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With approximately 95 quadrillion Btu, the United States accounts for nearly 18% of 

the world’s total energy demand, and industrial sector within U.S. consumes as much 

as 34% of this energy intake. Growing energy demands, continuous worldwide 

depletion of natural resources and environmental regulations, have become a strong 

factor in the industrial sector for reducing energy consumption in the recent years. 

However, manufacturing facilities are often complex systems consisting of different 

components that have strict requirements in terms of productivity and throughput, 

making it particularly challenging to achieve ambitious energy reduction targets. 

Moreover, owners of such manufacturing enterprises are reluctant to make changes in 

their processes to avoid jeopardizing performance optimality; prompted by the 

aforementioned, the following questions arise: 

(1) How to simultaneously account for energy reduction goals and performance 

requirements in an industrial facility? 
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(2) How to incorporate the existing infrastructure and practices in an industrial 

facility to reduce the energy consumption and expenditure without sacrificing 

the productivity? 

(3) How to incorporate the dynamic interdependencies inherent in the components 

of a manufacturing environment to achieve optimal energy efficiency?   

This work aims at providing the owner of a manufacturing enterprise with a modeling 

framework to achieve cost effective energy reduction while maintaining productivity 

and profitability. We provide a stochastic energy-aware production planning 

optimization based on a two-dimensional measure, “Energy-Performance”, and 

propose a scenario generation approach to solve the planning problem. At the building 

level, we propose a “business value-driven” energy asset management to achieve 

energy reduction at the building level while assuring business objective and occupant 

productivity requirements are maintained. Using a network modeling approach, we 

provide a framework to calculate the dynamic interdependencies between the 

components of an industrial facility and define the optimal share of energy reduction 

for each such component, given a set of alternative solutions. Finally, since most of the 

underlying Energy-Performance analysis and optimization models are highly data-

intensive, we provide a data and metering infrastructure to support the proposed 

modeling approaches. 
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Chapter 1 

1. Introduction 

1.1. Motivation 

According to International Energy Outlook 2013, world energy consumption is 

expected to rise up to 56% by 2020 [1].  Growing energy demands, continuous 

worldwide depletion of natural resources and environmental regulations have become 

a strong factor in the industrial sector for reducing energy consumption in recent years. 

With approximately 95 quadrillion Btu, the United States takes in nearly 18% of world 

total energy consumption in 2012. Energy demand has been doubled since 1990 and it 

is projected to grow by 81% from 2011 to 2035. Furthermore the industrial sector in 

the U.S. accounts for up to 24.5 quadrillion Btu in 2013, representing approximately 

34% of total energy consumption [2]; therefore, there is a mounting interest in 

manufacturing companies across the United States to adopt energy efficiency practices. 

This has motivated many researchers and practitioners to devote attention to the area of 

industrial energy efficiency. However, it is particularly challenging to achieve 

ambitious energy reduction targets across industrial enterprises without sacrificing 

service and productivity requirements; thus appropriate aggregated measures shall be 

employed to assure stable manufacturing operations, while achieving simultaneous 

energy conservation goals. This calls for a more holistic and integrated 

view/perspective of industrial environments. Although prior research work and 

industrial practices have been significantly contributing to improving industrial energy 

consumption, they still lack such holistic perspective and/or applicable modeling 
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approaches and tools to practically address the integrated view. In the recent years, the 

new type of industrialization, “Industry 4.0”, has initiated the move towards an 

infrastructure that supports such interconnected view in a manufacturing environment 

through “Cyber-Physical Systems” (CPS). The CPS comprise of smart machines and 

production facilities capable of exchanging information, triggering actions and 

controlling each other independently. Evidently there is a rising potential to expand  

the notion of such CPS  in the area of industrial energy efficiency. 

Prompted by such potential and the discrepancy between existing energy efficiency 

solutions and implementation, in this thesis, we aim at developing models that can 

support owners of manufacturing companies to achieve cost and energy savings when 

planning and managing their production facilities. The factors differentiating the work 

presented in this thesis from the existing research are: (1) The “Network Modeling” 

approach, in which an integrated and holistic perspective of energy efficiency in an 

industrial facility is adopted. That is, besides the energy-consuming manufacturing 

processes and machinery, the industrial facility’s building and technical services are 

also accounted for in energy efficiency optimization models discussed here. (2) We 

target “Energy” and “Performance” objectives simultaneously and introduce a novel 

measure, “Energy-Performance”, through which we ensure that energy reduction is 

achieved without jeopardizing performance requirements within an industrial system. 

(3) We provide a metering infrastructure that supports the data and information 

requirements for our energy modeling and optimization. 
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1.2. Objective 

With the foregoing discussion in mind, this thesis is organized as follows: In chapters 

2, we focus on the manufacturing process and provide models to achieve cost/energy 

savings through energy-aware production planning. We concentrate on the building 

facility in chapter 3 and present a Business Value-driven asset management as a viable 

energy saving solution at the building level. Chapter 4 provides models to measure the 

dynamic inherent interdependencies between components of an industrial environment 

and present optimal ways to achieve energy saving while maintaining performance 

requirements. In chapter 5 we introduce appropriate metering and modeling 

infrastructures to support the work presented throughout the thesis. We intend to 

address and tackle the following research challenges: 

1. Provide an energy-aware production planning to achieve savings on energy 

expenses while maintaining service level requirements. The following, 

highlights the main achievements: 

 A two-dimensional measure, namely “Energy-Performance” is introduced 

and integrated into the production planning model to account for 

simultaneous energy saving goals and performance requirements. 

 An optimization model with risk-averse constraints is presented for 

determining the optimal production plan that ensures maximum expected 

profit as well as service level requirements. 

 Energy price volatility is accounted for in the optimal production 

planning using time-sensitive electricity prices. 
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2. Provide a novel energy efficiency optimization at the building level. The 

highlights are as follows: 

 Asset management and reliability theory are integrated with building 

energy simulation technology to develop optimal maintenance strategies 

to reduce the building’s energy consumption. 

 An Asset Business Value Model (“BVM”) is developed to map the 

business value of the building, to the constituent assets whose operations 

are critical for the accomplishment of those business objectives.  These 

business values then provide inputs to asset management processes for the 

allocation of investment in labor and materials and for the organization of 

maintenance workflow. 

 Integrate the business value model into the building energy optimization 

to ensure that building performance and business objectives are met. 

3. Provide a network energy optimization model to determine the optimal energy 

saving in an industrial environment using the modeling approaches listed 

below: 

 The manufacturing facility is considered as a network of interdependent 

nodes and general models are provided for “Energy” calculation in such a 

network. 

 A framework is provided to define the dynamic interdependencies 

between nodes of the network. These dependencies are computed in terms 

of nodes’ “Energy Consumption” and “Performance” demonstrated by 

appropriate node-specific “Key Performance Indicators” (KPI). 
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 An optimization model is presented to define the nodes’ optimal share of 

energy reduction given a set of energy saving solutions for each node. 

4. Define a framework to define the energy and information flow of a consumer 

product at micro level. This framework defines an information infrastructure to 

support the modeling approaches introduced throughout this dissertation. 

 A “Top-down” hierarchal mapping of energy flow across the two 

dimensions of the product’s “Life Cycle” and “Supply Chain” is proposed 

to define a consumption-production network as well as ownership 

allocation within such a network. 

 An energy calculation engine is proposed to quantify energy consumption 

in the aforementioned network. This engine characterizes energy 

consuming elements in each step of the network and provides guidelines 

for energy quantification. 

 Data sourcing and metering infrastructure, consisting of three classes of 

metering structure: Physical Metering, Virtual Metering, and Simulated 

Metering, is proposed. This data infrastructure supports the energy 

calculations throughout the chapters. 

1.3. Technical Approach and Synopsis of Contributions 

The contributions of this dissertation can be summarized as follows: 

1.3.1. Energy-Performance as the Driver for Optimal Production Planning: 

In Chapter 2, we focus on the production process within a manufacturing company and 

present an energy-aware production planning for a manufacturer, based on a two 
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dimensional “Energy-Performance” measure. This measure takes into account the type 

of machinery used, products being produced and the process control strategies 

practiced. Using the “Energy-Performance”, we define the energy consumption as a 

function of production output, namely the quantity produced per unit time, and 

incorporate it in the energy-aware production planning process. In the succeeding 

chapter 5, we provide a framework to generate the “Energy-Performance” profile at 

machine and process levels. Furthermore, the proposed production plan incorporates 

volatile electricity pricing schemes and helps the decision-maker optimize the 

production schedules with respect to these price fluctuations to achieve operating cost 

reduction. The problem is formulated as a stochastic optimization subject to 

(stochastic) production requirement and service level constraints. Moreover, the 

manufacturers’ risk-averseness is also accounted for in the production planning 

optimization using Conditional Value at Risk (CVaR) of the manufacturer’s loss 

function.  

The primary contribution of this chapter is incorporating the “Energy-Performance” 

measure in the production planning optimization, which leads into the explicit 

inclusion of physics-based specifications, process control schemes, demand patterns 

and a host of other variables. We propose Scenario Generation approach to solve the 

optimization problem and provide experiments in which the formulation is applied to a 

day ahead production planning for two distinct “Energy-Performance” profiles. 

Furthermore, the impact of various electricity pricing schemes is tested for 

performance of the model using two electricity pricing schemes, namely Real Time 

Pricing (RTP), or spot pricing, and Time of Use (TOU) pricing schemes. 
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1.3.1. Business Value-Driven Asset Management for Building Energy Efficiency 

Optimization: 

In Chapter 3, we address the energy efficiency optimization at the building level and 

argue that there is a significant potential for energy savings through effective asset 

management practices (i.e. Optimal Maintenance planning). Thereby, we provide a 

model to optimally plan maintenance strategies for the purpose of reducing energy 

consumption while ensuring that building performance requirements are met. We 

present the maintenance planning as a cost minimization problem, with three main cost 

elements, namely maintenance cost, “Business Value” cost (i.e. Penalty cost), and 

asset energy cost. We use building energy simulation approach to determine the assets’ 

energy cost element and use U.S. Department of Energy’s EnergyPlus simulation 

package for this purpose. Moreover, to ensure that building performance requirements 

are accounted for, we introduce a new term, asset “Business Value”, into the 

maintenance planning, which is defined as the economic consequence of asset failure 

or performance degradation. A novel model is provided to measure the “Business 

Value” of energy consuming assets, using a modification of the classical Analytic 

Hierarchy Process (AHP) method and occupant thermal comfort analysis. This model 

provides methods to determine easy to measure outcomes of asset degradation,  such 

as replacement/repair costs, as well as outcomes that are not easily quantifiable, such 

as building zones’ function loss, occupant dissatisfaction, and productivity loss. The 

maintenance planning is formulated as a multi-objective stochastic optimization 

problem (MOSOP) with binary decision variables defining the optimal maintenance 

option applied to building energy assets. Sources of stochasticity in this optimization 
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problem are weather profile, asset failures and a number of other asset specifications 

such as load profile. The contributions of this chapter are twofold: (1) Integrating the 

theory of reliability and asset management with building energy simulation. (2) 

Incorporating the energy consuming assets’ business value, into the energy and 

performance optimization model. 

1.3.2. Network Energy Efficiency Optimization in Industrial Systems: 

In Chapter 4, an integrated view for a manufacturing facility is adopted and energy 

efficiency optimization is formulated as a network optimization problem. Given a set 

of feasible energy saving solutions for nodes of such a network, the objective is to 

define the share of energy saving for each node, according to appropriate economic, 

energy and performance requirements. We argue that dynamic interdependencies, in 

terms of “Energy Consumption” and “Performance”, exist between production 

systems, equipment and facility’s technical services; thus, we present an innovative 

framework to model and effectively capture such interdependencies between 

components of a manufacturing environment. “Performance” requirements at node 

level are measured in terms of appropriate Key Performance Indicators (KPI). By 

integrating these KPIs into the optimization process, we ensure feasible energy 

reduction according to industry specifications. The conceptual framework and 

optimization model are generic, but calculation details are application dependent. 

Therefore, we will use a case study that includes a manufacturing facility with a 

production line and building services including Heating, Ventilation and Cooling 

(HVAC) system, to demonstrate the modeling approaches. Furthermore, borrowing 

from the concept of “Specific Energy Consumption” in the machining operations, in 
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this chapter, we present models to define the “Energy-Performance” profile, for the 

case of a single and multiple machine(s) manufacturing processes. In order to capture 

the optimizations parameters and energy consumption at node levels, simulation 

approach is used.  

Primary contributions of this chapter are: (1) providing a framework for modeling 

dynamic energy and performance interdependencies between components of an 

industrial environment. (2) Incorporating such interdependencies into the energy 

efficiency optimization model. The modelling approach introduced is novel and unique 

in that it integrates the different aspects of an industrial system into a single model and 

explicitly includes the building energy dynamics, labor productivity and thermal 

comfort. 

1.3.3. Data and Metering Infrastructure for Energy Efficient Industrial Systems:  

In chapter 5, we introduce appropriate metering and modeling infrastructure to support 

the work in the previous chapters. The objective is to define a framework to construct a 

distributed information and computation engine to calculate the energy, material and 

information flow of a consumer product over the two dimensions of “Lifecycle” and 

“Supply Chain”. These two dimensions construct a network in which energy content 

calculation is performed using hierarchical “Top-down” mapping of energy flow. At 

the network atomic level (representing industrial or business processes), energy 

consuming activities as well as data requirements at process or activity level are 

defined. The question of data metering infrastructure as a critical and key component 

of such energy content calculation is also addressed. Overall, the approach is to relate 

system information and metrics on multiple scales and levels of complexity and to 
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integrate this input within a dynamic information processing and knowledge 

generating framework. Data sourcing and metering infrastructure proposed here 

consists of three classes of metering structure: Physical Metering, Virtual Metering, 

and Simulated Metering. 
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Chapter 2 

2. Energy-Performance as the Driver for Optimal Production 

Planning 

2.1. Introduction 

The industrial sector in the U.S. currently accounts for 24.5 quadrillion Btu in 2013, 

representing approximately 34% of total energy consumption and the consumption of 

energy by the sector has almost doubled over the last 60 years. Furthermore, industrial 

energy consumption is expected to increase at an annual rate of 1.3% from 2013 to 

2025 [3]. Given mounting concerns related to climate change as well as increasing cost 

of energy, resulting from likely taxes and regulations related to carbon emissions and 

increasing energy demands of developing countries, manufacturing enterprises is 

facing growing pressure to reduce their energy consumption. Production processes and 

manufacturing activities play a major role in industrial energy consumption, 

responsible for approximately 90% of energy consumption. For manufacturing 

enterprises, the share of energy costs has been on the rise among the overall production 

costs. This trend is expected to accelerate and be even more pronounced in the future 

due to the increasing energy demands [4]. However, balancing energy efficiency and 

production targets are challenging mainly due to rigorous demand requirements the 

manufacturers encounter. In order to ensure such balance, in this chapter, we integrate 

a two-dimensional measure, namely “Energy-Performance”, into traditional production 

planning to achieve energy efficiency in manufacturing processes. The resulting 
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production plan simultaneously incorporates machine-level specifications as well as 

process-related measures. 

At manufacturing machine-level, the “Energy-Performance” is described according to 

the definition of “Specific Energy” which is the energy used per single product or a 

certain number of pieces. In case of continuous or batch processes, energy per batch or 

per some certain volume can be used. “Specific Energy” of single machines has been 

addressed extensively in academic and industry literature [5-10]. As proposed by 

Gutowski et al. (2006), a machine’s total electricity consumption can be decomposed 

into a fixed part, corresponding to the total standby power, and a variable part, 

representing the value added process such as material removal [11]. The following 

formulation is commonly used: 

𝐸𝑠𝑝𝑒𝑐 =
𝑃0

𝜐̇
+ 𝑘 

(2.1) 

Where 𝑃0 is the fixed part and 𝜐̇ represents the actual processing rate. For a machining 

operation in a milling machine, this rate is denoted as Material Removal Rate (MRR) 

and is typically measured in 𝑐𝑚3

𝑠⁄  units. Equation (2.1) can also be used to represent 

“Energy-Performance” of other machining processes with discrete loading such as 

bending and press brake operations. Figure  2.1 presents for a milling operation the 

“Energy-Performance” as a function of MRR. 
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Figure  2.1: Energy-Performance for a Milling Machine 

Furthermore, for a given machine, “Energy-Performance” varies depending on the type 

of materials processed or products produced. Machine’s “Energy-Performance” is also 

correlated with degradation and tool wear, as depicted in Figure  2.2 [12]. With longer 

cutting time, the tool-wear increases resulting in higher energy consumption rate 

during machining. The “Specific Energy” values can be more than double at higher 

tool wears. 

 

Figure  2.2: Specific cutting energy induced at different tool wear [12] 
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Extending to process level (e.g. Multiple machines working in series), the “Energy-

Performance” depends not only on the individual machines’ specifications (e.g. 

Process rate or MRR), but also on the type of process control strategies practiced. A 

control strategy normally takes advantage of production process’ elasticity, defined in 

terms of slack times, to optimize the process. Such slack times depend on a number of 

factors, including machines’ operational modes flexibility and demand 

frequency/volume. An ideal control strategy reduces the slack times to zero and 

potentially lead to optimal process with substantial energy savings. Such process 

would have a steady operation with no idle time in between. However, most control 

strategies are far from ideal; therefore various demand patterns (e.g. Different demand 

frequencies and volumes) generate different slack times, which in turn generate 

random “Energy-Performance” profiles. This suggests a stochastic “Energy-

Performance” profile for any given process control scheme. In the succeeding chapters, 

we provide details on “Energy-Performance” calculation of industrial production 

processes and provide an illustrative case of a process consisting of three consecutive 

machine tools. The corresponding “Energy-Performance” profiles, determined as a 

function of the products processed per unit time, are reported for two distinct control 

schemes. Note that for the purpose of control strategy comparison, an average 

“Energy-Performance” can be used [13]. 

Given the average “Energy-Performance” profile and process throughput, the energy 

consumption patterns are determined for any production system. In order to construct 

the “Energy-Performance” curve and carry out the energy calculation, metered or 

summary data on machine/process power rates, energy intake and performance 
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features are required. Salahi et al. (2013) define several metering approaches, namely, 

physical, virtual and simulated metering. In physical metering approach, data are 

directly obtained from sensors or smart meters. Historical data along with inferential 

statistical techniques using facility utility bills, accounting databases, and equipment 

specification and performance data may be used to derive the virtual metered data. In 

the absence of meters and historical data, simulation may be utilized to obtain the 

necessary information [14]. 

With the foregoing discussion in mind, the primary contribution of this work is 

incorporating the “Energy-Performance” measure in the optimal production planning, 

which leads into the explicit inclusion of physics-based specifications, process control 

schemes, demand patterns and a host of other stochastic variables. Furthermore the 

presented production plan takes into account volatile electricity pricing strategies. It is 

argued that adjusting the production with the knowledge of the cost of energy can lead 

to a significant cost savings in the electricity bills. In the absence of risk-aversion 

measures, an optimal production plan policy may incur significant economic losses 

with a positive probability. For that matter, in order to alleviate such risks we 

incorporate some risk measures, namely Conditional Value at Risk (CVaR), in the 

planning constraints. 

2.2. Literature Review 

In recent years the economic potential of energy-aware production planning in 

industrial processes has been recognized by a number of institutions and authors which 

has largely centered on scheduling with energy considerations. For the operation of a 

single machine, Mouzon et al. (2007) [15] study the scheduling of a CNC machine in a 



16 
 

 

machine shop in order to minimize total energy consumption. They reported that up to 

80% of the total energy consumed during idling, start up, and shut down could be 

saved if the machine was turned off until needed, instead of being left on all the time. 

In a follow-up work, Mouzon et al. (2009) [16] proposed a metaheuristic framework to 

compute schedules that minimize the total energy consumption and the total tardiness 

on a single machine. At the process level, a number of research works addressed the 

energy-aware scheduling using a flow shop problem that considers several objective 

optimizations including energy consumption, productivity and make span. For 

example, an optimal scheduling procedure for vehicle sequencing has been proposed 

by Wang et al. (2009) [17] to reduce energy consumption in an automotive paint shop. 

Along with energy consumption reduction, it was found that the paint quality can be 

improved and repaints can be reduced if appropriate batch and sequence rules are used. 

Other research utilized methods such as metaheuristic randomized neighborhood 

search algorithm and branch and bound methods and genetic algorithm solve such the 

scheduling problems [18-21]. The work by Chen et al. (2013) investigates energy 

reduction in serial production systems through efficient scheduling of machine startup 

and shutdowns and discussed the tradeoff between productivity and energy-efficiency 

in such systems [22]. 

Traditionally, manufacturing enterprises pay flat rates for each kilo Watt-hour (kWh) 

of electricity they consumed. However, in recent years, many markets have been 

created in order to deal with trade and supply of the electricity and to express the real 

price of energy. This changed the business model of manufacturers and their energy 

purchasing policies. Different types of piecing schemes, namely “time of use” contract 
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(TOU, on and off peak) and day-ahead market, which provides hourly varying price, 

have started to gain popularity. Integration of such energy management contracts with 

scheduling in the steel making industry is discussed in the research by Labrik (2014) 

[23]. Wang et al. (2013) proposed a schedule to control the status of the machines in a 

manufacturing system according to a TOU-based electricity price model under the 

production target constraint [24]. As opposed to this control perspective, in another 

related paper, the authors address the electricity cost as a function of manufacturing 

system parameters and the TOU to be used in profitability investigation energy pricing 

scheme [25]. Most of the researches in the energy-aware production planning focus on 

modeling of operational transitions that result from switching the operating modes 

when adjusting production planning according to time-dependent electricity pricing 

schemes [26]. In this chapter, we rather utilize the “Energy-Performance” measure in 

the conventional production planning. Borrowed from machine-level, this measure 

takes into account type of machinery used, products being produced and the process 

control strategies practiced. This chapter aims to provide an energy-aware production 

planning model that helps decision-makers optimize their production schedules with 

respect to fluctuations in electricity prices in order to reduce operating costs. The 

model is subject to (stochastic) production requirement as well as service level and risk 

constraints. 

Risk management is not a new topic in production planning specifically in the area of 

the production plan and inventory modelling. A number of authors have incorporated 

financial risk measures, namely Value at Risk (VaR) and CVaR (Conditional Value at 

Risk) into classical inventory models. For instance, Tapiero et al. (2005) considers a 
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classic inventory model which minimizes VaR [27]. Jammernegg et al. (2007) consider 

CVaR in a newsvendor problem [28]. Ahmed et al. (2009) investigate a coherent risk 

measure for both a single period newsvendor problem and a multi-period inventory 

control problem [29]. Zhang et al. (2009) expanded these models by addressing both 

expected values (losses, costs) and risk-aversion [30]. In this chapter we have 

incorporated Zhang et al.’s CVAR calculations as a risk measure in our production 

planning optimization model. 

The remainder of this chapter is outlined as follows: The production planning problem 

is formulated next, followed by solution approach in section 2.4. In order to illustrate 

the applicability of the production planning, optimization model, a set of experiments 

is carried out in section 2.6 in which the optimization formulation is applied to a day 

ahead production planning for two distinct “Energy-Performance” profiles. The impact 

of various electricity pricing schemes is tested for performance evaluation of the model 

using two electricity pricing schemes, namely Real Time Pricing (RTP) or spot pricing  

and Time of Use (TOU) pricing schemes. The chapter concludes with model 

limitations, concluding remarks and an outlook on the future work. 

2.3. Problem Statement 

We start with nomenclature: 

𝑞𝑡 = Production quantity for period 𝑡, decision variable 

𝑇 = The length of the planning horizon, positive integer 

𝐼𝑗= inventory level at the end of period 𝑡, 𝑡 = 1,2, … , 𝑁 

𝜁𝑡 = Demand in period 𝑡, a continuous stochastic variable 

𝑃𝑡= Unit selling price in period  𝑡 
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𝑏𝑡= Unit shortage (backorder) cost for unsatisfied demand in period 𝑡 

ℎ𝑗 = Unit inventory holding cost in period 𝑡 

𝐸𝑡= Specific energy consumption in period 𝑡 (kWh/item) 

𝑒𝑡= Unit energy price in period 𝑡 ($/kWh) 

𝜋𝑡(𝑞𝑡, 𝜁𝑡) = Profit realized during period 𝑡 

𝛱(𝒒, 𝜻)= total profit realized over entire planning horizon 

𝒒 = production vector for the entire planning horizon, 𝒒 = {𝑞1, 𝑞2, … , 𝑞𝑇} 

𝜻= Demand vector for the entire planning horizon, 𝜻 = {𝜁1, 𝜁2, … , 𝜁𝑇} 

𝐼𝑡
𝑈= Storage capacity for period t 

𝑃𝑡
𝑈= Production capacity for period t 

α = A threshold that the profit 𝛱(𝒒, 𝜻) is greater or equal to 

β = The degree of risk-aversion of the decision-maker, 𝛽 ∈  (0, 1] 

𝜔 = a constant which CVaR is less than or equal to. 

