
© 2016

Binh Quang Pham

ALL RIGHTS RESERVED

ARCHITECTURAL SUPPORT FOR EFFICIENT
VIRTUAL MEMORY ON BIG-MEMORY SYSTEMS.

BY BINH QUANG PHAM

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Abhishek Bhattacharjee

and approved by

New Brunswick, New Jersey

January, 2016

ABSTRACT OF THE DISSERTATION

Architectural Support for Efficient Virtual Memory on

Big-Memory Systems.

by Binh Quang Pham

Dissertation Director: Abhishek Bhattacharjee

Virtual memory is a powerful and ubiquitous abstraction for managing memory. How-

ever, virtual memory suffers a performance penalty for these benefits, namely when

translating program virtual addresses to system physical addresses. This overhead had

been limited to 5-15% of system runtime by using a set of sophisticated hardware so-

lutions, but has increased to 20-50% for many scenarios, including running workloads

with large memory footprints and poor access locality or using deeper software stacks.

My thesis aims to solve this problem so that the memory systems can continue to

scale without being hamstrung by the virtual memory system. We observe that while

operating systems (OS) and hypervisors have a rich set of components in allocating

memory, the hardware address translation unit only maintains a rigid and limited view

of this ecosystem. Therefore, we seek for patterns inherently present in the memory

allocation mechanisms to guide us in designing a more intelligent address translation

unit.

First, we realize that OS memory allocators and program faulting sequence tend to

produce contiguous or nearby mappings between virtual and physical pages. We propose

Coalesced TLB and Clustered TLB designs to exploit these patterns accordingly. Once

detected, the related mappings are stored in a single TLB entry to increase the TLB

ii

reach. Our designs help reduce TLB misses substantially and improve performance as

a result.

Second, we see that there are often tradeoffs between reducing address translation

overheard and improving resource consolidation in virtualized environments. For exam-

ple, large pages are often used to mitigate the high cost of two-dimensional page walks,

but hypervisors usually break large pages into small pages for easier sharing guests

memory. When that happens, the majority of those small pages still remain aligned.

Based on this observation, we propose a speculative TLB technique to regain almost

all performance loss caused by breaking large pages while running highly consolidated

virtualized systems.

iii

Acknowledgements

Seven years ago, I was very happy when I received an admission letter to pursue a PhD

degree in the US. Fresh out of college, I had little idea of what my research area would

be and what doing a PhD entailed. Looking back, I find that doing a PhD is one of

the most challenging yet rewarding experience of my life. As I am coming to the end

of my PhD journey, I would like to take a moment and acknowledge the many people

that I am thankful for in my life.

First and foremost, I wish to thank my advisor, Dr. Abhishek Bhattacharjee for

his guidance in developing this thesis. I am grateful to him for teaching me how to

do research, from formulating ideas, conducting experiments, to presenting the final

results. We have had many discussions in the last few years working together – I

always came out with a clear idea of what to do next and felt strongly motivated to go

to the end of the road after each and every discussion.

I owe a very special thank you to my parents for their unconditional love and

encouragement throughout my life. To my sisters, Thuy and Ha, my brother-in-laws

Kien, Hieu, my nephews and niece for their love and support. To Hue for always being

there for me and sharing the ups and downs of a PhD student’s life. Whenever I feel

tired, thinking of them gives me strength to continue and try.

I also wish to thank:

• Dr. Gabriel H. Loh for being a great mentor and collaborator during and after my

internship at AMD. I am fortunate enough to work with him on a major part of

my thesis, and I learn a great deal from him, whether it is understanding technical

concepts, generating ideas, or getting work done in the most efficient way

• Dr. Thu Nguyen, Dr. Ricardo Bianchini, and Dr. Martha Kim for serving as

my committee members and their valuable feedback while I am working on this

iv

thesis

• Dr. Yasuko Eckert and Dr. Trey Cain for being amazing mentors during my

internships at AMD and Qualcomm. These internship experiences help me better

understand how research ideas can and should be applied to the outside world

• Members and former members of the RUARCH Lab for helping me complete

the projects that lead to this thesis, for attending endless practice talks and

proofreading my paper submissions as well as this thesis

• Department of Computer Science at Rutgers University for being my second home

in the US.

v

Dedication

To my family.

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Tables . xii

List of Figures . xiii

1. Introduction . 1

1.1. Motivation . 1

1.2. Our goal . 4

1.3. Profiling Address Translation Overhead 4

1.4. Dissertation Structure . 6

1.5. Contributions . 7

2. Exploiting Sequential Locality in Page Translations for Large Reach

TLBs . 9

2.1. Introduction . 9

2.2. Background and Related Work . 10

2.2.1. Prior TLB Enhancement Techniques 10

2.2.2. Superpaging Benefits and Problems 11

2.2.3. TLB Subblocking and Speculation 12

2.2.4. Our Approach . 14

2.3. Understanding Page Allocation Contiguity 15

2.3.1. Defining Page Allocation Contiguity 15

2.3.2. Sources of Page Allocation Contiguity 15

vii

2.3.2.1. Process address space. 16

2.3.2.2. Buddy allocation. 17

2.3.2.3. Memory compaction. 18

2.3.2.4. Transparent hugepage support. 19

2.3.2.5. Putting Things Together. 20

2.3.2.6. System Load and Memory Fragmentation. 21

2.4. CoLT Design and Implementation . 21

2.4.1. CoLT-SA Design and Implementation 22

2.4.1.1. Overall operation. 22

2.4.1.2. TLB set selection. 23

2.4.1.3. Lookup operation. 24

2.4.1.4. Practical coalescing restrictions. 24

2.4.1.5. Replacement, invalidations, and attribute changes. . . . 25

2.4.2. CoLT-FA Design and Implementation 25

2.4.2.1. Overall operation. 26

2.4.2.2. Lookup operation. 27

2.4.2.3. Replacement, invalidations, and attribute changes. . . . 28

2.4.3. CoLT-All Design and Implementation 28

2.4.3.1. Overall operation. 28

2.4.3.2. Lookup operation. 29

2.4.3.3. Replacement, invalidation, and attribute changes. . . . 29

2.5. Methodology . 30

2.5.1. Real-System Characterizations of Page Allocation Contiguity . . 30

2.5.1.1. Experimental platform and methodology. 30

2.5.1.2. Evaluation workloads. 31

2.5.2. Simulation-Based CoLT Evaluations 32

2.5.2.1. Simulated system. 32

2.5.2.2. Evaluation workloads. 34

2.6. Real-System Characterizations of Page Allocation Contiguity 34

viii

2.6.1. Superpaging, Memory Compaction 34

2.6.2. No Superpaging, Memory Compaction 35

2.6.2.1. No Superaging, Low Memory Compaction 36

2.6.3. Superpaging, Memory Compaction, Memhog 36

2.6.4. No Superpaging, Memory Compaction, Memhog 38

2.6.5. Summary of results. 38

2.7. CoLT Evaluations . 39

2.7.1. TLB Miss Rate Analysis . 39

2.7.1.1. CoLT TLB miss rates. 39

2.7.1.2. Impact of CoLT-SA’s indexing scheme on TLB miss rates. 41

2.7.1.3. Impact of bringing missing entries into L2 TLB for CoLT-

FA and CoLT-All. 42

2.7.1.4. Studying CoLT’s effectiveness at higher associativities. 44

2.7.2. Performance Analysis . 45

2.8. Summary . 46

3. Exploiting Clustered Locality in Page Translations for Large Reach

TLBs . 48

3.1. Introduction . 48

3.2. Related Work and Our Approach . 49

3.2.1. Spatial Locality in Page Table Entries 49

3.2.2. Other Techniques to Exploit Page Table Spatial Locality 50

3.2.3. Our Approach: Clustered TLBs 51

3.3. Weak Spatial Locality in Page Tables 53

3.3.1. CoLT-like Contiguous Spatial Locality 53

3.3.2. Clustered Spatial Locality . 54

3.3.3. Impact of Memory System Fragmentation 56

3.4. The Multi-granular TLB . 56

3.4.1. Clustered TLB . 56

ix

3.4.2. Multi-granular TLB Organization and Operation 60

3.4.3. Frequent Value Locality in the Address Bits 61

3.4.4. Hardware Cost . 65

3.4.4.1. Basic Multi-granular TLB Hardware Cost 65

3.4.4.2. Enhanced Multi-granular TLB Hardware Cost 67

3.5. Experimental Methodology . 68

3.5.1. Workloads . 68

3.5.2. Simulation Infrastructure . 69

3.5.2.1. Functional Simulator 69

3.5.2.2. Performance Evaluation 69

3.6. Multi-granular TLB Evaluations . 70

3.6.1. Understanding Changes in Hit Rates 70

3.6.2. Overall Performance Improvements 71

3.6.3. Prefetching versus Capacity Improvements 72

3.7. Sensitivity Studies . 73

3.8. Summary . 76

4. Supporting Large, Yet Agile Pages in Virtualized Systems 78

4.1. Introduction . 78

4.2. Background . 80

4.3. Motivation and Our Approach . 81

4.4. Sources of Page Splintering . 85

4.5. GLUE Microarchitecture . 88

4.5.1. TLB Organization . 88

4.5.2. Speculative TLB Entries . 89

4.5.3. TLB Operations . 90

4.5.4. Speculation Details . 91

4.5.5. Mitigating Verification Costs . 93

4.5.6. Mitigating Mis-speculation Overheads 95

x

4.6. Experimental Methodology . 96

4.6.1. Workloads . 97

4.6.2. Trace Collection . 97

4.6.3. Functional simulator . 98

4.6.4. Analytical Performance Model 98

4.7. Experimental Results . 100

4.7.1. GLUE Performance Results: Single VM 100

4.7.2. GLUE Performance Results: Multiple VMs 103

4.7.3. Characterizing Page Splintering Sources 105

4.7.4. Importance of GLUE in Future Systems 105

4.7.5. Understanding GLUE’s Limitations 106

4.8. Related Work . 107

4.9. Summary . 107

5. Conclusion . 109

References . 111

xi

List of Tables

3.1. Comparison of Hardware Cost . 66

3.2. Enhanced MG-TLB Hardware Cost . 67

3.3. Summary of benchmarks used in our studies 69

xii

List of Figures

1.1. Ratio between last level cache capacity and last level TLB reach. 3

1.2. (a) Fraction of runtime spent on page table walks; (b) Fraction of runtime

spent on looking in the second level TLB and page table walks for 4KB

pagesize . 5

1.3. (a) Fraction of runtime spent on page table walks; (b) Fraction of runtime

spent on looking in the second level TLB and page table walks for 2MB

pagesize . 6

2.1. Operation of complete sub-blocking and partial sub-blocking versus CoLT

TLB. For each approach, we show the structure of a single entry and a

page table with the PTEs that can be exploited. 12

2.2. Virtual memory areas in process address space. 16

2.3. (a) Buddy allocator used for physical page allocation. Already allocated

pages are shaded, while free pages are tracked by the free lists. (b) Buddy

allocator state after an allocation for 2 pages is finished. 17

2.4. The memory compaction daemon tracks movable and free memory pages,

exchanging them to eliminate fragmentation. 18

2.5. Interaction between program’s fault order and memory management. . . 20

2.6. CoLT for set-associative L1 and L2 TLBs. 22

2.7. CoLT for the fully-associative superpage TLB. 26

2.8. Combined CoLT for all TLBs. 28

2.9. Summary of benchmarks used in our studies. 31
2.10. THS on, normal memory compaction contiguity CDF. 34

2.11. THS off, normal memory compaction contiguity CDF. 35

2.12. THS off, low memory compaction contiguity CDF. 36

xiii

2.13. Average contiguity for THS on, normal memory compaction with varying

Memhog. 37

2.14. Average contiguity for THS off, normal memory compaction with varying

Memhog. 38

2.15. Percentage of L1 TLB misses eliminated using CoLT-SA, CoLT-FA, and

CoLT-All normalized to baseline TLB misses. 39

2.16. Percentage of L2 TLB misses eliminated using CoLT-SA, CoLT-FA, and

CoLT-All normalized to baseline TLB misses. 40

2.17. Effect of left-shifting index on L1 misses. 42

2.18. Effect of left-shifting index on L2 misses. 43

2.19. Percentage of baseline misses eliminated by CoLT-SA when increasing

associativity. 44

2.20. CoLT-SA, CoLT-FA, and CoLT-All performance improvements compared

to perfect TLBs with 100% hit rates. 45

3.1. The figure on the left shows the presence of contiguous spatial locality

(sequential groups) in a page table. The figure on the right shows that

if clustered locality is also observed, the entire page table can be more

efficiently covered. 49

3.2. Operation complete sub-blocking, partial sub-blocking, and CoLT versus

clustered TLB. For each approach, we show the structure of a single entry

and a page table with the PTEs that can be exploited. 50

3.3. Interactions between program faults order and kernel’s memory manage-

ment. 52

3.4. Cumulative distribution functions comparing the opportunity of CoLT-

style contiguous spatial locality versus the clustered spatial locality that

we target. In general, clustered spatial locality covers a bigger portion

of the page table than contiguous spatial locality. 54

3.5. (a) Clustered TLB entry format, (b) Look-up operation 58

xiv

3.6. (a) Coalescing is performed on TLB fill, (b) Multi-granular TLB consists

of a clustered TLB and a small conventional TLB. 59

3.7. The number of unique values when only considering the x upper-most

bits for the VPN (a) and PPN (b), as x is varied. The upper 16 VPN

bits and 20 PPN bits change rarely in our experiments. 62

3.8. (a) Hardware organization for the Virtual Upper Bits Table (VUBT) and

an encoded TLB entry, and (b) a four-way TLB with three encoded ways

and one un-encoded way. 63

3.9. L2 TLB misses eliminated by the baseline multi-granular TLB (MG-

TLB), enhanced MG-TLBs with structures to exploit redundant most

significant VPN and PPN bits (en-MG-TLB) and CoLT. MG-TLB and

en-MG-TLB comprehensively eliminate more misses than CoLT. 70

3.10. Performance improvements when using CoLT and en-MG-TLB. Our ap-

proach outperforms CoLT in every single case. 72

3.11. Separating the prefetch and capacity benefits of MG-TLBs. 73

3.12. TLB miss-elimination rates assuming that the clustered TLB is C2, C3

(our default assumption so far), and C4 74

3.13. TLB miss-elimination rates for en-MG-TLB as the cluster threshold is

changed for insertion into the clustered TLB. 75

3.14. TLB miss eliminations for different relative sizes of the small singleton

PTE’s TLB and the clustered TLB in MG-TLB. The legend shows the

ratio of the MG-TLB area for the small conventional TLB to the area

for the clustered TLB. 76

4.1. Percent of execution time for address translation, for applications on a

Linux VM on VMware’s ESX server, running on an x86-64 architecture.

Overheads are 18% on average despite the fact that the OS uses both

4KB and 2MB pages. 81

xv

4.2. Fraction of TLB misses serviced from SPPs backed by a small page in

guest and hypervisor (GSmall-HSmall), small in guest and large in hyper-

visor (GSmall-HLarge), large in guest and small in hypervisor (GLarge-

HSmall), and large in both (GLarge-HLarge). 82

4.3. Guest large page GVP4-7 is splintered, but SPPs are conducive to inter-

polation. A speculative TLB maps the page table in two entries (using a

speculative entry for GVP4-7) instead of four entries (like a conventional

TLB). 84

4.4. Lookup operation on a speculated TLB entry. A tag match is performed

on the bits corresponding to its 2MB frame. On a hit, the 2MB frame

in system physical memory is concatenated with the 4KB offset within it. 90

4.5. The mechanics of TLB speculation. We show the case when (a) we

speculate from the 2MB L1 TLB, and (b) we speculate from the L2 TLB. 91

4.6. Timelines for (a) speculating from the 2MB L1 TLB correctly, and ver-

ifying this in the L2 TLB; (b) mis-speculating from the 2MB L1 TLB,

and verifying this in the L2 TLB; (c) speculating from the 2MB L1 TLB

correctly, and verifying with a page table walk; (d) mis-speculating from

the 2MB L1 TLB, and verifying with a page table walk; (e) speculating

from the L2 TLB correctly, and verifying with a page table walk; and (f)

mis-speculating from the L2 TLB, and verifying with a page table walk. 92

4.7. Storing clusters of bits (in otherwise wasted L2 TLB entry bits) to elim-

inate the need for verification-induced page table walks. 96

4.8. Performance benefits of L1-only, L1-L2 speculation, compared to the

ideal case without TLB miss overheads. Performance is normalized to

the baseline single-VM. 100

xvi

4.9. Average (a) performance improvements when inserting the non-speculative

4KB PTE, after correct speculation, in neither TLB (noAdd), the L1

TLB (addL1), the L2 TLB (addL2), or both (addL1L2), compared with

the ideal improvement; (b) number of L2 TLB accesses per kilo-instruction

(APKI) including verification compared to a baseline with speculation;

and (c) number of page table walks per kilo-instruction. 101

4.10. (a) Fraction of page table walks eliminated using clustered bitmaps in

speculative L2 TLB entries; and (b) fraction of the baseline L2 TLB

accesses and page table walks remaining on the critical path of execution

with TLB speculation. 102

4.11. Performance gains achieved by GLUE on a multi-VM configuration,

compared against the ideal performance improvement where all address

translation overheads are eliminated. 103

4.12. (a) Effect of page sharing and memory sampling turned on (allOn) in a

single VM versus all off (allOff) on page splintering; and (b) Effect of

inter-VM page sharing on page splintering in multi-VM settings. 104

xvii

1

Chapter 1

Introduction

This dissertation shows that significant overhead is spent handling address translation,

but the majority of this overhead can be eliminated by exploiting prevalent patterns

present in memory allocation mechanisms.

1.1 Motivation

As processor vendors embrace the era of big data, fields like scientific computing,

data mining, social networks, and business management depend on processing mas-

sive, multi-dimensional data sets. In this context, it is critical to re-evaluate virtual

memory, ubiquitous across computer systems today since it is a powerful abstraction for

allocating and managing memory with a flexible and clean programming model. Specif-

ically, virtual memory allows programmers to fully concentrate on finding solutions to

their problems as they do not have to worry about the underlying physical memory

layout as well as data movement between main memory and backing storage. Virtual

memory also provides isolation and protection between processes as each process op-

erates in its own address space. Furthermore, virtual memory promotes modularity

in development of complex programs, where individual modules in these programs can

be compiled separately and only linked together at runtime. Virtual memory achieves

these benefits by separating the virtual address space, which consists of identifiers used

by programs to reference information, from the physical address space, which contains

memory locations where information is actually stored.

2

Unfortunately, virtual memory suffers from a performance tax caused by this ab-

straction layer, namely when translating virtual addresses to physical addresses. There-

fore, it is crucial to keep this overhead as small as possible so that all of the programma-

bility benefits provided by virtual memory remain accessible to programmers. In fact,

according to Peter J. Denning, a pioneer in the field of virtual memory, address trans-

lation overhead should stay within 3% of hardware execution time in order for virtual

memory systems to be widely adopted by programmers [29].

To keep this overhead as small as possible, hardware vendors have come up with a set

of sophisticated solutions, including Memory Management Unit (MMU) with multilevel

TLBs, MMU caches, and hardware page table walkers tightly integrated with the core

pipelines and memory systems. Despite these efforts, translation overhead remains high

at 5% - 14% of system runtime [19,44]. The complex and multi-step translation process

attributes to this high overhead. At a high level, mappings between virtual addresses

and physical addresses are stored in page tables and managed by the operating system

(OS). Page tables are usually organized in a radix-tree format [1,2,5] with many levels.

Therefore, translating a virtual to physical address would involve multiple memory

accesses, which take several hundreds of CPU cycles to complete [44]. As fast address

translation is critical to virtual memory performance, modern processors usually rely on

Translation Lookaside Buffers (TLBs), which are on-chip, content-addressable caches, to

keep the most recently used virtual-to-physical mappings. Hits in TLBs often return the

physical address in a few clock cycles, whereas misses in TLBs default to the long latency

multi-level page table look up. Therefore, avoiding TLB misses is key to virtual memory

performance. Unfortunately, there are several noticeable trends in the memory systems

that tend to increase TLB misses and worsen the translation overhead as discussed

below.

First, application trends are aggressively pushing toward larger and larger mem-

ory requirements; to date about 2.5 quintillion bytes of data are created daily [41].

From large traditional databases to Internet-driven content, from graph analytics to

bioinformatics, the need to process and analyze huge amount of information is accelerat-

ing [16,32]. However, performance challenges associated with scaling up virtual memory

3

to support these growing application areas may significantly slow down progress.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2000 2002 2004 2006 2008 2010 2012 2014

L
L

C
/L

L
T

L
B

 R
a
ti

o

P3

P4

P4

P4

P4 Duo E6xxx

Duo E4xxx

Duo L7xxx i7-9xx

Duo E7xxx

Duo P9xxx

i7-8xx

i5-6xx

i7-8xxx

i7-9xxX

i3-21xx

i5-2xxx

i7-3930K

i7-2600

i7-39xxX

i7-3820

i3-3220

i5-3570S

i7-3820

i3-4340

i5-4670K

i7-4930K

i3-4360T

i5-4690K

i7-5930K

Figure 1.1: Ratio between last level cache capacity and last level TLB reach.

Second, the move toward expanding cache and physical memory size further in-

creases pressure on virtual memory systems and in particular, TLBs. Figure 1.1 plots

the ratio between the last level cache and TLB capacity in recent Intel processors. The

gap between cache and TLB capacity increased steadily from 2000 to 2011, with the

maximum ratio of 7x seen in core i7, 2011. Even though processor vendors have tried to

mitigate this gap, it remains high, currently at 4x in core i7, 2014. Besides, the adop-

tion of 3D stacked DRAM [40, 46, 62] and its use as a DRAM cache [47, 55, 56, 71, 81]

only worsen this ratio. Similarly, we have seen enormous efforts in architecting future

memory technologies [27,43,53,54,89] which make terabytes of memory possible. This

in turn puts tremendous pressure on the reach of any caching structures, including

TLBs, in modern processors.

Third, systems with many software layers, e.g. virtualization, are becoming more

popular [3]. The main benefits of using such systems are good process isolation and

resource consolidation. However, address translation overhead in these scenarios is likely

to increase significantly compared to native execution [7,19,26,34]. In fact, according to

a recent VMware study, TLB miss handling cost due to the hardware-assisted memory

management unit is the largest contributor to the performance difference between native

and virtual execution [26].

Fourth, the move toward supporting fully-shared virtual memory between CPUs

4

and GPUs (for example, as specified in the Heterogeneous Systems Architecture spec-

ification [52, 72]) further increases the pressure on virtual memory systems and TLBs.

The need to provide address translation services for potentially thousands of threads

will require architects to squeeze as much benefit out of every last bit of SRAM spent

on implementing TLBs.

In this new and diverse space, a good design should allow memory systems to scale

without being hamstrung by the virtual memory system. This thesis describes the key

designs in this space to achieve that goal.

1.2 Our goal

We propose intelligent TLB designs that reduce the address translation overhead signif-

icantly so that the memory systems can continue to scale in the presence of the virtual

memory system. Our key observation is while operating systems (OS) and hypervisors

have a rich set of components in allocating memory, the hardware address translation

unit only maintains a rigid and limited view of this ecosystem. Therefore, we seek for

patterns inherently present in the memory allocation mechanisms to help catch hard-

ware with the richness of software, thus produce a more intelligent address translation

unit.

1.3 Profiling Address Translation Overhead

We have profiled the address translation overhead for some of the key scenarios in

Section 1.1. This includes running workloads with large memory footprints on both

native as well as virtualized environments. We show our initial findings in Figure 1.2.

Figure 1.2 plots the fraction of application runtime spent on address translation

on native and virtualized environments. The evaluated systems use only 4KB page

size, which is the most popular pagesize on x86-64. All numbers are collected from

on-chip counter measurements. As multi-level TLBs are common in modern pro-

cessors [1, 2, 5], we show two translation overheads in Figure 1.2, namely the frac-

tion of runtime spent on accessing the second level TLBs after the first level TLB

5

0%

20%

40%

60%

80%

100%

m
cf

om
ne

tp
p
as

ta
r

xa
la
nc

bm
k

ca
ct
us

AD
M
ge

m
s

m
um

m
er tig

r

gr
ap

h5
00

tu
nk

ra
nk

ca
nn

ea
l

gu
ps av

g

A
T

O
 a

s
 a

 f
ra

c
ti
o

n
 o

f
ru

n
ti
m

e native virtual

(a)

0%

20%

40%

60%

80%

100%

m
cf

om
ne

tp
p
as

ta
r

xa
la
nc

bm
k

ca
ct
us

AD
M
ge

m
s

m
um

m
er tig

r

gr
ap

h5
00

tu
nk

ra
nk

ca
nn

ea
l

gu
ps av

g

P
W

O
 a

s
 a

 f
ra

c
ti
o
n

 o
f
ru

n
ti
m

e

native virtual

(b)

Figure 1.2: (a) Fraction of runtime spent on page table walks; (b) Fraction of
runtime spent on looking in the second level TLB and page table walks for 4KB
pagesize

misses and walking the page tables after the second level TLB misses in Figure 1.2a,

and the fraction of runtime spent on only walking the page tables in Figure 1.2b.

Benchmarks from different benchmark suites have been selected, including SPECcpu®

2006 (mcf, omnetpp, astar, xalancbmk, cactusADM, GemsFDTD) [39], bioinformat-

ics benchmarks (mummer, tigr) [8], graph processing (graph500, graph analytics)

[32,63], parallel benchmarks (canneal) [24], and the RandomAccess benchmark (gups)

[59]. As can be seen from Figure 1.2, all of the benchmarks have at least 20% transla-

tion overhead, and in some particular cases, e.g. mcf, cactusADM, graph500, gups,

they experience up to 60% translation overhead in native environments. This overhead

gets much worse, up to 80% of runtime, in virtualized environments.

One of the potential solutions to mitigate this high overhead is to use larger page

sizes, e.g. 2MB in x86 architecture. In general, there are three main benefits of using

large pages: lower TLB misses as a single large page is equivalent to 512 small pages,

shorter page walk latency as the number of page table levels to be visited is reduced by

one, and smaller page table footprint. Figure 1.3b plots the translation overhead when

using 2MB page size. As expected, translation overhead is reduced significantly com-

pared to using 4KB page size. However, there are several reasons why large pages are

not the universal solution. First, in Figure 1.3b, even though the translation overhead is

smaller than in Figure 1.2b, it remains high at 20% on average, and in some particular

6

0%

20%

40%

60%

80%

100%

m
cf

om
ne

tp
p
as

ta
r

xa
la
nc

bm
k

ca
ct
us

AD
M
ge

m
s

m
um

m
er tig

r

gr
ap

h5
00

tu
nk

ra
nk

ca
nn

ea
l

gu
ps av

g

A
T

O
 a

s
 a

 f
ra

c
ti
o

n
 o

f
ru

n
ti
m

e native virtual

(a)

0%

20%

40%

60%

80%

100%

m
cf

om
ne

tp
p
as

ta
r

xa
la
nc

bm
k

ca
ct
us

AD
M
ge

m
s

m
um

m
er tig

r

gr
ap

h5
00

tu
nk

ra
nk

ca
nn

ea
l

gu
ps av

g

P
W

O
 a

s
 a

 f
ra

c
ti
o
n

 o
f
ru

n
ti
m

e

native virtual

(b)

Figure 1.3: (a) Fraction of runtime spent on page table walks; (b) Fraction of
runtime spent on looking in the second level TLB and page table walks for 2MB
pagesize

benchmarks (e.g. mcf, cactusADM, gups), it is close to 40% of system runtime. Sec-

ond, large pages do not automatically scale with larger physical memory sizes. Third,

using large pages conflicts with agile, light-weight memory management mechanisms,

e.g. fine-grained protection or page sharing for consolidation. Fourth, if an application’s

working set is scattered over a wide address space range, large page TLB thrashing can

occur [16, 86]. System administrators may therefore disable the hypervisor’s ability to

back guest large pages [86].

