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Abstract of the Dissertation  

MULTISCALE MODELING OF INTERWOVEN KEVLAR FIBERS BASED ON 

RANDOM WALK TO PREDICT YARN STRUCTURAL RESPONSE 

 

by STEPHEN RECCHIA 

Dissertation Director:  

Assimina A. Pelegri  

Kevlar is the most common high-end plastic filament yarn used in body armor, tire 

reinforcement, and wear resistant applications. Kevlar is a trade name for an aramid fiber. 

These are fibers in which the chain molecules are highly oriented along the fiber axis, so 

the strength of the chemical bond can be exploited. The bulk material is extruded into 

filaments that are bound together into yarn, which may be chorded with other materials as 

in car tires, woven into a fabric, or layered in an epoxy to make composite panels. The high 

tensile strength to low weight ratio makes this material ideal for designs that decrease 

weight and inertia, such as automobile tires, body panels, and body armor. For designs that 

use Kevlar, increasing the strength, or tenacity, to weight ratio would improve performance 

or reduce cost of all products that are based on this material.  

This thesis computationally and experimentally investigates the tenacity and 

stiffness of Kevlar yarns with varying twist ratios. The test boundary conditions were 

replicated with a geometrically accurate finite element model, resulting in a customized 

code that can reproduce tortuous filaments in a yarn was developed. The solid model 

geometry capturing filament tortuosity was implemented through a random walk method 

of axial geometry creation. A finite element analysis successfully recreated the yarn 

strength and stiffness dependency observed during the tests. The physics applied in the 

finite element model was reproduced in an analytical equation that was able to predict the 
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failure strength and strain dependency of twist ratio. The analytical solution can be 

employed to optimize yarn design for high strength applications. 
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Chapter 1 : Introduction 

1.1 Kevlar as an Engineering Material 

Kevlar yarn is used in a myriad of applications, from body armor to car tires. Kevlar is a 

trade name for an aramid fiber in which the chain molecules are highly oriented along the 

fiber axis, so the strength of the chemical bond can be exploited. The bulk material is 

extruded into filaments that are bound together into a yarn that is either chorded with other 

materials as in car tires, woven into a fabric, or layered in an epoxy to make composite 

panels. The high tensile strength to low weight ratio makes this material ideal for designs 

that try to decrease weight and inertia, such as automobile tires, body panels, and body 

armor. For designs that use Kevlar, increasing the strength to weight ratio (called Tenacity) 

would improve performance or reduce cost of all products that are based on this material. 

It has been shown [1, 2, 3, 4] that up to 3 twists per inch (TPI) the strength of Kevlar 

increases. As the yarn is twisted past 3TPI its strength starts to drop off making the strength 

to twist relationship non-linear with maximum value around 3TPI. The goal of this research 

is to identify the important yarn characteristics that cause the maximum strength to be at 

3TPI. Kevlar fabric, chord, and yarn are all based on a fibrous structure made from 

filaments. There has been prior research conducted to understand the triaxiality of Kevlar 

KM2 filaments. [5] That research has shown that there is very little dependency of filament 

strength on confinement pressure due to the anisotropic nature of the elastic response. It is 

hypothesized that filament strain gradients between the yarn’s outer diameter (OD) and 

core is imposed by the yarn twisting process.  
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1.2 Describing Kevlar Hierarchy 

Through filament manufacturing aramid molecules are layered and interact with Van der 

Waals forces. The long molecule stacks would normally be randomly oriented when solidified 

but the fiber manufacturing process aligns these crystals with the fiber axis. A hypothesized 

Kevlar structural hierarchy is shown in Figure 1.1. 

.  

Figure 1.1 Microfibril based structure of Kevlar showing molecular organization and hierarchy. 

Arrow shows increasing length scales 

 

Grujicic suggests that amorphous polymer and poor orientation act as grain boundaries 

between neatly ordered stacks [6]. These boundaries form microfibrils on the order of 10 nm 

in diameter. [7] Gruijicic suggests the manufacturing impurities and voids form a second layer 

of natural boundaries. These boundaries make fibrils that are of the order of 100-1000 nm in 

diameter and lengths that can reach a millimeter. The fibrils are bridged locally by microfibrils 

to constitute a single Kevlar fiber.  

1.3 Filaments into a Yarn Structure 

After filament creation, fibers are bundled into a yarn. The amount of filaments that 

go into a yarn structure dependents on the required linear weight and necessitated strength 
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from the system. Yarn strength is measured in Tenacity (gram-force/Denier) and linear 

weight is given as denier (g/9000m). Natural fibers like cotton, wool, or hemp are 

consolidated into a yarn using a ring spun method. The ring spun yarn has a twist associated 

with it to improve fiber to fiber interaction. Kevlar yarn is made of straight continuous 

filaments and the yarn is not created with a pre-twist; small twist is added to achieve a more 

uniform failure stress [8]. At this point the yarn can be put into larger fabric systems such 

as chorded rope and fabric weaves, or act as reinforcement in composites.  
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Chapter 2 : Method 
To determine the important physics governing the yarn strength dependence on twist, a 

finite element model of the system was developed. Complimentary tensile testing at various 

twists per inch (TPI) was commenced. Based on the simulation and the tests an analytical 

solution is formulated to predict yarn response to twist and tensile loading. 

2.1 Method: Solid Geometry Creation 

A geometrically representative model was implemented to create accurate geometry and 

discretize it with finite elements. An explicit solver was chosen to solve the yarn stress 

state as the twist and axial strain boundary conditions were applied. The geometry was 

developed using a random walk algorithm that allowed the filaments to become 

interwoven. The geometry creation tool was written using Fortran 90. Commands to 

formulate the representative geometry in CUBIT were written into a text file that could be 

recounted using the GUI interface. The model was run with multiple cases that included 0, 

3 and 10 twists per inch (TPI). The axial strain amplitude boundary condition was chosen 

so the simulation ended at filament failure. The results from the simulation were compared 

to tensile tests conducted using custom grips, created at the Advanced Materials Structures 

Laboratory (AMSL), that were mounted to an Instron universal materials testing system. 

 

2.2 Method: Finite Element Analysis with Sierra/Solid Mechanics, (Presto)        

Sierra/Solid Mechanics (Sierra/SM) is a general-purpose explicit finite element code 

developed and maintained by Sandia National Laboratories. It uses large deformation 

nonlinear Lagrangian solid mechanics principles to model the response of a wide range of 

structures and systems to mechanical loading. It is part of a mutli-physics suite of codes in 
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the Sierra framework, and can be coupled with other codes to model other types of physics. 

Models are defined in Sierra/SM through an ExodusII mesh and an input file that defines 

parameters for the analysis including materials and boundary conditions. Some of the 

benefits of using Sierra/SM are that it provides an extensive set of constitutive models, 

scalability for massively parallel computers, robust contact algorithms, and a variety of 

techniques for modeling pervasive failure. Details of Presto, its history, and algorithms are 

described in the user’s manual [9] . 

For the work presented here, the first step for setting up the finite element model 

was to create a meshing scheme of the desired geometry using the CUBIT software. Sets 

of elements, nodes, and surfaces were defined for assignment of material properties and 

application of boundary conditions, and then the mesh was exported as an ExodusII file. 

The Sierra/SM code used the finite element mesh and an accompanying input file defining 

model parameters to run the analysis, and generated results in another ExodusII file. The 

results of the simulation were visualized in Paraview, an open source post-processing tool 

developed with support from a number of organizations including Sandia National 

Laboratories and the U.S. Department of Defense.  

In the Sierra/SM model, the yarn filaments were modeled as individual volumes 

built from lofted beam elements. Frictional contact was used to model the interactions 

between all the filaments.   

2.3 Method: Finite Element Solver Theory 

In Sierra Solid Mechanics [9, 10], the continuous material is numerically approximated by 

discretization. This is accomplished through using finite elements to build geometric 

representative parts. In an explicit analysis those discretized elements are connected 
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through nodes that have the same 6 degrees of freedom [11, 12, 13, 14]. The internal and 

external forces acting on those nodes are used to predict material nodal deformation. The 

nodal deformation is fed to the elements shape function to predict state variables such 

strain, stress, and damage. The nodal deformation is used to create the state variables 

through deviatoric, dilatational or a combination constitutive model. For an explicit 

analysis, this process is repeated at stable time increments that step through time during 

the analysis. The important physics of a dynamic explicit finite element simulation are 

applied through initial, steady or transient boundary conditions that modify nodal 

acceleration, velocity or displacement. For Sierra-SM the governing equations is stated as 

Equation 2.1. 

∇ ∗ 𝑇 + 𝑓 = 𝜌𝑎 (2.1) 

 where *T denotes the divergence operator applied to the Cauchy stress tensor T. The 

vector f denotes the distributed body force in the body,  is the density and a is the 

acceleration. The solver simplifies the geometrically complex problem by solving simple 

motion equations for material particles in space. Fixing the reference coordinate X. 

Equations 1 and 2 give solutions for the successive partial time derivatives of the motion 

(X,t) that provide velocity V and acceleration A.  

 
𝑽(𝑿, 𝑡) =

𝛿

𝛿𝑡
(𝜑(𝑿, 𝒕)) 

(2.2) 

 
𝑨(𝑿, 𝑡) =

𝛿

𝛿𝑡
(𝑉(𝑿, 𝒕)) =

𝛿2

𝛿𝑡2(𝜑(𝑿, 𝒕))
 

(2.3) 

 

To calculate the state variables located on the elemental integration point the Cauchy stress 

tensor (Figure 2.1) is used, denoted as T, it relates a unit length direction vector n to the 
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stress vector T(n) across a surface perpendicular to n. It is used for the stress discretization 

of elements within solids undergoing small deformations Equations 2.4 to 2.6 show the 

formulation for the Cauchy stress tensor.  

 

𝑇𝑛 = 𝑛 ∗ 𝜎 (2.4) 

𝜎 =

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

 (2.5) 

𝑇1

𝑇2

𝑇3

= [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

] [

𝑛1

𝑛2

𝑛3

] (2.6) 

Figure 2.1 Diagram depicting the Cauchy tensor [10]. 

 

For explicit FEA implementations large deformations are of interest so the Piola-

Kirchhoff stress tensor (P) is used to express stress values relative to the reference 

configuration instead of present configuration like Cauchy. It is calculated from the 

deformation gradient (F), Jacobian determinate of F (J), 

Piola-Kirchoff Stress Tensor  

𝑷 = 𝑱 ∗ 𝝈 ∗ 𝑭−𝑻 (2.7) 

𝑱 = 𝒅𝒆𝒕𝑭 (2.8) 

  

The goal of the time stepping procedures for finite element method is to subdivide 

the time interval of interest into discrete intervals. Knowing the displacement (dn), velocity 

(vn) and acceleration (an) at time tin; the solver finds dn+1, vn+1, an+1. The updated 

displacement, velocity and acceleration are found by using the alpha method of time 

integrators. The alpha method is referred to as the Hiber-Hughes-Taylor method of HHT 
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method. The HHT method is a generalization of the Newmark family of temporal 

integrators.  

HHT Integrator using alpha integration method  

𝑀𝑎𝑛+1 + (1 − 𝛼)𝐹𝑖𝑛𝑡(𝑑𝑛+1) − 𝛼𝐹𝑖𝑛𝑡(𝑑𝑛) = (1 − 𝛼)𝐹𝑒𝑥𝑡(𝑑𝑛+1) − 𝛼𝐹𝑒𝑥𝑡(𝑑𝑛) (2.9) 

𝑑𝑛+1 = 𝑑𝑛 + ∆𝑡𝑣𝑛 +
∆𝑡2

2
[(1 − 2𝛽)𝑎𝑛 + 2𝛽𝛼𝑛+1] (2.10) 

𝑣𝑛+1 =  𝑣𝑛 + ∆𝑡[(1 − 𝛾)𝑎𝑛 + 𝛾𝑎𝑛+1] (2.11) 

 

 Any numerical integration method can solve the HHT algorithms; in Sierra-SM the 

HHT method is incorporated into the solution by using either the central differences 

method or trapezoidal rule. The central differences method is used for explicit solutions. 

This integrator is second-order accurate in time and only conditionally stable when t is 

less than a critical value. For this method the coefficient values for Equations 2.3, 2.4, 2.5 

are  = 0,  = 0,  = ½; once these values are substituted Equations 2.12, 2.13, and 2.14 are 

obtained. 

 

HHT Integrator (Explicit Method)  

𝑎𝑛+1 = 𝑀−1𝐹𝑒𝑥𝑡(𝑑𝑛+1) − 𝐹𝑖𝑛𝑡(𝑑𝑛+1) (2.12) 

𝑑𝑛+1 = 𝑑𝑛 + ∆𝑡𝑣𝑛 +
∆𝑡2

2
𝑎𝑛 (2.13) 

𝑣𝑛+1 =  𝑣𝑛 +
∆𝑡

2
[𝑎𝑛 + 𝑎𝑛+1] (2.14) 
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 The trapezoid rule integrator is used for the implicit finite element solver. This 

integrator is second-order accurate in time and unconditionally stable for linear problems, 

a problem which is defined as the spectral radii of the integrator remains less than one in 

modulus for any time step t. The coefficients for this method are  = 0,  = ¼,  = ½. By 

substituting those values into the above expressions, Equations 2.15, 2.16, and 2.17 are 

obtained. 