Energy-aware production planning is a stochastic optimization problem with 

probabilistic constraints. Let us consider an industrial system where demand is random 

and the decision on production rate  has to be made before the demand is realized. The 

objective is to minimize the expected loss and restrict the risks of loss exceeding a 

certain level. The following assumptions are made: 

 The Planning horizon is finite. 

 Cost factors are deterministic and assumed to be constant over the planning 

horizon except for electricity cost coefficient. 

 For the purpose of model generality, the demand, shortage and production 

quantities are continuous. 
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 Shortage with full backordering is allowed. 

 Inventory level at the beginning of the planning period is equal to zero. 

The length of each planning period is considered to be an hour. The inventory level is 

reviewed periodically to determine quantity to be produced in the next period in order 

to meet the demand in that period. As depicted in Figure  2.3, the inventory level, 𝐼𝑡, is 

checked at the beginning of each time period t ∈ {1,…,N}, and depending on demand, 

𝑞𝑡 is produced to replenish the inventory.  The demand for the period, 𝜁𝑡, is realized at 

the end of each period. The portion of unsatisfied demand (shortage/backorder) in 

period t is represented by 𝑏𝑡 and is backordered in the following periods. The 

inventory level at the end of each period is 𝐼𝑡, and is given by: 

𝐼𝑡 = 𝐼𝑡−1 + 𝑞𝑡 − 𝜁𝑡 ,   ∀𝑡 ∈ 𝛵 (2.2) 

 

Figure  2.3: The inventory dynamics in the planning horizon 

Production cost, denoted by 𝑐𝑡 Consists of the labor and raw material cost per unit 

produced. In the event of stock-out the owners encounter shortage or backorder cost of 

𝑏𝑡. Moreover, excess inventory at the end of each period, is subject to the holding cost 

of ℎ𝑡. Lastly, the product is sold to the customers at the unit price st. Hourly energy 

consumption (𝐸𝑡 measured in [kWh/qt]) is calculated as a function of the 𝑞𝑡 using the 

“Energy-Performance” Profile: 
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𝐸𝑡 = Ę(𝑞𝑡) (2.3) 

Here, the market demand is assumed to be a random variable denoted by ζ(.), where ζ: 

Ω →Ξ ⊂ ℝ is defined on a probability space (Ω, ℱ, P) with a density function p(.) and 

cumulative distribution function P(.). Let total profit realized during each time period 

be  𝜋𝑡(𝑞𝑡, 𝜁𝑡) when the demand is 𝜁𝑡: 

𝜋𝑡(𝑞𝑡, 𝜁𝑡) = 𝑝𝑡𝑚𝑖𝑛{𝐼𝑡 + 𝑞𝑡 , 𝜁𝑡} − ℎ𝑡𝑚𝑎𝑥{𝐼𝑡+1, 0} − 𝑏𝑡𝑚𝑎𝑥{−𝐼𝑡+1, 0} − 𝑐𝑡𝑞𝑡

− 𝐸𝑡𝑒𝑡𝑞𝑡 

(2.4) 

Hence the total profit over the N time periods will be: 

𝜫(𝒒, 𝜻) = ∑ 𝜋𝑡(𝑞𝑡, 𝜁𝑡)

𝑁

𝑡=1

 

(2.5) 

Our focus here is the loss function, therefore we consider: 

𝑱(𝒒, 𝜻) ≔ − 𝜫(𝒒, 𝜻) (2.6) 

When 𝐽(𝒒, 𝜻) < 0, the process owner obtains a profit of −𝐽(𝒒, 𝜻). The decision 

problem is to find the optimal production quantity to minimize the total loss in such 

way to reduce the energy costs associated with the production process. In other words, 

optimally shift the energy intensive production plan to time periods with lower 

electricity cost to reduce energy cost while satisfying service level and production 

constraints. The constraints are as follows: 

The inventory levels are constrained by the storage capacities (𝐼𝑡
𝑈): 

0 ≤ 𝐼𝑡 ≤ 𝐼𝑡
𝑈   ∀𝑡 ∈ {1, … , 𝑇} (2.7) 
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Moreover, the production amount in each period cannot exceed the limit specified by 

the production capacity (𝑃𝑡
𝑈): 

0 ≤ 𝑞𝑡 ≤ 𝑃𝑡
𝑈    ∀𝑡 ∈ {1, … , 𝑇} (2.8) 

Conditional Value at Risk (CVaR) is used here as an appropriate risk measure, which 

is defined as the expected value of tail distributions of losses. For a risk-averse owner 

the β-level CVaR is the expected loss, conditioned on the loss being lower than the β-

level VaR over a given period. In the case of loss function here, the β-level VaR can be 

defined using the probability of total loss, 𝐽(𝒒, 𝜻), that is less than or equal to a 

threshold α: 

𝜑𝛽(𝐽(𝒒, 𝜻)) = 𝑚𝑖𝑛{𝛼 ∈ ℝ|ℙ[𝐽(𝒒, 𝜻) ≤ 𝛼] ≥ 𝛽} (2.9) 

The quantity 𝜑𝛽(𝐽(𝒒, 𝜻)), is the VaR which is the β-lower quantile of the loss 

function, where the parameter β is the prescribed confidence level and is typically set 

at %5. Using Rockafellar et al. (2002)’s definition, CVaR is defined as the expected 

value of 𝐽(𝑞, 𝜁) when  𝐽(𝒒, 𝜻) ≤ 𝜑𝛽(𝐽(𝒒, 𝜻))[31]. 

Define 𝜙(𝐽(𝒒, 𝜻)) = [𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝛽 − 𝑡𝑎𝑖𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐽(𝒒, 𝜻)]. Assuming 

demand has a density function p(ζ), the CVaR can be written as: 

𝜙(𝐽(𝒒, 𝜻)) =
1

1 − 𝛽
∫ 𝐽(𝒒, 𝜻)𝑝(𝜁)𝑑𝜁

𝐽(𝒒,𝜻)≥𝜑𝛽(𝑞)

 
(2.10) 

It is proved that 𝜙(𝐽(𝒒, 𝜻)), can be defined by Krokhmal et al. (2002) [32]: 

𝜙(𝐽(𝒒, 𝜻))  = min
𝛼∈𝑅

(𝛼 +
1

1 − 𝛽
𝐸[(𝐽(𝒒, 𝜻) − 𝛼)+]) 

(2.11) 
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Where [𝑎]+ denotes the max-function max{a,0}. Given: 

𝐹𝛽(𝑞, 𝛼) = 𝛼 +
1

1 − 𝛽
𝐸[(𝐽(𝒒, 𝜻) − 𝛼)+] 

(2.12) 

In this problem, the risk constraint ensures that the mean values of the worst 𝛽 % 

losses are limited by some value 𝜔, chosen by the owner of industrial process. Hence, 

the optimization problem can be written as: 

           min
               𝑞∈𝑄

𝐸[𝐽(𝒒, 𝜻)] 

𝑠. 𝑡.           min
             𝛼∈𝑅

𝐹𝛽(𝑞, 𝛼) ≤ 𝜔 

0 ≤ 𝐼𝑡 ≤ 𝐼𝑡
𝑈   ∀𝑡 ∈ {1, … , 𝑇} 

0 ≤ 𝑞𝑡 ≤ 𝑃𝑡
𝑈    ∀𝑡 ∈ {1, … , 𝑇} 

(2.13) 

2.4. Solution Approach 

Scenario generation approach may be used to solve the optimization problem presented 

in the previous section. The solution approach is broken down into two steps. First, 

Monte Carlo simulation is used to create scenarios and generate hourly demand and 

electricity price random variables. Then we use these random variables to find the 

optimal inventory strategy using large-scale optimization (MINLP) that seeks to 

minimize loss function subject to minimized tail risk.  When using Monte Carlo to 

simulate the distribution the CVaR equation reduces to a discrete sum; therefore, 

Equation (2.12) is re-written as: 
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𝐹𝛽(𝑞, 𝛼) = 𝛼 +
1

𝑛(1 − 𝛽)
∑[(𝐽(𝒒, 𝜻) − 𝛼)+]

𝑛

𝑖=1

 
(2.14) 

Minimizing this function minimizes the CVaR. Krokhmal et al. (2002) suggest 

dropping the minimization over α in the constraint in Equation (2.13) [31]. Therefore, 

we rewrite the risk constraint as follows: 

𝛼 +
1

𝑛(1 − 𝛽)
∑[(𝐽(𝒒, 𝜻) − 𝛼)+]

𝑛

𝑖=1

≤ 𝜇 
(2.15) 

The constraint in (2.15) is not exactly a CVaR constraint, but rather a CVaR-like 

constraint. This optimization problem can be solved after linearizing the constraint as a 

MILP using commercial software such as LINGO. 

2.5. Sensitivity Analysis and Validation 

In this section the impact of some of the most important parameters on the production 

planning optimization is evaluated for validation and sensitivity analysis purposes. 

Multiple designs of experiment were set up, each with different combination of 

parameters and the optimization model was run for each input combination and the 

outcomes were compared. 

2.5.1. Impact of Holding Cost Coefficient 

The first set of sensitivity analysis scenarios investigates the impact of holding cost 

coefficient on the output of the optimization model. A reference case is considered 

where the electricity price changes in a 24 hour period between the two rates and 

demand have low volatility. All cost coefficients are kept constant between the 

scenarios except for the holding cost coefficient, which is changed by 4% and 6%.  
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Figure  2.4: (a) Production Rate (b) Inventory Level vs. Electricity Price–Holding Cost 

Coefficients scenarios 

As demonstrated in Figure  2.4, in order to avoid substantial electricity costs, the 

production rate decreases during hours with higher electricity price and the level of 

inventory increases just before and during these time periods. This behavior is 

common in all the scenarios; however, the higher the holding cost coefficient, the 

lower the corresponding scenario’s inventory level would be. 
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2.5.2. Impact of Backorder Cost Coefficient 

The second set of validation scenarios aims at evaluating the impact of backorder cost 

coefficients. 

 

Figure  2.5: (a) Production Rate (b) Inventory Level vs. Electricity Price–Backorder 

Cost Coefficients scenarios 

Similar to previous scenarios, electricity price (𝑒𝑡) fluctuates with two rates. The higher rate of 

electricity price dominates the production cost coefficient (𝑝𝑡) by 80%. However, 𝑝𝑡 dominates 

lower rate of electricity price by 40%; Moreover, both production cost and electricity cost 

coefficients dominate the holding cost coefficient (ℎ𝑡) considerably; hence, it is more desirable 
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to produce and stock the inventory during periods with lower rates of electricity price. The 

impact of backorder penalty is examined and the results are summarized in Figure  2.5. It can 

be seen how the production rate is lowest throughout the time period for the case of no 

backorder penalty (𝑏𝑡 ≅ 0) to minimize the total loss while satisfying service level constraints. 

As, 𝑏𝑡 rises (𝑏𝑡  ≅ 𝑒𝑡 & 𝑏𝑡 > 𝑒𝑡), the production rate increases to avoid shortage. 

2.5.3. Impact of Energy-Performance Profile 

In this section we investigate how the variations in “Energy-Performance” profile is 

likely to impact the decision making using the optimization model introduced in 

section 2.3. This is particularly important when making decisions about modifying an 

existing control strategy that governs an industrial system in order to achieve energy 

saving. Changes in the control strategy obviously impact the “Energy-Performance” 

profile which in turn modifies the production planning. An industrial process is 

considered in which specific energy consumption changes linearly with the throughput 

rate. Cost coefficients are proportionally distributed and none of these coefficients 

dominate the others. In order to evaluate how the production plan is likely to change 

according to the modification in the “Energy-Performance” curve, the slope is 

increased by %1.5 and %3.5, while all other cost coefficients and service level 

constraints remain constant, as depicted in Figure  2.6. As expected, the daily 

production volume declines when switching from case 1 to case 3, so as to reduce 

energy consumption and minimize the total loss, while maintaining within demand 

requirement constraints. 
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Figure  2.6: “Energy-Performance” Profiles 

Figure  2.7 presents the average hourly energy consumption for the three cases studies 

here. As expected the average hourly and total energy consumption in case 2 and 3 

rises by %8.5 and %78 respectively when compared to case 1. The total loss values are 

also considerably impacted by changes in the “Energy-Performance” patterns. This is 

mainly due to higher total energy costs per unit produced. The average loss in cases 2 

and 3 shows an approximate%5 and % 21 increases from losses in case 1. 

2.6. Experiments 

With electric power industry’s transition toward smarter grid advancement, many 

utility companies are offering new tariff plans in order to increase the elasticity of 

electricity consumers and moderate the extreme demand variation [33]. However, 

manufacturing customers’ participation in such programs is subject to how 

economically sound the offered pricing schemes are. In this section, the optimization 

model presented earlier is used to evaluate the impact of distinct electricity pricing 

schemes on the production plan for the case of a single machine operation as well as a 

multiple machine industrial process. 
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Figure  2.7: (a) Production Rate vs. Electricity Price (b) Hourly Energy Consumption –

“Energy-Performance” Scenarios 

Two time-varying electricity price plans are addressed here: (1) Time-of-Use (TOU) 

rates have different per unit prices ($/kWh) for usage during different block of time. 

The TOU rates analyzed in this section have two prices for peak and off-peak periods. 

(2) Real-time pricing (RTP) or Spot price scheme, in which rates vary continuously in 

a way that directly reflects the wholesale price of electricity rather than a pre-set price. 

The optimization model is formulated as a linear programming, solved using 

commercially available solver (i.e. LINGO) and is used to answer which of the two 
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pricing incentives offered is economically sound and achieve savings in electricity cost 

without compromising the throughput. The risk-aware decision maker also intends to 

restrict the 5% (i.e. β=0.95) of worst losses, according to the CVaR risk constraint. 

While the model can incorporate any probability distribution type for demand and 

electricity price variables, the generation of scenarios poses limitations on how much 

of these distributions can actually be experienced in a typical industrial environment; 

therefore, scenario generation is performed using the volatile hourly electricity pricing 

data on a day-ahead basis from actual historical data. Moreover, the hourly demand 

comes from dynamic small/medium industrial load profiles [34]. Let us consider the 

case of a single machine process first in which discrete loading is applied, such as a 

bending operation. The typical production modes of such a machine stand-out as: the 

work-mode, the stand-by and the OFF-mode. When in stand-by, the machine remains 

in idle operation, but still consumes energy. Santos et al. (2011) used Equation (2.1) to 

calculate the specific process energy as a function of the throughput [35]. For discrete 

loading operations in this case, the process rate (𝛖̇) is described as a function of the 

frequency of production cycles. Assuming the cycle time to be an hour, we have used 

the function reported by Santos et al. to define the “Energy-Performance” curve to be 

used in the production planning optimization as illustrated in Figure  2.8. The day-

ahead production plan for the case of a single machine based on a 3-year electricity 

price and load profile data is illustrated for RTP and TOU pricing in Figure  2.9 and 

Figure  2.10 respectively. As it can be observed in Figure  2.9, during periods with lower 

electricity rates, the production volume rises to avoid substantial energy costs as well 

as stock outs during peak electricity price periods. 
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Figure  2.8: “Energy-Performance” for a Single Machine during Bending as a Function 

of Throughput 

The inventory level is at its peak, just before the house with higher electricity price 

(i.e. t=6). Although the production rate seems to increase during periods with lower 

electricity price, demand volatility, holding costs as well as risk constraints limit 

substantial increases in production rate during t ∈ [10,20] hours. 

Next, let us experiment the TOU pricing in which electricity rate takes a peak and off 

peak rate depending on the time of the day. As displayed in Figure  2.10, the first 

production period has a lower energy price followed by a 12 hour peak price and the 

last few hours are subject to off-peak rates. In the case of a single machining operation, 

the production rate seems to have less stochasticity when compared to the previous 

pricing scheme due to lower volatility in electricity prices. 
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Figure  2.9: (a) Production Rate (b) Inventory Level vs. Electricity Price - Case of a 

Single Machine – Real Time Electricity Pricing Scheme 

It is further observed that the inventory level reaches the peak as we get to peak price 

times, followed by a steady drop during the peak price period. This is explained by 

growing demand in this time frame and limits posed by risk and service level 

constraints. The optimal results for the two pricing schemes suggest an increase in both 

total loss and the average losses in the worst %5 of the loss distribution (CVaR), when 

switching from TOU to RTP electricity pricing schemes. These results suggest that 

production planning under former pricing schemes is potentially more economically 

sound compared to the alternative and provides the process owner with an annual 

savings of as much as $12500 in energy expenses. 
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Figure  2.10: (a) Production Rate (b) Inventory Level vs. Electricity Price - Case of a 

Single Machine – Time of Use Electricity Pricing Scheme  

Let us investigate the two electricity pricing schemes for the production planning of a 

second industrial process which consists of multiple machining operations and has the 

“Energy-Performance” pattern illustrated in Figure  2.11 below. According to this 

“Energy-Performance” profile, as the total throughput in the industrial process 

increases, the amount of energy per unit produced also rises in a linear fashion. 

As depicted in Figure  2.12 and Figure  2.13, similar to the case of a single machine, the 

process rate and inventory level rise during periods with lower electricity rates in order 

to avoid shortage and also cut the excess energy costs. 
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Figure  2.11: “Energy-Performance” for a Multiple Machine Process as a Function of 

Throughput 

Both production and inventory levels are relatively more volatile under the TOU 

pricing scheme and reach up to production and inventory capacities just before the 

peak pricing period. This is mainly dictated by the “Energy-Performance” profile 

which indicates a substantial increase in energy consumption for higher throughput 

values; therefore, although producing in larger numbers increases the energy 

consumption, this cost is compensated for by the lower rate of electricity price during 

off-peak periods. Hence, in this case it is beneficiary for the process owner to produce 

and stock as much as possible during periods with higher rates in order to avoid stock 

out due to high rates of electricity price in peak periods. 

Similar to the results obtained in the case of a single machine, optimization results 

favor production planning using TOU profile. The manufacturer can obtain a 6% daily 

profit gain, equal to as much as $70,000 annual energy cost savings, using TOU 

pricing when compared to RTP pricing scheme. 
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Figure  2.12:  (a) Production Rate (b) Inventory Level vs. Electricity Price - Case of a Multiple 

Machines – Real Time Electricity Pricing Scheme 

The aforementioned day-ahead optimal production plan reports the decision making 

for a risk averse manufacturer (i.e. β=0.95). In order to examine how these results are 

likely to change according to the manufacturers’ risk-averseness, the two pricing 

schemes were run for a risk taker manufacturer (i.e. β=0. 3
1
) for both cases of single 

and multiple machine operations, and the results were compared. 

 

                                                           
1
 The decision maker intends to limit the expected value for %70 of worst losses, by a certain predefined 

value.  
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Figure  2.13: (a) Production Rate (b) Inventory Level vs. Electricity Price - Case of a 

Multiple Machines – Time of Use Electricity Pricing Scheme 

It is observed that for the risk taker owner of a single machine operation, the hourly 

production rate increases by as much as %19 and %26 when adopting RTP and TOU 

pricing schemes respectively. 

However, for the multiple machine operation, the decrease in manufacturers’ risk-

averseness leads into negligible changes in the optimal hourly production rate, which is 

explained by the “Energy-Performance” measure in Figure  2.11 as follows. Although 

the increase in β parameter allows for higher production rates, the substantial increase 

in energy consumption for higher levels of throughput cannot be compensated for with 
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the revenue obtained from additional production; thus, the optimal hourly production 

reveals a negligible sensitivity to β parameter in this case. 

Similar to the previous case of a risk-averse manufacturer, switching from RTP to 

TOU pricing suggests a profit gain in both single and multiple machine processes. 

Moreover, compared to the scenario with β=0.95, the risk taker process owner of a 

single machine operation, may potentially save as much as %20 and %25 in total 

losses using RTP and TOU pricing schemes respectively. As expected, such savings 

would be lower for the multiple machine operation (%3 and %7 for RTP and TOU 

pricing, respectively) due to relatively lower change in the production rate. The 

average production and inventory levels as well as The loss and CVaR values for 

single and multiple machines optimal planning under both pricing schemes are 

included in the appendix A. 

2.7. Conclusion  

In this chapter we have expanded the conventional optimal production planning by 

introducing a two-dimensional measure, namely “Energy-Performance”, into the 

modelling process. The definition of “Energy-Performance” is borrowed from 

“Specific Energy” at machine level, which is the energy used per single product or a 

certain number of pieces.  Expanding to multiple machine processes, “Specific 

Energy” calculation may be used to define the “Energy-Performance” profile as a 

function of process throughput. By incorporating this measure, the production planning 

will explicitly include physics-based requirements, demand pattern as well as a host of 

process and machinery parameters. We have formulated the problem as a MILP and 

introduced risk-averse constraints to ensure profitability of the production plan. 
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Sensitivity of the optimization problem to a set of parameters, namely cost coefficients 

and variations in the “Energy-Performance” curve, was investigated through several 

experiments. We have further argued that one of the applications of the presented 

optimization model is energy-aware production planning according to various 

electricity pricing schemes. Moreover, as an application of the optimization model, an 

energy-aware production plan is presented in which various electricity pricing schemes 

are incorporated. This application was demonstrated for a case of a single machining 

operation as well as a multiple machine industrial process. The illustrative example 

results suggest that switching to a “Time of Use” pricing scheme seem to be 

economically sound for both single and multiple machine industrial processes and lead 

to lower total economic loss as well as lower risk values. 
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Chapter 3 

3. Business Value-Driven Asset Management for Building Energy 

Efficiency Optimization 

3.1. Introduction 

With almost 97 quads consumptions, buildings account for approximately 41 percent of 

the primary energy consumption in the U.S. in 2015 [36]. Energy used by commercial 

and industrial buildings is responsible for about $200 billion in annual costs and creates 

nearly 50 percent of national emissions of greenhouse gases (GHGs) that contribute to 

global climate change. Moreover, within an industrial plant, facility and technical 

services (lighting, heating, cooling, air conditioning, office equipment, computers, etc.) 

which are responsible for maintaining the required conditions for “industrial process”, 

constitutes an important fraction of the total energy use. Energy reduction and efficiency 

practices in building facilities range from building design and plant-wide energy audits 

[37], to energy reduction in lighting and HVAC (Heating, Ventilation and Air 

Conditioning) systems as the most important components of technical services. Liu et al. 

(2013) present an energy efficient building design for an industrial plant to minimize the 

annual energy cost taking into account production scheduling and uncertainties such as 

weather conditions and energy prices while estimating the performance of the design 

[38]. Building energy management systems (BEMS) which control and monitor the 

building’s mechanical and electrical equipment such as ventilation, lighting, power 

systems, fire and security systems have also been used extensively for energy efficiency 

in facilities. 

https://en.wikipedia.org/wiki/Security_system
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In recent years due to intensification of energy consumption in HVAC systems, 

numerous studies have focused on improving performance and energy efficiency of such 

systems. These practices consist of optimal control strategies such as reset control, 

setback control, improves start-stop times and occupied time adaptive control as well as 

optimal configuration and component level energy efficiency improvements. Note that 

most researched focus on evaluation of temperature and humidity-based control systems 

[39-41]. For instance, Huang et al, investigated five energy management control 

functions, and evaluated using a variable air volume heating, ventilating and air 

conditioning, VAV-HVAC. Their result suggests that the optimal set point strategy is 

very useful in achieving energy efficient operation of HVAC systems [42]. A decision 

support model is presented by Doukas et al. (2007) which takes advantage of rule sets 

based on a typical building energy management system. This proposed decision support 

system is set to optimize building's energy operation, according to internal conditions and 

comfort requirements [43]. A number of scholars adopt simulation approaches for HVAC 

optimization and energy management. Fong et al. (2006) present a simulation-

evolutionary program coupling approach for effective energy management of HVAC 

system [44]. An automated control for a thermally-activated building system is 

investigated in the work by Gwerder et al. (2008) to optimally switch between heating 

and cooling [45]. 