1.4 Dissertation Structure

This dissertation proposes and evaluates several TLB organizations that not only reduce

the majority of address translation overhead, but also remain effective in the presence

of big memory footprint workloads and multi-dimensional translation process. There

are three main chapters:

The two chapters chapter 2 and chapter 3 are strongly related. In these works,

we observe that modern operating systems often rely on many software components to

manage memory, including buddy allocators, slab allocators, and memory compactors;

cumulatively, they allocate as many contiguous (or least spatially-adjacent) physical

pages to contiguous (or least-spatially adjacent) virtual pages as possible to reduce

memory fragmentation. However, MMUs is not aware of this, hence only associates a

7

single virtual page to a single physical page. We proposes two novel TLB organiza-

tions that maintains an elastic representation of virtual memory. Our designs exploits

patterns where many translations exhibit ”sequential” or ”clustered” spatial locality

in which a group or cluster of contiguous or nearby virtual pages map to a similarly

contiguous or clustered set of physical pages. As a result, our TLB organizations have

higher effective reach than conventional TLBs, and manage to reduce 46% of the page

walk overhead, which translates to 7% performance improvement.

The lessons learned from identifying the “sequential” and “clustered” spatial locality

help guide us in chapter 4, where we seek for more patterns present in the virtual

memory systems, with a focus on address translation in virtual machines. We observe

that while large pages are often used to mitigate the high cost of two-dimensional

page walks, hypervisors might choose to break them into small pages for better guests

memory sharing and monitoring. The tension between large page TLB benefits and

fine-grained memory management is regrettable because modern OSes work hard to

create large pages. Nevertheless, even when this happens, we see that the majority of

these small pages remains well aligned within the boundary of the original large page.

Based on this observation, we propose a speculative TLB technique to predict the host

physical address directly from the guest virtual address. Our design helps reduce more

than 70% of the address translation overhead, which is caused by splintering large pages

while running highly consolidated virtualized systems.

Finally, we conclude the thesis in chapter 5.

1.5 Contributions

This dissertation makes the following contributions:

• We have quantified address translation overhead for a range of workloads on

both native and virtualized environments, and established that address translation

overhead is high in many scenarios and is likely to worsen in the future.

• We have identified and characterized common, yet previously unknown patterns

8

in page tables that launched a body of work in scalable TLB organizations with-

out explicit hardware-software coordination. This has in turn enabled continued

progress in processing and analyzing ever larger datasets for the benefit of a large

range of technically, economically, and socially important problems.

9

Chapter 2

Exploiting Sequential Locality in Page Trans-
lations for Large Reach TLBs

2.1 Introduction

In this chapter, we propose techniques exploiting page allocation contiguity that are

orthogonal to superpaging, and require no operating system (OS) management over-

head. We observe that OS memory allocation mechanisms such as buddy allocators and

memory compaction daemons inadvertently allocate contiguous physical page frames

to contiguous virtual pages. While these levels of intermediate contiguity (in the range

of tens of pages) fall short of the contiguity requirements of superpages (hundreds of

contiguous pages), they occur naturally and independently of superpages, even in the

presence of great system load. In response, we propose Coalesced Large-Reach TLBs

(CoLT), a series of hardware mechanisms that allow TLBs to coalesce multiple con-

tiguous virtual-to-physical address translations, thereby enabling them to have greater

memory reach. CoLT coalesces multiple virtual-to-physical page translations without

explicit OS support or high management overhead. In systems with superpaging, CoLT

exploits the vast amounts of contiguity that exist but are insufficient for superpage

construction. Even in systems without superpaging, CoLT exploits naturally-occurring

contiguity. Our contributions are as follows:

First, we conduct a range of real-system experiments to gauge how often consecutive

virtual pages are allocated consecutive physical pages. We find that on Linux, tens of

pages are usually contiguous, even in the presence of significant system load and without

superpaging support. Furthermore, while superpaging does increase contiguity, most

of it falls short of the level necessary to actually create large pages (a 2MB superpage

10

needs 512 contiguous 4KB base pages, while we see tens of contiguous pages). Instead,

we show that TLB coalescing is an effective way of leveraging contiguity.

Second, we propose CoLT using commercially-available two-level TLB hierarchies

commonly found in processors today [9,42]. We detail mechanisms to effectively coalesce

multiple contiguous virtual-to-physical page translations on set-associative L1 and L2

TLBs, exploring various microarchitectural tradeoffs in their design. Our strategies

eliminate roughly 40% of L1 and L2 TLB misses, resulting in average performance

improvements of 12%.

Third, we develop CoLT support for small, fully-associative TLBs commonly found

in processors to cache superpage entries [9,42]. We show how to overcome the challenge

of designing these small structures, achieving L1 and L2 TLB miss elimination rates of

58% on average. These translate to average performance improvements of 14%.

Finally, we explore mechanisms that combine coalescing on both the standard set-

associative TLBs and smaller fully-associative TLBs traditionally reserved for super-

pages. By carefully selecting which structure to allocate coalesced entries in, we achieve

L1 and L2 TLB miss eliminations of 55%, yielding average performance improvements

of 14%.

Overall, we are the first to observe and exploit intermediate levels of allocation

contiguity naturally provided by operating systems. Our techniques are highly effective,

yet low overhead. Furthermore, they provide benefits even with heavy system load and

regardless of the presence of superpaging.

2.2 Background and Related Work

2.2.1 Prior TLB Enhancement Techniques

Address translation, especially with virtualization and larger application working sets,

is a primary source of system performance degradation [19,60]. In response, researchers

have considered techniques to improve TLB structure, lookup, and placement [21, 28].

More sophisticated techniques such as TLB prefetching and mechanisms to accelerate

page walks have also been considered [14, 23, 48, 77]. While effective, high TLB miss

11

rates remain problematic.

2.2.2 Superpaging Benefits and Problems

Large pages have been proposed to lower TLB miss rates [31, 33, 64, 74, 83, 84]. Large

pages use the same address space as conventional pages but have sizes that are a power-

of-two multiple of baseline pages. For example, x86 systems use 4KB baseline pages and

support 2MB and 1GB large pages. Furthermore, large pages must be aligned in both

virtual and physical memory (superpages of size N must begin at virtual and physical

addresses that are multiples of N).

In general, there are three main benefits of using large pages: lower TLB miss rates

by replacing hundreds of base page translations with a single superpage translation en-

try, shorter page walk latency, and smaller page table footprint. However, large pages

do not automatically scale up with the larger physical memory. Besides, large pages

have high management overheads [64, 83]. They require modifications to OS memory

management policies and mechanisms such as support for multiple page sizes and super-

page creation. In particular, the process of ensuring that sufficient contiguous physical

pages are allocated to virtual pages (to create superpages) has high performance over-

heads [31,64]. As such, superpages increase the amount of I/O, page initialization/fault

latency.

Cumulatively, these problems can easily outweigh the benefits of reduced TLB miss

rates. This has a few implications. First, currently-available systems have no uni-

versal superpaging support in either the hardware or the OS. Architectures vary in

the size of superpages they support (e.g. Intel supports 2MB/1GB superpages while

Sparc supports 256MB superpages). Operating systems differ in how they create the

contiguity necessary for superpages. For example, FreeBSD uses a reservation-based

approach [15], while Linux optimistically allocates 2MB pages, later breaking them into

baseline pages if the 2MB version is deemed overly-aggressive [10]. Furthermore, many

operating systems do not support superpaging at all or require system administrator

intervention to manually construct superpages. Even when superpaging is supported,

it is used sparingly to minimize management overheads. In fact, we show that there

12

V P1 P6 P3 P5

SOFTWARE

HARDWARE

V P 1 0 1 1

(a)	 Conventional	 TLB (d)	 CoLT TLB(b)	 Complete	 Sub-‐block	 TLB (c)	 Partial	 Sub-‐block	 TLB

V1 P3 V1 P3 5

Page	 Table
V0 P0
V1 P1
V2 P2
V3 P3
V4 P4
V5 P5
V6 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7 P7

Page	 Table
V0 P0
V1 P1
V2 P2
V3 P3
V4 P4
V5 P5
V6 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7 P7

Page	 Table
V0 P0
V1 P1
V2 P2
V3 P3
V4 P4
V5 P5
V6 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7 P7

Page	 Table
V0 P0
V1 P1
V2 P2
V3 P3
V4 P4
V5 P5
V6 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7 P7

Figure 2.1: Operation of complete sub-blocking and partial sub-blocking versus
CoLT TLB. For each approach, we show the structure of a single entry and a page
table with the PTEs that can be exploited.

exist immense amounts of page allocation contiguity that remain unharnessed because

their level of contiguity is insufficient for superpaging (in the tens of pages rather than

the required hundreds of pages).

2.2.3 TLB Subblocking and Speculation

Two hardware-based schemes have been proposed to mitigate superpaging management

overheads. Talluri and Hill [83] present partial-subblock and complete-subblock TLBs,

which record ranges of physical pages per virtual page entry, in contrast with the struc-

ture of a conventional TLB entry, which only captures a single PTE (in Figure 2.1(a),

virtual page V1 and physical page P3)

Complete sub-blocking: Complete sub-blocking looks for clusters of PTEs with contigu-

ous VPNs. For a given sub-block factor N, this approach looks for B aligned virtual

pages (i.e., all virtual address bits apart from the bottom log2(B) bits are the same).

It then places all the PTEs corresponding to this group in one complete entry. Fig-

ure 2.1(b) shows an example of this where virtual pages 0-3 all are aligned for a sub-block

factor of 4. This means that their PTEs can be stored in one entry if it maintains a field

for each PPN (e.g., P1, P6, P3, and P5). Unfortunately, the ability of complete sub-

blocking to store any set of PPNs requires expensive hardware (multiple PPN fields).

13

Furthermore, complete sub-blocking stores a PTE count only equal to the sub-block

factor.

Partial sub-blocking: Talluri and Hill proposed partial sub-blocking as a lower-overhead

alternative to complete sub-blocking [83]. Figure 2.1(c) shows that partial sub-blocking

searches for PTEs with an aligned group of virtual pages and an aligned group of

physical pages. All PTEs that have VPNs and PPNs with the same offset from the

start of the aligned package are coalescable into a single entry. In our example, PTEs for

VPNs 0, 2, and 3 achieve this. This approach permits “holes” in a group of PTEs when

the physical page offset within the aligned packet is different from the virtual page offset

(e.g., the PTE for virtual page 1 in our example). Partial sub-blocking achieves high

reach using much simpler hardware than complete sub-blocking by imposing alignment

and offset restrictions on PPNs. Figure 2.1(c) shows each entry maintains only a bit

vector recording the presence of the physical pages rather than the entire PPN. However,

partial sub-blocking’s PPN alignment and offset requirements cannot capture many

instances of spatial locality. In practice, we find that most instances of spatial locality in

PTEs do not fit the alignment requirements of partial sub-blocking (our measurements

show that less than 10% of PTEs fit these alignment requirements naturally). While the

original partial sub-blocking approach [83] addresses this problem by adding specialized

OS code to generate the right alignment and offset features, our goal is to avoid explicit

OS modifications.

Alternately, Barr, Cox, and Rixner [15] increase TLB hits with speculation in sys-

tems with reservation-based superpaging [64]. Here, physical pages are allocated in

aligned 2MB regions of memory corresponding to their alignment within a 2MB region

of virtual memory. Since this makes physical page references predictable, Barr, Cox,

and Rixner propose SpecTLB, a separate structure to speculatively provide physical

addresses when standard TLBs miss. While effective, SpecTLB requires reservation-

based superpaging, which is not in widespread use (eg. Linux superpaging [10] does

not use reservation-based superpages). SpecTLB also requires additional hardware and

can suffer from incorrect speculations.

14

2.2.4 Our Approach

Our goal is to demonstrate that operating systems naturally generate intermediate lev-

els of page allocation contiguity without explicit support like superpaging, and then to

leverage this contiguity to realize large-reach TLBs. Unlike superpaging or subblocked

TLBs, we therefore want to avoid OS intrusion and high management overheads. More-

over, we want to exploit any amount of contiguity rather than restricting ourselves to

set superpage sizes or sizes accommodated by a particular sub-blocked TLB. Unlike

SpecTLB, we also do not want to restrict ourselves to one type of superpaging. In

fact, CoLT must be effective even without superpaging and under high system load.

At a high level, as shown in Figure 2.1(d) a CoLT entry maps a group of contiguous,

spatially-local PTEs (in our example, PTEs for virtual pages 1-5). Any arbitrary set

of PTEs can be accommodated (e.g., five PTEs in Figure ??) by recording only the

base PTE and the number of coalesced PTEs. On look-up, the offset between the base

virtual address stored in the tag is used to calculate the offset from the base physical

page. There are no alignment restrictions for this approach. Our studies are structured

as follows:

We first study how often contiguity exists in real systems, and how this contiguity

is affected by buddy allocators, memory compaction superpaging support, and system

load. Real-system experiments are particularly crucial since we must establish that

contiguity does indeed exist under a variety of scenarios and even in the presence of

heavy system fragmentation. Past architectural studies [15] usually focus on simulations

to study contiguity; since simulations only capture a small window of the runtime at

system boot time when there is little fragmentation, real-system numbers are essential

to showcase the wide applicability of our approach.

We then exploit contiguity to realize CoLT, a range of coalesced TLBs. Commercial

two-level TLB hierarchies are comprised of set-associative L1 and L2 TLBs, supported

by smaller fully-associative buffers to store superpages. We implement coalescing on

various combinations of these structures, assessing their benefits and design challenges.

15

In order to maintain low-overhead designs, unlike past speculation or past prefetch-

ing work [15,23,48], we do not augment the standard TLBs with separate structures for

our techniques. Therefore, we adjust coalescing designs to seamlessly fit into existing

TLB microarchitecture.

2.3 Understanding Page Allocation Contiguity

We now explore why operating systems often allocate contiguous physical page frames

to contiguous virtual pages. Since CoLT relies on this behavior, we ascertain which

memory allocation policies and mechanisms produce contiguity.

2.3.1 Defining Page Allocation Contiguity

We say that system contiguity exists when consecutive virtual pages are allocated con-

secutive physical page frames. For example, if virtual pages 1, 2, and 3 are allocated

physical page frames 58, 59, and 60, we say that these pages are contiguous. More-

over, since this example involves three pages, we say that this is an instance of 3-page

contiguity.

Our definition is distinct from superpages in two ways. First, superpages require

a set amount of contiguity. For example, 2MB superpages on x86 systems require

instances of 512-page contiguity. Instead, we make no restrictions on the amount of

contiguity that is useful. Second, unlike superpages, we make no assumption on align-

ment. Overall, our relaxations on contiguity amounts and alignment restrictions reveal

huge amounts of intermediate contiguity.

2.3.2 Sources of Page Allocation Contiguity

Operating systems maintain a complex set of policies and mechanisms to perform page

allocation such that page faults, initialization, and replacement are minimized. A num-

ber of these policies have a deep impact on page allocation contiguity. We elaborate on

them here, focusing on Linux.

16

vm_end:	 first	 address	 outside virtual	 memory	 area
vm_start:	 first	 address	 within virtual	 memory	 area

vm_area_struct
VM_READ	 |	 VM_WRITE	 |	
VM_GROWS_DOWN

vm_area_struct
VM_READ	 |	 VM_EXEC

vm_area_struct
VM_READ	 |	 VM_EXEC

vm_area_struct
VM_READ	 |	 VM_EXEC

vm_area_struct
VM_READ	 |	 VM_EXEC

vm_area_struct
VM_READ	 |	 VM_EXEC

vm_area_struct
VM_READ	 |	 VM_EXEC

Text
(file-‐backed)

Data
(file-‐backed)

BSS
(anonymous)

Heap
(anonymous)

Memory
Mapping

Stack
(anonymous)

vm_next

vm_next

vm_next

vm_next

vm_next

vm_next

Figure 2.2: Virtual memory areas in process address space.

2.3.2.1 Process address space.

Figure 2.2 shows the layout of the process address space. It consists of multiple virtual

memory areas (VMA), which are regions of contiguous virtual addresses, and these

regions never overlap. All VMAs are linked together in the form of a red-black tree

for fast search operations. Each instance of VMA has several attributes, including

its start and end addresses, and access right flags. A VMA that does not map a

file is annonymous. Except the memory mapping segment, each memory segment in

Figure 2.2, e.g. heap, stack, corresponds to a single VMA.

A VMA is just an agreement between a program and the kernel. When a program

allocates memory via a malloc or mmap call, the kernel just creates or updates the

corresponding VMM. The memory request is not actually satisfied until a page fault

happens to do real work [37].

17

PFN	 6	

PFN	 7	

PFN	 4	

PFN	 5	

PFN	 1	

PFN	 0	

PFN	 2	

PFN	 3	

Physical	 Memory	

List	 3	

List	 2	

List	 0	

List	 1	

PFN	 4/5/6/7	

PFN	 0	

Free	 Lists	

(a)

PFN	 6	

PFN	 7	

PFN	 4	

PFN	 5	

PFN	 1	

PFN	 0	

PFN	 2	

PFN	 3	

Physical	 Memory	

List	 3	

List	 2	

List	 0	

List	 1	

PFN	 6/7	

PFN	 0	

Free	 Lists	

(b)

Figure 2.3: (a) Buddy allocator used for physical page allocation. Already allocated
pages are shaded, while free pages are tracked by the free lists. (b) Buddy allocator
state after an allocation for 2 pages is finished.

2.3.2.2 Buddy allocation.

Most operating systems, including Linux, use a buddy allocator to track physical pages

and assign them to virtual pages on demand. Figure 2.3a illustrates the operation of a

buddy allocator, assuming that pages 1, 2, and 3 are already allocated. All free physical

pages or page frames (PFs) are grouped into ten lists of blocks, which we refer to as

free lists. Entry x in the free list tracks groups of 2x contiguous physical pages. Since

physical page 0 is non-contiguous, it is listed by entry zero. On the other hand, pages

4-7 have 4-page contiguity and are hence listed by entry two.

Physical page allocations proceed as follows. Suppose an application requires an N -

page data structure. The buddy allocator first searches the free list entry corresponding

to the smallest contiguous page frames bigger than N (entry dlog2(N)e). If a block of

free physical pages is found in that list, allocation successfully completes. Otherwise,

the free list is progressively climbed until an entry with a block of free contiguous

physical pages is found. Once a free block is found, the buddy allocator must minimize

memory fragmentation. Therefore it iteratively halves the block, inserting these new

blocks in their appropriate free list locations, until it extracts a block of N contiguous

physical pages. As an example, Figure 2.3b shows the state of the free list after an

application level request for two physical pages to be allocated. At first, entry 1 in the

18

PFN	 6	

PFN	 7	

PFN	 4	

PFN	 5	

PFN	 1	

PFN	 0	

PFN	 2	

PFN	 3	

PFN	 6	

PFN	 7	

PFN	 4	

PFN	 5	

PFN	 1	

PFN	 0	

PFN	 2	

PFN	 3	

PFN	 6	

PFN	 7	

PFN	 4	

PFN	 5	

PFN	 1	

PFN	 0	

PFN	 2	

PFN	 3	

Moveable	 Pages	 Moveable	 Pages	

Free	 Pages	

Figure 2.4: The memory compaction daemon tracks movable and free memory
pages, exchanging them to eliminate fragmentation.

free list is checked; however, since this is empty, entry 2 is scanned. Here, a free block

with contiguous physical pages 4, 5, 6, and 7 is found. Hence, the buddy allocator

halves this block of four pages, returning pages 4 and 5 to the application and moving

pages 6 and 7 to free list entry 1. Apart from allocation, the buddy allocator also

updates its state when physical pages are released. At this point, the kernel attempts

to merge pairs of free buddy blocks if both have the same size and are contiguous. This

merge process is iterative, leading to large swathes of contiguity.

Therefore, though buddy allocation does not produce superpage-level contiguity,

it generates large quantities of intermediate contiguity. We will show that the buddy

allocator successfully produces this contiguity even in the presence of significant system

load. While traditionally irrelevant for TLBs, we aim to exploit this for CoLT.

2.3.2.3 Memory compaction.

While the buddy allocator does try to group together contiguous physical pages on page

deallocations, this alone is insufficient to minimize memory fragmentation. Fragmenta-

tion is pronounced when multiple processes with large working sets simultaneously run

on the system. Therefore, many operating systems, including Linux, boost the buddy

allocator with a separate memory compaction daemon. Figure 2.4 details the Linux

memory compaction daemon in three steps on a heavily-fragmented system.

19

First, as shown in the left-most figure, memory compaction runs an algorithm that

starts at the bottom of the physical memory and builds a list of allocated pages that

are movable. While most user-level pages are movable, pinned and kernel pages usually

are not. Nevertheless, user-level pages usually outnumber kernel pages, making most

pages movable.

Second, the daemon concomitantly runs an algorithm that starts at the top of

physical memory and builds a list of free pages. Eventually, the two algorithms meet

in the middle of the physical page list. At this point, Linux invokes migration code to

shift the movable pages to the free page list, yielding the unfragmented diagram at the

right of Figure 2.4.

Since there is a cost associated with moving pages, the compaction daemon is only

triggered when there is heavy system fragmentation. As such, its operation naturally

produces contiguity, especially in tandem with the buddy allocator. In fact, we will

show that this daemon successfully generates contiguity even under heavy system frag-

mentation.

2.3.2.4 Transparent hugepage support.

Aside from buddy allocation and memory compaction, support for superpages is a pri-

mary cause of page allocation contiguity. Unlike those two schemes however, superpage

management comes with overheads. As a result, Linux’s Transparent Hugepage Sup-

port (THS), supported since the 2.6.38 kernel [10], uses superpages carefully. When

THS is enabled, the memory allocator attempts to find a free 2MB block of memory.

If this block is naturally aligned at a 2MB boundary, a superpage is constructed. In

practice, the OS relies on the memory compaction daemon to construct these 2MB

regions. When a superpage cannot be constructed, the system defaults to the buddy

allocator. Even when the 2MB pages are allocated, increased load can eventually make

them harmful. Therefore, system pressure triggers a daemon that breaks superpages

into baseline 4KB pages.

We will show that in practice, THS helps create additional levels of contiguity for two

reasons. First, if optimistically-allocated 2MB superpages are eventually split due to

20

Page	 Table

Page	 Table	 Entries
V0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P0
V1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P1
V2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P2
V3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P3
V4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P4
V5	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P5
V6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P7

Virtual	 Memory	 Area:	
Defragment	 VPs

Operating	 System

V0 V1 V2 V3 V4 V5 V6 V7

Buddy	 allocator	 and	 compaction:	
Defragment	 PPs

Program

int *a	 =	 malloc(FOUR-‐PAGES);
a[IN-‐V0]	 =	 …;
a[IN-‐V1]	 =	 …;
a[IN-‐V2]	 =	 …;
a[IN-‐V3]	 =	 …;

Pham,	 Vaidyanathan,	 Jaleel,	 Bhattacharjee	 “CoLT:	 Coalesced	 Large-‐Reach	 TLBs”,	 MICRO	 ’12.
2

P0 P1 P2 P3 P4 P5

a) b) c)

Figure 2.5: Interaction between program’s fault order and memory management.

system pressure, they retain contiguity among tens of baseline 4KB pages. Second, THS

relies on the memory compaction daemon, triggering it more often and providing the

buddy allocator even higher levels of contiguity. Therefore, though THS uses superpages

sparingly, it constructs intermediate contiguity useful for CoLT.

2.3.2.5 Putting Things Together.

In this section, let’s see how everything works together to generate the intermediate

contiguity between virtual pages and contiguous physical pages. Figure 2.5 shows the

interaction between program faults order and kernel’s memory management. In this

example, a program tries to allocate four memory pages in Figure 2.5(a). As mentioned

in Section 2.3.2.1, this request is not honored right away by the kernel. Instead, the

kernel simply updates the heap VMA and returns – V0 to V3 region in Figure 2.5(b).

No page frames are actually allocated and the new pages are not present in physical

memory. Once the program actually accesses the pages, the processor page faults and

invokes a page fault handler in the kernel. The handler searches for the VMA covering

the faulted virtual address, when a VMA is found, the kernel creates a PTE to map

the faulted virtual page to a allocated physical frame.

With the help from the buddy allocator and memory compaction, region of free

contiguous physical pages have been formed, P0 to P3 in Figure 2.5(b). If program

faults in order, as shown in Figure 2.5(a), physical frames will be allocated in order

21

from the contiguous physical pool. As a result, consecutive mappings between virtual

and physical pages are established.

2.3.2.6 System Load and Memory Fragmentation.

Finally, page allocation contiguity is deeply affected by the system load. If many pro-

cesses run simultaneously, main memory is likelier to be fragmented. Therefore, one

may initially expect that higher load degrades contiguity. Surprisingly, we will show

that contiguity can actually increase with greater system load. This occurs because

system load has a complex relationship with the memory compaction daemon, trig-

gering it more often when there is higher load. This can, in turn, provide greater

swathes of contiguous physical frames to the buddy allocator, eventually resulting in

more contiguity.

2.4 CoLT Design and Implementation

Having detailed contiguity sources, we now propose three variants of CoLT. Overall,

they share three design principles. First, they detect instances of consecutive virtual-

to-physical address translations. These entries are coalesced into single TLB entries, so

as to reduce miss rates. Second, CoLT coalesces only on TLB misses. While TLB hits

could also prompt coalescing, this may increase lookup latencies. Third, coalescing is

unintrusive, unlike speculation and prefetching [15,23,48,77] which can degrade perfor-

mance. For example, incorrect speculations suffer a high penalty. Incorrect prefetches

lead to the eviction of useful entries and higher bandwidth usage. Prior work mitigates

these problems by TLB speculating or prefetching using separate structures [15,23,48].

In contrast, we coalesce entries directly into the TLBs but ensure that coalescing oc-

curs only around on-demand translations. In the worst case, coalesced entries may

be unused but are not harmful. This is crucial given that system contiguity does not

necessarily imply that all contiguous translations are used in temporal proximity. We

ensure coalesced entries are available if needed but do not harm TLB hit rates when

they are unused.

22

 Tag Bits V V V V Attr. Base PPN a

b

c

PPN Generation Logic

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing Logic

Cache line: PTE N to N+7
1

2

3

4

Figure 2.6: CoLT for set-associative L1 and L2 TLBs.

We propose three variants of CoLT for commercial two-level TLB hierarchies. This

hierarchy contains set-associative L1 TLB and L2 TLBs, used to cache baseline 4KB

pages [9, 42]. Superpages are cached in separate small, fully-associative TLBs that are

accessed in parallel with the L1 TLB. Note that the L2 TLB is inclusive of just the

set-associative L1 TLB and not the superpage TLB.

There are three natural coalescing mechanisms for this hierarchy. First, we coalesce

in just the set-associative L1 and L2 TLBs. Second, we coalesce in the superpage TLB

only. Third, we use a combined approach that routes some coalesced entries to the

set-associative TLBs and others to the superpage TLBs. We now describe each of these

schemes.

2.4.1 CoLT-SA Design and Implementation

CoLT-Set Associative (CoLT-SA) coalesces multiple virtual-to-physical page transla-

tions in the set-associative L1 and L2 TLBs. We first detail its high-level operation and

then focus on specific design challenges.

2.4.1.1 Overall operation.

The bottom half of Figure 2.6 shows a high-level view of CoLT-SA. In step 1, the set-

associative L1 TLB and superpage TLB are looked up in parallel. Assuming L1 and L2

23

TLB misses (step 2), a page table walk brings in the desired translation entry into the

LLC (step 3). At this point, two parallel events occur. First, the requested translation

is returned to the processor pipeline. In parallel, the Coalescing Logic studies the

translations around the requested entry for contiguity. It coalesces as many of these

translations as possible, as long as map to the same set. This entry is inserted into the

L1 and L2 TLBs (step 4). As we will detail, conventional set-associative TLBs map

consecutive virtual addresses (and hence contiguous translations) to consecutive sets,

precluding coalescing. We therefore modify the virtual page bits used for set-selection

so that translations for groups of consecutive virtual page numbers do map to the same

set, allowing for potential coalescing. Furthermore, since we provide the requested

translation to the pipeline in parallel with the Coalescing Logic’s operation, the latter

is off the critical path and does not affect TLB miss handling times.

2.4.1.2 TLB set selection.

Conventional set-associative TLBs place translations of successive virtual page numbers

into successive sets, preventing coalescing. In response, we modify TLB set selection.

For example, a TLB with 8 sets uses bits 2 to 0 of the virtual page number for set

selection (VPN[2-0]). Instead, we left-shift the index bits by log2(N) bits if we want to

place N consecutive translations in the same set (permitting us to coalesce a maximum

of N translations per entry). In our example, to ensure that translations with four

consecutive virtual pages map to the same set, we use VPN[4-2] as the new indexing

bits.

To coalesce more entries, the indexing bits are further left-shifted (for example, to

coalesce up to eight entries, VPN[5-3] must be used). However, using higher order bits

for set indexing increases conflict misses since more consecutive entries are mapped to

the same set. This is a fundamental tradeoff for CoLT-SA designs – in choosing the

correct index bits, we must balance opportunities for coalescing with potentially higher

conflict misses. We find that allowing for coalescing of four contiguous translations

generally performs best.

