (q) q2 vs q is shown in Figure

3.11. This presentation of the data emphasizes the shape of the scattering pro�les at larger

values of q, and suggests that the B-form is generally a better representation of the duplex

DNA in solution. One possible explanation for this discrepancy is that the real structure is

somewhere between B and B'-form. Another possible explanation for the deviation is that

uncertainties in the computed distribution of ions and water in the solution a�ect the result.

The important contributions of both water and ion atmospheres to the overall scattering

pro�les of nucleic acids are even more pronounced than solvent e�ects in protein systems.
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Figure 3.9: SAXS pro�les of di�erent DNA structures (built with w3DNA) computed by
RISM�SAXS in 0.1 M NaCl. All the curves are o�set with the scaling factor of 10 for easy
comparison with the experiment (shown in error bars).

Figure 3.10: B (blue) and B'-form (red) of the 25bp duplex DNA in the solution. The
di�erences between these two structures are trivial, with the B'-form having a slightly larger
major groove and smaller minor groove. RMSD for all heavy atom = 0.71 Å, backbone only
= 0.86 Å.
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Figure 3.11: Kratky plot comparison between B and B'-form of DNA.

To demonstrate the need to properly treat the solvent in computing SAXS pro�les of nucleic

acids, Figure 3.12 shows the important di�erences in the SAXS curves that arise from the

interaction of DNA with solvent. The black curve shows a SAXS pro�le computed from

DNA atoms in vacuo. The dashed blue curve represents the scattering of the DNA in water,

accounting only for the displacement of water by the DNA duplex, and assuming that the

water molecules around it do not feel its presence and behave like bulk water. The red curve

includes all contributions from the hydration shell and ion layer to the DNA scattering,

and should be the most realistic calculation. Water consistently perturbs the total curve

up to very high angle. The most signi�cant changes in the scattering pro�les at mid to

high angle re�ect both the solute topology and the behavior of the hydration layer, and

underscore the sensitivity of SAXS to these di�erent aspects of nucleic acid structure. Thus,

as suggested above, discrepancies between computed and measured pro�les may be useful

guides for improving the accuracy of calculations.

3.4.2.2 Scattering behavior near q = 0

The excess form factor (as in Eq. 3.36) is the 3D Fourier transform of the excess electron

distribution. At q = 0 it is nothing but the number of excess electron in the system. Eq.

3.36 becomes:
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(3.44)
A (0) = Fsolu (0) + Fgrid (0)

=
∑
i

fi (0) +
∑
k

ZkρkGk

where Gk is the Kirkwood�Bu� integral: [196]

(3.45)
Gk =

∫
[gk (r)− 1] dr

=

∫
hk (r) dr

and Nk = ρkGk is the excess (or de�cit) of the atom or ion k around the solute. Therefore

the intensity at q = 0 is

(3.46)I (0) = (Zsolu + ZwatNwat + ZcationNcation + ZanionNanion)2

with Zsolu is the number of electrons in the solute, Zion is the number in the ion, and

Zwat = 10. (Note that at q = 0 the form factors become real numbers.) Previous work

shows that the number of excess ions extracted from RISM calculations is in good agreement

with �ion counting� dialysis experiments. [9] Therefore, when absolutely calibrated SAXS

data are available (see Methods), the q = 0 value provides an absolute comparison between

data and simulation. This comparison can be used to establish the e�ectiveness of RISM
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Figure 3.13: SAXS pro�les of B-DNA computed by RISM coupled with KH (red) and PSE3
(green) closures. The two pro�les are o�set by a factor of 10 for easy comparison. The inset
zooms out the low angle region near q = 0, and is plotted without the o�set factor.

subject to di�erent closures. Figure 3.13 compares measured and calibrated SAXS pro�les

of a 25-bp duplex DNA in 100 mM NaCl with pro�les computed with two closures, KH and

PSE3. The KH curve agrees better with the experiment near q = 0, implying that the total

number of excess electrons in the system should be closer to those from KH as opposed to

PSE3 closure.

Table 3.2 reports the number of excess waters and ions around the 25-bp DNA computed

by RISM coupled with di�erent closures. The neutral atomic form factors are used in the

Nwat NNa NCl Ne =
√
I (0)

Nexcl Nshell Total
KH

-592

172 -420 30.5 -17.5 3722
PSE2 196 -396 35.6 -12.4 4104
PSE3 207 -385 37.7 -10.3 4275
PSE4 211 -381 39.1 -8.9 4356
SAXS 107 −485± 16 39± 2 −9± 2 3, 300± 100

Table 3.2: Number of excess water and ions around the 25-bp duplex DNA from SAXS
experiment and RISM calculations with various closures. Nwat is partitioned into contribu-
tions from the excluded volume of the DNA Nexcl and hydration shell Nshell, as described
in the text.
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SAXS calculations, requiring a modi�cation of the electron number Ne to account for the

overall charge of the DNA: we correct the computed Ne to include the extra electrons

accounting for the DNA charge. The number of excess water is approximately partitioned

into contributions from the excluded volume of the DNA, and the remainder, which is termed

the hydration shell. (Whether a cell belongs to the excluded volume or hydration shell

depends on the distance d between it and its nearest atom of the solute j. If d < rj + rwat

where rj is the atomic radii of atom j and rwat = 1.4 Å is approximately the radius of

water molecule then the cell is within the excluded volume. This is a somewhat arbitrary

division, and the results in Table 3.2 provide only a general account of excluded-volume

versus hydration shell e�ects.)

From Eq. 3.46, an experimental estimate of Nwat can be extracted if all other terms

are known. We assume here that the number of excess Na+ is the same as that measured

for Rb+, which is 39 ± 2 (see below), which in turn implies that NCl is −9 ± 2, to achieve

electroneutrality. The total number of electrons in the DNA is 7940 (assuming a net charge

of -48), and I (0) = 1.098± 0.070× 107, extrapolated using GNOM, [197] then the number

of excess waters can be computed from Eq. 3.47:

(3.47)1.098× 107 = (ZDNA + 10Nwat + 10NNa + 18NCl)
2

= (7940 + 10×Nwat + 10× 39 + 18× [−9])2

This gives Nwat = −485 ± 16. As shown in Table 3.2, this total can be approximately

viewed as the sum of a de�cit of -592 waters (arising from the excluded volume of the DNA

duplex), and an excess of 107 waters in the hydration shell. All of the RISM closures appear

to overestimate the number of excess waters in the hydration shell. The KH results are

closest to experiment, with an overestimate of about 2 water molecules per base-pair.

3.4.2.3 Anomalous SAXS

The use of ASAXS (see Section 3.2.4) provides another important degree of comparison

between RISM and measurement. The ASAXS pro�le is the di�erence between the SAXS

curves of the same sample but probed at two di�erent beam energies. One of these energies

is close to the absorption edge of a particular element, in this case Rb+ or Sr2+. The energy
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Ion f ′ on-edge f ′ o�-edge

Rb+ -7.02 -3.58
Sr2+ -6.99 -3.61

Table 3.3: Anomalous scattering factors measured for Rb and Sr in on-edge and o�-edge
experiments. The imaginary factor f ′′ = 0.

change only in�uences the scattering of the selected ions, but the ASAXS signal contains

contributions from all terms involving ion scattering, including ion-ion, ion-solute and ion-

water cross terms. ASAXS experiments are restricted to elements whose K-edges are readily

X-ray accessible. Past work focused on Rb, Sr and Co. Lighter and more biologically relevant

elements (O, C, N, Na, Mg ...) which have low energy K-edges are currently inaccessible for

ASAXS.

The atomic scattering factor for the ions probed by ASAXS can be written as Eq. 3.7:

(3.48)f (q, E) = f0 (q) + f ′ (E) + if ′′ (E)

where f ′ and f ′′ are the anomalous scattering factors and they do not depend on the scat-

tering angle in SAXS. The X-ray energy beam is chosen right below the absorption edge

of the ion, so that f ′′ is e�ectively zero and the imaginary part does not contribute to the

change of the atomic scattering factor (see Figure 3.1). Table 3.3 reports the values of the

real part f ′ for Rb+ and Sr2+ used in ASAXS.

Figure 3.14 shows a comparison of experimental ASAXS pro�les of Rb+ and Sr2+ around

duplex DNA with pro�les computed from RISM�SAXS, shown in the absolute scale. ASAXS

curves of a similar RNA sequence, also in RbCl and SrCl2, were computed by MD simulation

and reported earlier, however in the relative scale. [195] In contrast to comparisons on the

full SAXS pro�les of B-DNA, where the PSE-n closures are not as good as the KH closure in

terms of matching with the experiment near the q = 0 region, the PSE-n closures give better

results when compared with ASAXS data. Earlier work has shown that PSE-n gives better

results than KH for ion distributions around nucleic acids. [9] Since the ASAXS pro�le is a

complicated sum of ion-solute, ion-water and ion-ion terms, it is not surprising that none of

the calculated ASAXS curves from RISM �t the experimental data. Due to weaker site-site

interactions, KH closure places ions farther from the solute, leading to a more rapid decay

of the ASAXS curve than expected from the PSE2 and PSE3 closures.
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Figure 3.14: ASAXS signals of Rb+ (left) and Sr2+ (right) around the 25-bp duplex DNA
computed from RISM�SAXS coupled with di�erent closures, with the experimental pro�les
shown as error bars. The insets show the calculated on-edge and o�-edge SAXS pro�les in
which only the atomic scattering factors of the cations are varied. The ASAXS signal is
obtained by subtracting the on-edge from the o�-edge.

3.4.3 Ensemble-based SAXS of the DNA duplex

It is established in Section 3.4.2 that the intensity pro�les of the DNA duplex depend

strongly on the helical topology. We then perform an MD simulation with the fully �exible

DNA to study the e�ect of solute �exibility on the scattering pro�les. Snapshots from the

trajectories are then subjected to the clustering analysis to pick out 20 most representative

structures from the simulation (see Section 3.3.3 for more technical details). Those structures

are served as the inputs for 3D-RISM and SAXS calculations. The resulting intensities are

then averaged (with weights based on each cluster size) to generate a single SAXS curve.

Figure 3.15 compares the scattering curve of the static B-form structure and the ensemble-

averaged curve. Although there are still some discrepancies around the moderate angle

region and near q = 0, it is clear that the ensemble-averaged intensity pro�le displays

signi�cant improvement versus the static structure.

3.5 Conclusions

Small angle X-ray scattering experiment, in addition to the macromolecule shape in general,

provides important information into how the molecule modi�es the bulk solvent. Here we

describe a method using the solvent distribution from 3D-RISM model to calculate X-ray
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Figure 3.15: Comparison between SAXS pro�les of (static) B-form duplex DNA (green)
vs. ensemble structure from MD simulation (red) (plotted in logarithmic scale). The inset
zooms out the small angle region and is plotted in linear scale.

scattering pro�les for proteins and nucleic acids. These integral equation models are certainly

not perfect, but provide usefully accurate X-ray intensity pro�les that agree better with

experiment for a number of test cases than do the predictions of other simple models, and

rival the results of much more expensive MD simulations. 3D-RISM is particularly useful for

cases where there are both ions (and cosolvents in general) and water in the environment,

since there are few existing implicit models that describe both, and equilibration of ion

densities in MD simulations can be prohibitively expensive to achieve (especially for diluted

concentrations).

The basic analysis described here uses a single structure to describe the solute biomolecule.

Even relatively rigid biomolecules may have solute conformational �uctuations that can af-

fect scattering pro�les in the wide-angle region beyond q ≈ 0.3 Å-1. A very simple ap-

proach models these �uctuations in the same way as do atomic displacement parameters

(or B-factors) in crystallography. This model provides some insight, but ignores di�erences

between the crystal and solution environment, and fails to include the e�ects of correlated

�uctuations that a�ect solution scattering but not the intensities of Bragg peaks in crystal-

lography. Averaging over snapshots from MD simulations o�ers one way to investigate such
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e�ects. We illustrate that for a duplex DNA, the total intensity calculated by averaging

over snapshots from MD simulation is generally better the one computed with the static

di�raction structure. However, more work in this area still needed. We consider here only

the �forward� challenge of estimating SAXS pro�les based on an input structure; the �in-

verse� problem of constructing a structure or ensemble consistent with a given pro�le is more

challenging, and is generally problem-speci�c. Our computation is fast enough (requiring

a few minutes for the examples considered here) to allow one to average over many solute

con�gurations, or to use SAXS results (perhaps in combination with other restraints) to

construct ensembles of con�gurations consistent with the data. [198,199]

Analysis of the q = 0 limits, and comparison to experimentally calibrated pro�les, allows

one to count the numbers of excess ions and waters in the vicinity of biomolecules. These

in turn can be used to test the accuracy of computations (including �nding the limitations

of the RISM model used here), and to complement other ion counting experiments. These

counts are related to partial molar volumes and contributions to osmotic pressure, and o�er

insights into molecular interactions and function. A preliminary example, of duplex DNA

in NaCl/water, suggests that the excess number of waters surrounding the duplex can be

estimated with a precision of 1-2 water molecules per base pair, and that the force �elds and

RISM models used here tend to overestimate the number of excess waters. (This tendency

only a�ects the scattering curves for q < 0.05 Å-1, and generally good results are obtained

for higher scattering angles.)