While the aforementioned energy optimization approaches are certainly effective in 

achieving energy savings, most buildings are significantly net energy positive and 

consume far more energy compared to their optimal design and operation conditions. 

This condition specially worsens as the age of the buildings and their equipment increase. 
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This is mainly because in the absence of appropriate maintenance practices, a building 

designed and commissioned for “optimal performance” starts fading fast from energy 

efficient to energy intensive, immediately following the start of its service. Thus, asset 

management techniques and optimal equipment maintenance planning can potentially 

lead into substantial energy savings in building facilities. However, limited attention has 

been drawn to energy waste and performance degradation due to the lack of good state of 

maintenance practices and few studies have been conducted on the energy efficiency part 

of an asset management project. The benefits of combining asset management and energy 

management, including monetary savings, increased equipment reliability, reduced 

production cost and improved decision-making is addressed in the work by Chin et al. 

(2010) [46]. However, no mechanism is introduced to incorporate such energy 

management dimensions into current asset management practices. Wang et al. (2015) 

discusses a maintenance plan optimization problem for the energy efficiency purpose in a 

building energy efficiency retrofitting context. In their work they propose a corrective 

maintenance planning approach, where the corrective maintenance for malfunctioning 

retrofitted items in a building is involved [47]. While the suggested modelling approach 

is certainly a considerable improvement to a retrofitting project, there is still room for a 

considerable added value in terms of energy and cost savings by incorporating an 

effective preventive maintenance regime into an existing building asset management 

practice. Commercial asset management systems (e.g., IBM Maximo, TRIRIGA, etc.) 

have also been extensively popular among facility managers and real estate executives to 

manage their assets and reduce operational and energy costs [48]. 
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In this chapter, we integrate the existing asset management and reliability theory with 

building energy simulation technology to develop effective and optimal maintenance 

strategies for the purpose of reducing energy footprint of buildings while ensuring that 

building performance and business objectives are met. The optimality criteria take into 

account not only the building’s energy consumption, but also the “value” that the 

building assets generate with respect to building business objectives. An energy efficient 

asset with minimal stoppages due to failures or replacements, coupled with minimal 

business value loss would certainly generate high asset values. While the theory of 

reliability and asset maintenance is largely borrowed from the literature, the integration 

of these models with building energy simulation has not been addressed before. 

Moreover, the concept of directly integrating building business objectives into energy and 

performance optimization is an enhancement to the current asset management practices 

where penalties are assigned only when comfort constraints are violated [49]. The asset 

management methodology presented here is the foundation for a technology, Building 

Energy Asset Management (BEAM), developed by Rutgers State University of New 

Jersey. Note that for illustration purposes we focus solely HVAC assets and demonstrate 

the aforementioned models for components of such assets. 

This chapter outlines as follows: a brief overview of building energy simulation using 

EnergyPlus simulation packages is given in the next section. In section 3.2, we 

demonstrate a methodology, Business Value Model (BVM), to compute the building 

assets’ value derived from its business objectives. Next, a computationally efficient 

optimization algorithm is presented integrating building business and comfort 

requirements with maintenance planning to achieve energy efficiency. Finally, we 
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demonstrate the models through case studies and argue that while the maintenance plans 

seem intuitive, especially by experts, the details of these plans together with cost factors 

that are broken down into energy, maintenance and penalty cost, can significantly help 

achieve energy and cost savings. 

3.2. Building Energy Computation and Co-simulation Approach 

U.S. Department of Energy’s EnergyPlus simulation package is used to simulate building 

energy consumption. An application of EnergyPlus is configured according to the 

specifics of building enclosure, heating/cooling (HVAC) equipment, lighting, and 

average occupancy characteristics. Given weather input data, the EnergyPlus model, then 

generates a deterministic set of outputs on energy consumption of building assets. The 

stochasticity of asset failures can be programmed in a separate platform (i.e. MATLAB). 

The communication between the two platforms is accomplished by a MATLAB script 

package, MLE+ [50]. The MLE+ co-simulation is written in a script language and, in 

addition to providing input/output channel between the two applications, it synchronizes 

their executions with a common discrete time step.  At each time step, the variables 

corresponding to building thermal dynamics and performance computed by EnergyPlus 

are read from EnergyPlus through an “External Interface”. These variables are then 

passed to the core engine and used by “Asset Efficiency Degradation”, “Asset 

Reliability”, and “Maintenance Optimization” functions. The energy transfer or 

conversion efficiencies of assets are calculated based on their loads (instantaneous and 

cumulated). Random failure events are generated based on lifetime probability 

distributions defined by asset reliability models. The asset efficiency measures and 

availability indicators are then “injected” back to EnergyPlus for the next time step 
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simulation. Table  3.1 lists the notations used throughout the rest of this chapter and their 

explanation.  

Table  3.1: Nomenclature 

(T;k;l) Maintenance policy, k= maintenance type; l =freq.; T=season 

xi,Tkl Binary decision variable 

X Vector of Maintenance policy 

𝑆(. ) Total building energy consumption 

𝐶(. ) Total cost of maintenance & penalty 

𝑈 Control variable(s) (heating & cooling set point 

Φ Random load, function of weather & operation factors (e.g. 

occupancy) 

𝜔(𝜑, 𝑡) Random failure event at time t, function of load 

𝑔(𝑋) Total preplanned maintenance cost 

ℎ(𝑋, 𝜔(𝜑, 𝑡))     Total unplanned reactive maintenance cost 

𝑝(𝑋, 𝜔(𝜑, 𝑡)) Total penalty cost due to asset failures 

𝐸𝑃𝐼𝑖(𝑋, 𝜔(𝜑, 𝑡)) Asset i’s energy performance improvement due policy X 

𝐶𝑅𝑅𝑖,𝑇𝑘𝑙(. ) Reduction in unplanned cost as a result of maintenance option 

(T;k,l) on asset i 

𝐶𝑃𝑅𝑖,𝑇𝑘𝑙(.)       Penalty cost reduction as a result of maintenance option (T;k,l) 

on asset i 

𝐶𝑅𝐵𝑎𝑠𝑒𝑖𝑇
(. )      Unplanned maintenance cost for base maintenance option on 

asset i in season T 
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𝐵𝑙𝑖𝑚𝑖𝑡  Annual budget limit 

(𝑁(𝜔(𝜑, 𝑡))𝐵𝑎𝑠𝑒)𝑖 Number of failures for asset i in base maintenance option 

(𝑁(𝜔(𝜑, 𝑡))𝑇𝑘𝑙)𝑖 Number of failures in (T;k,l) for asset i 

𝐸𝑊     Energy weight matrix 

𝐷𝐺𝑇 Vector of average seasonal degradation of assets in season T 

𝐷𝐺𝑖𝑇 Average seasonal degradation of asset i in season T (element i of 

DGT)   

𝐵𝑉𝑀𝑖 Penalty per failure of asset i 

Rf Restoration factor 

(𝐶_𝑟𝑝𝑟)𝑖             Repair cost for asset i 

(𝐶_𝑟𝑝𝑙)𝑖           Replacement cost for asset i 

𝐶𝑃𝐵𝑎𝑠𝑒 𝑇𝑖
(𝜔(𝜑, 𝑡)) Penalty cost for base option on asset i in season T 

𝐶𝑃𝑅𝑖,𝑇𝑘𝑙(𝜔(𝜑, 𝑡))  Reduction in penalty cost due to option (T;k,l) on asset i 

3.3. Building Value Model (BVM) 

The priorities of the maintenance actions and budget appropriation are essential aspects 

of asset management practices to ensure reliable and efficient performance of assets and 

to provide continuous building functions without unplanned interruption. The value-

modelling approach introduced here, identifies the business value of physical assets and 

define the criticality of those assets with respect to a building’s purpose and functionality. 

Business value is defined in terms of economic loss due to failure or performance 
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degradation of an asset. Assets with higher business values are considered more critical 

and thus have higher priority for maintenance planning. Such business values can also be 

used as appropriate Key Performance Indicators (KPI) in other energy efficiency 

practices within the building facility as explained in Chapter 4. Examples of physical 

assets considered here are HVAC components: namely, centrifugal water cooled chiller, 

air handler’s supply and return fans, boilers and heat exchangers. 

Economic consequences of failure/performance degradation of building assets cover easy 

to measure outcomes,  such as replacement/repair costs, as well as outcomes that are not 

easily quantifiable, such as building zones’ functionality loss, occupant dissatisfaction, 

and productivity loss. BVM not only takes into account both such consequences, but also, 

allows for seasonality considerations in the asset business value calculations. Seasonality 

is defined based on weather conditions (i.e. Cooling vs. heating seasons) as well as 

building operation schedule and occupancy patterns (i.e. Periods of intensive/peak 

occupation and usage). The duration and timing of the cooling and heating seasons for a 

particular building is generally determined by its geographic location. 

Depending on the type of “Functional Tasks” performed in various building zones, two 

distinct  methods may be used to calculate the business value of assets serving each type 

of zone. The following steps are taken: 

1. Building zones are categorized based on the type of “Functional Tasks” performed 

in them as follows: a) zones that support consistent “Task-related” functions such as 

office spaces and zones housing the labor tasks b) zones with “Non-task-related” 

functions such as common areas and hallways. 
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2. The assets’ “Business Value” is defined by the economic consequence of losing 

Assets serving each zoning category during cooling and heating seasons at peak and 

off-peak usage periods. 

3. For assets that are shared among multiple zones, economic loss accounts for all the 

types of zones that are served by that asset. 

3.3.1. Asset Business Values for Task-related Functions 

For zones that involve “Task-related” functions, asset business value can be estimated 

using the percentage of the occupants’ performance (i.e. “Productivity”)  loss due to asset 

degradation/failure. Here we focus on degradation and the probability of failure of 

HVAC components. At the design stage, performance characteristics of HVAC 

components are calculated in order to ensure that Indoor Air Quality (IAQ) requirements 

are met. Kosonen et al. (2004) show that task related performance is significantly 

correlated with the human perception of thermal environment and that such perception, in 

turn, is dependent on temperature [51]. Any deviation from the optimum performance of 

HVAC components will result in deterioration of IAQ and loss of thermal comfort, with a 

resulting loss of occupant productivity. According to the ASHREA standard for “Thermal 

Environmental Conditions for Human Occupancy” (ASHRAE standard 55-2012) [52], 

thermal comfort is a condition of mind, which expresses satisfaction with thermal 

environment, assessed by subjective evaluation (i.e. Thermal sensation vote). It is a 

conscious feeling commonly graded into the categories, cold, cool, slightly cool, neutral, 

slightly warm, warm, and hot; and is related to the thermal balance of each individual 

human body considered as a whole. This balance is influenced by a number of physical 

and environmental parameters, namely the body’s metabolic heat production, physical 
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activity, clothing, air temperature, mean radiant temperature, air velocity and air humidity 

[52]. Thermal comfort can be estimated by a Predicted Mean Vote (PMV) index 

introduced by Fanger which is an index to predict the mean value of the votes of a large 

group of people on the 7-point thermal sensation scale ranging from -3 (very cold) to +3 

(very hot) [53]. ISO-7730 [54] and ASHREA provide algorithms to calculate PMV as a 

function of the parameters discussed earlier in this section. Suggested acceptable PMV 

limits in workplaces are within the range of −0.5 and 0.  We use the PMV index to 

quantify the thermal discomfort, caused by elevated or decreased air temperature, as a 

result of asset failure. It is assumed that the mean radiant temperature is equal to the air 

temperature [55]. Such temperature data may be extracted from temperature sensors. If 

physical temperature sensors are not economically viable, data can be collected using a 

building energy simulation tool such as DOE’s EnergyPlus simulation package. It is 

further assumed that asset failure has negligible impact on the air velocity and humidity. 

Physical activity and building occupants’ clothing parameters are defined according to 

the type of activities performed and type of clothing worn. PMV is then used to define a 

quantitative relationship between  occupants’ performance (i.e. “Productivity”) and 

thermal environment by means of regression analysis as discussed in the works of 

scholars namely Fanger and Gagge et al. (1972) (1986) [53][56]. This relationship is as 

follows: 

𝑃𝐿 = 𝑏0 + 𝑏1𝑃𝑀𝑉 + 𝑏2𝑃𝑀𝑉2 + 𝑏3𝑃𝑀𝑉3 + 𝑏4𝑃𝑀𝑉4 + 𝑏5𝑃𝑀𝑉5

+ 𝑏6𝑃𝑀𝑉6 
(3.1) 

Where 𝑃𝐿 in Equation (3.1) is the loss in percent of employee performance and b0 − b6 

are regression coefficients that can be obtained by experimental data sampling. 
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Occupants’ income  or income contribution is then used to derive a monetary value for 

the loss of an asset, due to productivity loss of building occupants for the duration of 

asset unavailability. The rationale for using salary is that employees are hired to earn 

money for their company, and when their performance decreases the income of the 

company decreases; thus loss of employees’ productivity can be used as a proxy with 

which to estimate the economic consequence of an assets’ loss and/or failure. 

3.3.2. Asset Business Values for Non-Task-Related Functions 

For zones where “Non-task-related” functions are performed, loss of an asset leads to 

measurable as well as intangible and “difficult-to-quantify” consequences such as 

occupant dissatisfaction or zone functionality loss. These intangible consequences can be 

considered in Business Value calculations on the basis of their contribution to the total 

economic consequence of assets’ loss. This economic value is inferred from management 

judgment. A modification of Analytical Hierarchy Process (AHP) introduced by Boucher 

et al. (2007) [57] can be used to capture the economic contribution of such intangible 

consequences as assessed by the building or facility management. Consider the three-

level hierarchy structure in Figure  3.1. The first level is the overall objective of the 

problem to be solved by AHP. The bottom level is the list of assets serving the zone 

under study to be evaluated through the AHP methodology. The second level is a list of 

criteria that is used to compare assets in terms of their criticality to the zone under study. 

Note that the criteria in level two represent measurable and “difficult-to-quantify” 

consequences of failure of assets. 
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Figure  3.1: Three Level Hierarchy for Asset Criticality 

The first criterion in level two of the hierarchy is the quantifiable economic consequence 

of asset failure. For instance, in conference rooms or auditorium zones, this economic 

consequence includes the average business value of an event that would be lost due to an 

asset failure.  However, the value of the second criterion (i.e. The percentage of 

dissatisfied people in the zone) is measured in percentage terms using the Predicted 

Percentage of People Dissatisfied (PPD) index [53]. PPD index is an indication of the 

percentage of people who could be expected to complain about the thermal quality of a 

given indoor environment. It is based on the assumption that people voting +2, +3, -2, or 

-3 on the thermal sensation scale are dissatisfied, and the simplification that PPD is 

symmetric around a neutral PMV [52]. Note that temperature fluctuations in a zone 

happen due to asset’s unavailability/degradation. PPD criterion also has economic value; 

however, this monetary value is not easily measurable. For Assets serving zones with 

“Non-task-related” functions, Business Value” is estimated as follows: 

1. The economic consequence of loss of business due to asset failure is measured in 

dollar terms. 

2. The percentage of thermally dissatisfied people is estimated using the PPD index as 

a function of PMV according to Equation (3.2). 
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 𝑃𝑃𝐷 = 100 − 95 exp (−0.03353𝑃𝑀𝑉4 − 0.2179𝑃𝑀𝑉2) (3.2) 

For each asset, a judgmental evaluation using an inverse of the traditional AHP method is 

applied to compute the contribution of the thermally dissatisfied people to the total 

economic consequence of asset failure. In this way, the model converts the levels of the 

criterion to a monetary scale. A brief review of this process, based on a method 

introduced by Boucher et al. (2007) [57] is included in the appendix B.  

3.4. Business Value Model - Case Study 

For illustration purposes, we will use an example model, “5-ZoneAir-Cooled.imf” which 

comes with the EnergyPlus installation. This model simulates a simple 5-zone building, 

with single floor and 5000 sq. ft. conditioned area. The HVAC system includes a variable 

air volume system, a hot water boiler, and an electric compression chiller with air-cooled 

condenser. The building simulation was executed over a period using 

USA_CA_San.Francisco.Intl.AP.724940_TMY3 weather file (National Solar Radiation 

Data Base). This building is used for recreational services and consists of an auditorium 

and a ballroom for public and private events as well as 3 office spaces for planning and 

organizing such events. Assuming one day of asset unavailability upon failure, indoor air 

temperature fluctuations is derived from simulation runs and is summarized in Table 1. 

Kosonan et al. (2004) investigated the productivity gain/loss due to changes in thermal 

comfort and delivered productivity as a polynomial function of PMV for a variety a 

number of office-related tasks [51]: 

 

𝑃𝐿 = 1.5928𝑃𝑀𝑉5 − 1.5526𝑃𝑀𝑉4 − 10.401𝑃𝑀𝑉3

+ 19.226𝑃𝑀𝑉2 + 13.389𝑃𝑀𝑉 + 1.8763 
(3.3) 
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In this chapter, we have used the PMV values and Equation (3.3)  to calculate the 

occupant productivity loss (PL) upon failure of assets serving office space zones. These 

values are then compared with the situation where assets are available. According to 

results in Table  3.2, the productivity loss attributable to thermal discomfort increases 

from %1.4 to %4.85 per employee due to chiller unavailability. 

Table  3.2: Seasonal Average Temperature, PMV and PL for Asset Availability and 

Unavailability by Asset 

Chiller (cooling season) Available Unavailable 

Temperature (̊C) 

PMV 

PL(%) 

Economic Loss Per Employee ($) 

23.75 

-0.52 

1.4 

280 

26.45 

0.18 

4.85 

970 

Boiler (heating season) Available Unavailable 

Temperature(̊C) 

PMV 

PL(%) 

Economic Loss Per Employee ($) 

20.95 

-0.45 

0.6 

120 

20.34 

-0.60 

2.7 

538 

Supply Fan (cooling season) Available Unavailable 

Temperature(̊C) 

PMV 

PL(%) 

Economic Loss Per Employee ($) 

23.75 

-0.52 

1.4 

280 

26.70 

0.40 

9.62 

1924 

Supply Fan (heating season) Available Unavailable 

Temperature(̊C) 

PMV 

PL(%) 

Economic Loss Per Employee ($) 

20.95 

-0.45 

0.6 

120 

20.69 

-0.52 

1.4 

280 

 

Assuming a $100 average daily income contribution (per employee), the cost of 

productivity loss increases from $140 to $485 when chiller is unavailable; therefore the 

economic loss per failure for chiller is estimated to be $345 per employee and $3450 for 
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total zones population
2
.  Economic loss per failure for the assets serving office zones in 

the case study are summarized in Table  3.3 below. It is worth to mention that the chiller 

and boiler are operational only during cooling and heating seasons respectively. Air 

handler’s supply fan is operational during heating and cooling seasons. Moreover, since 

these zones have fixed annual office hours (9:00AM-5:00PM), it is reasonable to 

consider equal economic loss due to employee productivity decrease in cooling/heating 

peak and off-peak usage seasons 

Table  3.3: Seasonal Economic Loss per Asset Failure for Office Space Zones 

Asset Economic loss per failure ($) 

Chiller (cooling season) 34,50 

Boiler (heating season) 20,90 

Supply Fan (cooling season) 82,20 

Supply Fan (heating season) 8,00 

 

Next, business value for assets serving auditorium and ballroom zones, is quantified 

using methods described in section 3.3.2 and summarized in Table  3.4. 

For an asset serving multiple zones, given the contribution of having “dissatisfied 

people”, to the economic consequence of asset loss, total “Economic Consequence” of 

asset failure is obtained according to Equation (3.4): 

 𝑇𝐸𝐶𝑖 = ∑ 𝑇𝐸𝐶
𝑖

𝑧𝑗

𝑧𝑗

 (3.4) 

Where 𝑇𝐸𝐶
𝑖

𝑧𝑗
 in Equation (3.4) is the economic consequence of failure of the asset in 

zone 𝑗. For instance in our case study, the chiller, boiler and supply fan serve the 

                                                           
2
 Total zones’ population is assumed to be 10 people. 
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ballroom and auditorium, thus total “Economic Consequence” of each asset failure 

should be summed over both zones. 

Table  3.4: Seasonal Values for Failure Consequences for Assets Serving Ballroom (top), 

Auditorium (bottom)  

Season 

 

Consequence      

Cooling Peak 
Cooling Off-

Peak 
Heating Peak 

Heating Off- 

Peak 

Chiller AHU Chiller AHU Boiler AHU Boiler AHU 

 

Business Value 

Loss  

10000 10000 3000 3000 14000 14000 40000 4000 

PPD (%) 7.15 8.35 7.15 8.35 12.5 10.65 12.5 10.65 

Season 

 

Consequence      

Cooling Peak 
Cooling Off-

Peak 
Heating Peak 

Heating Off- 

Peak 

Chiller AHU Chiller AHU Boiler AHU Boiler AHU 

 

Business Value 

Loss  

7000 7000 2000 2000 8000 8000 2000 2000 

PPD (%) 5.1 7.0 5.1 7.0 10.6 8.3 10.6 8.3 

 

Table  3.5 summarizes this result for ballroom and auditorium. Details on 𝑇𝐸𝐶
𝑖

𝑧𝑗
 

calculations using inverse of AHP method, is included in the appendix B. 

For assets serving both Task-related and Non-task-related zones, “Business Value” is 

obtained by adding up the economic consequence of an asset’s failure in all 

corresponding zones as presented in Table  3.6. In the case of our illustrative example, the 

business value of the three assets is calculated by summing the economic consequence of 

asset failure for offices as well as for the ballroom and auditorium (Table  3.6). 
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Table  3.5: Economic Consequence of Asset Failures in Non-task related Zones 

(Auditorium and Ballroom) 

Asset 

Cooling Peak 

Economic 

Consequence ($) 

Cooling Off-

Peak Economic 

Consequence($) 

Heating Peak 

Economic 

Consequence($) 

Heating Off-

Peak Economic 

Consequence($) 

Chiller 68,000 3,0000 0 0 

Boiler 0 0 66,000 30,000 

Supply Fan 51,000 25,000 88,000 36,000 

It can be seen that the air handler’s supply fan serving the 5-zone recreational building, 

has the highest “Business Value” in the cooling peak season and thus needs to have the 

highest priority for Preventive maintenance scheduling. 

Table  3.6: Asset Business Value 

Asset Cooling Peak  
Cooling 

Off-Peak  
Heating Peak  

Heating 

Off-Peak  

Chiller 102,500 64,500 0 0 

Boiler 0 0 86,900 50900 

Supply Fan 133,200 107,200 96,000 44,000 

 

3.5. Asset Reliability Model 

In this section, the asset reliability and optimal maintenance planning formulation is 

presented. The probability of failure of an asset within time interval (𝑡, 𝑡 + ∆𝑡) , 

commonly referred to by hazard rate function,  is given  by Equation (3.5): 
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𝑃 {𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛 (𝑡, 𝑡 + ∆𝑡)|𝑁𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡} = ℎ(𝑡) × ∆𝑡

= 𝑓(𝑡) 𝑅(𝑡)⁄ × ∆𝑡 
(3.5) 

∆𝑡 defines the length of discrete time steps that synchronizes MLE+ co-simulation. The 

hazard rate functions follow a bathtub curve where the rates are conditioned on the 

assets’ stage in life, namely, BOL (Beginning of Life), MOL (Middle of Life), and EOL 

(End of Life). The use of the bathtub curve for HVAC equipment and its electrical and 

mechanical components is common in the literature [59]. Furthermore, it has been a 

common practice to approximate the corresponding lifetime distribution by a Weibull 

function consisting of three parameters:  𝛽  (shape parameter also known as Weibull 

slope), 𝜂 (scale parameter) and 𝛾 (start location or location parameter which generally 

equals to 0). Parameter 𝛽 <  1 implies infant mortality while 𝛽 =  1 implies random 

failures, 1 <  𝛽 < 4 implies early wear out and 𝛽 >  4 is considered as end of life rate. 