24

2.4.1.3 Lookup operation.

The top half of Figure 2.6 illustrates CoLT-SA lookups. Each coalesced TLB entry

maintains tag bits, the higher order bits left of the index bits used for set selection. For

example, if up to four contiguous translations can be coalesced in a TLB with eight

sets, VPN[4-2] is used for set selection and VPN[63-5] is the tag. In step (a), this tag

is checked against the requested virtual page number. In step (b), the non-index lower-

order virtual page bits (VPN[1-0] in our example) are used to select among multiple

valid bits. There is one valid bit for every possible translation in a coalesced entry.

These valid bits indicate the presence of a translation in the coalesced entry. If on

step (b), a valid bit is set, there is a TLB hit. At this point, extra logic calculates

the physical page number. CoLT entries store the base physical page number for each

coalesced entry. This number corresponds to the virtual page represented by the first

set valid bit. Therefore to reconstruct the physical page number, combinational logic

(PPN Generation Logic) calculates the number of valid bits away this entry is from the

first set valid bit. This number is then added to the stored base physical page number

to yield the desired physical page.

We believe this lookup operation remains low-overhead and will not impact TLB ac-

cess cycle times. First, the initial tag match and check of valid bits is simple. The PPN

generation logic addition is also low-overhead as the amount of coalescing is bounded

(in our example, at best, an addition of four will be required). As such, readily-

implementable combinational logic, similar to logic used to calculate prefetching strides

and addresses or update branch predictor state, can calculate the physical page number.

This is substantially lower-overhead than prior prefetching schemes requiring dedicated

adders [48]. This combinational logic will not affect TLB access cycles, adding just a

few gate delays at best.

2.4.1.4 Practical coalescing restrictions.

Ideally, after the page table is walked to handle a TLB miss, coalescing logic finds as

many contiguous translations around the requested translation as possible. Practically,

25

however, coalescing is restricted by two constraints. First, as we have already discussed,

the choice of index bits for set selection places a limit on coalescing opportunity. A

second limit arises from our desire to minimize the overhead associated with searching

for contiguous translations. On a TLB miss, a page table walk finds the desired transla-

tion. We aim to prevent any additional page walks when checking for contiguous entries

adjacent to the requested translation. Since the page table walk accesses the last-level

cache (LLC) and brings data in 64-byte cache line sizes, seven additional translations

are fetched. These translations are brought without additional memory references; thus

we check just them for contiguity. In practice, this approach restricts coalescing to a

maximum of eight translations. Despite this restriction, CoLT eliminates a high number

of TLB misses.

2.4.1.5 Replacement, invalidations, and attribute changes.

CoLT-SA assumes standard LRU replacement policies. While there may be benefits

in prioritizing entries with different coalescing amounts differently, we leave this for

future work. We also assume a single set of attribute bits for all the coalesced entries.

This restricts the amount of contiguity that we can exploit; more sophisticated schemes

supporting separate attribute bits per translation in a coalesced entry will improve

our results. Furthermore on TLB invalidations, we flush out entire coalesced entries,

losing information for pages that would be unaffected in standard TLBs. Gracefully

uncoalescing TLB entries and only invalidating victim translations will perform even

better. This too is the subject of future work.

2.4.2 CoLT-FA Design and Implementation

Rather than supporting coalescing in set-associative TLBs and changing their indexing

scheme, we can instead coalesce into just the fully-associative TLB. This structure is

usually used exclusively for superpages. However, superpages are often used sparingly.

Hence, allocating coalesced entries into this structure in addition to superpages entries

may be beneficial. We refer to this as CoLT-Fully Associative (CoLT-FA).

26

 Base VPN Coal. Length Attr. Base PPN

a
b

PPN Generation Logic

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing Logic

Cache line: PTE N to N+7
1

2

3

4

Range check logic

Base VPN ≤ Request VPN ≤

Base VPN + Coal. Length

5

Figure 2.7: CoLT for the fully-associative superpage TLB.

2.4.2.1 Overall operation.

The bottom half of Figure 2.7 delineates CoLT-FA operation. Assuming misses in all

the TLBs (steps 1 and 2), a page walk is conducted in step 3. At this point, a cache

line provides up to eight translations that can be checked for contiguity. Up to eight

translations are now coalesced in step 4. If coalescable, the entry is loaded into the

fully-associative TLB. If no coalescing is possible, it is loaded into the set-associative

L1 and L2 TLBs.

On insertion into the fully-associative TLB, further coalescing is possible. Since

contiguity may exist between the newly coalesced entry and a resident entry in the

fully-associative TLB, the latter is scanned for a coalescing check. As the requested

translation can be sent to the pipeline in parallel, this scan is off the critical path and

does not impact miss handling times. If possible, further coalescing is done in step 5.

The main benefit of this scheme is that the set-associative TLBs remain unaffected

and can now be devoted to non-contiguous translations while the superpage-TLB cap-

tures all contiguous translations. Empirically, however, we have found that due to the

small size of the superpage-TLB, useful entries are frequently evicted. Therefore, for

performance reasons, when bringing a coalesced entry into the fully-associative struc-

ture, we still bring just the requested entry (and not its coalesced neighbors) into the L2

TLB. While this does create some redundancy in terms of stored entries, we will show

27

that performance is improved. Note that we leave the L1 TLB unaffected due to its

much smaller capacity. Note also that CoLT-FA shares both superpage entries and coa-

lesced entries in a single structure. One initial concern may be that if coalesced entries

far outnumber superpage entries, the latter will be evicted from the fully-associative

TLB. In practice, we find that this is not a problem for two reasons. First, superpages

are used sparingly, requiring a very small number of entries in the buffer. Second, when

used, these superpages are frequently accessed, meaning that they remain at the head

of the LRU list, preventing their eviction.

2.4.2.2 Lookup operation.

The top half of Figure 2.7 details CoLT-FA lookup. Each coalesced entry maintains a

base virtual page number as the tag and a field that logs the number of entries coalesced.

Unlike CoLT-SA, there are no coalescing restrictions due to indexing schemes. We find

that using 10 bits for the coalescing length field suffices as this captures a contiguity

of 1024 pages. Since a TLB entry uses 64-bytes, this overhead is minimal. Each entry

also stores the base physical page and attributes of all contiguous translations.

In step (a), Range Checking Logic compares the requested virtual page number

against the range of translations stored by each entry of the fully-associative TLB.

As shown, comparator and adder logic is required for the range check. If the virtual

page is detected in the range, there is a TLB hit. At this point (step (b)), the PPN

Generation Logic subtracts the tag base virtual page number from the requested virtual

page number. This value is then added to the stored base physical page number to find

the desired physical page number.

While the hardware required for range checks and physical page number generation

is more complex than CoLT-SA, it can still be accomplished using purely combinational

logic. We nevertheless stray on the conservative side in our experiments by reducing the

size of the fully-associative TLB in CoLT-FA as compared to the baseline case without

coalescing. Commercial systems tend to implement 16 to 24-entry [42] fully-associative

TLBs for superpages. To ensure that the added lookup complexity does not bias our

results, we assume only 8-entry fully-associative TLBs with coalescing. This ensures

28

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing HW

Cache line: PTE N to N+7

1

2

3

4

Contiguity ≥

Threshold

Contiguity ≤

Threshold

Figure 2.8: Combined CoLT for all TLBs.

that the total time to check the TLB for a hit definitely does not increase. Even with

this overly-conservative assumption, we find that CoLT-FA is effective.

2.4.2.3 Replacement, invalidations, and attribute changes.

We assume standard LRU for the fully-associative structure. Due to its smaller size,

we suspect though that smarter replacement policies will be even more effective. Fur-

thermore, we share the same attribute bits for all coalesced entries and invalidate entire

entries, but for larger amounts of coalescing. Despite this, we will show that CoLT-FA

performs effectively.

2.4.3 CoLT-All Design and Implementation

Finally, CoLT-All coalesces into both set-associative L1/L2 TLBs and the superpage

TLB. Its primary benefit over CoLT-SA and CoLT-FA is that it provides potentially

the largest reach, at the expense of modifying both the set-associative and superpage

TLB. For large-data applications though, the benefits will far exceed the hardware

modifications required.

2.4.3.1 Overall operation.

Figure 2.8 illustrates CoLT-All’s operation when all the TLBs experience a miss. In

step 1, the page walk has occurred and the coalescing hardware has determined the

29

amount of contiguity present in the cache line. In then checks this contiguity to see

how it compares to a threshold. If it is lower than a threshold (step 2), this means

that the contiguity can be accommodated by the indexing scheme of the set-associative

TLBs. For example, suppose the contiguity is three pages and we use an 8-set TLB

with VPN[4-2] for indexing (allowing coalescing of up to four translations). In this case,

the coalesced entry is allocated into the set-associative L1 and L2 TLBs. However the

contiguity may be higher than the threshold and the amount that the set-associative

TLBs can accommodate. In our example, the contiguity may be five. In this case, the

entry is coalesced and brought into the superpage-TLB. At the same time, because the

superpage-TLB is small, useful coalesced entries may be frequently evicted. Therefore,

like CoLT-FA, we allocate an entry at this point into the L2 TLB as well. Unlike CoLT-

FA however, our set-associative L2 TLB can now also handle coalesced entries (albeit

with smaller levels of coalescing permissible by its choice of index bits). Therefore,

CoLT-All brings in as much of this coalesced entry as possible into the L2 TLB, unlike

CoLT-FA which brings just the requested translation. Finally, in step 4, the new

allocated superpage entry may be coalesced with already-resident entries.

2.4.3.2 Lookup operation.

Lookup operates similarly to CoLT-SA and CoLT-FA. On a memory reference, both

the L1 and the superpage TLB are checked. If an entry is found in either, it is raised

to the top of its LRU list. Therefore, both TLBs now have support to generate the

physical address.

2.4.3.3 Replacement, invalidation, and attribute changes.

There are no changes in the replacement, invalidation, and attribute policies of CoLT-

All from CoLT-SA and CoLT-FA.

30

2.5 Methodology

We now detail the infrastructure and workloads used to quantify real-system conti-

guity and CoLT’s effectiveness at leveraging this contiguity to eliminate TLB misses.

Our analysis focuses on data pages since data references cause far more misses than

instruction references [22,77].

2.5.1 Real-System Characterizations of Page Allocation Contiguity

2.5.1.1 Experimental platform and methodology.

We use a system with a 64-bit Intel i7 processor, 64-entry L1 TLBs, and a 512-entry

L2 TLB, a 32KB L1 cache, a 64KB L2 cache, a 4MB last-level cache (LLC), and 3GB

of main memory. Furthermore, we run Fedora 15 (Linux 2.3.68).

To measure contiguity, we hack the kernel to scan the page table looking for in-

stances of contiguous address translations. We walk the page table every five seconds,

capturing contiguity changes through the benchmark run. Our original definition of

contiguity is based only on page numbers; however, we now additionally require that

contiguous translations must share the same page attributes and flags. While this eases

the hardware implementation of CoLT by allowing for the same set of attribute bits

per coalesced entry, contiguity would be even higher if this constraint were relaxed.

To study the effect of memory compaction, we use the Linux defrag flag. Enabling

this flag triggers the memory compaction daemon both on page faults and as system

background activity. Disabling this flag greatly reduces the number of times the memory

compaction daemon runs. In tandem, we enable and disable THS to study the impact

of superpaging. We also ensure that our system is realistically fragmented by using

a machine that has already run a number of applications (eg. web browsers, network

clients, office utilities) for two months. To further load the system, we run memhog,

a memory fragmentation utility [25], with our workloads. We study scenarios where

memhog fragments 25% and 50% (a highly fragmented system when combined with

the other background activities) of the memory. In all, we thus study system twelve

configurations. Due to space constraints, this paper focuses on the following specific

31

Benchmark Suite
THS on THS off

L1/L2 MPMI L1/L2 MPMI

Mcf Spec 56550/28600 95600/49230

Tigr BioB. 19000/18150 26950/18860

Mummer BioB. 12910/11450 14760/12970

CactusADM Spec 6610/8140 8420/6930

Astar Spec 8480/4660 17390/11240

Omnetpp Spec 8410/2730 34040/8080

Xalancbmk Spec 2670/2150 14120/2100

Povray Spec 7010/630 7310/630

GemsFDTD Spec 1300/620 8030/3620

Gobmk Spec 710/410 1550/510

FastaProt BioB. 460/300 610/300

Sjeng Spec 1840/200 3860/440

Bzip2 Spec 4070/150 7120/270

Milc Spec 120/90 3780/1820

Figure 2.9: Summary of benchmarks used in our studies.
ones:

1. THS on, normal memory compaction, no memhog: this is the current default

setting for Linux.

2. THS off, normal memory compaction, no memhog: this shows contiguity without

superpaging.

3. THS off, low memory compaction, no memhog: conservative case for contiguity

because neither THS no memory compaction occur. The buddy allocator struggles to

find contiguous physical blocks.

4. THS on, normal memory compaction, memhog: we test the effect of system load

on the default Linux setting by assigning 25% and 50% of system memory to memhog.

5. THS off, normal memory compaction, memhog: shows the impact of fragmenta-

tion without superpaging.

Our contiguity studies go beyond past work [14,15,21], which simulate systems just

after boot time, without fragmentation. Our results are therefore more comprehensive

and realistic.

2.5.1.2 Evaluation workloads.

We study system contiguity on the SPECcpu® 2006 benchmarks [39] and bioinfor-

matics workloads from Biobench [8] in Table 2.9. We run each of the workloads with

32

their maximum data sets (for SPECcpu, this corresponds to Ref) to completion. From

the real-system runs, we use on-chip performance counters to track L1 and L2 TLB

misses per million instructions (MPMI) when THS support is enabled and disabled.

The benchmarks are ordered from highest to lowest THS on L2 TLB MPMIs. Mcf,

Tigr, Mummer, CactusADM, and Astar see particularly high TLB MPMIs. While en-

abling superpaging does reduce TLB misses for some workloads, it alone is insufficient.

For example, Mcf still has an L2 TLB MPMI of 57K with THS on, while Mummer is

unchanged.

2.5.2 Simulation-Based CoLT Evaluations

2.5.2.1 Simulated system.

Past work on TLBs [14,15,21,77] focuses on miss rates rather than performance because

it is infeasible to run memory-intensive applications for long enough duration to provide

practical performance numbers. While we do study miss rates, we go beyond previous

work by considering the performance impact of our approaches. We use a two-step

evaluation to quantify changes in hit rate and to then offer performance numbers feasible

for simulations.

Like the bulk of recent work on TLB analysis, we first use a trace-based approach to

analyze miss rates [14,15,21, 22]. We extract detailed memory traces by simulating an

x86 processor on Simics [85]. These highly detailed traces maintain logs of both data

and instruction references at the micro-op level. Our traces also capture full-system

effects by running benchmarks on a Linux 2.6.38 kernel. We hack the simulated kernel

to provide full page table walk details for every single memory reference (this includes

the virtual page, the physical page, and all attribute bits). We set the kernel to its

default configuration of using THS and normal memory compaction. As we will show,

since contiguity is present across all kernel configurations, CoLT will be effective across

the range of superpaging and memory compaction settings.

We run the traces through a highly-detailed custom memory simulator. We need to

stress our TLBs using simulated workloads in a manner that matches real-system stress;

33

therefore, we use 32-entry and 128-entry L1 and L2 4-way set-associative TLBs. These

sizes are chosen as they produce simulated load within 10% of the load experienced by

a real system. Our baseline system also assumes a 16-entry fully-associative superpage

TLB. As previously detailed, CoLT-FA and CoLT-All reduce this size to 8 entries in

order to provide conservative performance improvement data and negate the impact

of slightly more complex lookups. Furthermore, unlike past work [21, 23], we model

a more realistic TLB hierarchy with 22-entry MMU caches, accessed on TLB misses

to accelerate page table walks [14]. Finally, we assume a three-level cache hierarchy

similar to the Intel Core i7 (32KB L1 cache, 64KB L2 cache, 4MB LLC).

Having assessed miss rates, we now go beyond prior work and the study the perfor-

mance implications of our approach. We use the Pin-based [57] CMP$im [45] simulation

framework to model a 4-way out-of-order processor with a 128-entry reorder buffer. The

processor’s TLB and cache parameters match those of our custom trace module. Unfor-

tunately, the simulation speeds of this detailed microarchitectural framework are slow;

hence we cannot use it to run full Linux distributions with the memory allocation be-

havior necessary to study CoLT on sufficiently long-running, large-data applications.

However, we can use this infrastructure to gauge the overall runtime overheads expended

on TLB misses. In tandem with the miss rate eliminations extracted from our trace-

based approach, this allows us to interpolate CoLT’s actual performance gains. This

interpolation strategy is valid for two reasons. First, TLB miss penalties (page walks)

are serialized as only one page walk can typically be handled at a time [21,23]. Hence,

TLB misses lie on the execution’s critical path. Second, our interpolation approach

is actually conservative as it does not account for the instruction replays that would

likely occur on TLB misses. Therefore, our projected performance benefits would likely

increase on a real system. The bottomline is that our simulation approach combines the

feasibility of miss rate simulation of prior approaches with more detailed performance

insights than prior work.

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(20.3)
 Tigr(55.55)

 Mummer(6.2)
 Cactus(149.7)

 Astar(3.89)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(32.05)
 Xalanc(1.88)
 Povray(1.85)

 Gems(8.1)
 Gobmk(8.9)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fastaprot(4.79)
 Sjeng(116.75)

 Bzip2(82.74)
 Milc(84.09)

 Average(41.19)

(c)

Figure 2.10: THS on, normal memory compaction contiguity CDF.

2.5.2.2 Evaluation workloads.

We use the workloads from Table 2.9 for our evaluations. However, due to slow simu-

lation speeds, we use Simpoints [67] that total to one billion instructions per workload.

These simpoints include operating system effects captured by Simics and assume real-

istic inputs (for SPECcpu, this corresponds to Ref).

2.6 Real-System Characterizations of Page Allocation Contiguity

We now quantify how the buddy allocator, memory compaction, THS, and system load

affect application contiguity on a real system. We show that page allocation contiguity

always exists regardless of the kernel configuration.

We begin by discussing the cumulative density functions (CDFs) from Figure 2.10 to

Figure 2.12. These show the distribution of contiguities experienced by non-superpage

pages. Note that contiguity (the x-axis) is presented as a log scale.

2.6.1 Superpaging, Memory Compaction

Figure 2.10a, Figure 2.10b, and Figure 2.10c, ordering the benchmarks from highest to

lowest TLB MPMI, show contiguity assuming default Linux kernel settings (superpaging

and normal memory compaction). The legend provides average contiguity numbers.

Figure 2.10 shows that there is heavy contiguity across the workloads that cannot

be exploited by superpages. On average, pages are in 41-contiguity groupings. Further-

more, the CDFs show that there can be large instances of contiguity above the average.

For example, most CDFs see many 64 to 256-contiguity instances.

Interestingly, there exist many cases of 512 and 1024-page contiguity. Since THS is

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(11.14)
 Tigr(2.71)

 Mummer(8.1)
 Cactus(1.79)

 Astar(1.69)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(48.5)
 Xalanc(2.23)
 Povray(1.64)
 Gems(12.1)

 Gobmk(1.83)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fasta(1.013)
 Sjeng(104)

 Bzip2(59.55)
 Milc(1.88)

 Average(18.43)

(c)

Figure 2.11: THS off, normal memory compaction contiguity CDF.

enabled, one might initially expect that these should be treated as superpages. However,

this contiguity does not translate to superpages for two reasons. First, these memory

chunks are not superpage-aligned. Second, THS currently supports superpaging for only

anonymous pages created through malloc calls; as such, file-backed pages created from

mmap calls are not superpage candidates. Overall, we find that 15% of non-superpage

pages actually have over 512-page contiguity.

Fortunately, Figure 2.10 enjoys particularly high contiguity for TLB-stressing bench-

marks. Mcf, Tigr, and CactusADM see tens to hundreds of contiguous pages, indicating

their amenability to TLB coalescing. For a number of these benchmarks, such as Mcf,

high contiguity arises because malloc and mmap calls are made at the beginning of the

execution to allocate large hash-based data structures. These structures span megabytes

of space, which the buddy allocator ensures maps to contiguous physical pages.

2.6.2 No Superpaging, Memory Compaction

Figure 2.11a to Figure 2.11c show how contiguity changes when superpaging support

is disabled. Average contiguity drops compared to THS on from 41 to 18, for two

reasons. First, THS optimistically creates as many 2MB page as possible. While these

2MB pages eventually get broken into 4KB pages due to system load, they do leave

large amounts of smaller, residual contiguity. Without THS, contiguity is not gener-

ated this way. Second, disabling THS drastically reduces memory compaction daemon

invocations. Nevertheless, sufficient exploitable intermediate contiguity remains (in the

tens of pages, around 18). Furthermore, heavy TLB-pressure benchmarks like Mcf and

Mummer see very high contiguity.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(5.01)
 Tigr(2.71)

 Mummer(1.3)
 Cactus(1.6)
 Astar(1.26)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(1.2)
 Xalanc(1.775)
 Povray(1.82)

 Gems(8.4)
 Gobmk(1.68)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fasta(1.1)
 Sjeng(96.6)

 Bzip2(89.09)
 Milc(1.88)

 Average(15.38)

(c)

Figure 2.12: THS off, low memory compaction contiguity CDF.

Surprisingly, some benchmarks like Omnetpp and Sjeng actually see higher conti-

guity without THS. This occurs because the lack of THS reduces superpages allocated

to other running processes. As a result, the pages allocated to our workloads remain

unfragmented and contiguous.

2.6.2.1 No Superaging, Low Memory Compaction

Figure 2.12a, Figure 2.12b, and Figure 2.12c present a worst-case scenario setting for

Linux, where THS is turned off and memory compaction is greatly reduced via disabling

the defrag kernel flag. While no kernel uses or recommends this setting, we study it to

ensure that sufficient contiguity exists, even when there are almost no mechanisms to

explicitly generate it. In fact, our results show that on average, contiguity drops only

marginally compared to the THS off, normal memory compaction case to 15 pages on

average. While important benchmarks like Mcf, Mummer, and Omnetpp do lose compared

to the prior settings, they retain sufficiently high intermediate contiguity. For example,

even though Mummer’s average contiguity is now 1.3, roughly 50% of its 4KB pages

enjoy 4-page contiguity. Correctly exploiting this gives our TLBs a 4× reach.

2.6.3 Superpaging, Memory Compaction, Memhog

We now focus on the impact of system load on fragmentation and contiguity. Figure 2.13

shows how contiguity is affected when memhog runs with each benchmark and fragments

25% and 50% of system memory. Our studies have shown that combined with the other

running system processes, memhog with 50% heavily fragments almost all memory and

causes page fault rates to greatly increase. We assume default Linux settings (THS

37

 0

 10

 20

 30

 40

 50

m
cf tig

r

m
um

m
er

ca
ct
us

AD
M

as
ta

r

om
ne

tp
p

xa
la
nc

bm
k

po
vr

ay

G
em

sF
D
TD

go
bm

k

fa
st
aP

ro
t

sj
en

g

bz
ip
2

m
ilc

av
er

ag
e

A
v
e
ra

g
e
 C

o
n
ti
g
u
it
y

No Memhog Memhog (25) Memhog (50)

295 55 150
117

82 118
84

Figure 2.13: Average contiguity for THS on, normal memory compaction with vary-
ing Memhog.

enabled, normal memory compaction).

One might initially expect higher system load to result in lower contiguity. Surpris-

ingly, we find the opposite trend to hold when using memhog(25%), with contiguity rising

from 41 to roughly 43 pages on average. For some benchmarks, the gain is markedly

high; for example, Mcf and GemsFDTFD contiguities are boosted by an order of magni-

tude. The primary reason for this is that higher load invokes the memory compaction

daemon more often. This in turn provides the buddy allocator more contiguous phys-

ical blocks. This bodes particularly since coalescing contiguous translations will likely

become more effective under system load.

Greatly fragmenting the system with memhog(50%) however, does reduce contiguity.

However, even this intermediate contiguity is relatively high, averaging close to 10

pages. For heavy TLB-pressure benchmarks like Mcf and Mummer, this configuration

still achieves higher contiguity than without system load. As such, the buddy allocator,

in tandem with memory compaction, manages to actually leverage the additional load

to increase contiguity.

38

 0

 10

 20

 30

 40

 50

m
cf tig

r

m
um

m
er

ca
ct
us

AD
M

as
ta

r

om
ne

tp
p

xa
la
nc

bm
k

po
vr

ay

G
em

sF
D
TD

go
bm

k

fa
st
aP

ro
t

sj
en

g

bz
ip
2

m
ilc

av
er

ag
e

A
v
e
ra

g
e
 C

o
n
ti
g
u
it
y

No Memhog Memhog (25) Memhog (50)

104
54 59

97

Figure 2.14: Average contiguity for THS off, normal memory compaction with vary-
ing Memhog.

2.6.4 No Superpaging, Memory Compaction, Memhog

This represents the scenario where THS is turned off despite high system load. While

kernel settings would not typically allow this, we use this setting to stress-test our mea-

surements. We find that even under the pessimistic setting of no THS and memhog(50%),

the average contiguity is about 5. TLB coalescing can thus potentially provide a 5×

reach.

2.6.5 Summary of results.

Three primary conclusions can be drawn from our real-system characterizations. First,

under every single configuration, even those that are unrealistically severe, the buddy

allocator, compaction daemon, and THS support succeed in inadvertently generating

great intermediate contiguity. Second, system load can have surprising implications

on contiguity, often increasing it. For some benchmarks that suffer from high TLB

misses, such as Mcf, this is a promising observation. Third, superpages are ill-equipped

to handle this contiguity. Therefore, coalescing techniques to harness this intermediate

contiguity is warranted.

39

0%

20%

40%

60%

80%

100%

m
cf tig

r

m
um

m
er

ca
ct
us

AD
M

as
ta

r

om
ne

tp
p

xa
la
nc

bm
k

po
vr

ay

G
em

sF
D
TD

go
bm

k

fa
st
aP

ro
t

sj
en

g

bz
ip
2

m
ilc

av
er

ag
e

M
is

s
e
s
 E

lim
in

a
te

d
CoLT-SA
CoLT-FA
CoLT-All

Figure 2.15: Percentage of L1 TLB misses eliminated using CoLT-SA, CoLT-FA,
and CoLT-All normalized to baseline TLB misses.

2.7 CoLT Evaluations

We now evaluate CoLT’s benefits, focusing on per-application miss rate reductions and

performance gains. We begin by showcasing how CoLT-SA, CoLT-FA, and CoLT-All

eliminate both L1 and L2 TLB misses.

2.7.1 TLB Miss Rate Analysis

2.7.1.1 CoLT TLB miss rates.

Figure 2.15 and Figure 2.16 quantify CoLT’s TLB miss reductions. The benchmarks are

ordered from highest to lowest TLB miss rates. For every benchmark, we first capture

the number of L1 and L2 TLB misses for a baseline configuration with 32-entry and

128-entry L1 and L2 TLBs (4-way) and a 16-entry superpage TLB. Note that we count

misses for both the set-associative L1 TLB and the superpage TLB as L1 TLB misses

since they are checked in parallel and have the same hit time. After recording these

misses, we then run the same benchmarks on configurations with CoLT-SA, CoLT-FA,

and CoLT-All, tracking the new TLB miss rates. We assume that CoLT-SA uses VPN[4-

2] and VPN[6-2] for L1 and L2 set selection, meaning that up to four translations can

be coalesced per entry (we will later show the effect of using more aggressive indexing).

40

0%

20%

40%

60%

80%

100%

m
cf tig

r

m
um

m
er

ca
ct
us

AD
M

as
ta

r

om
ne

tp
p

xa
la
nc

bm
k

po
vr

ay

G
em

sF
D
TD

go
bm

k

fa
st
aP

ro
t

sj
en

g

bz
ip
2

m
ilc

av
er

ag
e

M
is

s
e
s
 E

lim
in

a
te

d
CoLT-SA
CoLT-FA
CoLT-All

Figure 2.16: Percentage of L2 TLB misses eliminated using CoLT-SA, CoLT-FA,
and CoLT-All normalized to baseline TLB misses.

We also conservatively assume 8-entry fully-associative TLBs when using CoLT-FA and

CoLT-All.

First and foremost, Figure 2.15 and Figure 2.16 show that all three CoLT schemes

improve every single benchmark by eliminating large chunks of the baseline misses.

