
ART TICKER - DISCOVERING EMERGING ARTISTS
ON THE WEB

BY

SAAD PATEL

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Tomasz Imielinski

and approved by

New Brunswick, New Jersey

January, 2016

ABSTRACT OF THE THESIS

ART TICKER - DISCOVERING EMERGING ARTISTS

ON THE WEB

by Saad Patel

Thesis Director: Tomasz Imielinski

Considering the large number of artists that exist, there is valuable talent to be discov-

ered. But the question arises, how to find promising and emerging artists from hundreds

of thousands of names listed among many different aggregations websites such as art-

facts.org, and thousands of art galleries? We introduce an application named ArtTicker

which uses many features of Machine Learning, Information Retrieval, Data Mining and

Text Mining to crawl, rank, and analyze artists and their popularity on the web.

We start by identifying names of artists who are not yet listed in large aggregate

directories (such as artfacts) but are already represented by some galleries. This task

requires crawling and extraction of artist names from thousands of art galleries. These

web sites share a lot of common structures, however there is also significant variety

among them and artist name extraction requires complex heuristics. We harvest thou-

sands of artist names this way. Then we enter the second phase of the project ranking

this artists by their web presence.

ii

Since the wealth of any data mining model is the actual data, the data collection

period consisted of extensive crawling from a vast number of news publication websites.

To this end we gather and cluster news from several leading art related news websites

and also use many signals to rank and classify these art news sources. The artistss score

is based on how significantly an individual artist was featured in the art news stream

of articles. The final objective of finding the emerging artists is met by identifying the

names which are present on gallery web sites, have high media presence (high score)

and are not listed yet on the artist aggregate sites. The working prototype analyzes

over 150 sources in English language but can be easily extended based on automatically

crawling and analyzing related sources. It currently holds over 250,000 artists and over

70,000 articles from all these news sources. In essence, this is a streaming application

for which given any geographic area (say Lower Manhattan) identifies the hottest artists

who are not yet known.

iii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Tomasz Imielin-

ski for the continuous support of my Masters study and related research, for his patience,

motivation, and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis. I could not have imagined having a better advisor and mentor

for my Masters study.

I would like to thank my family: my parents and to my brothers and sister for support-

ing me spiritually throughout writing this thesis and my my life in general.

iv

Dedication

This thesis is dedicated to my parents for their constant support and invaluable en-

couragement.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Motivation . 1

1.2. Objective . 8

1.3. Structure . 8

2. BACKGROUND . 10

2.1. Information Retrieval . 10

2.1.1. Text Mining Algorithm . 10

Introduction to TF-IDF . 10

How TF-IDF Works . 11

2.1.2. Extraction Algorithm . 12

Feature 1 - Shallow Features(ST) 13

Feature 2 - Tag Ratio(CETR) . 13

Feature 3 - Tag Classes(IC) . 14

2.2. Machine Learning . 16

vi

2.2.1. Theory of Support Vector Machines 16

Introduction to SVM . 16

How SVM Works . 16

Perceptron . 16

SVM . 18

Overlapping Classes . 21

Feature Selection for Text . 22

2.2.2. Linear Regression . 23

2.2.3. RankSVM . 24

3. DATASET . 25

3.1. Collection . 25

3.2. Data Set . 26

3.2.1. News Aggregators . 26

3.2.2. Non-RSS . 26

3.2.3. RSS . 27

3.3. Extraction . 28

4. DATA MODEL . 29

4.1. Useful Data Extraction . 29

4.2. Creating Data Models . 29

4.2.1. Defining Schema . 29

5. CLASSIFICATION . 31

5.1. Classification by Names . 31

5.2. Classification by Names and Negative Names 32

5.3. Classification by SVM Automatically . 33

vii

5.4. Classification by SVM Handpicked . 36

6. ARTIST NAME EXTRACTION . 38

6.1. Website Selection . 38

6.1.1. Large Dataset Websites . 38

6.1.2. Gallery Websites . 39

6.2. Extraction . 42

6.2.1. Algorithm . 42

6.2.2. Example . 43

6.2.3. Analysis . 48

7. MEDIA RANKING . 56

7.1. Source Ranking . 56

7.1.1. Traffic Based . 56

7.1.2. Reference Based . 58

7.2. Article Relevancy . 58

7.3. Artist Score . 59

8. FUTURE WORK AND CONCLUSION 61

8.1. Similar Domains . 61

8.2. Extensibility . 61

8.3. Conclusion . 62

viii

List of Tables

2.1. Content Extraction Results . 15

6.1. Name Extraction . 55

7.1. Ranking of Domains based on References 60

ix

List of Figures

1.1. Artwork of Damien Hirst . 2

1.2. Artwork of Jeff Koons . 3

1.3. Artwork of Oscar Murillo . 4

1.4. Artwork of Parker Ito . 5

1.5. Demo of ArtTicker . 7

1.6. Demo of ArtTicker Artist Ranking . 7

1.7. How Art Ticker algorithm works . 9

2.3. Possible Perceptron Solution 1 . 17

2.4. Possible Perceptron Solution 2 . 17

2.5. Possible SVM Solution . 19

2.6. SVM Maximum Margin Classification 21

2.7. SVM Classification Overlapping Classes 21

5.1. TF*IDF of Automatically Classified Articles 35

5.2. TF*IDF of Handpicked Articles . 37

6.1. Example 1 of Website Structure . 39

6.2. Example 2 of Website Structure . 40

6.3. Example 3 of Website Structure . 40

6.4. General Outline of Gallery Website . 41

6.5. Names Accuracy . 49

6.6. Example 1 of Gallery which is difficult to extract 50

x

6.7. Example 2 of Gallery which is difficult to extract 51

6.8. Example 3 of Gallery which is difficult to extract 52

6.9. Example 4 of Gallery which is difficult to extract 52

6.10. Example 5 of Gallery which is difficult to extract 53

6.11. Example 6 of Gallery which is difficult to extract 54

xi

1

Chapter 1

Introduction

1.1 Motivation

Art market is like stock market only less predictable. Who can be the next star com-

manding high prices for their work and who will disappear into oblivion? This is far

more difficult to predict than raises and falls of stocks. But rewards may be much

larger. Damien Hirst sells for tens of millions of dollars and he is in his late forties, Jeff

Koons is even more expensive - and they raised to prominence within a decade or two

2

Figure 1.1: Artwork of Damien Hirst

3

Figure 1.2: Artwork of Jeff Koons

Five years ago Oscar Murillo and Parker Ito were struggling and unknown painters.

Today they command six figure prices for their paintings and are represented by top

galleries. They have already emerged as young stars of their generation. Is it possible

to capture such meteoric rise early, before it happens?

4

Figure 1.3: Artwork of Oscar Murillo

5

Figure 1.4: Artwork of Parker Ito

6

It seems next to impossible, but with the web and social media it is probably easier

than decades ago.

The objective of this thesis is to use web signals and online media presence to pro-

vide art collectors with such early signals. The lead intuition is that all emerging artists

are first ”talked about” at various artistic blogs and small art magazines before they

reach major media (when they become famous). For example an article in small artsy

publications such as Hyperallergic or Brooklynrail about an artist could be an indica-

tion to put someone on the radar screen of a collector.

But monitoring hundreds or even thousands of such art publications would require a

lot of time. One alternative would be to consult aggregators such as artfacts.net which

provide ranking of 150,000 plus artists based on rich information about exibitions they

participate in and whom do they exibit with in group shows. Unfortunately sources

like this, although useful in longer term, are stale, and fall behind due to being updated

manually. It takes a long time to climb the rankings of artfacts so even young stars

such as Parker Ito and Oscar Murillo still have not cracked top 1000 painters (occupied

by old masters and Picasso, Jackson Pollock, Rothko alikes).