The characterization of the solvent perturbation used here relies on a thermally�averaged

density pro�le, and appears to be only appropriate for q < 1.5 Å-1. At wider angles,

�uctuations in the solvent densities (and not just the average density) become important,

and a di�erent type of theory is needed. (At high angles, errors in the 3D-RISM description

of pure water may also be a factor limiting the application of this model.) Nevertheless,

this range of scattering angles covers a large fraction of reported scattering pro�les, and

our model should be of considerable use. The programs used here are incorporated into the

AmberTools suite of programs (rism_saxs and rism_md), available at http://ambermd.org.
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Chapter 4

Extracting water and ion distributions from SAXS

4.1 Introduction

Ions and water molecules have been long known to play crucial roles in governing biomolecule

stability and function. [26�28,67,70,76,200] Elucidating how ions and water molecules dis-

tribute themselves around the solutes can provide valuable insights in their function, and

can also provide experimental tests for theoretical predictions. [67, 69, 70, 76, 201,202] How-

ever, there are few experimental methods that directly probe the positions of ions and water

molecules in the solution. Ion counting via dialysis can provide a quantitative measure of

the ionic atmosphere around the solute, but it provides only a total (excess) number, and

not any information the shape of the ion cloud. [7, 203] The q = 0 limit of small-angle

X-ray scattering (SAXS) can provide similar excess counts for both water and ions, [12]

as discussed in Chapter 3. Anomalous small angle X-ray scattering (ASAXS) data in

principle yield additional information about the extent of perturbations of the ion/water

environment, [106, 191, 204, 205] but the ASAXS signal is known to be intertwined with

all components in the system, complicating the analysis (see more discussion in Section

3.4.2.3). [12,206] E�orts to extract the contribution from ions to ASAXS pro�les date back

to 2003 with the work of Ballau� and coworkers. [204, 207] Using multiple energy ASAXS,

they were able to decompose the total scattering intensity into solute-ion and ion-ion con-

tributions, though limited to spherical solutes. Recently, Meisburger et al. proposed a

similar approach to separate information about the ion contribution around a DNA duplex,

using the heavy ion replacement SAXS rather than ASAXS pro�les. [13] Both approaches,

nonetheless, only show the solute-ion and ion-ion correlation in reciprocal space and are not

readily extended to the water distribution.
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In this chapter, we present a new method of analysis to extract both water and ion

distributions from SAXS pro�les provided the scattering intensities are calibrated on the

absolute scale. Both the excess number (as in ASAXS and ion-counting experiments [7,106])

and (low-resolution) information about the actual distribution can be obtained for ions and

water molecules. The correlation between solute-ion or solute-water can be displayed in both

reciprocal space (as partial intensities) or real space (as interatomic distribution functions).

Since the focus is on ions and water, the proposed analysis requires knowledge about the

biomolecule structure in advance. Although the proposed method is approximate, we use

theoretical models to demonstrate that the errors are rather small for q between 0 and 0.1

Å-1. The resulting ion and water distributions are then used to test predictions from integral

equation theory and explicit MD simulation for relatively rigid proteins and a DNA duplex.

4.2 General theory

The calculation of SAXS pro�les from atomic coordinates is discussed in details in Section

3.3. Here we brie�y rewrite key equations and then transition to the derivation of the

analysis scheme.

4.2.1 Calculation of SAXS pro�les

X-ray scattering experiments on biomolecules compare the scattering intensity from the

sample of interest to a �blank� with just solvent present, and report the di�erence, or �excess�

intensity:

(4.1)I (q) =
〈
|A (q)|2

〉
t
−
〈
|B (q)|2

〉
t

where the 〈〉t bracket indicates the intensities are averaged over the measurement time and

volume. A (q) and B (q) are Fourier transforms of the scattering amplitudes for the sample

and blank, respectively:

(4.2)
〈
|A (q)|2

〉
=

∫ 〈
Ã (r) Ã

(
r′
)〉
e−iq.(r−r

′)drdr′

with Ã (r) is the electron density in the system. It has been shown that the total intensity

can be approximately (though usefully) rewritten as:
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I (q) = [〈A1 (q)〉 − 〈B1 (q)〉]2 +
[〈
|A1 (q)|2

〉
− |〈A1 (q)〉|2

]
−
[〈
|B1 (q)|2

〉
− |〈B1 (q)〉|2

]
(4.3)

where A1 (q) and B1 (q) are Fourier transforms for the sample and blank, respectively, but

here only considering regions where there is excess/de�cit electron density relative to the

bulk value. In 3D-RISM, the second and third terms vanish, leading to:

(4.4)I (q) = [〈A1 (q)〉 − 〈B1 (q)〉]2

The approximation made in going from Eq. 4.3 to Eq. 4.4 has been shown valid up to

q = 1.5 Å-1 in Section 3.4. Finally, the angular averaging is performed to obtain the total

intensity using the Lebedev quadrature:

(4.5)I (q) =
1

4π

∫
I (q) dΩ

The total excess amplitude can be expressed as the sum of terms arising from the solute

(biomolecule) and the solvent:

(4.6)A1 (q)−B1 (q) ≡ F (q)

= Fsolu (q) + Fsolv (q)

The separation between Fsolu and Fsolv can be made in di�erent ways, and is primarily for

convenience in interpreting results. Here we have chosen to include in the Fsolu term the

scattering from the excess electron density in the region of space occupied by the solute:

(4.7)Fsolu(q) =
∑
j

fj (q) exp
(
−Bjq2/16π2

)
e−iq.rj +

∫
exclV

fk (q) e−iq.rkdrk

The �rst term on the right-hand-side represents the scattering from the solute atoms in

vacuo, where fj (q) is the atomic scattering factor and Bj is the B-factor of atom j. The

second term gives the contribution from the (negative) excess solvent density in the volume

occupied by the solute. As in earlier work, [12,137,152] we use a �cube method� to compute

the scattering from a three-dimensional voxel, so that:

(4.8)fk (q) = 8

[
sin
(qxa

2

)
sin

(
qyb

2

)
sin
(qzc

2

)
/(qxqyqz)

]
ρxe (rk)

where ρxe (rk) is the excess electron density arising from the solvent; a, b, c are the grid

length, width and height, respectively, and the integral only goes over all points within the

excluded volume of the solute.
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With this de�nition Fsolu(q) is then the scattering amplitude of a hypothetical system

where the solute displaces waters inside its volume, but does not a�ect the water molecules

and ions around it. The details of how to determine the solute excluded volume, and the

choice to include the �excluded� waters in Fsolu, are somewhat arbitrary. Here, the excluded

volume is computed based on the algorithm of Voss and Gerstein for the 3D grid with the

probing radius of 1.4 Å. [16] Points lying inside this volume will be assigned to the excluded

volume. A key advantage of Eq. 4.7 is that it is readily calculated for a solute of known

structure: the atomic positions and scattering factors are known, and the excess solvent

density inside the molecule is just the negative of the bulk solvent density. The �interesting�

parts of solvation, i.e. how the solvent in the vicinity of the solute is perturbed, are included

in Fsolv(q). The key point of this analysis, given in the next section, is to show how Fsolv(q)

can be extracted from experimental data.

4.2.2 Extracting water and ion distributions from SAXS and ASAXS

We can further divide the solvent scattering into excess terms arising from water and from

ions:

(4.9)F (q) = Fsolu (q) + Fhyd (q) + Fion (q)

As above, the solvent terms come from scattering outside the biomolecule:

(4.10)Fhyd (q) + Fion (q) =

∫
not−exclV

fk (q) e−iq.rkdrk

Since fk (q) is proportional to the excess electron density ρxe (rk) we can further decompose

the solvation shells into contributions of hydration water and ions by considering excess

electron density coming from only water or ions ρxe (rk) = ρ
(wat)
xe (rk) + ρ

(ion)
xe (rk). Note

that this particular decomposition re�ects our interest in studying the waters of hydration

and ions around the solute. In principle, any decomposition scheme should work.

Now, as the total intensity is

(4.11)I (q) =
1

4π

∫
|F (q)|2 dΩ

we de�ne, similarly, the partial intensity for each component γ (where γ = solu, hyd, coun-

terion or co-ion):
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(4.12)Iγ (q) =
1

4π

∫
|Fγ (q)|2 dΩ

The square root of the partial intensity will be called F̃γ (q), by de�nition a real quantity.

At q = 0 it is nothing but the number of excess electrons from component γ, i.e. F̃γ (0) =

NγZγ where Nγ is the excess number of component γ coming from the hydration shell and

Zγ is the number of electrons of component γ. Thus we always have F̃ (0) =
∑

γ F̃γ (0), or

(4.13)
√
I (0) =

∑
γ

NγZγ

and we can extract the number excess of particle Nγ from I (0), as illustrated in the previous

Chapter. At non-zero q, Fγ (q) is generally complex, but we expect there should be a small

range at low angles where one can still decompose the total into partial amplitudes:

(4.14)F̃ (q) '
∑
γ

F̃γ (q)

For the above equality to be true, the phases of Fγ (q) should be identical (or at least

very close to each other) at all small angles. The phase di�erence α between Fsolu (q) and

Fhyd (q) is, by de�nition:

(4.15)Fsolu (q)Fhyd (q) = |Fsolu (q)| |Fhyd (q)| cosα

Since F̃ (q) depends on all possible orientations of the q vector (with the same magnitude

q), the approximation in Eq. 4.14 holds if and only if cosα is very close to 1 (α ≈ 0) for

every q . As we show below, this condition is valid for q less than about 0.1 Å-1. Since

SAXS information content is relatively low, [208] it is not obvious that we we can capture

enough �useful� information from such a narrow region to reconstruct the real-space water

distribution. However we also show below that the information content in the small angle

region is great enough to construct a usefully accurate approximate pair distance distribution

function (PDDF) from the estimated excess amplitude.

4.2.2.1 Solvent is pure water

For systems with only the solute in pure water, the third term in Eq. 4.9 vanishes, therefore

we can extract directly F̃hyd (q) from SAXS:

(4.16)F̃hyd (q) =
√
I (q)− F̃solu (q)
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where F̃solu (q) =
√
Isolu (q), which can be computed from the (known) structure of the

solute. The standalone F̃hyd (q) is useful but only contains information about the water of

hydration. To describe how those water molecules distribute around the solute, we seek an

approximation of the cross-term solute-hyd which is the correlation between the hydration

water density and the solute. From Eq. 4.11:

(4.17)

I (q) =
1

4π

∫
|Fsolu (q) + Fhyd (q)|2 dΩ

=
1

4π

∫
|Fsolu (q)|2 dΩ +

1

4π

∫
|Fhyd (q)|2 dΩ

+
1

4π

∫ [
Fsolu (q)F ∗hyd (q) + F ∗solu (q)Fhyd (q)

]
dΩ

The �rst two terms are F̃ 2
solu (q) and F̃ 2

hyd (q) (as de�ned in Eq. 4.12), respectively, therefore

we can approximate the cross-term (the third term) as

(4.18)2F̃solu (q) F̃hyd (q) = I (q)− F̃ 2
solu (q)− F̃ 2

hyd (q)

As before, we can compute F̃solu (q) from the structure of the biomolecule, F̃hyd (q) from

Eq. 4.16, and get the cross-term from Eq. 4.18. Examples of this sort of analysis are given

below.

4.2.2.2 Solvent contains ions and water

In this case, one has more than one unknown (from hyd, counterion and co-ion) in Eq. 4.9,

and additional measurements or assumptions are required to carry out the decomposition.

Changing the energy of the incident beam in an ASAXS experiment is one approach, varying

the atomic scattering factor of a given ion. [106, 191, 204, 206, 209, 210] Another approach

uses heavy ion replacement, assuming the ion and water distributions are similar for the

same type of ions (alkalies, for example). [13, 191] By doing this, only F̃counterion is allowed

to vary while the co-ion and hydration terms are �xed. Subtracting the square roots of two

measured intensities, therefore, gives the contribution from the counterion only:

(4.19)F̃ (q)− F̃ ′ (q) = F̃counterion (q)− F̃ ′counterion (q)

= Ncounterion

(
Zcounterion − Z

′
counterion

)
f̃counterion (q)
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with Z and Z' are the atomic scattering factors (q = 0) at two di�erent energy beams, f̃ is

the normalized F̃ (f̃ (0) = 1). This can be scaled up to compute back the �full� term:

(4.20)
F̃counterion (q) = NcounterionZcounterionf̃counterion (q)

=
Zcounterion

Zcounterion − Z
′
counterion

[
F̃ (q)− F̃ ′ (q)

]
[Note that this F̃counterion (q) includes a small contribution from the solute excluded volume

e�ect, since �inside� the solute there is a de�cit density of the ion. This contribution,

however, is small due to the small concentration of ions normally used in SAXS.] Rewriting

Eq. 4.14 as:

(4.21)F̃hyd (q) + F̃co−ion (q) = F̃ (q)− F̃solu (q)− F̃counterion (q)

The co-ion contribution in principle could be accurately subtracted from F̃hyd (q) but only

at q = 0 since we only know its number of excess thanks to the electroneutrality principle:

if the total charge of the solute is Z, and the number of excess counterions Ncounterion can

be computed as F̃counterion (0) /Zcounterion, the number of excess co-ions must be Nco−ion =

Ncounterion−Z. However, there is currently no way to obtain the co-ion spatial distribution

from the experiment. ASAXS experiments of DNA in NaBr or NaI with beam energies close

to the absorption edge of Br or I could potentially provide the answer for this. One very

primitive way is to construct a box around the solute and assume the co-ions are completely

depleted inside this box (g = 0), whereas outside this box, its concentration returns back

to the bulk value (g = 1). The shape of the box ideally closely resembles the solute,

although it is acceptable to use a rectangular box for the DNA here. The size of the box

is chosen so that the number of excess of co-ion in this box exactly matches the calculation

above. With F̃co−ion (q) approximately determined, we can now extract the hydration term

F̃hyd (q). The reason we need to account for the co-ion term is because its magnitude is in

the same order of the counterion and hydration water terms, although the co-ion term gives

negative contribution due to the depletion of the co-ions. (The importance of co-ion exclusion

is emphasized in a recent �ion counting� study by Herschlag and colleagues. [211]) More

sophisticated models for the co-ion distribution are possible, and are under consideration.