On average, CoLT-SA eliminates 40% of both L1 and L2 TLBs misses, while CoLT-

FA and CoLT-All do even better, eliminating around 55% of both L1 and L2 misses.

These large miss eliminations imply great performance potential. Second, Figure 2.15

and Figure 2.16 show that many of the benchmarks experiencing TLB pressure gain

particularly from CoLT. For example, Mcf, CactusADM, and Astar all eliminate vast

amounts of their TLB misses. In fact, Astar almost achieves perfect TLBs with no

misses with CoLT-FA and CoLT-All.

Third, there is a general correlation between the amount of system contiguity and ef-

fectiveness of CoLT. For example, Mcf, Bzip2, Milc, and CactusADM, which all see more

instances of 20-page contiguity on average, can coalesce large amounts of translations,

increasing TLB reach substantially. However, contiguity alone does not guarantee coa-

lescing success; for coalescing to be effective, contiguous entries must actually be used

close together in time. Without this temporal proximity, a coalesced entry will be

evicted from the TLB before multiple member translations are used. This explains the

41

lower benefits of Tigr, which sees 10% TLB miss elimination rates despite a contiguity

of over 50 pages on average.

Fourth, Figure 2.15 and Figure 2.16 clearly show that leveraging the superpage TLB

in CoLT-FA and CoLT-All provides 10-15% gains over CoLT-SA on average. We see

that benchmarks like Mcf and Fastaprot benefit particularly from this. These gains

are achieved despite dropping from a 16-entry to an 8-entry structure. We find that

the primary reason for this is that even with THS on, superpages are used sparingly.

Therefore, a surprisingly high number of entries remain wasted in the fully-associative

TLB in the baseline case. Instead, CoLT-FA and CoLT-All use these entries and can

even perform unrestricted coalescing on them, unlike the set-associative TLBs.

The difference between CoLT-FA and CoLT-All remains more nuanced. We find

generally that both schemes eliminate roughly 55% of TLB misses on average. Gener-

ally on the more pressured benchmarks (eg. Mcf, Tigr, Mummer, CactusADM), CoLT-All

outperforms CoLT-FA slightly. This is because both sets of TLBs can leverage coalesc-

ing in this case, increasing overall effective TLB coverage.

Overall, all CoLT designs eliminate a large fraction of TLB misses. We now focus

on implementation details of the various CoLT designs to lend greater insight on our

gains.

2.7.1.2 Impact of CoLT-SA’s indexing scheme on TLB miss rates.

Our initial CoLT-SA results assume that we use VPN[4-2] and VPN[6-2] for L1 and L2

set selection. This limits the amount of coalescing to four translations per entry. While

additional contiguity could be coalesced by further left-shifting the index bits, this also

increases conflict misses. Figure 2.17 and Figure 2.18 study these opposing forces on

the 4-way associative L1 and L2 TLBs respectively by left-shifting the traditional index

bits by one bit (VPN[3-1] and VPN[5-1] for L1 and L2 TLBs), two bits, and three

bits (VPN[5-3] and VPN[7-3] for L1 and L2 TLBs). These correspond to maximum

allowable coalescing of two, four and eight translations. We do not left-shift beyond

this since we allow coalescing only for translations on a single cache line (therefore, a

maximum of eight entries may be compressed).

42

-20%

0%

20%

40%

60%

80%

100%

m
cf tig

r

m
um

m
er

ca
ct
us

AD
M

as
ta

r

om
ne

tp
p

xa
la
nc

bm
k

po
vr

ay

G
em

sF
D
TD

go
bm

k

fa
st
aP

ro
t

sj
en

g

bz
ip
2

m
ilc

av
er

ag
e

M
is

s
e
s
 E

lim
in

a
te

d
slide1
slide2
slide3

-5658% -370%

Figure 2.17: Effect of left-shifting index on L1 misses.

Figure 2.17 and Figure 2.18 clearly show that left-shifting the index bits by two

provides the best balance between coalescing opportunity and conflict misses. Below

this (left-shifting by one bit), we can only coalesce two entries, restricting our TLB miss

elimination rates. However, left-shifting by three bits actually increases TLB misses

in many cases due to the additional conflict misses. In general, unless there is very

high contiguity, like for Mummer, Tigr, and Milc, left-shifting the index bits by three is

overly-aggressive. Given these results, we assume a left-shit of two bits for our indexing

scheme.

2.7.1.3 Impact of bringing missing entries into L2 TLB for CoLT-FA and

CoLT-All.

As previously detailed, while CoLT-FA and CoLT-All bring coalesced entries into the

fully-associative, superpage TLB, they also leverage the L2 TLB. For CoLT-FA, when

a coalesced entry is brought into the superpage TLB, just the requested entry is also

brought into the L2 TLB; for CoLT-All, a coalesced entry (where the coalescing amount

is restricted by the index scheme) is brought into the L2 TLB. As we previously noted,

this is useful since the superpage TLB is small (8-entry); as a result, only entries with

high levels of coalescing are maintained there. As such, intermediate-level coalesced

entries are often evicted. Bringing these entries into the L2 TLB as well increases the

43

-20%

0%

20%

40%

60%

80%

100%

m
cf tig

r

m
um

m
er

ca
ct
us

AD
M

as
ta

r

om
ne

tp
p

xa
la
nc

bm
k

po
vr

ay

G
em

sF
D
TD

go
bm

k

fa
st
aP

ro
t

sj
en

g

bz
ip
2

m
ilc

av
er

ag
e

M
is

s
e
s
 E

lim
in

a
te

d
slide1
slide2
slide3

-125% -121%

Figure 2.18: Effect of left-shifting index on L2 misses.

chance that these they remain available if necessary.

For CoLT-FA, we have run experiments to compare the case when (1) a coalesced

entry is brought into the superpage TLB and just the translation triggering the coa-

lescing is also brought into the L2 TLB, and (2) a coalesced entry is brought into the

superpage TLB but the L2 TLB remains unaffected. We have found that on average,

(1) outperforms (2) by an additional miss elimination of 10-15% for both L1 and L2

miss counts. We see particularly high gains with our approach on workloads with rela-

tively lower contiguity such as Povray, since the small superpage TLB cannot coalesce

a high enough number of entries to prevent eviction.

For CoLT-All, we have similarly run experiments to compare the case when (1) a

coalesced entry is brought into the superpage TLB and its smaller coalesced version

(a maximum of coalescing of four translations in our design) is brought into the L2

TLB, and (2) a coalesced entry is brought into the superpage TLB but the L2 TLB

remains unaffected. We see again that our approach, (1) outperforms (2) by an average

of 10-20% TLB miss eliminations.

44

0%

20%

40%

60%

80%

100%

m
cf tig

r

m
um

m
er

ca
ct
us

AD
M

as
ta

r

om
ne

tp
p

xa
la
nc

bm
k

po
vr

ay

G
em

sF
D
TD

go
bm

k

fa
st
aP

ro
t

sj
en

g

bz
ip
2

m
ilc

av
er

ag
e

M
is

s
e
s
 E

lim
in

a
te

d
CoLT-4way

8way
CoLT-8way

Figure 2.19: Percentage of baseline misses eliminated by CoLT-SA when increasing
associativity.

2.7.1.4 Studying CoLT’s effectiveness at higher associativities.

We now consider CoLT effectiveness as TLB associativity is varied. A number of past

studies have quantified how effectively increasing TLB associativity eliminates misses

[28]. Generally, these studies have concluded that the slightly higher TLB hit rates

are offset by huge power dissipation problems [17]. These observations are largely

responsible for the relatively low associativity (typically 2-way or 4-way) supported on

current TLBs.

CoLT, however, increases the benefits of higher set-associativity since the indexing

scheme of the TLB can be more aggressively changed without as significant an increase

in conflict misses. Overall, this allows higher levels of coalescing. Figure 2.19 compares

how many L2 TLB misses in a 4-way 128-entry L2 TLB can be eliminated by CoLT-SA

(4-way, CoLT-SA), by varying the associativity to 8-way but not allowing coalescing

(8-way, No CoLT), and by allowing CoLT on the 8-way TLB (8-way, CoLT-SA). Note

that all configurations use a fixed TLB size despite associativity changes.

First, Figure 2.19 shows that merely increasing the associativity to 8-way only elim-

inates 10% of the baseline L2 misses. In fact, even 4-way L2 TLBs with low-overhead

CoLT-SA far exceed the benefits of higher associativity, eliminating 40% of baseline

misses on average.

45

0%

5%

10%

15%

20%

25%

m
cf

ca
ct
us

AD
M

as
ta

r

om
ne

tp
p

xa
la
nc

bm
k

po
vr

ay

G
em

sF
D
TD

go
bm

k

sj
en

g

bz
ip
2

m
ilc

av
er

ag
e

IP
C

 I
m

p
ro

v
e
m

e
n
t CoLT-SA

CoLT-FA
CoLT-All

Perfect

115 58 60 63

Figure 2.20: CoLT-SA, CoLT-FA, and CoLT-All performance improvements com-
pared to perfect TLBs with 100% hit rates.

Figure 2.19 shows however, that the 8-way configuration, if augmented with CoLT-

SA, does provide significant benefits. CoLT-SA now eliminates 60% of the baseline

misses on average, a substantial improvement over the other two scenarios. While a

detailed power analysis is beyond the scope of this work, the performance to power

ratio may therefore become more amenable with CoLT. We leave a detailed analysis of

this scheme as the subject of future work.

2.7.2 Performance Analysis

Up to this point, we have evaluated the benefits of CoLT in terms of miss rate elim-

inations. While this does indicate CoLT’s effectiveness, we now focus on performance

numbers which track how much faster each application runs with coalescing. Figure 2.20

details, for every benchmark, performance improvements from CoLT-SA, CoLT-FA, and

CoLT-All. It also provides data on performance improvements that would occur with

absolutely perfect, 100%-hit rate TLBs. The latter serves as a comparison point to

determine how effectively CoLT performs. Once again, the baseline is a system with

4-way 32-entry and 128-entry L1 and L2 TLBs, and a 16-entry superpage TLB. CoLT-

FA and CoLT-All conservatively reduce the superpage TLBs to 8 entries. Moreover, as

previously detailed, we simulate a 4-way out-of-order processor. Note that results are

46

shown for only the Spec 2006 benchmarks because our infrastructure cannot currently

support the Biobench workloads.

Figure 2.20 shows that perfect TLBs would improve most benchmark runtimes by

over 10% (eg. all except Gobmk and Sjeng in our benchmarks). In fact, Xalancbmk

sees a huge 115% improvement in performance from TLBs that achieve 100% hit rate.

These numbers indicate that TLB miss handling does significantly slow down bench-

marks. This also implies that CoLT strategies have the potential to significantly improve

performance.

Fortunately, Figure 2.20 shows that all of the CoLT approaches do indeed boost

application performance significantly. On average, CoLT-SA achieves a 12% perfor-

mance improvement, while CoLT-FA and CoLT-All achieve 14% improvements. On

benchmarks like Xalancbmk, the performance improvements hover around 60% of run-

time. Across other workloads like Mcf, CactusADM, Astar, Omnetpp, and Bzip2, at least

one of the CoLT configurations improves performance over 10%. Already substantial,

we anticipate that as applications with even larger working sets or virtualization are

considered, these performance improvements will be even higher.

Interestingly, Figure 2.20 indicates that CoLT-SA, which has arguably the sim-

plest implementation, performs almost as well as CoLT-FA and CoLT-All on aver-

age. Nevertheless, some benchmarks like Omnetpp and Bzip2 do see large boosts from

CoLT-FA/CoLT-All over CoLT-SA. Because our results do assume smaller 8-entry fully-

associative TLBs, we expect CoLT-FA and CoLT-All results to be even higher with more

realistically-sized superpage TLBs.

2.8 Summary

In this chapter, we propose and design Coalesced Large-Reach TLBs capable of ex-

ploiting address translation contiguity to achieve high reach. Due to a variety of OS

memory management techniques involving buddy allocators, memory compaction, and

superpaging, large amounts of translation contiguity are generated, even under heavy

system load. While this contiguity typically cannot be exploited to generate superpages,

47

CoLT provides lightweight hardware support to detect this behavior. As a result, large

TLB miss eliminations are possible (on average, 40% to 58%), translating to perfor-

mance improvements of 14% on average.

48

Chapter 3

Exploiting Clustered Locality in Page Trans-
lations for Large Reach TLBs

3.1 Introduction

Chapter 2 has proposed coalesced large-reach TLBs (CoLT) based on the observation

that, independent of large pages, operating systems typically exhibit “contiguous” spa-

tial locality (although this is not guaranteed) in which tens of consecutive virtual pages

are mapped to consecutive physical pages. This behavior, caused in part by OS buddy

allocators and memory compaction, generates many instances of contiguous PTE spa-

tial locality, though typically not enough for large page generation. CoLT proposes

novel but modest hardware changes to a conventional TLB to exploit contiguous spa-

tial locality.

In this chapter, we go beyond CoLT by observing that many translations exhibit

“clustered” spatial locality in which translations are “nearby” in the same address

region. We provide a detailed characterization of PTE spatial locality across many

workloads. We use both detailed simulations and real-system approaches and show

that weakly-clustered spatial locality is more prevalent than contiguous spatial locality.

Next, we propose a low-overhead, multi-granular TLB organization that exploits PTE

clustering. Our approach uses modest hardware and no OS support, making it robust for

applications ranging from the server and desktop to high-performance computing and

cloud-computing domains. We consider enhancements to our design (e.g., replacement

policies and prefetching) that eliminate 46% of L2 TLB misses on average. Overall, our

approach largely subsumes the prior CoLT technique by exploiting contiguous spatial

locality when it exists, therefore it is thus effective even when OSs have been running

49

Virtual Page Physical Page

0 (0000) 8 (01000)

1 (0001) 9 (01001)

2 (0010) 10 (01010)

3 (0011) 12 (01100)

4 (0100) 13 (01101)

5 (0101) 17 (10001)

6 (0110) 16 (10000)

7 (0111) 18 (10010)

(a)

G
ro

u
p

Si

n
gl

et
o

n
s

Virtual Page Physical Page

0 (0000) 8 (01000)

1 (0001) 9 (01001)

2 (0010) 10 (01010)

3 (0011) 12 (01100)

4 (0100) 13 (01101)

5 (0101) 17 (10001)

6 (0110) 16 (10000)

7 (0111) 18 (10010)

(b)

G
ro

u
p

 G
ro

u
p

G

ro
u

p

Figure 3.1: The figure on the left shows the presence of contiguous spatial locality
(sequential groups) in a page table. The figure on the right shows that if clustered
locality is also observed, the entire page table can be more efficiently covered.

for long periods and are fragmented, making contiguous spatial locality harder to find.

3.2 Related Work and Our Approach

3.2.1 Spatial Locality in Page Table Entries

Large pages exploit cases in which large swathes of contiguous virtual pages are assigned

contiguous physical pages. We refer to groups of adjacent PTEs as contiguously spatially

local. Large pages require explicit OS intervention to ensure ample contiguous spatial

locality; however, it is also possible for operating systems to generate intermediate

amounts of spatial locality (in the range of tens to a few hundreds of PTEs). For

example, Figure 3.1(a) shows a page table in which the PTEs for virtual page numbers

(VPNs) 0-2 are in a sequential group of physical pages. Similarly, the sequential group

of PTEs for VPNs 3-4 are contiguously spatially local. Chapter 2 shows that this

behavior occurs often even in the absence of large page support because of OS buddy

allocators and memory-compaction daemons. Overall, we find that our page table is

made up of two sequential groups of PTEs exhibiting contiguous spatial locality and

three additional “singleton” PTEs.

This chapter’s key insight is that there exists another form of spatial locality, likely

occurring in greater abundance than contiguous spatial locality. Specifically, we find

that many PTEs exhibit clustered spatial locality in which a cluster of nearby virtual

50

V P1 P6 P3 P5 V P 2 3 1 0

SOFTWARE

HARDWARE

V P 1 0 1 1

(c)	 CoLT TLB(a)	 Complete	 Sub-‐block	 TLB (b)	 Partial	 Sub-‐block	 TLB (d)	 Clustered	 TLB

V1 P3 5

Page	 Table
V0 P0
V1 P1
V2 P2
V3 P3
V4 P4
V5 P5
V6 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7 P7

Page	 Table
V0 P0
V1 P1
V2 P2
V3 P3
V4 P4
V5 P5
V6 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7 P7

Page	 Table
V0 P0
V1 P1
V2 P2
V3 P3
V4 P4
V5 P5
V6 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7 P7

Page	 Table
V0 P0
V1 P1
V2 P2
V3 P3
V4 P4
V5 P5
V6 P6
V7 P7

Figure 3.2: Operation complete sub-blocking, partial sub-blocking, and CoLT versus
clustered TLB. For each approach, we show the structure of a single entry and a
page table with the PTEs that can be exploited.

pages map to a similarly clustered set of physical pages. Consider Figure 3.1(b), assum-

ing that we scan for clusters of up to eight PTEs. In our example, PTEs demonstrate

clustered spatial locality if they all share the same VPN divided by 8 and the same

physical page number (PPN) divided by 8 (i.e., we ignore the bottom 3 VPN and PPN

bits). Therefore, the entire page table is covered by two clusters. The first cluster

matches the first two sequential group of PTEs from Figure 3.1(a), and the second

cluster comprises PTEs for VPNs 5-7. The goal of our work is to show that this form of

clustered locality is abundant, even in fragmented systems, and to design low-overhead

hardware to exploit these patterns.

3.2.2 Other Techniques to Exploit Page Table Spatial Locality

In chapter 2, we have discussed the differences between sub-blocking and CoLT. In

Figure 3.2, we compare and contrast these previous approaches with clustered TLB.

Coalesced Large-reach TLBs (CoLT): Recall that a CoLT entry maps a group of contigu-

ous, spatially-local PTEs (in Figure 3.2(c), PTEs for virtual pages 1-5). Any arbitrary

set of PTEs can be accommodated (e.g., five PTEs in Figure 3.2(c)) by recording only

the base PTE and the number of coalesced PTEs, and there are no alignment restric-

tions for this approach. CoLT achieves high reach but is entirely reliant on contiguous

51

spatial locality.

Complete sub-blocking: This approach, shown in Figure 3.2(a), relaxes the need for con-

tiguous spatial locality [83]. Instead, complete sub-blocking looks for clusters of PTEs

with contiguous VPNs. Unfortunately, the ability of complete sub-blocking to store

any set of PPNs requires expensive hardware (multiple PPN fields). Furthermore, un-

like CoLT which accommodates any length of contiguous PTEs, complete sub-blocking

stores a PTE count equal to the sub-block factor.

Partial sub-blocking: This is a lower-overhead alternative to complete sub-blocking,

shown in Figure 3.2(d). Partial sub-blocking searches for PTEs with an aligned group of

virtual pages and an aligned group of physical pages. This approach permits “holes” in

a group of PTEs when the physical page offset within the aligned packet is different from

the virtual page offset (e.g., the PTE for virtual page 1 in our example). Partial sub-

blocking achieves high reach using much simpler hardware than complete sub-blocking

by imposing alignment and offset restrictions on PPNs.

Intuitively, partial sub-blocking goes beyond CoLT by exploiting contiguous spatial

locality and limited forms of clustered locality. However, its PPN alignment and offset

requirements cannot capture many instances of clustered spatial locality (e.g., the third

cluster in Figure 3.1 cannot be leveraged because it requires VPNs 5 and 6 to map to

PPNs 16 and 17, respectively, to be useful). In practice, we find that most instances

of clustered spatial locality in PTEs do not fit the alignment requirements of partial

sub-blocking (our measurements show that less than 10% of PTEs fit these alignment

requirements naturally). While the original partial sub-blocking approach [83] addresses

this problem by adding specialized OS code to generate the right alignment and offset

features, our goal is to avoid explicit OS modifications.

3.2.3 Our Approach: Clustered TLBs

We design a multi-granular TLB architecture that exploits more general forms of spa-

tial locality. We focus on clustered PTE spatial locality that also largely subsumes

contiguous spatial locality. We achieve this using a novel clustered TLB architecture.

52

Page	 Table

Page	 Table	 Entries
V0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P0
V1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P1
V2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P2
V3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P3
V4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P4
V5	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P5
V6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V7	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 P7

Virtual	 Memory	 Area:	
Defragment	 VPs

Operating	 System

V0 V1 V2 V3 V4 V5 V6 V7

Buddy	 allocator	 and	 compaction:	
Defragment	 PPs

Program

int *a	 =	 malloc(FOUR-‐PAGES);
a[IN-‐V3]	 =	 …;
a[IN-‐V2]	 =	 …;
a[IN-‐V1]	 =	 …;
a[IN-‐V0]	 =	 …;

Pham,	 Vaidyanathan,	 Jaleel,	 Bhattacharjee	 “CoLT:	 Coalesced	 Large-‐Reach	 TLBs”,	 MICRO	 ’12.
3

P0 P1 P2 P3 P4 P5

a) b) c)

Figure 3.3: Interactions between program faults order and kernel’s memory man-
agement.

Figure 3.2(d) shows a clustered TLB. Like sub-blocked TLBs, a clustered TLB is

designed for a maximum cluster factor of N (in this example, N=4). Suppose an

aligned group of virtual pages is found; if these virtual pages also point to an aligned

group of physical pages, the PTEs can be placed in a single clustered TLB entry. This

means that: (1) all VPNs in a cluster share the same bits ignoring the bottom log2(N)

bits; and (2) all PPNs in a cluster share the same bits ignoring the bottom log2(N)

bits. Unlike partial sub-blocking, these PPNs have no additional offset requirements in

a cluster (in our example, V0 maps to P2, but V2 to P1) and permit holes. An N -wide

vector is maintained per entry to record the offset of the physical pages in the aligned

group (only the log2(N) bottom-order bits are needed for this). In this way, clustered

TLBs can capture all the clusters from Figure 3.1.

Figure 3.3 shows the interaction between program faults order and different memory

management mechanism in the kernel, namely VMAs, buddy allocator, and memory

compaction. As discussed in Section 2.3.2.5, buddy allocator and memory compaction

help create areas of contiguous physical addresses to be returned to the program. Dif-

ference from the example in Figure 2.5, this program accesses pages in reverse order,

where it touches page V3 first, followed by V2, V1 and V0. As a result, reverse map-

pings are established in the page tables in Figure 3.3(c). Reverse faulting is just one of

many faulting types that cannot be captured by the CoLT design, and we try to exploit

here with clustered TLB.

53

Our approach offers key advantages relative to past work. Unlike CoLT, it captures

clustered spatial locality, making it robust even in the presence of fragmentation. Sec-

ond, unlike sub-blocking, it uses much simpler hardware and does not require explicit

OS support. Subsequent sections detail our design. We characterize the presence of

clustered locality across a variety of workloads and system configurations. We then

show how a multi-granular design made up of a clustered TLB coupled with a small

conventional TLB effectively captures this clustered spatial locality.

3.3 Weak Spatial Locality in Page Tables

In this section, we characterize spatial locality in page tables. We analyzed a total of

eleven benchmark traces from SPEC workloads (xalancbmk, SPECweb, GemsFDTD,

astar, omnetpp, mcf), server workloads (TPC-C, Trade6), and CloudSuite workloads

[32] (Graph Analytics, Data Serving, Data Caching)1. These traces were correlated

with hardware performance counters to ensure that they exhibit similar behaviors. We

first characterize the opportunities for previously-proposed CoLT-like approaches, and

then we relax the constraints on how PTE entries may be coalesced and examine the

impact that has on the potential for coalescing.

3.3.1 CoLT-like Contiguous Spatial Locality

We measured the fraction of PTEs that exhibit CoLT-styled contiguous spatial local-

ity, in which contiguous virtual pages map to contiguous physical pages. Each graph in

Figure 3.4 corresponds to one application. The x-axis shows the number of PTEs that

can be grouped, the y-axis is percentage of all PTEs, and the graphs show cumulative

distributions. For example, the bold solid line (labeled “Contiguous” in the legend) for

omnetpp shows that 46% of all PTEs have a grouping size of one (i.e., they cannot be

coalesced with any adjacent PTEs), about 96% of translations can be coalesced into

groups of six or fewer consecutive PTEs, and all PTEs can be coalesced into groups con-

sisting of no more than eight consecutive PTEs. Across the benchmarks, there are some

1See Section 4.6 for methodology details.

54

x-‐axis:	 cluster	 length	

0.0	

0.5	

1.0	

1	 8	 64	

xalancbmk	

0.4	

0.6	

0.8	

1.0	

1	 8	 64	

SPECweb-‐B	

0.0	

0.5	

1.0	

1	 8	 64	

TPC-‐C	

0.0	

0.5	

1.0	

1	 8	 64	

GemsFDTD	

0.0	

0.5	

1.0	

1	 8	 64	

Graph	 Analy<cs	

0.2	
0.4	
0.6	
0.8	
1.0	

1	 8	 64	

Trade6	

0.4	

0.6	

0.8	

1.0	

1	 8	 64	

Data	 Serving	

0.0	

0.5	

1.0	

1	 8	 64	

Data	 Caching	

0.0	

0.5	

1.0	

1	 8	 64	

astar	

0.0	

0.5	

1.0	

1	 8	 64	

omnetpp	

0.0	

0.5	

1.0	

1	 8	 64	

mcf	

1	 256	

Con;guous	
Cluster2	
Cluster3	
Cluster4	
Cluster5	

Figure 3.4: Cumulative distribution functions comparing the opportunity of CoLT-
style contiguous spatial locality versus the clustered spatial locality that we target.
In general, clustered spatial locality covers a bigger portion of the page table than
contiguous spatial locality.

cases in which CoLT-styled sequentially allocated translations provide decent coalesc-

ing opportunities (e.g., GemsFDTD, mcf), and others in which sequentially consecutive

translations are less prevalent (e.g., xalancbmk, SPECweb-B2, Data Serving).

3.3.2 Clustered Spatial Locality

CoLT requires that consecutive virtual pages map to sequential physical pages. Requir-

ing complete sequentiality for both VPNs and PPNs restricts coalescing opportunities.

We instead consider the notion of clustered spatial locality: as long as nearby virtual

pages map to nearby physical pages, we consider the corresponding PTEs coalesca-

ble. In Figure 3.4, the notation “ClusterX” indicates that translations from within an

aligned cluster of 2X virtual pages that map to an aligned cluster of 2X physical pages

potentially can be combined.

For example, the curves labeled Cluster3 limit the clustering or grouping of PTEs

2‘B’ corresponds to the SPECweb banking workload.

55

to those that fall within the same aligned set of eight (i.e., 23) pages. With the CoLT-

style contiguous curves, a value of (for example) 3 on the x-axis indicates that three

consecutive PTE entries mapped to three consecutive physical pages. With the Cluster3

curves, the same value of three indicates that three virtual pages (from within a group

of eight), map to pages within an aligned group of eight physical pages. The three

VPNs need not be consecutive, and the corresponding three PPNs also do not need to

be consecutive or even in increasing address order.

For each curve, the point at which the curve meets the y-axis (i.e., the y-intercept)

indicates the percentage of PTEs that cannot be coalesced with any other PTEs. For

most benchmarks, a modest clustering scope of Cluster2 or Cluster3 can uncover more

opportunities for PTE coalescing than when using the more constrained CoLT-like

contiguous criteria. For example, in the benchmark xalancbmk, a CoLT-like approach

leaves 77% of translations uncoalesced, whereas when considering groups of four (Clus-

ter2) or eight (Cluster3) pages without the sequentiality constraint, the percentage of

uncoalescable PTEs drops to 66% and 45%, respectively. Furthermore, the exact curves

are heavily dependent on benchmark behavior. For example, Data Caching sees partic-

ularly large amounts of contiguous spatial locality (and even clustered spatial locality)

because it uses memcached, which in turn allocates large data structures using the slab

allocator, which targets contiguous memory allocation.

In almost all cases, relaxed clustering allows significantly more coalescing opportu-

nities than a CoLT-based approach. As the clustering scope increases (i.e., larger X for

ClusterX), the opportunities for coalescing increase as well (curves move further down

and to the right), but in many cases Cluster3 or Cluster4 are sufficient for capturing

a significant portion of the opportunity. Mcf is a case when the CoLT-styled approach

appears to provide significantly more coalescing opportunity; this arises because the

ClusterX criteria limits the coalescing scope to at most 2X pages, whereas if CoLT gets

lucky and there exists a very long run of adjacent translations, CoLT can coalesce all

of these.

