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Synthetic glucocorticoids are used widely in medicine for its effective anti-inflammatory and 

immunosuppressive effect. However, they have fairly negative adverse effects especially when 

used in the long term.  Better understanding of the pharmacokinetics and pharmacodynamics 

(PK/PD) will provide better insights to their mechanism of action helping us to optimize its use 

as a clinical therapy.  The onset of gene microarray presents quantitatively large data sets that 

can be very cumbersome to analyze.  A parameter estimation approach using optimization 

methods can be used in order to help shape a PK/PD model for describing the transcriptomic 

and proteomic changes from CS.  In this study, parameter estimation was used to form a 

preliminary model of the transcriptomic and proteomic gene interaction in rat liver from a dose 

of methylprednisolone (MPL), a commonly used synthetic glucocorticoid.
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I. Introduction 

Synthetic glucocorticoids are part of a group of drugs known as corticosteroids (CS) and 

have an extremely potent anti-inflammatory/immunosuppressive effect (Jin, Almon, Dubois, & 

Jusko, 2003). Their ability to suppress inflammation and immune response make it a very 

effective therapy and commonly used to treat conditions such as organ transplantation, 

rheumatoid arthritis, inflammatory bowel disease, Crohn’s disease, lupus, multiple sclerosis, 

dermatomyositis, arthritis, leukemia, non-Hodgkin’s lymphoma, asthma, and glomerulonephritis 

(Almon, Dubois, Pearson, Stephan, & Jusko, 2003).  However, long term use can bring about 

adverse effects such as electrolyte disturbances, cardiovascular effects, diabetes mellitus and 

loss of bone density and osteoporosis with concomitant vertebral fracture (Frauman, 1996). 

Both the desirable and adverse effects of CS are caused by the binding of CS to the 

glucocorticoid receptor (GR).  Virtually all tissue contain genes that are subject to regulation by 

activated GR resulting in enhanced or repressed expression of mRNA (Almon, Dubois, Pearson, 

Stephan, & Jusko, 2003).  The liver in particular is one of the primary targets of CS action and 

plays a central role in maintaining systemic energy balance (Kamisoglu, et al., 2015). Alteration 

of a critical transcription factor can affect expression of many genes which mean a better 

understanding of CS pharmacogenomics and their mechanism of action will allow us to improve 

its use as a clinical therapy (Jin, Almon, Dubois, & Jusko, 2003). This stresses the importance of 

developing a mechanistic pharmacokinetics/pharmacodynamics (PK/PD) for quantitative 

understand of molecular and cellular mechanisms (Jin, Almon, Dubois, & Jusko, 2003). 

Traditionally message quantification methods such as Northern blot and reverse 

transcriptase-polymerase chain reaction only measured single genes which limited the number 

of genomic changes that could be observed preventing efficacy and toxicity to be adequately 
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studied (Jin, Almon, Dubois, & Jusko, 2003). The onset of high throughput techniques such as 

gene microarrays enabled the collection of very large sets of quantitative data on biological 

substances in living cells. Cellular dynamic systems usually contain too many parameters and 

complex dynamics so a systematic way of inferring biological regulatory networks is required 

(Han, Yoon, & Cho, 2007). An optimization framework is able to be used for the design and 

analysis of regulatory networks by combining gene expression data and prior biological 

knowledge of regulatory interactions between genes and corresponding transcription factors 

(Foteinou, Yang, Saharidis, Ierapetritou, & Androulakis, 2009).  In this study, a parameter 

estimation model is developed using MATLAB in order to provide an adaptable and robust 

method of constructing a PK/PD model of the transcriptomics and proteomics in rat liver after a 

dose of methylprednisolone (MPL) widely used as a corticosteroid. 
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II. Methods 

Pharmacokinetic and pharmacodynamic model of methylprednisolone 

The pharmacokinetics of methylprednisolone (MPL) can be described by the 

biexponential equation by Jin et al. (Jin, Almon, Dubois, & Jusko, 2003).  

𝐷 = 𝐶1 ∙ 𝑒1
−𝜆𝑡 + 𝐶2 ∙ 𝑒−𝜆𝑡 

Where 𝐷 is the plasma concentration of MPL in nanograms per milliliter and 𝐶𝑖  and 𝜆𝑖 

are the coefficients for the y-intercepts and slopes respectively of the semi-logarithmic plot 

shown in Figure 2. 