We assume (𝛾 = 0) and use the empirical data provided by Barringer et al. [59] to 

estimate the default values for our model. It is important to note that asset's useful life can 

be extended by the care and maintenance that it receives. In other words, asset’s age 

restores to an earlier stage depending on the type of maintenance actions it receives. We 

assign a “Restoration Factor” (𝑟𝑓 ∈ [0,1]) to each maintenance action which implies the 

percentage to which a component is restored upon successful application of the 

maintenance action (i.e. Maintenance effectiveness). Therefore, at any point in an asset’s 

life, it will have a real age and an effective age, with the latter one depending on the to-

date maintenance actions. It is further assumed that a relationship can be drawn between 

asset’s real age and effective age depending on these maintenance routines. We use the 

results from Hendron et al. (2006) [60]: 
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(𝐴𝐸𝑓𝑓0
)𝑖 = log (

𝐶𝐼𝑖
100⁄ ) /log ( 𝑀𝑖) (3.6) 

Where for asset i , (𝐴𝐸𝑓𝑓0
)𝑖 is the initial asset effective age, 𝑀𝑖 is the constant defined 

according to the type of maintenance and degradation function; 𝐶𝐼𝑖 is the “Condition 

Index” (𝐶𝐼𝑖 ∈ [0,1]). Normally, 𝐶𝐼𝑖 ∈ [88,100] refers to excellent condition while 

𝐶𝐼𝑖 ∈ [0,10] indicates a failed condition. Here, we extend the definition of CI to also 

include asset’s energy efficiency; to be more specific 𝐶𝐼𝑖 represents the ratio of nominal 

(expected) power to the actual power consumptions. Note that historical data or near real 

time data collected using a monitoring scheme may be used to measure 𝐶𝐼𝑖 parameter. 

Asset effective age (in hours) at each time step ℎ, is then quantified according to 

Equation (3.7) [61-63]:  

𝐴𝐸𝑓𝑓𝑖
(ℎ + 1) = (𝐴𝐸𝑓𝑓𝑖

(ℎ) + 𝑃𝐿𝑅) × (1 − 𝑟𝑓(𝑇𝑘𝑙)𝑖
) (3.7) 

Where k, l and T are indices for maintenance type, maintenance frequency, and the 

season respectively. Moreover, 𝑟𝑓(𝑇𝑘𝑙)𝑖
  is defined based on the type of maintenance 

action on asset 𝑖; (i.e. 𝑟𝑓(𝑇𝑘𝑙)𝑖
= 0 if no maintenance is applied for period 𝑇).  𝑃𝐿𝑅 ∈

(0,1) is the Part Load Ratio of the asset for a specific time interval [ℎ, ℎ + 1]. The asset 

loads or PLRs are derived from the EnergyPlus simulation runs. Figure  3.2  illustrates a 

scenario where an asset’s effective age is shifted twice, according to two maintenance 

actions that were applied to the asset at the ages of a1 and a2, with each shift defined by 

an appropriate restoration factor (𝑟𝑓(𝑇𝑘𝑙)𝑖
).  Keeping the real age of an asset fixed, the 

effective age improves by the maintenance actions as shown in Figure  3.2.  
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Figure  3.2: Effective age shift with pre-planned maintenance 

These shifts are approximated by an average smooth function over asset real life as 

presented in Figure ‎3.2. Given a history of maintenance actions for a given asset, the 

corresponding improvement factors ((𝐴𝐸𝑓𝑓0
)𝑖), and 𝐶𝐼, can be estimated using Equation 

(3.6). 

3.6. Building Energy Optimization 

The maintenance planning problem in this chapter is a cost minimization problem, with 

three main cost elements, namely maintenance cost, penalty cost obtained from BVM, 

and asset energy cost. Each maintenance action has a fixed cost and a variable cost 

coefficient. The variable term depends on the time duration and hourly labor cost 

required to perform the maintenance action. Finally, asset energy cost coefficient also 

includes a fixed and variable term relevant to the type of energy used (e.g., electric 

energy and natural gas). We formulate the above cost minimization problem as a multi-

objective stochastic optimization problem (MOSOP) with a trade-off between capital 

expenditures and energy savings. The objective is to compute the decision vector denoted 

by  𝑋 = {𝑥𝑖,𝑇𝑘𝑙;  ∀𝑇, ∀𝑖, ∀𝑘, ∀𝑙} which minimizes a two-dimensional objective 
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function, 𝑧(𝑋∗) = {𝑆(. ), 𝐶(. )}, where 𝑆(. ) and 𝐶(. ) represent the Total Building Energy 

Consumption and the Total Cost of Maintenance and Penalty respectively. 𝑥𝑖,𝑇𝑘𝑙 is a 

binary decision variable (𝑥𝑖,𝑇𝑘𝑙 = 1 if the maintenance option (T;k, l) applies to asset i, 

and otherwise 𝑥𝑖,𝑇𝑘𝑙 = 0). Without loss of generality, we assume that the set of 

maintenance types is limited to (1) Reactive maintenance upon failure, (2) clock-based 

preventive maintenance type 1, (3) clock-based preventive maintenance type 2 and (4) 

clock-based preventive maintenance type 3}. 

The stochastic elements of the problem are the Load (𝜑) on assets (e.g., chiller’s part load 

ratio, supply fan’s flow), and asset failure events represented by (𝜔(𝜑, 𝑡)). The random 

load is a function of weather & operation factors (e.g. Occupancy) and can be simulated 

based on building configurations, operation and controls, as well as weather conditions. 

Failure events are defined by asset lifetime distributions, with bathtub hazard rates and 

Weibull functions. The following constraints are considered: (1) For a given season 𝑇, all 

possible maintenance policy sets (𝑘, 𝑙) on asset 𝑖 are mutually exclusive as presented by 

Equation (3.10). (2) For a given planning period, the total maintenance budget has an 

upper limit (Equation (3.11)).  The MOSOP formulation is formulated as: 

min
𝑋

{𝑆(𝑋, 𝜑, 𝑢, 𝜔(𝜑, 𝑡))}     (3.8) 

min
𝑋

{𝐶(𝑋, 𝜔(𝜑, 𝑡)) = 𝑔(𝑋) + ℎ(𝑋, 𝜔(𝜑, 𝑡)) +𝑝(𝑋, 𝜔(𝜑, 𝑡))}   (3.9) 

Subject to: 

∑ ∑ 𝑥𝑖,𝑇𝑘𝑙 ≤ 1                       ∀𝑇, ∀𝑖

𝑠

𝑙=1

𝑚

𝑘=𝑖

 (3.10) 
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𝑔(𝑋) + ℎ(𝑋, 𝜔(𝜑, 𝑡)) ≤ 𝐵𝑙𝑖𝑚𝑖𝑡   (3.11) 

Where ℎ(𝑋, 𝜔(𝜑, 𝑡)) and 𝑝(𝑋, 𝜔(𝜑, 𝑡)) represents the Total Unplanned Reactive 

Maintenance Cost  and the Total Penalty Cost Due to Asset Failures respectively and 

𝐵𝑙𝑖𝑚𝑖𝑡  is the Annual Budget Limit. Computation of 𝑆(𝑋, 𝜑, 𝑢, 𝜔(𝜑, 𝑡))) requires detailed 

understanding of interactions between building assets (e.g., HVAC system), weather and 

operational factors, building control, fault and failure events at asset levels. In the 

absence of any analytical form, and assuming that there is a positive correlation between 

asset maintenance and energy consumption, we make the following approximation in 

Equation (3.12): 

min{𝑆(𝑋, 𝜔(𝜑, 𝑡), 𝑢, 𝜑)} ≈ max{∑ 𝐸𝑃𝐼𝑖𝑖 (𝑋, 𝜔(𝜑, 𝑡))} = 

𝑀𝑎𝑥{∑ ∑ ∑ ∑ 𝑥𝑖,𝑇𝑘𝑙
𝑠
𝑙=1

𝑚
𝑘=1

𝑛
𝑖=1

2
𝑇=1 } 

(3.12) 

Where 𝐸𝑃𝐼𝑖(𝑋, 𝜔(𝜑, 𝑡)) is the asset 𝑖’s energy performance improvement due policy 𝑋. 

Without loss of generality, we assume that a year is divided into two seasons, namely 

heating and cooling seasons. The above approximation equates energy savings to energy 

performance improvement, which is controlled by practicing appropriate maintenance 

policies. Note that 𝐶[𝑋, 𝜔(𝜑, 𝑡)] includes three parts: (1) cost 𝑔(𝑋) of pre-planned 

maintenance actions; (2) cost ℎ[𝑋, 𝜔(𝜑, 𝑡)] of unplanned reactive maintenance upon asset 

failure; and (3) a penalty cost proportional to the asset’s business value denoted by 

𝑝[𝑋, 𝜔(𝜑, 𝑡)]. Following relationships hold: 

ℎ[𝑋, 𝜔(𝜑, 𝑡)] = (3.13) 
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∑ ∑ 𝐶𝑅𝐵𝑎𝑠𝑒 𝑇𝑖
[𝜔(𝜑, 𝑡)]

𝑛

𝑖=1

2

𝑇=1

– ∑ ∑ ∑ ∑ ∑[𝐶𝑅𝑅𝑖,𝑇𝑘𝑙[𝜔(𝜑, 𝑡)] × 𝑥𝑇𝑖𝑘𝑙]

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

2

𝑇=1

 

Where : 

𝑔(𝑋) = ∑ ∑ ∑ ∑[𝐶𝑃𝐴𝑖,𝑇𝑘𝑙 × 𝑥𝑖,𝑇𝑘𝑙]

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

 (3.14) 

𝐶𝑅𝐵𝑎𝑠𝑒 𝑇𝑖
[𝜔(𝜑, 𝑡)] = 𝑁[(𝜔(𝜑, 𝑡)) 𝐵𝑎𝑠𝑒]𝑇𝑖 × [(𝐶𝑟𝑝𝑟)𝑖 +  (𝐶𝑟𝑝𝑙)𝑖] 2⁄  (3.15) 

𝐶𝑅𝑅𝑖,𝑇𝑘𝑙[𝜔(𝜑, 𝑡)] 

= [𝑁[(𝜔(𝜑, 𝑡)) 𝐵𝑎𝑠𝑒]𝑇𝑖 − 𝑁[(𝜔(𝜑, 𝑡))𝑇𝑘𝑙]𝑖] × [(𝐶𝑟𝑝𝑟)𝑖 +  (𝐶𝑟𝑝𝑙)𝑖] 2⁄  

(3.16) 

Note that in this study, base option (𝐶𝑅𝐵𝑎𝑠𝑒) is used as a reference policy and all 

maintenance policy options are compared to this option in terms of cost and performance. 

Reduction in unplanned maintenance cost on asset 𝑖 as a result of a pre-planned 

maintenance option (𝑇; 𝑘, 𝑙) is due to reduction in number of failures compared to base 

option. Cost of reactive maintenance action can be approximated using average cost of 

asset repair and replace as denoted in Equation (3.15) and (3.16). The total penalty due to 

asset failure, 𝑝[𝑋, 𝜔(𝜑, 𝑡)] is defined according to Equation (3.17): 

𝑝[𝑋, 𝜔(𝜑, 𝑡)]

= ∑ ∑ 𝐶𝑃𝐵𝑎𝑠𝑒 𝑇𝑖
[𝜔(𝜑, 𝑡)] 

𝑛

𝑖=1

– ∑ ∑ ∑ ∑[𝐶𝑃𝑅𝑖,𝑇𝑘𝑙[𝜔(𝜑, 𝑡)] × 𝑥𝑖,𝑇𝑘𝑙]

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

2

𝑇=𝑖

 
(3.17) 

Where, 
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𝐶𝑃𝐵𝑎𝑠𝑒 𝑇𝑖
[𝜔(𝜑, 𝑡)] = 𝑁[(𝜔(𝜑, 𝑡) 𝐵𝑎𝑠𝑒]𝑇𝑖 × (𝐵𝑉𝑀)𝑖 (3.18) 

𝐶𝑃𝑅𝑖,𝑇𝑘𝑙[𝜔(𝜑, 𝑡)] = [𝑁[𝜔(𝜑, 𝑡) 𝐵𝑎𝑠𝑒]𝑇𝑖  − 𝑁[𝜔(𝜑, 𝑡)𝑇𝑘𝑙]𝑖] × (𝐵𝑉𝑀)𝑖 (3.19) 

Penalty cost 𝑝[𝑋, 𝜔(𝜑, 𝑡)] due to asset failure is quantified in the same fashion as 

Equation (3.15) using the base option as reference point. Again, reduction in penalty cost 

due to asset failure is quantified in Equation (3.19) using reduction in total number of 

asset failures in comparison to the base option. 

3.7. Solution Approach 

Due to extensive computational time required by a single EnergyPlus run (to simulate a 

planning period of several years), we ought to institute an efficient solution methodology 

to minimize the number of runs. First, we assume that three distinct stochastic patterns 

generate random loads in the building. These patterns normally depend on weather and 

occupancy, but here only weather variations are considered. These patterns, respectively, 

generate two extreme and most likely operating conditions for the building EnergyPlus 

simulations within a given season. For each pattern the MOSOP coefficients (i.e. 

 𝐶𝑅𝐵𝑎𝑠𝑒𝑇𝑖
[𝜔(𝜑, 𝑡)] and 𝐶𝑅𝑅𝑖,𝑇𝑘𝑙[𝜔(𝜑, 𝑡)]). A few more runs are also required to compare 

the set of non-dominated solutions of the optimization problem. A feasible solution to the 

above MOSOP is efficient (non-dominated and Pareto optimal) if no other feasible 

solution is at least as good for every objective function. The set of all efficient points in a 

multi objective problem is known as the efficient frontier. Regardless of how objective 

functions are prioritized, the optimal solution must be selected from the efficient frontier. 

There are various solution strategies to solve the above MOSOP, namely, multi objective 

linear programming, preemptive optimization, weighted sum and goal programming. In 
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this thesis the weighted sum approach is chosen since it is computationally less complex 

and can be used for practical applications.  The goal of the weighted sum approach is to 

find a set of solutions that are non-dominated [64]. More details on this approach is 

included in the appendix C. Suppose that the most likely sample path for load 𝜑′ is 

realized. Therefore, the only stochastic variable in the optimization problem is a asset 

failure (i.e. 𝜔(𝜑′, 𝑡)), which is governed by Weibull distribution. Let  𝐸𝜔(. ) be the 

expected value function defined over events 𝜔(𝜑′, 𝑡). Then MOSOP reduces to: 

max
𝑋

∑ 𝐸𝜔(𝐸𝑃𝐼𝑖

𝑖

[𝑋, 𝜔(𝜑′, 𝑡)]) = max
𝑥

∑ ∑ ∑ ∑ 𝑥𝑖,𝑇𝑘𝑙

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

 (3.20) 

min
𝑋

𝐸𝜔(𝐶[𝑋, 𝜔(𝜑′, 𝑡)]) = min
𝑋

𝑔(𝑋) + 𝐸𝜔(ℎ[𝑋, 𝜔(𝜑′, 𝑡)])

+ 𝐸𝜔(𝑝[𝑋, 𝜔(𝜑′, 𝑡)] 

(3.21) 

Subject to, 

∑ ∑ 𝑥𝑖,𝑇𝑘𝑙 ≤ 1                       ∀𝑇, ∀𝑖

𝑠

𝑙=1

𝑚

𝑘=𝑖

 (3.22) 

𝑔(𝑋) + 𝐸𝜔(ℎ[𝑋, 𝜔(𝜑′, 𝑡)]) ≤ 𝐵𝑙𝑖𝑚𝑖𝑡 (3.23) 

Where, 

𝐸𝜔(ℎ[𝑋, 𝜔(𝜑′, 𝑡)]) = ∑ ∑ 𝐶𝑅𝐵𝑎𝑠𝑒 𝑇𝑖

𝑛

𝑖=1

− ∑ ∑ ∑ ∑[𝐶𝑅𝑅𝑖,𝑇𝑘𝑙 × 𝑥𝑖,𝑇𝑘𝑙]

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

2

𝑇=1

 (3.24) 

𝐶𝑅𝐵𝑎𝑠𝑒 𝑇𝑖
[𝜔(𝜑′, 𝑡)] = 𝐸𝜔(𝑁[𝜔(𝜑′, 𝑡) 𝐵𝑎𝑠𝑒]𝑇𝑖) × [(𝐶𝑟𝑝𝑟)𝑖 +  (𝐶𝑟𝑝𝑙)𝑖] 2⁄  (3.25) 

And 𝐸𝜔(𝑁[𝜔(𝜑′, 𝑡) 𝐵𝑎𝑠𝑒]𝑇𝑖) is the expected number of failures for asset 𝑖 under “Base 

maintenance option” when the load pattern is given by 𝜑′; thus we have: 
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𝐸𝜔(𝑁[𝜔(𝜑′, 𝑡) 𝐵𝑎𝑠𝑒]𝑇𝑖) = ∫ [𝜆(𝜔(𝜑′, 𝑡))]𝑖𝑑𝑡
𝑇_𝐵𝑎𝑠𝑒𝑖

𝑇0𝑖

 (3.26) 

 𝐶𝑅𝑅𝑖,𝑇𝑘𝑙= 

[𝐸𝜔(𝑁[𝜔(𝜑′, 𝑡) 𝐵𝑎𝑠𝑒]𝑇𝑖) − 𝐸𝜔(𝑁[(𝜔(𝜑′, 𝑡))𝑇𝑘𝑙]𝑖)]  × [(𝐶𝑟𝑝𝑟)𝑖 +  (𝐶𝑟𝑝𝑙)𝑖] 2⁄  

(3.27) 

where 𝐸𝜔(𝑁[(𝜔(𝜑′, 𝑡))𝑇𝑘𝑙]𝑖) is the expected number of failures for asset 𝑖 under (T;k,l) 

option and is given by: 

𝐸𝜔(𝑁[(𝜔(𝜑′, 𝑡))𝑇𝑘𝑙]𝑖) = ∫ [𝜆(𝜔(𝜑′, 𝑡))]𝑖𝑑𝑡
𝑇𝑖,𝑇𝑘𝑙

𝑇0𝑖

 (3.28) 

𝐸𝜔(𝑝[𝑋, 𝜔(𝜑′, 𝑡)] is calculated according to: 

𝐸𝜔(𝑝[𝑋, 𝜔(𝜑′, 𝑡)]  

= ∑ ∑ 𝐶𝑃_𝐵𝑎𝑠𝑒𝑇𝑖 

𝑛

𝑖=1

− ∑ ∑ ∑ ∑[𝐶𝑃𝑅𝑖,𝑇𝑘𝑙 × 𝑥𝑖,𝑇𝑘𝑙]

𝑠

𝑙

𝑚

𝑘

𝑛

𝑖

2

𝑇

2

𝑇=𝑖

 
(3.29) 

𝐶𝑃_𝐵𝑎𝑠𝑒𝑇𝑖 = 𝐸𝜔(𝑁[𝜔(𝜑′, 𝑡) 𝐵𝑎𝑠𝑒]𝑇𝑖) × (𝐵𝑉𝑀)𝑖 (3.30) 

𝐶𝑃𝑅𝑇𝑖𝑘𝑙 = [𝐸𝜔(𝑁[𝜔(𝜑′, 𝑡) 𝐵𝑎𝑠𝑒]𝑇𝑖) − 𝐸𝜔(𝑁[(𝜔(𝜑′, 𝑡))𝑇𝑘𝑙]𝑖)]

× (𝐵𝑉𝑀)𝑖 

(3.31) 

Thus the first objective in Equation (3.20) can be re-written as: 

max
𝑋

∑ ∑ ∑ ∑ 𝑥𝑖,𝑇𝑘𝑙

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

 (3.32) 

It is assumed that reactive maintenance actions are mandatory upon failure of an asset. A 

reactive action can include repair or replacement of the failed asset depending on its CI at 
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the time of failure.  Therefore, the second objective in Equation (3.21) can be re-written 

as shown in Equation (3.33): 

min
𝑋

𝐸𝜔 (𝐶(𝑋, 𝜔(𝜑′, 𝑡))) 

≈ min
𝑋

∑ ∑ ∑ ∑[(𝐶𝑃𝐴𝑖,𝑇𝑘𝑙 × 𝑥𝑖,𝑇𝑘𝑙) − (𝐶𝑃𝑅𝑖,𝑇𝑘𝑙 + 𝐶𝑅𝑅𝑖,𝑇𝑘𝑙) × 𝑥𝑖,𝑇𝑘𝑙]

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

 

(3.33) 

The total cost of asset maintenance, including unplanned and preplanned cost cannot 

exceed the total budget limit (𝐵𝑙𝑖𝑚𝑖𝑡). Cost Coefficients of the optimization problem can 

be quantified offline using the assets’ failure rate; therefore we can rewrite constraint in 

Equation (3.23) as: 

∑ ∑ ∑ ∑[(𝐶𝑃𝐴𝑇𝑖𝑘𝑙) × 𝑥𝑖,𝑇𝑘𝑙]

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

 

+ ∑ ∑ 𝐶𝑅_𝐵𝑎𝑠𝑒𝑇𝑖 

𝑛

𝑖=1

− ∑ ∑ ∑ ∑[𝐶𝑅𝑅𝑖,𝑇𝑘𝑙 × 𝑥𝑖,𝑇𝑘𝑙]

𝑠

𝑙=1

𝑚

𝑘=1

𝑛

𝑖=1

2

𝑇=1

2

𝑇=𝑖

≤  𝐵𝑙𝑖𝑚𝑖𝑡 

(3.34) 

After solving the problem for the most likely operating condition the optimization 

problem needs to be solved for the other two extreme conditions. The final result for the 

discussed optimization problem is defined as the combination of the three solutions. For 

continuous variable stochastic problem usually the final solution is the weighted average. 

Note that the weights in this linear combination are the probability of occurrence for each 

operating condition [64]. 
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3.8. Validation and Sensitivity Analysis 

Using bathtub curves and Weibull distributions, for modeling the hazard rate functions 

and time to failure of mechanical components, respectively, has been extensively 

practiced in the reliability literature. The parameters for these models can be estimated 

from manufacturers’ or field data. The concept of asset effective age and degradation in 

this chapter was adopted from asset management practices. Furthermore, it is general 

common sense that proper and timely maintenance of assets, improve asset performance 

and reliability. And commonly speaking, an asset performance improvement leads to a 

reduction in its energy consumption; or in the worst case the energy consumption remains 

flat with improvements in performance. Numerical validation of these effects is beyond 

the scope of this work. According to the energy modelling protocol established by 

ASHRAE Standard 90.1-2010 [66] used in LEED (Leadership in Energy & 

Environmental Design) [67], building energy simulations (using EnergyPlus or similar 

software packages) are increasingly becoming common practice in the industry for new 

buildings. Such simulation models are normally calibrated with building’s monthly utility 

bills. Thus, depending on the model granularity and accuracy of weather input files, these 

simulations are able to provide reasonable energy forecasts for buildings. 

The optimization approach introduced in this chapter is not exact and requires validation. 

Since there is no closed form solution for our performance and energy measures, a brute 

force validation approach is taken in which the “optimal” solution is compared to a set of 

What-If scenarios.  Each such scenario presents a feasible solution and is run for a 

number of replications (to imitate random variations in failures). But the weather and 

occupancy patterns are kept at most likely values; (i.e. Load 𝜑 is kept at “Most Likely” 
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value). Extensions to other weather and occupancy scenarios are straightforward. Using 

EnergyPlus’s “5-ZoneAir-Cooled.imf” example model introduced in section 3.3, we 

perform a sensitivity analysis to test the performance of the optimization model 

introduced. The following set of maintenance options was used: 

1. Clock-based Preventive Maintenance type 1, Frequency = 3 months 

2. Clock-based Preventive Maintenance type 1, Frequency = 6 months 

3. Clock-based Preventive Maintenance type 2, Frequency = 3 months 

4. Clock-based Preventive Maintenance type 2, Frequency = 6 months 

5. Clock-based Preventive Maintenance type 3, Frequency = 3 months 

6. Clock-based Preventive Maintenance type 3, Frequency = 6 months 

To form the “What-If” scenarios, each combination of the aforementioned maintenance 

options is run for enough number of replications to ensure sufficient coverage of random 

variations. Failure events are generated from asset specific Weibull distributions [58]. 

Energy prices used in the case studies are summarized in Table  3.7 and the “What-If” 

scenarios used for validation are summarized in the appendix D. 