 

HHT Integrator (Implicit Method)  

𝑀𝑎𝑛+1 + 𝐹𝑖𝑛𝑡(𝑑𝑛+1) = 𝐹𝑒𝑥𝑡(𝑑𝑛+1) (2.15) 

𝑑𝑛+1 = 𝑑𝑛 + ∆𝑡𝑣𝑛 +
∆𝑡2

4
[𝑎𝑛 + 𝑎𝑛+1] (2.16) 

𝑣𝑛+1 =  𝑣𝑛 +
∆𝑡

2
[𝑎𝑛 + 𝑎𝑛+1] (2.17) 

 

 For an Explicit analysis, the central differences method is used to calculate the 

displacement given acceleration and an initial state. Given the three vectors an, vn, dn, the 

data (an+1, vn+1, dn+1) at tn+1 can be computed explicitly as long as M is a lumped sum 

diagonal matrix. The HHT Explicit method was slightly modified to fit the central 

difference form. 

 

HHT Integrator (Explicit Method)–Central Difference  

𝑎𝑛 = 𝑀−1𝐹𝑒𝑥𝑡(𝑑𝑛) − 𝐹𝑖𝑛𝑡(𝑑𝑛) (2.12) 

𝑣
𝑛+

1
2

=  𝑣
𝑛−

1
2

+
1

2
[∆𝑡

𝑛−
1
2

+ ∆𝑡
𝑛+

1
2

] 𝑎𝑛 (2.13) 
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𝑑𝑛+1 = 𝑑𝑛 + ∆𝑡
𝑛+

1
2

𝑣
𝑛+

1
2
 (2.14) 

 

 The integration method is called a central difference integrator because calculates 

displacement in half steps as shown in the Figure 2.2. This figure shows the steps taken for 

each element and each time increment by the central difference operator. Step 1, the first 

half velocity (based on boundary conditions) is used to calculate a half increment 

displacement. Step 2, the half increment velocity is used to project the acceleration into the 

second half of the increment. Step 3, the second half velocity is calculated off the 

acceleration. Step 4, the displacement is calculated from the second half velocity.  

 

 

Figure 2.2 Diagram showing the steps to calculate an element solution for a given time increment 

using the central differences method. 
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The central differences method is conditionally stable while the time step is smaller 

than a critical value. The methods to evaluate a critical times step is given in Equation 2.15. 

 

Courant Time 

Step 

Courant Time Step 

Estimation 

Element Eigen Value Time 

Step Estimation 

 

∆𝑡 ≤
2

𝜔
 ∆𝑡𝑚𝑎𝑥 = (

ℎ

𝑐
) ∆𝑡𝐸 = (

2

√𝜆max 𝑜𝑣𝑒𝑟 𝑒

) (2.15) 

 

This critical step is commonly estimated by the Courant time step criteria, where 

omega is the highest natural frequency in the mesh. Using the speed of sound c and element 

critical length h, the time step is estimated repeatedly throughout the simulation to account 

for geometric deformation and material change. Other ways of estimating the time step are 

sometimes used such as the element Eigen value time step estimation [15]. This calculation 

takes longer to compute but results in a larger time step since model efficiency balances 

time increment value with the CPU time to compute one increment. Sierra-SM allows the 

user to choose which time step estimation to employ in the simulation. Sometimes it is 

advantageous to scale the mass (density) elements to achieve slower sound speeds thus 

creating larger time increments. To take advantage of mass scaling the solver should 

employ the Eigen value time estimation .  

 

2.4 Method: Test Kevlar KM2 at Various Twist 

To probe tenacity as a function of TPI for 600 denier Kevlar KM2, grips compliant with 

ASTM-D-7269 were created. They were installed on a 1kN Instron 4411 universal testing 

apparatus. The cross head load and elongation was output from Instron software and post 
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processed in Excel. The yarn tests specimens were preconditioned and conditioned as per 

the ASTM-D-1776 standard. The preconditioning was at 3 hours 45°C with 15% relative 

humidity, the conditioning was at 13 hours at 20°C with 64% relative humidity.  

The current grips were designed to keep the yarn aligned as it was elongated. It was 

assumed that the rubberized plastic coating would provide enough friction force to keep 

the fiber bundles sufficiently gripped. While it did perform this task well, the coating could 

not withstand multiple tests and ended up degrading rather quickly after a number of tests. 

Additionally, the edges of the grips acted as pinch points, which possibly caused early 

breakage. New grips have been designed that alleviated most of these issues. The new 

design incorporated removable faces that allowed a number of different grip surfaces to be 

tested, but primarily thin adhesive-backed textured rubber was used. All edges were 

rounded in order to prevent pinch points and an alignment groove was included to facilitate 

perfect alignment while provided enhanced grip action. The second generation grips 

designed for our experiments are depicted in Figure 2.3. 
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(a) (b) 

Figure 2.3 (a) Grips used to conduct tensile pull tests on the Kevlar KM2 fiber. (b) Close up 

image of grip and alignment cylinder. 

Chapter 3 : FiberWalk: a Random Walk Approach to Fiber 

Representative Volume Element Creation 

 

3.1 Abstract 

Attaining accurate representative geometry for a finite element analysis at various scales 

can be a challenging research task. Added complications arise when the geometry is 

representing a manufactured or biological composite. In this study, a representative 

geometry of linear fibrous composites was created at the microscale and is employed to 

reproduce crystalline micro-fibril stacking of Kevlar to form a single fibril joined by a non-

ordered crystal structure. The structure can have ellipsoidal or rectangular micro-fibrils 
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stacked in ellipsoidal or rectangular fibrils, and may have any desired packing ratio within 

the 1-100% range. In order to grow a fibrous structure along a path a Random Walk 

methodology was used. Since the directionality of the fibers is random, but always stepping 

from one side of the path towards the other, the fibers can wind around each other and 

tangle or terminate if needed. Another key concept of this method is the addition of a 

rotation matrix operation for the path of the fibers. This allows the path around the three 

local coordinates to be in a linear or sinusoidal direction. The resultant geometry produced 

can represent the tortuous path nanofibrils undergo. Moreover, rotation about the path axis 

allows for the twisted geometry of ring spun yarn, and metal cable to be reproduced. 

Inclusion of spherical objects to the path of the fibers has been accommodated to reproduce 

fiber growth around, or end at, an obstruction in their path. This approach allows 

representing impurities at the fibril, fiber or yarn level of composite fabric manufacturing.  

 

3.2 Keywords  

composites, fibers, micro fibrils, multiscale simulations, nanostructure 

 

 3.3 Introduction 

Representative Volume Elements (RVE) are often used by researchers for capturing micro-

scale phenomena such as bulk response of randomly oriented chopped fiber composites 

[17], micromechanical damage of brittle solids [18], volume compaction of periodic porous 

composites [19], bulk material response predictions of carbon nanotube-based composites 

[20], and fiber reinforced fracture of polymer-matrix composites [21, 22, 23, 24] The 
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ability to construct an RVE becomes more complicated as the intricacy of the composite 

architecture increases. One such example is a Kevlar fiber (dia. ~1mm), made up from 

fibrils (dia. ~10um). The fibril is in turn made up of micro-fibrils (dia. ~10nm). Thus, a 

fibril filled with staggered micro-fibrils, as is the case of natural and man-made fibers, is a 

challenging RVE (see Figure 3.1). The micro-fibrils interact through Van der Waal forces 

and undergo damage as they are peeled apart [25]. 

 

 

 

Figure 3.1 RVE of damaged micro-fibril. Cross section of a Kevlar fiber after failure showing 

fibrils and microfibrils of 5-10 nm diameter [23] (left); and microfibril based structure of Kevlar 

showing molecular organization and hierarchy (right). Arrows denote increasing length scales.  

 

 Generating an RVE composed of random chopped fibers is nearly unmanageable 

by manual geometry creation because of the 3-D nature of the splines, high packing 

density, and tortuosity and interweaving. Researchers have created complex algorithms to 

get high packing density of arbitrary shapes [26, 27, 28, 29]. These algorithms use a random 

orientation to pack the particles inside a volume, but often result in particle overlapping 

and can only pack aspect ratios (length/diameter) close to 1 [30].  

MicroFibril 

Fibril 

Fiber 
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Previously generated python scripts for high volume fraction random chopped fiber 

RVE creation was undertaken by Pan et al. [17] These scripts can accomplish volume 

fractions up to 55% for fibers of large aspect ratios close to 10. The amount of intertwining 

that the Pan et al. algorithm can handle although adequate for traditional composites it is 

not optimal, and the volume fraction obtainable is unable to handle volume fractions 

approaching 85 to 99%, which can be found in advanced nanocomposite structures and in 

biological materials. There have been many RVEs that capture fabric and yarn properties 

[31, 32, 33, 34]. The fabric methodologies try to approximate the preloads and plasticity 

of the woven yarns in weft and warp directions. However, the yarn is presumably made of 

parallel fiber strands where the inter-fiber dependency due to tortuosity has been 

overlooked due to the complexity of creating the initial geometry. This research attempts 

to address that complex interwoven geometry. 

 Fiber micro-geometries that are randomly oriented and intertwined need an RVE 

created where a fiber is randomly entangled with its neighbors. The complexity of creating 

such an RVE has kept this type of geometry from being modeled in the past. Recently an 

algorithm that attempts to capture the random intertwining of fibers has been created [35, 

36]. These random walk algorithms pack volumes with spheres then connect the spheres 

with cylindrical geometry. Stochastic attempts are made to get high packing densities (> 

60%). In order to obtain these densities the fibers must repel one another and thus force 

gradients must be applied at every spherical location. One drawback of this methodology 

is that it cannot handle growth of fibers along a direction. 

 On the biomechanics front fibrous structures are found in the brain, muscles, and 

other tissues. Within the last five years, researchers have improved their ability to map 
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axonal pathways in areas such as the spinal cord and the brain with MRI imaging. At the 

same time mechanical properties for local and bulk tissue response are being determined. 

With the improved understanding of geometry and mechanical properties, human tissue 

RVEs are being created to capture the tissue’s non-linear response [37, 38, 39, 40, 41]. 

These RVEs are used to predict changes in bulk white matter response due to local axonal 

damage. The tortuosity of the axons is captured in the simulations by adding parallel 

waviness. A shortcoming of these models is that they ignore the axons being interwoven 

and the effect of axons being grown around soft oligodendrocytes (type of brain cell).  

This paper describes a new method of random walk that has been applied to creating 

natural yarn and fibers by growing them along a direction. The approach taken in this paper 

grows the fibers along one direction mirroring what happens in natural processes. Growing 

along a direction simplifies the algorithm proposed by Altendorf [35]. Bulk movement of 

the yarn is handled by trajectories being passed through a rotation matrix. In what follows, 

the FiberWalk methodology is introduced, which can produce complicated fiber RVE 

geometries in minutes that would be extremely time and labor intensive if produced 

manually. Analyses using the FiberWalk subroutine are able to capture the stress 

localization that is important to the final yield strength and modulus of yarn (see Figure 

3.2). 
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Figure 3.2 RVE geometry (top) created by output of the RandomWalk subroutine. RVE 

comparison (bottom) between stressed and unstressed states. The stressed state indicates stress 

localizations due to intertwining of fibers. 

 

3.4 Mutli-Scale Geometry Generation Using Fiberwalk Method 

The RandomWalk algorithm described in this paper is implemented in the FibrilPack, an 

RVE creation tool, developed by Pelegri’s group at Rutgers Advanced Materials Structures 

Lab’s (AMSL) .The FibrilPack program is written in Fortran 90 as a modular code that 

takes an input deck and feeds geometric values to an RVE algorithm (see Figure 3.3). Once 

the algorithm has determined x,y,z coordinates for each object, the data is then passed to a 

geometry and mesh creation module. The geometry creation module can either produce a 

Cubit and/or Abaqus python script (see Figure 3.4). When these scripts are run in their 

respective programs, the geometry is created and automatically meshed.  
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Figure 3.3 Workflow showing how geometry input is processed through the Fibril Pack RVE 

creation tool. The currently available algorithms are Straight Pack, RandomWalk, Arbitrary 

Random Packing in 3D (ARP-3D) and inputting a text file containing XYZ points. The available 

geometry and mesh scripting options are Abaqus and Cubit. 

 

The RandomWalk algorithm, workflow depicted in figure 3.4, uses multiple planes 

along the axis of the cylinder or box that is being filled by the fibers. Each plane is filled 

with a hexagonal (bee-hive) grid and the spacing is an input into the algorithm. The 

direction each fiber from plane to plane is randomly chosen to create tortuosity in the fiber. 

The hexagonal grid ensures that as the fibers are grown from one end of the volume to the 

other, fiber overlap does not occur.  
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Figure 3.4 Workflow showing how geometry input is processed through the Fibril Pack RVE 

creation tool. The currently available algorithms are Straight Pack, RandomWalk, Arbitrary 

Random Packing in 3D (ARP-3D) and inputting a text file containing XYZ points. The available 

geometry and mesh scripting options are Abaqus and Cubit. 