56

3.3.3 Impact of Memory System Fragmentation

A potential criticism and limitation of any TLB-coalescing approach is that after a

system has been up and running for a long time, the virtual memory system may become

fragmented. A highly-fragmented memory system would make it unlikely that nearby

virtual pages get mapped to nearby physical pages (let alone to completely sequential

physical pages). To quantify the impact of OS memory allocation fragmentation, we

ran a subset of the benchmarks on a real server3 and extracted live snapshots of the

applications’ page tables. This server is a highly-utilized machine mostly dedicated to

running simulations, and the machine had an uptime of about 1.5 months at the time

of these experiments. We found that while the exact amounts of coalescing opportunity

are not the same as our trace-based analysis, they follow the same trends. We found that

despite 1.5 month’s worth of fragmentation, clustered spatial locality is more prevalent

than contiguous spatial locality in every single case. For astar, omnetpp, and mcf, we

found that eight clustered entries cover close to the full page table, whereas more than

64 such entries are required if only contiguous spatial locality is leveraged.

3.4 The Multi-granular TLB

The overall multi-granular TLB consists of a clustered TLB that can efficiently store

multiple translations for PTEs with clustered spatial locality, a conventional TLB for

singleton translations without spatial locality, coalescing logic for detecting clustered

spatial locality and populating entries of the clustered TLB, and logic for performing

look-ups, evictions, and other standard TLB operations.

3.4.1 Clustered TLB

Structure: The basic clustered TLB is a set-associative structure, much like a con-

ventional TLB, but each TLB entry is designed to store multiple clustered page table

translations. Figure 3.5(a) shows a clustered TLB entry. In this example, we assume

a clustering reach of eight PTEs (i.e., Cluster3, or C3 for short). The eight VPNs all

332-thread x86 multiprocessor with 64GB memory, running 64-bit Ubuntu OS v12.04.

57

have identical values except for the lowest-three bits. The VPN’s upper bits (i.e., the

VPN’s bits excluding the lowest three) are called the base VPN. Likewise, any of the

coalescable PPNs are identical apart from their respective lowest-three bits, and the

common prefix of the PPN is similarly called the base PPN. The key is that because all

of the coalescable translations have identical base VPNs and base PPNs, each of these

base values needs to be stored only once per clustered-TLB entry. Only the low-order

bits of the PPN need to be tracked individually.

The C3 TLB entry potentially can track up to eight PTEs. For each of the individual

potential translations, there is one sub-entry. Figure 3.5(a) also shows these eight sub-

entries, with a detail of one such sub-entry’s contents. Each sub-entry contains a valid

bit, a dirty bit, a referenced bit (used in replacement policies described later), and the

low-order bits of the PPN (e.g., the lowest-three bits in the case of Cluster3).

Look-up: To perform a look-up on the clustered TLB, we start with the VPN. Instead

of using the entire VPN to generate a set index, we use only the base VPN (e.g., the

lowest-three bits are omitted), as shown in Figure 3.5(b). If the requested base VPN

matches the base VPN stored in the indexed clustered TLB entry4, then we have a

cluster hit, but this does not necessarily imply that the requested VPN is tracked by

the clustered TLB. Next, we take the low-order bits of the VPN to select one of the eight

sub-entries. If the selected sub-entry’s valid bit is set, then this indicates an actual hit.

The translated PPN then simply is reconstructed by concatenating the base PPN with

the low-order PPN bits stored in the selected sub-entry. The sub-entry’s referenced bit

is set, and if the request corresponded to a write operation, then the sub-entry’s dirty

bit also is set. If we do not have a cluster hit, or if the selected sub-entry is not valid,

then in either case this results in a cluster TLB miss.

Fill: On a clustered TLB miss, the TLB look-up is forwarded to the hardware page-

table walker (PTW). In x86-64 processors, the PTW traverses the four-level page table

and returns a cache line containing the requested PTE, as shown in Figure 3.6(a).

4For simplicity, only a direct-mapped clustered TLB is shown in the figure, but extension to a set-associative
organization parallels that for a conventional TLB or cache.

58

V	 M	 R	 PA(14:12)	

Sub-‐entries	

(a)	

Base	 VPN	 VPN(2:0)	

Base	 V	 Base	 P	

Clustered	 TLB	

=?	

Hit?	

Sub-‐entry	 hit?	

PPN	

concat	

PPN	
lower	
bits	

(b)	

ADr.	 VA(47:20)	 PA(51:15)	

Figure 3.5: (a) Clustered TLB entry format, (b) Look-up operation

In x86-64, the PTE entry size is 8 bytes, which means that a single 64-byte cache

line contains a total of eight PTEs (i.e., the requested PTE plus seven others). The

clustered TLB’s coalescing logic examines the seven non-requested PTEs and checks to

see which of these can be coalesced (shown shaded in Figure 3.6(b)) with the originally

requested PTE (i.e., it detects how many PTEs exhibit clustered spatial locality). For

the original PTE and each coalescable PTE, the corresponding sub-entry will have the

valid bit set, the referenced bit cleared, and the low-order PPN bits stored. All other

sub-entries have their valid bits cleared. The common base VPN and base PPN are

stored in the overall clustered-TLB entry. All of this logic is off the critical path because

the originally requested PTE can be returned as soon as the PTW’s page table look-up

has completed.

Clustered TLB Eviction: For a set-associative clustered TLB, a clustered TLB entry

first must be evicted prior to installing a new set of clustered PTEs. Each clustered

59

C0	 TLB	
Clustered	

TLB	

VPN	

C0	 hit	

PPN	

Cl
us
te
re
d	

hi
t	

PPN	

TLB	 hit	 PPN	

(b)	

Page	 Table	 Walker	
64B	 cacheline	

8B	 PTE	

Coalescing	 Logic	

Base	
VPN	

Base	
PPN	

Clustered-‐TLB	 entry	

(a)	

Figure 3.6: (a) Coalescing is performed on TLB fill, (b) Multi-granular TLB consists
of a clustered TLB and a small conventional TLB.

TLB entry may contain a different number of valid translations; simply relying on

conventional replacement policies such as LRU fails to account for situations when the

LRU entry contains many valid translations and other more recently used entries may

contain only a few. It is not immediately clear how to trade optimizing for recency

against the retention of a larger number of translations.

The sheer number of valid translations in a clustered TLB entry might not reflect

the utility of those translations. The coalescing logic may prefetch up to seven ad-

ditional translations (assuming Cluster3), but it is possible that none of these other

translations are needed. We propose a simple replacement algorithm that incorporates

the referenced bits from each of the sub-entries to estimate the overall usefulness of the

clustered TLB entry. Usefulness is the number of valid sub-entries with their referenced

bits set. We also define a recency value, which is the clustered TLB entry’s position in

the LRU recency stack (lower value = less recently used). Then for each clustered TLB

entry in a set, we compute a retention priority:

priority = (α * recency) + (β * usefulness)

The clustered TLB entry with the lowest priority is selected as the victim. This provides

a balance between the recency of the clustered TLB entry, and the number of useful

translations stored by the entry. We found that setting α and β to 1 and 2, respectively,

60

provided good performance while maintaining very simple hardware (e.g., for a four-way

set-associative clustered TLB, the recency value is only two bits wide, the usefulness

value is four bits wide for Cluster3, and multiplication by 1 and 2 are trivial.

To avoid the pathological situation when a clustered TLB entry that has not been

used recently, but still is kept around due to a large number of sub-entries that were

useful (i.e., referenced) a long time ago, we periodically decay the referenced bits. We

found that exactly how the referenced bits are cleared is not very important; we tried

periodic and pseudo-random approaches across a very large range of decay intervals

and found that overall performance is largely insensitive if some decay occurs every

now and then.

3.4.2 Multi-granular TLB Organization and Operation

The clustered TLB provides efficient storage of multiple PTEs by not having to re-

dundantly store multiple copies of the base VPN and base PPN for translations that

exhibit clustered spatial locality. However, the locality characterization results from

Section 4.3 showed that there remains a non-trivial percentage of PTEs that cannot

be coalesced with other PTEs. Storing such singleton translations in a clustered-TLB

entry would be wasteful because only a single sub-entry would be utilized. Figure 3.6(b)

shows the high-level organization of the multi-granular TLB (MG-TLB). The MG-TLB

consists of a clustered TLB paired with a conventionally-organized (i.e., not clustered)

TLB. For shorthand, we label the conventional TLB “C0”.5 The conventional TLB is

primarily utilized to cache singleton translations that cannot be clustered with other

PTEs.

Look-up: To perform a look-up, both structures are searched in parallel. A hit in either

indicates a TLB hit, and the translation is provided by the hitting structure. A miss

in both structures results in an overall TLB miss, and the request is sent to the PTW

to retrieve the translation from the page table.

5A conventional TLB can be viewed as a degenerate case of the clustered TLB with a clustering scope of
zero (i.e., Cluster0).

61

Fill: In the MG-TLB, when the PTW returns the cache line with the requested PTE

(along with the seven other neighboring PTEs), the entire set of eight PTEs is delivered

to the clustered TLB’s coalescing logic. At the end of the coalescing process, the

MG-TLB first checks the coalescing degree (i.e., how many PTEs were successfully

coalesced). If the coalescing degree is greater than a threshold value θ, then the entire

set of coalesced translations is installed into the clustered TLB. Otherwise, the single

originally-requested translation is installed into the conventional C0 TLB. The idea is

that the clustered-TLB entries provide greater encoding density (i.e., valid translation

per unit area) when the coalescing degree is high. If it is more efficient to store a few

(less than θ) translations in C0, then that should be done instead.

Clustered TLB Eviction: When an entry is evicted from the clustered TLB, it is possible

that it contains one or more valid translations. One option is simply to drop them all;

if any are needed, a subsequent TLB miss will cause them to be re-fetched by the

PTW. This could cause an increase in TLB misses. Another approach is to take them

all and place each translation in individual entries of the conventional C0 TLB. This

approach is unfortunately space-inefficient (which is why we clustered them in the first

place). We instead take a middle-of-the-road approach in which only those sub-entries

that have their referenced bits set are “saved” and installed into the C0 TLB. The

remaining translations are dropped. Apart from preserving useful translations, this is

an important optimization because it provides a way to convert a clustered-TLB entry

with a high degree of coalescing but low actual usefulness into more efficiently stored

conventional TLB entries (i.e., clustered spatial locality does not buy you anything if

the coalesced entries are never used, and this policy allows such clustered TLB entries

to be “de-coalesced”).

3.4.3 Frequent Value Locality in the Address Bits

Our baseline clustered TLB design exploits the fact that the upper bits of the VPNs

and PPNs of nearby PTE entries often contain the same values. We observed that this

spatial locality in the addresses’ bit patterns also occurs on a global scale.

62

 0

 10

 20

 30

 40

 50

4b 8b 12b 16b 20b 24b 28b 32b

U
n
iq

u
e
 V

a
lu

e
s

275 1581 8448

(a)

 0

 10

 20

 30

 40

 50

8b 12b 16b 20b 24b 28b 32b 36b

U
n
iq

u
e
 V

a
lu

e
s

274 1724 9158

(b)

Figure 3.7: The number of unique values when only considering the x upper-most
bits for the VPN (a) and PPN (b), as x is varied. The upper 16 VPN bits and 20
PPN bits change rarely in our experiments.

Consider the layout of typical virtual address spaces. A program’s virtual memory

space usually is partitioned into a few, large logical regions corresponding to the pro-

gram’s text, heap, stack, etc. These usually are contiguous in the virtual address space,

which creates a few frequently used memory regions. When considering only the few

most-significant bits of virtual addresses of all valid PTEs, we typically find only a few

unique values.

Figure 3.7a quantifies this entropy by showing the number of unique values (y-

axis) used by the most significant bits from the VPN (x-axis) on average across our

benchmarks. For example, when considering the 12 most-significant bits of the VPN

(we use 48-bit virtual addresses), on average we only observe five unique values. This is

similar to past work in frequent value locality (FVL) that showed that memory locations

often store values drawn from a small set of common values (e.g., zero) [76,93]. In this

case, we effectively observe that similar FVL exists in the upper bits of the VPNs.

In a similar fashion, Figure 3.7b shows that the most significant PPN bits tend only

to use a few unique values. In particular, we find that the 20 most-significant bits of the

PPN (we use 48-bit physical addresses) use only one of four unique values on average.

This is due partially to the tendency of OSs to cluster physical pages so that transfers

to disk make good use of high disk bandwidth.

We leverage that the most-significant VPN and PPN bits typically are drawn from

63

VUBT	
VUBT	
Index	

Base	 VPN	 Lower	
Bits	 …

Encoded	 TLB	 Entry	

concat	

Base	 VPN	

(a)	

Encoded	 TLB	

Encoded	
ways	

Un-‐encoded	
ways	

(b)	

Figure 3.8: (a) Hardware organization for the Virtual Upper Bits Table (VUBT)
and an encoded TLB entry, and (b) a four-way TLB with three encoded ways and
one un-encoded way.

a limited set of unique values to optimize the MG-TLB further. This also can be used

for the baseline TLB and CoLT.

FVL-Support for TLBs: We partition the TLB’s base VPN field into the upper bits that

tend to come only from a small set of unique values, and the lower bits that exhibit

greater value diversity. Figure 3.8(a) shows an auxiliary structure called the virtual

upper bits table (VUBT). This stores the commonly-occurring upper bits of the base

VPNs. The TLB entry now is modified such that the VPN’s upper bits are removed

and replaced with an index into the VUBT. To reconstruct the entry’s VPN, the VUBT

index selects one of the VUBT entries that provides the upper bits of the VPN. The

remaining bits of the VPN come from the TLB entry itself. A similar physical upper

bits table (PUBT) encodes the upper bits of the PPNs. This can be applied to the

clustered TLB as well as the conventional TLB. We call such an entry an encoded TLB

entry.

The VUBT (or PUBT) is limited in size, and so if a VPN’s (or PPN’s) upper bits

do not match any of the entries of the VUBT (PUBT), then the translation cannot be

stored in an encoded TLB entry. To support situations when the number of unique VPN

upper-bit values exceeds the capacity of the VUBT, we use a hybrid TLB structure in

which some ways support the encoded scheme, and other ways use a conventional VPN

format. Figure 3.8(b) shows an example four-way TLB in which the first three ways

use encoded TLB entries, and the last way uses un-encoded entries.

64

Look-up: Look-up proceeds as with a conventional TLB in which the VPN (or base

VPN) is used to select a set. For each encoded way, the VUBT index first is used to

look up the VPN upper bits from the VUBT. This is concatenated with the stored lower

bits to form the overall VPN (or, more accurately, the VPN tag). For the un-encoded

ways, the entire VPN (tag) can be read directly from the TLB entries. At this point,

each way now has a fully decoded VPN tag, and this can be compared to the requested

VPN to determine if there is a TLB hit.

If there is a hit in an encoded entry, the stored PUBT index is used to select the

upper PPN bits from the PUBT, which are then concatenated with the lower PPN bits

stored in the encoded TLB entry. A hit in an un-encoded way simply uses the PPN

already stored in that TLB entry.

Fill: On a TLB miss, the VUBT is searched to see if any existing entries match the

upper bits of the VPN (for the translation we are installing into the TLB). At the

same time, a similar search is performed on the PUBT for the upper bits of the PPN.

If there are matches in both the VUBT and the PUBT, then the translation can be

installed in an encoded TLB entry. If the upper bits cannot be found in one of the

VUBT entries, then a new VUBT entry is allocated for this new upper-bit value. The

translation is installed into an encoded TLB entry (assuming the PPN had a match

in the PUBT) and the encoded entry stores the index of this newly allocated PUBT

entry. A symmetric operation is performed if the PPN’s upper bits do not match any

existing PUBT entry. If a VUBT or PUBT entry cannot be allocated (i.e., the VUBT

or PUBT is full), then the translation is installed into a un-encoded TLB entry.

VUBT and PUBT Management: When an application (process) is first context-switched

onto a core, a new page table base pointer (i.e., CR3) is loaded and the TLB is flushed.

At the same time, we also flush the VUBT and PUBT. As previously un-encountered

VPN and PPN upper-bit values are encountered, they will be allocated new entries in

the VUBT and PUBT, respectively. The entries are allocated in order; thus, instead of

per-entry valid bits, a single allocation counter per table is needed.

Eventually, one or both of these may fill up, at which point any new VPN or PPN

65

upper-bit values will cause the corresponding translations to be restricted to the un-

encoded entries in the TLB. Our characterization (Figure ??) showed that typically

there are only a few unique VPN and PPN upper-bit values, and so very small VUBT

and PUBT sizes are needed in the vast majority of cases. Based on the characterization

results, we set the VUBT size at eight entries and the PUBT size at four. A small VUBT

table is desirable because to perform the encoded TLB look-up, each encoded way needs

to perform a look-up on the VUBT, and therefore the VUBT needs to be multi-ported

(each look-up is a RAM look-up). Similarly, on a fill operation, we need to check if

the current VPN upper-bits are already present in any of the VUBT entries, which

requires a single CAM port. Keeping the VUBT small makes the extra ports not very

expensive. The PUBT is slightly simpler because only the hitting way needs to perform

a look-up, and so it can be limited to a single RAM port and a single CAM port.

Even if the VUBT or PUBT fills up, translations with the upper-bit values not in

these tables will continue to be cached in the TLB’s un-encoded ways. The monotonic,

write-only allocation of the VUBT/PUBT may seem like a problem, but these will be

flushed on every context switch. If a single program runs for a very long time without

ever being context-switched out by the OS, it would be trivial to have the processor pe-

riodically (but fairly infrequently) flush the TLB and VUBT/PUBT. The performance

impact is minimal if this flush interval is sufficiently long. For a simultaneous multi-

threaded (SMT) processor, we could have one set of UBTs per hardware thread. This

avoids flushing all UBTs when only a single thread is context-switched. Given the small

size of the UBTs, the space overhead is minimal (typical SMTs are only two-threaded).

3.4.4 Hardware Cost

3.4.4.1 Basic Multi-granular TLB Hardware Cost

Table 3.1 compares area cost and reach for conventional TLB, CoLT-SA (the set-

associative version of the CoLT TLB proposed by Pham et al. [70]), and the MG-TLB.

Conventional TLB: 512 entries, four ways. Each entry has 29 bits for the tag, 40 bits

for the PPN, and 5 bits for the attribute. In total, we have 75 bits per entry, which

66

Table 3.1: Comparison of Hardware Cost

Baseline
L2TLB

CoLT-
SA

Cluster-
C3

Cluster-
C0

Entries 512 512 128 320

Assoc. 4 4 4 4
Max
Reach

512 2,048 1,024 320

Min
Reach

512 512 128 320

Attr.
Bits

5 5 5 5

Tag Bits 29 27 28 30

Data
Bits

40 48 85 40

Entry
Bits

74 80 118 75

Total
Bits

37,888 40,960 15,104 24,000

adds up to 37,888 bits (4.625KB). The other designs are configured to target a similar

bit-storage budget.

CoLT-SA: 512 entries, four ways. Each CoLT entry has only 27 bits for the tag because

we left-shift the VPN by 2 bits to compute the set index; 40 bits for the base PPN; 8

bits for 4 sub-entries, each sub-entry in the contiguous range has 1 valid bit and 1 dirty

bit, and 5 bits for the attribute. As a result, each CoLT entry has 80 bits, which gives

us 40,960 bits total, or 8% area overhead compared to the baseline.

Multi-granular TLB: We allocate about one-third of the storage budget to C3 and two-

thirds of the budget to C0. This results in 128 C3 entries, and 320 C0 entries6. Each

C3 entry has 5 bits for the attribute; 28 bits for the tag because we ignore the bottom

3 bits of the VPN; 37 bits for the base PPN because we also ignore the bottom 3 bits

of the PPN; and, eight sub-entries, with each sub-entry having 6 bits (valid, modified,

referenced, and 3 bottom bits of the corresponding PPN). Hence, 128 C3 entries requires

15,104 bits. Each C0 entry has 5 bits for the attribute, 30 bits for the tag, and 40 bits

for the PPN. Therefore, 320 C0 entries require 24,000 bits. This MG-TLB configuration

requires 39,104 bits which is close to the baseline (3%) and less than CoLT.

Given these configurations, the conventional TLB always has a reach of 512 pages.

6In a real implementation, the number of C0 entries (or at least the number of sets) would be a power-of-two.
For the purposes of maintaining similar storage budgets across each type of TLB for fair comparisons, we used
a non-power-of-two size.

67

Table 3.2: Enhanced MG-TLB Hardware Cost

C3’s Full
Len Way

C3’s
En-

coded
Way

C0’s
Full
Len
Way

C0’s
En-

coded
Way

Entries 38 114 109 327
Max
Reach

304 912 109 327

Min
Reach

38 114 109 327

Attr.
Bits

5 5 5 5

Tag Bits 29 12 31 14
Data
Bits

85 69 40 24

VEncode
Bits

3 3 3 3

PEncode
Bits

2 2 2 2

Entry
Bits

119 91 76 48

VUBT
Bits
(Shared)

132 132 132 132

PUBT
Bits
(Shared)

67 67 67 67

Total
Bits

4,522 10,374 8,284 15,696

CoLT-SA can have a coverage of up to 2,048 pages (i.e., if each of the 512 entries fully

coalesces four PTEs), while the MG-TLB has maximum reach of 1,024 in the C3 table

(i.e., if each of the 128 clustered-TLB entries is fully populated with eight translations)

plus the 320 entries in the C0 TLB for a total of 1,344 possible translations. In the

worst case, CoLT-SA has reach of 512 pages, while the MG-TLB has a reach of 448. At

first glance, CoLT-SA may appear to be better in terms of reach than the MG-TLB,

but this is true only if CoLT-SA can find enough contiguous spatial locality. We will

show that the MG-TLB’s effective reach is superior to CoLT-SA’s because, in practice,

clustered spatial locality is easier to find than strict contiguous locality.

3.4.4.2 Enhanced Multi-granular TLB Hardware Cost

Table 3.2 shows the configuration of the MG-TLB when we exploit the FVL in the

upper bits of VPNs and PPNs. We use a similar relative area allocation between C3

and C0 as before; however, for each encoded TLB entry, we need to keep additional

68

bits for the VUBT and PUBT indexes. We assume a VUBT with eight entries, and

a PUBT with four entries; therefore, the respective indexes are 3 and 2 bits each. In

addition, a small part of the area budget is used to implement the VUBT and PUBT

(along with one small allocation counter for each). Each VUBT or PUBT entry is 16

bits and the VUBT and PUBT counters are 4 and 3 bits, respectively, so in total we

need 132 bits for the VUBT and 67 bits for the PUBT. Overall, the total area cost is

39,075 bits, or 3% of area overhead compared to the baseline, which also is much less

than CoLT.

Despite those additional bits, by replacing the 16 upper bits of the VPN or the PPN

with a 3-bit VUBT or 2-bit PUBT index, respectively, we can save quite a bit of space,

which allows us to add more entries to both the C3 and C0 TLBs. While maintaining

approximately the same bit-budget as the un-encoded MG-TLB, C3 and C0 TLBs that

each use three encoded ways allow us to have 152 C3 entries and 436 C0 entries. This

increases the maximum reach of the MG-TLB to 1,652 (from 1,344 in the basic design)

and the minimum reach from 448 to 588. We will show that this design performs the

best out of all of our evaluated configurations.

3.5 Experimental Methodology

This section describes the infrastructure7 used to evaluate our multi-granular TLB and

two comparison points: a baseline conventional TLB and the recently proposed CoLT

design.

3.5.1 Workloads

Table 3.3 shows the workloads evaluated in our study. We consider a wide range of

applications, from scientific workloads to server and cloud workloads, and select bench-

marks with non-negligible TLB miss overheads. We also evaluated eight benchmarks

with low TLB sensitivity (from SPECcpu 2006, SPECjbb2005, web browsing, and gam-

ing; results for these benchmarks are omitted for space), and their results are consistent

7I was using this simulation infrastructure during my internship at AMD Research, from 1/2013 to 8/2013.

69

Table 3.3: Summary of benchmarks used in our studies

Benchmarks Suite Page Walk Overhead

xalancbmk SPEC CPU2006 9.4%

SPECweb-B SPECweb2005 9.5%

TPC-C TPC 8.6%

GemsFDTD SPEC CPU2006 9.2%

Graph Analytics CloudSuite 17.7%

Trade6 IBM WebSphere 11.1%

Data Serving CloudSuite 8.8%

Data Caching CloudSuite 20.0%

astar SPEC CPU2006 19.5%

omnetpp SPEC CPU2006 26.4%

mcf SPEC CPU2006 33.8%

with the observations we show in this work. We collect traces of at least 50 million

instructions per benchmark using AMD’s SimNowTM [18] full-system simulator soft-

ware. The traces capture issued user and system instruction and data references and

record the virtual and physical page address pairs. We also correlate the traces against

hardware performance counters to ensure that they capture a representative execution

phase of the benchmarks.

3.5.2 Simulation Infrastructure

3.5.2.1 Functional Simulator

For fast design-space exploration of our multi-granular TLB in comparison to the base-

line TLB and CoLT, we use a functional simulator that models a two-level TLB with

64-entry L1 instruction and data TLBs. We assume a baseline L2 TLB of 512 entries,

similar to current products [70]. Because our multi-granular TLB targets the L2 level,

we compare this against the benefits of CoLT on just the L2 TLB. All TLBs have

four-way associativity.

3.5.2.2 Performance Evaluation

We use an in-house trace-driven timing simulator derived from the MacSim simulator

[35], using a two-wide in-order core. It models three-level cache hierarchies, two-level

TLBs, a hardware page-walk unit complete with a page-walk cache, and a detailed

DRAM model. The TLBs have associated miss status holding registers (MSHRs) to

70

-20%

0%

20%

40%

60%

80%

100%

xa
la
nc

bm
k

SPEC
w
eb

-B

TPC
-C

G
em

sF
D
TD

G
ra

ph
 A

na
ly
tic

s

Tra
de

6

D
at

a
Ser

vi
ng

D
at

a
C
ac

hi
ng

as
ta

r

om
ne

tp
p

m
cf

Ave
ra

ge

M
is

s
e
s
 E

lim
in

a
te

d
CoLT

MG-TLB
en-MG-TLB

-123%

Figure 3.9: L2 TLB misses eliminated by the baseline multi-granular TLB (MG-
TLB), enhanced MG-TLBs with structures to exploit redundant most significant
VPN and PPN bits (en-MG-TLB) and CoLT. MG-TLB and en-MG-TLB compre-
hensively eliminate more misses than CoLT.

model pipelined accesses. We also calibrated the page-walk overheads of our timing

simulator against hardware measurements on a real machine. As shown in Table 3.3,

overheads for our benchmarks range from a problematic 9% for Data Serving to a severe

34% for mcf.

3.6 Multi-granular TLB Evaluations

Our multi-granular TLB (MG-TLB) enjoys a number of design options. We evaluate

the performance implications of various options in this section.

3.6.1 Understanding Changes in Hit Rates

Figure 3.9 compares the percentage of L2 TLB misses eliminated (compared to a stan-

dard baseline four-way, 512-entry TLB) when using CoLT (512-entry); MG-TLBs with-

out exploiting the frequent value locality in the VPN and PPN’s upper bits (128-entry

C3 TLBs with a 320-entry conventional C0 TLB); and the encoded MG-TLBs (en-

MG-TLB) that leverage the upper-bit frequent value locality (152-entry C3 TLBs with

436-entry standard C0 TLB).

71

MG-TLBs eliminate more TLB misses than CoLT, averaging 38% miss eliminations

(30% more than CoLT). FVL-based encoding (en-MG-TLB) only boosts this difference,

eliminating on average 46% of the TLB misses. More specifically, we note the following

three observations:

First, benchmarks that exhibit more clustered spatial locality than contiguous spa-

tial locality (e.g., Data Serving, TPC-C) also eliminate more misses with MG-TLB than

with CoLT. In fact, CoLT actually provides a negative result for Data Serving, mostly

because the change in set-indexing scheme outweighs its ability to exploit contiguous

spatial locality. Fortunately, exploiting clustered spatial locality overcomes this issue,

eliminating the vast majority (more than 80%) of the TLB misses. Enhancements

provide additional benefits.

Second, benchmarks like mcf or Data Caching, which show more contiguous spatial

locality, still benefit more from MG-TLB than CoLT. We find that this occurs because

changes to CoLT’s set-indexing scheme undo the benefits of exploiting contiguity. In-

stead, our dual approach of leveraging clustered spatial contiguity and allowing a small

conventional L2 TLB for singleton PTEs is more beneficial. As a result, MG-TLB

eliminates 20% more of mcf’s TLB misses than CoLT.