As for the pure water case above, it is probably most useful to compute the cross-terms

F̃counterion (q) F̃solu (q) or F̃hyd (q) F̃solu (q). Examples are shown below.
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4.2.3 Pair distance distribution function (PDDF)

4.2.3.1 Indirect Fourier transform (IFT)

The PDDF is the ultimately sought quantity and carries the most information content from

SAXS experiment. In principle, a direct Fourier transform of the pseudo intensity
∣∣∣F̃hyd (q)

∣∣∣2
should provide a real space representation of the distribution of hydration water under the

form of the PDDF phyd (r). However, such an approach is of little use since it gives large

systematic errors because of the noise, smearing and truncation of the experimental data.

Instead, indirect Fourier transform (IFT) technique was developed long time ago, pioneering

by Glatter, [212] Moore [208] and Svergun et al. [213] to deal with this problem. The main

idea of IFT was to express the PDDF p (r) as a linear combination of a set of smooth basis

functions and �t the coe�cients in order to reproduce the intensity in the reciprocal space.

In this work, we used the IFT method based on Bayesian analysis from Hansen, which was

shown to give similar results with Glatter method; all tranformations were performed using

the webserver BayesApp. [214�216] Since IFT is an underdetermined problem, i.e. several

solutions can �t the experimental data equally well, additional contraints must be introduced

to obtain unique solution. [208,212�214] The PDDF is �rst written as a sum of smooth basis

functions (cubic B-splines for instance) p (r) =
∑

i aiBi (r). The coe�cients ai are then

tuned by minimizing the regulation functional S, subjected to the constraint that χ2 takes

sensible value, with χ2 =
∑

[Iexp (qj)− Itrans (qj)]
2 /σ2

j and σj is the standard deviation at

data point j. The regulation functional S usually controls the smoothness of the solution

and several forms of it exist. We followed Hansen and used S =
∫
p′′ (r)2 dr. [214�216]

4.2.3.2 Direct calculation

The PDDF is related to the density-density correlation by: [217,218]

(4.22)p (r) =

〈∫
V
ρ
(
r′
)
ρ
(
r + r′

)
dr′
〉

where ρ (r) is the scattering contrast (di�erence in electron density relative to the bulk

density). To generate an electron density map of the solute, we assume that the solute is

composed of isolated atoms (not chemical bonded), and the deformation electron density
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is negligibly small. (It should be note that there are lots of work done to incorporate

the anisotropicity and asphericity of electron density in order to minimize the deformation

density, for example see [219] and references therein.) The density is thus computed by

summing up the contribution of all the atoms. In practice, since electron is mostly found

near the nucleus, a simple cut-o� to decide whether an atom contributes electron density

is su�cient. One way that is widely used in X-ray crystallography to compute the electron

density around an atom is via the analytic Fourier transform of the atomic scattering factor.

[220, 221] Conventionally, the atomic scattering factor was �tted with the sum of some

Gaussian terms (with a and b are tabulated constants for each atom, we use here the sum

of six Gaussians by Su and Coppens [139]):

(4.23)f
( q

4π

)
=
∑

aie
−biq2/16π2

Fourier transform of the above formula gives the electron density at a distance r (Å)

from the nucleus:

(4.24)ρ (r) =
∑

ai

(
4π

bi

)3/2

exp

(
−4π2r2

bi

)
The PDDF can also be calculated for the cross-term, F̃hyd (q) F̃solu (q) or F̃counterion (q) F̃solu (q).

This time the density must come from both solute and water (or counterions):

(4.25)p (r) =

〈∫
V
ρi
(
r′
)
ρj
(
r + r′

)
dr′
〉

4.3 Results and Discussions

4.3.1 Validation of the new decomposition scheme

As discussed above, the condition for decomposition of the total scattering intensity into

partial intensities is that all the phases should be very close to each other for every orientation

of the q vector. To study the behavior of the phases, we must rely on the calculated pro�les.

We choose to use the calculated SAXS pro�les computed by 3D-RISM as they have been

shown in the previous Chapter to match the experimental curves up to wide angle region.

The phase for each component is computed from the complex amplitude of the corresponding

term. The phases are di�erent at each orientation of q (with the same magnitude q), and
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the average phase is shown in Figure 4.1 for lysozyme and a 25-bp DNA in 100mM NaCl

solution. It is expected to see those phases start to deviate from 0 as q increases, but at small

angles most of the phases are identical, except for the co-ion Cl- in the DNA case, which is

not surprising because Cl- is mostly expelled from the DNA and its contribution is expected

to be negative. The total amplitude phase closely tracks the solute phase in the range of

q < 0.5 Å-1 considered here. To make sure that the phases are aligned in all directions, and

not just on average, we consider the di�erence in phase between two amplitudes, α. From

Eq. 4.15 one has:

(4.26)cosα =
Fsolv (q)Fsolu (q)

|Fsolv (q)| |Fsolu (q)|

where the solvent amplitude is Fsolv (q) = Fhyd (q) + Fion (q). Figure plots the average

value of cosα over all orientations of the q vector at low angles. The condition of cosα ≈ 1

is valid for q < 0.1 Å-1. Comparing curves between lysozyme and DNA indicates that the

shape at moderate angles (0.1 < q < 0.5 Å-1) is system dependent, and for some system the

errors will be smaller than for others; in this case, the average error for the DNA is smaller

than lysozyme. However, at small angle the errors are vanishingly small, thus validating the

decomposition scheme.

Fig. 4.3 illustrates the overall accuracy of Eq. 4.14, comparing the total amplitude F̃ (q)

and the sum of partial amplitudes F̃k (q) for lysozyme and the DNA. The partial amplitudes

are de�ned and calculated as in Section 4.2.2. For Lys, k is solu and hyd ; while for DNA

there are also counterion (Na+) and co-ion (Cl-). One can see that the sum of partial

amplitudes is a good approximation of the square root of the measured intensity F̃ (q) at

least at small angle region (q < 0.2 Å-1).

To check whether the F̃hyd(q) extracted above re�ects the distribution of water in the

reciprocal space, we compare it with
√
Ihyd (q) computed directly from the (calculated) water

distribution around the solute. The Ihyd is calculated by performing the SAXS calculation as

usual, but ignoring the solute term (the solute excess form factor is set to 0, i.e. it does not

interact with the X-ray beam). The result is plotted in Figure 4.4 (left) for lysozyme as the

test case. It can be seen that F̃hyd (q) from the new analysis scheme is essentially identical

with the one computed from the 3-dimensional distribution of water, at least at the small
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Figure 4.1: Phases of component amplitudes in lysozyme (left) and DNA (right) from the
calculated scattering pro�les. Each value is the averaged phase all over every q vector, and
the error bars report the standard deviation of the distribution. The phase of the total
amplitude is also depicted there (red solid line). For both systems, at small angle most of
the amplitudes are aligned (i.e. in phase), except for the co-ion Cl- in the DNA case, which
is excluded from the solute and thus is out of phase. Interestingly, the phases of the total
amplitude follow the phase of the solutes very closely.
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Figure 4.3: Comparison between the �real� excess amplitude F̃ (q) =
√
I (q) (red) with the

sum of component amplitudes F̃k (q) =
√
Ik (q) (black) for lysozyme (left) and DNA (right)

using calculated pro�les from 3D-RISM. For Lys, k is solu and hyd ; while for DNA there
are also counter-ion (Na+) and co-ion (Cl-). The di�erence between these two are plotted
in the insets (blue).

angle region. Given SAXS data contain only a few independent values, [208] the fact that

we could not capture the whole curve is not discouraging. It is possible that this small angle

region is enough to reconstruct the low-resolution PDDF features in real space. We test the

quality of F̃hyd (q) by calculating the PDDF in the real space (details are in Section 4.2.3)

and compare this directly with the 3-dimensional distribution. As can be seen in Figure 4.4

(right), the PDDFs from all three approaches are very close to each other. Therefore one

can expect that the new analysis F̃hyd (q) contains enough information to reconstruct the

main features of the water distribution.

In the following sections, we apply this new analysis to both calculated and experimental

data for proteins and DNA. The goal is to study the quality of the predicted ion and

water distributions from di�erent theoretical models, to understand their weaknesses, and

to inform future attempts to improve the models and force �elds.

4.3.2 Protein test cases

Fig. 4.5 plots the �square-root� subtraction F̃hyd from SAXS data and those from 3D-RISM

and MD for lysozyme and myoglobin (calculated from Eq. 4.16.) There are two features that

can be extracted from those curves. The �rst is the total excess number of water molecules
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Figure 4.4: (Left) Scattering amplitude of water F̃hyd (q) around lysozyme extracted from the
square-root subtraction (black) in comparison with those computed directly from the water
distribution (red). The di�erence between those two, as shown in the inset, is negligible at
small angle. (Right) Pair distance distribution function (PDDF) of water in the hydration
shells computed for two curves in the left by indirect Fourier transformation of F̃ 2

hyd (q).
Also shown in blue is the PDDF calculated by using the direct method in real space (see
section 4.2.3 for more details).

in the hydration shell, visible at q = 0. Since each water molecule has 10 electrons, F̃hyd (0)

should be equal to 10 times the number of excess hydration waters Nhyd. Second, the shape

of the curve contains information about the water distribution in the real space. If F̃hyd (q)

decays rapidly towards zero, that means the hydration shell is thick. On the other hand, if

the curve slowly approaches zero, the hydration water shells are more compact. Of course,

it should be easier to explore the latter feature in the real space rather than the reciprocal

space using a restricted Fourier transform (IFT) technique.

All RISM closures tend to overestimate F̃hyd (q), especially in the small angle region. The

higher the order of PSE-n closures, the more serious the overestimation is. This indicates

that the water attraction to the solute in RISM is too strong. For example in Lys, RISM-

KH overestimates Fhyd(0) by about 200, corresponding to ~20 water molecules (Table 4.1).

The MD results are in much better agreement with the experiment. There are also some

discrepancies around q = 0.2 Å-1, where the new analysis scheme may break down (see

Figure 4.2). It is worth noting that although the computed total SAXS pro�les of those two

proteins from RISM and MD are nearly indistinguishable (see Figure 3.4), the extracted

F̃hyd here is clearly able to separate MD from RISM results. This demonstrates the power
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Figure 4.5: F̃hyd (q) for lysozyme (left) and myoglobin (right) from SAXS data (black circles,
experimental data from Ref. [11]), compared to RISM and MD calculations. The calculation
was done as in Eq. 4.16.

Protein RISM-KH RISM-PSE2 RISM-PSE3 MD SAXS

Lysozyme 71.7 83.5 92.9 48.1 50± 1

Myoglobin 86.5 101.4 113.0 53.1 60± 2

Table 4.1: Number of excess hydration water for lysozyme and myoglobin computed as
Nex−hyd = F̃hyd (0) /10. Those numbers are very close to the values computed by integration
all over the hydration shells. For lysozyme, RISM-KH values are 71.7 vs. 71.9.

of the proposed analysis and illustrates its potential use in testing new closures in 3D-RISM.

To get information about the placement of those excess water molecules in real space, we

can compute the cross-term F̃hyd (q) F̃solu (q) (via Eq. 4.18) and transform it to real space

to obtain a pair distribution function by using the IFT technique discussed in Section 4.2.3.

The results for two proteins, lysozyme and myoglobin, are given in Figure 4.6. Computed

SAXS pro�les for MD and 3D-RISM are analyzed in the same fashion as described above

for the experimental SAXS pro�les. The PDDF plot is essentially a distance histogram of

hydration water and the solute, weighted by the excess electron density (relative to the bulk

solution). Unlike the regular PDDF used in SAXS (which is the Fourier transform of the

positive total intensity and should be positive everywhere), the cross-term PDDF here could

be negative since F̃hyd (q) F̃solu (q) is negative at some points. 3D-RISM, regardless of clo-

sure, overestimates the hydration water interaction with proteins, whereas results from MD

simulation are generally much better. At very small distances, the PDDF contains valuable

information about the distances between the solute atoms and neighboring water molecules.
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Figure 4.6: Pair distance distribution function (PDDF) of water-solute for lysozyme
(left) and myoglobin (right). The PDDFs are computed by IFT-ing the cross-term
F̃solu (q) F̃hyd (q) for experimental data (black, taken from Ref. [11]), MD (orange) and 3D-
RISM.