We propose a different approach which has two stages. In the first one we crawl

and extract names of artists from thousands of galleries (Thus, for us to consider an

artist, s/he has to be represented by a gallery). Then we check the ArtTicker news feed

which have built from hundreds of RSS of news content sites and built a Media Score

of an artist. We are very interested in artists who are not yet represented in artfacts

rankings and are already generating media buzz. Using our Media Score (which takes

under consideration the prestige of the source and the degree of presence of artist in

the article), we rank new artists from most media present to the least. In ArtTicker

7

system, it is performed geographically, a user virtually visits a city, or a location (say

Chelsea in Manhattan) and then we scrape names of artists from nearby galleries and

rank them by media score.

Figure 1.5: Demo of ArtTicker

Figure 1.6: Demo of ArtTicker Artist Ranking

8

1.2 Objective

As many artists are increasingly getting featured on the Internet, the number of articles

and quality of articles on them are also increasing. Many times this information is

too much average user. This dissertation aims at accumulating and clustering the

massive amount of information present on the web on artists and present useful insights

namely, finding ”Hottest” Artists and their representations in local galleries. The major

emphasis is to aggregate enough data on art and artists and implement an algorithm

which will automatically rank the artists based on the extracted information from each

article and extract new artists from local galleries. The objective is to present an

impartial view of the collection of information. The following include some of the

important contributions of this dissertation:

• A name extraction algorithm based on the current state of web pages and pri-

marily focusing on artists represented in local galleries.

• Creating relationships between known and unknown artists and relevancy of the

articles in which they are mentioned along with the sources of those articles.

• Building models based on the relationships which show top artists for each gallery

and the inverse mapping of top artists which are mentioned in a particular gallery.

• Defining a ranking model for artists, which is based on the amount of attention

the sources receives

We represent the procedure for the above in Figure 1.

1.3 Structure

In Chapter 2 of this thesis, we first present background of all the research areas related

to the application such as: Information Retrieval, Text Mining, Data Mining, Machine

9

Learning, and the algorithms used in the application. We describe the TF-IDF, SVM,

Classification and how they really work. In Chapter 3, we discuss how the data was

gathered for this research, and the data transformations that were done on the data-set.

In Chapter 4, we discuss the database model and how the data is continually loaded to

the database. In Chapter 5, we show the different techniques for Article Classification

and analyze each technique and its accuracy. In Chapter 6, we describe an algorithm

for Artist Name Extraction and analyze the accuracy of it. In Chapter 7, we describe

how we assign ranking to the sources and articles use that to determine the ranking of

the individual artists. Finally, we discuss about future work and conclusion in Chapter

8.

Figure 1.7: How Art Ticker algorithm works

10

Chapter 2

BACKGROUND

In this chapter we describe all the main concepts of the research areas that were used in

this paper. The main research areas used include: Information Retrieval, Text Mining,

Data Mining, Machine Learning.

2.1 Information Retrieval

2.1.1 Text Mining Algorithm

One of the main tasks is analysis and classification of text. To do this, one has to find

all the words and their rankings in a document and further use that with a classifier.

For the first task of ranking words in a corpus of documents, one of the most trusted

and widely used representation for this task is TF-IDF which we will introduce below.

Introduction to TF-IDF

TF-IDF is defined as term frequency inverse document frequency. It used widely in

information retrieval and text mining. In simple terms it is a numerical statistical

measure that is used to determine how important a word-term is to a document in a

collection of documents or a corpus. The importance of a word increases proportionally

to the number of times a word appears in a single document vs multiple documents.

TF-IDF is used in many fields including search engines to rank a documents relevance

to a query given by the user. Furthermore it is also used in stop-words filtering, in text

11

summarizing and classification. In short, TF-IDF works by calculating the frequency of

words in one document and compares it to the inverse ratio of the word over the entire

list of documents. The TF-IDF determines how relevant a given word is in a certain

document. The benefit is that common words in English such as such as articles and

prepositions also known as stop words get a lower score than words which are not very

common and don’t occur in many documents. This is primarily the main reason that

it is used in matching the relevancy of a user’s query to a group of documents.

How TF-IDF Works

To start, we suppose we have a group of documents and we wish to determine which

document is the most relevant to the query x. The first step is to remove all the docu-

ments that do not contain any of the words in query x. This, however still leaves many

documents from the corpus. The next step is to count the term frequency which is

defined as the number of times each term occurs in each document.Wen Zhang [2008]

Thus we get the following formula which depicts the term frequency:

tf(t, d) = ft,d

Where tf(t, d) is the term frequency given a document and ft,d is the raw frequency of

the term t in document d.

We can see that many stop words such as ”the” and ”is” are common and occur

in many documents given a list of documents with high frequency because of their

commonality. This will increase the importance of the documents which use this word

frequently and will decrease the weight of importance of the other words in the query.

Therefore, an inverse document frequency factor is used which is designed to lessen the

12

weight of terms that occur very frequently in many documents and instead increases

the weight of terms that occur rarely. This is referred to as inverse document fre-

quency.Ventouris [2014]

Another issue that still exists, is that each document has a different length, therefore

larger documents will get higher preference than a smaller document. To fix this the

document needs to be normalized and this is done by dividing the term frequency by

the total number of terms in the document. Furthermore, the TF-IDF score also takes

into account the heuristic that words that appear many times in a documents are more

likely to be important than words that appear once. To do this we apply a logarithmic

weighting. Thus for the inverse document frequency we get the follow formula:

idf(t,D) = log(
N

ft,D
)

Thus we have the following equation:

TF ∗ IDF (t, d,D) = ft,d ∗ log(
N

ft,D
)

Where ft,d is the number of times term t appears in document d, divided by the total

count of terms in document d, N is the size of all the documents, and ft,D represents

the number of documents in which w appears in D. Ramos [2003]

2.1.2 Extraction Algorithm

One very important algorithm that we rely on in this thesis is given the raw HTML

of a website, we would like to analyze it and extract the main content. This is also

referred to as boilerplate detection. To do this we use a variety of different algorithms

with different features for each algorithm. In the end we use all these features and use

machine learning on it for maximum usefulness. Peters and Lecocq [2013]

13

Feature 1 - Shallow Features(ST)

The first set of features which we would like to include are shallow text features. The

content of a particular web page can be divided into two groups, one with tags which

hold long strings of text such as paragraphs represented by < p > tag. And the second

group can be tags with short text such as advertisements and navigational elements on

a web page. We can therefore use text density which encompasses average word length,

average sentence length, and link density of tags as well as the textual density of the

tags surrounding it as features. Christian Kohlschtter [2010]

Feature 2 - Tag Ratio(CETR)

Another set of features we can use is the tag-ratio. In other words the ratio of number of

tags in a specific block to the text length. These set of features have been known to be

very effective in extracting content of the web page. The detection works by the obvious

assumption that the main content of a given web page is clustered together while other

elements such as navigational elements and advertisements are present throughout web

page without much clustering. Then for each line in the HTML document the algorithm

computes the text to tag ratio and represents it in a graph. The next step is to smooth

the graph using Gaussian smoothing or any other smoothing algorithm so that the

textual content can be more easily discerned. We can see that the beginning and end

of the content are represented by sharp rises in the graph. Therefore, the last step

is to determine the start and end of the content, which can be done by taking the

absolute derivative of the smoothed graph and plot it against the smoothed tag ratio.