Third, en-MG-TLB improvements relative to MG-TLB are non-trivial for xalancbmk,

TPC-C, Trade6, and mcf. In these benchmarks, the FVL in the upper bits makes even

relatively small VUBT and PUBT tables highly effective.

3.6.2 Overall Performance Improvements

Figure 3.10 compares the performance improvement of en-MG-TLB with CoLT. Our

approach outperforms CoLT in every case except astar. In some cases, the performance

difference is significant (close to 18% for Data Serving, 12% for mcf, and 10% for

omnetpp). On average, we outperform CoLT by about 5%, but we purposefully included

benchmarks in which neither has much benefit (e.g., Graph Analytics) to demonstrate

that the MG-TLB approach does not hurt performance when the spatial locality is

sufficient, as well as benchmarks in which CoLT truly does well (e.g., astar, in which

CoLT performs slightly better than MG-TLB). As TLB overheads continue to rise [16,

72

-5%

0%

5%

10%

15%

20%

xa
la
nc

bm
k

SPEC
w
eb

-B

TPC
-C

G
em

sF
D
TD

G
ra

ph
 A

na
ly
tic

s

Tra
de

6

D
at

a
Ser

vi
ng

D
at

a
C
ac

hi
ng

as
ta

r

om
ne

tp
p

m
cf

Ave
ra

geP
e
rc

e
n
t
P

e
rf

.
Im

p
ro

v
e
m

e
n
t

CoLT
en-MG-TLB

-10%

Figure 3.10: Performance improvements when using CoLT and en-MG-TLB. Our
approach outperforms CoLT in every single case.

19], the expected benefit of TLB coalescing techniques such as MG-TLB would be

expected to increase.

3.6.3 Prefetching versus Capacity Improvements

Our multi-granular TLB eliminates misses in two main ways. First, on a TLB miss,

it speculates that PTEs near the one that is requested may be useful. This benefit is

similar to prefetching because it is not known whether clustered PTEs will be useful in

the future. However, unlike classical prefetching, which must evict an existing entry to

make room for a new one, clustered TLBs use the same entry for the entire clustered

packet. Second, because each clustered entry provides a higher reach, there is a capacity

improvement relative to the standard approach, for the same total area.

Figure 3.11 teases apart the relative benefits of these two factors by plotting (1)

TLB miss-elimination rates for MG-TLBs; (2) TLB miss elimination when the same

clustered PTEs are prefetched into a standard 512-entry L2 TLB; and, (3) a lazy MG-

TLB approach, in which only the desired PTE is inserted into the clustered TLB on

demand, but which then integrates the other PTEs in the cluster if they are demanded

in the future. Overall, this comparison informs us whether most of en-MG-TLB’s

benefits arise from prefetching effects or its superior reach.

73

-20%

0%

20%

40%

60%

80%

100%

xa
la
nc

bm
k

SPEC
w
eb

-B

TPC
-C

G
em

sF
D
TD

G
ra

ph
 A

na
ly
tic

s

Tra
de

6

D
at

a
Ser

vi
ng

D
at

a
C
ac

hi
ng

as
ta

r

om
ne

tp
p

m
cf

Ave
ra

ge

M
is

s
e
s
 E

lim
in

a
te

d

en-MG-TLB
Baseline + Prefetch

Lazy en-MG-TLB

-32% -21%

Figure 3.11: Separating the prefetch and capacity benefits of MG-TLBs.

Figure 3.11 shows that the relative benefits vary per benchmark. Some benchmarks

(e.g., GemsFDTD, Data Caching, omnetpp) gain from prefetching. In fact, for some of

these (e.g., omnetpp), the capacity benefit is almost negligible. The other benchmarks

however, en-MG-TLB and the Lazy (no prefetch) version perform similarly, making

clear that capacity is the main benefit. For some benchmarks, prefetching alone is

negative (xalancbmk, Data Serving, etc.) because capacity improvement is the key to

overall performance boosts.

3.7 Sensitivity Studies

MG-TLB has a number of parameters crucial to its overall performance. We investigate

these parameters in this section.

Cluster Size: We have thus far assumed that the MG-TLB uses a C3 clustered TLB.

Figure 3.12 shows how TLB miss-elimination rates change when C2 and C4 TLBs

are used instead. Larger clustering potentially exploits more clustered spatial locality.

At the same time, each entry’s size increases, decreasing the total number of entries.

Moreover, the selected index bits are further left-shifted, increasing the possibility of

conflict misses when clustered spatial locality is insufficient.

Figure 3.12 shows that C3 tends to perform best on most benchmarks. In some

74

-20%

0%

20%

40%

60%

80%

100%

xa
la
nc

bm
k

SPEC
w
eb

-B

TPC
-C

G
em

sF
D
TD

G
ra

ph
 A

na
ly
tic

s

Tra
de

6

D
at

a
Ser

vi
ng

D
at

a
C
ac

hi
ng

as
ta

r

om
ne

tp
p

m
cf

Ave
ra

ge

M
is

s
e
s
 E

lim
in

a
te

d
MG-Cluster2
MG-Cluster3
MG-Cluster4

-80%

Figure 3.12: TLB miss-elimination rates assuming that the clustered TLB is C2, C3
(our default assumption so far), and C4

.

cases like data Caching, which is known to generate large clustered spatial locality due

to slab allocator use, C4 outperforms C3. However, benchmarks like Data Serving and

xalancbmk are degraded at C4.

Coalescing Thresholds: Our MG-TLB designs have assumed that at least θ = 2 PTEs

must be clustered for insertion into the clustered TLB. Figure 3.13 shows how this

assumption affects miss rates by varying θ from 1 to 4 for en-MG-TLB with a C3

clustered TLB. We see that a value of 2 is generally the best (and is markedly better

for some benchmarks like Data Serving and xalancbmk). Intuitively, this makes sense

because a single C3 clustered TLB consumes less space than two conventional L2 TLB

entries. Therefore, if we coalesce two PTEs and place them in a single C3 entry, we

expend fewer bits in storing them compared to the small conventional L2 TLB for

singleton PTEs. When θ goes beyond 2, these two PTEs are stored in two separate C0

TLB entries, wasting space.

Sizing MG-TLB Components: We now consider how the relative sizes of the MG-TLB’s

conventional small L2 TLB and clustered L2 TLB affect TLB miss rates. Our default

scheme devotes about one-third of MG-TLB area for the clustered TLB and two-thirds

for the conventional L2 TLB. Figure 3.14 shows how TLB miss eliminations vary when

75

-20%

0%

20%

40%

60%

80%

100%

Ben
ch

m
ar

ks

xa
la
nc

bm
k

SPEC
w
eb

-B

TPC
-C

G
em

sF
D
TD

G
ra

ph
 A

na
ly
tic

s

Tra
de

6

D
at

a
Ser

vi
ng

D
at

a
C
ac

hi
ng

as
ta

r

om
ne

tp
p

m
cf

Ave
ra

ge

M
is

s
e
s
 E

lim
in

a
te

d
θ = 1

θ = 2

θ = 3

θ = 4

-51% -218%

Figure 3.13: TLB miss-elimination rates for en-MG-TLB as the cluster threshold is
changed for insertion into the clustered TLB.

these values are changed. The x:y ratio tells us what portion of the MG-TLB area goes

to the conventional L2 TLB (x) and the clustered TLB (y). Generally, we find that

TLB misses are best for our default configuration (2:1), though other configurations

see similar gains. However, MG-TLB effectiveness perceptibly diminishes when the

conventional L2 TLB becomes much smaller in comparison (e.g., 1:4), indicating that

we must adequately cache the singleton PTEs that do not experience clustered spatial

locality.

Sensitivity to VUBT and PUBT Size: Our default en-MG-TLB uses 8-entry PUBTs

and 4-entry VUBTs. We have varied these sizes to study their impact on TLB miss

rates. In general, PUBTs rarely require additional entries, whereas VUBTs require the

use of the dedicated full-length way in rare instances. Overall, even 128-entry VUBTs

and PUBTs provide negligible performance improvements to our approach.

MG-TLB Effectiveness for Different Sizes: Our evaluations compare MG-TLB to a

baseline 512-entry L2 TLB. Therefore, all our designs are sized to meet this total area.

However, we also have studied cases in which we have half and double the total area

to play with (i.e., our baseline L2 TLB becomes 256 or 1,024 entries). We find that

MG-TLB (and its encoded counterparts) consistently outperforms both the baseline L2

76

−20%

0%

20%

40%

60%

80%

100%

xa
la
nc

bm
k

SPEC
w
eb

−B

TPC
−C

G
em

sF
D
TD

G
ra

ph
 A

na
ly
tic

s

Tra
de

6

D
at

a
Ser

vi
ng

D
at

a
C
ac

hi
ng

as
ta

r

om
ne

tp
p

m
cf

Ave
ra

ge

M
is

s
e
s
 E

lim
in

a
te

d
80:20
63:37
50:50
37:63
20:80

−50% −150%

Figure 3.14: TLB miss eliminations for different relative sizes of the small singleton
PTE’s TLB and the clustered TLB in MG-TLB. The legend shows the ratio of the
MG-TLB area for the small conventional TLB to the area for the clustered TLB.

.

TLB and CoLT for these sizes, and that its performance benefits increase when more

area is available for some benchmarks (e.g., mcf, Data Serving). This bodes well for

future designs which will likely have more resources available for address translation.

3.8 Summary

One of the main contributions of this thesis chapter is the observation that significant

amounts of clustered spatial locality exists in applications. This form of spatial locality

is present across a variety of system use cases and configurations (e.g., even in frag-

mented systems) and largely subsumes previously-observed contiguous spatial locality.

In response, we propose a multi-granular TLB that identifies PTEs in which groups

of nearby virtual pages are mapped to groups of nearby physical pages. By coupling

a clustered TLB for these types of PTEs with a small conventional L2 TLB, we con-

sistently outperform past work on coalesced TLBs despite using modest hardware and

requiring no dedicated software support.

Our best-performing design point eliminates 46% of L2 TLB misses, resulting in a 7%

CPU cycle reduction for a wide range of applications. Our proposed TLB organization

substantially increases the effective TLB reach with only modest hardware changes

77

while requiring no OS support, providing a promising solution for emerging big data

applications.

78

Chapter 4

Supporting Large, Yet Agile Pages in Vir-
tualized Systems

4.1 Introduction

With cloud computing, virtualization technologies (e.g., KVM, Xen, ESX, Docker, Hy-

perV and others) are aggressively employed by companies like Amazon or Rack-space

to consolidate diverse workloads (encapsulated in virtual machines or VMs) to ensure

high utilization of physical systems while achieving good performance.

The judicious use of large pages [64, 83, 86] is particularly critical to the perfor-

mance of cloud environments. Large pages can boost address translation performance

in hypervisor-based virtualization and containers [19]. Specifically, in hypervisor-based

virtualization, the hypervisor and guests maintain separate page tables, and therefore

require high-latency two-dimensional page table walks on Translation Lookaside Buffer

(TLB) misses. Past work has shown that this is often the primary contributor to the

performance difference between virtualized and bare-metal performance [26,34]. Large

pages (e.g., 2MB pages instead of baseline 4KB pages in x86-64) counter these over-

heads by dramatically reducing the number of page table entries (PTEs), increasing

TLB hit rates and reducing miss latencies. Even containers (which do not require two-

dimensional page table walks) are dependent on large pages to improve TLB reach,

which is otherwise inadequate to address the hundreds of GB to several TB of memory

present on the systems containers are often deployed in [34].

Unfortunately however, the coarser granularity of large pages can curtail lightweight

and agile system memory management. For example, large pages can reduce consol-

idation in real-world cloud deployments where memory resources are over-committed

79

by precluding opportunities for page sharing [38, 90]. They can also interfere with a

hypervisor’s ability to perform lightweight guest memory usage monitoring, its ability

to effectively allocate and place data in non-uniform memory access systems [36, 92],

and can hamper operations like agile VM migration [88]. As a result, virtualization

software often (though it doesn’t have) chooses to splinter or break large pages into

smaller baseline pages. While these decisions may be appropriate for overall perfor-

mance as they improve consolidation ratios and memory management, they do present

a lost opportunity in terms of reducing address translation overheads.

In this chapter, we propose hardware that bridges this fundamental conflict to re-

claim the address translation performance opportunity lost by large page splintering.

Specifically, we observe that the act of splintering a large page is usually performed to

achieve finer-grained memory management rather than to fundamentally alter virtual or

physical address spaces. Therefore, the vast majority of constituent small pages retain

the original contiguity and alignment in both virtual and physical address spaces that

allowed them to be merged into large pages in the first place. In response, we propose

Generalized Large-page Utilization Enhancements (GLUE) to identify splin-

tered large page-sized memory regions. GLUE augments standard TLBs to store infor-

mation that identifies these contiguous, aligned, but splintered regions. GLUE then uses

TLB speculation to identify the constituent translations. Small system physical pages

are speculated by interpolating around the information stored about a single speculative

large-page translation in the TLB. Speculations are verified by page table walks, now

removed from the processor’s critical path of execution, effectively converting the per-

formance of correct speculations into TLB hits. GLUE accurate, software-transparent,

readily-implementable, and allows large pages to be compatible, rather than at odds,

with lightweight memory management. Specifically, our contributions are:

• We characterize the prevalence of page splintering in virtualized environments.

We find that large pages are conflicted with lightweight memory management

across a range of hypervisors (e.g., ESX, KVM) across architectures (e.g., ARM,

x86-64) and container-based technologies.

80

• We propose interpolation-based TLB speculation to leverage splintered but well-

aligned system physical page allocation to improve performance by an average

of 14% across our workloads. This represents almost all the address translation

overheads in the virtualized systems we study.

• We investigate design trade-offs and splintering characteristics to explain the ben-

efits of GLUE. We show the robustness of GLUE, which improves performance in

every single workload considered.

4.2 Background

Virtualization and TLB overheads: In hypervisor-based virtualized systems with

two-dimensional page table support, guests maintain page tables mapping guest virtual

pages (GVPs) to guest physical pages (GPPs), which are then converted by the hyper-

visor to system physical pages (SPPs) via a nested or extended page table [19]. TLBs

cache frequently used GVP to SPP mappings; on TLB misses, the hardware page table

walker performs a two-dimensional traversal of the page tables to identify the SPP. In

x86-64 systems, because both guest and hypervisor use four-level radix-tree page tables,

accessing each level of the guest’s page table requires a corresponding traversal of the

nested page table. Therefore, while native page table walks require four memory refer-

ences, two-dimensional page table walks require twenty-four [19], significantly degrading

system performance. Beyond hypervisors, container-based technologies also suffer from

address translation overheads (even though they use standard one-dimensional page

table walks), primarily because TLB reach is unable to match main memory capacities.

Our work focuses on hypervisor-based virtualization as it presents the greater chal-

lenge on address translation. However, we have also characterized page splintering on

containers and present these results.

Large pages and address translation: To counter increased TLB overheads in vir-

tual servers, virtualization vendors encourage using large pages aggressively [26]. OSes

construct large pages by allocating a sufficient number of baseline contiguous virtual

page frames to contiguous physical page frames, aligned at boundaries determined by

81

0%

10%

20%

30%

40%

50%

G
em

sF
D

TD

sw
 te

st
in

g

g
an

al
yt

ic
s

gr
ap

h5
00

om
ne

tp
p

m
um

m
er

ca
nn

ea
l

xa
la

nc
bm

k

d
ca

ch
in

g
tig

r
as

ta
r

gu
ps

ca
ct

us
A

D
M

m
cf

av
er

ag
e

F
ra

ct
io

n
 o

f
ru

n
ti

m
e

Figure 4.1: Percent of execution time for address translation, for applications on a
Linux VM on VMware’s ESX server, running on an x86-64 architecture. Overheads
are 18% on average despite the fact that the OS uses both 4KB and 2MB pages.

the size of the large page [10]. For example, x86-64 2MB large pages require 512 con-

tiguous 4KB baseline pages, aligned at 2MB boundaries. Large pages replace multiple

baseline TLB entries with a single large page entry (increasing capacity), and reduce

the number of levels in the page table (reducing miss penalty).

In hypervisor-based virtualization, these benefits are magnified as they are applied

to two page tables. While a large page reduces the number of page table walk memory

references from four to three in native cases, the reduction is from twenty-four to fifteen

for virtual machines. However, because TLBs cache guest virtual to system physical

translations directly, a “true” large page is one that is large in both the guest and the

hypervisor page table.

4.3 Motivation and Our Approach

Real-system virtualization overheads: We begin by profiling address translation

overheads on hypervisor-based virtualization technologies. Figure 4.1 quantifies address

translation overheads (normalized to total runtime) when running a Ubuntu 12.04 server

(3.8 kernel) as the guest operating system and VMware’s ESX 5.5 as the hypervisor

on an Intel Sandybridge architecture. Although omitted here for space reasons, we

have also assessed these overheads running KVM on an x86-64 system, KVM on an

ARM Cortex™A15 system, and we observed the same trends. We use SPECcpu®,

82

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

E
S
X

/x
8
6

K
V

M
/x

8
6

K
V

M
/A

R
M

F
ra

c
ti

o
n

 o
f

T
L

B
 m

is
s
e
s

(a)

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

G
em

sF
D

TD

sw
 te

st
in

g

g
an

al
yt

ic
s

gr
ap

h5
00

om
ne

tp
p

m
um

m
er

ca
nn

ea
l

xa
la

nc
bm

k

d
ca

ch
in

g
tig

r
as

ta
r
gu

ps

ca
ct

us
A

D
M

m
cf

av
er

ag
e

GSmall-HSmall
GSmall-HLarge

GLarge-HSmall
GLarge-HLarge

(b)

Figure 4.2: Fraction of TLB misses serviced from SPPs backed by a small page
in guest and hypervisor (GSmall-HSmall), small in guest and large in hypervisor
(GSmall-HLarge), large in guest and small in hypervisor (GLarge-HSmall), and
large in both (GLarge-HLarge).

PARSEC [24], and CloudSuite [32] workloads and all measurements use on-chip perfor-

mance counters.

The data show that two-dimensional page table walks degrade performance, con-

suming almost 20% of runtime on average. Overheads vary, with graph analytics

from CloudSuite and graph500 suffering 10% overheads while mcf and cactusADM suf-

fer well over 30% overheads. Our results corroborate past work [26] that identified TLB

overheads as a significant performance bottleneck in virtualized servers.

The prevalence of page splintering: Figure 4.2a quantifies the prevalence of splin-

tering across different hypervisors and architectures, showing the generality of this

problem. We profile splintering for ESX and KVM on x86-64 architectures, and KVM

on ARM architectures. In all cases, we run four VMs, each with the workload shown.

For each configuration’s TLB misses, we plot the fraction eventually serviced from splin-

tered large pages (large pages in the guest and small pages in the host), small pages in

both dimensions, large pages in both dimensions, and small pages in the guest and large

pages in the host (which is typically rare). Our results show that guest VMs construct

and use large pages aggressively (on average, almost all TLB misses are to regions

with large guest pages). However, the vast majority of these references are to guest

83

large pages that are splintered (GLarge-HSmall), regardless of the specific hypervisor

or architecture used.

Figure 4.2b sheds light on the per-benchmark characteristics of page splintering.

We find that guest OSes, when running workloads like graph analytics, canneal,

and mcf, are able to more aggressively use large pages (usually because they allocate

large data structures at once) but the hypervisor still chooses to splinter many pages

for overall lightweight memory management. Going beyond hypervisor-based virtu-

alization, we have also profiled page splintering in containers, using Linux containers

with kernel same-page merging (KSM) [11] extensions to encourage high consolidation

ratios. Similar to several real-world deployments [51] and we see that containers also

suffer from large page splintering. This occurs because KSM shares pages among con-

tainers to consolidate as many workloads as possible with over 85% of TLB misses to

splintered regions. The tension between large page address translation benefits and

fine-grained memory management is regrettable because modern OSes work hard to

create large pages.

Our high-level approach with GLUE: We illustrate GLUE’s operation using hypervisor-

based virtualization though it is also applicable to containers. We observe that page

splintering usually splits large page sized regions into smaller pages for finer-grained

management and monitoring, without relocating most small pages. Therefore, the con-

tiguous memory alignment required to generate large pages likely remains; GVPs and

SPPs are aligned within 2MB memory regions corresponding to the alignment they

would have had in an unsplintered page. GLUE exploits these cases where GVPs and

SPPs share their 9 least significant bits (for 4KB baseline pages and 2MB large pages).

We have profiled page tables in many real-world deployments and in every case, we have

found that over 82% (average of 97%) of the 4KB pages have GVPs and SPPs sharing

their bottom 9 bits. These numbers foreshadow the potential for careful interpolation-

based TLB speculation.

Figure 4.3 shows GLUE’s operation. For illustrative purposes we assume that four

contiguous PTEs make a large page, hence the guest page table can combine PTEs for

84

Guest	 PT
GVP0 GPP0
GVP1 GPP1
GVP2 GPP2
GVP3 GPP3
GVP4 GPP4
GVP5 GPP5
GVP6 GPP6
GVP7 GPP7

Hypervisor	 PT
GPP0 SPP0
GPP1 SPP1
GPP2 SPP2
GPP3 SPP3
GPP4 SPP4
GPP5 SPP5
GPP6 SPP6
GPP7 SPP7

Conventional	 TLB
GVP0-‐3 SPP0-‐3
GVP4 SPP4
GVP5 SPP5
GVP7 SPP7

Speculative	 TLB
GVP0-‐3 SPP0-‐3
GVP4-‐7 SPP4-‐7

SOFTWARE	 HARDWARE

Figure 4.3: Guest large page GVP4-7 is splintered, but SPPs are conducive to
interpolation. A speculative TLB maps the page table in two entries (using a
speculative entry for GVP4-7) instead of four entries (like a conventional TLB).

GVP 0-3 into a single large page (the same for PTEs for GVP 4-7). The hypervisor does

indeed back GVP 0-3 with its own large page (corresponding to the PTEs for GPP 0-

3). Unfortunately, it splinters the guest large page for GVP 4-7 because GPP 6 (and

SPP 6) are unallocated. A conventional TLB requires one large page entry and three

baseline entries to fully cover this splintered large page. GLUE, on the other hand,

observes that the SPPs corresponding to GVP 4-7 are still aligned in the way they

would be had they actually been allocated a large page. Consequently, GLUE requires

just two TLB entries to cover the page table, with one entry devoted to a speculative

2MB region (italicized and in bold). On requests to GVP 4-7, this entry can be used

to interpolate the desired SPP; thus, speculative TLBs achieve higher capacity.

Overall, GLUE achieves performance benefits by leveraging one-dimensional large

pages in the guest to approach the benefits of true, unsplintered, two-dimensional large

pages. Speculation removes two-dimensional page table walks from a program’s critical

path, boosting performance. All enhancements are hardware-only so that any software

and hypervisor may exploit them transparently, making it robust across the range of

real-world splintering scenarios.

GLUE’s relationship with prior work: GLUE’s mechanisms are partly inspired by

SpecTLB [15], which speculatively interpolates physical pages for operating systems

using reservation-based large pages. Our work differs in a few key ways. First, the

85

SpecTLB work discusses the possibility of using TLB speculation to improve TLB miss

latencies when guests and hosts use large pages, and to let hypervisors use very large

(e.g., 1GB) pages while allowing guests to trap to special regions of memory for I/O. We

are the first, however, to identify page splintering as a serious problem – and the first to

propose and implement interpolation-based TLB speculation hardware mitigate page

splintering. Second, we do not require separate, dedicated hardware structures for TLB

speculation, unlike SpecTLB (although we propose some small modifications to existing

structures). GLUE distinguishes baseline PTE entries, regular large page PTE entries,

and speculative large page PTE entries. Third, we go beyond SpecTLB to propose

enhancements to basic TLB speculation that mitigate performance degradation from

incorrect speculation (e.g., pipeline flush and refetch) via intelligent PTE prefetching,

which reduce the need to perform page table walks to verify a subset of the speculations.

In addition, GLUE is also related to recent work on gap-tolerant sequential mappings

(GTSM) which promotes superpages in non-contiguous memory [30]. Though there

are some similarities with our work, GTSM is applicable to each dimension separately,

unlike GLUE. Furthermore, GTSM requires complex software changes for new page

table structures; whereas GLUE supports existing software. Further, GTSM’s new page

table format is unsuitable for one of the most important sources of page splintering –

page sharing: Shared pages can be located anywhere in system memory, but GTSM

only handles holes within 4MB memory regions.

4.4 Sources of Page Splintering

Despite their ability to lower address translation overheads, large pages impede other

lightweight memory management operations. We discuss some of these reasons below

and their influence on page splintering.

Page sharing: Memory deduplication or page sharing, an important source of page

splintering, is implemented in commercial hypervisors (e.g., ESX, Xen, KVM) and is

used with containers (LXC, Docker) to consolidate as many virtual machines as possible

on the same physical resources [13, 38, 91]. Memory deduplication requires software to

86

scan physical memory to identify memory pages with the same content and eliminate

redundant copies. While effective at increasing consolidation ratios, our experiments

and past work has found that page sharing leads to aggressive page splintering for two

reasons [38]. First, baseline pages are much more likely to have equivalent content

than large pages. We ran experiments to compare deduplication opportunities when

considering baseline 4KB versus large 2MB pages. We found that using small 4KB

pages allowed us to deduplicate 4-10× more physical memory than when using large

pages, corroborating past results [38]. Second, the overheads of performing a word-by-

word comparison for a 2MB page is much higher than that for a smaller, 4KB page [13].

Hence, when consolidation is targeted, large pages are rapidly splintered.

Hypervisors like ESX and KVM use page sharing aggressively both between and

within VMs. This is particularly useful in real-world cloud deployments like Amazon’s

EC2, Oracle Cloud, and IBM Softlayer, which provide technical support for a limited

number of OSes (e.g., Linux, Windows, and Solaris) commonly running VMs from one

“template” [78]. In these environments, the workloads have great scope for memory

deduplication. In fact, recent industry research has noted this trend and is advocating

proactive and aggressive splintering of large pages in anticipation of the need for page

sharing [38]. While effective at boosting consolidation, address translation performance

is sacrificed.

Non-uniform memory: Past work has shown that large pages may fail to deliver

benefits, and can actually degrade performance, on today’s multi-socket, non-uniform

memory access systems (NUMA) [36]. Because NUMA memory is spread across several

physical nodes, large pages may contribute to imbalance in the distribution of memory

controller requests, reduce locality of accesses, and increase memory latencies. The

OS may therefore splinter large pages, with 4KB chunks migrated among the memory

nodes to increase locality [36]. This problem will become even more prevalent with the

impending adoption of even more complex, non-uniform heterogeneous memory archi-

tectures that balance the access latency, bandwidth, and power needs of heterogeneous

processing elements consisting of CPUs, GPUs, and other accelerators [68]. Recent ad-

vances in technologies like phase-change, ferroelectric, magnetic, and memristor based

87

RAM, allied with die stacking [12, 61, 92] suggest that intelligent page placement and

movement among multiple memories will determine system performance and energy;

page splintering will likely increase in these scenarios considerably.

Working set sampling: Hypervisors typically require some mechanisms to estimate

the working set sizes of guest OSs. For example, VMware’s ESX uses a statistical

sampling approach to estimate virtual machine working set size without guest involve-

ment [88]. For each sampling period, the hypervisor intentionally invalidates several

randomly selected guest physical pages and monitors guest accesses to them. After a

sampling period (usually a few minutes), the fraction of invalidated pages re-accessed

by the guest is checked. This fraction is used to infer a VM’s working set size. If a

randomly chosen 4KB region falls within a large 2MB page, the hypervisor splinters

the large page.

Initially, one may consider “repairing” working set estimation in software. This,

however, is difficult; for example, one might use dirty and access bits in both guest and

hypervisor page tables to detect page accesses instead of invalidating whole transla-

tions. Unfortunately, these bits are not supported by, for example, ARM and any Intel

chips older than Haswell. In particular, architectures like ARM that implement relaxed

memory consistency models struggle to accommodate page table access and dirty bits,

which require sequentially consistent reads and writes for correct operation [73]. In ad-

dition, our conversations with hypervisor vendors like VMware suggest that they quite

hesitant to implement software modules that can only be used on specific architectures

supporting these bits.

Live VM migration: This refers to the process of moving a running virtual machine

between different physical machines without disconnecting the client or application.

Hypervisors typically splinter all large pages into baseline pages in preparation for live

migration to identify pages being written to at 4KB granularity. Once memory state

has been shifted to the destination, the splintered pages are typically reconstituted

into large pages. However, practically, splintering may remain at the destination node,

especially if unfragmented free physical memory space to accommodate large pages is

88

scarce there.