 

Currently allowable volume cross sections are circle or squares and allowable 

volume cross sections are rectangular or ellipse. The random walk method affords volume 

fraction from 1-100%. Intertwine of the fibers occurs at volume fractions lower than 100% 

due to the random nature of the fiber growth. In such a case that, a fiber gets pinched due 

to it being trapped between the volume boundary and neighboring fibers it is ended and 

restarted on the next plane. The ability to be pinched allows for much higher volume 

fractions to be obtained.  
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3.4.1 HEX Grid Technique 

To create a set of fibrils that can interweave with each other (Figure 3.2) without 

intersecting a hexagonal grid method was chosen. The hexagon shape choice is a tradeoff 

between the obtainable packing density and available randomness directions (Figure 3.5). 

For example, a square would be more closely packed, but would only move in five possible 

motion vectors, and an octagon has more space around the fiber, but would have nine 

possible motion vectors. 

 

Figure 3.5 Diagram illustrating the how hex planes are inserted across the Yarn axis. Arrows 

show fiber growth progression. The inset highlights the plane showing numbering for possible 

locations for the fibrils. 

 

 The FiberWalk subroutine initializes the fibrils on the first plane of the fiber. Each 

fibril has a choice of seven possible projection hex cells on the next plane (see, inset in 
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Figure 3.5). The numbering starts with a purely vertical motion and proceeds clockwise 

until the seventh choice is straightforward. The code uses this numbering to randomly 

select which direction the fiber should move in.  

 A matrix in the FiberWalk subroutine contains all the filled hex cells. Fibrils are 

stopped from moving into filled hex cells. Fibers can also not move into a cell if the path 

crosses another fiber. These two restrictions inhibit fiber overlap. Fibrils that cannot move 

onto the next plane because all the spaces are filled are ended and new fibrils start at 

available open locations.  

3.4.2 Dislocation Resolution 

The term dislocation is referenced in the context of any hard or soft particle that is an 

inclusion to an interwoven fibrous structure. Depending on material systems used in the 

model, dislocations can be added to the RVE. Dislocations in the RVE can be 

oligodendrocytes surrounded by axons in white matter [42] [39], chaff in cotton [43], or 

chemical impurities in Kevlar. Dislocations that are introduced during the creation of a 

yarn or composite can affect the total strength of the manufactured material [43]. The 

method for how a dislocation is resolved in the grid can cause possible overlap issues with 

the final geometry. This is primarily due to splines connecting fiber locations and the size 

of the hex spacing. If a dislocation only partially overlaps a space in the hex grid, there is 

a chance that a fiber will move into that space causing interference. Therefore, a boundary 

layer that is sized as a function of grid spacing and dislocation size is introduced to the 

FiberWalk subroutine to ensure the fibrils do not come into contact with the ellipsoidal 

object, see Figure 3.6. 
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Figure 3.6 Diagram of the dislocation (red) and tolerance boundary layer (blue). The boundary 

layer keeps the fiber from contacting the dislocation. The boundary layer thickness is a function 

of grid resolution, fiber dimensions and dislocation dimension. 

  

In order to guarantee that there is no overlap between the fibril and the dislocation, 

a boundary space the size of the grid must be created. The size of the boundary layer is 

intrinsically related to the resolution of the grid spacing, because as the latter increases the 

error due to contact avoidance decreases. The equations describing the tolerance space are  

𝑇𝑤𝑜𝐴𝑡𝑜𝑙 = 𝑇𝑤𝑜𝐴 + (𝐶𝑒𝑖𝑙𝑖𝑛𝑔 ∗
𝑇𝑤𝑜𝐴

𝐹𝐿𝑒𝑛𝑔𝑡ℎ
𝑠𝑡𝑒𝑝𝑠

− 𝐹𝑙𝑜𝑜𝑟 ∗
𝑇𝑤𝑜𝐴

𝐹𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑡𝑒𝑝𝑠

) ∗
𝐹𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑡𝑒𝑝𝑠
 

𝑇𝑤𝑜𝐵_𝑡𝑜𝑙 = 𝑇𝑤𝑜𝐵 + (𝐶𝑒𝑖𝑙𝑖𝑛𝑔 ∗
𝑇𝑤𝑜𝐵

𝑓𝑖𝑏ℎ
− 𝐹𝑙𝑜𝑜𝑟 ∗

𝑇𝑤𝑜𝐵

𝑓𝑖𝑏ℎ
) ∗ 𝑓𝑖𝑏ℎ 

TwoB_tol 

TwoA_tol 
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𝑇𝑤𝑜𝐴𝑡𝑜𝑙 = 𝑇𝑤𝑜𝐴 + (𝐶𝑒𝑖𝑙𝑖𝑛𝑔 ∗
𝑇𝑤𝑜𝐴

𝐹𝐿𝑒𝑛𝑔𝑡ℎ
𝑠𝑡𝑒𝑝𝑠

− 𝐹𝑙𝑜𝑜𝑟 ∗
𝑇𝑤𝑜𝐴

𝐹𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑡𝑒𝑝𝑠

)

∗
𝐹𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑡𝑒𝑝𝑠
 

(3.1) 

 𝑇𝑤𝑜𝐵_𝑡𝑜𝑙 = 𝑇𝑤𝑜𝐵 + (𝐶𝑒𝑖𝑙𝑖𝑛𝑔 ∗
𝑇𝑤𝑜𝐵

𝑓𝑖𝑏ℎ
− 𝐹𝑙𝑜𝑜𝑟 ∗

𝑇𝑤𝑜𝐵

𝑓𝑖𝑏ℎ
) ∗ 𝑓𝑖𝑏ℎ (3.2) 

Where TwoA_tol and TwoB_tol are the major and minor access of the boundary layer 

surrounding the dislocation. TwoA and TwoB is the major and minor access of the elliptical 

prism dislocations. Flength is the total yarn length (Figure 3.2). Steps is the number of 

points resolving the yarn length and fibh is the diameter of the circular fiber (Figure 3.6). 

The equations show that as the grid is resolved (fibh and Flength/steps decrease), the 

boundary layer becomes thinner.  

 

3.4.3 Yarn Rotation 

To model a fiber with a sinusoidal shape or twisted geometry a matrix rotation option has 

been added to FiberWalk subroutine (see Figure 3.7).  
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Figure 3.7 Schematic of the hex plane rotation procedures to produce a sinusoidal or axial 

rotational twist of the yarn. The points on each hex plane are moved to the origin, rotated and 

then displaced back to their axial position. 

 

The final interwoven geometry can be rotated either through a sinusoidal pattern or 

twisted around its fiber axis (Figure 3.8). Upon completion of the FiberWalk subroutine an 

analysis predicting yarn strength was conducted as a proof of concept.  
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Figure 3.8 Far (top) and Close (bottom) view of example RVE created by using the rotation 

matrix. This RVE is depicting a sinusoidal yarn made up of interwoven fibers. 

 

Man-made microstructures are often densely packed and uniform [23]. For this 

reason a ring spun natural fiber yarn was selected as the proof RVE. The natural fiber 

provides complexity that is needed to prove out the geometry creation methodology. 

3.4.4 Yarn Analysis 

A yarn with tortuosity and twist would add geometric complexity and be beneficial 

to proving the FiberWalk subroutine. The purpose of this analysis is to reproduce the 

fracture strength of a ring spun cotton yarn of 118 fibers while knowing only the 

mechanical properties of the fiber and the micro scale geometric properties of the yarn, 

namely, twist, fiber diameter, yarn diameter and number of fibers. The yarn gauge length 

for this analysis was 2 mm (Figure 3.9) because from the micrographs it was determined 

that this length allows the yarn to be composed of full length fibrils, that is, there are no 

fibrils ending within the yarn enabling us to observe stress-strain distribution along the 

whole path length of a fibril.  

 

Figure 3.9 RVE created for this analysis. (Left) 3D view of yarn length with intricate waviness 

and individual fibers and twist of yarn explicitly depicted; (right) 2D view of yarn cross section at 

designated window in the side view. 
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  The micrograph of ring spun cotton yarn provides the fiber diameter (13um), yarn 

diameter (226um), and twist angle (710), as seen in Figure 3.10. Note that the fiber diameter 

and yarn diameter follow a distribution and the average value is considered in this study as 

a proof of concept. In subsequent studies the distribution function will be incorporated in 

the analysis. To the best knowledge of the authors, there are no published SI values for 

single cotton fiber.  

 

Figure 3.10 Micrograph of 24 tex cotton yarn [44], with fiber diameter of 13 um, fiber length of 

28 mm, and yarn diameter of 226 m. The angle of twist of the yarn is measured at =710. The 

waviness of the individual fibers is also apparent and measureable. 
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Therefore, the SI mechanical properties of the fiber must be translated from a textile 

specific unit set. Yarn manufactures use a different set of units to measure specific strength. 

The fracture strength is called “tenacity”, which is measured in tex (g/1000m). Tex is also 

used in order to describe yarn’s weight per unit length. The number of fibers in a given 

yarn is derived from a fiber's tex. To illustrate, if a yarn is made from cotton, is 226 um in 

diameter, and has a 24 tex count, then 118 fibers exist in the yarn's cross section which is 

considered approximately 40% packed. For cotton the dry tenacity is 1.9-3.1 cN/dtex and 

dry breaking extension (%) is 10 Jul for a fiber of 25-45 mm length and 1.5-1.54 g/cm3 

density [45]. These values translate to density of 1.59E-9 tonne/mm3, fracture strength of 

377.5 MPa, and elastic modulus of 4,718 MPa. The cotton material properties were used 

to create a linear elastic fracture constitutive model for the analysis. 

 

3.4.5 Fiber Contact  

Contact between all the fibers in the analysis is too complex to manually assign contact 

pairs. For this reason a general contact algorithm was employed. The Dash general contact 

algorithm was chosen because it is a face to face contact as opposed to a node to face 

method. This interaction has a friction of 0.6. A friction study was conducted to determine 

the best value. The friction coefficient was set to 0.1, 0.6, and 0.9. The change in the 

strength response was less than 5% (see Figure 3.11).  



29 

 

 

Figure 3.11 Stress strain response of cotton yarn (24 tex) at 0.1, 0.6, and 0.9 friction coefficients. 

The failure strength changes by 5%. The failure slope tends to decreases as the friction increases. 

 

Friction is captured by the FEA model taking surface elements in contact and 

calculating the normal vector and force from the nodal forces of the surface element. 

Seemingly the tortuosity of the fibrous structure is more significant to the resultant yarn 

force than fiber on fiber friction. Since the fibers are intertwined the energy absorbed by 

fibers sliding is small, so there is a small dependency on the friction coefficient. The 

tortuosity also reduces the effective gauge length of the fiber being pulled shown by stress 

localizations that are higher than the total yarn stress. Each fiber with a localization absorbs 

a higher amount of energy than a fiber would with less entanglement. In the general contact 

algorithm all the fiber volumes are skinned (a surface set is created that includes all the 

outside surfaces of each fiber) for the face to face enforcement methodology. As the yarn 

is stretched during the analysis, the fibers are forced together due to the twist and random 



30 

 

inter-weaving. The general contact keeps the fibers from overlapping and imparts the 

normal stress onto the contact faces (Figure 3.12). 

 

 

Figure 3.12 One end view of yarn (left) and two view cuts (right) showing how contact keeps the 

fibers from overlapping as they are pulled together due to tensile loading. 

 

3.4.6 Boundary Conditions  

To predict the total yarn strength the RVE was analyzed in tension. The two ends of the 

yarn were held fixed in the transverse direction. When the transverse directions were not 

fixed the yarn unwound during the tensile pull. This assumption is consistent with the 

clamps on a tensile machine trapping the ends and only allowing deflection in the axial 

direction. In the analysis the ends were pulled along the axial vector under a piecewise 

linear displacement boundary condition with a magnitude of 0.18mm, Figure 3.13.  
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Figure 3.13 Chart (left) showing displacement vs. time curve applied to both ends of the yarn. 

Arrows (right) depict direction vector of displacement. 

 

 

The non-constant displacement rate boundary condition was employed to create a 

quasi-static pull condition. The goal was to pull slowly to gradually overcome fiber inertia 

effects then pull quickly to failure in order to optimize computational time. The solver 

calculates the force needed to create the prescribed deflection based on material properties, 

geometry and architecture of the yarn and the fibers. The force applied by the solver was 

translated to stress and is illustrated in Figure 3.14.  
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Figure 3.14 Von Mises plots of yarn at varying times of the analysis. As the analysis progresses 

(top to bottom) stress points grow until fiber breakage and unwinding. 