The first image on the left below represents the text-to-tag ratios of the web page line

by line. The second shows the smoothed graph of the text to tag rations. The third

image shows the absolute derivative of the smoothed graph. The last images shows the

absolute smoothed derivatives of the smoothed tag ratios. Tim Weninger [2010]

14

(a) Tag Ratios of a Sample Web Page
(b) Smoothed Tag Ratios of a Sample

Web Page

(a) Absolute Derivative of Smoothed

Tag Ratios of a Sample Web Page

(b) Absolute Smoothed Derivatives of

the Smoothed Tag Ratios of a Sample

Web Page

As we can see in the last image, the non-content are clustered around the origin of the

graph while the content-areas are scattered around the graph. Using this technique, the

accuracy of determining the content of a web page using the F1 score metric is around

80%.

Feature 3 - Tag Classes(IC)

The third set features which we can include to detect textual content of a given web

page is to use the id and class attributes in HTML. The id and class attributes are

used by developers to identify tags in the HTML of a website. Many times it can in-

clude words such as ”content”, ”navigation”, ”menu” to indicate different places in the

15

HTML document. We can use these attributes from training data to see which which

ones occur the most. We can then use a cut-off minimum value for attributes in tags of

actual textual content vs non-textual content and we can use these as features for the

tags. Peters and Lecocq [2013]

Based on all these approaches we use a metric called the F1 score which is a widely

used measure of a test’s accuracy. It is defined as:

F1 = 2 · precision · recall
precision+ recall

Based on this the result of the combination of the features is as follows:

Table 2.1: Content Extraction Results

Method F1 Score

Baseline 62.5%

CETR 79.4%

IC 64.1%

ST 85.4%

ST+IC 85.8%

ST+IC+CETR 87.7%

Peters and Lecocq [2013]

16

2.2 Machine Learning

2.2.1 Theory of Support Vector Machines

Introduction to SVM

In the following chapters we would like to classify texts given a large corpus of text and

we would like to classify it into defined categories based on the content of the next. This

task can be accomplished with SVM(Support Vector Machine Algorithm). Text mining

algorithms are generally divided into two types. One employs supervised learning while

the other uses the unsupervised learning model. Support vector machines (SVMs) are

based on a set of supervised learning methods used for classification which we we delve

into. In short, with SVM, text documents are classified based on a linear or nonlinear

maximal separating hyperplane derived from a given input training data set.

How SVM Works

We will explain the SVM algorithm graphically as to make it easier to understand. To

start, we are given as training data a list of features and labels for the features and we

would like to classify unseen features based on the training data. This is known as the

test data. To start we will first introduce a simplification to the SVM which is named

Perceptron.

Perceptron

We start with the training data and we would like to classify them and use it to predict

classifications for future test data. For the illustration we assume that the data is in

2 dimensions and we use a binary classifier. We start by first plotting the features

on a grid and we try to separate them using the perceptron algorithm. We have the

following representations:

17

Figure 2.3: Possible Perceptron So-

lution 1

Figure 2.4: Possible Perceptron So-

lution 2

As we can see in Figure 2.1 and Figure 2.2 above that given features plotted in a

graph with labels, the perception classifier finds any line or in higher dimensions any

hyperplane which linearly separates the data. The downside of this algorithm is that

it doesn’t necessarily find the best line which divides the classes but rather it finds a

possible line. It’s benefit is that it allows online learning because of its approach in

processing one element at a time from the training set. Formally we define perceptron

algorithm as follows:

We are given a training set which is defined as follows: T = (x1, l1), (x2, l2), ..., (xk, lk)

with size of k. And we have each xi is a vector of size n and each li to be the label for

the features xi. We initialize the weight vector which is the values for the separating

hyperplane to zero. We then run the following algorithm for all the data in the training

18

set:

Algorithm 1: Perceptron Algorithm

Input: Training Data: T = (x1, l1), (x2, l2), ..., (xk, lk)

Output: A list of weights w which represent a line/hyperplane separating the

classes

1 w ← [0,, 0]

2 for i← 1 to k do

3 if (class(wT ∗ xi) 6= li) then

4 w ← w + li · xi

5 return w

From the algorithm, we see that the algorithm finds any line which separates the

different classes based on the training set and uses that to classify the test data. De-

pending on our data we can either continue this algorithm for all training samples, or if

it used in online learning then it can be continually used until a specified error threshold

is reached or it converges if the data is linearly separable.

SVM

Now that we have seen how the perceptron classifier works, we can look at the similarity

and difference between that and the SVM classifier. We start with a similar situation

to perceptron, where we are given as training data a list of features and labels for the

features and we would like to classify unseen features based on the training data. To

start, a perceptron would find any line which separates the classes. However with SVM

the technique is to find the line with the maximum margin between the classes as to find

the best classification line when the data is linearly separable. For the illustration we

assume that the data is in 2 dimensions and we use a binary classifier. Srensen [2014]

We start by first plotting the features on a grid and we try to separate the classes of

the data and see we have the following representation:

19

Figure 2.5: Possible SVM Solution

As we can see in the figure above, SVM finds the maximal margin line or hyperplane

in higher dimensions with more features for separating the data. Specifically it finds the

maximal margin line which separates the closest points from the classes. The downside

of this algorithm is that it doesn’t benefit from online learning as every new training

data requires the whole classification algorithm to run again. This however benefits

from being much more accurate than perceptron.

We can formally define it as follows: We start with the fact that there are infinite

choices for hyperplane to separate two classes. To choose the best one, we need to find

one which maximizes the margin between the two classes. A hyperplane is defined as:∑
i

wixi + b = ~w · ~x+ b = 0

Where ~w is a normal vector to the hyperplane also known as the weight vector, ~x is

any set of points in the same dimension as the hyperplane, and b is a scalar which is

referred to as the bias. This equation applies to all dimensions because as the dimension

scales up the size of ~x and ~w also increase. If we suppose that bias is 0. Then we have

~w · ~x = 0 which is defined as a line or hyperplane which is perpendicular to ~w and goes

through the origin. The bias, b, determines the actual translation from the origin of the

hyperplane. Furthermore if we would like to move in the direction of the vector ~w, then

20

the equation: b
||~w|| represents the offset along the normalized vector ~w. We then suppose

that we have training data that is linearly separable, in other words we can plot the

features of the classes and select two hyperplane between the two which separates the

data without any data points between the classes. We then label the space between the

hyperplanes as the margin between the two classes which we would like to maximize.

To do this we find two hyperplanes which are represented by the following equations

which are normalized:

~w · ~x+ b = 1, ~w · ~x+ b = −1

Since our goal is to find the maximum margin hyperplane, we then have to include the

constraint that the data points from either class cannot fall into the margin area. This

is represented as follows:

∀i ∈ {1, ..., n}~w · ~xi + b ≥ 1, and ∀i ∈ {1, ..., n}~w · ~xi + b ≤ 1 for both classes. This can

be rewritten as: ∀i ∈ {1, ..., n}classi(~w · ~xi + b ≥ 1)

Since we know that b
||~w|| represents the offset along the normalized vector ~w, then we

know that the margin between these two hyperplanes is 2
||~w|| . We therefore want to

maximize the following term: 2
||~w|| , so that the distance between the two hyperplanes

are maximized and we can find the best hyperplane to separate the data. We can

rewrite this as minimizing ||~w||. This however can be rewritten as: minimizing ||~w||2

since ||~w|| has a square root and it is difficult to solve it. Furthermore, we add a term

of 1
2 for ease of calculation. We can see the representation of the margin which we want

to maximize in Figure below.

21

Figure 2.6: SVM Maximum Margin Classification

We then have the resulting optimization problem:

minimize
1

2
||w||2

subject to ∀i ∈ {1, ..., n}classi(~w · ~xi + b) ≥ 1

Overlapping Classes

Since the classes are not always linearly separable, and might overlap so that there can

be no hyperplane which seperates them. The figure below shows an example where this

can be the case.