Jin et al. also developed a pharmacodynamic model of receptor dynamics in rat liver after MPL 

treatment (Jin, Almon, Dubois, & Jusko, 2003).  This model is depicted in Figure 1 and is 

described by the following differential equations. 

𝑑𝑅𝑚

𝑑𝑡
= 𝑘𝑠𝑦𝑛𝑅𝑀

∙ (1 −
𝐷𝑅(𝑁)

𝐼𝐶50𝑅𝑀
+ 𝐷𝑅(𝑁)

) − 𝑘𝑑𝑔𝑟𝑅𝑀
∙ 𝑅𝑚 

𝑑𝑅

𝑑𝑡
= 𝑘𝑠𝑦𝑛𝑅

∙ 𝑅𝑚 + 𝑅𝑓 ∙ 𝑘𝑟𝑒𝐷𝑅(𝑁) − 𝑘𝑜𝑛𝐷 ∙ 𝑅 − 𝑘𝑑𝑔𝑟𝑅
∙ 𝑅 

𝑑𝐷𝑅

𝑑𝑡
= 𝑘𝑜𝑛𝐷 ∙ 𝑅 − 𝑘𝑇 ∙ 𝐷𝑅 

𝑑𝐷𝑅(𝑁)

𝑑𝑡
= 𝑘𝑇 ∙ 𝐷𝑅 − 𝑘𝑟𝑒 ∙ 𝐷𝑅(𝑁)  

Where the terms are the plasma molar concentration of MPL (D), the receptor mRNA 

(𝑅𝑚), the free cytosolic GR density (R), cytosolic drug-receptor complex (DR), and drug-receptor 

complex in nucleus [DR(N)]. Zero-order rate of GR mRNA synthesis (𝑘𝑠𝑦𝑛𝑅𝑀
). First-order rates of 

GR mRNA degradation (𝑘𝑑𝑔𝑟𝑅𝑀
), receptor synthesis (𝑘𝑠𝑦𝑛𝑅

) and degradation (𝑘𝑑𝑔𝑟𝑅
), 

translocation of the drug-receptor complex into the nucleus (𝑘𝑇), and overall turnover of DR(N) 

to cytosol (𝑘𝑟𝑒).  Second-order rate constant of drug-receptor association (𝑘𝑜𝑛). 𝐼𝐶50𝑅𝑚
is the 
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concentration of DR(N) at which the synthesis rate of receptor mRNA drops to 50% baseline and 

Rf is the fraction of free receptor being recycled. 

Baselines defined using 

𝑘𝑑𝑔𝑟𝑅𝑀
=

𝑘𝑠𝑦𝑛𝑅𝑀

𝑅𝑚𝑜

 

𝑘𝑠𝑦𝑛𝑅
= (

𝑅0

𝑅𝑚𝑜

) ∙ 𝑘𝑑𝑔𝑟𝑅
 

Where 𝑅𝑚0
 and 𝑅0 are baseline values of receptor mRNA and free cytosolic GR density.  

Table 1. Pharmacokinetic and receptor dynamic parameters (Jin, Almon, Dubois, & Jusko, 2003). 

Parameter Value 

Pharmacokinetics (fixed)  

𝐶1(ng/ml) 39130 

𝐶2(ng/ml) 12670 

𝜆1(h-1)  7.54 

𝜆2(h-1)  1.20 

Receptor dynamics (fixed)  

𝑘𝑠𝑅𝑀
(fmol/g liver/h) 2.90 

𝐼𝐶50𝑅𝑀
(fmol/mg of protein) 26.2 

𝑘𝑜𝑛(l/nmol/h) 0.00329 

𝑘𝑇(h-1) 0.63 

𝑘𝑟𝑒(h-1) 0.57 

𝑅𝑓  0.49 

𝑘𝑑𝑅
(h-1) 0.0572 

𝑅0(fmol/mg protein) 540.7 
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Figure 1. Fifth-generation model of CS pharmacokinetics and receptor dynamics from Jin et al. Where 𝑅𝑚 is 𝑚𝑅𝑁𝐴𝑅, 

𝑘𝑑𝑔𝑟𝑅
 is 𝑘𝑑𝑅𝑀, 𝑘𝑠𝑦𝑛𝑅

 is 𝑘𝑠𝑅, 𝑘𝑑𝑔𝑟𝑅
 is 𝑘𝑑𝑅 (Jin, Almon, Dubois, & Jusko, 2003). 