 

 

3.5 Results and Discussion 

As the analysis progressed the yarn was stretched along the longitudinal axis. Initially, the 

response of the yarn was non-linear with a low stiffness. When put into tension the fibers 

pull tight against one another due to the twist. When the fibers are transversely compressed 

so they are all touching (see Figure 3.12), the stiffness response of the yarn becomes linear 

and stiffer than the original response. The status of the Von Mises stress of a single yarn at 

20, 40, 60, 80, and 100 ms is illustrated in Figure 3.14. As seen in the plots high stress 

localizations are ensued during stretching attributed to the tortuosity of the interwoven 

fibers. Initially and up to 40 ms stress localization is minimal since spacing and tortuosity 

between the fibers counteracts the development of high stresses. Upon the elimination of 

tortuosity the yarn starts to contract in the transverse direction pulling the fiber together 

thus increasing the local stresses. Figure 3.12 depicts the changes of the yarn cross section 
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between 0 ms and 82 ms; the temporal effect is illustrated in the Von Mises stress diagram 

of Figure 3.14. The stress localizations increase in magnitude until failure occurs. At 1% 

strain there is a small peak on the analysis curve shown in Figure 3.14. Subsequent analyses 

with a different fiber material have shown that this peak is due to the Poisson’s ratio being 

close to incompressible or 0.45. In those analyses when the Poisons ratio was decreased 

the peak disappeared. A brittle fracture was set for each fiber. The strain at fracture was 

taken from the literature [45]. The localizations are dependent on the RVE geometry. The 

fibers that are interwoven pull “tight” first and have much higher stress levels. These high 

stresses are not seen in fibers that mostly run parallel to their neighbors. Fibers reach their 

respective failure points at various sequential times during the analysis. As the fibers fail 

one by one the stiffness of the yarn softens until they have all failed. After the fibers have 

all fractured the yarn unwinds, Figure 3.14. 

 

Figure 3.15 Chart comparing Analysis of cotton 24 tex to publish results, namely, cotton – 24 tex 

[44], and cotton warp – 28 tex and cotton weft – 19 tex [45]. The Failure Stress predicted by the 

analysis is within 15%, and the nonlinear elastic stiffness is within 5% of the published values. 
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 Figure 3.15 illustrates the stress versus strain behavior of a cotton yarn. In this graph 

the analytical results as produced from this study are presented along with results found in 

the literature. The comparative data are of cotton 24 tex [44] (the same as in the analysis) 

as well as cotton weft (one direction of the weave) 19 tex [45] and cotton warp (the other 

direction of a weave) 28 tex [45] are charted. Due to lack of more accurate experimental 

data, only trends are examined in this plot. The fact that the yarn modulus appears softer 

than the experimental data can be attributed to the volume fraction of the fibers in the yarn 

(40%.) After the fibers are pulled “tight” against each other due to the yarn twist, the model 

predicts a modulus that 1,851 MPa while the experimental data measured 1,846 MPa [45]. 

Moreover, the failure stress difference between the analysis and the experimental data by 

[44] is due to the tested yarn being pulled from a fabric weave. During this process the 

fiber is usually pre-tightened. Since it takes some distance for the yarn tightening to occur 

and the analysis yarn is created pristine, the analysis results are shifted to the right. The 

strength of the yarn on the modulus is stronger than the published tested yarn strengths. 

The predicted yarn fracture strength was within 15% of the experimental results. The 

modulus predicted by the analysis was within 0.2% of the experiment results (Figure 3.14). 

The yarn values from this analysis were predicted using only micro-mechanical properties 

and micro-structural geometry.  

 

3.6 Conclusions 

The model correlates to experimental results based on only micro scale geometry and fiber 

properties. The predicted linear modulus of the stress response was within 0.2% of the 

tested fiber. The predicted yarn strength is high by about 15%; this over prediction is most 
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likely due to test standard deviation in the test data and the fiber strength properties being 

taken from a separate research group as the yarn strength. Knowing only a small amount 

of micro-scale information of fiber material properties, yarn twist, and yarn tex value it is 

possible to use the Rutgers Fibril-Packer RVE algorithm with the RandomWalk module to 

create the necessary geometry to correctly model ring spun yarn strengths. Once this model 

is validated for pure yarns (100% cotton or 100% bamboo), it can be used to model the 

micro-scale response of yarn mixtures, such as 50% cotton and 50% bamboo, or any 

combination in between, composite fiber mixtures for advanced ballistic and armament 

structures, and biological systems 
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Chapter 4 : Multiscale Modeling of Randomly Interwove Fibers for 

Prediction of KM2 Kevlar Yarn Strength and Damage 
 

4.1 Abstract 
 

Modeling Kevlar yarn response as a function of twist requires creating a model at the 

filament level that incorporates capturing the mechanical interaction of numerous fibers. 

The inherent complexity of building multi-scale interwoven fibrous structure manually is 

prohibitive for such endeavor therefore computer-aided simulations are preferred. In this 

study, a Random Walk methodology was employed to generate a fibrous structure along 

the axis of a yarn. Since the directionality of the fibers is randomly oriented along the axis, 

the fibers can wind around each other and tangle or terminate upon demand. The resultant 

geometry can represent the tortuous path that yarn filaments experience. Yarn twist can be 

introduced through imposing a rotation matrix to the geometry or conducting an initial 

analysis that applies the pre-load. The analysis method employed in this paper captures the 

correct pre-stress of the twisted yarns at zero, three, and ten twists per inch. The analysis 

then loaded the yarn until filament fracture occurred. The predicted ultimate load was 

within 5% for all three twists per inch analyzed. The zero twists per inch linear response 

matched test results to within 5%. 

 

4.2 Keywords  

composites; fibers; micro fibrils; KM2 Kevlar; multiscale simulations: nanostructure 
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4.3 Introduction 

Being able to predict the dependency of yarn tenacity on twist is critical for engineers who 

optimize tire chord or wear resistant fabric designs. Prediction of strength and design 

performance requires simulation tools capable of capturing the multi-scale physical 

response of the yarn to induced twist [47]. It has been observed that the yarn strength 

increases to around 3 twists per inch (TPI) then decreases as the TPI continues to increase 

[48, 8]. The research described in this paper attempts to explain the yarn strength as a 

function of twist. In order to capture enough physics to have a prognostic model, a 

Representative Volume Element (RVE) model was created from the filament level with 

the yarn being modeled as a fibrous structure of filaments. 

 Representative volume elements are most commonly used to model the bulk 

response of randomly oriented chopped fiber composites [17], bulk material response 

predictions of carbon nanotube-based composites [20], and fiber reinforced fracture of 

polymer-matrix composites [21, 22, 49, 24]. The ability to construct an RVE becomes more 

complicated as the intricacy of the composite architecture increases. For instance, Kevlar 

yarn (dia. ~0.7mm) is manufactured by an assembly of fibers (dia ~0.01mm) and each fiber 

is composed of fibrils (dia. ~10um), which in turn are constructed of micro-fibrils (dia. 

~10nm) [50, 51, 52].  

Several RVEs that capture fabric and yarn properties such as tenacity and load at 

failure have been devised [31, 32, 33, 34, 53, 54, 6]. Fabric methodologies often focus on 

the fabric creation and assume that the yarn is made from parallel strands. They focus 



38 

 

mainly on approximating the preloads and plasticity of the woven yarns in the two 

perpendicular in-plane weave directions defined as weft and warp. The yarn in the above 

papers is made of parallel fiber strands where the inter-fiber dependency caused by 

tortuosity has been overlooked. It is theorized that this is due to the complexity of creating 

the initial geometry. The research described in this paper advances from the fabric weave 

level to that of a yarn to address the complex interwoven geometry. 

 Fiber micro-geometries that are randomly oriented and intertwined necessitate the 

structure of an RVE in which a fiber is randomly entangled with its neighbors. The 

complexity of creating such RVEs has kept this type of geometry from being modeled in 

the past. Recently an algorithm that captures the random intertwining of fibers has been 

developed [35, 36]. The referenced random walk algorithms pack volumes with spheres, 

which are consequently connected with cylindrical geometry. Stochastic trials are made to 

get high packing densities (> 60%) by allowing the fibers to determine a starting location 

and path by imposing force gradients at every spherical location.  

 Here, a new method of random walk is developed to create a natural yarn and its 

constituent fibers by projecting them along a direction. The approach projects the fibers 

along one direction mirroring what happens in natural processes such as tissue generation. 

Projecting fibrous microstructures along a direction simplifies the algorithm proposed by 

Altendorf [35]. By giving up randomness in one direction the model is able to create 

cylindrical fibrous structures. These structures are applicable for building yarns, cables, 

and bundled geometries. Bulk movement of the yarn is handled by trajectories being passed 

through a rotation matrix. In what follows, the FiberWalk methodology is introduced, 
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which can produce complicated fiber RVE geometries in minutes that would be 

prohibitively time and labor intensive if produced manually.  

 

4.4 Randomly interwoven Fibrous Yarn geometry creation 

The RandomWalk algorithm used in this paper is implemented in the FibrilPack, an RVE 

creation tool. This tool seeds building block start points at varying percentages in an 

ellipsoidal or rectangular shape. Those seed points are projected along an axis either by a 

3D structured methodology (brick wall) or a random walk method (interwoven vines). The 

elliptic cylinder or rectangular geometry is then passed through a rotation matrix to allow 

twist along axis or sinusoidal behavior. Tire chord creation can be easily added to the 

rotation matrix step given an axis of rotation measured from the yarn axis. 

 The FibrilPack program is written in Fortran 90 as a modular code that takes an 

input deck and feeds geometric values to an RVE algorithm (see Figure 4.1).  
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Figure 4.1 Workflow depicting geometry input processing through the Fibril Pack RVE creation 

tool. The currently available algorithms are Straight Pack, RandomWalk, Arbitrary Random 

Packing in 3D (ARP-3D), and they input a text file containing xyz points. The available geometry 

and mesh scripting options are Abaqus and Cubit. 

 

Once the algorithm has determined x,y,z coordinates for each object, the data is 

then passed to a geometry and mesh creation module. The geometry creation module can 

either produce a Cubit or an Abaqus Python script (see Figure 4.2) [55] . 
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Figure 4.2 Workflow of the pseudo code of the RandomWalk algorithm. The random prediction 

and overclosure checking is done inside a nested do loop for each fiber on each plane of the yarn. 

When the trajectories have been determined and rotated they are passed back to the FibrilPack 

program for geometry scripting. 

 

When these scripts are run in their respective programs, the geometry is created and 

automatically meshed. This methodology quickly creates a meshed geometry of complex 

woven filaments and allows for expeditious model creation, which for the geometry studied 

in this research was two hours, enabling the efficient attainment of the correct geometric 

parameters, as opposed to being burdened with redundant geometry creation tasks. An in 

depth description of the algorithm is presented in Ref. [16]. Analyses using the FiberWalk 

subroutine are able to capture the stress localization that is important to the final yield 

strength and modulus of yarn as seen in Figure 4.3.  
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Figure 4.3 RVE geometry (top) created by output of the RandomWalk subroutine. RVE 

comparison (bottom) between stressed and unstressed states. The stressed state indicates stress 

localizations (dark colored regions) due to intertwining of fibers. 

 

 

 

4.4.1 Kevlar KM2 Yarn Analysis 

The hierarchy of Kevlar Yarn is a complex structure going from molecular bonds through 

fibrils and filaments and building up to a yarn. Thus constructing a model of even a 

simple yarn becomes a challenging RVE to create (see Figure 4.4).  
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Figure 4.4 Hypothesized Kevlar hierarchy developing from molecular bands to a filament with a 

micro-fibril based structure, while illustrating filament assembly to a straight yarn. Arrows 

denote increasing length scales. [49] 

 

The purpose of this analysis is to reproduce the fracture strength of 600 denier 

Kevlar KM2 yarn of 588 fibers. For this analysis a filament was used as the lowest level 

building block. The representative yarn model was created knowing only the mechanical 

properties of the filament and the micro scale geometric properties of the yarn, namely, 

fiber diameter, yarn diameter, and number of fibers. The filament number was calculated 

dividing the cross sectional density of the yarn by the cross sectional density of the 

filament. The yarn gauge length for this analysis was 2.5 mm (Figure 4.5) because from 

the micrographs it was determined that this length allows the yarn to be composed of full 

length fibers, that is, there are no fibers ending within the yarn.  
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Figure 4.5 A representative volume element (RVE) created for this analysis. 3D view of yarn 

length with intricate waviness and individual fibers and twist of yarn explicitly depicted.  

 

This simulation attribute was experimentally verified and enables the observation 

of the stress-strain distribution along the whole path length of a fiber. Figure 4.6 graphically 

illustrates filament interweaving and it an area where three filaments are switch positions 

creating an area of possible high stress concentration.  

 

Figure 4.6 Schematic depiction of geometric tortuosity and filament interweaving with their 

neighboring filaments. Circles indicate filament cross sections normal to their longitudinal axis. 

The various colors were chosen to highlight individual filament strands. 
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 The micrograph of Kevlar-KM2 yarn provides the filament diameter (10um) and 

yarn diameter (500um), as depicted in Figure 4.7. For Kevlar KM2 the ultimate strength is 

3880MPa, the fracture strain is 4.6 (%) and 1.44 X 10-9 tonne/mm3 density [5].  

 

  

Figure 4.7(Left) Micrograph of 600 Denier KM2 Kevlar yarn at x100 magnification; and (Right) 

SEM image measuring Kevlar KM2 filament. 