Limited support for large pages: Large pages require hardware and software sup-

port. In practice, many systems lack this support in some way. For example, hypervisors

may splinter large pages because of limited-capacity, large-page TLBs. Specifically, if

an application’s working set is scattered over a wide address space range, large page

TLB thrashing can occur [16, 86]. System administrators may therefore disable the

hypervisor’s ability to back guest large pages [86].

In general, while large pages mitigate address translation overheads, they preclude

many memory management techniques for large-scale software systems. Fundamental

to this tradeoff is the fact that a large page essentially provides a coarse granularity

of memory management and monitoring; while it reduces metadata in the form of

the number of translation entries needed, it also greatly reduces the effectiveness of

operations like page sharing and memory monitoring.

4.5 GLUE Microarchitecture

This section details hardware for interpolation-based TLB speculation. We begin by

describing our baseline TLB organization,1 and how speculation can be overlaid on it.

We then describe speculation details and hardware tradeoffs.

4.5.1 TLB Organization

We assume a processor organization that includes per-core two-level TLB hierarchies,

as is typical in modern processors [16, 20, 21]. On a memory reference, two L1 TLBs

are looked up in parallel, one devoted to 4KB PTEs and another to 2MB PTEs. L1

misses2 prompt a lookup in the L2 TLB. GLUE detects guest large pages splintered by

the hypervisor. Ordinarily, each such page’s 512 4KB PTEs are placed in the 4KB L1

and L2 TLBs. GLUE, however, creates a speculative 2MB entry for the large page in

1Our proposal does not depend on this specific TLB organization, but we describe it to provide a concrete
example to explain our technique.

2As this paper is about TLBs, for brevity we use the term “L1” to refer to the L1 TLB, and not the IL1 or
DL1 cache (and similarly for “L2”).

89

one dimension, with two approaches:

L1-only speculation: Here, speculative 2MB entries are placed only in the 2MB L1

TLB, permitting speculation only at the first-level of the TLB hierarchy. This is a

minimally-intrusive design as the 4KB L1 and L2 TLBs are left untouched.

L1-L2 speculation: Though L1-only speculation is effective, it can place a heavy

burden on the 2MB L1 TLB, which must now cache PTEs for not only two-dimensional,

unsplintered large pages, but also for speculative one-dimensional large pages (which,

our experiments reveal, there are many of). Therefore, we also study the benefits of

placing speculative 2MB entries in both the 2MB L1 TLB and the L2 TLB.

In order to cache speculative 2MB entries, the L2 TLB must support multiple page

sizes concurrently, but this is not a problem as modern processors already have this [49].

In general, there are many ways to accommodate concurrent page sizes in TLBs, such

as skew-associativity [65, 75, 79, 80, 82] and hash-rehashing (column-associativity) [6].

We have evaluated GLUE on L2 TLBs with both schemes; because the performance

numbers are largely unchanged, we present results from skew-associative L2 TLBs in

this paper. We do note, however, that GLUE merely leverages already existing tech-

niques to support multiple page sizes concurrently in the TLB, and is not particularly

reliant on skewing or hash-rehash.

GLUE represents a significant departure from prior work on SpecTLB [15] as we

overlay speculation on existing TLB hardware rather than proposing separate structures

for speculation.

4.5.2 Speculative TLB Entries

Figure 4.4 shows a speculated 2MB entry in the L1 2MB TLB. Its structure is identical

to a standard 2MB entry, with only a Spec bit added to distinguish speculated 2MB

entries from standard 2MB entries (necessary to ensure that the L2 TLB and page

table walker are probed to verify speculation correctness). This bit represents a minor

overhead over the ∼60 bits used per 2MB TLB entry. L2 TLB entries are also mini-

mally changed to support speculation. Once again, a Spec bit is required to identify

90

GVP(35:9) GVP(8:0)

Spec Attr

Speculative	 TLB

=?

Spec	 Hit SPP

concat

Tag	 GVP(35:9) Data	 SPP(35:9)

Figure 4.4: Lookup operation on a speculated TLB entry. A tag match is performed
on the bits corresponding to its 2MB frame. On a hit, the 2MB frame in system
physical memory is concatenated with the 4KB offset within it.

speculated 2MB entries.

4.5.3 TLB Operations

Lookups: Figure 4.4 shows how GLUE performs a speculative lookup for 2MB entries.

The guest virtual address is split into a page number and a page offset (not shown).

The GVP is further split into a field for 2MB frames (bits 35:9) and the 4KB offset

within the 2MB frames (bits 8:0). A lookup compares the 2MB frame bits with the TLB

entry’s tag bits. A speculative hit occurs when there is a match and the Spec bit is set.

The matching TLB entry maintains the system physical page of the 2MB speculated

frame (Data SPP(35:9) in the diagram). This value is interpolated by concatenating

the TLB entry data field with the GVP’s within-2MB frame offset (GVP(8:0)). The

full system physical address is calculated, as usual, by concatenating the guest virtual

page offset bits (bits 11:0) with the speculative SPP. This value is then returned to the

CPU, which can continue execution while the speculated value is verified. Speculative

lookups therefore require minimal additional logic, with only the Spec bit check and

concatenation operation to generate the SPP.

Fills: GLUE fills speculated 2MB entries into the L1 and L2 TLBs after a page table

walk. Suppose a GVP request misses in both L1 and L2 TLBs. The hardware page

91

2MB	 L1	 TLB4KB	 L1	 TLB

GVP

4KB/2MB	
L2	 TLB

Page	
Table	
Walker

=?

Spec	 hitMiss

Spec

Spec	 SPP

2

3

Verify

4

Spec	 hit	
correct	

Spec	 correct

Spec	
wrong

Spec	 hit	
wrong5

Ver miss

PTE Spec	 correct

Spec	 wrong6

Verify

7

8

Ver
hit

2MB	 L1	 TLB4KB	 L1	 TLB

GVP

(b)	 L2	 TLB	 speculation

4KB/2MB	
L2	 TLB

Page	 Table	
Walker

Miss

1

Verify

Miss,	 no	
spec

Miss
Spec	 hit

Spec	 SPP

2

3

=?

4

PTE

Spec	 hit	
correct	

Spec	 hit	 wrong

5

6

(a)	 L1	 TLB	 speculation

1

=?

Figure 4.5: The mechanics of TLB speculation. We show the case when (a) we
speculate from the 2MB L1 TLB, and (b) we speculate from the L2 TLB.

table walker then traverses both guest and hypervisor page tables, and identifies 4KB

GVPs that map to a large guest page but small hypervisor page. These PTEs can be

identified from already-existing information on page size in the page tables. For these

GVPs, the speculated 2MB frame is calculated by dropping the bottom 9 bits from the

corresponding SPP. Then, the PTE for the requested 4KB GVP is placed into the 4KB

TLB (as usual), while the speculated 2MB entry is also placed into the 2MB L1 TLB

and L2 TLB. Therefore, identifying one-dimensional large pages requires no additional

hardware beyond standard page table walks.

4.5.4 Speculation Details

We now study various aspects of GLUE, focusing on L1-L2 speculation as it is a superset

of L1-only speculation. Figure 4.5 details the control and data flow through the TLBs

92

Time

CPU

MMU

L1	 correct	 speculation,	 verified	 from	 L2	 TLB
L1	 spec

L2	 lookup

Spec	 exec

Ver L2	 hit

Normal	 execution

4KB	 L1	 insert	

CPU

MMU

L1	 correct	 speculation,	 verified	 from	 PTW
L1	 spec

L2	 lookup

Spec	 exec

Ver L2	 miss

Page	 table	 walk

Spec	 exec

Ver PTW

Normal	 execution

4KB	 L1	 insert	

CPU

MMU

L2	 correct	 speculation,	 verified	 from	 PTW
L1	 miss

L2	 lookup

L2	 spec

Page	 table	 walk

Ver PTW

Spec	 exec Normal	 execution

4KB	 L1	 insert	

Normal	
exec

CPU

MMU

L1	 wrong	 speculation,	 verified	 from	 L2	 TLB
L1	 spec

L2	 lookup

Spec	 exec

Ver L2	 hit

Normal	 execution

4KB	 L1	 insert	

Flush	 &	 resteer

CPU

MMU

L1	 wrong	 speculation,	 verified	 from	 PTW
L1	 spec

L2	 lookup

Spec	 exec

Ver L2	 miss

Page	 table	 walk

Spec	 exec

Ver PTW

Flush	 &	 resteer

4KB	 L1	 &	
L2	 insert	

Time

L2	 wrong	 speculation,	 verified	 from	 PTW

CPU

MMU

L1	 miss

L2	 lookup

L2	 spec

Page	 table	 walk

Ver PTW

Spec	 exec Flush	 &	 resteer Normal	
exec

4KB	 L1	 insert	

a)

f)

d)c)

e)

b)

Figure 4.6: Timelines for (a) speculating from the 2MB L1 TLB correctly, and
verifying this in the L2 TLB; (b) mis-speculating from the 2MB L1 TLB, and
verifying this in the L2 TLB; (c) speculating from the 2MB L1 TLB correctly, and
verifying with a page table walk; (d) mis-speculating from the 2MB L1 TLB, and
verifying with a page table walk; (e) speculating from the L2 TLB correctly, and
verifying with a page table walk; and (f) mis-speculating from the L2 TLB, and
verifying with a page table walk.

to support GLUE. Figure 4.6 illustrates the timing of events corresponding to different

hit/miss and speculation scenarios.

Correct L1 speculation, verified in the L2 TLB: Figure 4.6(a) illustrates the case

where GLUE speculates correctly from the L1 TLB and completes verification from

the L2 TLB. The CPU first checks the two L1 TLBs (4KB and 2MB) À; it misses in

the 4KB TLB, finds a speculative entry in the 2MB TLB that results in a speculation

hit Á. The hit signal and corresponding speculated SPP are sent to the CPU, which

can continue execution while the speculated SPP is verified in parallel. Verification

proceeds by checking the L2 TLB Â, which produces a hit on either a matching 4KB

entry or a clustered bitmap corresponding to the speculative 2MB entry Ã (speculation

confirmed). The 4KB entry is then installed into the L1 4KB TLB, but this occurs off

of the critical path.

Incorrect L1 speculation, verified in the L2 TLB: This case starts out the same

as in the previous scenario, but when we hit in the L2 TLB, we discover that the actual

93

SPP is not the same as the interpolated SPP Ä. This triggers a pipeline flush and

refetch as any consumers of the load may have started executing with an incorrectly

loaded value. Figure 4.6(b) shows the corresponding timing of events.

Correct L1 speculation, verified by a page table walk: This case is also similar

to the first scenario, except that when the L2 TLB lookup is performed, no matching

entry is found. A page table walk retrieves the correct translation Å, which is found

to be the same as the speculated SPP. As shown in Figure 4.6(c), the page table walk

to verify the SPP occurs in parallel with the processor pipeline’s continued execution

using the speculative SPP. In this case, the speculation is correct and so the processor

was able to run ahead.

Incorrect L1 speculation, verified by a page table walk: This case is similar to

the immediate previous one, except that at the conclusion of the page table walk Å,

the correct SPP is found to differ from the interpolated SPP. The processor initiates a

pipeline flush and refetch. For this case, we also insert the 4KB translation into both

L1 and L2 TLBs. The L1 insertion attempts to avoid speculation, and the L2 insertion

attempts to ensure a faster verification process in the event that we speculate again

from the L1 2MB TLB.

L2 speculation: Figure 4.5(b) shows the cases where a speculative entry is found in

the L2TLB, while Figure 4.6(e) and (f) show the corresponding timeline. These cases

parallel the L1 speculation scenarios with the only difference that the lookup misses in

all L1 TLBs and the verification (whether correct or not) is performed by a page table

walk.

4.5.5 Mitigating Verification Costs

Going beyond prior work on TLB speculation [15], we conduct an in-depth study on the

tradeoff between capacity and verification costs of speculative large page translations.

We study two questions, in particular.

What should we do with requested baseline PTEs if we were able to correctly

speculate on them? Consider the case where we use a 2MB speculative entry to

94

correctly ascertain 4KB PTEs. After verification, we can either place the 4KB PTE

in the TLBs, or not insert it into the TLB hierarchy at all. Both approaches have

merit; insertion into the TLBs reduces the cost of verification. Because these PTEs

are likely to be used in the near future, placing them in the L1 TLB obviates the need

for verification-induced L2 TLB lookups, and possibly full-blown page table walks (on

L2 TLB misses). On the other hand, insertion into the TLBs lowers effective capacity;

true large page entries replace multiple base page translations (e.g., a 2MB x86-64 PTE

covers 512 4KB PTEs).

We have compared inserting non-speculative 4KB PTEs into the L1 TLB (reducing

verification of future accesses to the same entry but penalizing limited L1 TLB capac-

ity), and into the L2 TLB (promoting speculation with fast verification from the L2

TLB while saving L1 TLB capacity). We also consider non-desirable extremes where we

do not insert the non-speculative 4KB entry into the TLBs at all (maximizing capac-

ity but severely exacerbating verification costs), and where we add the non-speculative

4KB PTE in both TLBs (minimizing verification but hurting capacity).

In general, we have found (Section 4.7) that insertion into only the L1 TLB per-

forms best because only tens of 4KB pages within 2MB speculated regions are typically

used in temporal proximity. This means that capacity requirements may be relaxed

in favor of minimizing the time taken to verify that speculation was correct. Given

verification energy requirements and potential performance loss (from greater L2 TLB

port contention and cache lookups for page table walks), we believe this is a suitable

compromise.

Can we use the extra bits in a speculative large page entry in the L2 TLB

to reduce verification costs? Because translations for large pages use fewer bits to

represent virtual and physical page numbers, speculative large-page entries maintain

many unused bits in a monolithic L2 TLB provisioned to concurrently handle multiple

page sizes. In our example, the 2MB speculative large page entries have 18 unused

bits. We investigate mechanisms to repurpose these 18 bits to reduce verification costs.

Figure 4.7 shows how we use these bits to maintain bitmaps that tell us if 4KB PTEs

95

within a 2MB speculative large page have the contiguity and alignment to permit

correct speculations. For example, Figure 4.7(a) shows the CPU making a request

for the translation for VPN 4. A speculative large page entry containing this VPN is

discovered in the 2MB L1 TLB, and an interpolated, speculative PPN is sent to the

CPU À. While the CPU continues its operation, the speculative PPN must be verified.

The L2 TLB is therefore probed, and the corresponding 2MB speculative translation is

located Á. This translation is similar to its counterpart in the L1 TLB but also uses its

spare bits to record information about a cluster of 4KB PTEs surrounding the most-

recently accessed translation in this speculative 2MB region. We use the unused bits

to maintain a cluster number, and a bitmap indicating which PTEs in this cluster are

aligned and contiguous (in our page table, all translations aside from the one for VPN

7 are so). Initially this bitmap is empty, therefore it is not able to tell us whether our

speculation is correct and we have to walk the page table to verify this Â. We then

load the most recently-accessed cluster’s information (cluster 0, which VPN 4 falls in)

Ã. Figure 4.7(b) shows that loading this bitmap in the L2 TLB allows us, in the future

when the CPU speculates a PPN from the L1 2MB TLB for VPN 6 Ä, to quickly verify

that this is indeed a correct speculation without the need for an expensive page table

walk Å. Using the same bitmap, we can also verify quickly if the speculation is incorrect

when we speculate a PPN from the L1 2MB TLB for VPN 7.

Through our detailed experiments, we have found that using the 18 spare bits to

store two clusters of 8 bits eliminates verification with only 2 additional bits per TLB

entry.Furthermore, since typical 64-byte cache lines maintain eight 8-byte PTEs, we

use simple combinational logic proposed in chapters 2 and 3 to set the bitmap after a

page table walk without any additional memory references for the walk.

4.5.6 Mitigating Mis-speculation Overheads

Our real-system measurements showed that loads that miss in the TLBs typically then

also miss in the cache hierarchy (90% go to the L3, and 55% to main memory). This is

intuitive because PTEs that miss in the TLBs have not been accessed recently; therefore

the memory pages they point to are also likely cold. At the point of misspeculation

96

VPN	 0

Page	 Table
Access	 to	 PTE	 for	 VPN	 4 Access	 to	 PTE	 for	 VPN	 6

L1	 2MB	 TLB

Spec	 Large	 Page
VPN	 0-‐511,	 PPN	 512-‐1023	

Spec	 Large	 Page
VPN	 0-‐511,	 PPN	 512-‐1023;

Cluster	 0	 [VPN	 0	 – 7];	
Cluster	 Bitmap	 []

L2	 TLB

(a)

L1	 2MB	 TLB

Spec	 Large	 Page
VPN	 0-‐511,	 PPN	 512-‐1023	

Spec	 Large	 Page
VPN	 0-‐511,	 PPN	 512-‐1023;

Cluster	 0	 [VPN	 0	 – 7];	
Cluster	 Bitmap	 [11111110]

L2	 TLB

(b)

1

2

3
Cluster	 0	 [VPN	 0-‐7];
Bitmap	 [11111110]

4

5

6

VPN	 1

VPN	 7

VPN	 4

VPN	 2

VPN	 3

VPN	 6
VPN	 5

PPN	 512

PPN	 521

…

PPN	 513

PPN	 516

PPN	 514

PPN	 517

PPN	 515

PPN	 518

VPN	 8

VPN	 9

PPN	 32
PPN	 520

Figure 4.7: Storing clusters of bits (in otherwise wasted L2 TLB entry bits) to
eliminate the need for verification-induced page table walks.

detection, the SPP is now known and a prefetch of the address into the DL1 can be

started in parallel with the pipeline flush process. For our workloads, it turns out

that the TLB speculation rate is sufficiently high such that mitigating the rare flushing

event has only a minor impact on overall performance, but this mechanism can provide

a more robust solution in the face of less speculation-friendly workloads.

4.6 Experimental Methodology

To evaluate functional, behavioral, and performance effects, we examine systems run-

ning multiple real OSs and hypervisors. Our proposal also includes microarchitectural

modifications that cannot be evaluated on real systems, while current cycle-level sim-

ulators do not support multiple VMs and OSes in full-system simulation modes. For

these reasons, like most recent work on TLBs [15, 16, 20, 34, 69, 70], we use a combi-

nation of techniques including tracing and performance counter measurements on real

machines, functional cache-hierarchy and TLB simulators, and analytical modeling to

estimate the overall impact on program execution time.

97

4.6.1 Workloads

We set up our virtualization environment on a host machine with 8 CPUs and 24GB

RAM. We deploy 8 VMs, each has 3GB of RAM for BioBench and SPECcpu workloads,

and 4VMs, each with 4GB of RAM for Cloudsuite workloads. The host uses VMware

ESXi server to manage VMs. All VMs have Ubuntu 12.04 server, and large pages are

enabled using Transparent Hugepage Support (THS) [10]. In addition, to showcase

the generality of our observations across hypervisors and architectures, we evaluate

KVM on the same hardware and KVM on an ARM system with four Cortex A15 cores.

Finally, we use perfmon2 to read performance counter values in the VMs. We use a

wide set of benchmarks, from SPECcpu 2006, BioBench [8], and CloudSuite [32] that

have non-negligible TLB miss overheads. We present results on workloads sensitive

to TLB activity. For our container-based studies, we use linux containers (LXC) with

KSM [11].

4.6.2 Trace Collection

We use Pin [58] to collect guest memory traces for our workloads. The original pintool

only provides virtual addresses, hence we extend the Linux pagemap to include physical

addresses and intermediate page table entries (PTE) to be read by our pintool. For each

workload, we select a PinPoint region of one billion instructions [66], and we validate

the MPKI of the trace with performance counter measurements to ensure that the

sampled region is representative of the benchmark.

We use VMware VProbes scripts [87] to collect hypervisor memory traces, which

contain guest and system physical addresses. We rely on guest physical addresses, which

are seen in both guest and hypervisor traces to get a complete trace of guest virtual,

guest physical, and system physical addresses for our simulator. We also extend the

tracing utility to VMs on KVM hypervisor to get similar information.

98

4.6.3 Functional simulator

To determine the hit-rate impact of the different TLB structures, we make use of a

functional simulator that models multi-level TLBs, the hardware page-table walker, and

the conventional cache hierarchy. The TLBs include a 64-entry, 4-way DTLB for 4KB

pages; a 32-entry, fully-associative DTLB for 2MB pages; and a 512-entry, 4-way level-

two TLB (L2TLB) with concurrent support for 4KB and 2MB pages, similar to Intel’s

Haswell cores. Our L2 TLB uses a skewed-associative organization [80] for multiple page

size support (we have also modeled hash-rehash approaches, which negligibly changes

performance benefits). The modeled TLB hierarchy also includes page walk caches

that can accelerate the TLB miss latency by caching intermediate entries of a nested

page table walk [14,20]. The simulator has a three-level cache hierarchy (32KB, 8-way

DL1; 256KB, 8-way L2; 8MB, 16-way L3 with stride prefetcher), which the modeled

hardware page table walker uses on TLB misses.

4.6.4 Analytical Performance Model

For each application, we use the real-system performance counter measurements (on

full-program executions) to determine the total number of cycles CPU CYCLES (execution

time), the total number of page-walk cycles PWC (translation overhead, not including

TLB access latencies), the number of DTLB misses that resulted in L2TLB hits, and

the total number of L2TLB misses (which then require page table walks). In addition,

we also make use of several fixed hardware parameters including the penalty to flush

and refill the processor pipeline (20 cycles, taken to be about the same as a branch

misprediction penalty [4]), the DTLB hit latency (1 cycle), and the L2TLB hit latency

(7 cycles).

The analytical performance model is conceptually simple, although it contains many

terms to capture all of the different hit/miss and correct/wrong speculation scenarios

covered earlier in Figure 4.6. In the baseline case without GLUE, the program execution

time is simply CPU CYCLES. From the performance counters, we can determine the total

number of cycles spent on address translation overheads ATO (e.g., page table walks),

99

and therefore CPU CYCLES - ATO gives us the number of cycles that the processor is

doing “real” execution BASE CYCLES (i.e., everything else but address translations). In

other words, this would be the execution time if virtual memory was completely free.

From here, our analytical model effectively consists of:

Execution Time = BASE CYCLES +
∑
i

ATOi (4.1)

where each ATOi is the number of cycles required for address translation for each of

GLUE’s hit/miss and speculation/misspeculation scenarios.

For example, consider when we have a DTLB miss but we find a speculative entry

in the 2MB TLB and the speculative translation turns out to be correct, then the

number of cycles for address translation would simply be the latency of the L1 TLB

(both 4KB and 2MB TLBs have the same latency in our model), as we assume that

the verification of the speculation can occur off of the critical path of execution. Our

functional simulation determines how often this happens in the simulated one-billion

instruction trace, we linearly extrapolate this to the full-program execution to estimate

the total number of such events3, and multiply this by the L1 TLB latency to determine

the execution cycles due to this scenario.

For a slightly more interesting example, consider the case shown in Figure 4.6(d)

where we miss in the L1 4KB TLB, find a speculative entry in the L1 2MB TLB, the

speculation turns out to be wrong, but it required a full page-table walk to determine

this (i.e., the PTE was not in the L2TLB). The number of cycles for such an event is:

L2TLB LAT + PW LAT + max(DATA LAT, BMP) (4.2)

which corresponds to the L2TLB access latency (need to perform a lookup even though

it misses), the page-walk latency PW LAT (we use the average as determined by perfor-

mance counters), and then the longer of either the data cache lookup DATA LAT or the

branch misprediction penalty BMP. Assuming we use the prefetch optimization described

in Section 4.5.6, when we detect the misspeculation, we can then concurrently flush the

3 We are confident in our extrapolation methodology as we have validated the performance projections from
our 1B instruction traces against performance counter measurements taken from the corresponding full-program
executions.

100

0%

10%

20%

30%

40%

50%

G
em

sF
D
TD

sw
 te

st
in
g

g
an

al
yt
ic
s

gr
ap

h5
00

om
ne

tp
p

m
um

m
er

ca
nn

ea
l

xa
la
nc

bm
k

d
ca

ch
in
g

tig
r

as
ta

r

gu
ps

ca
ct
us

AD
M

m
cf

av
er

ag
eR

u
n
ti
m

e
 I
m

p
ro

v
e
m

e
n
t

L1-only spec

L1-L2 spec

ideal

Figure 4.8: Performance benefits of L1-only, L1-L2 speculation, compared to the
ideal case without TLB miss overheads. Performance is normalized to the baseline
single-VM.

pipeline and start the prefetch of the load into the DL1. Because these events occur

in parallel, we take the maximum of these terms. Due to space constraints, we omit

explanations for the remaining ATO i equations, but they all follow a similar form that

reflects what has already been described in Figure 4.6. It should be noted that such a

methodology based on analytically adjusting real-machine measurements has been used

in other recent virtual memory research studies [16].

4.7 Experimental Results

4.7.1 GLUE Performance Results: Single VM

We first consider the performance improvements of L1-only and L1-L2 speculation, also

showing the importance of careful verification control.

GLUE performance: Figure 4.8 quantifies the benefits of GLUE (all results are nor-

malized to the runtime of the application on a single VM) for L1 and L1-L2 speculation,

showing it eliminates the vast majority of TLB overheads in virtualized systems with

splintering. On average, runtime is improved by 14%, just 4% away from the perfor-

mance of an ideal system with no address translation overheads (i.e., there are never

any L1 TLB misses). Most benchmarks are actually significantly closer to the ideal case

with only mummer, data caching, gups, and mcf showing a difference. For mummer and

101

0%

10%

20%

30%

40%

(a)

R
u
n
ti

m
e

Im
p
ro

v
em

en
t noadd

addL1

addL2

addL1L2

ideal

 0

 50

 100

 150

 200

(b) L2 accesses (c) PTW
 0

 50

 100

 150

 200

L
2

 P
K

I

P
T

W
 P

K
I

base

noadd

addL1

addL2

addL1L2

Figure 4.9: Average (a) performance improvements when inserting the non-
speculative 4KB PTE, after correct speculation, in neither TLB (noAdd), the L1
TLB (addL1), the L2 TLB (addL2), or both (addL1L2), compared with the ideal
improvement; (b) number of L2 TLB accesses per kilo-instruction (APKI) includ-
ing verification compared to a baseline with speculation; and (c) number of page
table walks per kilo-instruction.

data caching, this occurs because they are the only benchmarks where the guest gen-

erates fewer large pages (see Figure 4.2b); nevertheless, performance benefits are still

5%. For gups, and mcf, the difference occurs because these benchmarks require more

2MB entries (speculative or otherwise) than the entire TLB hierarchy has available;

nevertheless, we still achieve 24%, and 30% performance gains, respectively.

Interestingly, Figure 4.8 also shows that L1-only speculation is highly-effective,

achieving 10% performance benefit. In fact, only mummer, tigr, gups, and graph

analytics see significantly more performance from speculating with both L1 and L2

TLBs.

Mitigating verification costs: To balance the capacity benefits of speculative 2MB

entries against the overheads of verification, we insert the non-speculative 4KB PTE

corresponding to a correct speculation into the 4KB L1 TLB. Figure 4.9 evaluates this

design decision versus a scheme that inserts the non-speculative 4KB PTE into the L2

TLB instead, into both, or into neither. We show the performance implications of these

decisions and the number of additional L2 TLB lookups and page table walks they ini-

tiate to verify speculations (per kilo-instruction). All results assume L1-L2 speculation;

we show average results because the trends are the same across benchmarks.

102

0%

20%

40%

60%

80%

100%

G
em

sF
D

TD

sw
 te

st
in

g

g
an

al
yt

ic
s

xa
la

nc
bm

k

d
ca

ch
in

g
as

ta
r

ca
ct

us
A

D
M

m
cf

av
er

ag
e

P
T

W
 E

li
m

in
at

ed

(a)

0%

20%

40%

60%

80%

100%

G
em

sF
D

TD

sw
 te

st
in

g

g
an

al
yt

ic
s

xa
la

nc
bm

k

d
ca

ch
in

g
as

ta
r

ca
ct

us
A

D
M

m
cf

av
er

ag
eF

ra
ct

io
n
 o

f
b
as

el
in

e

L2 TLB accesses on critical path

PTWs on critical path

(b)

Figure 4.10: (a) Fraction of page table walks eliminated using clustered bitmaps in
speculative L2 TLB entries; and (b) fraction of the baseline L2 TLB accesses and
page table walks remaining on the critical path of execution with TLB speculation.