 

Figure 2. Plasma Concentration of MPL after 50 ml/mg dose solved using Jin et al.’s model. 
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Figure 3. Profiles of the GR mRNA (Rm), cytosolic GR density (R), cytosolic DR (DR), DR in nucleus (DR(N)) solved using 

Jin et al.’s model. 

Selecting a relatively simple subnetwork of genes for modeling 

An interaction network of 163 genes was formed in a study by Tung (Nguyen, T, 

unpublished work) which drew from four popular pathway databases (KEGG, NCI, Biocarta, 

Reactome) as well as text mining from Pubmed abstracts for whether gene A activates or 

inhibits gene B. However, the network involved 1956 interaction links, which was too large for 

us to reasonably work with for this study. Kubra Kamisoglu simplified the network, using a 

functional approach, to a system of six genes and only 16 interaction links.  This was done by 

determining the most important functions of MPL administration by functional enrichment 

analysis, focusing on the most important common pathways, and eliminating genes where data 

was missing for mRNA or protein because we needed to be able to compare both. The six genes 

chosen for this study were GSTK1, GSTM1, GPX1, PRDX6, ACACA, and MYL9 and the interaction 

matrix is shown in Figure 4.   
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Figure 4. Graphviz representation of the interaction links between the six genes in the simplified network.  Arrows 

represent activation and bars represent inhibition. 

Modeling of the Genes 

The rate of production of mRNA can be modeled using simple synthesis and degradation 

terms (Foteinou et al. 2007). The rate of production of protein was modeled in a similar way. In 

order to integrate the transcriptomic and proteomic models, the generation terms of each 

depend on the other. 

𝑑𝐺𝑖

𝑑𝑡
= 𝑓𝑖 − 𝑘𝑑𝑔𝑟𝑚

∙ 𝐺𝑖 
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𝑑𝑃𝑖

𝑑𝑡
= 𝑘𝑠𝑦𝑛𝑃

∙ 𝐺𝑖 − 𝑘𝑑𝑔𝑟𝑃
∙ 𝑃𝑖  

Where 𝐺𝑖 is the concentration of transcript and 𝑃𝑖  is the concentration of protein. The 𝑓𝑖 term 

was created as follows and is based on a proposed network interaction between the six genes 

shown in Figure 4 of the form 

𝑓𝑖 = 𝑘𝑠𝑦𝑛𝑚
∑ 𝑎𝑖𝑗 ⋅ 𝑃𝑗

𝑛

𝑗

 

Where 𝑎𝑖𝑗  is the interaction matrix of protein j regulating gene i with a value of 𝑎 = 1 for each 

instance of activation, 𝑎 = −1 for each instance of inhibition, and 𝑎 = 0 for no regulation. 

Interaction matrix 𝑎𝑖𝑗  is visually shown in Figure 4. 

𝑓𝐺𝑆𝑇𝐾1 = 𝑘𝐺𝑆𝑇𝐾1𝐷𝑅(𝑁) + [𝑘1,1𝑃𝐺𝑆𝑇𝑀1 + 𝑘1,2𝑃𝐺𝑃𝑋1 + 𝑘1,3𝑃𝐴𝐶𝐴𝐶𝐴 + 𝑘1,4𝑃𝑀𝑌𝐿9] 

𝑓𝐺𝑆𝑇𝑀1 = 𝑘𝐺𝑆𝑇𝑀1[1 + 𝐷𝑅(𝑁)] 

𝑓𝐺𝑃𝑋1 = 𝑘𝐺𝑃𝑋1𝐷𝑅(𝑁) + [𝑘3,1𝑃𝐺𝑆𝑇𝐾1 − 𝑘3,2𝑃𝐺𝑆𝑇𝑀1 − 𝑘3,3𝑃𝑃𝑅𝐷𝑋6 + 𝑘3,4𝑃𝐴𝐶𝐴𝐶𝐴] 

𝑓𝑃𝑅𝐷𝑋6 = 𝑘𝑃𝑅𝐷𝑋6𝐷𝑅(𝑁) + [𝑘4,1𝑃𝐺𝑆𝑇𝐾1 − 𝑘4,2𝑃𝐺𝑆𝑇𝑀1 + 𝑘4,3𝑃𝐺𝑃𝑋1] 

𝑓𝐴𝐶𝐴𝐶𝐴 = 𝑘𝐴𝐶𝐴𝐶𝐴𝐷𝑅(𝑁) + [−𝑘5,1𝑃𝐺𝑆𝑇𝐾1 + 𝑘5,2𝑃𝐺𝑃𝑋1] 