 

According to tensile tests previously conducted [5], the Kevlar filament undergoes 

brittle failure. Here, the Kevlar KM2 material properties were used to create a linear elastic 

fracture constitutive model to describe damage. In the future, a fibril/micro fibril level 

analysis can be used to create a more complex filament breakage constitutive relationship. 

The analysis was conducted using an explicit FEA solver using lofted beam hex elements 

[9]. Lofted beams were chosen due to their computational efficiency over standard 

hexahedral elements. Efficiencies were gained due to a decreased number of elements and 

an increased stable explicit time step. The beams lofted nature allows contact to be enforced 

with a given radial standoff keeping the geometry accurate. The solver was run over 

0.00013 sec with a courant time increment of 1.5e-10s. During damage due to filament 
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breakage stress release wave motion is captured by the explicit solver and computed at 

each time step. Damage propagation due to acoustic wave motion is captured. A benefit of 

using an explicit solver instead of an implicit solution is the ability to assess damage 

progression of the individual fibers and its effect on the non-linear response of the yarn. A 

challenge of using this approach is that the boundary condition and solve time must be 

tailored to obtain a quasi-static twist and tensile pull before the failure point otherwise 

inertia of the fibers can influence the predicted elastic modulus.  

 

4.4.2 Fiber Contact  

The high complexity of fiber contacts in the model necessitates the employment of a 

general contact algorithm, as the manual handling of fiber contact pairs is inefficient. The 

Dash general contact algorithm was chosen because it is a face-to-face contact as opposed 

to a node to face method. The Dash contact algorithm encircles the beam axis with a lofted 

surface that is used only for the contact algorithm. A loft radius of 5um was assigned to 

each beam. This interaction has a coefficient of friction of 0.3. Friction is captured by the 

FEA model taking surface elements in contact and calculating the normal vector and force 

from the nodal forces of the surface element. The authors hypothesize that at less than 1 

TPI the tortuosity of the fibrous structure is more significant to the resultant yarn force than 

fiber on fiber friction. The dependency on the friction coefficient is illustrated in Figure 

4.8.  
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Figure 4.8 Axial load versus applied strain for a 1TPI at two different frictional values, namely 

0.3 and 0.9. The model exhibits minimal dependency to friction for this TPI 

 

 

Since the fibers are intertwined they tend to lock in place reducing the energy 

absorbed by the sliding fibers. This creates a small dependency on the friction coefficient. 

The tortuosity also reduces the effective gauge length of the fiber being pulled shown by 

stress localizations that are higher than the total yarn stress. Each fiber with a geometric 

localization absorbs a higher amount of energy than a fiber would with less entanglement. 

In the general contact algorithm all the fiber volumes are skinned (a surface set is created 

that includes all the outside surfaces of each fiber) for the face-to-face enforcement 

methodology. As the yarn is stretched during the analysis, the fibers are forced together 

due to the twist and random interweaving. The general contact keeps the fibers from 

overlapping and imparts the normal stress onto the contact faces. 
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4.4.3 Boundary Conditions  

To predict the total yarn strength the RVE was analyzed in tension. The two ends of the 

yarn were held fixed in the transverse direction. This assumption is consistent with the 

clamps on a tensile machine trapping the ends and only allowing deflection in the axial 

direction. In the analysis the ends were pulled along the axial vector under a piecewise 

linear displacement boundary condition with a magnitude of 0.5mm. An analytical 

displacement rate boundary condition was employed to simulate a quasi-static pull. The 

goal was to displace slowly in order to gradually overcome fiber inertia effects then pull 

quickly to failure in order to optimize computational time. The solver calculates the force 

needed to create the prescribed deflection based on material properties, geometry and 

architecture of the yarn and the fibers.  

 Subsequent analyses were run to first preload the yarn with twist. The twist levels 

analyzed were 0, 3, and 10TPI. These twist per inch (TPI) values correlate to 0.0, 1.86, and 

6.18 rad respectively. The calculation for these values is in the form of 

 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 =  (𝑇𝑃𝐼) ∗ 2 ∗ 𝜋 ∗ 𝐺𝑎𝑢𝑔𝑒  (4.1) 

 For the pre-twist simulations, the yarn was twisted using a smooth step piecewise linear 

curve that takes the form,  

 
𝛽 =

(𝑡 − 𝑡𝑖)

(𝑡𝑖+1 − 𝑡𝑖)
 𝑓𝑜𝑟 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 

(4.2a) 

 𝑎 =  𝐴𝑖 + (𝐴𝑖+1 − 𝐴𝑖) ∗ 𝛽3 ∗ (10 − 15𝛽 + 6𝛽2) (4.2b) 

Equation 4.2b [56] defines the amplitude between points (ti, Ai) and (ti+1, Ai+1) for any time 

t. This equation has a small slope close to ti and ti+1 with a larger slope in the middle 
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resembling an S curve. An example of the piece wise linear curve is shown in Figure 4.9. 

In the model, when the yard is twisted an axial load pre-load occurs if the boundaries are 

held fixed in the axial direction.  

 

Figure 4.9 Example of a smooth step curve as a function of beta. (). Curve created from 

equations (4.2a) and (4.2b).  

 

An initial compressive offset was used to reduce the axial preload to a minimal 

value. The offset was deduced by iterating until the twist pre-load was less than 5N. An 

initial educated guess using the 0TPI case was used to minimize the iterations needed. 
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4.5 Results and Discussion 

The yarn was subjected to an axial preload during the test and the analysis [48]. Without 

this preload it is difficult to get a uniform twist along the axis. The yarn’s initial gain in 

strength as it is twisted to 3TPI and subsequent loss of strength as it progresses to 10TPI is 

attributed to the differential of strain from the outer yarns (higher strain values) to the inner 

yarns (lower strain values) due to the angular travel distance increasing with radius.  

As the analysis progressed the yarn was stretched along the longitudinal axis. 

Initially, the response of the yarn was non-linear with a low stiffness. When subjected into 

tension the fibers pull tight against one another due to the twist. This creates local high 

stress nodes in the filaments that can absorb energy forcing the yarn structure to have a 

higher ultimate strength, see the stressed state in Figure 4.3.  A time line of the yarn being 

twisted then failed is depicted for the 10TPI case in Figure 4.10.  

Frame comparison between 0, 3, and 10TPI is illustrated in Figure 4.11. As seen, 

as the yarn is twisted it becomes more densely compacted along the transverse direction. 

During the pulling action, the outer filaments are stressed more than the internal ones.  
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Figure 4.10 Frames depicting timeline of twist and failure for 10TPI case of Kevlar KM2 yarn. 

 

This is due to a longer travel distance, owed to the arc length traveled during twist, 

to achieve the same axial strain that is associated with the twist amount. In addition, 

filaments that are interwoven create highly strained nodes. For these two reasons the failure 

point is most likely to occur on the outer yarn diameter at highly tortuous node. The figure 

shows that failure initiates on the outer diameter and grows inward. 
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Figure 4.11 Figure comparing axial load FEA of 600 denier Kevlar KM2 at various twist levels 

during initial twist (top) and eventual failure (mid, bottom). The 10TPI case fails first due to 

enhanced stress located in the outer diameter filaments due to twist. 

 

 

 

When the fiber is twisted beyond a certain point these high stress localities become 

strained reducing yarn stiffness and ultimate strength. Similar trends have been reported 

by X. L. Gao during axial pull to failure tests for Kevlar KM2. [48] The computational 

structural analysis results show the same trends seen during the tests. The predicted 

ultimate strengths at 0, 3, and 10 TPI match within 5% (Figure 4.12).  
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Figure 4.12 Chart comparing axial load analysis of 600 Denier Kevlar to publish results at 

various twist levels. The failure stress predicted by the analysis is within 6% of the published 

values. 

 

The predicted yarn stiffness matched within 5% at 0. The 3 and 10TPI 

computational model stiffness was within 17% from that observed in the test. Since the 

initial portion of the load versus strain chart is highly non-linear, the compared stiffness 

values were taken from the part of the curve located between 0.03 strain and the failure 

strain for each curve. A notable disparity between the tests and the computational model 

was observed to be in the non-linear portion of the yarn response. It is hypothesized that 

including the filament breakage variance as a randomly applied failure point for each part 

in the analysis would improve the computational models fit to the test results; nevertheless, 

this point is of future research interest and outside the scope of this paper.  
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4.6 Conclusions 

The generated 600 denier Kevlar KM 2 multi-scale computational model was twisted to 0, 

3, and 10TPI and consecutively was pulled under tensile load until failure. The model 

correlates to macro scale, namely 600-denier yarn, experimental results based on only 

micro scale (filaments) geometry and Kevlar properties. Computationally there was little 

dependency of the yarn response to friction observed. When the model was pulled to failure 

the predicted ultimate load was within 5% for all three twists per inch analyzed. The 

predicted linear response fit within 17% for the 3 and 10TPI cases. The 0TPI linear 

response matched to within 5%. To enhance the computational model the non-linear 

portion of the load response curve has to be improved upon. It is proposed that including 

the statistical deviation of the filament stiffness and strength values would improve the 

predictions the computation model can provide. The modeling used for geometry creation 

and failure can predict yarn strength as a function of twist and filament geometry.  

Since damage initiates on the outer yarn filaments, different approaches to increase 

the yarn strength by twisting past 3TPI may be considered. One course of action to improve 

functionality would be to create a variable twist as a function of yarn radius. In this manner, 

the inside yarn will be spun higher than the outside reducing the outside stress. 

Alternatively, the outside of the yarn may be treated with a flexible urethane that slightly 

increases the failure strain. The FEA models built can aid in providing valuable insight in 

the selection of these methods for increasing overall yarn strength before complex tests are 

commenced. 
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Chapter 5 : Tenacity Dependence of Twisted Kevlar Yarn 

5.1 Abstract   

Kevlar KM2 600 denier yarn is often twisted to improve yarn load at failure. It is noted in 

ASTM-D-7269 that twisting KM2 past five twists per inch can cause a lower load at failure. 

Understanding the physics that govern the load decrease at higher twist ratios can lead to 

improved yarn designs, possibly stronger than the peak values currently seen at three turns 

per inch. Increasing yarn strength would enable enhanced usage of Kevlar yarn, improving 

chord and fabric structures. This paper describes the testing and finite element analysis 

methods used to probe yarn tenacity as a function of twist per inch. The performed tests 

indicate that strength decreases as the yarn is twisted past three twists per inch and are in 

agreement with previously conducted tests. The finite element model results were 

compared to sets of test data performed in this study and ones reported in the literature. 

Employing the validated simulation data, yarn damage and failure pictorials were 

produced. The frames showing the yarn at varying displacements illustrate the yarn failure 

propagation at varying twist-per-turn values. It is suggested that yarn softening as a 

function of twist per turn is attributed to higher strains of the outer filaments, at large 

amounts of twist, than the core filaments. Previous work has shown a dependency of local 

filament strength to its yarn radius. [1] The focus of this paper is to derive a comprehensive 

filament model, using finite element analysis that incorporates the yarn strain gradient and 

is experimentally verified. 
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5.2 Keywords  

composites, fiber, fracture, Kevlar, KM2, micro fibrils, multiscale simulations, 

nanostructure, para-aramid, aramid, twist, TPI 

5.3 Introduction 

Twist is the most common practice for improving para-aramid yarn performance amidst 

methods that include strategic material selection, enhanced composite yarn design, and 

enriched molecular structure of fibers [57, 58, 59, 60, 61]. The ability to predict yarn 

tenacity dependence on twist is critical for design engineers since optimization of yarn 

strength and weight for specific systems, such as tire chord or fabric design, requires 

predictive simulation tools [62]. It has been observed that yarn strength increases up to 3 

twists per inch, and decreases with further increase of the TPI value [63, 8, 64, 65, 66]. The 

research in this paper construes and models the behavior of yarn strength as a function of 

applied twist. Experiments are performed to reproduce previously published trends of yarn 

strengthening and subsequent weakening with increasing twist. To capture important 

physics of yarn damage at the yarn filament level, a representative volume element (RVE) 

model for the yarn is created, and further employed, to predict the structure’s damage 

behavior at 0, 3, and 10TPI. 

 The experiments were conducted at the Advanced Materials and Structures 

Laboratories (AMSL) at Rutgers University following the ASTM-D-7269 standard [8]. In 

order to perform testing to that standard, a new grip for holding the yarn was machined and 

installed on the 1kN Instron. Testing was conducted at the machine setting suggested by 

the ASTM. The yarn was preconditioned for 3 hours at 45 deg C, 15% relative humidity 
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(RH) and conditioned for 14 hours at 20 deg C, 64%RH per standardized procedures. 

Previous work has shown that near room temperature the statistical tenacity range is less 

than 5% [67]. Deviations from the obtained results and previously reported data from the 

Gao [63, 64] are attributed to discrepancies between manual and automatic yarn twisting, 

and in cross head speed calibration between testing equipment. The maximum load 

dependency, first strengthening then weakening, to TPI observed by AMSL is similar to 

the trends observed in Refs [63, 1, 68, 65, 66]. 