Noteworthy at r ≈ 1−2 Å, the solute-water PDDF is negative, giving experimental evidence

for the so-called �thermal volume�, which is the void volume created around the solute due

to the mutual vibrations of the solute and solvent as well as structural, packing and steric

e�ect. [222�224] The PDDFs for the two proteins show rich structural features, especially at

small distances; this is reminiscent of similar structure seen by Ko�nger and Hummer [225]

(although their PDDF arises from a Fourier transform of the total intensity, not of a com-

ponent as we use here). Since only excess waters that are close to the proteins contribute to

the PDDF, for nearly spherical proteins, the peak location correlates well with the protein

radius.

To make sure the features observed in the PDDF are real, and not artifacts of the

IFT technique, we compute directly the PDDF in the real space and compare with the IFT

PDDF. Two grids of excess electron density are generated separately for the biomolecule and

hydration shells. The PDDF is consequently calculated as a distance histogram between the

two grids, weighted by the excess electron density. (See Section 4.2.3 for more details about

how we construct the excess density map.) The comparison between the �direct� and IFT

PDDF for two proteins using 3D-RISM is shown in Fig. 4.7. Although there is some slight

discrepancy at 30�40 Å distance (the IFT moderately underestimates the PDDF in this

range), the two methods agree quantitatively, suggesting that the new analysis proposed
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Figure 4.7: Comparison between water-solute PDDF computed by IFT and �direct� method
for lysozyme (left) and myoglobin (right). For the �direct� method, two grids of excess
electron density are created separately for the solute and hydration shells. The PDDF is
then computed by making a distance histogram between the solute and hydration water,
weighted with the excess electron density. See Section 4.2.3 for a detailed description of the
�direct� method.

here is capable of obtaining a usefully accurate pair distribution.

Generally, we observe that using q ≤ 0.1 Å-1 is enough to construct a �coarse� PDDF for

the solute-hydration term (see Fig. 4.8). Using less data leads to the di�culty of converging

the IFT procedure, whereas using more data introduces more �ne features into the calculated

PDDF.

4.3.3 Duplex DNA in salt solutions

If a solute is highly charged, the situation gets more complicated because of the presence of

the ionic atmosphere. As we will show below, the contributions of counterions and co-ions

can be the same order of magnitude as that of the more numerous hydration water molecules,

so that one must account for them in the decomposition. ASAXS is one approach to probe

the spatial distribution of ions around DNA. [191, 210] The ASAXS experiment probes the

same sample at two di�erent energies, which causes the �e�ective� number of electron in the

interested ion to vary. However, the ASAXS pro�le does not entirely come from the ion

of interest but also has contributions from hydration water-ion cross terms (and solute-ion

terms), making it di�cult to interpret and draw fruitful conclusions. (One advantage of

ASAXS is that the same ion is used.) Another technique is to use heavy ion replacement
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where instead one varies the ion identity to change the contrast. [13] Using a novel analysis

technique (instead of the simple subtraction between the two scattering curves as is done in

conventional ASAXS), Meisberger et al. were able to separate the ion-DNA term from the

water-DNA term, and thus could gain insight into the nature of ion cloud around duplex

DNA. The method assumes that both the ion and water distributions around DNA are not

sensitive to ion type and it has applied successfully to alkali chlorides. (See Section 4.3.4

below for the relationship between our analysis and the method from Meisburger et al.) It

is not clear how accurate this assumption is or whether the same assumption would be valid

for highly charged ions (such as Mg2+, Sr2+ ...) since the interaction between those ions

with nucleic acids are expected to be ion-dependent. [226�230]

Here, we apply our analysis method to a 25 base-pair duplex DNA. Figure 4.9 shows

the ion-solute cross-terms for experimental and calculated SAXS data of the duplex DNA

in 100mM RbCl or 10mM SrCl2. As for hydration waters, we extract the total number of

excess ions and a qualitative description of their distribution in real space. (Probing the ion

cloud around charged biomolecules in a very dilute solution (as the 10mM SrCl2 solution)

using MD simulation is prohibitively expensive, [9, 99,100,195] so we only report 3D-RISM

results for Sr2+.) As reported earlier, [9] and shown here in Figure 4.9 (at q = 0) and Table
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Figure 4.9: Rb+�DNA (left) and Sr2+�DNA (right) cross-terms from the calculated (color
solid lines) and experimental (black dots) ASAXS data of DNA in 100mM RbCl or 10mM
SrCl2 solutions; experimental data is from Ref. [12]. The curves were o�set to facilitate
visual comparison. From those curves, one could extract the excess number of ions (at
q = 0) and qualitatively infer about the ion cloud around the DNA.

4.2, 3D-RISM (with high order closures) and MD simulation (at least for monovalent ions)

are able to reproduce accurately the excess number of ions around DNA, including both

monovalent and divalent ions.

We also performed IFT to obtain the PDDFs of the ion-DNA crossterm, which are shown

in Figure 4.10. The curves for Rb+ look encouraging, especially for the MD simulation and

for high order closures in RISM. High order closures tend to place more ions closer the DNA,

which is more consistent with MD and experiment. The discrepancies at large distances

(especially for Sr2+) probably rise from the lack of data at very small angles, hindered by

the geometry of the beam stop in the SAXS experiment setup. The errors at large r of

the PDDF curves could also arise from the way theoretical models approximate ion-solute

interaction. The PDDF curves for divalent ions show large deviations from the experiment

despite having somewhat reasonable agreement in the Fourier space from PSE2 closure. This

highlights the fact that the number of excess ions should not be used solely to characterize

the ion cloud. Instead, information about the shape of the ion cloud should be also taken

into account. The 3D-RISM model, in its current form, is known to have di�culties with

divalent ions, [121, 231] perhaps resulting from the lack of polarization e�ects. [232, 233]

More work currently is underway to test new ion models in RISM calculations.
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System Ncation

DNA/100mM RbCl

ASAXS 37± 2
MD 37.95

RISM-PSE3 36.77
RISM-PSE2 35.08
RISM-KH 30.16

DNA/10mM SrCl2
ASAXS 20± 2

RISM-PSE2 22.24
RISM-KH 19.14

Table 4.2: Number of excess ions around a -48 charged duplex DNA in 100mM RbCl or
10mM SrCl2 solutions, computed as N+ = F̃ion (0) /Z+ from the new analysis scheme.
Those numbers are very close to the values computed by integration over all space. For
example, values computed at RISM-PSE3 for Rb+ are 36.77 (from the q = 0 limit) vs.
36.85 (from directly integrating the distribution).
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Figure 4.10: PDDF of Rb+�DNA (left) and Sr2+�DNA (right) obtained by inverse Fourier
transformation of the ion-DNA cross-terms F̃ion (q) F̃DNA (q). Results are shown for experi-
mental data (black, taken from Ref. [12]), MD (orange) and 3D-RISM. The curves are o�set
to facilitate visual comparison. No MD data is reported for SrCl2 due to the high cost of
simulation for dilute (10 mM) solution.
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To determine the water hydration term, the co-ion term (in this case Cl-) needs to be

taken into account. We note that the contribution of the solvent to the total intensity is

based on the scattering contrast (relative to the bulk concentration), and since the co-ions

are entirely excluded from such a highly charged DNA, the contribution of this de�cit to

the X-ray scattering di�erence is therefore signi�cant. A simple calculation shows that with

the DNA considered here (which has a -48e charge), NRb = 37 leads to NCl = −11 and

therefore F̃Rb (q = 0) = 1332 vs. F̃Cl (q = 0) = −198. The co-ion term will contribute even

more strongly if lighter counter-ions (Na+, K+ ...) and/or heavier co-ions (Br-, I- ...) are

used. (A recent ion counting experiment emphasizes the importance of co-ion identity to

the ion atmosphere around nucleic acids. [211]) Here, we estimate the co-ion contribution

using the simple model described in Section 4.2.2.2.

The water term F̃hyd is then determined and plotted in Figure 4.11 for DNA in two dif-

ferent salt solutions. The PDDFs of water-DNA in two di�erent salt solutions are computed

by performing IFT of F̃hydF̃DNA and are shown in Figure 4.12. All RISM and MD results

overestimate the number of excess water compared with experiment, however at di�erent

level for di�erent salts. The numbers of waters in the two case remain relatively unchanged

in theoretical predictions, whereas it varies a lot with experimental data: the experimental

values for Nwat are extrapolated from those curves to q = 0 and are ~ 70 and 110 for RbCl

and SrCl2, respectively, i.e. the di�erence is around 1.6 water molecules per base pair. This

di�erence could potentially come from the fact that fewer Sr2+ are required to neutralize

the DNA than Rb+ (see Table 4.2), leading to fewer ions accumulating near the DNA sur-

face and therefore providing more space for water. Also, Sr2+ is expected to have denser

and stronger hydration shells than Rb+, which will be dragged along the ions towards the

DNA. The much smaller concentration of SrCl2 compared with RbCl (10mM vs. 100mM)

is probably another factor leading to fewer ions accumulating near the DNA surface.

4.3.4 Comparison to an alternate decomposition approach

Instead of using di�erent beam line energies to change the e�cient contrast of the interested

ion, one may instead vary the ion itself and assume both the ion and water distributions are
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Figure 4.11: Water hydration term F̃hyd extracted from SAXS data of the 25-bp DNA
in 100mM RbCl (left) or 10mM SrCl2 (right) (computed as described in Eq. 4.21) for
experimental SAXS (black error bars taken from Ref. [12]), MD (orange) and 3D-RISM.
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unchanged. Meisburger et al. express the total SAXS intensity as: [13]

(4.27)I (q) = δ2
soluPsolu (q) + 2δsolu (δionNion)Psolu−ion (q) + (δionNion)2 Pion (q)

where δ is the scattering contrast and P is the partial scattering form factor (which has a

range from 0 to 1). For the solute, δsolu = Zsolu + NwatZwat, therefore it includes all the

contribution from water coming from both from the excluded volume and hydration shells.

The �rst term in Eq. 4.27 is equivalent to the sum of the solute and water in our approach:

(4.28)
F̃ 2
solu+hyd (q) =

(
F̃solu (q) + F̃hyd (q)

)2

=
[
(Zsolu +NexclZwat) f̃solu (q) +NhydZwatf̃hyd (q)

]2

with f̃ is the normalized F̃ (f̃ (0) = 1) and the number of excess waters Nwat is parti-

tioned into excluded volume contribution Nexcl and hydration contribution Nhyd. If one

assumes f̃solu (q) = f̃hyd (q) then the right hand side of Eq. 4.28 could re rewritten as

(Zsolu +NwatZwat)
2 f̃2

solu (q), leading to

(4.29)Psolu (q) = f̃2
solu (q)

The third term in Eq. 4.27 is equivalent to our ion term:

(4.30)F̃ 2
ion (q) =

(
NionZionf̃ion (q)

)2

Compare Eq. 4.30 with the last term of Eq. 4.27 leads to

(4.31)Pion (q) = f̃2
ion (q)

The cross-term in eq. 4.27 is then

(4.32)Psolu−ion (q) = f̃solu (q) f̃ion (q)

Eqs. 4.29, 4.31 and 4.32 relate the two di�erent approaches to extract ion distribution

from X-ray scattering experiment. It is obvious that P (q) and f̃ (q), which are both de�ned

to be within 0 and 1, are basically the same entity. P (q) couples with the intensity I,

while f̃ (q) couples with the partial amplitude F̃ . The advantage of using f̃ (q) instead

of P (q) is that every component is separated completely from each other and there is no

cross-term; therefore one only needs n f̃ (q) instead of ∼ n2 P (q) to specify a system with
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Figure 4.13: Pion (q) (left) and PDNA−ion (q) (right) comparison between two analysis
schemes for the DNA SAXS data: black circles are from Meisburger et al. [13], red cir-
cles are from the method proposed here. Error bars are computed by propagating the errors
from experimental intensity data. PDNA−ion (q) is actually a normalized Fion (q)FDNA (q)
curve (see Figure 4.9), so the error bars here are the same error bars in Figure 4.9 af-
ter normalization. They were computed by propagating the error bars when (square root)
subtracting the two experimental intensities Ioff and Ion for F̃ion, times with F̃DNA.

n components. In addition, the partial amplitudes are additive while the intensities are not,

which is potentially easier to work with.

Figure 4.13 compares Pion (q) and Psolu−ion (q) from Meisburger et al. and our analysis.

P (q) from our method is directly related to f̃ (q) which is nothing but the normalized F̃ (q).

It is apparent that the two methods agree quantitatively despite the fact the Meisburger et

al. implicitly assume f̃solu (q) = f̃hyd (q), which seems to be reasonable (the hydration shell

shape should be somewhat similar to the solute shape).