Table  3.7:  Local Energy Costs
3
 

Energy Type Price 

Electricity 0.207 $ per kWh 

Natural Gas 1.14  per thermal unit 

 

                                                           
3
 Prices are based on local prices in San Francisco (2013) 
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3.9. Penalty Cost Impact 

In the first set of illustrative cases we intend to: (1) compare the results obtained from our 

optimization with the results from “What-If” scenarios; (2) and evaluate the impact of 

penalty costs on the optimal solution. It is assumed that electric compression chiller, hot 

water boiler and supply fan are in their “wear-out” or “End-of Life” stage. Weibull 

distribution with 𝛽 > 4 (shape parameter) is used to predict failure times and initial 

condition index is set at 20% for all the three assets. It is further assumed that penalty 

cost per failure of an asset is considerably higher than its maintenance costs. Case 1 

optimization takes into account penalty cost (i.e. BVM scores) for asset failures as given 

in Table  3.8. These penalties are ignored in Case 2. The results indicate that in both cases, 

the approximate MOSOP optimization methodology yields “optimal” solutions that 

match the best results from “What-If” scenarios included in the appendix D. 

Table  3.8: BVM Sores for Illustrative Case Study 

Asset Type BVM Score 

Electric Compression Chiller 188,9334 

Hot Water Boiler 70,360 

Supply Fan 82,615 

 

In case 1, the optimization approximation output suggests a Preventive Maintenance 

Clock-based type 3 with 3 months frequency as the optimal strategy for all 3 assets, 

which matches the best solution from “What-If” analysis. Figure  3.3 shows the total cost 

breakdown for the 10 “What-if” scenarios in the appendix D. Scenario 6, representing the 

Preventive Maintenance Clock-based type 3 with 3 months frequency, is the cheapest 
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maintenance combination with zero penalty cost. To evaluate the impact of penalty costs 

on the “optimal” solution, Case 1 is simulated again without penalty costs (i.e. Case 2). 

The MOSOP yields the optimal strategy that pertains to: Preventive Maintenance Clock-

based type 3 with 3 months frequency for the chiller and 6 months frequency for the hot 

water boiler and supply fan. 

 

Figure  3.3: “What-if” scenario cost results – Case 1 

Scenario based validation (using appendix D) approves the “optimal” strategy as depicted 

in Figure  3.4  Comparing the results from the above two illustrative cases, it is observed 

that, in Case 1, a maintenance strategy that pertains to the highest restoration factor (i.e., 

Preventive Maintenance Clock-based type 3 with low frequency) is favorable to prevent 

substantial business penalties. However, in the absence of such penalties, as represented 

by Case 2, the optimal strategy solely depends on maintenance and energy costs; thus, 

with a limited budget, the “optimal” strategy suggests incorporating maintenances with 

higher restoration factors for assets with higher rates of energy consumption (i.e. The 

chiller in this illustrative case). 
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Figure  3.4: “What-if” scenario cost results – Case 2 

3.10. Impact‎of‎Assets’‎Age 

Next, the impact of assets’ age is evaluated in terms of energy and cost savings. The 

optimization model is run with different asset age combinations and results are compared 

to the base maintenance option (i.e. Reactive Maintenance). The following cases are 

evaluated in this section: 

1- Assets are in the first 30% of the life cycle (BOL). 

2- Assets are in the MOL period (between 30% and 70%) 

3- Assets are in the last 30 % of their life (EOL). 

Table  3.9 presents the recommended policy as well as energy and total cost saving for 

each age scenario category mentioned above compared to the base maintenance option. 

For assets in BOL stage, the recommended policy is “Reactive Maintenance”, which 

matches the base maintenance option. However, as assets age, the necessity for more 

rigorous maintenance routine arises; hence, for assets in EOL, a Preventive Maintenance 

with 3 month frequency is suggested as optimal maintenance strategy.  Note that when 
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assets are in their MOL, given a limited budget to manage the assets, the focus would be 

on assets which consume more energy; thus, the chiller would require a Preventive 

maintenance, while a basic failure-based routine would suffice for the other assets. It is 

further observed that since the assets in EOL stage have a considerable increase in energy 

consumption due to degradation, incorporating an effective preventive maintenance 

would lead into almost 70% savings in the total energy consumption when compared to 

base maintenance routine. 

Table  3.9: Optimization Result in different asset life cycles 

Scenario 

Number 

Recommended Policy Energy 

Saving (%) 

Total Cost 

Saving (%) 

1 Reactive Maintenance for all assets - - 

2 Chiller: “PM clock, type 3, frequency=6” 

Boiler and Supply Fan: Reactive 

Maintenance 

 

26% 

 

56% 

3 “PM clock, type 3, frequency =3” for all 

assets 

69% 59% 

3.11. Conclusion 

With building and technical services’ considerable contribution to an industrial facility’s 

energy consumption, any reduction in consumption rate of these services will lead into 

significant savings in the facility as a whole. In this chapter asset management in a 

building facility was discussed as a vehicle to achieve such energy reductions. A 

methodology was introduced to integrate reliability and maintenance modeling with 

physics-based building energy simulations and through several case studies, it was 

illustrated that substantial energy savings can be realized through optimal asset 

maintenance policies. Another major contribution of this chapter was incorporating asset 

business values into the introduced optimization regime in order to minimize building 
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energy footprints and maximize performance of assets. We developed models to calculate 

asset business values in terms of economic consequences of their failure/degradation. 

This Business Value Model not only calculates the measurable consequences of such 

failures, but also incorporates the “hard-to-quantify” contributions in the business value 

calculations. 
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Chapter 4 

4. Network Energy Efficiency Optimization in Industrial System 

4.1. Introduction 

In the area of industrial energy efficiency a number of modelling approaches have 

appeared embracing one of the two generic perspectives, namely, “industrial facility 

efficiency” and “industrial process efficiency”. With the former one, most of the existing 

works focus on reducing the energy consumed by facility’s infrastructure and technical 

services (e.g. Lighting, heating and cooling) which are responsible for maintaining the 

required conditions for “industrial process”. In the arena of “industrial facility 

efficiency”, plant-wide energy audits are extensively used to identify improvement 

opportunities at the facility level. Kong  et al. (2013) give an overview of such audits in 

Chinese facilities and describes an energy audit aimed at identifying energy conservation 

opportunities at a paper mill facility in China [68]. Energy reduction in HVAC (Heating, 

Ventilation and Air Conditioning) systems as one of the most important components of 

technical services in an industrial facility has been addressed in literature, including 

methods for determining optimal control strategies such as reset control, setback control, 

improved start-stop times and occupied time adaptive control [69-73]. Optimal set point 

configuration and component level energy efficiency improvements are also investigated 

for HVAC energy reduction [74-76]. Using an optimal equipment maintenance and asset 

management techniques also leads into energy savings in HVAC system as demonstrated 

in previous chapter [77]. 
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“Industrial process efficiency” perspective, on the other hand, centers on modeling the 

energy reduction in industrial equipment, machinery and production system. These 

models use “operational” and “physics-based” methods to achieve reductions in energy 

consumption of industrial processes. In this context many scholars discussed operational 

models to minimize energy usage of equipment in manufacturing organizations through 

efficient control techniques. These models either focus on changing the state of the 

industrial machines [78-82], or reduce the idle time in non-bottleneck stations [83]. 

Efficient scheduling of machinery and production lines has also been addressed 

extensively in the field of industrial energy efficiency using decision support system tools 

[84-87]. A number of works also focused on guidelines for energy efficiency through 

analysis of mechanical components in production processes [88-89]. 

However, separating industrial processes from facilities which house these processes, 

lead to fragmented energy policies and competing and conflicting practices. In recent 

years efforts in the academia and industry have shifted toward integrated energy 

efficiency in production management and standardization of such practices [90-92]. Such 

integrated view in energy consumption of a production environment has been addressed 

in several articles. A number of recent studies propose techniques for energy efficiency in 

manufacturing through different system scale levels, including product-level, machine-

level and plant-level factors [93-95]. These studies incorporate a more holistic viewpoint, 

categorizing energy consumption of an industrial environment into various sub-systems, 

and provide models for calculating energy consumption using all the sub-systems defined 

[96-98]. Whilst the aforementioned researches have highlighted the necessity of an 

integrated view to investigate the energy efficiency within an industrial environment, 
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they come short of providing a quantitative algorithm to implement such integrated view. 

In this chapter, we argue that within an industrial system, dynamic interdependencies 

exist between production systems, equipment and facility’s technical services. Such 

dynamic interdependencies need to be holistically incorporated into energy efficiency 

analysis and optimization. Energy optimization has to be performed over all activities 

that contribute to the making of a product [99]. By annotating activities with nodes and 

flow (of materials and/or energy) between them by connecting arcs, a complex network 

emerges.  Depending on the granularity of the analysis, these nodes can be simple or 

composite with a sub-network beneath them. In many instances, these nodes are owned 

by a single entity or business unit. Nodes across a network are interdependent in terms of 

“Energy Consumption” in such a way that energy reduction in one node might 

increase/decrease energy consumption in another upstream/downstream node. 

Consequently, the total energy reduction at a node is the sum of “Direct” and “Indirect” 

measures; “Direct” energy reduction is the result of applying an energy saving solution in 

the node itself, whereas “Indirect” reduction is the impact of implementing a saving 

solution to other nodes of the network.  By the same token, nodes have “Performance” 

interdependencies; therefore, energy reduction in one node might actually improve or 

degrade the performance in another node, as measured in terms of appropriate Key 

Performance Indicators (KPIs). We intend to formalize industrial energy efficiency as a 

network optimization problem that helps achieve energy efficiency by determining the 

amount of energy reduction plausible for each node of the network. We present an 

innovative framework to model and effectively capture the dynamic interdependencies 

between components of an industrial system, in terms of “Energy Consumption” and 
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“Performance”.  The conceptual framework and optimization model are generic, but 

calculation details are application dependent. Therefore, we will use an illustrative 

example for demonstration purposes. The remainder of this chapter is outlined as follows: 

The network optimization problem is formulated next and general assumptions are stated. 

In section 4.3, using a manufacturing system as an illustrative case, “Performance” and 

“Energy Consumption” interdependencies are identified and quantified. Given a set of 

feasible energy saving solutions for the illustrative case, the network optimization is 

analyzed and solved in section 4.4, followed by conclusions and closing discussions. 

Table  4.1 lists the notations used throughout the rest of this chapter. 

Table 4.1: Nomenclature 

𝑥𝑗 Direct energy reduction in node 𝑗 stemmed from energy saving solution 𝑆𝑗
′  

(KWh), 𝑥𝑗 ∈ ℝ ≥ 0 
𝑃𝐸𝑅𝑗  Maximum ‘Potential Energy Reduction’ in node 𝑗 (kWh), 𝑃𝐸𝑅𝑗 ∈ ℝ ≥ 0 

𝑃𝑅𝐹𝑗 Current Performance at node 𝑗 (before energy reduction solution) in terms of 

appropriate KPI, 𝑃𝑅𝐹𝑗 ∈ ℝ ≥ 0 
𝑣𝑗  Economic value generated per unit energy reduction at node 𝑗 ($/kWh), 

𝑣𝑗 ∈ ℝ ≥ 0 
𝑐𝑗 Cost of each unit energy reduction at node 𝑗 ($/kWh), 𝑐𝑗 ∈ ℝ ≥ 0 

 
𝐸𝑆𝑅 Total ‘Energy Saving’ requirement at network (kWh), 𝐸𝑆𝑅 ∈ ℝ ≥ 0 

B Total economic budget for energy reduction at network ($), 𝐵 ∈ ℝ ≥ 0 

𝛽𝑗 Economic budget for energy saving solution at node 𝑗($), 𝛽𝑗 ∈ ℝ ≥ 0 

𝑝𝑗 Penalty per unit energy increase at node 𝑗 ($/kWh), 𝑝𝑗 ∈ ℝ ≥ 0 

𝑟𝑗 Economic reward per unit performance improvement at node 𝑗, 𝑟𝑗 ∈ ℝ ≥ 0 

 
𝑙𝑗 Penalty per unit performance degradation at node 𝑗, 𝑙𝑗 ∈ ℝ ≥ 0 

𝛿𝑖𝑗 “Energy” Dependency: Energy reduction/increase in node 𝑖 per unit energy 

reduction in node 𝑗, (𝛿𝑖𝑗 ∈ ℝ) 
𝜌𝑖𝑗 “Performance” Dependency: Performance improvement/degradation in node 

𝑖 per unit energy reduction in node 𝑗, (𝜌𝑖𝑗 ∈ ℝ) 
𝜋𝑗 Energy consumption of node 𝑗 in the base scenario(kWh), 𝐸𝑗 ∈ ℝ ≥ 0 

𝑃𝑀𝑗 Performance of node 𝑗 in base scenario, 𝑃𝑀𝑗 ∈ ℝ ≥ 0 

𝜋𝑗
′ Energy consumption of node 𝑗 when an energy saving solution is 

implemented (kWh), 𝐸𝑗
′ ∈ ℝ ≥ 0 
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𝑃𝑀𝑗
′ Performance of node 𝑗 when an energy saving solution is implemented, 

𝑃𝑀𝑗
′ ∈ ℝ ≥ 0 

 

4.2. Preliminaries 

We consider a generic industrial system, which includes production processes (e.g. 

Production lines) and a facility (e.g., a building) that houses these processes as depicted 

in Figure  4.1 A network of interdependent nodes emerges mapping energy consuming 

activities into nodes and their material or energy dependencies into arcs connecting these 

nodes. We assume that owner(s) of the above system is (are) determined to reduce the 

overall energy usage of the system by a certain quantity due to regulatory compliance or, 

economic and/or marketing incentives. It is also assumed that there are economic 

incentives for improving energy efficiency in each node, which means an energy 

reduction at each node result in a reward for owners. Moreover, nodes have specific 

“Performance” requirements defined in terms of appropriate KPIs; thus, any deviation 

from such requirement is penalized. 

 

Figure  4.1: An Industrial System as a Network of Interdependent Nodes 
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As depicted in Figure  4.1, our network is comprised of two composite groups of nodes: 

(1) Industrial Processes (2) Technical Services in the facility’s building. One major task 

for technical services is to ensure the needed conditions in terms of temperature, humidity 

and moisture are provided for the industrial process and facility personnel through 

heating, cooling and air conditioning. Besides, technical services are responsible for 

providing essential media such as compressed air, steam and cooling water for processes. 

For illustrative purposes, we assume that the industrial process is a serial production line 

consisting of three automated machine tools performing machining operations, for 

example, face milling, drilling and grinding. Also, our focus is on HVAC (Heating, 

Ventilation and Air Conditioning) system as one of the most important components of 

technical services in an industrial facility.  The components of HVAC system studied 

here are (1) electric variable speed chiller, (2) hot water boiler and (3) electric supply fan. 

The industrial process does not have requirements for temperature; thus, 

interdependencies between machine tools and HVAC nodes are assumed negligible. 

Moreover, machines are automatic and not manually operated; therefore, no 

interdependency exists between industrial processes and personnel resources in the 

facility. 

4.3. Problem Statement and Network Formulation 

The problem of interest is to determine the share of energy reduction for each node (𝑥𝑗) in 

the network. Note that 𝑥𝑗 is the ‘direct energy reduction’ at node 𝑗 stemmed from energy 

saving solution imposed on 𝑗. As noted earlier, nodes across the network are 

interdependent in terms of “Energy Consumption” and “Performance”. “Energy” 

dependency between nodes 𝑖 and 𝑗 (first order dependency) is denoted by 𝛿𝑖𝑗, where, 
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positive ‘Energy’ dependency (𝛿𝑖𝑗 > 0)  is defined as the amount of energy reduction in 

node 𝑖 per unit energy saving in node 𝑗. Negative ‘Energy’ dependency, (𝛿𝑖𝑗  < 0), is the 

increase in node 𝑖’s energy consumption, as a result of energy reduction in node 𝑗. Similar 

definitions hold for positive and negative ‘Performance’ dependency, hereafter denoted 

by 𝜌𝑖𝑗. It is worth noting that there might be situations in which a slight increase in 

energy usage at one node can be compensated for by considerable energy savings in other 

nodes and thereby resulting in a reduction of the overall network energy. Such 

consideration is taken into account while determining ‘Energy’ dependency parameters. 

For instance, if an increase in energy consumption of node 𝑖 is tolerable due to high 

volume of energy saving achieved by putting an energy saving solution at node 𝑗, 

negative energy dependency exists between the two nodes (𝛿𝑖𝑗 < 0).  Thus, it is safe to 

consider that each node’s share of energy saving, “Direct” energy reduction, is non-

negative (i.e. 𝑥𝑗 ≥ 0). For simplicity, it is assumed that (1) one energy saving solution is 

applied at a time on each node 𝑗 and (2) only first order “Energy” and “Performance” 

dependencies are accounted for, that is, the impact of simultaneous energy saving 

solutions on multiple nodes is assumed to be negligible. 

We assume that the following input data are available: (1) economic reward and penalty 

data; (2) nodes’ minimum “Performance” requirements (𝜂𝑗); (3) maximum potential 

energy saving, technically and economically viable for each node (𝑃𝐸𝑅𝑗); and (4) 

Economic budget at node and network levels. Due to economic incentives for energy use 

reduction, the energy efficiency optimization problem can be considered as a profit 

maximization problem; hence, the objective function is the sum of the profits obtained 

through “Direct” and “Indirect” energy reduction at each node, which is stated as: 
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 𝑀𝑎𝑥{𝑓(𝑥) + 𝑔(𝑥)} (4.1) 

Where 𝑓(𝑥) and 𝑔(𝑥) are profit functions through “Direct” and “Indirect” measures 

respectively. We have: 

 
𝑓(𝑥) = ∑ (𝑣𝑗 − 𝑐𝑗)𝑥𝑗

𝑛

𝑗=1
 

(4.2) 

 
𝑔(𝑥) = ∑ (∑ (𝑣𝑖 − 𝑝𝑖)

𝑛

𝑖≠𝑗=1
𝛿𝑖𝑗 + ∑ (𝑟𝑖 − 𝑙𝑖)

𝑛

𝑖≠𝑗=1
𝜌𝑖𝑗)

𝑛

𝑗=1
 𝑥𝑗  

(4.3) 

Constraints: As mentioned earlier, it is assumed that the owner of such system has a set 

of incentives (e.g., compliance requirements, economic and marketing incentives) for 

network energy savings. Therefore, a minimum energy saving requirement (𝐸𝑆𝑅) needs 

to be achieved at the network level applying Direct and Indirect energy reduction at 

individual nodes. 

 
∑ 𝑥𝑗 + ∑ ∑ 𝛿𝑖𝑗𝑥𝑗  ≥ 𝐸𝑆𝑅

𝑛

𝑖≠𝑗=1

𝑛

𝑗=1

𝑛

𝑗=1

 
(4.4) 

Reduction in a node’s energy usage is subject to technological, physical and economic 

limitations; therefore, energy saving at a given node cannot exceed the pre-defined 

maximum potential energy reduction at that node. Moreover, each node’s share of energy 

saving is non-negative. 

 
𝑥𝑖 + ∑ 𝛿𝑖𝑗𝑥𝑗 ≤ 𝑃𝐸𝑅𝑖    ∀𝑖 = 1, … , 𝑛 

𝑛

𝑗≠𝑖=1

 
(4.5) 

The owner has limited monetary budgets for energy reduction in network and node 

levels; moreover, penalties due to performance degradation as well as energy increase at 

any node are deducted from nodes predefined budgets. 
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∑ 𝑐𝑗𝑥𝑗 + ∑(| ∑ 𝐼(𝛿)𝑖𝑝𝑖𝛿𝑖𝑗

𝑛

𝑖≠𝑗=1

|)𝑥𝑗 

𝑛

𝑗=1

𝑛

𝑗=1

+ ∑(|∑ 𝐼(𝜌)𝑖𝑙𝑖𝜌𝑖𝑗

𝑛

𝑖=1

|)𝑥𝑗 ≤

𝑛

𝑗=1

𝐵 
(4.6) 

 
𝑐𝑖𝑥𝑖 + 𝐼(𝛿)𝑖𝑝𝑖(| ∑ 𝛿𝑖𝑗𝑥𝑗

𝑛

𝑗≠𝑖=1

|) + 𝐼(𝜌)𝑖𝑙𝑖(| ∑ 𝜌𝑖𝑗𝑥𝑗

𝑛

𝑗≠𝑖=1

|) ≤ 𝛽𝑖     ∀𝑖 = 1, … , 𝑛 
(4.7) 

Where, 

𝐼(𝛿)𝑖 = {
0 𝑖𝑓 𝛿𝑖𝑗 ≥ 0  

1 𝑖𝑓 𝛿𝑖𝑗 < 0
     ∀𝑗 = 1, … , 𝑛 

 

𝐼(𝜌)𝑖 = {
0 𝑖𝑓 𝜌𝑖𝑗 ≥ 0  

1 𝑖𝑓 𝜌𝑖𝑗 < 0
     ∀𝑗 = 1, … , 𝑛 

 

All the nodes across the network are subject to minimum required performance 

characterization. That is, their performance in terms of appropriate KPI should not 

degrade below a required threshold as a result of “Direct” or “Indirect” energy saving. 

∑ 𝜌𝑖𝑗𝑥𝑗 + 𝑃𝑅𝐹𝑖 ≥  𝜂𝑖

𝑛

𝑗=1
     ∀𝑖 = 1, … , 𝑛 

(4.8) 

Equation (4.8) underlines a very important relationship between energy and performance. 

It emphasizes the fact that in real applications, energy reduction strategies can be 

acceptable only to the extent that they do not disrupt performance requirements. To 

expand on this idea we introduce what we call “Energy-Performance” curves, which 

show the direct relationship between energy use and an important KPI of an industrial 

system (e.g., system throughput rate measured in number of units, number of production 

batches, or production volume).  In practice, “Energy-Performance” curves are 

quantifiable from historical data, simulations and/or process monitoring. Clearly 

“Energy-Performance” curve for a given industrial system depends on system control, 

input and output requirements, and system degradation and, henceforth, on maintenance 

policies and routines which are practiced within the system. 
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4.4. Nodes Interdependency Characterization 

Energy optimization is contingent on the type of energy saving solutions available at each 

node. Different energy reduction solutions on nodes lead to distinctive results in terms of 

nodes energy and consumptions interdependencies. Furthermore, there might be 

differences in the amount of reduction achieved on a given node through various 

solutions. In this work a set of common alternatives is chosen for energy saving at nodes 

in an industrial system. 

4.4.1. Energy Saving Solution Alternatives at Nodes 

For illustrative purposes, In this chapter, we incorporate a setback control strategy at the 

HVAC system in which energy saving is achieved by avoiding unnecessary high 

temperatures and excessive cooling during heating and cooling seasons respectively. In a 

base case scenario, HVAC components are assumed to have fixed and continuous daily 

schedule in which chiller and boiler are operational all day during cooling and heating 

seasons, respectively. With setback control the energy reduction is achieved via shutting 

down chiller and boiler in off-peak daily shifts. Off-peak shifts start anytime between 

8:00 AM and 4:00 PM and last up to 6 hours. 

For industrial processes, we set an innovative control solution that manipulates process 

variables (e.g. Feed, speed, depth-of-cut, and so forth) to determine the industrial 

operation. More specifically, we define a linear control scheme to reduce the waste of 

energy due to sudden shifts between operation modes. This will be discussed in more 

detail later. 
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4.4.2. “Energy-Performance”‎Calculations  

To carry out the energy optimization, metered or summary data on energy usage and 

performance characteristics of nodes are required. Salahi et al. (2009) define three 

metering approaches, namely, physical, virtual and simulated [99]. In physical metering 

approach, KPIs and energy data are directly obtained from sensors or smart meters. 

Historical data along with inferential statistical techniques using facility’s utility bills, 

accounting databases, and equipment specification and performance data may be used to 

derive the virtual metered data. In the absence of meters and historical data, simulation 

may be used to obtain the required information on energy consumption and node 

performance. We present a general formulation, which can be supported by one or all of 

the above data metering approaches. For demonstration purposes, we use simulated 

metering approach to derive necessary energy consumption and performance data. 