 To probe the acquired results and applicable physics of yarn breakage an RVE that 

could replicate the witnessed trends is developed. Fabric and yarn properties such as 

tenacity and load at failure are captured in custom made RVEs [69, 32, 70, 34, 71, 54, 6, 

32, 70, 34] The cited research spans from the micro (atomistic) to macro (weave) length 

scales. However, studies at the yarn and weave scales ignore yarn tortuosity and twist 

although an important part of creating predictive RVEs at larger length scales compels 

inclusion of Kevlar filament-to-filament interaction attributed to tortuosity. Randomly 

oriented and intertwined filament micro-geometries necessitate the structure of an RVE in 

which a fiber is randomly entangled with its neighbors. A method of random axial filament 

projection is employed to create yarn geometry of interwoven filaments. This type of 

geometry describes the initial yarn state more accurately than a parallel filament 

assumption [16]. The approach taken in this paper projects the fibers along one direction 

mirroring what happens in natural processes such as tissue generation. Projecting fibrous 

microstructures along a direction simplifies the algorithm proposed by Altendorf [35], in 

which rectangular shape is filled with spheres and then multiple splines are fit projected 

from one sphere center to the next until the rectangle is filled. Recchia et al. [16, 46] 
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developed a method at AMSL, which gives up randomness in one direction so that the 

model is able to create cylindrical fibrous structures. These structures are applicable for 

building yarns, cables, and bundled geometries. The RVE is analyzed using the Sandia 

National Labs structural mechanics solver Sierra [9]. This code is chosen because it can 

handle lofted beam elements in its general contact algorithm. Sierra’s parallel computing 

time also linearly scales up to 1 million processors.  

 In this paper, the above-mentioned procedures are followed to reproduce the 

experiments and enhance the investigation with a parametric study. Visualizations from 

the data and the RVE simulations agree with previous research that twist can be the damage 

mechanism resulting at lower maximum loads at failure for the 10TPI case [72]. A model 

that can estimate the damage seen in the FEA is derived that calculates a maximum TPI of 

a yarn when its filaments are assigned threshold values of strain that is based on their strain 

at failure [5]. 

 The model derived through this research holds true for yarn cross sectional areas 

that are circular. When a yarn is chorded or put into a weave there is an additional strain 

component added to the pre-load of the structure [69]. This research describes the first step 

to building a constitutive model based on filament properties and is valid for structures 

consisting of a single yarn. 

 

5.4 Tensile Tests and Grip Design 

In order to probe Kevlar KM2 yarn tenacity dependence on twist per inch (TPI), tensile 

tests were conducted at 0TPI, 3TPI, and 10TPI. New grips dedicated to fiber loading into 



60 

 

an Instron 4411 (1 kN capacity) were machined and assembled according to ASTM-D-

7269. [8] The yarn fixture is illustrated in Figure 5.1.  

 

Figure 5.1 The AMSL grip design attached to the Intron tensile machine. The yarn is gripped on 

top then passes through 1800 rotation in the hemispherical grooves on the top cylinder. It passes 

through another 180 deg. rotation on the bottom cylinder and is gripped on the bottom. The 

minimum gauge length that can be tested by this design is 10 inches.  

 

The fixture mounts to an Instron material testing system through upper and lower 

shear pins. The cylinders contain a hemispherical groove to align the yarn. The clamps 

have a female V groove and male V notch. The yarn length was 23 inches, was routed 

between the two grooved cylinders, and clamped by the grips. Both sides of the clamping 

notch were coated with a high friction rubberized plastic. Since Kevlar has been shown to 

be highly strain rate dependent [73], the appropriate TPI, as stated in Ref. [8], was applied 

by pulling the bottom shear pin and twisting the bottom clamp to achieve the twist per inch 

desired. The twist was done with enough slack in the yarn to ensure no pre-load. To further 
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establish that no preloading ensued, the load output was carefully monitored while twisting 

took place. If any load greater than 1lb while twisting was detected by the load cell the 

crosshead was lowered to prevent preloading. However, the yarn was held taut enough that 

it never left the centering grooves in the upper and lower cylinders to ensure perfect 

alignment. The yarn was tested at 0, 3, and 10TPI. The load versus displacement data was 

recorded electronically. The tests were conducted using ASTMD7269 [8] guidelines, 

indicating cross-head speed of 10 in/min and gauge length of 15 inches. This corresponds 

to the gauge length used in previous research probing Kevlar’s statistical dependency on 

fabric location and gauge [3] Twenty-five specimens were tested at 0TPI, and 15 specimens 

were tested at each 3 and 10TPI cases.  

5.5 Test Results 

Each yarn specimen was loaded into the grips and pulled through failure. A 

minimum of 15 tensile specimens was pulled for each twist per inch value, while ensuring 

that failure occurred within the gauge length. The 0, 3, and 10TPI AMSL test results were 

compared against data taken by Gao [63]. 

The data of the performed 0TPI experiments are illustrated in Figure 5.2(a) while 

in Figure 5.2(b) the minimum, maximum, and mean values of the test specimens were 

plotted in blue.  
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(a) (b) 

Figure 5.2(a) 0TPI tensile test specimen results (b) The minimum, maximum and mean values of 

the test specimens were plotted in blue. The black line is 0TPI data taken from tests conducted by 

Gao [63]. The AMSL load at failure matches within 8% to Gao’s data and 18% to the analysis.  

 

The black line shown is 0TPI reference data from Gao [63]. The tested stiffness 

matches to the stiffness seen in the referenced data. The mean AMSL peak load at failure 

matched within 8% to the Gao load at failure.  

  
(a) (b) 

Figure 5.3(a) 3TPI tensile test specimen results (b) The minimum, maximum and mean values of 

the test specimens were plotted in green. The black line is 3TPI data taken from tests conducted 

by Gao [63]. The AMSL load at failure values match within 7% to Gao’s data and 7% to the FEA 

simulation. 

 

In Figure 5.3(a) the results from the 3TPI tensile test specimens are presented. A 

total of 15 specimens were compared. Figure 5.3(b) illustrates the minimum, maximum 
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and mean values of the AMSL 3TPI results plotted in green. The black dotted line is 3TPI 

data as reported by Gao [63]. The AMSL load at failure values matched to the Gao loads 

within 7%. 

 

  
(a) (b) 

Figure 5.4 (a) 10TPI tensile test specimen results (b) The minimum, maximum and mean values 

of the test specimens were plotted in orange. The black line is 10TPI data taken from tests 

conducted by Gao. [63]. The stiffness becoming lower as twist increases from 3TPI to 10TPI is 

captured in Gao, AMSL tests and the AMSL FEA model. There is a large dispersion in the results 

for the 10TPI tests. This is due to hand twisting the samples. The AMSL test specimens that failed 

at a higher stress match well to the results from Gao and the FEA model. 

 

 

The 10TPI AMSL tensile test specimens results are depicted in Figure 5.4(a) while 

Figure 5.4(b) illustrates the minimum, maximum and mean data values plotted in orange. 

The black line indicates the Gao 10TPI data. The stronger maximum load specimens match 

well to the referenced data (within 5%). For 0, 3 and 10TPI the AMSL data falls short of 

the Gao [63] reported data. This is most likely due to the grip design or the method used to 

impart the twist on the yarn. The current design of the test fixture allows for free yarn 

length between the two centering discs, see Figure 5.1. The ASTM standard calls gauge 

length, which is presumably the free length, the length between the centering discs 

augmented by the length of the quarter arc of the two discs.  
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Figure 5.5 (a) 0TPI, 3TPI and 10TPI AMSL test results were plotted for comparison. The data 

indicate that yarn tenacity increases from 0-3TPI and decreases from 3-10TPI. 

 

 A comparison of all AMSL test results, namely 0, 3, and 10TPI, are plotted in 

Figure 5.5. The data depict that the yarn tenacity increases from 0-3TPI and decreases from 

3-10TPI. For the 0TPI and 3TPI cases the stiffness values do not change. The 10TPI 

specimens illustrate a lower stiffness than that of the 0-3TPI specimens. It is hypothesized 

that the same principles that apply to lower the load at failure trigger the lower yarn 

stiffness. To determine what instigates the load and stiffness change, a finite element 

analysis (FEA) is employed to probe the filament interaction within the yarn. 
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5.6 Kevlar KM2 Yarn Analysis 

To investigate the response of the twisted yarn failure an FEA model was developed for 

the 600 denier KM2 yarn [23, 16]. The AMSL tensile specimens and Gao data [63] are 

compared to the AMSL finite element model in Figure 5.6. The yarn stiffness between the 

FEA model and the tests agree within 17%. As twist increases the response of the yarn 

becomes non-linear and the corresponding stiffness becomes a harder metric to gauge. The 

load at failure of the FEA matches the referenced data well within 5%.  

 
 

Figure 5.6 The AMSL tensile specimens and reference data [63] are compared to the FEA 

analysis. The AMSL test error bars are based on standard deviation seen during testing. The yarn 

strengthening and weakening as a function of TPI trend is seen in the two tests and the analysis. 

Since the physics of yarn load at failure as a function of twist is capture in the FEA. It is possible 

to derive an analytical model that captures the same physics as the FEA for predicting yarn 

failure. 
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The load at failure predictions for the 0TPI case is 136N. The AMSL mean value 

recorded is 115N and the maximum load at failure recorded is 121N. For the 3TPI case, 

the FEA predicts slightly higher load at breakage 157N compared to the mean tested value 

of 146N. When the finite element model is compared to the maximum load seen in the 

specimens, namely 153N, the data compares within 3%. For 10TPI the model predicts a 

failure load of 120N, the AMSL tests recorded a mean value of 86N and a maximum value 

of 107N. 

The FEA model does not capture precisely the initial non-linear load versus strain 

response of the 10TPI test specimens. To highlight the intricate procedures the twisted yarn 

experiences at failure the progressive yarn damage through strain increase for 0, 3 and 

10TPI are illustrated in Figure 5.7.  

 
 

Figure 5.7 Figure comparing axial load FEA of 600 Denier Kevlar KM2 at 3 and 10TPI. The 

plot shows the variation of initial (unstretched) stress state at the two twist values. The 10TPI 

case fails first due to enhanced stress located in the outer diameter filaments due to twist. 
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The simulations in the figure feature the difference in yarn initial state between the 

3 and 10TPI cases. The initial stress due to twist for 3TPI appears homogeneous with high 

stress localizations due to filament tortuosity. The 10TPI initial stress plot indicates that 

the outer filaments are strained to a much larger extent. The outer filaments start out within 

10% of the filament breakage strength (3880MPa). This causes a difference in the yarn 

failure between the 0 and 3TPI case, and the 10TPI case as shown in the middle and bottom 

rows. For the 0 and 3TPI, the yarn breaks at points throughout the yarn diameter. The 

breakage points are due to areas where tortuous filaments create high stress nodes in the 

yarn. As damage progresses the breakage remains distributed throughout the length and 

cross section of the yarn. For the 10TPI twist, the higher stressed outside filaments are the 

first to break and damage progresses from the yarn’s outer diameter and proceeds inward.  

 

5.7 Analytical Yarn Model 

There is a need for an analytical model that can predict yarn strength based on TPI. 

Researchers have tried to come up with an empirical model that captures the strength 

dependence on twist. The model proposed by Rao [1] illustrates the strength dependency 

but not the stiffness change. It is also empirically based on yarn data and not dependent on 

filament properties. In contrast, this paper describes a physics-based method for predicting 

failure strength and yarn response by evaluating filament strain in layers throughout the 

yarn. The FEA yarn model is successful at predicting the strength at failure for a twisted 

yarn. The analytical AMSL yarn model uses the same physics and boundary conditions as 

the FEA model. The measurable quantities applied in the formulation of the FEA model 
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are denoted in Table 5.1 and are implemented to derive filament and yarn properties 

employed in our analytical equation. 

 

Table 5.1 Table of measurable filament and yarn properties 

 

Measurable Filament and Yarn Properties 

Term 
Yarn 

Denier 

(g/9000m) 

Filament 

Modulus 

(GPA) 

Filament 

Density 

(g/cm^3) 

Filament 

Diameter 

(m) 

Gauge 

Length 

(mm) 

Filament 

Strain at 

Breakage 

Symbol Den 𝐸𝑓 𝜌𝑓 𝐷𝑓 𝐿𝑔 휀𝑓𝑎𝑖𝑙 

Value 600 84.62 1.44 10 250 0.0452 

Derived Filament and Yarn Properties 

Term 
Filament 

Area 

(mm^2) 

Filament Cross 

Sectional 

Density (g/m) 

Yarn Cross 

Sectional 

Density 

(g/m) 

Filament 

Count 

Close 

Packed 

Yarn Area 

(mm^2) 

Close 

Packed 

Yarn 

Radius 

(mm) 

Symbol 𝐴𝑓 𝑋𝑓 𝑋𝑌 𝑁𝑓𝑖𝑙 𝐴𝑌 𝑟𝑌 

Equation 

𝐴𝑓

=
𝜋𝐷𝑓

2

4
 

𝑋𝑓 = 𝜌𝑓 ∗ 𝐴𝑓 
𝑋𝑌

=
𝐷𝑒𝑛

9000𝑚
 

𝑁𝑓𝑖𝑙 =
𝑋𝑌

𝑋𝑓
 

𝐴𝑌

=
𝑁𝑓𝑖𝑙𝐴𝑓

0.906
 

𝑟𝑌

= √
𝐴𝑦

𝜋
 

Value 7.854E-5 0.0001131 0.06667 589 0.0511 0.1275 

 

 

Development of the finite element model necessitates assignment of an elastic 

constitutive model with brittle filament fracture to a lofted truss element. The element 

deletion occurs at 0.0452 strain as discussed in Cheng’s work [5]. The same stress response 

is used for the analytical model. The FEA model indicated that there is a stress and strain 

gradient between the outside and the inside of the yarn when twisted above 3TPI, see Figure 

5.7. For this reason, the stress is evaluated at 15 separate levels throughout the radius of 

the yarn.  
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The yarn is numerically divided into 15 layers where each layer is a column in a 

matrix. The strain, stress and force can be evaluated in each layer separately. The force in 

each layer is summed as shown in Figure 5.8 to give the yarn force response to elongation.  