4.4 Conclusions

Water molecules and ions around biomolecules often play a crucial role in function. Here we

propose a new analysis scheme for X-ray scattering data to extract information about how

water molecules and ions distribute around the solute. We show that although the analysis

requires some approximation, it is accurate enough to obtain reliable partial scattering

intensities in Fourier space as well as distribution functions in real space. The resulting

distributions could then be used to study the dynamic nature of the solvation shells, for

instance via time-resolved scattering techniques. [234�236] It could also be used to test the
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accuracy of theoretical predictions, eventually to make improvements in how those theories

treat water molecules, ions and cosolvents in general. Comparing theory vs. experiment for

individual interaction terms (as in Figs. 4.6, 4.10 and 4.12) is likely to be more helpful in

assessing the strengths and weaknesses of theoretical models than just making comparisons

to the complete SAXS pro�le. The proposed analysis complements recent experimental

techniques (such as ion counting [7] and anomalous SAXS [106]) by providing not only the

number excess of particles but also their distribution in real space. It is, however, worth

restating the fact that our decomposition requires an independent knowledge of the structure

of solute, which is assumed to be rigid; it cannot be used (in its current form) for systems

with signi�cant conformational heterogeneity or disorder.

To illustrate the new analysis, we extract the water hydration distribution around two

proteins - lysozyme and myoglobin - from regular X-ray scattering pro�les. Comparison

between those experimental distributions (extracted from SAXS data) and the calculated

distributions from 3D-RISM and MD simulation reveals that MD simulation accurately ac-

counts for water in terms of both number of excess water and its real space distribution,

whereas 3D-RISM overestimates the number of excess waters leading to the accumulation

of water hydration near the proteins. This overestimation could come from the way RISM

treats water molecules and the approximation made in the theory involving the bridge func-

tion. First, the water models used in RISM are modi�ed versions of SPC/E and TIP3P,

which include Lennard�Jones parameters for hydrogen atoms, making the water-water inter-

action much weaker and inadvertently increasing the water-solute interaction. Second, the

RISM closure equations are approximate in nature since the bridge function ideally should

be an in�nite series of functionals representing 3-body and higher order interactions. Sim-

ply ignoring the bridge function (as in HNC-like closures used here) probably perturbs the

overall interaction of the whole system.

For highly charged systems such as the DNA duplex, both MD simulation and 3D-RISM

(with high order closures) are capable of capturing the ion cloud of counterions around the

DNA, again both in terms of number excess and the real space distribution. Water molecules,

on the other hand, are predicted to be too strongly attracted towards the DNA, presumably
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the phosphate groups, by both MD simulation and 3D-RISM. This is an unexpected result

and highlights the need to recalibrate nucleic acid force �elds. There are also some studies

in the literature reporting a misbalance between solute-water and solute-solute interaction,

which is probably relevant to the situation here. [55, 59,62,237,238]

We have chosen in Eq. 3.37 to included the �excluded volume� e�ect (the fact that

solvent is excluded from the interior of the biomolecule) into our de�nition of Fsolu(q). This

was an arbitrary choice, but driven by the fact that the �excluded volume� e�ect can be

easily computed from a known structure, and by the perspective that the �interesting� parts

of hydration are those that take place outside the solute interior. But other choices, such

as including only the �rst term of Eq. 3.37 in Fsolu(q) are possible, and do not change the

analysis method here in any fundamental way. Future studies should help to determine the

relative strengths and weaknesses of di�erent decomposition methods.
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Chapter 5

Partial molar volume and number of hydration water

5.1 Introduction

It is widely accepted that solute-solvent interaction is extremely important in governing

the biomolecule shape and function. Recent force �eld developments have attempted to

incorporate solute-water interaction in one form or another in the parametrization pro-

cess. [4, 238�241] As we show in chapter 4, the distribution of water molecules and ions

around macromolecules can be extracted from experimental SAXS measurements. Those

distributions alongside with the number of excess water of hydration can serve as additional

data to calibrate the solute-solvent interaction. Since absolutely calibrated SAXS data are

only available for a limited number of systems, it is valuable if other experimental sources

could also provide the same information.

In this chapter, we discuss the use of the so-called Kirkwood�Bu� (KB) theory to obtain

similar information about solute-solvent interaction from thermodynamic measurements.

The partial molar volume (PMV) is shown to contain exactly the same amount of information

as in SAXS data (at q = 0) (namely the number of hydration water and ions around the

solute), and is available for most systems due to its ease of measurement. Using the solute

PMV as an additional data for force �eld derivation, we illustrate that generally the solute-

solvent interaction becomes more balanced and the number of excess water around the

solute is in better agreement with experimental data. One advantage of PMV and the

number of hydration water is that they are relatively easy to measure in the experiment and

are available for any system, while hydration free energy, for instance, is only available for

small molecules and ions, and mostly not accessible (or very hard to measure) for proteins

and nucleic acids.
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We start this chapter by brie�y introducing the KB theory for liquid state with the

focus on calculating PMV from the pair distribution function g (r). We then show that

current force �elds reasonably reproduce the experimental PMV for lowly charged proteins,

although there is still room for development. Calculated PMV of charged residues and

molecular ions, however, are in clear disagreement with the experiment. We then develop a

new set of parameters for molecular ions following the IPolQ protocol [242] and show that

the predicted PMV for those ions are greatly improved. The parameters are then used to

adjust the phosphate groups in the DNA duplex while leaving all the backbones, sugars and

bases unchanged. With this re�ned phosphate group, the calculated PMV and number of

excess hydration water of a duplex DNA are shown to approach the experimental values

from SAXS data.

5.2 Kirkwood�Bu� theory

5.2.1 Overview

Theories of liquid state and of liquid mixtures could be classi�ed into two main themes. One

direction attempts to relate the interaction between molecules to the structure of liquid (such

as the integral equation theory discussed in chapter 2). The other approach is the Kirkwood�

Bu� (KB) theory which establishes the structure of liquid to thermodynamic parameters

without the need to know the interaction within the system. The KB theory provides a

direct relationship between thermodynamic properties (such as isothermal compressibility,

partial molar volumes, derivatives of chemical potentials) and the so-called KB integrals,

de�ned as:

(5.1)Gij = 4π

∫ ∞
0

[gij (r)− 1] r2dr

where gij is the pair correlation function between two species i and j in the open system

(grand canonical ensemble with T, V, µ�the chemical potential�being kept constant). Since

g (r) is readily obtained from RISM theory and MD simulations, KB theory is thus an excel-

lent tool to link the �structure� calculated in RISM and MD simulation to thermodynamic

measurements. It should be noted that KB theory is considered an exact theory, i.e. its
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derivation entirely comes from mathematical manipulations of statistical mechanics relation-

ships without making any assumptions. Disagreements between predicted and experimental

values of thermodynamic quantity are thus rooted from the approximations one uses to

obtain the correlation function, and not from the KB theory itself.

To establish the relationship between thermodynamic quantities and the pair correlation

function, KB theory uses the �uctuation in the number of the particles as an intermediate.

Starting with the de�nition of g (r) in an open system, one has:

(5.2)Gij = V

(
〈NiNj〉 − 〈Ni〉 〈Nj〉

〈Ni〉 〈Nj〉
− δij
〈Ni〉

)
where 〈N〉 is the number �uctuation in a �xed volume V, i and j denote the species (i, j =

1, 2, ..., n) and δ is the delta function. Next, considering the grand canonical partition

function as:

(5.3)Ξ (T, V, µ1, ..., µn) =
∑
n

Q (T, V,N1, ..., Nn) exp

(
β
∑
k

µkNk

)

The average number 〈Ni〉 in the system is:

(5.4)
〈Ni〉 = Ξ−1

∑
n

NiQ (T, V,N1, ..., Nn) exp

(
β
∑
n

µkNk

)

= kBT

[
∂ ln Ξ (T, V, µ1, ..., µn)

∂µi

]
T,V,µj 6=i

Di�erentiating Eq. 5.4 with respective to µj we have:

(5.5)kBT

(
∂ 〈Ni〉
∂µj

)
= Ξ−1

∑
n

NiNjQ (T, V,N1, ..., Nn) exp

(
β
∑
n

µkNk

)
− 〈Ni〉 〈Nj〉

= 〈NiNj〉 − 〈Ni〉 〈Nj〉

Combining Eqs. 5.2 and 5.5 gives:

(5.6)Bij ≡
kBT

V

(
∂ 〈Ni〉
∂µj

)
T,V,µk 6=j

= ρiρjGij + ρiδij

Eq. 5.6 is then used to obtain other thermodynamic observables such as the isothermal

compressibility χT , partial molar volumes, derivatives of chemical potentials:
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(5.7)χT =
detB

kBT
∑

i,j ρiρjBij

(5.8)V̄α =

∑
i ρiBiα∑

i,j ρiρjBij

(5.9)
µαβ ≡

(
∂µα
∂Nβ

)
T,P,Nγ 6=β

=
kBT

V detB

∑
i,j ρiρj (BαβBij −BiαBjβ)∑

i,j ρiρjBij

with Bij is the element of the matrix B, as de�ned in Eq. 5.6. Eqs. 5.7�5.9 are the main

results of KB theory. It is important to note that the pair correlation functions in KB

theory do not depend explicitly on the orientation of the particles, but the theory is valid

for any kind of particles, not necessarily spherical particles. There is no assumption about

the interaction between the particles, whether it is pairwise or not. Additionally, KB theory

is also valid for quantum systems although here we only discuss classical systems.

5.2.2 Partial molar volume

The partial molar volume is de�ned at constant temperature and pressure as following:

(5.10)
V i =

(
∂V

∂ni

)
T,P,nj 6=i

=

(
∂µi
∂P

)
T,n

with V is the volume of the system, and the notion of nj 6=i indicates that every number

of molecules in the system except the protein are held constant. PMV can be computed

directly from the KB integrals as in Eq. 5.8. In this chapter, we are interested in the PMV

of the biomolecule at the in�nite dilution. For two-component systems, it is convenient to

de�ne two quantities η and ς as:

(5.11)η = ρA + ρB + ρAρB (GAA +GBB − 2GAB)

(5.12)ς = 1 + ρAGAA + ρBGBB + ρAρB
(
GAAGBB −G2

AB

)
so that the thermodynamic quantities in Eqs. 5.7 and 5.8 can be rewritten as:
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(5.13)χT =
ς

kBTη

(5.14)V̄i =
1 + ρj (Gjj −Gij)

η

In the limit ρB → 0 (B is the biomolecule of interest), Eqs. 5.13 and 5.14 become:

(5.15)
lim
ρB →0

χT ≡ χ0
T

=
1 + ρAGAA
kBTρA

(5.16)
lim
ρB →0

V̄A ≡ V̄ 0
A

=
1

ρA

(5.17)
lim
ρB →0

V̄B ≡ V̄ 0
B

=
1 + ρA (GAA −GAB)

ρA

Combining Eqs. 5.15�5.17 gives the formula for the partial molar volume of the solute

at the in�nite dilution:

(5.18)V̄ 0
B = kBTχ

0
T − V̄ 0

AρAGAB

Eq. 5.18 could be generalized in the solution of n components:

(5.19)
V̄ 0 = kBTχ

0
T −

∑
i

V̄ 0
i ρiGi

= kBTχ
0
T −

∑
i

V̄ 0
i Ni

where Ni = ρiGi = ρi
∫

[gi (r)− 1] dr is the number of excess solvent i around the solute,

χ0
T is the isothermal compressibility of the solvent (without the solute presence) and V̄i is

the partial molar volume of solvent i (again, without the solute). The �rst term in Eq.

5.19 arises due to the translational degree of freedom of the solute. [222, 223, 243] This

term contributes to the solute PMV even if the solute collapses into a single point with no

dimension and no interaction with the surrounding solvent, i.e. the term is equal to the
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volume increase of the system once an inert point is introduced. Due to its small magnitude

(around 1 Å3) compared with the biomolecules considered here (with the volume is on the

order of thousands Å3), it is safely ignored.

The PMV of a biomolecule is directly related to the numbers of excess solvent around

it and thus contains valuable information about the solute-solvent interaction (although in

an integral way). In the next section we explore a possibility of using PMV to recalibrate

solute-solvent interactions.

5.3 Methods and computational details

PMV computation

The PMV can be computed as in Eq. 5.19 (ignore the ideal term which is very small

compared to the volume of biomolecules):

(5.20)
V̄ = −

∑
i

V̄ 0
i ρiGi

= −
∑

V̄ 0
i Ni

Given g (r) is the direct output, it is straightforward to compute PMV from 3D-RISM.

The PMV can also be equivalently computed from the direct correlation function c (r) as:

[244,245]

(5.21)V̄ = −kBTχ0
T

∑
i

ρiĉi (0)

where ĉi (0) =
∫
ci (r) dr.