4.4.2.1.Industrial Processes: Case of Isolated Machines 

For industrial processes, we start from a single isolated machine 𝑀𝑖 , where energy 

𝜋𝑀𝑖
used by the machine over a production shift with duration of  𝑇 is given as follows: 

 
𝜋𝑀𝑖

= ∫ 𝑃𝑀𝑖
(𝑡)𝑑𝑡

𝑇

𝑡=0

 
(4.9) 

𝑃𝑀𝑖
(𝑡) is the power input to 𝑀𝑖 at time 𝑡. 𝜋𝑀𝑖

 is calculated according to machines’ 

operational states and duration of time machine spends in each state. Figure  4.2 shows 

basic operational states and transitions of a typical machine tool. 
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Figure  4.2: Operational States of a Typical Machine Tool 

For a machine 𝑀𝑖 a production cycle is defined per part or work piece. Let 𝜔𝑠, 𝑠 =

1, … , 𝑆 be a random variable representing the time spent in operational state 𝑠. The 

machine’s cycle time (𝛺𝑀𝑖
) can thus be estimated by: 

 

Ω𝑀𝑖
= ∑ 𝐸(ωs

S

s=1

) 

(4.10) 

Where E(.) represents the expected value of the random variable. For random 𝜔𝑠, the 

amount of energy consumption in each state, will also be a random variable presented by 

πs(ωs) and can be approximated by 𝜋𝑠(𝐸(𝜔𝑠)). The expected total energy consumed 

over sampled values of 𝜔𝑠’s can be estimated using: 

 

π(Ω𝑀𝑖
) = ∑ 𝜋𝑠(𝐸(𝜔𝑠))

𝑆

𝑠=1

 

(4.11) 

Energy consumption of a multiple-cycle machine, characterized by a sequence of single 

cycles, is then evaluated by: 

 

𝛱𝑀𝑖
=  ∑ 𝜋(Ω𝑀𝑖

)
𝑘

𝑛

𝑘

= ∑[∑ 𝜋𝑠(𝐸(ωs

S

s=1

))]𝑘

𝑛

𝑘=1

 

(4.12) 
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Given the power profile for states of a machine, Energy consumption can be defined 

using Equation (4.12).  Figure  4.3 below depicts the power profile for a grinding 

machine. 

 

Figure  4.3: Power Profile for a Grinding Machine, derived from [100] 

According to Dahmus and Gutowski et al. (2004), processing power (operational state 5 

in Figure  4.2), is decomposed into variable and fixed portions. The fixed power is 

necessary to ensure a functional mode of operation (i.e. Air-cutting which refers to the 

time when the machine is running without material removal). The variable portion relates 

to the power consumption for material removal [79]. Energy consumption of machine 

tools, defined using Equation (4.13), is primarily dictated by workpiece geometry, and 

Material Removal Rate (MRR) and the duration of time spent in each state. The control 

solution applied to the machine dictates the time spent in each of the operating states. 

Diaz et al. (2011), fit the following curve on experimental data collected for “Mori Seiki 

NV1500 DCG” machine tool’s processing with various piece geometries [101]. 

𝜋𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 in Equation (4.10) represents the energy consumed during the processing 

state of a machine tool (state 5 in Figure  4.2). 
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𝜋𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑘 ×

1

𝑀𝑅𝑅
+ 𝑏 

(4.13) 

Note that constant 𝑘 essentially has units of power and 𝑏 represents steady-state specific 

energy due to air cutting. Energy consumption profile of various machine tools can 

effectively highlight the relationship between energy consumption and machining 

operation’s performance (i.e. “Energy-Performance” curve) [79], [88] and [101]. 

Evidently, as the MRR increases the processing time is reduced. Therefore, the 

contribution of the constant power demand of the machine tool for the energy per unit 

processed decreases. However, an increase in MRR demands more power from the 

machine tool. Figure ‎4.4 summarizes such relationship for a milling operation and 

illustrates the energy consumption as a function of MRR. Rate of material removal can be 

considered as an appropriate KPI for monitoring performance of a machine tool. The 

“Energy-Performance” profile in Figure  4.4 suggests that energy usage decreases with 

process time; therefore, choosing appropriate process parameters can minimize process 

time and lead to energy saving at machine level. 

 

Figure  4.4: “Energy-Performance” - Case of a Single Machine [101] 
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4.4.2.2. Industrial Processes: Case of Multiple Machines 

For industrial processes with multiple machines, the total energy usage is defined based 

on the number of machines, energy and performance profile of each machine, and non-

value added times (such as machine starvation or blockage times). The non-value added 

quantities are dependent on the configuration of the industrial system, the control 

solutions put on machines and on the whole system as well as system’s input and output. 

Consider a simple case of a machine (𝑀𝑖) that is connected to its upstream machines via 

buffer storage 𝑏𝑖 and to its downstream machines via buffer storage 𝑏𝑖+1 as depicted in 

Figure  4.5 Machine  𝑀𝑖 is starved if 𝑏𝑖 the buffer is empty and blocked if 𝑏𝑖+1 is full. The 

machine is “Idle” during starvation and blockage. 

 

Figure  4.5: Serial Production Line 

Each machine’s energy consumption can be defined using Equation (4.12) similar to case of 

an isolated machine. However, in this case machines’ production cycles and duration of visits 

to aforementioned states depend on the control solution in place to regulate the machines. 

Here, we introduce two rule-based control solutions, namely “High-Low” and “Linear” 

control in which a machine’s process rate is regulated on the basis of upstream and 

downstream buffer levels. In “High-Low” control machines process rate (MRR) fluctuates 

between two values (𝑀𝑅𝑅𝐿 and 𝑀𝑅𝑅𝐻). Figure  4.6 shows the profile for “Processing” state 

of a single production cycle under the “High-Low” control. The fluctuation between process 
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rates are controlled based on the upstream and downstream buffer levels according to the 

following algorithm: 

 If 𝑏𝑖 is near empty (𝑏𝑖 ≤ 𝛼𝑏𝑚𝑎𝑥𝑖
) or 𝑏𝑖+1 is near its maximum capacity (𝑏𝑖+1 ≥

𝛼′𝑏𝑚𝑎𝑥𝑖+1
), 𝑀𝑖 works with MRRL. 

 If 𝑏𝑖+1 ≤ 𝛼𝑏𝑚𝑎𝑥𝑖+1
 or 𝑏𝑖 ≥ 𝛼′𝑏𝑚𝑎𝑥𝑖

 Mi works with 𝑀𝑅𝑅𝐻. 

 If 𝑏𝑖 and 𝑏𝑖+1 are in their “safe range” (𝛼𝑏𝑚𝑎𝑥𝑖
≤ 𝑏𝑖 ≤ 𝛼′𝑏𝑚𝑎𝑥𝑖

 and 𝛼𝑏𝑚𝑎𝑥𝑖+1
≤

𝑏𝑖+1 ≤ 𝛼′𝑏𝑚𝑎𝑥𝑖+1
 the possibility of starvation (for downstream) or blockage (for 

upstream) is low, therefore 𝑀𝑖 continues processing with no change in the MRR. 

Note that 𝛼 & 𝛼′ > 0 are constants measured in percentage of buffers’ maximum 

capacity. 

 

Figure  4.6: Single Production Cycle-"High-Low" vs. “Linear” Control 

The energy usage rate of Low control mode is considerably lower than High control 

mode. Furthermore, changing from Low mode to High requires an acceleration step 

which consumes energy at a considerably higher rate. Using “Linear” control technique, 

the machine’s process rate is regulated in a way to smooth out the impact of acceleration 

Time

M
R

R

 

 

High-Low Control

Linear Control
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due to shift from “Low” to “High” mode. The process rate of 𝑀𝑖 can change linearly with 

different slopes. According to this rule-based control, whenever  bi is near empty 

(𝑏𝑖 ≤ 𝛼𝑏𝑚𝑎𝑥𝑖
) or 𝑏𝑖+1 is near its maximum capacity (𝑏𝑖+1 ≥ 𝛼′𝑏𝑚𝑎𝑥𝑖+1

), 𝑀𝑖’s process 

rate is decreased with a slope 𝑠 (units/second). Deceleration in process rate continues 

until buffers enter the safe range (𝛼𝑏𝑚𝑎𝑥𝑖
≤ 𝑏𝑖 ≤ 𝛼′𝑏𝑚𝑎𝑥𝑖

 and 𝛼𝑏𝑚𝑎𝑥𝑖+1
≤ 𝑏𝑖+1 ≤

𝛼′𝑏𝑚𝑎𝑥𝑖+1
). If 𝑏𝑖+1 ≤ 𝛼𝑏𝑚𝑎𝑥𝑖+1

 or 𝑏𝑖 ≥ 𝛼′𝑏𝑚𝑎𝑥𝑖
, process rate is increased with slope  𝑠′ 

and acceleration continues until buffer units reach safe range.  Once the buffers are in a 

safe range, 𝑀𝑖’s process rate is kept constant, since the possibility of starvation or 

blockage is low. Notice, however, that switching from “High-Low” to a “Linear” control 

has a drawback of stretching the process time as is shown in Figure ‎4.6. Such 

phenomenon highlights the necessity of considering the “Energy-Performance” curve 

while making decisions on adopting the control policy to achieve energy reduction. In 

other words, the increase in processing time is accepted as long as the throughput stays 

above the demand requirement. Later in this chapter, this concept is further elaborated for 

the illustrative case. 

4.4.2.3.Heating, Ventilation and Cooling (HVAC) System 

Numerous calculation methods exist for estimating HVAC equipment energy 

consumption. In this thesis, energy consumption and performance of HVAC equipment is 

calculated using the EnergyPlus simulation package. EnergyPlus, developed by the 

Department of Energy is a simulation software that models heating, cooling, ventilation 

and other energy flows of a building structure. Given user inputs for building geometry, 

physical description and associated mechanical systems, EnergyPlus calculates heating 

and cooling loads necessary to maintain temperature set points, as well as HVAC 
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equipment KPIs such as efficiency parameters. EnergyPlus computes thermal dynamics, 

such as hourly room air temperature and air/water flow rate, by differential equation 

systems. Weather profile and HVAC controls are also required inputs for EnergyPlus, to 

determine the building thermal behavior. Such controls for operating the HVAC 

equipment can be modelled on a separate platform (e.g., MATLAB). Note that 

temperature fluctuation in the facility as a result of imposing energy saving solutions, 

impacts the productivity of facility personnel. Such impacts can be accounted for by 

using temperature outputs from EnergyPlus simulation runs and quantitative relationships 

between thermal comfort and occupant task performance. ‘Performance’ dependency 

between the facility’s personnel and HVAC equipment is derived using ‘Productivity’, 

which is a measurable KPI in occupant performance evaluation studies. Task related 

performance of workers in a facility is significantly correlated with the human perception 

of thermal environment that in turn depends on temperatures. The definition of 

occupant’s ‘Thermal Comfort’ and Fanger’s ‘Predicted Mean Vote’ (PMV) is used here 

to derive a quantitative relationship between personnel ‘Productivity’ and thermal 

environment [53]. In this chapter, we have used methods introduced in chapter 3 and the 

polynomial function introduced by Kosonen et al. (2004) [51] , [101] and [103] to 

quantify a relationship between occupant productivity and temperature fluctuations as 

presented in Equation (4.14): 

𝑅𝑃 = 1.6𝑃𝑀𝑉5 − 1.55𝑃𝑀𝑉4 − 10.4𝑃𝑀𝑉3 + 19.23𝑃𝑀𝑉2 + 13.4𝑃𝑀𝑉

+ 1.87 

(4.14) 

In this work, EnergyPlus simulation is used to derive HVAC equipment’s energy 

consumption (πj) as well as KPIs for HVAC equipment and facility’s personnel (PMj). 
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4.5. Energy & Performance Dependency Parameters 

Energy usage (𝜋𝑗) and performance data (𝑃𝑀𝑗) are used to calculate the 

interdependencies between nodes (𝛿𝑖𝑗 and 𝜌𝑖𝑗). Changes in node 𝑖’s energy usage and 

performance upon energy saving in other nodes are derived as follows: (1) nodes’ energy 

usage (𝜋𝑗) and performance in terms of appropriate KPIs (𝑃𝑀𝑗) are recorded when no 

energy saving solution is in place. (2) Energy saving solutions introduced earlier, are 

implemented one at a time and nodes’ energy usage and KPI are measured (𝜋𝑖
′ and 𝑃𝑀𝑖

′), 

(3) Energy dependency is defined as: 

 
𝛿𝑖𝑗 =

𝜋𝑖 − 𝜋𝑖
′

𝜋𝑗 − 𝜋𝑗
′⁄  

(4. 15) 

Nodes 𝑖 and 𝑗 are said to have a positive energy dependency denoted by 𝛿𝑖𝑗 > 0, if node 

𝑖’s energy consumption declines as a result of energy saving in node 𝑗. In other words the 

value  𝛿𝑖𝑗 > 0 represents an energy reduction in node 𝑖 due to 1 kWh energy saving in 

node 𝑗. 

(4) Performance dependency is defined as: 

 
𝜌𝑖𝑗 =

𝑃𝑀𝑖 − 𝑃𝑀𝑖
′

𝜋𝑗 − 𝜋𝑗
′⁄  

(4.16) 

Positive “Performance” dependency between nodes 𝑖 and 𝑗 is denoted by 𝜌𝑖𝑗 > 0. Such 

relationship holds when “Performance” of node 𝑖, in terms of appropriate KPI, is 

improved as a result of energy saving in node j. It is worth mentioning that for 

interdependency calculations, energy saving solutions are imposed on nodes one at a 

time. For instance, while measuring 𝜋′𝑀1
, “Linear” control is set on M1 while  M2 and M3 

operate with “High-Low” control. 
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4.6. Experiments and Discussion 

EnergyPlus simulation package and Rockwell Automation’s Arena Software are used to 

derive energy consumption (𝜋𝑗) and KPIs (PMj) of the HVAC equipment and the 

industrial process respectively. The outputs of simulation models are then used to obtain 

the energy and performance dependency parameters for the industrial process and HVAC 

system as discussed in the previous section. These parameters are then used as inputs to 

solve the optimization problem introduced in section 4.3. The optimization model is then 

solved using LINGO 15.0. The energy saving solution for HVAC components (i.e. Set 

back control) has to be modeled on a separate platform. As mentioned in chapter 3, the 

communication between the two platforms is accomplished by a MATLAB script 

package, MLE+. The operating schedule for HVAC components is changed from a 

continuous to a schedule with equipment shut downs in off-peak hours. The building 

simulation is executed using “USA_OL_Chicago-Ohare.Intl.AP.725300_TMY3” weather 

file. Appropriate HVAC equipment’s efficiency measures (i.e. Chiller’s cooling 

efficiency (EIR-fPLR), boiler’s heating efficiency (HIR-fPLR) and fan’s specific power 

(SFP)) are used as appropriate KPIs to obtain “Performance” interdependencies. 

EnergyPlus includes several correlation curves that predict the energy use of HVAC 

systems. These correlation curves are intended to predict efficiency as a function of the 

part load ratio. In this study, we have used default curves given by EnergyPlus simulation 

package and coefficients provided by Henderson et al. (1999) [104].  Energy 

consumption and performance data from EnergyPlus simulation suggest clear 

interdependencies between energy usage and performance of HVAC components during 

cooling and heating seasons. More specifically set back control on chiller during cooling 
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season creates efficiency degradation in fan and increases the amount of fan’s energy 

consumption by as much as 3% (𝛿31 < 0 and 𝜌31 < 0 where assuming 𝑖, 𝑗 = 1, … ,3 

represent chiller, boiler and fan respectively). In the same fashion, boiler and fan also 

have negative energy and performance dependency (𝛿32 < 0 and 𝜌32 < 0). Simulation 

results also show that daily productivity of industrial system’s employees degrades by 

about 2%  per unit electricity saving in chiller during cooling season (i.e. 𝛿41 < 0). 

Optimal productivity is achieved at neutral thermal conditions (PMV ≅0). In this case, 

setback control on chiller modifies room temperature and shifts PMV away from neutral 

conditions leading to productivity loss. Note however, that set back control on HVAC 

components does not impose high temperature fluctuations in the industrial facility 

during peak hours during heating season. Thus, the impact of the boiler’s set back energy 

saving solution alternative is considered negligible. There is no requirement in terms of 

indoor air quality and temperature for the machines in the industrial process, therefore no 

interdependency exists between HVAC components and the process. However, imposing 

“Linear” control on any of the machines not only increases the energy usage of the other 

two, but also negatively impacts the machines’ throughput (𝛿𝑖𝑗 < 0 and 𝜌𝑖𝑗 < 0 ∀ 𝑖, 𝑗= 

machine 1, machine 2, machine 3). As noted earlier, dynamic performance 

interdependencies between nodes need to be considered while making a decision on 

imposing energy reduction solutions so as to ensure demand requirements are 

successfully satisfied. Table  4.1 summarizes 𝛿𝑖𝑗and 𝜌𝑖𝑗 parameters used in this 

illustrative case. Potential energy reduction (𝑃𝐸𝑅) for nodes is defined according to 

node-specific technological, physical and economic limitations. Moreover, each node has 

a minimum required performance. Such requirement is defined in terms of demand-
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driven system throughput for the three machines of industrial process. As for the HVAC 

components, 𝜂 parameters are defined in terms of efficiencies so as to ensure facility 

temperature complies with set points defined by ASHRAE standards [52].  

Table  4.1: “Energy” and “Performance” Dependency Parameters 

“Energy” Dependency (KWh Per  1 KWh energy saving) 

𝛿𝑖𝑗 Machine 1 Machine 2 Machine 3 

Machine 1 1.0 -0.53 -0.05 

Machine 2 -1.46 1.0 -1.09 

Machine 3 -0.02 -0.75 1.0 

Performance” Dependency (Machine throughout change per  1 KWh energy saving) 

𝜌𝑖𝑗 Machine 1 Machine 2 Machine 3 

Machine 1 0.08 -8.54 -9.57 

Machine 2 -0.317 -9.57 -10.46 

Machine 3 -0.238 -9.23 -11.48 

“Energy” Dependency (KWh Per  1 KWh energy saving) 

𝛿𝑖𝑗 
Chiller 

Cooling Season 

Boiler 

Heating Season 

Fan 

Cooling 

Season 

Fan 

Heating 

Season 

Chiller 1 0 1.20 0 

Boiler 0 1 0 -8.25 

Fan -0.021 -0.016 1 1 

Employee 0 0 0 0 

Performance” Dependency (Machine throughout change per  1 KWh energy saving) 

𝜌𝑖𝑗 
Chiller 

Cooling Season 

Boiler 

Heating Season 

Fan 

Cooling 

Season 

Fan 

Heating 

Season 

Chiller 0.08 0 0.002 0 

Boiler 0 0 0 0.00002 

Fan -0.317 0 0.144 -0.0023 

Employee -0.238 0.0003 0 0.0003 

 

In other words, energy saving through operational scheduling is acceptable as long as 

average temperature stays above the required temperature set points by ASHRAE 

standard. Assuming the facility owner has a 3% daily energy saving requirement, 
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Table  4.2 summarizes optimization outputs for the industrial facility in cooling and 

heating seasons respectively. Cost and penalty coefficients are defined based on average 

unit prices for electricity and gas in Chicago, IL. As illustrated in Figure  4.7(a), machine 

1 takes the highest share of energy saving (up to 30%) on the process side when 

compared to the base scenario.  

 

Figure  4.7: Amount and Percentage Share of Energy Savings in (a) case 1 (b) case 2 

The chiller and boiler get approximately 13% and 12% daily energy saving in cooling 

and heating seasons using a setback control. Implementing a combination of the 

aforementioned energy saving solutions according to the output of optimization, can lead 

to a 7% reduction in industrial system’s energy consumption. Let us consider another 

energy saving solution for the chiller and boiler in which cooling and heating set points 

are adjusted according to facility personnel’s work schedule to avoid unnecessary cooling 
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and heating loads on HVAC components. In other words, set points are adjusted to the 

lowest and highest temperatures allowed by ASHRAE standard to assure occupant 

thermal comfort.  The results suggest a decrease in percentage savings in chiller (%3 

energy saving with adjusted set points). However, decreasing the heating set point during 

heating season provide an appealing opportunity for savings in boiler’s energy (up to 

%26 reduction compared to base case).  

Table  4.2: Nodes’ Optimal Share of Energy Saving  

Nodes 

Energy Saving (%) 

Case 1 Case 2 

Cooling Season Heating Season Cooling Season Heating Season 

Machine1 30 30 30 30 

Machine2 2 2 2 2 

Machine3 0.1 0.1 0.1 0.1 

Chiller 13 0 3 0 

Boiler 0 12 0 26 

Fan 11 14 0 0 

 

It can be argued that facility personnel productivity is not impacted drastically with lower 

indoor temperature during the heating season, but an elevation in cooling set point and 

resulting higher temperature in the facility degrade the productivity; which in turn 

decreases the share of energy saving for the chiller. These results are summarized in 

Table  4.2 and Figure  4.7(b). It is worth to note that developing energy simulations for 

buildings (using EnergyPlus or similar systems) are becoming common practice in the 

industry for new buildings. Such simulation models are normally calibrated with 
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building’s monthly utility bills and real time data received from Building Energy 

Management System (BEMS). Thus, depending on the model granularity and accuracy of 

weather input files, these simulations are able to provide reasonable energy forecasts for 

buildings. In this case, archived and validated simulation models are used, thus HVAC 

energy consumption simulation model is valid. Given actual data on an industrial 

process’ energy and efficiency, the accuracy of simulation model used here, can be 

validated. 

 

Figure  4.8: Energy-Performance – Serial Production Line : “High-Low” vs. “Linear” 

Control 

Figure  4.8 compares the “Energy-Performance” profile for the above illustrative 

industrial process in two control scenarios: (1) All machines work with “High-Low” 

control and (2) Machine 2 works with “Linear” control and the other two machines keep 

the same control as in (1). Number of items produced per unit time are selected as 

appropriate KPI to reflect the performance requirement at industrial process. According 

to Figure 8, total process time in “Linear” control is longer than “High-Low” control. In 

the present case study average process times are approximately 9.5 and 10 for “High-

0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25 0.255
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

Performance (Item/hr)

E
n
e
rg

y
 (

J
/I

te
m

)

Energy-Performance Curve

 

 

High-Low Control

Linear Control



98 
 

 

Low” and “Linear” control, which leads to 0.16 and 0.17 items per minute for the 

scenarios respectively. Assuming daily demand of 150 units, despite an opportunity to 

save energy by switching to “Linear” control, the network owner is at risk of unsatisfied 

demand. However, for lower demand rates, such as 100 units, switching to energy saving 

control seems a plausible choice for the facility owner. 

4.7. Conclusion  

In this chapter we presented models to optimize the energy efficiency in an industrial 

system using a network approach. The proposed model uniquely integrates energy usage 

of industrial processes with the usage attributed to the facility that houses the processes. 

These two perspectives were commonly treated separately in the literature. The 

optimization model takes into account the interdependencies between nodes of the 

network in terms of “Energy Consumption” and “Performance”. We also introduced the 

concept of “Energy-Performance” curves which can assist the owner to achieve energy 

saving while maintaining the performance of nodes in desired levels. The integrated 

energy efficiency problem is formulated as a general network optimization problem and a 

solution methodology is presented using an illustrative case study. Nodes in the network 

represent machines in the production line and HVAC assets in the building. For the 

facility, we focused on HVAC energy usage and modelled the facility using EnergyPlus. 

In the illustrative example, we used ARENA simulation to compute KPIs for the 

production processes. Other simulation packages can also be used or one can adopt more 

analytical techniques for such calculations – this is outside of the scope of this work. Data 

derived from these simulations is used to compute nodes’ interdependencies. The energy 

efficiency optimization considers worker productivity and comfort issues. It is assumed 
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that a set of feasible alternatives is given for energy efficiency at each node of the 

network. The generalization of the approach based on a larger set of feasible alternatives 

will be an extension to this work. Incorporating the “Energy-Performance” curve in 

investment, compliance and process risk analysis is also investigated as a future work for 

this study. 
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Chapter 5  

5. Data and Metering Infrastructure for Sustainable Consumption and 

Production 

5.1. Preliminaries  

The work in this chapter is motivated by the fact that sustainable industrial practices 

require coordinated measures and integrated practices on production and consumption. 

Consumer products are the common denominator for this integration. The necessity of 

such integrated metrics has been addressed in the literature. One of the key research 

issues is development of applied tools for use by designers and decision-makers, 

validation of life cycle assessments, and validation of metrics for comparing different 

types of environmental impacts [105]. Data integrity and availability will be major 

requirements to run sustainable businesses and will ultimately guarantee the success of 

Sustainable Consumption-Production (hereafter denoted as SCP) across industries. 