Figure 2.7: SVM Classification Overlapping Classes

22

We would therefore like to find a way to classify based on some slack, so that a

little overlapping might not cause a problem in classification. We introduce two new

variables, C which controls the trade-off between large margin and small error penalty,

and ξ which is a slack variable for each point in the slack region. We have the following

optimization problem after introducing these variables:

minimize
1

2
||w||2 + C

n∑
i=1

ξi

subject to ∀i ∈ {1, ..., n}classi(~w · ~xi + b) ≥ 1− ξi

In the equation, C is a scalar which controls the trade-off between classification and

strictness. In the case where C is very small, the slack variables have more slack margin

and this can cause misclassification. For the case where C is veyr large, this can cause

the slack margin to decrease and leave very little slack.

The ξi in the equation represents the slack for the i-th feature vector.In the case where

ξi = 0 then there is no slack and the feature vector is in the correct side of the hyper

plane. In the case where 0 < ξi ≤ 1 then the slack of the feature vector is in between the

separating hyperplane and the margin hyperplane. In the case where ξi ≥ 1 then the

slack of the feature vector is on the wrong side of the separating hyperplane. Another

simple technique which is more widely used is to project the data into a higher dimen-

sion. This helps to make the data linearly separable when its not able to be linearly

separated.

Feature Selection for Text

The features which represent a problem which we either want to predict or classify is

the foundation for the accuracy of the machine learning model. For this task we are

given a list of documents and we would like to transform it to a representation which

is a suitable input for SVM for classification. We also use an Information Retrieval

technique based on that fact that words have many different forms which prefixes and

23

suffixes, to stem the words and keep only the root for a better feature selection. We

then have the following representation of words in terms of features: (tf − idf(w), w),

where the w is the numerical representation of the word and tf − idf(w) is the tf-idf

score for the word. This still leads to a very high number of terms and we would like

to avoid a large number of features as to reduce running time of the classifier. To do

this we have a cut-off α for the words which occur too little times or if the word is

a stop-word. Based on this technique we classify documents using the SVM classifier

based on their terms. Joachims [1998]

2.2.2 Linear Regression

Regression in the machine learning approach is used for prediction of a variable given

a list of features and predetermined predictions. In simple terms we plot the given

features with the given predetermined prediction and we find the best hyperplane which

fits the data. This line is based on minimizing the least squares error. Formally it

is defined as follows: we are given a training set which is defined as follows: T =

(x1, y1), (x2, y2), ..., (xk, yk) with size of k. And we have each xi is a vector of size n and

each yi to be the predictions for the features xi. We would like to find the regression

coefficients β which best fit the data. In other words we would like to find ~y which is

of the form:

y = Xβ + ε where y is the dependant variable which we would like to predict, X is a

matrix of x which are a list of features, β is the regression coefficient vector which is

used for estimation and, ε which accounts for the noise. This can be solved using the

Ordinal Least Squares method which minimizes the errors between the all data points.

T. Tony Cai [2006] In our work, we use linear regression to predict the scores of sources

using features such as percentage of art articles, traffic rank and other similar metrics.

24

2.2.3 RankSVM

We will be using pairwise ranking method for this as this is the one which is used

mostly on web pages and ranking them. To start our goal is given a query q, and

two instances of pages or articles to choose which one is more relevant. For these two

pages the features can include website traffic measure, Page Rank, relevancy of page

to article, and other related features which give an accurate description of the pages.

RankSVM turns this problem into a SVM classification problem and it finds weights

based on the features and labels which are given. To start we are given a list of features

in a vector, ~xi and we are given two instances of feature vectors for a query where q

is constant. We can then turn this into an SVM classification problem as follows: We

create two classes, relevant and not-relevant and we give training data with such labels

Tq = (x1, l1), (x2, l2), ..., (xk, lk) where the query is constant between each two feature

vectors. Then this turns into a classification problem where each xi is a list of features

and the li is the label. We then use an SVM classifier to solve the optimization problem

portrayed above and find the maximum separating hyperplane. This allows the use

of many different features to predict relevancy of web pages and it can be catered to

domain specific problems. Zhe Cao [2007]

25

Chapter 3

DATASET

3.1 Collection

We start with a database of well-known names given from a trusted source such as

artfacts. We would like to find sources where these names are mentioned and use those

sources as our primary base for news articles. To start with this task we have two

options. One approach to this is the collection of news websites based on searching for

them from search engines. Although, this is one way to do it, this approach however is

not well suited for this task due to many different categories of art and also websites

utilizing SEO would not give accurate results. Instead we start with names which we

extract in Chapter 6. After extracting these names we start to find news websites which

mentioned these names based on searching a search engine such as ask.com. Since there

are thousands of names we can see that overall we are bound to get websites which are

popular news websites and have a variety of artists mentioned. Thereafter, we find the

top k domains which appear the most from these search engine results, in our case 150

and we use these domains for gathering news articles and exploring new artists based

on their media ranking.

26

3.2 Data Set

3.2.1 News Aggregators

Our first idea was to use a news aggregation sources such as Moreover which are websites

that gather, analyze and provide content from many different sources in one place.

Usually the content from news aggregators is similar to an RSS from news websites

with headlines, author, publishing date and category. The first and foremost problem

with these types of services in our case is that they are from general news sources which

include many different categories. They are for websites like Google News or Yahoo

News for the general news. In our case we required articles only on Art related content

and they were lacking. Secondly, the cost to use these services is unnecessary and can

be easily substituted with RSS. Furthermore, its not very flexible as adding new sources

would require time and money and and would not be able to add sources automatically.

3.2.2 Non-RSS

We have all these sources and we would like to have consistent news articles from

them related to the topic. The second idea was to use a crawler like Nutch or Scrapy

and crawl the website to a consistent depth, in our case, 2. We then consistently use

it to get articles that appear on front page. However, with this approach there is a

high risk to get blocked from websites and also it is very inconsistent because many

websites have archives and other entities on their websites which we don’t consider to

be of use. Article detection was also difficult as websites had a variety of messages,

announcements, auctions and not a clear guideline between content and non-content.

Furthermore, many websites which didn’t have much new and updates content on their

website were being used which was not very helpful in calculating media ranking.

27

3.2.3 RSS

RSS (Rich Site Summary) is a web service that is used by millions of websites and

blogs which allows them to publish frequently updated material such as blog entries

and news headlines. An RSS also termed as a ”feed” usually contains either a full text

of the article or entry or short summary/text. Metadata such as tags and categories,

publishing data and author’s name are usually included as well. The main reason we

would like to use this is so that the material we get is easily obtainable, customizable

and it is frequently updated. The main way, it is used is by software applications called

”RSS reader”, ”aggregator” or ”feed reader”. Generally RSS files are published in XML

format and can be easily read by humans and can easily be parsed.

We then considered another idea which was to use RSS which is used to get fre-

quently updated information from websites such as blog entries, news headlines. This

approach helps in getting updated content so the ranking of the artist can be up to date

and there was a clear distinction between updated content and non-content. Further-

more, the ranking of the artist can be updated based on recent mention in the media.

We then started to make the list of websites which we wanted to crawl for RSS feeds.

We used the method discussed in the Collections section of the current chapter. We

then started to go to each website and crawl it for RSS feeds. One problem, however is

that an RSS document primarily includes summarized text and metadata and doesn’t

include the full article, whereas if we follow the link to the HTML of the website , we

see that it has many junk content such as ads, related content, comments. We then

have the problem of extracting an article given the source HTML and a summary from

the RSS.