To compute PMV in MD simulation, one could construct a 3-dimensional g (r) maps from

the simulation trajectory and then use Eq. 5.20. This approach, however, requires much

more computational expense if there are cosolvents (with small concentrations) present in

the system and does not incorporate the solute �exibility into the calculation. Another

method uses the de�nition of PMV (as in Eq. 5.10) as the volume increase when the solute

is present. [246] This method computes the volume di�erence between a simulation of the

solute + nw waters and a simulation of nw water molecules:

(5.22)V̄ = 〈Vn+1〉 − 〈Vn〉
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Figure 5.1: Illustration of the partial molar volume calculation, reprinted from Ploetz and
Smith. [14]

where 〈〉 indicates isothermal�isobaric (NPT) ensemble average. However, this method is

shown to su�er from large statistical errors because the value of interested is evaluated by the

di�erence between two large numbers. [247] Other methods that are much more expensive

such as free energy perturbation exist. [248]

We use here the method proposed by Ploetz and Smith to compute PMV from MD

simulation in addition to the KB method. [14] The e�ective concentration of the solute is

altered by varying the number of solvent molecules used in the simulation, while keeping

only one solute molecule in the simulation boxes. The solute PMV is then calculated by

linear-�tting the volumes in those simulations (see illustration in Figure 5.1). If the molar

volume is de�ned as Vm = V/N where V is the volume of the simulation box and N is the

total number of molecules in the simulation (regardless they are solute or solvent) then it

can be written as:

(5.23)Vm = V ∗m + axsolu

where V ∗m is the molar property of the pure solvent and xsolu is the mole fraction of the

solute. Plotting Vm vs. xsolu will give both the slope a and V ∗m. The PMV of the solute is

then determined as:

(5.24)V̄ = a+ V ∗m
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Method V̄ (103 Å3)

Kirkwood�Bu� 17.47

Ploetz�Smith
Rigid 17.32
Flexible 16.91

Table 5.1: Partial molar volume of lysozyme computed by two di�erent methods using
MD simulation: Kirkwood�Bu� approach via the correlation function g (r) and the �nite
di�erence approach by Ploetz and Smith. With the �nite di�erence approach, two separate
calculations are performed in which the solute is either �xed or fully �exible. All simulations
are performed with the AMBER �14SB force �eld and SPC/E water.

5.4 Results and Discussions

5.4.1 Protein PMV

First we compare two di�erent methods used in MD simulation to compute PMV: i) KB

approach as in Eq. 5.20 and ii) the �nite di�erence method proposed by Ploetz and Smith.

[14] We also test the e�ect of solute �exibility on the PMV calculation for a relatively rigid

protein. Results are shown in Table 5.1 for lysozyme. (Note that all PMVs reported in this

work are per molecule, not per mole.) It is obvious that the two approaches give almost

identical PMV for the �xed protein. Introducing the solute �exibility into the calculation

slightly reduces the computed PMV by only 2%. Given that the �nite di�erence method

requires multiple simulations while the KB approach only needs a single run and the solute

�exibility is of minor importance for rigid proteins, we feel con�dent to use the KB approach

for further study.

5.4.1.1 Protein test cases

Table 5.2 and Figure 5.2 present the PMV for various proteins computed by 3D-RISM and

MD with the KB approach. Most proteins are relatively rigid so that the solute �exibility

does not contribute much to the PMV. The results indicate that both 3D-RISM and MD

simulation are capable to reproduce the experimental PMV well. There is a trend of MD

simulation slightly overestimates the PMV while 3D-RISM slightly underestimates it, espe-

cially for large proteins. Such a small errors indicate a subtle misbalance in solute-solvent

interaction and will be discussed in more details in next sections, where one partitions the

PMV into hydration shell and excluded volume contributions.
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Protein PDB ID 3DRISM-KH MD Exp

Pti 4PTI 7.58 8.06 7.78
α-Lactalbumin 1ALC 16.5 17.3 17.1
Ribonuclease A 3RN3 15.9 16.2 16.0

Lysozyme 6LYZ 17.2 17.5 17.4
Adenylate kinase 3ADK 26.0 27.0 26.7

Papain 1PPN 27.9 29.2 28.0
Concanavalin A (monomer) 2CNA 30.1 32.7 31.1

Elastase 3EST 31.3 32.8 31.4
Carbonic anhydrase B 2CAB 33.7 35.2 34.9

Subtilisin 2SBT 33.0 35.5 33.4
Rhodanese 1RHD 39.6 41.5 40.6

Carboxypeptidase A 2CTB 41.6 43.1 42.0

Table 5.2: Comparison between partial molar volumes of proteins (103 Å3) computed by
3DRISM-KH and MD using the KB approach with the experiment (taken from Ref. [1]).
Data for lysozyme calculated from SAXS.
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Figure 5.2: Comparison of partial molar volumes computed from 3D-RISM and MD simu-
lation (using the AMBER �14SB force �eld) with experimental data, taken from Ref. [1].
The proteins are listed in Table 5.2.



93

5.4.1.2 Protein force �eld and water models

If there is only water in the solvent then the PMV is related directly to the number of excess

water as:

(5.25)V̄ = −V̄watNwat

where V̄wat ≈ 30 Å3 is the PMV of pure water. Nwat is always negative for �large� molecules

because when put in the solution, they displace some water molecules, and therefore in-

creasing the apparent volume of the system. Nwat can be further divided into contributions

from the excluded volume and hydration water (as done in Section 4.2). The excluded vol-

ume contribution is the number of bulk water displaced by the �geometric� (or �intrinsic�)

volume of the protein, given the surrounding water molecules are not a�ected by the pro-

tein presence. This contribution only depends on the topology of the solute and is �easily�

(though arbitrarily) computed once the solute structure is known, thus it is of minor interest

here. On the other hand, the hydration contribution Nhyd results from the protein-water

interaction and thus will be the main focus in this chapter.

Table 5.3 reports the PMV of lysozyme computed by KB approach using di�erent protein

force �elds and water models. The number of excess water is separated into excluded volume

and hydration contributions. Here we compute the excluded volume using a grid-based

method as done by Voss and Gerstein with a probing radius of 1.4 Å (see Figure 5.3). [16]

We also present the PMV from SAXS data (inferred from the excess number of water).

The results show that the predicted PMVs (and Nwat) generally agree with the values

obtained by SAXS and are insensitive to force �elds and water models used. However,

more careful inspection shows that the dominant contribution to the PMV arises from

the non-interesting excluded volume, while the more �interesting� hydration contribution

is very small. Comparison between calculated and SAXS Nhyd reveals that there are subtle

di�erences between force �elds and water models. For example, a change of water models

leads to 10-20% variation of Nhyd computed by MD simulation. Such a di�erence cannot be

observed in PMV. On the other hand, the water model does not a�ect RISM PMVs, all three

calculations give very similar values. Interestingly, CHARMM-36 underestimates Nhyd while

OPLS/AA overestimates it. Again, such errors are hard to detect if one compares Nwat and
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Force �eld Water model Nwat Nhyd V̄ (103 Å3)

AMBER �14SB [249]
SPC/E -583.5 27.6 17.47
TIP3P -580.6 30.5 17.38

TIP4P/EW -577.1 34.0 17.29
AMBER �14ipq [241] TIP4P/EW -586.7 24.4 17.57
CHARMM-36 [250] TIP3P -607.8 3.3 18.20
GROMOS 53A6 [251] SPC/E -587.2 23.9 17.58
GROMOS 54A7 [252] SPC/E -586.6 24.5 17.56
KB FF [239,253] SPC/E -580.7 30.4 17.39
OPLS/AA [254] TIP4P -559.8 51.3 16.76

AMOEBA 09 [255] AMOEBA -575.0 36.1 17.22
AMOEBA 13 [256] AMOEBA -578.3 32.8 17.31

3D-RISM-�14SB
cSPC/E -574.9 36.2 17.21
cTIP3P -574.5 36.6 17.20
cOPC3 -575.5 35.6 17.23

SAXS −581± 1 30± 1 17.40± 0.03

Table 5.3: Numbers of excess water Nwat, numbers of excess water in the hydration shells
Nhyd and partial molar volume of lysozyme calculated by MD simulation and 3D-RISM
using di�erent force �elds and water models.

PMV instead.

5.4.1.3 Electrostatic vs. non-electrostatic

Since the number of excess waters in the hydration shell contains information about the

solute-solvent interaction, we attempt to study the e�ect of electrostatic interaction between

solute-solvent on Nhyd by the following: a similar calculation is repeated to compute Nhyd

but this time all the partial atomic charges on the solute atoms are set to zero. The number of

excess hydration water this time (Nnon−elec) only comes from the van der Waals interaction

between the protein and solvent and the fact that the protein is present in the solution. The

di�erence between Nhyd and Nnon−elec is solely caused by the electrostatic interaction and

will be called Nelec. This approach has been used by Hirata and coworkers to study the

hydration shell of proteins. [245]

Figure 5.4 shows the partition of Nhyd for various proteins of di�erent sizes computed

by 3D-RISM. It is interesting that even in the absence of electrostatic interaction between

proteins and water molecules, there is still an excess number of hydration water accumulating

around the hypothetically neutral proteins. The presence of a neutral solute introduces
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Figure 5.3: Illustration of the excluded volume based on Richards' rolling probe de�nition.
[15] Reprinted from Voss and Gerstein, [16] by permission of Oxford University Press.
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Figure 5.4: Partition of Nhyd into electrostatic (blank) and non-electrostatic (�lled) contri-
butions for proteins. Results are computed with 3D-RISM coupled with AMBER �14SB
force �eld and cSPC/E water model.
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around half of the excess number of water, and turning on the electrostatic interaction

between solute and solvent contributes another half. It should be noted that aside from the

van der Waals interaction, the fact that the solute is present in the solution also contributes

to Nnon−elec. Considering a monatomic liquid with inert atoms such as Ne or Ar. If one

integrates the (excess) radial distribution function starting not from zero but from the

atom radius (
∫∞
ra

4π [g (r)− 1] r2dr), then one always obtains a positive number. The same

situation also happens in the proteins here since we perform the integration outside the

atomic radii of the solute atoms. The results here are qualitatively in agreement with

those from Merzel and Smith. Using MD simulation, they found that around two-thirds

of the water density increase around proteins are merely caused by the protein surface

existence. [39] This contribution arises even if the surrounding water molecules were not

perturbed by the protein presence.

5.4.2 Small molecules and ions

Given the number of hydration water is hindered by a huge excluded volume term as in

proteins, we next turn to small molecules and ions to minimize the impact of the arbitrary

de�nition of the protein surface. Also, any change or recalibration of water-solute interaction

should start at small molecules.

5.4.2.1 Amino acid side-chain and backbone analogs

The amino-acid side-chain and backbone analogs are the classical models for force �eld

development since they are the building blocks of proteins. We here try to compare the

performance of two di�erent Amber force �elds in terms of reproducing the PMV of those

analogs: �14SB and �14ipq. [241, 249] It should be emphasized that the parametrization

protocols for those two force �elds are very di�erent. While �14SB is the more up-to-date

version of the �regular� AMBER force �elds (only adjusting the side chain and backbone

dihedral parameters to better describe the protein conformations) and thus inherit most of

the solute-solvent interaction from the old force �elds, �14ipq is a totally di�erent route. The

charges on the solute are �tted to reproduce the solvent reaction �eld in explicit solvent in a
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Figure 5.5: Partial molar volumes of amino-acid side-chain and backbone analogs computed
from 3D-RISM using two di�erent AMBER force �elds: �14SB and �14ipq. Experimental
data are from Refs. [17�19].

self-consistent manner. [242] The Lennard�Jones parameters are then adjusted to calibrate

the solute-solvent interaction by bringing the solute hydration free energy to match with

experiment. The �14ipq force �eld is, thus, the �rst Amber force �eld that calibrates the

solute-solvent interaction in the parametrization steps. Note that this trend becomes more

popular recently, from �xed-charge to polarizable force �elds. [238,257]

Figure 5.5 compares the PMV of the amino-acid side-chain and backbone analogs for

�14SB and �14ipq with experiment. Despite of not being parametrized to match experi-

mental PMV or hydration free energy, �14SB reproduces very well PMVs for the protein

building blocks, although it slightly underestimates the experimental data, meaning that

the analog-water interaction is modeled somewhat stronger than it should be. The �14ipq,

as expected, replicates most of the PMVs from experiment except for charge residues. It

is important to stress that even a slight improvement of PMV can be essential to model

the solute-water interaction since the PMV value is hindered by a large excluded volume

contribution (as discussed in Section 5.4.1.2).
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Ion Optimized ∆Ghyd Target ∆Ghyd Exp. ∆Ghyd

AcO- -90.71 -89.8 -77.7a

ClO3
- -72.41 -71.7 -59.5b

ClO4
- -65.31 -53.7 -41.6b

HCOO- -90.43 -88.4 -76.3a

OH- -115.99 -116.9 -104.8a

SH- -85.18 -84.3 -72.2a

SCN- -72.42 -71.7 59.5b

NO3
- -77.48 -76.4 -64.3b

HCO3
- -90.44 -84.8 -72.7b

HSO3
- -75.50 -60.7 -48.5b

H2PO4
- -111.38 -115.9 -103.7b

NH4
+ -71.56 -73.1 -85.2a

Gdm+ -53.97 -55.2 -67.3c

(CH3)4N+ -41.67 -41.1 -53.2b

CO3
2- -333.48 -331.2 -306.9b

SO4
2- -273.94 -275.0 -250.7b

HPO4
2- -327.51 -323 -299d

PO4
3- -670.21 -689.9 -653.4b

Table 5.4: Hydration free energy ∆Ghyd (kcal/mol) of ions. Target ∆Ghyd is the target
value for the computed HFEs to match. The target values are obtained from experimental
values after subtracting the contribution of the interfacial potential jump (see more details
in Appendix 6). Optimized ∆Ghyd is the �nal HFE after the IPolQ protocol. Experimental
data taken from Ref. a [2], Ref. b [3], Ref. c [4], Ref. d [5]. See Appendix 6 for more details
about the experimental ion HFEs and corrections made during the computation of HFE.