Sustainable production and consumption is the use of goods and services that respond to 

basic needs, while minimizing the use of natural resources, toxic materials and emissions 

of waste and pollutants over the life cycle, so as not to jeopardize the needs of future 

generations. Against this background, this chapter presents a framework to construct a 

distributed information and computation system to calculate the energy footprint of 

consumer products. Footprints are excellent tools to assess the overall intensity (e.g. 

Energy intensity, resource intensity and material intensity) of a defined activity, product 

or organization. Any type of footprint is fundamentally an audit that provides a 

quantitative assessment of substances such as greenhouse gases (carbon equivalents), 



101 
 

 

water and even energy consumption for a specific time frame. In this chapter, the time 

frame under which the energy content calculation is performed is a consumer product’s 

whole life cycle. In order to calculate the energy footprint of a product, one needs to first 

define the energy consuming stages and processes within the product’s life cycle. In this 

chapter we propose a “Top-Down” mapping of energy flow over the two dimensions of 

“Life Cycle” and “Supply Chain”. The “Top-Down” approach (i.e. Decomposition) is 

essentially the breaking down of a system to gain insight into its compositional sub-

systems. In a “Top-Down” approach an overview of the system is formulated, specifying 

but not detailing any first-level sub-systems. Each sub-system is then refined in yet 

greater detail, sometimes in many additional sub-system levels, until the entire 

specification is reduced to base elements. In other words, considering a treelike structure, 

mapping is performed by moving from the roots to leaf nodes. In our context, the system 

under study is a product over the two dimensions; thus, first-level subsystems (denoted as 

nodes of the network) are stages of the life cycle. System’s base elements, denoted as 

“Atomic” nodes hereafter, are the leaf nodes of the network where no further 

decomposition is possible.  Note that this hierarchal mapping of energy flow across the 

two aforementioned dimensions allows for defining appropriate node ownerships along 

the stages of “Life Cycle” and “Supply Chain”. At the network atomic level (representing 

industrial or business processes), energy consuming activities as well as data 

requirements at process or activity level are defined. One of the critical and key 

components of the energy content calculation is data metering infrastructure. This chapter 

focuses on the information infrastructure that is needed to support SCP. In particular, it 

attempts to address all the three aspects of “what data to collect”, “where to get the data 
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from”, and “how to get the data”. While we will not present any specific data values for 

our illustrative case study, we will map out all the necessary details to build a systematic 

infrastructure, to perform a collaborative and concurrent analysis of energy flow across 

supply chains. The hierarchical “Top-down” approach (The network construction 

process) eventually leads to solutions on the first two of the above questions. The third 

question above is handled on the basis of constructing a metering and sensing 

infrastructure within the same information platform. We classify energy metering into 

“Physical”, “Virtual” and “Simulated”. The framework introduced in this chapter, 

including the metering infrastructure supports the data and “Energy-Performance” 

calculations in the preceding chapters.  

The major differentiating factors between the work in this chapter and earlier works are 

described next. The previous related research and commercially available software 

products are mainly database tools covering aggregate and semi-aggregate data on many 

industries and common business/industrial processes. An example of such methods is 

Economic Input-Output models for Environmental Life Cycle Analysis (EIO-LCA) [106-

107]. EIO-LCA calculates the impacts of different types of products, materials, services, 

and industries regarding their resource use and emissions throughout the product’s supply 

chain. The model uses publicly available information about industry transactions and also 

environmental emissions of industries.  This method suffers from such limitations as high 

degree of aggregations and only a limited number of factors for which public data are 

available. In order to reduce the level of aggregation in EIO-LCA based models Process 

Analysis has been introduced. In this method inputs such as raw materials and energy 

resources, and also outputs, namely emissions and wastes to the environment, are defined 
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for a specific product or process under study. This task should be done across products or 

process’ entire life cycle; therefore, this method can be overwhelming in terms of number 

of inputs and outputs needed to be defined, not to mention being costly and time 

consuming. Some existing Life Cycle Assessment (LCA) software tools based on the 

process model are:  the Ecobilan’s group TEAM
TM

 [108], SimaPro from Pre̕ Consultants 

[109], GaBi4.0 from PE international [110]. These systems can be used by individual 

companies to calculate the energy footprint of their processes at any level of aggregation. 

They come far short of offering any systematic tool for collaboration and concurrent 

analysis/optimization of energy flow across supply chains. Furthermore, our approach 

builds on existing collaborative principles and covers all stages of the product life cycle. 

All interdependencies between different stages and activities that contribute to the 

making of the product are captured and utilized for the betterment of the product quality 

and functionality. This includes material, information and energy flow between stages. In 

our paradigm, similar to the case of an industrial system, nodes’ energy and performance 

across this network are interdependent, and lowering energy over one node could impact 

the energy and/or performance over some downstream or upstream node. Node’s 

Performance can be quantified in terms of production output, a total time span of a 

machine, etc. Using top-down schemes we are able to interpolate and extrapolate as 

necessary and quantify impacts and dependencies at sub-network or network levels.  

This chapter outlines as follows. Next section introduces a top-down hierarchal approach 

to build networks representing a product’s “life cycle” and “supply chains”. This network 

defines ownerships and dependencies between nodes over the two dimensions. Defining 

such ownership, will determine “what data to use” as the first step towards the 
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construction of an information infrastructure needed to support SCP. Network 

demonstration is followed by introducing a computation engine to capture and measure 

the aforementioned energy, material and information flow along the network. This 

computation engine addresses the question of “where to get the data from”. Data and 

metering infrastructure supporting the computation engine (“how to gather the data”) is 

discussed, followed by illustrative case studies to elaborate suggested methods of data 

metering. 

5.2. Network Decomposition and Ownership Allocation 

In order to map out a consumer product across two dimensions of “Life Cycle” and 

“Supply Chain”, we propose a “Top-Down” hierarchal approach to construct a 

Consumption Production – Entity relationship (CP-Er). The outcome of such hierarchical 

mapping is a network which includes ownership relationships between stakeholders. This 

model assumes there is a master owner (e.g. Major retailer) who starts the decomposition 

and the mapping process. This hierarchal structure leads to “Atomic” nodes with no 

further decomposition where energy calculation is performed at process level. In CP-Er 

network ownership is defined on the basis of material flow between stages of life cycle as 

well as supply chain stakeholders. This type of breakdown is particularly similar to 

breakdown structure of conventional supply chains. The hierarchical model includes 

relationship between owners/stakeholders and different nodes in the two dimensional 

space. CP-Er construction process briefly follows. Figure  5.1 illustrates a preliminary 

view of a CP-Er network for a typical fruit juice such as an orange juice. The first layer 

of hierarchy breakdown includes sub-systems (nodes) representing stages of life cycle of 

the orange juice product. Common stages of an orange juice supply chain over the life 
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cycle are: juice production, transportation or distribution, retailer, customer usage and 

recycle or final disposal. These nodes are laid out horizontally within the CP-Er network 

as shown in Figure  5.1 below. 

 

Figure  5.1: CP-Er for Orange Juice 

Each such node will point to one or more owners vertically, who will be required to 

follow the decomposition further down. The vertical breakdown of the hierarchy will take 
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into account the ownership relationship, with a “parent” owner relating to one or more 

“child” owners. We will assume that every “parent” owner will have access and will be 

able to communicate to its “child” owners. Each node is characterized by a node “type” 

namely: 

 Component or ingredient nodes 

 Process / atomic nodes 

 External resource nodes 

“External Resource” nodes do not need further breakdowns. The data for these nodes 

come from external sources such as publicly available data websites [111-114]. In our 

orange juice example resource nodes are electricity and fuel generation. Electricity 

generation resource node represents the energy used to generate total on-site electricity 

required for a manufacturing facility. These nodes have a great contribution to overall 

energy consumption of products. According to the EPA, of the total energy consumed in 

America, about 39% is used to generate electricity. “Component” nodes may have their 

own corresponding life cycle with its separate owners. These nodes usually represent 

production of raw material and packaging material input. Component or ingredient nodes 

designated here are fruit input and packaging (plastic containers or cardboard cartons). 

Each of these components has its own lifestyle, which is laid horizontally on a 

component level of the CP-Er hierarchal structure as shown in Figure  5.1. The 

breakdown continues horizontally for each stage of component life cycle. Hierarchal 

breakdown is continued until atomic nodes (i.e. Nodes with no further decomposition) are 

reached. Atomic nodes may correspond to machines, processes or any other business 

entity. Each atomic node is tagged with an owner, embedded energy, and performance 
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index as well as energy and performance dependency with all other nodes within the CP-

Er network. Once network decomposition is finished and all atomic nodes are identified, 

energy and performance can be calculated using a computation engine. 

5.3. Energy Computation Engine 

Our proposed computation engine quantifies energy consumption of an atomic node and 

measure performance of the node in terms of the defined performance index. It is 

assumed that the energy consumption of each node changes upon any modification in 

energy (i.e. Energy conservation) of other nodes within the CP-Er network. Such 

interdependency is also valid for performance of each node in terms of the defined 

performance index. Tools such as continuous and discrete simulation or spreadsheet 

based approaches may be used to quantify the energy flow of each node. Micro level 

calculation of energy at each atomic node requires process and activity level analysis of 

energy usage. All physical and logical processes or activities use energy to transform 

inputs to outputs. Each resource (e.g., machinery, equipment, and personnel resources) 

used by an activity has its own energy consumption, which has to be brought to our 

calculations with some degree of accuracy. This approach employs spreadsheets 

(hereafter denoted as “Activity Vector”) which categorize related data at each stage of the 

product lifecycle in forms of vectors. These “Activity Vectors” are generic and may be 

used as a guide for energy calculation of any class of product. For instance, in 

manufacturing Activity Vector energy consuming systems are classified into: 

 Combustion/Thermal systems 

 Motor Systems 

 Lighting 
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 Air conditioning (heating and cooling) 

 On-site fuel/energy generation 

 On-site fuel consumption (propane, etc.) 

In manufacturing “Activity Vector” energy consumption (in kWh) of motor systems can 

be approximated with Equation (5.1): 

(𝑁) × (𝑃) × (𝑇) × 0.7457

𝜂 × 1000
 

(5.1) 

Where 𝑁, 𝑃, 𝑇 and 𝜂 represent  the total number of motors, the horse power of motors 

(the rate at which work is done), the total operating hours and the efficiency of the motors 

respectively. 

In Equation (5.1) 𝑃 and 𝑇  can be approximated with mean values in this paradigm. Note 

that the constant (0.7457) is used to convert horsepower of the motors to kilowatts. The 

performance of each node is also quantified in similar fashion in terms of appropriate 

performance indices defined (i.e. Number of items processed per unit time in production 

line of manufacturing plant). A generic energy consumption calculation approach at 

atomic nodes of a fruit juice product is included in the appendix E.1-E.4. Although such 

generic spreadsheet-based methods require considerably less time and effort in 

comparison with simulation approaches, they come far short of offering realistic results 

for energy and performance interdependencies between nodes of a CP-Er network. 

Simulation approaches can be used to model the dynamics of CP-Er’s atomic nodes 

taking into account strong interdependencies between activities at micro level. Two sets 

of factors are introduced here that classify the type of energy reduction technologies at a 

http://en.wikipedia.org/wiki/Work_(physics)
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process level of an atomic node. These factors can then be used to formulate energy and 

performance dependency between nodes as well as node’s energy content. 

5.3.1. Profile Factors 

These factors are mostly inherent to the specifications of a process, activity or device at 

the atomic level. In other words, these factors can be considered as energy efficiency in 

an activity or device which refers to using less energy for a constant service. Energy 

efficiency differs from energy conservation, which refers to reducing energy through 

using less of an energy service. For example, driving less is an example of energy 

conservation. Driving the same amount with a higher mileage vehicle is an example of 

energy efficiency. Consider an HVAC (heating, ventilation, and air conditioning) system 

of a manufacturing facility as a part of building services. HVAC is the technology which 

creates conditioned air, heating and cooling for the production line’s personnel resource. 

This system may be directly or indirectly involved in actual value adding activities of the 

facility. An example of energy reduction methodology in the manufacturing plant or 

distribution centers of a CP-ER network is energy reduction in the HVAC system 

supporting personnel and processes in such environments. Energy reduction in HVAC 

systems may be achieved via frequent and on-time maintenance of the components of the 

system (e.g. Supply and return fan, chiller water system). Another example of energy 

reduction techniques for an HVAC system which falls into profile factors category is the 

replacement of old components with new and more efficient ones. 

5.3.2. Schedule Factors: 

As can be expected from the title, schedule factors, mostly depend on the way an activity, 

process or device is scheduled within the system. Most energy conservation methods for 
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energy reduction fall into this category. Going back to example of HVAC system 

optimized and efficient process control (e.g. Avoiding unnecessary high or chilled 

temperatures in buildings and shut down in non-peak hours) is a method for energy 

saving in HVAC systems. Such energy conservation methods fall into schedule factors. 

Energy consumption of most processes in a production line of a manufacturing facility 

can be reduced using schedule factors.  Examples are energy reduction of machines (tool 

handling and actual processing) and material handling by minimizing waste of energy 

through stand-by loss and machine idle time reduction (planning of production program), 

or dynamically regulating and controlling production speeds of machines [115]. Another 

instance of schedule factors for energy reduction at a CP-Er network is minimizing waste 

of energy in transportation stage, through use of cruise control in distribution vehicles, 

and appropriate lot sizing in vehicles. In atomic level energy reduction is obtained 

through energy saving policies on single or a combination of the aforementioned two 

types of factors. Energy consumption at each of the systems defined above can be 

approximated using simple equations. For instance, let us assume energy consumption of 

atomic node N is denoted as 𝐸𝑁: 

𝐸𝑁 =  ∑ 𝛩[∑ 𝜋𝑖(𝜃𝑖)

𝑖

]𝑗 +

𝑗∈𝐹𝑃

∑ 𝛷[∑ 𝜋𝑚(𝛾𝑚)

𝑚

]𝑘

𝑘∈𝐹𝑆

 
(5.2) 

𝐹𝑃 Set of systems with profile factors 

𝐹𝑆 Set of systems with schedule factors 

𝜃𝑖 Profile factor 𝑖 
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𝜋𝑖(. ) Energy consumption function due to profile factor 𝑖 

𝛩(. )𝑗 Energy consumption of system 𝑗 

𝛾𝑚 Schedule factor 𝑚 

𝜋𝑚(. ) Energy consumption function due to schedule factor 𝑚 

𝛷(. )𝑘 Energy consumption of system 𝑘 

A holistic simulation approach can be used which couples, different simulation tools and 

methods. Coupling of simulation tools and techniques has been practiced for planning 

and managing production facilities. Hesselbach et al. (2008) [92], describe an approach to 

energy efficient design and management of a production facility. They propose coupling 

of simulation tools HKSim and TRNSYS for modeling technical building services and 

building itself, SIMFLEX/3D for machines and material flow simulation as well as 

AnyLogic software for simulation of production management system in the production 

facility [96] and [116]. In the previous chapters, we presented applications of simulation 

methods for dynamic quantification of interdependency (energy and performance 

dependency vectors) between nodes of a simple CP-Er (An industrial facility). Simulation 

tools employed are Arena simulation software and EnergyPlus simulation. These 

simulation tools are established solutions within the specific fields of application. 

Coupling these tools allows a more realistic simulation result for energy and performance 

calculations in atomic nodes of the CP-Er network.  The energy content calculations will 

be carried out in British Thermal Units (Btu) or kilowatt-hours (kWh). These energy units 

can ultimately be converted to units of Greenhouse Warming Potential (GWP) to assess 

the mass of carbon dioxide gas emitted per time or amount of energy consumed. 
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5.4. Data Sourcing and Metering Infrastructure 

The distributed nature of data and data ownership by different businesses are major 

technical challenges in using simulation-centered computation engine. This problem is 

far more complex than current practices on data sharing, e.g., product or process quality 

data, between companies within a supply chain. Some of the challenges that need to be 

addressed are: 

 The lack of standards – The businesses within the CP-Er network use different 

processes and accounting systems, and follow different practices for data 

collection, process monitoring, etc. 

 Data ownership, privacy, transparency, contractual agreements between different 

companies within the supply chain business and technical challenges that must be 

tackled. These all contribute to the complexity of constructing CP-Er network. 

 Data availability and integrity – Some elements of energy content at process level 

can be extracted from the process related data, usually saved and archived in the 

process database. Examples are energy consumption rate of a process in different 

modes (warm-up, runtime, actual process and idle). Other elements can be 

obtained from the company’s accounting and inventory systems. Publicly 

available web sites and reports from government organizations can be a source of 

aggregate statistics. Identification of these sources per process and overall 

processes for the product is a major challenge. Moreover, the integration of these 

data elements into a data repository system and maintenance of data integrity are 

technical challenges that must be addressed 
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Figure  5.2 depicts the energy profile on a production machine (e.g. Grinding process). 

Other elements can be obtained from the company’s accounting and inventory systems.  

Publicly available web sites and reports from government organizations can be a source 

of aggregate statistics. Identification of these sources per process and overall processes 

for the product is a major challenge. Moreover, the integration of these data elements into 

a data repository system and maintenance of data integrity are technical challenges that 

must be addressed. Given the CP-Er network, this step includes data sourcing analysis, 

and the development of data sourcing models that take into account common business 

models and best practices. Until recently energy calculation per process has not been a 

usual practice by companies. However, due to the rising price of energy as well as 

increased rules and regulations for environmentally sound and energy efficient practices, 

energy consumption monitoring is getting into focus for many business owners and 

companies. 

 

Figure  5.2: Energy profile on a production machine (e.g. grinding process) 

In a manufacturing process, the energy content of a process depends on the operating 

conditions and production schedule. In transportation, energy consumption depends on 
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miles traveled, fuel type, size and load of transport vehicles, among other things. In office 

related activities (e.g., design process) the energy requirement depends on the size and 

location of the facility, number of occupants, building materials, etc. There are several 

sources where data values can be obtained from, such as, metering devices for equipment 

and facilities, “name tags or labels” of the equipment used in the process, accounting or 

billing databases currently used by companies and external databases or web sites for 

aggregate data. Gathering of data is subject to technological and economic constraints. 

An information infrastructure must be built within each business to support data 

collection and energy calculations. We recognize three different types of metering 

devices: 

 Physical Metering (PM) 

 Virtual Metering (VM) 

 Simulated Metering (SM) 

5.4.1. Physical Metering 

Physical metering corresponds to cases where the elemental data can be directly obtained 

from sensor or smart meters. An example is a power metering of industrial equipment by 

sensory instrumentation of the power flow through the equipment. Physical metering also 

is possible using plug in devices within the power network of a facility. Smart metering 

technology now is commonly used for buildings and facilities, and is regarded as class of 

PM devices here. 

5.4.2. Virtual Metering 

Virtual metering refers to cases where no physical metering is available, but the energy 

content can be calculated through indirect means, such as from accounting or billing 
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databases. For instance, VM for lighting in a facility can be computed from the number 

of lighting sources, their wattage, and number of usage hours (estimated from facility 

schedule).  VM for HVAC can be computed by the capacity of HVAC systems known 

from company documentation or device name tags, number of operating hours (estimated 

from facility schedule), SEER (Seasonal Energy Efficiency Ratio) or AFUE (Annual Fuel 

Utilization efficiency) numbers from the websites, In many instances, VM formulations 

are not readily available, but can be constructed using the laws of physics, accounting 

principles, inventory and scheduling rules. In other words, there is a computational model 

behind every virtual meter. VM calculations are assumed to be deterministic in nature. 

Appendix E.1-E.4 provides a virtual metering approach for energy content calculation in 

various stages of a product lifecycle. The results of such virtual metering are mostly 

aggregated with a high level of abstraction. 

5.4.3. Simulated Metering 

In cases where calculations are not deterministic, the governing rules are not readily 

available, and/or statistical estimations are required, we propose SM devices. With a 

typical SM device, there will be simulation and statistical inputs. For instance SM for 

motor systems in a manufacturing facility is performed using discrete event simulation of 

the machinery equipment such as milling, grinding, etc. For illustration, consider a three-

station serial flow line as part of a typical automotive manufacturing plant. This includes 

a reaming, hardening (in a curing oven) and final grinding process. Arena simulation 

software is used here as a SM with the objective of measuring energy consumption and 

performance (i.e. Parts per hour) for each of the three stations. Two invariants are 

considered in the analysis, namely T and P, where T indicates the time interval during 
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which P units must be completed and released from the flow line. Several scenarios were 

simulated incorporating profile factors such as a machine process controller to measure 

the energy content as well as performance of stations in an 8-hour shift. Another example 

for application of SM as a metering device for energy and performance calculation in CP-

Er network employs EnergyPlus simulation software. EnergyPlus is used to measure the 

dependency between personnel performance (in terms of relative productivity, i.e. 

relative performance when compared to maximum performance) and energy saving in air 

conditioning (cooling) system. Scenarios simulated include schedule factors such as peak 

hour energy saving strategies for HVAC system. Temperature fluctuations from optimal 

set points, in which personnel have maximum productivity, is monitored and measured 

for various schedule factors for HVAC energy saving. The models presented in section 

3.3 can then be used to define the change in personnel performance as a function of 

temperature fluctuations using P.O. Fanger’s  predicted mean vote (PMV) index. 

5.5. Conclusion 

In this chapter tools were presented to construct a distributed information and 

computation system to calculate the energy content of consumer products at a micro 

level.  An ownership network (CP-Er) was introduced which breaks down the production 

stages and business entities on the basis of material flows over the aforementioned two 

dimensions.  Data sources and data metering structure to model such a CP network has 

been issued. Data metering types introduced in this chapter help process and activity 

owners of a Consumption-Production network, identify opportunities to gather data 

taking into account data availability and possibly make investments for data collection 

projects. Such metering infrastructure also supports the “Energy-Performance” 
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calculations presented in the previous chapters. We conjecture that it should be possible 

to use the simulation based computation engine and methods of metering presented in 

this study for a wide variety of consumer products and services. 
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Chapter 6 

6. Concluding Remarks and Future Researches 

6.1. Introduction 

In this chapter, we point out some concluding remarks and briefly review relevant 

potential future extensions. In this research, we aim at developing models that facilitate 

cost effective and optimal energy efficiency practices for owners of manufacturing 

companies. The following main problems have been addressed: (1) Manufacturing 

enterprises have strict requirements in terms of productivity and throughput which makes 

it particularly challenging for owners of such businesses to invest in energy efficiency 

solutions. Moreover, most owners of such systems are reluctant to make changes in their 

existing optimal process performance; thus, the question arises on how to simultaneously 

account for energy reduction goals and performance requirements in an industrial 

facility? How to incorporate existing infrastructure and practices in an industrial facility, 

to reduce the energy consumption and expenditure without sacrificing productivity? (2) 

Industrial facilities are often complex systems consisting of different components and 

equipment; therefore one needs to make sure to account for possible conflicting outcomes 

of practicing energy saving solutions in such complicated system. In other words, owners 

of a manufacturing company need to know how to incorporate the dynamic 

interdependencies inherent in the components of a manufacturing environment to achieve 

optimal energy efficiency solutions. (3) The fact that most aforementioned energy and 

performance optimization and analysis are highly data-intensive highlights the necessity 
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of a data infrastructure to support such studies. The question arises on how to use existing 

data bases to acquire necessary data and information to carry out such studies. 

Operating at the intersection of multiple sensing and control systems designed for 

profitability, performability, operational efficiency and occupant productivity, modern 

manufacturing enterprises represent a prototypical Cyber-Physical System (CPS) that is 

increasingly becoming part of smart manufacturing or “Industry 4.0”. We conjecture that 

as energy efficiency and optimization is rapidly becoming a crucial requirement in 

“Industry 4.0” and smart manufacturing, a potential valuable extension to the work 

delivered in this research is to integrate the presented network optimizations to achieve 

energy efficient cyber-physical systems. 

In the remainder of this chapter, we provide brief conclusions for each chapter and 

discuss how we have addressed the above research questions. We further provide 

potential researches to expand and improve the work presented in each chapter. 