 

 

𝐴𝑛 = 𝜋(𝑟𝑛 − 𝑟𝑛−1)2 

Evaluated 

for n = 1. . 15; 

Where: r0 = 0 

 

𝐹𝑌𝑎𝑟𝑛 = ∑ 𝐸𝑓휀𝑛𝐴𝑛

15

𝑛=1

 

Figure 5.8 Diagrams depicting cross section of yarn split into layers, showing how the force of 

each layer is summed into a total yarn force. The mechanical response is akin to a system of 

parallel springs, where each layer is represented as a spring. 

 

 

This method breaks the yarn into separate load paths that resemble a system of 

parallel “springs”. By evaluating each layer individually the proper layer (radius) 

dependency on twist can be applied to the model.  

It is expected that the 0TPI case will have the same filament strain throughout the 

yarn’s cross section as the yarn is loaded. For any twist above 0TPI there will be a shifted 

filament strain due to twist for each yarn layer. The shifted filament strain due to TPI is a 

R15 = RYarn R15 = RYarn 
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function of yarn twist, angle, and radius. The yarn twist angle, , and pre-strained filament 

length, H, are calculated as shown in Figure 5.9.  

 

 

 

 

 

 

 

 

Angle of Twist 

𝛼 = 𝑇𝑃𝐼 ∗ 2 ∗ 𝜋 ∗ 𝐿𝑔 

H (Pre-strained Filament 

Length) 

(a) (b) 𝐻 = √(𝐿𝑔)
2

+ (𝑟𝛼)2 

Figure 5.9 Diagrams depicting filament projection along a twisted yarn and calculation of pre-

strained filament length due to twist. 

 

The equations stated in Figure 5.9 are applicable when the ends of the yarn are held 

fixed during twist. It is noticed that when this boundary condition is used in the FEA 

simulation, the force versus strain response is shifted due to a pre-load being applied by 

the twisted strained filaments. Referring to ASTM-D-7269 [8], when testing yarn under 

twist, the yarn is kept at a constant force, not displacement. To account for this boundary 

condition Equation 5.1b is modified with a pre to account for the relaxation due to constant 
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summed force being held less than 2N. The displacement imposed due to tensile pull is 

also accounted for in Equation 5.1b as . 

 𝐻 =  √(𝐿𝑔 + ∆)
2

+ (𝑟𝛼)2 (5.1a) 

 
휀𝐿𝑎𝑦𝑒𝑟 = 휀𝑛 =

√(𝐿𝑔 + ∆ − ∆𝑝𝑟𝑒)
2

+ (𝑟𝑛𝛼)2 − 𝐿𝑔

𝐿𝑔
 

(5.1b) 

  

 

Equation 5.1b is evaluated at each of the 15 layers of filaments along the radius. 

Each layer has a corresponding filament strain to yarn displacement, . The shifted strain 

is used to calculate the corresponding stress using the filament’s young’s modulus. The 

stress in each filament layer is used to calculate the layer’s force. The force on each layer 

is summed and plotted versus yarn strain. These values are compared to the published data 

in Ref. [63]. 

Since the yarn force response to elongation has been thus far derived from known 

geometry and filament properties, the poor fit observed in the tests of Figure 5.10 was 

initially intriguing.  
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Figure 5.10 Comparison of analytical summed layer force to published [63] test of twisted KM2 

yarn at four different twist levels. All of the predicted forces are much higher than any of the test 

data. This solution of the equation cannot reproduce load as a function of twist.  

When the values for layer axial force are examined, the inner layers are subjected 

to axial compression. Nevertheless, the filaments cannot undergo axial compression from 

negative displacement of the cross heads, while maintaining a constant load. The filament 

geometry dictates that buckling would occur during axial compression and give a “wet 

noodle” response, during which the axial negative displacement is stored by the filament 

buckling and must be overcome by yarn elongation before that layer becomes part of the 

load path. 

The idea that a filament cannot go into compression changed the analytical model 

by adding in a command, which evaluates that if a strain is negative then a zero value is 

imposed for that data point. When this statement is added to the analytical model, the 

relaxed displacement due to the constant force boundary condition is increased. With this 
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new addition the axial displacement for 3, 10, and 20TPI became 0.001, 0.012 and 

0.055mm respectively. 

Once the assumption that filaments cannot hold compression is made, the analytical 

model agrees with the test data. It is noted that the 10 and 20TPI cases contain many zero 

points for small strains during loading (< 0.03). As the displacement increases, the number 

of layers in the yarn subjected to tension increases. This clarifies the issue of a filament 

with an elastic brittle behavior exhibits a non-linear response when put into a twisted yarn 

as seen in Figure 5.11.  

 

Figure 5.11 Comparison of analytical equation to AMSL tests and published experimental data 

Gao [63]. The AMSL test error bars are based on standard deviation seen during testing. The 

modulus softening is seen in the two experiments and analytical solution. The increase then 

decrease in load at failure seen during the tests is reproduced by the analytical solution. 
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The suggested methodology indicates that yarn strengthening is caused by a larger 

failure strain due to twist. Yarn weakening is attributed to the total length decrease attained 

when a yarn is twisted at a constant axial force. The closer a filament is in the outer 

perimeter of the yarn the larger the distance it has to travel, see Figure 5.9. Since the yarn 

has to be subjected to constant load the twisting action imposes a larger strain on the outer 

filaments compared to the inner ones which travel a smaller distance, and which remain 

relative unstrained. The decrease in yarn length causes the inner filaments to refrain from 

carrying any load initially. This implicit reduction of yarn filaments in the load path reduces 

the overall stiffness resulting in lower failure loads. Figure 5.11 illustrates the yarn’s force 

dependency on twist ratio is produced by this analytical solution. Next, a method for 

predicting a yarn breakage strain is developed. For the twisted fiber, the strain in the outer 

filaments is larger than the yarn strain. Therefore, the layer with the largest strain is located 

on the yarn’s outer diameter. An adjusted yarn failure strain can be calculated by using 

Equation 5.2. 

 

 
휀𝑌𝑎𝑟𝑛 𝐹𝑎𝑖𝑙 =

√(휀𝑓𝑎𝑖𝑙𝐿𝑔 − 𝐿𝑔)
2

− (𝑟𝑌𝑎𝑟𝑛𝛼)2 − 𝐿𝑔 + ∆𝑝𝑟𝑒

𝐿𝑔
 

(5.2) 

 

  

 

where fail is the filament breakage strain and yarn_fail is the predicted failure strain for the 

yarn. Equation 5.2 is obtained by substituting the failure strain into Equation 5.1b and solve 

for the yarn displacement. The yarn displacement is used to calculate yarn strain by 

dividing by the gauge length. Using this method the failure strain is predicted based on 
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yarn twist angle, yarn close packed radius, and relaxation due to twist force. The predicted 

failure strains are plotted on Figure 5.12.  

 
 

Figure 5.12 Predicted failure strain calculated by Equation 5.2. For all the cases the strain at 

failure predicted is below what the tests showed [63]. The trend of larger failure strain at higher 

twists is reproduced by the analytical solution. 

 

This methodology captures the increased strain of failure for the 10 and 20TPI cases 

while it does not produce a difference in the failure strain for 0 and 3 TPI cases. The 

increase in failure strain for the 3 TPI case is an area for further research. 

 

5.8 Discussion of the Analytical Model 

 

The predicted failure strains increase as the twist is increased which is seen in the 

AMSL yarn tests as well as in the published values in Ref. [63]. The Rutgers AMSL yarn 
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equation, can predict the yarn’s strength dependency on twist up to 20TPI. This 

methodology is based on filament linear elastic mechanical properties and determination 

of local strain due to geometry, and is not sensitive to friction. To evaluate the latter 

statement, finite element simulations where performed for friction values of 0.3 [46] and 

0.9 in which the yarn modulus did not significantly change in the results. For this reason 

friction was not used when creating the analytical solution.  

The yarn moduli for the 0 and 3TPI cases are higher by a factor of 1.28 compared 

to the results published by Gao [63]. It is hypothesized that the tortuous path existing 

along the yarn may cause the deviation in modulus. A plot showing the prediction with a 

shifted modulus is shown in Figure 5.13.  

 
 

Figure 5.13 Strain Failure prediction using shifted yarn modulus. The results follow the same 

trend as the data. The 0 and 3TPI cases match closer than the unshifted modulus case but the 10 

and 20TPI cases are farther away. The failure strain is lower than the tested values.  
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The results follow the same trend as the test data. The 0 and 3TPI cases match closer 

than original analytical solution but the 10 and 20TPI cases are also shifted. Since the 10 

and 20TPI responses are more dependent on the outer yarn filaments, it is presumed that 

the larger strains the outer filaments undergo suppress the inherent tortuosity effect of the 

individual filaments, which is more pronounced in lower TPI ratios.  

The predicted failure strain can be modified to account for elongation due to radial 

compression. The failure yarn strain, fail/Lgauge, can be numerically calculated through 

iterating elongation until fail is equal to the filament failure strain 0.0452 [5].  

 
휀𝐹𝑎𝑖𝑙 = 휀𝑛=15 − 휀𝑠ℎ𝑖𝑓𝑡 (5.3) 

 
휀𝑠ℎ𝑖𝑓𝑡 =

𝜎𝑟𝑎𝑑𝑖𝑎𝑙∗𝛾12

𝐸12
 (5.4) 

 

where n is evaluated at the outside yarn radius and shift is the strain elongation due to 

radial compression. The shift is based on transverse Poisson’s ratio and transverse modulus. 

The radial stress is equal to the cross sectional pressure divided by 2. The cross sectional 

pressure is derived from hoop stress of the outer most layer. The pressure is calculated 

from the thin wall cylinder approximation 𝑃 =
𝜎ℎ𝑜𝑜𝑝∗𝑡

𝑟𝑦𝑎𝑟𝑛
. The thickness of the layer is 

assigned the filament diameter df. The hoop stress is equal to the hoop strain, hoop, 

multiplied by the filament elastic modulus, E33. The hoop strain component is equal to the 

hoop component of the strain. By following the above procedure and performing the 

appropriate substitutions Equation 5.4 becomes Equation 5.5, as indicated below: 

 

휀𝑠ℎ𝑖𝑓𝑡 =

휀𝑓 ∗ cos tan−1 𝐿𝑔 + ∆ − ∆𝑝𝑟𝑒

𝑟𝑦𝑎𝑟𝑛 ∗ 𝛼 ∗ 𝐸
33

∗ 𝑑𝑓 ∗ 𝛾12

2 ∗ 𝐸12 ∗ 𝑟𝑦𝑎𝑟𝑛
 

(5.5) 
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By substituting Equations 5.1b and 5.5 into Equation 5.3 we obtain Equation 5.6: 

 

 
 

휀𝑓𝑎𝑖𝑙 =
√(𝐿𝑔 + ∆ − ∆𝑝𝑟𝑒)

2
+ (𝑟𝑛𝛼)2 − 𝐿𝑔

𝐿𝑔

−

휀𝑓 ∗ cos tan−1 𝐿𝑔 + ∆ − ∆𝑝𝑟𝑒

𝑟𝑦𝑎𝑟𝑛 ∗ 𝛼 ∗ 𝐸
33

∗ 𝑑𝑓 ∗ 𝛾12

2 ∗ 𝐸12 ∗ 𝑟𝑦𝑎𝑟𝑛
 

(5.6) 

 

Yarn failure, /Lgauge, is calculated by iterating  until fail is equal to the filament failure 

strain. Figure 5.14 depicts the predicted yarn failure strain values at each twist rate. 

 

 
 

Figure 5.14 Analytical model evaluated Tusit’s (ARL [5]) reported filament modulus (84.3 GPa). 

The failure strain predicted was modified to incorporate filament elongation due to radial stress 

from twist, Poisson’s ratio and filament modulus. Filament failure strain, Poisson’s ratio and 

transverse modulus are taken from ARL’s report to be 0.452, 0.24 and 1.34GPa respectively.   
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 The analytical model evaluated with the shifted Poisson’s failure strain based on 

Ref. [5] reported filament modulus of 84.3 GPa, see Figure 5.14. The predicted failure 

strain was modified to incorporate filament elongation due to radial stress from twist, 

Poisson’s ratio and filament modulus. Filament failure strain, Poisson’s ratio, and 

transverse modulus are reported with values of 0.452, 0.24 and 1.34GPa respectively [5]. 