5.4.2.2 Molecular ions

As discussed in Section 4.3.3, the interaction between DNA-water is modeled too strong

in current force �elds. Given the solute-solvent interaction can be adjusted by the IPolQ

protocol, we perform the calculations for molecular ions with the aim to expand the protocol

for ions and more importantly to seek a way to recalibrate the DNA-water interaction. The

chosen ions are both biologically relevant (acetate, phosphate, guanidinium) and inorganic

in nature and are listed in Table 5.4. The IPolQ procedure is carried out for every ion

to obtain the converged partial atomic charges. The Lennard�Jones parameters are then

adjusted so that the calculated ion hydration free energies match with the experiment. The

details of the IPolQ protocol and free energy calculation can be found in Appendix 6.

Table 5.4 reports the hydration free energies after IPolQ protocol for all ions. In each

ion, only a single key atom is chosen to adjust the LJ σ parameter (for instance, oxygen
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Figure 5.6: Partial molar volumes of molecular ions computed from 3D-RISM using GAFF
1.5 force �eld and the re�ned IPolQ-charge model. All experimental data are from Ref. [3].

in carboxylate and phosphate). We constrain ourselves to adjust only σ, while leaving ε

unchanged. Generally, a good match between IPolQ and experimental HFEs can be obtained

if we allow σ to vary within 10-15%, including �important� ions such as acetate, guanidinium

and phosphate (-1). This range (10-15%) is actually used in the current �14ipq force �eld.

However, not all HFEs can be brought back to experimental values and we decide not to

�over�t� them.

The new ion parameters are then subjected to PMV calculations using RISM and com-

pared with experiment (results shown in Figure 5.6). It is clear that the re�ned IPolQ

models give improved PMVs compared with the original GAFF parameters, indicating that

the ion-water interaction is much more balanced in the new charge model. Most of the

outliers have the HFEs that are hard to match in the IPolQ procedure. The results here

indicate a strong correlation between HFE and PMV; and since HFE for large biomolecules

are not available (or not easily measurable) one can replace it with PMV as a criteria for

force �eld development.
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NRb+ NCl− Nwat Nhyd V̄ (103 Å3)

3D-RISM KH 30.16 -17.84 -442.5 73.7 13.0
3D-RISM PSE2 35.08 -12.92 -427.9 88.3 12.1
3D-RISM PSE3 36.77 -11.23 -418.2 98.0 11.6
3D-RISM PSE4 37.72 -10.28 -426.4 89.8 11.8

MD 37.95 -10.05 -440.7 75.46 12.3
SAXS data 39± 2 −9± 2 −508± 11 8± 11 14.2± 0.5

Table 5.5: Number of excess ions and water around a 25bp duplex DNA in 100mM RbCl
solution from 3D-RISM and MD compared with SAXS data. (The values for SAXS obtained
from the procedure described in Section 4.2.2.) Also shown the number of hydration water
Nhyd and partial molar volume of the DNA computed from those excess numbers from Eq.
5.19.

5.4.3 Nucleic acid PMV and hydration

As discussed in Section 4.2.2, the water interaction with the DNA is currently modeled too

strong for both 3D-RISM and MD using parm-bsc0 force �eld. As shown in Table 5.5, the

number of excess ions from RISM with high closures and MD are in great agreement with

SAXS data (at q = 0) but the number of excess water is overestimated ~ 70 molecules (or

1.4 water molecules per base). This leads to an underestimation of PMV and the DNA

is �e�ectively� smaller because it attracts too much water molecules around it, making the

system volume smaller. The strong interaction presumably comes from the phosphate groups

which have an e�ective charge of -1. SAXS data of DNA duplex in di�erent salt solutions

(Na+, K+, etc) and from di�erent nucleic acid sequences (RNA, hybrid DNA:RNA, etc) also

give the same conclusion (data not shown).

Since the PMV of ions can be corrected by an IPolQ parameter optimization in Section

5.4.2.2, we consider to recalibrate the DNA-water interaction by just repeating the IPolQ

procedure on a phosphate group analog while leaving all other backbone, sugar and base

parameters unchanged. This comes from our assumption that those large errors in the excess

water counts are mainly caused by the phosphate groups. We show below that additional

optimization steps for backbone, sugar and especially the base parameters are probably

needed. We choose dimethylphosphate (DMP) as the phosphate group analog and start the

IPolQ protocol as in Section 5.4.2.2. The parameters of the optimized DMP are given in

Table 5.6.
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Atom q (e) σorig (Å) σopt (Å)

P 1.2715 2.1000 2.1000
OP -0.8697 1.6612 1.9500
OR -0.4676 1.6837 1.7713
C -0.0049 1.9080 1.9080
H 0.0688 1.3870 1.3870

Table 5.6: IPolQ optimized parameter for dimethylphosphate. Only the σ of oxygen atoms
are optimized. All the ε parameters are kept unchanged.

We then integrate the new phosphate parameter into the 25bp duplex DNA and redo

the calculation to compute the number of excess solvent for 3D-RISM. It should be noted

that although we have not obtained the MD results for the re�ned DNA, we expect that

the number of excess ions should be around the values of PSE3 closure while the number of

excess water molecules should be around the values of KH closure (as in Table 5.5 for the

unmodi�ed DNA). The results are shown in Table 5.7. It is interesting that the modi�ed

phosphate groups do not change the number of excess ions around the DNA but cause a

sharp decrease of the number of excess hydration water Nwat and Nhyd. Figure 5.7 presents

the radial distribution function of water molecules and Rb+ ions around the phosphate

groups. As expected, since we increase the oxygen radii in the phosphate groups, the peaks

in the distribution shift slightly towards larger distance for both the water and ion. The

fact that there is a strong decrease in the water count and almost no change in the ion

count mostly dues to the di�erence in the density between those two. Note that the ratio of

the di�erence of water count and the di�erence of ion count is around ~500, similar to the

ratio of the two bulk densities of water and ion. Although the number of excess water gets

smaller, there is still around 20 water molecules overestimated by 3D-RISM (and possibly

MD). This highlights a need to re�t the partial charges on other moieties as well, especially

the bases.

An interesting feature that makes DNAs are slightly di�erent from proteins is the number

of excess hydration waters caused by the electrostatic interaction Nelec contributes around

two-thirds of the total excess hydration waters (Table 5.7), higher than those in proteins

which are about a half (Figure 5.4). For the DNA with modi�ed phosphate groups, we

observe that the electrostatic contribution totally dominates the water count, contributing
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Parm-bsc0 IPolQ phosphate SAXS

NRb+ (PSE3) 36.85 36.77 39± 2

NCl− (PSE3) -11.2 -11.2 −9± 2

Nwat (KH) -442.5 -478.5 −508± 11

Nhyd (KH) 73.7 37.7 8± 11

Nelec (KH) 49.3 34.4 N/A
V̄ (103 Å3) (KH) 13.0 14.1 14.2± 0.5

Table 5.7: Number of excess ions and water molecules around a 25bp duplex DNA in 100mM
from 3D-RISM. Note that the reported values for ions are taken from PSE3 closure, while
results for water molecules and PMV are from KH closure. The DNA here has the phosphate
groups with the modi�ed IPolQ charge and LJ parameters. Also shown are the number of
hydration water Nhyd (caused by a full interaction) and Nelec (caused by only electrostatic
interaction, see Section 5.4.1.3 for more details about this partition).
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Figure 5.7: Pair distribution function g (r) between water-phosphate (left) and Rb+-
phosphate in a 25bp duplex DNA using the original parm-bsc0 (dash lines) and re�ned
phosphate (solid lines) parameters.
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more than 90% of the total number of excess hydration water. It is worthy noting that the

IPolQ charges are derived to implicitly account for the polarization e�ect which is probably

important in the DNA here. [242] However, more works are required to verify the magnitude

of the electrostatic contribution, and to understand more quantitatively about nucleic acid

hydration in general.

5.5 Conclusions

We show in this chapter that the Kirkwood�Bu� theory can be used to relate the partial

molar volume with the number of excess solvent around the solute and thus they are both can

be used in force �eld development to recalibrate the solute-solvent interaction (in addition

to the hydration free energy and others). Di�erent methods to calculate the PMV in MD

simulation and 3D-RISM are tested and they give essentially similar results. For relatively

rigid biomolecules, the solute �exibility contributes negligibly to the calculated PMV and

thus one could safely used a ��xed� solute to facilitate numerical computations.

The solute PMV and the number of excess water molecules can be conceptually divided

into the excluded volume and hydration shell contributions. For macromolecules, the ex-

cluded volume contribution dominates in the PMV. This is somewhat unfortunate because

the excluded volume term does not contain useful information about solute-solvent inter-

action and only depends on the solute topology. The more �interesting� hydration shell

term is small and requires extra care to obtain useful information. We illustrate that most

current widely used protein force �elds provide reasonable estimates of the hydration shell

contribution, although there should be more works to improve the solute-solvent interaction

balance. Using the Amber �14ipq force �eld that explicitly calibrates the solute-solvent in-

teraction by matching the calculated hydration free energy of the solute with experimental

data, the PMVs of amino acid side-chain and backbone analogs are in better agreement with

the experiment.

We apply the same procedure as in �14ipq force �eld to derive a new set of parameters for

molecular ions and show that the computed PMVs for those ions are in great improvement

compared with the initial and unbalanced force �eld. As a proof of concept, we proceed
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to reoptimize the partial atomic charges and LJ parameters for the phosphate group in

the nucleic acids by using dimethylphosphate as the analog. The number of excess ions

around the DNA with the optimized parameters is found almost identical while the number

of excess hydration waters approaches SAXS data in the right direction. We therefore

posit that additional charge optimization should also be carried out for other fragments as

well (such as backbones, sugars and especially the bases). It is important to stress that

our �optimized� parameters are not useful and cannot be used for dynamics study of DNA

because it still requires a re�t of bonded parameters as well (bond, angle and dihedral terms)

and is therefore extremely costly and requires serious validation. However, given that the

nucleic acid structure depends moderately on water interaction strength, we believe that

such a misbalance should be corrected in the near future.
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Chapter 6

Concluding remarks and future directions

In this dissertation, we study the solvent distribution around biomolecules using a com-

bination of molecular dynamics simulation, integral equation theory and X-ray scattering

experiment. The X-ray pro�les provide important information into how the biomolecules

modify the bulk solvent and thus can be used to benchmark solvation methods.

We describe a method to calculate X-ray scattering intensity from atomic models of

proteins and nucleic acids in the solution in chapter 3. We show that although the hydration

model in 3D-RISM is far from perfect but it provides estimates of useful accuracy that agree

better with experiment for a number of test cases than do the predictions of simple competing

models, and rival the results of much more expensive MD simulation. The 3D-RISM is

particularly attractive for cases when there are both ions and water in the environment, since

there are few existing implicit models that describe both, and equilibration of ion densities

in MD simulations can be di�cult to achieve. We consider only the �forward� problem of

estimating SAXS pro�les based on an input structure; the �inverse� problem of constructing

a structure or ensemble consistent with a given pro�le is more challenging, and is generally

problem-speci�c. Our computation is fast enough to allow one to average over many solute

con�gurations, or to use SAXS results (perhaps in combination with other restraints) to

construct ensembles of con�gurations consistent with the data (as done in [198, 199, 258]).

The characterization of the solvent perturbation used here relies on a thermally-averaged

density pro�le, and appears to be only appropriate for q < 1.5 Å-1. At wider angles,

�uctuation in the solvent densities (not just the average density) become important, and a

di�erent type of theory is needed. (At high angles, errors in the 3D-RISM description of

pure water may also be a factor limiting the application of this model.) Nonetheless, this

range of scattering angles covers a large fraction of reported experimental pro�les, and our
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model should be of considerable use.

We then propose in chapter 4 a novel analysis scheme for X-ray scattering to extract

information about how water molecules and ions distribute around the biomolecules. We

show that although the analysis requires some approximation, it is accurate enough to obtain

reliable partial scattering intensities in Fourier space as well as distribution functions in real

space. The resulting distributions could then be used to test the accuracy of theoretical pre-

dictions, eventually to make improvements in how those theories treating water molecules,

ions and cosolvents in general. The proposed analysis complements recent experimental

techniques (such as ion counting and ASAXS) by providing not only the number excess of

particles but also their distribution in real space. It is, however, worth restating the fact

that the current form of our decomposition analysis requires an independent knowledge of

the structure of solute, which is assumed to be rigid in this work; it cannot be used (without

further modi�cations) for systems with signi�cant conformational heterogeneity or disorder.

The analysis is illustrated by extracting the water and ion distribution around two proteins

(lysozyme and myoglobin) and a DNA duplex. Comparison between those experimental dis-

tributions (extracted from SAXS data) and the theoretically predicted distributions reveals

that for lowly charged proteins, MD simulation accurately accounts for water in terms of

both number of excess water and its real space distribution, whereas 3D-RISM overestimates

the number of excess waters leading to an accumulation of water hydration near the proteins.