𝑓𝑀𝑌𝐿9 = 𝑘𝑀𝑌𝐿9𝐷𝑅(𝑁) + [−𝑘6,1𝑃𝐺𝑆𝑇𝐾1 − 𝑘6,2𝑃𝐺𝑃𝑋1 + 𝑘6,3𝑃𝐴𝐶𝐴𝐶𝐴] 

Where 𝑘𝑠𝑦𝑛𝑚
 is the rate of generation of transcript, 𝑘𝑑𝑔𝑟𝑚

 is the rate of degradation of 

transcript, 𝑘𝑠𝑦𝑛𝑝
is the rate of generation of protein, and 𝑘𝑑𝑔𝑟𝑝

is the rate of degradation of 

protein.  In the expanded 𝑓 equations, the 𝑘𝑠𝑦𝑛𝑚
parameter is propagated to each term of the 

interaction matrix.  This allows different genes to unequally affect the activation and inhibition 

of mRNA generation.  These parameters affecting the generation and degradation of transcript 

and proteins are the unknown parameters we try to solve for in this problem.  By being able to 

fit our model to the data, the parameters can tell us how well our model can fit the data and 

numerically what affects the generation and degradation more heavily such as which genes and 
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proteins may be more involved in activating or inhibiting production and can give us better 

insights to the mechanism of action.  

This model was created under the assumptions 

1) The gene-protein network interaction matrix 𝑎𝑖𝑗  is known. 

2) Protein concentration regulates transcription only. 

3) Protein act independently of each other. 

Parameter estimation model 

A parameter estimation model was developed in MATLAB in order to provide an easily 

adaptable and robust method of forming PK/PD models of the transcriptomics and proteomics 

in rat liver.  The core of the program uses an optimization solver to minimize an objective 

function comparing the solution for a system of ordinary differential equations (ODEs) and the 

experimental data.  This method involves an iterative approach of proposing a system of ODEs 

and solving it in the parameter estimation model to determine the fit and revising the model in 

order to try to make it fit better either quantitatively through objective function value or 

qualitatively by visually assessing the graph of the solution. 

The methods used in this study were all of the simplest case in order to allow room for 

expansion in future studies because of the modular nature of the model. As such, the program 

was split into multiple parts as shown in Figure 5.  
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Figure 5. Schematic of the parameter estimation program in MATLAB. *.m files were files written by me and fmincon() 

and ode45() were built-in MATLAB functions. 

The main overall package used to run everything was main.m. A helper function not 

shown in the schematic was used to read in the experimental data from an excel spreadsheet 

and store it as a cell array in order to address the issue of the transcriptomic having more time 

points than the proteomic data. ParameterEstimation.m was the function for parameter 

estimation calculation and outputs minimized parameter function values.  This function took not 

only initial parameter values as inputs and their upper and lower bounds but also experimental 

data.  The reason for using experimental data as one of the inputs was to later allow 

bootstrapping calculation to be done by varying the experimental data using a randomly 

determined value for each time point. However, due to time constraints bootstrapping was not 

done in this study.   
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The ParameterEstimation.m function called MATLAB’s built-in fmincon() function for 

constrained nonlinear multivariable optimization and used the default interior-point algorithm 

capable of handling large, sparse, and small dense problems.  Because our system of ODEs has 

many unknown parameters, many different initial values for the optimization need to be used.  

For this purpose, fmincon() was run using MATLAB’s MultiStart.  MultiStart generates a set of 

multiple starting points for fmincon(), runs them individually, and outputs the final minimum 

objective function value and solution. Parallelization was used in order to accelerate the 

calculation. 

The objective function used for fmincon() was placed in objfn.m in order to allow easy 

modification.  A simple difference of least squares was used as the objective function. Of the 

form 

𝑒𝑟𝑟 = ∑(𝑦𝑖 − 𝑦𝑒𝑥𝑝𝑖)2 ⋅ 𝑤𝑖

𝑛

𝑖=1

 

Where 𝑒𝑟𝑟 is the error between the model solution and the experimental data, 𝑖 is the 

index of the gene, 𝑛 is the total number of genes compared, 𝑦 is the solution to the system of 

ODEs for each gene and 𝑦𝑒𝑥𝑝 is the experimental data of the transcriptomic and proteomic 

data. A weight of 𝑤𝑖 was included as a way of assigning weight values to certain genes to make 

them more important in the objective function calculation. A weight value of 𝑤 = 1 can be 

normally set for all genes in order to treat them equally but if the fit is desired for a specific gene 

then a higher value can be input for that specific index.  In this study a weight value of 𝑤𝐺𝑃𝑋1 =

10 was set for GPX1 transcript and protein in order to compare how well the model could fit a 

gene and see how the others fit under those constraints. 