When testing filaments Gao measured a slightly different filament modulus [63] than the 

data in Ref [5]. 

  

 

Figure 5.15 Analytical model evaluated with Twisdale’s reported filament modulus [74] (63 

GPa). The failure strain predicted was modified to incorporate filament elongation due to radial 

stress from twist, Poisson’s ratio and filament modulus. Filament failure strain, Poisson’s ratio 

and transverse modulus are taken from ARL’s report to be 0.452, 0.24 and 1.34GPa respectively. 

 

Figure 5.15 illustrates the analytical model evaluated using the filament modulus of 63 GPa 

reported by Twisdale et al. in Ref [74]. The failure strain predicted was modified to 

incorporate filament elongation due to radial stress from twist. By using the Twisdale’s 
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filament modulus in the AMSL analytical model a close fit to the reported (Ref. [63]) yarn 

data has been generated. The yarn failure strain curves from AMSL tests, FEA, and 

analytical solution are compared to the published data [63] in Table 5.2. 

 

Table 5.2 Comparison of the AMSL yarn failure varied by twist to Gao’s published data [63]. 

 0 TPI 3TPI 10 TPI 20TPI 

Gao’s average failure strain 0.041 0.0507 0.0511 0.0605 

AMSL analytical failure strain 0.0458 0.0455 0.047 0.0543 

AMSL Analytical failure strain 

with Poisson Effect (Twisdale 

Filament Modulus) 

0.045 0.048 0.051 0.058 

AMSL analytical failure strain 

with Poisson Effect (ARL 

Filament Modulus) 

0.045 0.049 0.054 0.062 

AMSL Average Tested Strain at 

Failure 
0.0322 0.0425 0.0502 N/A 

AMSL FEA Model Prediction 0.045 0.044 0.045 N/A 

 

 

 The analytical model using the filament modulus measure by Twisdale; matched 

the published average failure strain [62, 74] from the yarn tests closely when the Poisson’s 

effect was taken into account. The AMSL tests showed the same trends in yarn failure 

strain as Gao’s but had lower strain values. The FEA analysis did not account for yarn 

failure strain changing with twist. This is due to the execution of the analysis with truss 

elements so no transverse compression was allowed and thus had no Poisson’s effect. 

  

5.9 Conclusions 

 In order to probe tenacity of 600 denier Kevlar KM2 as a function of TPI grips 

compliant with ASTM-D-7269 were fabricated and installed on a 1kN Instron 4411 
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universal testing apparatus. The results obtained from 600 denier Kevlar yarn tensile tests 

at 0, 3, and 10 twists per inch conducted at AMSL compared well to tests conducted by 

Gao [63]. The AMSL mean load at failure values were lower than the Gao tests for 0, 3 

and 10 twists per inch values tested. The maximum values seen throughout testing matched 

well to the literature reported values [63]. One possibility for the load at failure difference 

between AMSL data and published d data in Ref. [63] was the manual twisting of the yarn. 

This may lead to an inconsistent preloaded strain condition throughout the yarn cross 

section. The initial strengthening, then weakening of maximum yarn load was observed as 

a function of TPI in both the AMSL and Gao test results. In order to visualize important 

physics of yarn stretch and damage an FEA model was created to predict failure for the 

3TPI values of interest.  

  The FEA showed that the initial pre-stress state of the yarn changed between 0, 3 

and 10TPI. In the 0 and 3TPI case, there was no strain gradient between the yarn’s center 

and its outer diameter. In the 10TPI case the filaments on the outside of the yarn were 

strained almost to breakage, where the filaments on the inside (close to center axis) were 

not. This behavior is attributed to the fact that filament strain was derived as a function of 

TPI and radius. To reproduce the load at failure dependency on twist, this equation is 

evaluated over every layer within the yarn and the filaments are not allowed to undergo 

axial compression (strength set to zero). The model predicts the linear to non-linear 

transition of the load response to elongation due to increasing twist. The yarn failure strain 

can be predicted reasonably well for the 0TPI, 10TPI and 20TPI case by the analytical 

model. The yarn failure strain equation does not capture the strain increase for the 3TPI 

case, even though the FEA was able to capture that phenomenon. The only physics 
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included in the FEA that was missing from the analytical model is the tortuous path of the 

filament through the yarn. The FEA and the analytical model predict that the twisted yarn 

will always fail at the outer filaments as is observed in our experiments. By incorporating 

the Poisson effect into the yarn failure strain calculation. The AMSL solution was closer 

to the tested values at all twist values.  

One should note that the analytical solution results presented here are geometry 

dependent, therefore this type of calculation is insufficient to be used if the yarn is part of 

a weave or chord. In that case the yarn’s cross section is deformed from its original circular 

shape. An additional strain due to the applied boundary condition can be added to obtain 

the appropriate yarn failure strength and strain for those specific fibrous structures such as 

those created by Zhou [69]. By building an analytical equation that incorporates the physics 

from the finite element model that was able to mimic the yarn tenacity as a function of 

twist ratio, a method for predicting yarn tenacity based on yarn denier, filament geometry 

and filament mechanical properties has been developed, tested, and verified. 
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Chapter 6 : Conclusions 

6.1 Kevlar KM2 Yarn Model Correlation 

The developed 600 denier Kevlar KM2 representative FEA model was twisted 

under constant axial force to 0, 3 and 10TPI. After twist was applied the geometry was 

pulled until tensile failure occurred. The model correlates to experimental results based on 

only micro scale geometry and filament properties. Computationally, there was little 

dependency of the yarn response to friction observed. When the model was pulled to failure 

the predicted ultimate load was within 5% for all three twists per inch analyzed. To improve 

the computational model the non-linear portion of the load response curve has to be 

improved upon. The derived analytical solution showed much better correlation to 10 and 

20TPI than the FEA model. It is proposed that by making the filaments unable to hold 

compression, thus becoming a “wet noodle”, the finite element model will match the linear 

to non-linear load response. The modeling tools used for geometry creation can be used to 

reproduce any yarn like structure including ring spun yarn. Using this FEA methodology 

the strength dependency on twist can be predicted based only on microscale filament 

properties.  

 

6.2 Tensile Testing of Kevlar KM2 Yarn 

The AMSL mean load failure values were lower than the Gao [48] tests for 0, 3 and 

10 twists per inch values tested. The maximum values seen throughout tested matched well 

to the UT reported values. The load at failure difference between AMSL data and Gao data 

is most likely due the AMSL grip design and twisting mechanism. The initial 
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strengthening, then weakening of maximum yarn load was observed as a function of TPI 

in both the AMSL and Gao [63] test results. In order to visualize important physics of yarn 

stretch and damage an FEA model was created to predict failure for the 3TPI values of 

interest.  

 

6.3 Analytically Derived Model  

The FEA showed that the initial pre-stress state of the yarn changed between 0, 3 and 

10TPI. In the 0 and 3TPI case, there was no visible strain gradient between the yarn center 

and yarn OD. In the 10TPI case, the filaments on the outside of the yarn were strained 

almost to breakage, where the filaments on the inside (close to center axis) were not. An 

explanation for how this could happen was shown in Chapter 3 equation 2, the filament 

strain was derived as a function of TPI and radius. When plotted in Figure 3.7, the strain 

gradient between the center axis and OD becomes highly non-linear as the twist increases 

past 3TPI. Using published filament breakage strain as a threshold, the maximum TPI that 

can be applied to the yarn without decreasing overall load lies somewhere between 3 and 

5TPI. 

 

6.3 Comprehensive Conclusions 

The models created by AMSL’s FiberPack code can accurately predict strength of ring 

spun and twisted yarn by capturing both tortuosity and pre-load. By using these models 
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with an explicit solver such as Sierra Solid Mechanics, yarn damage and dynamic failure 

can be accurately modeled.  

The AMSL finite element analysis has shown that when 600 Denier Kevlar yarn is twisted 

past 3TPI, the pre-strain of the outside fibers cause localized failure that starts on the yarn 

O.D. and grows inward. The outside filaments are pre-strained due to the angular rotation 

varying by radius rn. Ring spun yarn should not have the same dependence on twists per 

inch since the twist is added during structure creation instead of as a second step as in the 

case of the Kevlar yarn. 

Since damage starts on the outer yarn filaments, there may be ways increase the 

yarn strength by twisting past 3TPI. One way to improve functionality would be to develop 

a variable twist as a function of yarn radius. In this manner the inside would be spun to a 

larger twist than the outside reducing the outside stress. Alternatively, the outside may be 

treated with a flexible urethane that slightly increases the failure strain. The FEA models 

built can aid in down selection for these methods of increasing overall yarn strength before 

complex tests are created. 
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Chapter 7 : Future Research 

7.1 Improvements to test methodology 

The old grip design consisted of a male and female V-notch coated with rubber. 

During tensile testing, the rubber became worn and came off; duct tape was used to line 

the grips and hold the filament. The grips were originally tightened with a four bolt 

pattern; this design was hard to apply an even pressure alloying yarn slip. New grips were 

created that pinched the yarn between two parallel flat plates lined with a more durable 

rubber superglued onto the metal. One plate is held fixed and the other is on two rods 

holding the plates parallel. A bolt was used to close and tighten the grip. It is has been 

showed that the force of the preload during twist is an important variable that can affect 

the load vs. strain response at TPI larger than 3. The current method of twisting the yarn 

by hand is time consuming and prone to error, due to the large amount of twists 

necessary. Additionally, it is hard to apply an exact preload onto the yarn during twist. 

One planned improvement for our tensile yarn test fixture is an automatic twisting 

apparatus. The new twisting apparatus will apply a specified load and auto-count the 

twists being applied to the specimen.  

To ensure an accurate TPI count, a yarn twisting apparatus is being designed. The 

grips themselves will hold the fibers in place and then be turned either via hand crank or 

electric motor. An analog counter will keep track of the number of rotations the fiber will 

make, which can easily be translated to TPI via the following relation (TPI=N/L) where N 

is the number of rotations and L is the length of fiber between the grips. The rotation action 

side of the twister will only be allowed to rotate but the opposite end will be on a sliding 

mechanism in order to not overly pre-stress the fibers. After the fiber reaches the correct 
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number of twists, the grips are then removed from the apparatus and placed back in the 

fiber test mechanism. 

 

7.2 Improving Analytical Model 

The analytical model derived in chapter 3 is able to predict the correct trends in tenacity as 

a function of yarn twist ratio. The predicted failure load force for the 0 and 3TPI case was 

higher than the test showed. This was due to the stiffness of the analytical model was 

about1.28x higher than the stiffness reported by Gao [63] for the 0 and 3TPI cases. It was 

much closer for the 10 and 20TPI cases. For this research AMSL used a filament modulus 

reported by ARL that was 84.6 GPa [5], the filament modulus reported by Gao was 63 GPa 

[63]. The moduli are off by 1.34. More researchers have reported the larger modulus so 

that was used in the analytical equation. When AMSL used the lower moduli the analytical 

prediction was much closer to Gao’s yarn tests. 

This thesis proposes that there is a piece of physics missing from the analytical model. The 

finite element model’s stiffness (based on a filament stiffness of 84.6GPa) matched Gao’s 

and AMSL’s tests data. The only piece of physics the finite element model had that was 

not built into the analytical equation set was filament tortuosity throughout the yarn length. 

Once the yarn is axially displaced and the filaments are consolidated on the yarn cross 

section, the FEA model showed that the filaments interwoven nature can create nodes 

where the filaments lock together locally. 

The analytical equation also assumes a close packing of density 0.906 which is the 

solution for rigid disks. If the filament cross section is allowed to deform increasing the 

packing density to 1.0, and a solution is obtained for 0, 3, 10 and 20 TPI. The predicted 
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load responses match much closer to the test cases. The load response to elongation for 

each twist is plotted in Figure 7.1. 

 

Figure 7.1 By increasing the cross sectional packing density from theoretical maximum of 0.906 

to 1.0 in the analytical solution, the analytical prediction can match the test data. 

 

 

One explanation for how the packing density can be closer to 1 would be transverse 

stiffness of the filaments if very low (1.34 GPa) as compared to it’s axial modulus (84.6 

GPa). Since the filament is soft in the transverse direction, the circular cross section can 

compress into a more optimal packing shape, thus allowing a packing density larger than 

the close packing density of circles (0.906). 

The AMSL analytical model developed from physics seen in the AMSL finite 

element model and trends observed during tests, can accurately capture the non linear yarn 

stiffness change as the yarn is twisted from 0 to 20TPI. The noted failure strain prediction 

equation can accurately predict failure strain of the twisted yarn of twists up to 20TPI. To 

research the limitations of this model future work should be conducted measuring gauge 
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length change during twist at a constant axial pre-load. In addition, twisted yarn should be 

potted in acrylic freezing the cross sectional filament deformation to capture the cross 

sectional deformation and packing density as a function of twist. The FEA developed, 

along with the analytical model can be used to probe how to increase yarn tenacity for use 

in composite structures (tires), chords, and weaves. 
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