For highly charged systems such as the DNA duplex, both MD and 3D-RISM (with high

order closures) are capable of capturing the ion cloud of counterions around the DNA (again,

both in terms of number excess and the real space distribution). Water molecules, on the

other hand, are predicted to be attracted towards the DNA too strongly, presumably the

phosphate groups, by both MD and 3D-RISM. This is an unexpected result and highlights

a need to recalibrate nucleic acid force �elds.

In chapter 5, we show that the number of excess solvent particles around the solute can

also be obtained with partial molar volume measurements, in addition to SAXS experiment.

Di�erent procedures to calculate the PMV via Kirkwood�Bu� theory and MD simulation are

tested to show that they give essentially identical results. For relatively rigid biomolecules,
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the solute �exibility contributes negligibly to the PMV and thus one could safely use a �xed

conformation of the solute to reduce the computational expense. We further conceptually

divide the PMV and the number of excess solvent particles into contributions from the solute

excluded volume and the hydration shell and �nd that the excluded volume term dominates

in the macromolecule PMV. The more �interesting� hydration shell term contains the number

of excess hydration water and is thus valuable for force �eld development. We illustrate that

most current protein force �elds provide good estimates of the hydration shell term, although

there is still room for improvement. For nucleic acids, the number of excess hydration water

is overestimated by current force �elds. As a proof of concept, we reoptimize the non-

bonded parameters for the phosphate groups in the DNA by using dimethylphosphate ion

as the analog. The computed number of excess hydration waters around the �optimized�

DNA approaches the experimental value, while the number of excess ions remain unchanged.

Additional charge optimization for other moieties such as backbones, sugars and bases is

therefore probably needed. Our parameters, however, are not useful and cannot be used for

dynamic study of nucleic acids because it requires a complete re�t of bonded terms as well,

and thus is extremely costly and requires serious validation thereafter. However, given that

the nucleic acid structure depends tightly on the solute-solvent interaction, we believe that

such a misbalance should be corrected in the near future.
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Appendix

Pressure calculation in RISM

The pressure can be calculated by 3 di�erent ways: virial route, compressibility route and

energy route. [41]

Virial route

The pressure P can be calculated from the radial distribution function g (r) of the solvent

via the virial equation (or pressure equation). For monatomic liquid, it can be written as:

(6.1)
βP

ρ
= 1− 2πβρ

3

∫ ∞
0

∂u (r)

∂r
g (r) r3dr

where u (r) is the interaction potential.

Compressibility route

De�nition of the isothermal compressibility

(6.2)χT = − 1

V

(
∂V

∂P

)
T

χT can be computed from h (r) = g (r)− 1 as:

(6.3)ρkBTχT = 1 + 4πρ

∫
h (r) r2dr

Energy route

Relationship between the pressure and the Helmholtz free energy A: [121]

(6.4)
p =

G−A
V

= −A
V

+
∑
i

ρiµi
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The Helmholtz free energy can be computed as: [123,125]

(6.5)

A

V
= 2π

Nsite∑
α

Nsite∑
γ

ραργ

∫ ∞
0

(
h2
αγ

2
− cαγ −

(
t∗αγ
)n+1

(n+ 1) !
Θ
(
t∗αγ
))

r2dr

+
1

4π2

∫ ∞
0
{Tr (ωcρ) + ln det (I− ωcρ)} k2dk
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Appendix

IPolQ protocol for ion parametrization

The ion structures are built and optimized with Gaussian at B3LYP/6-311G**. Atomic

charges and LJ parameters are �rst taken directly from GAFF 1.5. The IPolQ procedure is

then carried out for each ion, following Cerutti et al. [241,242]

IPolQ

Basically, the solvent reaction �eld about the ion is generated using MD simulation. The

ion partial charges are then �tted by a RESP-like procedure to reproduce the ion dipole half

way between those from the aqueous and vacuum phases. The �tted charges are then put

back in another MD simulation in order to update the solvent reaction �eld. This procedure

is repeated until the charges converge.

The LJ parameters are then adjusted to reproduce the hydration free energy of the ions.

We constrain ourselves to vary only σ while keeping ε �xed. After this step, the ion with the

updated LJ parameters will be subjected to the last solvent consistent �eld update above

to get the �nal partial charges.

Brie�y, each ion was soaked to an octahedral box of water and counter ions (either Na+

or Cl-) to make the system zero net charge. The box was large enough to separate the ion

at least 20 Å from the edge. After equilibrating the system, an initial 5-ns MD was run at

450K in NPT ensemble, with PME, a 10 Å cuto� and 2 fs time step. Snapshots of the initial

MD were collected every 250ps and were �rst minimized with 10.0 kcal/mol.Å2 on all heavy

atoms. Simulations of the �xed ion (while water molecules and counterions sampled around)

were then carried out (for each snapshot) for 500ps in NVT ensemble at 298K. The locations

of water molecules and counterions in these restraint-simulations were used to create a �eld

of point charges surrounding the ion.
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The mdgx code was then used to calculate the average electrostatic potential around the

ion in both vacuum and condensed states. Essentially, water molecules and counterions (if

any) within 5 Å of the ion were kept while the rest were discarded. To account for water

molecules and counterions that are outside the 5 Å region, mdgx used 3 additional shells

of point charges which were 5, 5.5 and 6 Å from the ion. Point charges in these shells

were �tted in the same manner with RESP in order to approximate the in�uence of water

molecules and counterions beyond the 5 Å cuto�. QM calculations were then performed at

MP2/cc-pvTZ level in both vacuum and solvated states to obtain the electrostatic potential

around the ion.

With these two electrostatic potentials in vacuum and solvated states, it was then possible

to �t the atomic partial charges of the ion to reproduce the average of these two potentials.

The charge �tting was carried out with some constraints that kept charges on equivalent

atoms being equal and applied a harmonic restraint on methyl groups to keep their atomic

charges small.

HFE calculation

Hydration free energies were computed using thermodynamic integration (TI). The ion was

placed in a box of water molecules (with at least 20 Å to the box edge). After an ini-

tial minimization and 500 ps of NPT equilibration, TI was performed to compute HFE at

298.15K. The HFE calculation was divided into two steps: removing the partial atomic

charges (remQ) and then removing the LJ interactions (remLJ ). The remQ step was inte-

grated via 5-abscissa Gaussian quadrature, while 12-abscissa was used for the remLJ step.

Dynamics in each window were propagated for 4 ns at 298.15K, with PME, 10 Å cuto� and

a 2 fs time step.

The ion HFEs were calculated as following:

(6.6)4Gsim = 4GremQ(gas)
−4GremQ(sol)

−4GremLJ(sol)
= ∆Gpolar + ∆Gapolar

where ∆Gpolar = 4GremQ(gas)
−4GremQ(sol)

and ∆Gapolar = −4GremLJ(sol) .
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Free energy correction

Those corrections are needed so that the HFE computed by TI is comparable with those

from the experiment.

• Correction for ion-ion self interaction as done in Refs. [259, 260]. The self-interaction

potential (Wigner potential) of the ion is:

(6.7)φW (L) =
q

4πεoε

ξ

L

where ξ is the electrostatic potential in a Wigner lattice at a charge site owing to the

lattice images and the neutralizing background and varies inversely with the length of

the cube L. The free energy correction is therefore:

(6.8)∆GφW =
q2

8πεo

(
1− 1

ε

)
ξ

L

This free energy correction has been already applied in Amber PME implementation.

• Correction for periodic ion-solvent interaction since solvent molecules far away from

the ion respond to periodic images of the ion. This correction is always positive since

we liberate the water molecules from the arti�cial interaction with the ion images. [261]

(6.9)∆G =
q2

6εoL

(
1− 1

ε

)[(
R

L

)2

− 4π

15

(
R

L

)5
]

where R is the radius of the ion. Several studies show this correction is usually small

and thus will be neglected here.

• Correction for long range van der Waals interaction (as done in Shirts et al. [262]).

This is also included automatically in Amber.

• Experimental data are usually obtained under standard atmospheric pressure, thus

one also needs to convert the computed HFE to standard pressure by applying:

(6.10)∆G∗ →o = −RT ln

(
V o

V ∗

)
= −1.893 kcalmol−1
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where the star and circle denote standard states of 1M and 1atm, respectively (as in

Ref. [263]).

• By de�nition, in the HFE measurement the ion has to cross the air/water interface

and the potential drop at this interface contributes to the free energy. In simulation,

no explicit liquid/air boundary exists in the system, and therefore that e�ect is not

included. The associated free energy contribution of the interface is:

(6.11)∆Gsurf = qφ

where φ is the interfacial potential jump when transferring a point charge q from

vacuum to aqueous phase. Following Warren and Patel [264] and Horinek et al. [265],

the surface potential is chosen φ = −528mV and the HFE correction is ∆Gsurf =

−12.15q (kcal mol-1). (See a more in-depth discussion about the e�ect of air-water

interface to HFE in Ref. [266].)

The computed HFE in Amber TI is then corrected by:

(6.12)∆Ghyd = ∆Gsim + ∆G∗→o + ∆Gsurf

Experimental data on single ion hydration

Since experimental data of ion HFE requires extra thermodynamic assumptions, there are

several set of data which are usually not compatible with each other. For example the

di�erence between Na+ HFE from Marcus and Tissandier et al. is about 16 kcal/mol while

for Cl- the di�erence is about -7 kcal/mol, in the opposite direction (!!!). [3, 6] Warren

and Patel showed that the reason behind these con�icts was the di�erence of the proton

reference free energy. [264] Once all set are o�set to the same absolute HFE of proton, all

the experimental data become consistent (see Table 2 in Warren and Patel).

In this work, we choose the proton HFE to be -265.9 kcal/mol as in Tissandier et al.

which was estimated by using the cluster-pair approximation and was supported by a lot

of similar works thereafter. [2, 267] All the ion HFE data from Marcus are o�set to the

new reference proton HFE (see Table 6.1, the orig. and shifted Marcus columns). Also as

pointed out by Warren and Patel, Marcus erroneously applied a correction of +1.893 kcal
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Ion Orig. Marcus Shifted Marcus Real ∆G0 Intrinsic ∆G0

F- -111.1 -99.9 -103.7 -115.9
Cl- -81.3 -70.1 -73.9 -86.0
Br- -75.3 -64.1 -67.9 -80.0
I- -65.7 -54.5 -58.3 -70.5
Li+ -113.5 -124.7 -128.5 -116.4
Na+ -87.2 -98.4 -102.2 -90.1
K+ -70.5 -81.7 -85.5 -73.4
Rb+ -65.7 -76.9 -80.7 -68.6
Cs+ -59.8 -71.0 -74.7 -62.6
OH- -102.8 -91.6 -95.4 -107.5
SH- -70.5 -59.3 -63.1 -75.2
AcO- -87.2 -76.0 -79.8 -92.0
HCOO- -94.4 -83.2 -87.0 -99.1
NO3

- -71.7 -60.5 -64.3 -76.4
ClO3

- -66.9 -55.7 -59.5 -71.7
ClO4

- -49.0 -37.8 -41.6 -53.7
HCO3

- -80.1 -68.9 -72.7 -84.8
HSO3

- -55.9 -44.7 -48.5 -60.7
SCN- -66.9 -55.7 -59.5 -71.7
H2PO4

- -111.1 -99.9 -103.7 -115.9
CO3

2- -314.3 -303.1 -306.9 -331.2
SO4

2- -258.1 -246.9 -250.7 -275.0
PO4

3- -660.9 -649.7 -653.4 -689.9
NH4

+ -68.1 -79.3 -83.1 -71.0
(CH3)4N+ -38.2 -49.4 -53.2 -41.1

Table 6.1: Corrected Marcus's hydration free energies of ions (kcal/mol). See the text above
for the description of each column. Data in the �Orig. Marcus column� taken from Ref. [3].

mol-1 when converting from a standard state of 1 atm to 1M rather than -1.893 kcal mol-1 as

in Eq. 6.10. Thus we apply a double correction to bring those numbers back to their actual

values (column Real ∆G0 in Table 6.1). Doing so we note that the HFE of monovalent ions

are in greater improvement with other ion set. The intrinsic ∆G0 is the HFE without the

contribution from the interfacial potential jump.

For some more familiar ions, there are more updated data, for example from Truhlar

and colleagues. [2] Thus it is reasonable to choose from those instead of from Marcus. We

decide to use the data from Kelly et al. (which uses the cluster pair approximation for a

very large set) for the following ions: HCOO-, AcO-, OH-, HS- and NH4
+ (see Table 6.2).

All the intrinsic HFEs will be the target for the calculated free energies to match.
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Ion HCOO- AcO- OH- HS- NH4
+

Intrinsic ∆G0 -88.4 -89.8 -116.9 -84.3 -73.1

Table 6.2: Intrinsic ∆G0 (kcal/mol) of some more popular ions from Kelly et al. [2] with the
interfacial correction -12.15q kcal/mol. The value of OH- from Tissandier et al. [6] is -115.1
kcal/mol.
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