The objective function called MATLAB’s built-in ordinary differential equation solver, 

ode45() function, which Mathworks recommends is the first algorithm to try because it works 
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most of the time. In order to call ode45() the system of ODEs were written in ode.m in a way 

that makes editing and adjusting the ODEs in a simple manner.  This is to facilitate the tweaking 

of the PK/PD model and running the parameter estimation calculation. 

In order to visualize the results, a helper graphing method was written in order to view 

the solutions to the system of ODEs with the experimental data for each gene side by side. 

Experimental Data 

The parameter estimation was done using transcriptomic and proteomic data from two 

previous studies using liver samples excised from rats.  The transcriptomic data was collected 

from 44 male adrenalectomized (ADX) Wistar rats that were given an intravenous bolus dose of 

50 mg/kg MPL and four untreated rats serving as controls.  Control group rats were sacrificed at 

a time point of 0 h and the dosed rats sacrificed at 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 6, 7, 8, 12, 18, 

30, 48, 72 h. The liver samples were then analyzed using Affymetrix GeneChips Rat Genome 

U34A (Affymetrix, Inc.) (Jin, Almon, Dubois, & Jusko, 2003). Proteomic data was collected from 

60 ADX Wistar rats given an intramuscular 50 mg/kg MPL dose and sacrificed at time points 0.5, 

1, 2, 4, 5.5, 8, 12, 18, 30, 48, 66 h and analyzed using nano-LC/LTQ/Orbitrap instrument (Nouri-

Nigjeh, et al., 2014). 

System Specs 

 All computations done using MATLAB version 2014a on an Intel® Core™2 Quad CPU 

Q6600 @ 2.40GHz 4.00 GB 32-bit Operating System running Windows Vista™ Home Premium 

SP2.  
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III. Results 

 Running the model through the parameter estimation program produced positive 

results.  The final model as shown in the previous section was able to fit the experimental data 

fairly well. 

 

Figure 6 Even weights for each gene and upper and lower bounds of 5 and -5 respectively for the parameter values. 

Solid black line is the solution of the system of ODEs and the blue circles represent each time point of the experimental 

data. 

The MultiStart of the parameter estimation calculation was done using 400 randomly 

generated starting points of parameter values ranging from -5 to 5. As can be seen in Figure 

6the model solution fits the experimental data fairly well in almost every case.   

A weight of 𝑤𝐺𝑃𝑋1 = 10 was applied for the GPX1 gene and protein term in the 

objective function in order to observe the fit.  This calculation was able to fit the data in an 

almost identical way to the previously shown calculation using all even weights but was able to 
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find it using only 200 starting points for MultiStart and half the computational time.  

 

Figure 7. Weight of w=10 for GPX1 Gene and Protein only and w=1 for everything else.  Upper and lower bounds of 5 

and -5 respectively for the parameter values. Solid black line is the solution of the system of ODEs and the blue circles 

represent each data point. 

Table 2. Estimated Parameter Values from model. Case A is evenly weighted (wi=1) while Case B has a weight 

wGPX1=10 for GPX1. 

  Case A B 
  Objective fn value 60.03 98.8 
  time (s) 208518 106278.9 
GSTK1 kGSTK1 k1 0.00207 0.005433 

k1,1 k25 0.58645 0.595412 
k1,2 k26 0.01671 0.054527 
k1,3 k27 1.55903 1.812849 
k1,4 k28 0.67382 1.267736 
kdgr_m k2 0.10154 0.101169 
ksyn_p k3 0.00098 0.004384 
kdgr_p k4 1.26385 4.656541 