28

3.3 Extraction

One obvious approach to extract text from a web page is to convert all non-tags on the

page to text and use that as the content. For general purpose that would work fine,

however in our case we have to match the article contents to names of artists. In many

galleries we come across bad terms such as ”Contact Us” and if we do not remove them

from the article then many of these terms will appear on the top. To counter this, we

then have the following goal: to take a web page, perform calculations and extract the

main text of the article without side content. We use the algorithm which is presented

in Chapter 2. The basic algorithm is as follows: We start with finding all the DOM

Elements of the HTML page and we extract the blocks in HTML which contain the

most text data. We then sort them by highest length to smallest and we compare the

block to the full document so that we can compute the percentage of each blocks tokens

extracted as content and use a threshold to determine its textual density. We then use

another feature which is the text to tag ratio to find the main content. This approach

is built into a library for Python which we use to find the main content.

29

Chapter 4

DATA MODEL

Now that we have crawled and parsed the data, the next reasonable step is to used the

parsed data and create database tables.

4.1 Useful Data Extraction

We therefore initialized a scraper in the Python language known as Scrapy, using these

we scraped all the links of the partial articles in the RSS feed which we have for each

website. We then proceeded to extract the main content of the web page as well as

meta data which includes link of the website, the title, the domain, the date and time

and we store this in the master table. After continually inserting into the database for

a few months, the table contained around 70,000 articles from only art related websites.

This table is the key for the next steps in classification and scoring.

4.2 Creating Data Models

Our next step is to first define the database models so that it reflects the data we intend

to store.

4.2.1 Defining Schema

We begin the define the schema of the most important table, “rss content” which carries

all the article data along with all the meta data.

30

• link varchar(200): We use this key as the primary key as we want each article

to be different and therefore we choose a unique link.

• domain varchar(50): Since we have over 150 different sources, we would like to

keep track each source and its many different attributes. Therefore, we use this

field so that we can rank and analyze different sources as well as analyze artist

coverage over the different news sources.

• date datetime: Given that we have collected news articles for artists for over 6

months, we would like to keep track how each source is faring over time and how

different artists are covered in different sources at different times. Furthermore,

the main reason we have this field is so that we can discover new unknown artists

and see the time when they start to gain popularity to when they peak in popu-

larity. Unlike music and other industries, we noted that they don’t happen over

a short amount of time, rather a period of few months.

• title varchar(1000): By intuition we know that one of the best ways to find

the relevance of an individual is mentioned in an article, is to first check the title.

Since the title is the main relevance point of an article we use this to find relevance

of an artist to a particular article.

• content longtext: This field of the table is the most important attribute be-

cause it carries the actual content of the article. Since cleaning the data is very

important before it is stored, we have cleaned it using the algorithm discussed in

Chapter 3.2. It discusses how we extract the article and how we store it before it

is analyzed or before the classification task which is discussed in the next chapter.

31

Chapter 5

CLASSIFICATION

We weren’t able to directly use extracted articles to find artist trends and calculate

their media score because a number of the sources were not 100% clean. Many of the

popular sources such as latimes.com and theguardian.com had music and entertain-

ment mixed in the with art related news. Furthermore, many articles even from the art

related domain still did not contain art related news but maybe news about the artist

not related to art. For example there were articles on political stance of artists, death

of artists, and about their personal life.

We explored many different options for classifying articles as to avoid non-related ar-

ticles. We will mention all the approaches that were used and furthermore, analyze

accuracy for each method. Our first option was to classify articles solely based on men-

tion of known artists in the article. Our second option was to find names of artists for

other categories such as Music, Movies, and News and classify artists based on those

names. Our third option was to use text categorization with Support Vector Machines

using different sources for each category. Our last and final option was to use text cat-

egorization with Support Vector Machines using hand picked articles for each category.

5.1 Classification by Names

Our first intuition was to classify the article based on the number of names that appear

in the article. The main reason behind this intuition was that depending on the number

32

names which occur in an article that is an artist we can determine if the article is art

related or not. However there are 3 main reasons for this approach not working.

1. Firstly, that the names we have collected which we discuss in chapter 6 are not

unique to artists and therefore other entities in other categories also have these

names.

2. Secondly, even though the names are mentioned in the article we see that these

articles talk about political stance of artists, death of artists, and about their

personal life which don’t constitute as art.

3. Lastly, we saw that many articles talk about multiple aspects in terms of categories

such as music and art and are not strictly art. Therefore these articles have

mention of the artist but in a very small part of the article.

To counter the first and third point we looked to names of individuals in other cate-

gories to see if having positive and negative names would help in distinguishing art and

non-art articles.

5.2 Classification by Names and Negative Names

Since classification by names of artists was not enough, we started to find other cat-

egories which were also included in our rss data. We saw that the most prominent

categories which were inside the database alongside the art articles were music/enter-

tainment, and movies. Using these observations, we started to look for databases with

musicians and films. For the music database, we found that the ”discogs” database

was the most complete with around 5 million artists. We also used the most com-

plete movies information which is provided by IMDB of movie actors, directors, and

producers. We parsed and imported these large databases into our database and used

33

them for the purpose of classifying the articles. The problem with this apporach is

that there are many articles with multiple names from each category and it is difficult

to classify articles in this scenario because many artists and musician share the same

names, therefore it is very difficult to distinguish the context in which the names are

mentioned. Furthermore, many articles have multiple names, names from artists and

musicians. In this case, if classification of the article is purely based on which category

has more names than this can pose to be inaccurate. Suppose a case where there are

two names of musicians matched and one artist. And suppose the musician names are

common names. They can easily be names of artists which are unknown and based on

this the article would be classified incorrectly.

The primary reason, however for not ultimately not using the name scheme for clas-

sification is because of “Artist Discovery”. We plan to find new undiscovered artist

names and find their ranking and coverage in the media. However if we classify articles

differently based on names then many undiscovered artists would stay undiscovered.

Since in Chapter 6, we introduce an algorithm for artist name extraction it is necessary

now to find another technique that is independent of names. In the next section we use

an algorithm which is independent of names and instead uses the content of the article

for classifying it. As we will see, this is much more versatile and accurate and that is

what we ended up using for the application.

5.3 Classification by SVM Automatically

Given that classifying by names of artists and negative names of musicians didn’t work

as we would like them to. Therefore, we used a fairly popular technique for classifying

known as SVM. We introduced this in Chapter 2 and we tried multiple techniques which

are presented as follows.

The first technique we tried was to gather articles from each source by rss. We had

34

around 150 sources for art, so we looked for rss for other categories which included

news, music, and films. The plan was to use each articles from each category as defined

by rss to use training data and use the resulting classifier to manually test articles and

see how they fare. We wrote a web page which will test the article and return the

classified result.

To start, we first selected all the articles from the database for each category. Then,

we split each document from each category into words and we found the term frequen-

cyinverse document frequency for each word in each category. We did this for all the

3 categories which we had which was art, music, and movies. We then used SVM with

the bag-of words model using sparse features to build a classifying model. We saw that

the tf-idf representation included many non-art related words in the frequencies due to

many articles having non-art related terms. This lead to a high importance to non-art

related terms and therefore it classified based on the erroneous frequencies. To counter

this, we tried another method which we outlined in the next section.

Our next idea was to use “cleaned” articles which we defined as articles which have

only artist names and no other names which are ambiguous. We define ambiguous

names to be names which musicians and artists both have. We then removed all the

articles with these names for all three categories and we did a similar technique with

the last section and we train the SVM classifier based on these documents. We tested

the classifier based on similar tests from non clean articles and we see the following

results.

35

Figure 5.1: TF*IDF of Automatically Classified Articles

As we see, it doesn’t improve much compared to the non-clean articles. We hy-

pothesize that this is due to the high volume of articles and the fact that many of the

articles have words which although are not common, they become common over the

corpus even though they don’t carry much weight. For example here are a few terms

which are ranking fairly high in their tf-idf representation, however are not art related.