6.2. Energy-Performance as the Driver for Energy Optimization in an 

Industrial System 

In Chapter 2, we have provided an optimal production planning based on a two-

dimensional “Energy-Performance” measure. By incorporating this measure, the 

production planning will explicitly include manufacturing machine-level requirements as 

well as process control strategies and demand patterns. The “Energy-Performance” 

measure is introduced based on the definition of “Specific Energy” at machine level, and 

is expanded to define “Energy-Performance” profile at industrial process level. We then 

formulate the production planning problem as a stochastic MILP with risk-averse 
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constraints to account for manufacturer’s risk averesness. The objective is to define the 

production plan so as to minimize the total loss distribution subject to system throughput, 

probabilistic risk constraints  as well as constraints imposed by the “Energy-

Performance” pattern. The stochastic variables are electricity price and demand per unit 

time. Conditional Value at Risk (CVaR) of loss distributions, which is the expected value 

of the %5 of worst losses, is used as the manufacturer’s risk measure. We have evaluated 

the applicability of the presented optimization for production planning of a single 

machining operation as well as a serial operation consisting of multiple machines, under 

various electricity pricing schemes. 

Electric Demand Side Management (DSM) focuses on changing the electricity 

consumption patterns of end use customers through improving energy efficiency and 

optimizing allocation of power. In the recent years there have been a mounting interest in 

manufacturing enterprises to participate in Demand Response (DR) programs offered by 

utility companies. DR is a DSM solution and an integral part of the Smart Grid paradigm, 

which targets industrial customers, and is developed for demand reduction or demand 

shifting at a specific time for a specific duration. The optimization model introduced in 

chapter 2 can be extended to implement such DR programs  and load shifting in industrial 

processes given production and inventory constraints. 

In chapter 3, energy reduction strategies at facility building level was discussed. We have 

presented asset management as a viable solution to achieve energy saving and improve 

performance and reliability of building components. We formulate the asset management 

problem as a multi-objective stochastic optimization problem (MOSOP) with a trade-off 

between capital expenditures and energy savings. In order to ensure “Performance” 
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requirements are accounted for, we developed a Business Value model to quantify the 

economic consequence of degradation of assets; Such business values are then integrated 

into the optimization to define the optimal maintenance schedule. We further integrated 

the physics-based building energy simulation technology into the maintenance modeling 

and optimization to allow for multiple scenario testings and through several case studies, 

illustrated that substantial energy savings can be realized through optimal asset 

maintenance policies. 

We envision a number of extensions to the maintenance optimization presented in chapter 

3. The Building Value Model can be extended so as to include the impact of asset 

failure/degradation on changes in relative humidity and other parameters that in turn 

modify the Predicted Mean Vote (PMV) and thermal comfort measures. Moreover, the 

relationship used to define the productivity loss as a result of fluctuations in the thermal 

comfort, can potentially be extended to include a wider variety of  tasks performed by the 

occupants. On the other hand, a future potential research would be to integrate some load 

forecasting models, and to include optimization of HVAC asset operational strategies to 

develop schedules that allow the building owner to respond to DR signals and effective 

load-shedding strategies. 

6.3. Network Energy Efficiency Optimization in an Industrial System 

In chapter 4, we presented models to optimize energy efficiency in an industrial system 

using a network approach. The proposed model uniquely integrates energy usage of 

industrial processes with the usage attributed to the facility that houses the processes. The 

industrial system is considered as a network where nodes are interdependent in terms of 
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their energy consumption and performance as measured by appropriate Key Performance 

Indicators (KPI). We formulated the integrated energy efficiency problem as a general 

network optimization problem and further provided a framework to effectively quantify 

the nodes’ interdependencies. Finally a solution methodology is presented using an 

illustrative case study in which the network represents machines in a production line and 

HVAC assets in the industrial facility’s building. For the facility, we targeted the HVAC 

energy usage and modelled the facility using the EnergyPlus simulation package, while 

ARENA simulation was used to compute the energy consumption and KPIs for the 

production process. Data derived from these simulations was used to compute nodes’ 

interdependencies and define the optimal share of energy reduction for each node of the 

network studied. In the presented illustrative case, it is assumed that a set of feasible 

alternatives is given for energy efficiency at each node of the network. Generalization of 

the approach based on a larger set of feasible energy reduction alternatives will be a 

potential extension to this work. Incorporating the introduced “Energy-Performance” 

measure  in investment, compliance and risk analysis can also be investigated as a future 

work for this research. 

6.4. Data Metering Infrastructure 

In chapter 5 we provided tools to construct a distributed information and computation 

system to calculate the energy content of consumer products at a micro level. An 

ownership network (CP-Er) was introduced which breaks down the production stages and 

business entities on the basis of material flows over the two dimensions of supply chain 

and life cycle.  We further presented a data metering structure to support the energy 

consumption and performance measurements to support the modelling approaches 
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presented in the preceding chapters. The data sources and metering structures to model 

the introduced CP-Er network, include physical, virtual and simulated metering 

approaches. 

In cyber-physical systems, a large number of sensor and control systems continually 

generate measurements that should be received by other nodes. Cyber-Physical System 

(CPS) are deeply coupled with this sensing and networked information processing. A 

potential future research to extend the work presented in this chapter is to examine the 

potential to incorporate the presented metering structure to create an embedded sensing 

network to support the Cyber-Physical Systems (CPS) as part of “Industry 4.0” 

advancements. 
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Appendices 

Appendix A - Production planning optimization outputs for a risk-taker manufacturer 

(𝛽 = 0.3)  

 

Figure A.1: Production Rate and  Inventory Level vs. Electricity Price Case of a Single 

Machine - (top)  Real Time Electricity Pricing (bottom) Time of Use Electricity Pricing

 

Figure A. 2: Production Rate and  Inventory Level vs. Electricity Price Case of a Multiple 

Machines - (top)  Real Time Electricity Pricing (bottom) Time of Use Electricity Pricing 
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Appendix B – Inverse of AHP Method 

The figure below shows the modification in the hierarchal structure of the traditional 

AHP, which is used in BVM.  

 

Let 

𝐴𝑖= The matrix of pairwise comparison of criteria at levels measured for asset 𝑖 

𝑎𝑖𝑘𝑙= The relative importance of criterion 𝑘 to criterion 𝑙 at the levels that are exhibited 

by asset 𝑖 

𝜔𝑖𝑘= The importance of criterion k at the level exhibited by asset 𝑖 

𝑇𝐸𝐶
𝑖

𝑧𝑗
 = the economic consequence of failure of the asset in zone 𝑧𝑗. 

𝜗𝑖𝑘= Value of criterion 𝑘 upon loss of asset 𝑖 

𝐸𝐶𝑖𝑘= Economic consequence of criterion 𝑘 upon loss of asset 𝑖 

Table 3 summarized 𝜗𝑖𝑘 values for the 3 assets studied in our case study. The pairwise 

comparison process is carried out with questions posed in the following form: "With 
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respect to the most critical Asset in the zone, specify how important is having % ϑ12 

dissatisfied people in the zone versus suffering $ 𝜗11 of economic loss?”. Using the 

survey and judgmental evaluation, a matrix of pairwise comparison of criteria is 

constructed as follows: 

𝐴𝑖 = [
𝑎𝑖11 𝑎𝑖12

𝑎𝑖21 𝑎𝑖22
] (1) 

Where   

𝑎𝑖𝑘𝑙=
1

𝑎𝑖𝑙𝑘
⁄  

𝑎𝑖𝑘𝑙 =
𝜔𝑖𝑘

𝜔𝑖𝑙
⁄  

(2) 

Tables B.1 and B.2 show matrices of pairwise comparison (𝐴𝑖) for the assets serving 

ballroom and auditorium, obtained from surveys. 

Table B.1: Matrices of pairwise comparison of criteria at levels measured for assets 

serving Ballroom (𝑨𝒊) 

Asset                                   

Season 
Cooling peak 

Cooling off-

peak 

Heating 

peak 

Heating-off 

peak 

Chiller 
1 1/3 1 1/5 1 1/9 1 1/9 

3 1 5 1 9 1 9 1 

Boiler 
1 1/9 1 1/9 1 1/2 1 1/4 

9 1 9 1 2 1 4 1 

Supply Fan 
1 1/2 1 1/4 1 1/3 1 1/5 

2 1/2 4 1 3 1 5 1 

 

The eigenvector of each 𝐴𝑖 matrix reveals the relative importance of criterion to the 

overall objective. The eigenvector can be found by dividing the elements of each column 



134 
 

 

in 𝐴𝑖 matrix by the sum of the column (normalizing the column) and then adding the 

elements in each resulting row and dividing the sum by the number of elements in the 

row. 

Table B.2: Matrices of pairwise comparison of criteria at levels measured for assets 

serving Auditorium (𝑨𝒊) 

Asset                                   

Season 
Cooling peak 

Cooling off-

peak 

Heating 

peak 

Heating-off 

peak 

Chiller 
1 1/3 1 1/5 1 1/9 1 1/9 

3 1 5 1 9 1 9 1 

Boiler 
1 1/9 1 1/9 1 1/2 1 1/4 

9 1 9 1 2 1 4 1 

Supply Fan 
1 1/2 1 1/4 1 1/3 1 1/5 

2 1/2 4 1 3 1 5 1 

 

Eigenvectors of 𝐴𝑖matrices are presented in Table B.3 and B.4. 

Table B.3: Eigenvector of Matrices of pairwise comparison (𝐀𝐢) for assets serving 

Ballroom 

Asset                                   

Season 
Cooling peak 

Cooling off-

peak 

Heating 

peak 

Heating-off 

peak 

Chiller 
0.25 

0.75 

0.16 

0.83 

0.1 

0.9 

0.1 

0.9 

Boiler 
0.1 

0.9 

0.1 

0.9 

0.33 

0.66 

0.2 

0.8 

Supply Fan 
0.33 

0.66 

0.2 

0.8 

0.25 

0.75 

0.16 

0.83 

 



135 
 

 

Table B. 4: Eigenvector of Matrices of pairwise comparison (𝐀𝐢) for assets serving 

Auditorium 

Asset                                   

Season 
Cooling peak 

Cooling off-

peak 

Heating 

peak 

Heating-off 

peak 

Chiller 
0.25 

0.75 

0.16 

0.83 

0.1 

0.9 

0.1 

0.9 

Boiler 
0.1 

0.9 

0.1 

0.9 

0.33 

0.66 

0.2 

0.8 

Supply Fan 
0.33 

0.66 

0.2 

0.8 

0.25 

0.75 

0.16 

0.83 

 

In particular, the first element of each eigenvector, 𝜔𝑖1, gives the contribution of 

“business value loss” criterion, to the total economic consequence of asset failure. Thus, 

the real measurable economic consequence of failure of asset 𝑖, which serves zone 𝑧𝑗, is 

simply obtained by Equation (3), 

𝑇𝐸𝐶
𝑖

𝑧𝑗 =
𝜗𝑖1

𝜔𝑖1
⁄  (3) 

Table B. 5: A.5 Real Measured Economic Consequence of Failure of Asset Serving 

Ballroom (𝑻𝑬𝑪𝒊
𝒛𝟏) 

Asset                                   

Season 
Cooling peak 

Cooling off-

peak 

Heating 

peak 

Heating-off 

peak 

Chiller 40000 18000 0 0 

Boiler 0 0 42000 20000 

Supply Fan 30000 15000 56000 24000 
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Results for 𝑇𝐸𝐶
𝑖

𝑧𝑗
 for both ballroom (𝑧1) and auditorium (𝑧2) zones are presented in 

Table B.5 and B.6. 

 The contribution of the having “Dissatisfied People” in a zone to the economic 

consequence of asset loss can be found by: 

𝐸𝐶𝑖2 = 𝑇𝐸𝐶
𝑖

𝑧𝑗 × 𝜔𝑖2 (4) 

Table B. 6: Real Measured Economic Consequence of Failure of Asset Serving 

Auditorium(𝑻𝑬𝑪𝒊
𝒛𝟐)   

Asset                                   

Season 
Cooling peak 

Cooling off-

peak 

Heating 

peak 

Heating-off 

peak 

Chiller 28000 12000 0 0 

Boiler 0 0 24000 10000 

Supply Fan 21000 10000 32000 12000 

 

For an asset serving multiple zones, using Equation (5), total “Business Value” is: 

𝑇𝐸𝐶𝑖 = ∑ 𝑇𝐸𝐶
𝑖

𝑧𝑗

𝑧𝑗

 
(5) 

 

Appendix C – Weighted Sum Approach 

Weighted Sum Approach is common technique to find the non-dominated solutions for 

multi objective optimization problem. Solution 𝐴 dominates solution 𝐵 if solution 𝐴 does 

as well as solution 𝐵 in terms of each of the objectives and strictly better than solution 𝐵 
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in terms of one or more objectives. We begin by finding the best non-dominated solution 

with respect to each of the two objectives. Next step is to find a weight (𝑤) for the two 

objectives such that any solution on the line connecting these two solutions will have the 

same value. Once we find the correct value of 𝑤, we minimize w times the first objective 

plus (1 –  𝑤) times the second objective and find a new solution. Geometrically, this is 

equivalent to trying to push the line connecting the two solutions down and to the left in a 

direction that is perpendicular to the line connecting the two solutions (See figure below). 

We now repeat the process for each of the original and the new solutions. This process 

will be repeated until the optimization problem with the updated weighted objective 

function no longer has any feasible solution. 
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Appendix D: “What-If” scenarios used for validation   

 

Scenario number “What-if”‎scenario 

Asset Maintenance Option 

1 Chiller Reactive Maintenance 

Boiler Reactive Maintenance 

Supply fan Reactive Maintenance 

2 Chiller PM clock, type 3, fr=3 

Boiler PM clock, type 3, fr=6 

Supply fan Reactive Maintenance 

3 Chiller PM clock type 3, fr=6  

Boiler PM clock type 3, fr=3  

Supply fan Reactive Maintenance 

4 Chiller Reactive Maintenance 

Boiler PM clock, type 3, fr=3 

Supply fan PM clock, type 3, fr=3 

5 Chiller PM clock, type 3, fr=6  

Boiler PM clock, type 3, fr=6  

Supply fan Reactive Maintenance 

6 Chiller PM clock, type 3, fr=3 

Boiler PM clock, type 3, fr=3 

Supply fan PM clock, type 3, fr=3 

7 Chiller PM clock, type 3, fr=6  

Boiler PM clock, type 3, fr=6  

Supply fan PM clock, type 3, fr=6  

8 Chiller PM clock, type 3, fr=3 

Boiler PM clock, type 3, fr=3 

Supply fan PM clock, type 3, fr=6  

9 Chiller PM clock, type 3, fr=6  

Boiler PM clock, type 3, fr=6  

Supply fan PM clock, type 3, fr=3 

10 Chiller PM clock, type 3, fr=6  

Boiler Reactive Maintenance 

Supply fan Reactive Maintenance 
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Appendix E.1 - Orange Juice Production Activity Vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Append

ix E.2 - 

A B C D E F G

1
Needed Data Data Source

Method of Energy 

Metering
energy Consumption

2 component 1 Plastic Package)

3 component 2 (Orange)

4 Resources (electricity generation/fuel generation) web aggregate

5 Capacity of the furnace (Btu/hr)

Metering (nametag)

6 Efficiency (eff) Metering (nametag)

7 Operating hours (hr) Inventory

8 Capacity of the boiler (Btu) Metering (nametag)

9 Efficiency (eff) Metering (nametag)

10 Operating hours (hr) Inventory

11 Cooling Systems Metering (nametag) PM-VM-SM

12 Drying Systems Metering (nametag) PM-VM-SM

13 No. of motors Inventory

14 hp of motors Metering (nametag)

15 Efficiency (eff) Metering (nametag)

16 Operating hours (hr) Inventory

17 No. of compressors Inventory

18 hp of compressors Metering (nametag)

19 Efficiency (eff) Metering (nametag)

20 Operating hours (hr) Inventory

21 No. of fixtures (N) Inventory

22 No. of operating hours (hr) Inventory

23 Wattage of the fixture (W) Inventory

24 No. of the units (N) Inventory

25

Heating capacity of the system 

(Btu/tonnage)
Metering (nametag)

26 Load factor (LF) Metering

27 Efficiency (eff) Metering (nametag)

28 AFUE number web

29 Operating hours (hr) Inventory

30 No. of the units (N) Inventory

31
Cooling capacity of the system (tonnage) Metering (nametag)

32 Load factor (LF) Metering

33 Efficiency (eff) Metering (nametag)

34 SEER number web

35 Operating hours (hr) Inventory

36

Power required (kWac) - 75 kWac or 

100 kWac
Inventory

37

Desired System Performance Capacity 

in DC power, Inverter Eff, Wiring Eff, 

Other Eff's (0.95, 0.95, 0.9)

Inventory

38 Fuel Consumption (gal) Bills/Metering

39 Energy per gallon (Btu/gal) web

40 Total 0

No. of fixtures ˟  No. of operating hours  

˟ Wattage of the fixture /1000
Lighting

Air Conditioning (cooling)

(No. of the units  ˟  Cooling capacity of 

the system  ˟ Load factor ˟ Efficiency ˟ 

Operating hours ˟ 12000(Btu/cooling ton)/ 

SEER number)/1000

Lighting

PM-VM-SM

PM-VM-SMFuel Consumption, in-plant (propane, electricity, …)
Fuel Consumption *Energy per 

gallon/3413(Btu/kWh)

Air Conditioning (heating)

(No. of the units ˟ Heating capacity of the 

system ˟ Load factor ˟ Efficiency ˟ 

Operating hours / AFUE number) / 

3413(Btu/kWh)

PVOn-site Energy/Fuel Generation
 Desired System Performance Capacity 

in DC power/(0.95 ˟  0.95 ˟ 0.9)

PM-VM-SM

PM-VM-SM

PM-VM-SM

Motors

PM-VM-SM

No. of motors  ˟  hp of motors  ˟  

Operating hours  ˟  0.7457(kW/hp) / 

(Efficiency  ˟  1000)

PM-VM-SM

Manufacturing AV

Furnace/Oven
Capacity of the furnace ˟ Operating hours 

/ (3413(Btu/kWh) ˟ Efficiency)

Capacity of the boiler  ˟  Operating hours 

/ (3413(Btu/kWh)  ˟  Efficiency)
Boilers

Decomposable

Decomposable

PM-VM-SM

PM-VM-SM

Combustion/Thermal Systems

Motor Systems

Air Compressors

No. of compressors  ˟  hp of compressors  

˟  Operating hours ˟ 0.7457(kW/hp) / 

(Efficiency  ˟  1000)
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Transportation Activity Vector 

 

 

 

 

Appendix E.3 - Retailer Activity Vector 

A B C D E F G

1 Needed Data
Data Source

Method of 

Energy Energy Consumption

2 Vehicle Manufacturing

3

Resources (electricity generation/fuel 

generation)
Web aggregate

4 Fuel Consumption (gal) Bills/Metering

5 Energy per gallon (Btu/gal) Web

6 Fuel Consumption (gal) Bills/Metering

7 Energy per gallon (Btu/gal) Web

8 Fuel Consumption (gal) Bills/Metering

9 Energy per gallon (Btu/gal) Web

10 Fuel Consumption (gal) Bills/Metering

11 Energy per gallon (Btu/gal) Web

12 Fuel Consumption (gal) Bills/Metering

13 Energy per gallon (Btu/gal) Web

14 No. of fixtures (N) Inventory

15 No. of operating hours (hr) Inventory

16 Wattage of the fixture (W) Inventory

17 No. of the units (N) Inventory

18

Heating capacity of the 

system (Btu/tonnage)

Metering 

(name tag)

19 Load factor (LF) Metering

20 Efficiency (eff)

Metering 

(name tag)

21 AFUE number Web

22 Operating hours (hr) Inventory

23 No. of the units (N) Inventory

24

Cooling capacity of the 

system (tonnage)

Metering 

(name tag)

25 Load factor (LF) Metering

26 Efficiency (eff)

Metering 

(name tag)

27 SEER number Web

28 Operating hours (hr) Inventory

29 Total 0

(D4 ˟ D5) / 3413

(D6 ˟ D7) / 3413

(D8 ˟ D9) / 3413

(D10 ˟ D11) / 3413

(D12 ˟ D13) / 3413

plane

Ship

Train

Ground

Transportation and Warehouse AV

Fuel Consumption, off-plant (gas, …)

Decomposable

PM-VM-SM

Air Conditioning (cooling) [(D23 ˟ D24 ˟ D25˟ D26 ˟ D28 ˟ 12000) / D27] / 1000

PM-VM-SM

PM-VM-SM

PM-VM-SM

PM-VM-SM

Fuel Consumption, in-plant (propane, electricity, …)

Air Conditioning (heating) [(D17 ˟ D18 ˟ D19 ˟ D20 ˟ D22) /D21] / 3412.14

Lighting (in warehouse) D14 ˟ D15 ˟ D16 / 1000
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Appendix E.4 - Recycle and Disposal Activity Vector 

A B C D E F

1
Point of Sale AV Needed Data Data Source

Method of Energy 

Metering
Energy Consumption

2
Resources (electricity generation/fuel generation) Web aggregate

3 No. of fixtures (N) Inventory

4 No. of operating hours (hr) Inventory

5 Wattage of the fixture (W) Inventory

6 No. of the units (N) Inventory

7

Heating capacity of the 

system (Btu/tonnage)

Metering (name 

tag)

8 Load factor (LF) Metering

9
Efficiency (eff)

Metering (name 

tag)

10 AFUE number Web

11 Operating hours (hr) Inventory

12 No. of the units (N) Inventory

13

Cooling capacity of the 

system (tonnage)

Metering (name 

tag)

14 Load factor (LF) Metering

15
Efficiency (eff)

Metering (name 

tag)

16 SEER number Web

17 Operating hours (hr) Inventory

18 Total 0

(C6*C7*C8*C9*C11/C10)/3412.14

Lighting (in warehouse) (C3 ˟ C4 ˟ C5)/ 1000

Air Conditioning (cooling) [(C12 ˟ C13 ˟ C14 ˟ C15 ˟ C17 ˟ 12000) / E16]/ 1000

Air Conditioning (heating)

PM-VM-SM

PM-VM-SM

PM-VM-SM
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A B C D E G

1 Disposal/ Recycle AV Needed Data Data Source
Method of 

Energy Metering
Energy Consumption

2 Resources (electricity generation/fuel generation) Web aggregate

3 No. of pumps Inventory

4
hp of pumps

Metering  (name tag)

5
Efficiency (eff)

Metering  (name tag)

6 Operating hours (hr) Inventory

7 load factor Metering

8 No. of motors Inventory

9
hp of motors

Metering  (name tag)

10
Efficiency (eff)

Metering  (name tag)

11 Operating hours (hr) Inventory

12 No. of compressors Inventory

13 hp of compressors Metering  (name tag)

14 Efficiency (eff) Metering  (name tag)

15 Operating hours (hr) Inventory

16 Ozone generation Metering/Inventory PM-VM-SM

17 UV lamps Metering/Inventory PM-VM-SM

18 Energy generation (landfills, biogas from anaerobic 

digestion, waste combustors, incineration)

Metering/Inventory PM-VM-SM

19 No. of fixtures (N) Inventory

20 No. of operating hours (hr) Inventory

21 Wattage of the fixture (W) invenory

22 No. of the units (N) Inventory

23
Heating capacity of the 

system (Btu/tonnage)
Metering  (name tag)

24 Load factor (LF) Metering

25
Efficiency (eff)

Metering  (name tag)

26 AFUE number Web

27 Operating hours (hr) inevntory

28 No. of the units (N) Inventory

29
Cooling capacity of the 

system (tonnage)
Metering  (name tag)

30 Load factor (LF) Metering

31
Efficiency (eff)

Metering  (name tag)

32 SEER number Web

33 Operating hours (hr) Inventory

34 Total 0

PM-VM-SM

PM-VM-SMAir Conditioning (cooling)

(C8 ˟ C9 ˟ C11 ˟ 0.7457) / (C10 ˟ 1000)

 Compressors (aeration, ..) (C12 ˟ C13 ˟ C15 ˟ 0.7457) / (C14 ˟ 1000)

(C3 ˟ C4 ˟C6 ˟ C7 ˟ 0.745) / (C5 ˟ 1000)

(C19 ˟ C20 ˟ C21 )/1000

Air Conditioning (heating) [(C22 ˟ C23 ˟ C24 ˟ C25 ˟ C27) / C26] / 3412.14

Pumps

Motors (aeration, grinding,..)

Lighting

[(C28 ˟ C29 ˟ C30 ˟ C31 ˟ C33 ˟ 12000) / C32] /1000

PM-VM-SM

PM-VM-SM

PM-VM-SM

PM-VM-SM