Figure 4.9(a) shows that in general, noAdd performs the best because a single spec-

ulative 2MB entry is used in the entire TLB hierarchy for information about any con-

stituent 4KB SPP. However, inserting non-speculative 4KB PTEs into the L1 TLB

(addL1), the L2 TLB (addL2), or even both (addL1L2) performs almost as well (within

2%). Figures 4.9(b)-(c) shows, however, that these schemes have vastly different verifi-

cation costs, by comparing the additional page walks per kilo-instruction and L2 TLB

accesses per kilo-instruction they initiate. Not only does noAdd roughly triple the page

table walks and L2 TLB accesses, even addL2 only marginally improves L2 TLB access

count. Therefore, we use addL1 because its verification costs are comparable to the

baseline case without sacrificing performance.

Figure 4.10a quantifies the impact of the L2 entry cluster bitmaps. We show the

fraction of original page table walks eliminated; on average, 27% of the costly page table

walks are eliminated, with absolutely no loss in performance and only 2 additional bits

per TLB entry. Some workloads like cactusADM are almost entirely freed of page table

walks, while others like GemsFDTD and software testing see 70% and 48% eliminated.

Analyzing TLB miss rates: Figure 4.10b profiles how many of the baseline VM’s

L2 TLB accesses (caused by L1 TLB misses) and page table walks (caused by L2

103

0%

5%

10%

15%

20%

25%

30%

G
em

sF
D

TD

sw
 te

st
in

g

g
an

al
yt

ic
s

gr
ap

h5
00

om
ne

tp
p

m
um

m
er

ca
nn

ea
l

xa
la

nc
bm

k

d
ca

ch
in

g
tig

r
as

ta
r

gu
ps

ca
ct

us
A

D
M

m
cf

av
er

ag
e

R
u
n
ti

m
e

Im
p
ro

v
em

en
t

Improvement Ideal

Figure 4.11: Performance gains achieved by GLUE on a multi-VM configuration,
compared against the ideal performance improvement where all address translation
overheads are eliminated.

TLB misses) remain on the program’s critical path. The others are removed from the

execution critical path (because they are correctly speculated) and hence do not incur

a performance penalty. Overall, Figure 4.10b shows that TLB speculation removes 45%

of the L2 TLB lookups and 80% of the page tables walks from the critical path. Some

workloads, like cactusADM, see almost no page table walks because the clustered bitmap

in the L2 TLB completely eliminates verification-induced page table walks (see Figure

4.10a).

4.7.2 GLUE Performance Results: Multiple VMs

VMs with similar workloads: We have investigated the benefits of TLB speculation

in scenarios with multiple virtual machines, which may change splintering rates because

of inter-VM page sharing, etc. We have studied scenarios with 2, 3, 4, and 8 VMs, but

because performance trends are very similar, we show 8-VM results for the SPECcpu

and PARSEC workloads. CloudSuite applications, which have far greater memory

needs, overcommit system memory with fewer VMs; we hence present 4-VM studies for

them.

Figure 4.11 quantifies GLUE’s benefits on the multi-VM setup (averaged across

VMs, since we find negligible inter-VM variance), compared to an ideal scenario with

104

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

al
lO

N

al
lO

F
F

al
lO

N

al
lO

F
F

Single VM

GSmall-HSmall GSmall-HLarge

(a) mummer canneal

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

1
V

M

m
u
lt
i-
V

M
1
V

M

m
u
lt
i-
V

M

TPS only

GLarge-HSmall GLarge-HLarge

(b) mummer canneal

Figure 4.12: (a) Effect of page sharing and memory sampling turned on (allOn) in
a single VM versus all off (allOff) on page splintering; and (b) Effect of inter-VM
page sharing on page splintering in multi-VM settings.

no TLB misses. Multiple VMs stress TLBs even further due to greater contention.

Fortunately, sufficient page splintering and good alignment remains, letting GLUE (with

L1-L2 speculation) eliminate 75% overheads on average. GemsFDTD, astar, cactusADM,

and software testing see virtually no address translation overheads. Because real-

world virtualization deployments commonly share a single physical node among multiple

VMs, GLUE has high real-world utility.

VMs with different workloads: We also study the rarer case where one physical

node runs multiple VMs with the same OS (stock Linux) but different workloads. We

were surprised to observe that even with different workloads, there is significant inter-

VM page sharing, leading to ample page splintering. For example, we found that at

least 80% of all TLB misses were to pages that were large in the guest and small in

the hypervisor when running VMs with mcf, graph500, and gups. Notable culprits

were pages shared from the OS images across VMs and shared libraries. In addition,

zero-value pages across VMs were also shared [11]. Fortunately, GLUE counters page

sharing-induced splintering even when VMs run different workloads, greatly boosting

performance.

105

4.7.3 Characterizing Page Splintering Sources

By default, ESX uses working set sampling and page sharing for overall performance [13].

Figure 4.12a shows how guests and the hypervisor allocate small and large pages, assum-

ing a single VM running on the physical host. Results are shown for canneal (whose

behavior almost exactly matches all the other benchmarks and is hence indicative of

average behavior) and mummer, which illustrates more unique behavior. We compare

the default setting against a case where sampling and sharing are turned off. Clearly,

turning off sampling and page sharing recovers almost all of the opportunity lost by

page splintering.

Figure 4.12b extends these observations when multiple VMs share a physical ma-

chine. Because multiple co-located VMs have many pages to share (from the kernel and

application), assuming sampling is disabled, page sharing splinters most of the guest

large pages.

4.7.4 Importance of GLUE in Future Systems

Our application of GLUE to hypervisor-based virtualization targets scenarios where

guests can indeed create large pages, which is purely a function of OS large page support.

Modern operating systems have sophisticated and aggressive support for large pages

[10,70,83], so guests are likely to continue generating large pages. Nevertheless, we now

consider unusual scenarios which could impede guest large page creation.

One might initially consider that memory fragmentation on the guest might cur-

tail large page use in some scenarios. To this, we make two observations. First, VMs

are typically used on server and cloud settings to host an isolated, single service or

logically related sets of services. It is highly unlikely that fragmentation from compet-

ing processes are an issue. Second, in the unusual case where this is an issue, many

past studies on large-page support conclude that sophisticated already-existing mem-

ory defragmentation and compaction algorithms in OS kernels [10,70] drastically reduce

system fragmentation. To test this, we ran our workloads in setups where we artificially

fragmented system memory heavily and completely using the random access memhog

106

process [70]. We found that even for workloads with the largest memory footprints

(e.g., mcf, graph500, data analytics, data caching, and software testing), there

were negligible changes in the number of guest large pages allocated, their splintering

rates, and how well-aligned the ensuing splintered 4KB pages were. GLUE remains

effective in every single, aggressively-fragmented setup that we investigated.

One might also consider the impact of memory ballooning on the guest’s ability

to generate large pages. Ballooning is a memory reclamation technique used when

the hypervisor is running low on memory (possibly in response to the demands of

concurrently-running VMs). When the balloon driver is invoked, it identifies 4KB page

regions as candidates to relinquish to the hypervisor, and unallocates them. In effect,

this fragments the guest’s view of physical memory, hampering large page allocation, or

breaking already-existing large pages. To study this, we have run several experiments on

our setups. Since hypervisors like KVM and Xen expose ballooned pages to the memory

defragmentation software run by the kernel, ballooning has no impact on guest large

page generation [10].

4.7.5 Understanding GLUE’s Limitations

GLUE activates TLB speculation only for memory regions where a large guest page is

splintered by the hypervisor and identified by the page table walker as such. Therefore,

GLUE is ineffective (though not harmful) when the guest is unable to generate large

pages. However, TLB speculation can actually be harmful when the 4KB pages in a

speculated large page region are not well-aligned; in these cases, frequent TLB mis-

speculations introduce pipeline flushes and refetches, degrading performance. We have

not encountered a single case where mis-speculations degrade performance in practice,

but we detail how to handle this should it become an issue for other workloads we have

not evaluated.

Section 4.5.6 explained that TLB misses are frequently followed by long-latency

accesses to the lower-level caches or to main memory to retrieve the requested data.

Because L3 caches and main memory typically require 40-200 cycles on modern sys-

tems [21,69,70], these latencies usually exceed (or are at least comparable) to the cost

107

of flushing and steering the pipeline on a mis-speculation. Therefore, by initiating a

cache prefetch for these data items as soon as a mis-speculation is detected, we can

usually overlap mis-speculation penalties with useful work. Because all our real-system

configurations enjoy accurate speculation, cache prefetching is not really necessary (on

average, we gain roughly 1% more performance). We have calculated the minimum

correct speculation rate required to ensure no performance loss; for every single bench-

mark evaluated, 48% speculation accuracy (a pessimistic scenario compared to the 90%

accuracy we see in all our configurations) results in no performance degradation.

4.8 Related Work

Beyond recent work on TLB speculation [15], the rising costs of address translation

on big-memory systems have prompted researchers to perform many other studies on

TLB design [14, 16, 20, 34, 70]. While some of these efforts have focused on mostly

hardware efforts [14,20,69,70], others have shown the benefits of efficient OS-hardware

co-design [16,30,50]. In particular, recent work on redundant memory mappings [50] has

interesting implications on page splintering since it employs eager allocation - depending

on workload configuration and hypervisor decision-making, splintering could occur at

the granularity of ranges of (possibly large) pages. We will investigate the interplay

between our splintering approaches and redundant mappings in future work.

4.9 Summary

This work observes the fundamental conflict between the address translation benefits

of large pages versus the desire for finer-grained monitoring and agile memory man-

agement. We ask the question: is it possible to provide hardware support that enables

us to ally the TLB reach benefits of large pages with memory management issues

like lightweight memory monitoring, smoother page sharing, and seamless management

with NUMA systems. Our proposed hardware uses interpolation-based TLB specula-

tion to achieve this, boosting hypervisor- and container-based virtualization. Overall,

while we observed that splintering is a problem and can cause significant performance

108

problems, our proposed GLUE architecture can largely mitigate these issues, thereby

making virtualized systems more attractive to deploy.

109

Chapter 5

Conclusion

In this disseration, we explored several novel techniques to reduce majority of the

address translation overhead in virtual memory systems. In particular, our techniques

took advantage of differences arising from the gap between a rigid hardware memory

management unit and rich software components in managing memory.

In chapter 2, we introduced the concept of intermediate contiguity, which is transpar-

ently generated by the interactions between program’s memory faulting order, memory

allocator, and memory compaction. In chapter 3, we extended this concept by con-

sidering richer and more prevalent patterns than contiguous locality, namely clustered

locality, which allows out-of-order mappings between virtual and physical pages. We

proposed CoLT and clustered TLB techniques to exploit these patterns respectively.

The combination of these techniques help increase the effective reach of TLBs and

reduce almost half of the page walk overhead on average.

In chapter 4, we presented a comprehensive characterization of the prevalence and

sources of page splintering, which is a major source of the performance difference be-

tween native systems and virtualized systems runtime. We observed that even when

page splintering happens, the majority of base pages remain aligned within the bound-

ary of the original large page. In response, we proposed GLUE, a low-complexity

speculation hardware that identifies contiguous, aligned, but splintered large page re-

gions. Our design removed TLB misses handling from the processor’s critical path, and

reduced 77% of the translation overhead in virtualized systems as a result.

Overall, this thesis provides an initial approach to taking advantage of the underly-

ing structure and patterns in page tables while completely maintaining the traditional

virtual memory abstractions as far as the software layers are concerned. We believe that

110

our approach will spur more research to hunt for additional, richer patterns in the vir-

tual memory system, deeper analyses of the underlying application and OS/hypervisor

behaviors that lead to these, and ultimately more and better mechanisms to allow phys-

ical memory sizes to scale without being hamstrung by the virtual memory system.

111

References

[1] AMD64 Architecture Programmers Manual. White paper, Advanced Micro De-
vices Inc., 2013. http://developer.amd.com/.

[2] ARMv8-A Reference Manual. White paper, ARM Holdings, plc, 2013.
infocenter.arm.com.

[3] Linux* Containers Streamline Virtualization and Complement
Hypervisor-Based Virtual Machines. White paper, Intel Corp., 2014.
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/linux-containers-hypervisor-based-vms-paper.pdf.

[4] Software Optimization Guide for AMD Family 15h Processors. Technical report,
Advanced Micro Devices Inc, 2014.

[5] Intel 64 and IA-32 Architectures Software Devel-
opers Manual. White paper, Intel Corp., 2015.
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

[6] A. Agarwal and S. Pudar. Column-Associative Caches: A Technique for Reducing
the Miss Rate of Direct-Mapped Caches. ISCA, 1993.

[7] J. Ahn, S. Jin, and J. Huh. Revisiting Hardware-Assisted Page Table Walks for
Virtualized Systems. ISCA, 2012.

[8] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W. Tseng, and
D. Yeung. BioBench: A Benchmark Suite of Bioinformatics Applications. In
Intl. Symp. on Performance Analysis of Systems and Software, pages 2–9, Austin,
TX, March 2005.

[9] AMD Corporation. AMD Programmer’s Manual. 2, 2007.

[10] A. Arcangeli. Transparent Hugepage Support. KVM Forum, 2010.

[11] A. Arcangeli, I. Eidus, and C. Wright. Increasing Memory Density by Using KSM.
Ottawa Linux Symposium, 2009.

[12] G. Atwood. Current and Emerging Memory Technology Landscape. Flash Memory
Summit, 2011.

[13] I. Banerjee, F. Guo, K. Tati, and R. Venkatasubramanian. Memory Overcommitt-
ment in the ESX Server. VMware Technical Journal, 2013.

[14] T. Barr, A. Cox, and S. Rixner. Translation Caching: Skip, Don’t Walk (the Page
Table). ISCA, 2010.

[15] T. Barr, A. Cox, and S. Rixner. SpecTLB: A Mechanism for Speculative Address
Translation. ISCA, 2011.

112

[16] A. Basu, J. Gandhi, J. Chang, M. Hill, and M. Swift. Efficient Virtual Memory
for Big Memory Servers. ISCA, 2013.

[17] A. Basu, M. Hill, and M. Swift. Reducing Memory Reference Energy with Oppor-
tunistic Virtual Caching. ISCA, 2012.

[18] R. Bedicheck. SimNow: Fast Platform Simulation Purely In Software. Hot Chips,
2004.

[19] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating Two-
Dimensional Page Walks for Virtualized Systems. ASPLOS, 2008.

[20] A. Bhattacharjee. Large-Reach Memory Management Unit Caches. MICRO, 2013.

[21] A. Bhattacharjee, D. Lustig, and M. Martonosi. Shared Last-Level TLBs for Chip
Multiprocessors. HPCA, 2010.

[22] A. Bhattacharjee and M. Martonosi. Characterizing the TLB Behavior of Emerg-
ing Parallel Workloads on Chip Multiprocessors. PACT, 2009.

[23] A. Bhattacharjee and M. Martonosi. Inter-Core Cooperative TLB Prefetchers for
Chip Multiprocessors. ASPLOS, 2010.

[24] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:
Characterization and Architectural Simplications. IISWC, 2008.

[25] D. Bovet and M. Cesati. Understanding the Linux Kernel. 2005.

[26] J. Buell, D. Hecht, J. Heo, K. Saladi, and R. Taheri. Methodology for Performance
Analysis of VMware vSphere under Tier-1 Applications. VMWare Technical Jour-
nal, 2013.

[27] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis, V. Nikitin,
X. Tang, S. Watts, S. Wang, S. Wolf, A. Ghosh, J. Lu, S. Poon, M. Stan, W. Butler,
S. Gupta, C. Mewes, T. Mewes, and P. Visscher. Advances and future prospects
of spin-transfer torque random access memory. Magnetics, IEEE Transactions on,
46(6):1873–1878, June 2010.

[28] J. B. Chen, A. Borg, and N. Jouppi. A Simulation Based Study of TLB Perfor-
mance. ISCA, 1992.

[29] P. J. Denning. Virtual memory. ACM Comput. Surv., 28(1):213–216, Mar. 1996.

[30] Y. Du, M. Zhou, B. Childers, D. Mosse, and R. Melhem. Supporting Superpages
in Non-Contiguous Physical Memory. HPCA, 2015.

[31] Z. Fang, L. Zhang, J. Carter, W. Hsieh, and S. McKee. Reevaluating online
superpage promotion with hardware support. In High-Performance Computer Ar-
chitecture, 2001. HPCA. The Seventh International Symposium on, pages 63–72,
2001.

[32] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kay-
nak, A. D. Popescu, A. Ailamaki, , and B. Falsafi. Clearing the Clouds: A Study
of Emerging Scale-out Workloads on Modern Hardware. ASPLOS, 2012.

113

[33] N. Ganapathy and C. Schimmel. General-Purpose Operating System Support for
Multiple Page Sizes. USENIX, 1998.

[34] J. Gandhi, A. Basu, M. Hill, and M. Swift. Efficient Memory Virtualization.
MICRO, 2014.

[35] GaTech. Macsim. http://code.google.com/p/macsim/.

[36] F. Gaud, B. Lepers, J. Decouchant, J. Funston, and A. Fedorova. Large Pages
May be Harmful on NUMA Systems. USENIX ATC, 2014.

[37] M. Gorman. Understanding The Linux Virtual Memory Manager. 2004.

[38] F. Guo, S. Kim, Y. Baskakov, and I. Banerjee. Proactively Breaking Large Pages
to Improve Memory Overcommitment Performance in VMware ESXi. VEE, 2015.

[39] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 34(4):1–17, Sept. 2006.

[40] HMCC. HMC Specification 1.0, 2013. http: //www.hybridmemorycube.org.

[41] IBM. Big data at the speed of business, 2011. http://www-
01.ibm.com/software/data/bigdata/.

[42] Intel Corporation. TLBs, Paging-Structure Caches and their Invalidation. Intel
Technical Report, 2008.

[43] Intel Corporation. 3D XPoint UnveiledThe Next Breakthrough in Memory
Technology, 2015. http://www.intel.com/content/www/us/en/architecture-and-
technology/3d-xpoint-unveiled-video.html.

[44] B. L. Jacob and T. N. Mudge. A look at several memory management units, tlb-
refill mechanisms, and page table organizations. SIGPLAN Not., 33(11):295–306,
Oct. 1998.

[45] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A Pin-based On-the-fly
Multi-core Simulator. 4th Workshop on Modeling, Benchmarking, and Simulation,
2008.

[46] JEDEC. High Bandwidth Memory (HBM) DRAM (JESD235), 2013.

[47] D. Jevdjic, S. Volos, and B. Falsafi. Die-stacked dram caches for servers: Hit ratio,
latency, or bandwidth? have it all with footprint cache. In Proceedings of the
40th Annual International Symposium on Computer Architecture, ISCA ’13, pages
404–415, New York, NY, USA, 2013. ACM.

[48] G. Kandiraju and A. Sivasubramaniam. Going the Distance for TLB Prefetching:
An Application-Driven Study. ISCA, 2002.

[49] D. Kanter. Haswell Memory Hierarchy. http://www.realworldtech.com/haswell-
cpu/5/, 2012.

[50] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. Hill, K. McKinley, M. Ne-
mirovsky, M. Swift, and O. Unsal. Redundant Memory Mappings for Fast Access
to Large Memories. ISCA, 2015.

114

[51] B. Kero. Running 512 Containers on a Laptop. http://bke.ro/running-512-
containers-on-a-laptop, 2015.

[52] G. Kyriazis. Heterogeneous System Architecture: A Technical Review. AMD
Whitepaper, 2012.

[53] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change Memory
as a Scalable DRAM Alternative. In 36th Intl. Symp. on Computer Architecture,
Austin, TX, June 2009.

[54] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Phase change memory architecture
and the quest for scalability. Commun. ACM, 53(7):99–106, July 2010.

[55] G. H. Loh and M. D. Hill. Efficiently Enabling Conventional Block Sizes for Very
Large Die-Stacked DRAM Caches. In MICRO-44, 2011.

[56] G. H. Loh, N. Jayasena, K. McGrath, M. O’Connor, S. Reinhardt, and J. Chung.
Challenges in Heterogeneous Die-Stacked and Off-Chip Memory Systems. In
SHAW-3, 2012.

[57] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. PLDI, 2005.

[58] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 190–200, Chicago, IL, June 2005.

[59] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner,
J. McCalpin, D. Bailey, and D. Takahashi. Introduction to the HPC Challenge
Benchmark Suite. 2005.

[60] C. McCurdy, A. Cox, and J. Vetter. Investigating the TLB Behavior of High-End
Scientific Appplications on Commodity Multiprocessors. ISPASS, 2008.

[61] M. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H.
Loh. Heterogeneous Memory Architectures: A HW/SW Approach for Mixing
Die-Stacked and Off-Package Memories. HPCA, 2015.

[62] Micron. HMC Gen2, 2013.

[63] R. C. Murphy, K. B. Wheele, B. W. Barrett, and J. A. Ang. Introducing the graph
500. 2010.

[64] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, Transparent Operating
System Support for Superpages. OSDI, 2002.

[65] M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos. Prediction-Based
Superpage-Friendly TLB Designs. HPCA, 2014.

115

[66] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pin-
pointing Representative Portions of Large Intel Itanium Programs with Dynamic
Instrumentation. In 37th Intl. Symp. on Microarchitecture, Portland, OR, Decem-
ber 2004.

[67] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder. Using
SimPoint for Accurate and Efficient Simulation. SIGMETRICS, 2003.

[68] S. Phadke and S. Narayanasamy. MLP Aware Heterogeneous Memory System.
DATE, 2011.

[69] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. Increasing TLB Reach by
Exploiting Clustering in Page Translations. HPCA, 2014.

[70] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee. CoLT: Coalesced
Large-Reach TLBs. MICRO, 2012.

[71] M. K. Qureshi and G. H. Loh. Fundamental Latency Trade-offs in Architecting
DRAM Caches. In MICRO-45, 2012.

[72] P. Rogers. AMD heterogeneous Uniform Memory Access. AMD Whitepaper, 2013.

[73] B. Romanescu, A. Lebeck, and D. Sorin. Specifying and Dynamically Verifying
Address Translation-Aware Memory Consistency. ASPLOS, 2010.

[74] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N. Bershad. Reducing tlb and
memory overhead using online superpage promotion. In Proceedings of the 22Nd
Annual International Symposium on Computer Architecture, ISCA ’95, pages 176–
187, New York, NY, USA, 1995. ACM.

[75] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling Ways and Associativity.
MICRO, 2010.

[76] T. Sato and I. Arita. Low-Cost Value Predictors Using Frequent Value Locality. In
4th Intl. Symp. on High Performance Computing, pages 106–119, Kansei Science
City, Japan, May 2002.

[77] A. Saulsbury, F. Dahlgren, and P. Stenström. Recency-Based TLB Preloading.
ISCA, 2000.

[78] A. W. Services. AWS Cloud Formation User Guide. 2010.

[79] A. Seznec. A Case for Two-Way Skewed Associative Cache. ISCA, 1993.

[80] A. Seznec. Concurrent Support of Multiple Page Sizes on a Skewed Associative
TLB. IEEE Transactions on Computers, 2004.

[81] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi. A Mostly-
Clean DRAM Cache for Effective Hit Speculation and Self-Balancing Dispatch.
In MICRO-45, 2012.

[82] M. Spjuth, M. Karlsson, and E. Hagersten. The Elbow Cache: A Power-Efficient
Alternative to Highly Associative Caches. Uppsala University Technical Report
2003-46, 2003.

116

[83] M. Talluri and M. Hill. Surpassing the TLB Performance of Superpages with Less
Operating System Support. ASPLOS, 1994.

[84] M. Talluri, S. Kong, M. Hill, and D. Patterson. Tradeoffs in Supporting Two Page
Sizes. ISCA, 1992.

[85] Virtutech. Simics for Multicore Software. 2007.

[86] VMware. Large Page Performance: ESX Server 3.5 and ESX Server 3i v3.5.
VMware Performance Study, 2008.

[87] VMware. VProbes Programming Reference. 2008.

[88] C. Waldspurger. Memory Resource Management in VMware ESX Server. OSDI,
2002.

[89] H.-S. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. Chen, and
M.-J. Tsai. Metal x2013;oxide rram. Proceedings of the IEEE, 100(6):1951–1970,
June 2012.

[90] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and M. Corner.
Memory Buddies: Exploiting Page Sharing for Smart Colocation in Virtualized
Data Centers. VEE, 2009.

[91] J. Xiao, Z. Xu, H. Huang, and H. Wang. Security Implications of Memory Dedu-
plicationi in a Virtualized Environment. DSN, 2013.

[92] Y. Xie. Modeling, Architecture, and Applications for Emerging Non-Volatile Mem-
ory Technologies. IEEE Computer Design and Test, 2011.

[93] Y. Zhang, J. Yang, and R. Gupta. Frequent Value Locality and Value-Centric Data
Cache Design. In 9th Symp. on Architectural Support for Programming Languages
and Operating Systems, pages 150–159, Cambridge, MA, November 2000.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Motivation
	Our goal
	Profiling Address Translation Overhead
	Dissertation Structure
	Contributions

	Exploiting Sequential Locality in Page Translations for Large Reach TLBs
	Introduction
	Background and Related Work
	Prior TLB Enhancement Techniques
	Superpaging Benefits and Problems
	TLB Subblocking and Speculation
	Our Approach

	Understanding Page Allocation Contiguity
	Defining Page Allocation Contiguity
	Sources of Page Allocation Contiguity
	Process address space.
	Buddy allocation.
	Memory compaction.
	Transparent hugepage support.
	Putting Things Together.
	System Load and Memory Fragmentation.

	CoLT Design and Implementation
	CoLT-SA Design and Implementation
	Overall operation.
	TLB set selection.
	Lookup operation.
	Practical coalescing restrictions.
	Replacement, invalidations, and attribute changes.

	CoLT-FA Design and Implementation
	Overall operation.
	Lookup operation.
	Replacement, invalidations, and attribute changes.

	CoLT-All Design and Implementation
	Overall operation.
	Lookup operation.
	Replacement, invalidation, and attribute changes.

	Methodology
	Real-System Characterizations of Page Allocation Contiguity
	Experimental platform and methodology.
	Evaluation workloads.

	Simulation-Based CoLT Evaluations
	Simulated system.
	Evaluation workloads.

	Real-System Characterizations of Page Allocation Contiguity
	Superpaging, Memory Compaction
	No Superpaging, Memory Compaction
	No Superaging, Low Memory Compaction

	Superpaging, Memory Compaction, Memhog
	No Superpaging, Memory Compaction, Memhog
	Summary of results.

	CoLT Evaluations
	TLB Miss Rate Analysis
	CoLT TLB miss rates.
	Impact of CoLT-SA's indexing scheme on TLB miss rates.
	Impact of bringing missing entries into L2 TLB for CoLT-FA and CoLT-All.
	Studying CoLT's effectiveness at higher associativities.

	Performance Analysis

	Summary

	Exploiting Clustered Locality in Page Translations for Large Reach TLBs
	Introduction
	Related Work and Our Approach
	Spatial Locality in Page Table Entries
	Other Techniques to Exploit Page Table Spatial Locality
	Our Approach: Clustered TLBs

	Weak Spatial Locality in Page Tables
	CoLT-like Contiguous Spatial Locality
	Clustered Spatial Locality
	Impact of Memory System Fragmentation

	The Multi-granular TLB
	Clustered TLB
	Multi-granular TLB Organization and Operation
	Frequent Value Locality in the Address Bits
	Hardware Cost
	Basic Multi-granular TLB Hardware Cost
	Enhanced Multi-granular TLB Hardware Cost

	Experimental Methodology
	Workloads
	Simulation Infrastructure
	Functional Simulator
	Performance Evaluation

	Multi-granular TLB Evaluations
	Understanding Changes in Hit Rates
	Overall Performance Improvements
	Prefetching versus Capacity Improvements

	Sensitivity Studies
	Summary

	Supporting Large, Yet Agile Pages in Virtualized Systems
	Introduction
	Background
	Motivation and Our Approach
	Sources of Page Splintering
	GLUE Microarchitecture
	TLB Organization
	Speculative TLB Entries
	TLB Operations
	Speculation Details
	Mitigating Verification Costs
	Mitigating Mis-speculation Overheads

	Experimental Methodology
	Workloads
	Trace Collection
	Functional simulator
	Analytical Performance Model

	Experimental Results
	GLUE Performance Results: Single VM
	GLUE Performance Results: Multiple VMs
	Characterizing Page Splintering Sources
	Importance of GLUE in Future Systems
	Understanding GLUE's Limitations

	Related Work
	Summary

	Conclusion
	References