Another reason we observe is that, even though many articles have names, they are not

related to art. For example we saw many articles about the political stance of artists,

or death of artists, or a tribute to the artist. All of these have relation to the artist

but not actual art. Since, we would like to use the application for artist discover, these

types of articles are of no use and they improperly skew the training data to useless

words. In the next section we choose out best performing technique which fixes these

problem.

36

5.4 Classification by SVM Handpicked

Our next and final option was to handpick articles from each of these sources and use

this as a basis for classification for all the articles. We started by going to famous art

news websites such as hyperallergic.com, artnews.com and others and started to find

articles which were related only to art independent of artists. We then did the same

for music/entertainment articles as well as news articles. We then accumulated around

100 articles for each class and saved it to the database with manual labelling. We then

proceeded to split the data to 50/50 for training and testing. We then trained the SVM

classifier on the training data and proceeded to test it on the testing data. To our

surprise we got around 99% accuracy. To test for any errors we mislabelled a few of

the articles in the categories and proceeded to test them. We found out that the SVM

classifier also correctly labelled them even though we gave an incorrect labeling. We

saw the following results.

37

Figure 5.2: TF*IDF of Handpicked Articles

As we can see the accuracy of classification for this model was very high in com-

parison to the model using artist names and using RSS classified training data. We

checked the training data tf-idf scores and we saw that many of the words which were

highly ranked were art related terms. This is due to human intuition choosing strictly

art related articles rather than articles loosely related to art.

In the end we found the SVM based on the Handpicked articles works best as they

were chosen from many different sources and were strictly art. Furthermore, they in-

cluded many broad art related terms in conjunction with music and news articles which

also included many strictly music and news related terms.

38

Chapter 6

ARTIST NAME EXTRACTION

6.1 Website Selection

Our first and most important step is to first identify websites which have the data which

we can extract. The reason that it is most important is that it determines the quality

of data we get and it also has an impact on the results we observe. Our criteria for

finding websites to crawl for artist name extraction were the following:

1. Gallery Website

2. Contains A Large Collection of Artist Names

3. Artist Name is Extractable (Not embedded In Image)

Based on these factors we started to discover websites. Some of the websites which we

crawled or used as a source of crawling include:

• www.artfacts.net and similar websites

• Google Places API to find extensive list of galleries

• Using search engine results to find more websites with names.

6.1.1 Large Dataset Websites

We are given large data set websites which have many different names which we classify

as known. We would like to extract these names so that we can differentiate between

39

known and unknown artists in different galleries. For this extraction task, we use a

scraping framework known as Scrapy which allows us to navigate website pages and

extract specific defined content based on the XPATH representation of specific HTML

tags. We use this to scrape around 200,000 artists from the known websites and store

it in our database.

6.1.2 Gallery Websites

We see from many examples that the majority of websites in the art/gallery domain

don’t follow any specific structure and each website is built upon personal preference.

Few examples represented show a part of different websites which we plan to crawl.

Figure 6.1: Example 1 of Website Structure

40

Figure 6.2: Example 2 of Website Structure

Figure 6.3: Example 3 of Website Structure

As we can see from the images, the websites all have different structures and have

no specified layout. The challenge lies in generalizing extraction of names for these

website using their HTML and keeping good accuracy which adapts to many different

layouts and structures. The challenges include:

41

1. Generalizing Extraction for Gallery Websites

2. Extracting Names with High Accuracy and Consistency

3. Avoiding Terms which might look like Names but are instead ”Junk”

Having these points in mind, we started to analyze the HTML of all these similar

websites. We noticed a trend that the websites follow which we outline in the following

sample image.

Figure 6.4: General Outline of Gallery Website

We see that artist names are usually in a list of some sort, either individually or

with and image and they are the most dense area in the website page. Furthermore, we

see however that many terms that look like artist names, but however are not such as:

42

About Us, Contact Us, Past Exhibitions, New York etc. are included in such HTML

documents. To make an algorithm for this we have to first parse the HTML, iterate

the DOM and manipulate the DOM using a query language called XPATH and extract

terms and analyze them.

We present an algorithm which eliminates them. Related Algorithms in extracting

names use linguistic analysis and natural language processing, however this will not be

useful in this case as they are presented in a different fashion in the art related domain.

6.2 Extraction

6.2.1 Algorithm

We start by fetching the HTML document from the gallery website, and we filter the

artist URL based on many different regular expressions based on our observations. We

then use the following simplified regular expression to filter terms which look like names

in the HTML document:

(?<=>)[a−zA−Z]+ [a−zA−Z]+(?=<)

In simple terms, it is a two worded term which is enclosed in HTML tags (Names with

more than two words or other alphabets can be added to this as well without much

modification). We then run the following algorithm to get rid of the ”Bad terms” which

are present in the HTML documents which can skew the results for artist score.

We start by first writing an XPATH query which iterates and finds HTML elements

based on the query. We start by finding the Least Common Ancestor HTML Tag of

all pairs of these terms and store it. We then iterate through all these starting from

43

HTML tags which have the least amount of terms that is greater than 1. We then use

the following heuristic based on our observations:

1. If the HTML element has less than k in our case we set this to the average number

of elements in a menu which look like names. In our case we calculated it to be

3 terms. If we see this HTML block then we guess that it is a menu with high

probability and not a list of artist names as we see that they come in lists which

have many of them bunched together.

2. Since we are iterating from smallest number of terms to largest, if we see an

HTML Element with x terms and then next HTML Element has x+1 or x+2

terms we see that they are outlying junk terms for example: Follow Us, About

Us. etc.

3. Thirdly, we use common art related terms extracted from art related articles.

We find terms sorted based on their tf-idf score and choose the top-k. We then

eliminate terms or HTML Elements filled with terms based on a threshold for

occurrences.

4. Lastly, we use an element of learning to detect junk terms. Every time we see a

junk term in a gallery we add it do a database. We see that as many of these

terms accumulate over time the likelihood that the junk terms appear again and

again are really high. We then use this to eliminate terms or HTML Elements

filled with terms based on a threshold for occurrences.

6.2.2 Example

Here we present an example visually of how the algorithm works. We are given the

following HTML Document:

44

Listing 6.1: Example of General Gallery Website HTML

<html>

<body>

<div class="header">

 Home

 Artists

 Exhibition

 Past Exhibitions

 Current Exhibition

 Upcoming Exhibition

</div>

<div class="content">

Coy Cole

Neil Hilger

Armando Melin

Jordan Jeppson

Phillip Neace

Ahmed Merriweather

Nathan Eshbaugh

Myron Paterno

Clifton Devine

Jarrett Lyall

Keven Yount

Cortez Isherwood

Hank Cusick

Stefan Glynn

Bert Aylesworth

Johnathon Mcintyre

Laurence Mcgowin

Minh Hornsby

Denny Tacker

Maria You

<div>Follow Us</div>

</div>

<div class="footer">

 Contact Us

 About Us

45

</div>

</body>

</html>

We then filter out all terms based on the regular expression mentioned above, which

in this case is all the terms. We then find the LCA between all pairs of terms which

gives the following HTML Blocks sorted from smallest to largest:

Listing 6.2: Block 1 of HTML Extraction

 Contact Us

 About Us

Listing 6.3: Block 2 of HTML Extraction

 Home

 Artists

 Exhibition

 Past Exhibitions

 Current Exhibition

 Upcoming Exhibition

Listing 6.4: Block 3 of HTML Extraction

Coy Cole

Neil Hilger

Armando Melin

Jordan Jeppson

Phillip Neace

Ahmed Merriweather

Nathan Eshbaugh

Myron Paterno

Clifton Devine

Jarrett Lyall

Keven Yount

Cortez Isherwood

46

Hank Cusick

Stefan Glynn

Bert Aylesworth

Johnathon Mcintyre

Laurence Mcgowin

Minh Hornsby

Denny Tacker

Maria You

Listing 6.5: Block 4 of HTML Extraction

<div class="content">

Coy Cole

Neil Hilger

Armando Melin

Jordan Jeppson

Phillip Neace

Ahmed Merriweather

Nathan Eshbaugh

Myron Paterno

Clifton Devine

Jarrett Lyall

Keven Yount

Cortez Isherwood

Hank Cusick

Stefan Glynn

Bert Aylesworth

Johnathon Mcintyre

Laurence Mcgowin

Minh Hornsby

Denny Tacker

Maria You

<div>Follow Us</div>

</div>

Listing 6.6: Block 5 of HTML Extraction

<body>

<div class="header">

 Home

 Artists

 Exhibition

 Past Exhibitions

47

 Current Exhibition

 Upcoming Exhibition

</div>

<div class="content">

Coy Cole

Neil Hilger

Armando Melin

Jordan Jeppson

Phillip Neace

Ahmed Merriweather

Nathan Eshbaugh

Myron Paterno

Clifton Devine

Jarrett Lyall

Keven Yount

Cortez Isherwood

Hank Cusick

Stefan Glynn

Bert Aylesworth

Johnathon Mcintyre

Laurence Mcgowin

Minh Hornsby

Denny Tacker

Maria You

<div>Follow Us</div>

</div>

<div class="footer">

 Contact Us

 About Us

</div>

</body>

We then start with the smallest block as see that it has number of terms to be 2 so

we add the terms to the list of bad terms based on condition 1 of the algorithm. We

then go to block two and we see that based on condition 3 and 4 of the algorithm that

these are common domain related terms and we have seen them in the past. So we

further classify this bad terms. We then go to block three and we see that it satisfies

48

all conditions and we add it to the list of good terms. In Block 4 we see the new term

”Follow Us” and we see that based on condition 2 of the algorithm that it is an outlying

term and we classify it as bad. In Block 5 there is nothing new so we continue and end

the algorithm.

6.2.3 Analysis

To start the accuracy analysis, we start with a sample of 38 random galleries chosen

from Chelsea, Manhattan which have a dedicated artist page. We then started to run

our algorithm on these galleries and see the percentage of extracted terms with the total

number of terms on the website, the missed terms which the algorithm didn’t extract

as well as the terms which are classified as bad which the algorithm extracted. In Table

1 we can see the data we extracted:

We normalized the counts and we can see in the graph Figure 1 the results. As we

can see the majority of the names from the websites were correctly extracted.

49

Figure 6.5: Names Accuracy

In fact, we can see that the algorithm is accurate for extracting names from the

majority of website. However we can see that there are many websites which dont give

any results for extracted names. We look at few cases below:

50

Figure 6.6: Example 1 of Gallery which is difficult to extract

51

Figure 6.7: Example 2 of Gallery which is difficult to extract

We can see above that the names in the galleries are very sparse and there is not

much density in the names. Another example is galleries which have text and names

embedded in such a way that it is difficult to extract names with a simple regular

expression and will require a much longer one.

52

Figure 6.8: Example 3 of Gallery which is difficult to extract

Figure 6.9: Example 4 of Gallery which is difficult to extract

Lastly, many websites have artist names embedded in images. This makes it difficult

53

to extract names because they dont match the regular expression.

Figure 6.10: Example 5 of Gallery which is difficult to extract

54

Figure 6.11: Example 6 of Gallery which is difficult to extract

55

Table 6.1: Name Extraction

Website Extracted Bad Terms Total

gagosian.com 107 0 108

michaelrosenfeldart.com 0 0 100

rushphilanthropic.org 79 1 80

a-forestgallery.com 0 0 51

gladstonegallery.com 49 0 49

antonkerngallery.com 49 0 49

davidzwirner.com 43 0 43

hellergallery.com 37 0 37

tanyabonakdargallery.com 34 0 34

viridianartists.com 33 0 33

paulkasmingallery.com 32 0 32

andrearosengallery.com 29 0 29

galleryhenoch.com 28 0 28

princestreetgallery.com 21 0 27

zsandh.com 27 0 27

petzel.com 27 0 27

maryboonegallery.com 0 0 26

joshualinergallery.com 21 0 25

luhringaugustine.com 24 0 24

303gallery.com 24 0 24

kimfostergallery.com 24 0 24

garveysimonartaccess.com 23 0 23

kipsgallery.comartists 16 0 21

saulgallery.com 20 0 20

skylightgallerynyc.com 15 0 19

weisskatz.gallery 0 0 17

gallery138.com 0 0 14

emmanuelfremingallery.com 13 0 13

claireoliver.com 13 0 13

galerieprotege.com 13 0 13

marlboroughchelsea.com 12 0 12

gallery151.com 11 0 11

koenigandclinton.com 10 0 10

algusgreenspon.com 7 0 7

taymourgrahne.com 7 0 7

fredtorres.com 0 0 5

ivybrowngallery.org 0 0 3

56

Chapter 7

MEDIA RANKING

Now that we have extracted the names and articles and have properly classified them,

out next goal is given an unknown artist and a list of articles relating to that artist,

we would like to determine their ranking. For this we have to take into account many

different factors such as:

• The reputation of the source of each of the articles.

• Relatedness of the sources to our topic which is art

• Article relevance and dedication to the artist.

Based on these very important requirements we started to build the score for each

of them. We looked and tested multiple approaches for each of these requirements.

7.1 Source Ranking

7.1.1 Traffic Based

Our first method to calculate the reputation for each source was to base it on the

properties of the source which included: Traffic Signal, Percentage of Art Articles, and

Number of Articles. Intuitively, this would make sense for ranking sources. One popu-

lar metric used on the web to estimate website traffic is: Alexa Rank. Since traffic is

57

an important measure for website reputation we assumed that this would make sense.

We used this in conjunction with other features which we calculated such as number

of articles collected from the source, and percentage of articles related to art from all

the articles based on classification by SVM as we discussed in Chapter 5. Given that

we had these features our next task was to rank the sources based on these signals. We

took the Machine Learning approach and gave some training data of the final ranking

of some of the sources based on common knowledge of art sources. We then used the

method of linear regression introduced in chapter 2, to find the hyperplane that best

represented the weights for the features we provided as input. We then got the following

data:

What we observed is the following: Many of the famous news publications were

ranked on the top such as nytimes.com, theguardian.com, npr.com. Since an artists

coverage in these news sources mean that the artist has a high reputation either for a

long time or recent reputation. However, we encountered two major issues with this

approach. Firstly, we noticed that websites such as hyperallergic.com and whitney.com

didn’t rank as high. Given that these are niche art magazines and have a high repu-

tation in the art related domain, they should have been given a higher ranking. The

second issue we encountered was that although famous news publications have a higher

traffic than most of the niche magazines, their traffic is mostly for news and business

rather than for art. Therefore, their traffic ranking is not accurate and will be skewed

towards non-art related content. Therefore we needed to find a more accurate way to

find the reputation of each source.

58

7.1.2 Reference Based

To fix the issue of ranking not based on traffic but based on quality of art coverage, we

look to a more concrete feature which takes this into account. Since one of the most

important aspect of the reputation of a source is based on how often it is referenced, we

choose Wikipedia as our source by which we base our reference on. Since Wikipedia is

very strict with users choosing their references and would not let unknown sources such

as blogs to be used as evidence for artist biographies and art related news. Therefore

we can say that the reputation of an article can be based on its number of references

over all of Wikipedia. This however is not enough because the references can be based

on non art related articles. To fix this we filter for articles in Wikipedia which are art

related and the source appears as a reference. Doing this we found some of the results

as follows in Table 7.1.