GSTM1  k5 -0.00498 -0.00497 
 kdgr_m k6 1.17497 1.168711 
 ksyn_p k7 1.17979 1.103182 
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 kdgr_p k8 1.57105 1.453446 
GPX1 kGPX1 k9 -0.0013 0.004443 
 k3,1 k29 4.72665 4.227765 
 k3,2 k30 0.41152 0.011318 
 k3,3 k31 0.32333 0.230179 
 k3,4 k32 1.61751 2.735257 
 kdgr_m k10 0.80213 2.061918 
 ksyn_p k11 -4.58607 -4.92862 
 kdgr_p k12 4.86813 4.948451 
PRDX6 kPRDX6 k13 -0.00736 -0.00874 
 k4,1 k33 4.08456 2.367895 
 k4,2 k34 3.42968 4.360083 
 k4,3 k35 0.01649 0.060699 
 kdgr_m k14 2.76113 4.410379 
 ksyn_p k15 4.9834 4.877272 
 kdgr_p k16 1.27971 1.052419 
ACACA kACACA k17 0.0011 0.001227 
 k5,1 k36 4.87983 3.774845 
 k5,2 k37 0.00048 0.00023 
 kdgr_m k18 0.00139 0.231157 
 ksyn_p k19 0.21351 0.334162 
 kdgr_p k20 0.30481 0.000648 
MYL9 kMYL9 k21 0.0012 0.005478 
 k6,1 k38 4.47587 1.910702 
 k6,2 k39 3.68544 3.087072 
 k6,3 k40 3.12127 2.642957 
 kdgr_m k22 4.94284 4.644076 
 ksyn_p k23 -4.72504 -1.4601 
 kdgr_p k24 4.73273 1.619557 
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IV. Discussion 

Looking at Figure 6 shows us that the model was able to capture the dynamics of the 

transcriptomic and proteomic changes fairly well. The biggest areas of discrepancy occur for 

GSTM1 and PRDX6 transcript data. In the case of GSTM1, while the experimental data begins 

near one, decreases, and then increases back to 1, our model ends on 0 and seems incapable of 

reaching 1.  This shows a main error with our model and may suggest additional terms added to 

the equation describing the rate of production of mRNA.  Physically, the experimental data 

makes sense because after the bolus dose of drug, the body will purge the drug and attempt to 

recover its initial state.  This needs to be reflected in our model by possibly adding additional 

terms to allow as time approaches infinity, the model should approach the initial conditions. 

Another point of concern is that in order to better fit that data, the bounds of the 

parameter values were expanded to allow negative values.  While negative parameter values 

don’t have physical meaning, the parameters that were calculated to have negative values show 

signs of where our model needs to be improved.  Most noticeably is the parameter for protein 

synthesis (ksyn_p) for GPX1 and MYL9 as can be seen in Table 2. This may suggest that instead of 

mRNA having a positive effect on the protein level it could have a negative effect.  The 

𝑘𝑠𝑦𝑛𝑃
𝑚𝑅𝑁𝐴 term in the protein equation may need to be expanded into a term similar to the 

transcript equation involving some function of the level of mRNA, 𝑓′(𝑚𝑅𝑁𝐴), that may be also 

affected by a similar interaction matrix, 𝑎′𝑖𝑗. 

Other reasons for our model to not fit the experimental data well could be the way we 

simplified the problem.  The model we used was linear, which was a reasonable starting 

assumption to build our model and allow easier solving, however the underlying dynamics could 

be highly nonlinear.  Also, the interaction matrix used was an extremely small subset in order to 

simplify our model. More work should be done expanding the subnetwork chosen to include a 



17 
 

 

few more genes or choosing a larger subnetwork.  Eventually the goal would be to add all 163 

genes in the original data to our model.  

Comparing our evenly weighted objective function with the objective function weighting 

GPX1 ten times higher than the other genes as in Figure 7 show very similar results.  While in 

this study weighting was mainly used to help the optimization solver to converge on a solution 

faster by focusing on a specific gene, weighting should be more correctly used by basing it off of 

the standard deviation of the experimental data as a confidence factor.  The more confident 

experimental data points should have a larger impact on the model and allow the less confident 

data to have more room for error. 
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V. Conclusion 

The results show how parameter estimation can be used to determine the fit our PK/PD 

model has to the experimental data.  The objective function value can numerical evaluate how 

close our model is to the data and the parameters can tell which parts of the model more 

heavily affect the rate of production of mRNA or protein.  By observing the fit visually and 

quantitatively the model can be tweaked in an iterative fashion in order to improve the model.  

From the results looking at the transcriptomic and proteomic data from rat liver after a dose of 

MPL our final model for the transcriptomic and proteomic dynamics fit the experimental data 

fairly well.  Certain parts of the model are fairly lacking in describing the dynamics more 

specifically, as large times, our model approaches zero instead of the initial value.  More terms 

need to be added in order to more accurately represent the mechanism. 
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