As we can see, there are many big news publications on the top, however there are also

many niche art news magazines and websites such as brooklynrail.com, complex.com

and related websites. As we can see this is a good measure of trust for a given source

because it is based on real world references to the source and is based on reliable editing

from Wikipedia editors. Since it grows exponentially with the number of references for

sources, we set the score of the source to log(number of references)

7.2 Article Relevancy

Now that we have the domain score, we wish to find out the relevancy of the artist for

all the articles s/he are mentioned in. The next goal is to go through all the articles

which were crawled from a given artist and rank the relevancy of the article. To do this

we first started to observe the relevancy of the articles manually for a random set of

artists. We found intuitively and based on our observations that given the contents of

59

the article which include the title and the body, if the artist is mentioned in the title

then it is most certainly relevant to the artist. This is based on the observation that if

the article contents are classified as art and if the artist is mentioned then we say that

with a high probability it is relevant to the artist and it gets a really high relevancy

score. If however the artist is not mentioned in the title then we calculate the article

relevancy based on the number of times the artist appears in the article. Therefore,

based on these conditions we find the relevancy of the article for each artist.

7.3 Artist Score

Since, we have found the two main components to each article in the database which

is domain score based on references and articles relevance score based on the relevancy

to the article, our final task is to combine these metrics and define a new score for each

artist based on this. We start with finding all the articles related to a particular artist

and we calculate the domain score and article relevancy for each article. Then based on

all the scores from all the articles we combine it. However, the issue is that high ranking

artists might have a low score because they are mentioned in many articles with little

relevance. For example, the famous artist, Andy Warhol has thousands of articles while

other unknown artists don’t have many articles related to them. However Andy Warhol

has hundreds of articles which have a low article relevancy score and unknown artist

might have few articles but with high relevance. To counter this we add a factor to the

equation which is proportional to the number of articles an artist has and therefore the

popularity of the artist is included in the score. We find the score to be:

artist score = avg(source rank∗(relevancy of article to artist)∗(recency of article))

60

Table 7.1: Ranking of Domains based on References

domain wikipedia art references

nytimes.com 15000

blogspot.com 11700

wordpress.com 7070

latimes.com 5930

telegraph.co.uk 5780

theguardian.com 4480

dailymail.co.uk 3550

huffingtonpost.com 3410

npr.org 2650

tumblr.com 1870

artnet.com 1460

nymag.com 1210

newyorker.com 850

typepad.com 838

complex.com 721

vulture.com 707

moma.org 657

vice.com 474

laweekly.com 456

artinfo.com 294

artforum.com 205

frieze.com 189

whitney.org 169

art-magazin.de 161

popsugar.com 145

brooklynrail.org 123

e-flux.com 122

artsjournal.com 121

61

Chapter 8

FUTURE WORK AND CONCLUSION

8.1 Similar Domains

The application we made which reflects the topics in thesis is related to the domain of

art. Since these algorithms are domain specific however general enough to be applied

to other domains easily. One case which we delve into is Restaurant Menu Items. Since

many restaurant websites have a similar structure to art gallery websites where they

have a page dedicated to menu, we can crawl menu items from these websites as our

”names”. We can then crawl aggregate and extract articles from food related websites

in a similar fashion to how we did for art related websites. We can then use articles

and calculate scores for food. Therefore we can do a similar idea where given an area,

the application crawls restaurants in the area and find the ”hottest” foods in the area

based on ranking from food related websites.

8.2 Extensibility

Since the application that is built is fairly basic it can easily be extended to include a

number of features. One feature which can easily be added is the ability to automatically

detect sources form articles. We can find links in the current articles and see related

domains and we can automatically add them. Over time the articles for the sources will

accumulate and we can either keep the source or remove it based on few signals like art

related content percentage and if any of the artists appear on any of the articles from

62

that source.

8.3 Conclusion

Art Ticker can be helpful to a collector or art agent in identifying new emerging artists.

It can also be used by artists to see how they stand in comparison to other artists. To

our knowledge it is first such system which can dynamically and automatically assist

in the process of artist discovery.

Art Ticker is based on two phase technique: first we extract names of artists from

thousands of galleries around the world, then we measure the media presence score of

these artists in the news feed which we generate from hundreds of art news sources.

These news sources include major media outlets as well as small, niche art publications.

To this aim we develop the extraction methodology which benefits from homogeneous

structure of gallery web sites. In order to clean the art news feed we utlize support vec-

tor machines (SVM) to distinguish visual arts publications (what we are interested in)

from the music and movies articles which are often found in news sources that we utlize.

1. Objects (in our case artists) are presented in possibly very large number of simi-

larly structured web sites. Thus, information is not aggregated

2. Media presence is an indication of emergence, of a positive trend

For example, stand up comedians often perform in small clubs, before making it big

(small chance!), theater actors, musicians performing in clubs, public lectures (listed at

small venues like libraries) with lecturers as entities to be discovered, finally professors

who are listed on sites of academic departments (who generates most buzz?), Prod-

ucts (gadgets, books, movies) usually appear on large aggregator sites such as Amazon,

63

Netflix, IMDB etc are are less likely candidates of our two phase process (Extract first,

then rank for media presence).

The question might arise: Is media score a good predictor of emerging and ”making

it”? This is an open question which requires much longer data collection and data

validation and is a good foundation for a future study.

64

Bibliography

Wolfgang Nejdl Christian Kohlschtter, Peter Fankhauser. Boilerplate detection using
shallow text features. 2010.

Thorsten Joachims. Text categorization with support vector machines: Learning with
many relevant features. 1998.

Matthew E. Peters and Dan Lecocq. Content extraction using diverse feature sets.
2013.

Juan Ramos. Using tf-idf to determine word relevance in document queries. 2003.

Jakob Busk Srensen. Support vector machines for pixel classification. 2014.

Peter Hall T. Tony Cai. Prediction in functional linear regression. 2006.

Jiawei Han Tim Weninger, William H. Hsu. Cetr - content extraction via tag ratios.
2010.

Anastasios P. Ventouris. A news aggregator using semantic and data mining technolo-
gies. 2014.

Xijin Tang Wen Zhang, Taketoshi Yoshida. Tfidf, lsi and multi-word in information
retrieval and text categorization. 2008.

Tie-Yan Liu Ming-Feng Tsai Hang Li Zhe Cao, Tao Qin. Learning to rank: From
pairwise approach to listwise approach. 2007.

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Objective
	Structure

	BACKGROUND
	Information Retrieval
	Text Mining Algorithm
	Introduction to TF-IDF
	How TF-IDF Works

	Extraction Algorithm
	Feature 1 - Shallow Features(ST)
	Feature 2 - Tag Ratio(CETR)
	Feature 3 - Tag Classes(IC)

	Machine Learning
	Theory of Support Vector Machines
	Introduction to SVM
	How SVM Works
	Perceptron
	SVM
	Overlapping Classes
	Feature Selection for Text

	Linear Regression
	RankSVM

	DATASET
	Collection
	Data Set
	News Aggregators
	Non-RSS
	RSS

	Extraction

	DATA MODEL
	Useful Data Extraction
	Creating Data Models
	Defining Schema

	CLASSIFICATION
	Classification by Names
	Classification by Names and Negative Names
	Classification by SVM Automatically
	Classification by SVM Handpicked

	ARTIST NAME EXTRACTION
	Website Selection
	Large Dataset Websites
	Gallery Websites

	Extraction
	Algorithm
	Example
	Analysis

	MEDIA RANKING
	Source Ranking
	Traffic Based
	Reference Based

	Article Relevancy
	Artist Score

	FUTURE WORK AND CONCLUSION
	Similar Domains
	Extensibility
	Conclusion

