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System reliability analyses, involving multiple failure processes, are important and 

challenging research topics, particularly when failure processes, such as degradation 

processes and random shocks, are competing and dependent. When component degradation 

models are extended to complex systems with multiple components, different perspectives 

of dependency should be considered in system reliability modeling. In this research, 

potential dependence patterns are investigated among multiple failure processes within and 

among components in systems and probabilistic models are developed to assess system 

reliability performance. For the reliability modeling of complex systems, if one component 

in the system degrades or fails prematurely, it is possible that other components will also 

degrade or fail prematurely given the shared working environment, which means 

component failure times are dependent. Furthermore, if a shock arrives to the system, and 

its impact on one component is large, it is likely that the shock impact on other components 

is also large. Therefore, the models are extended to perform quantitative analyses for 

system reliability considering that the damages to the two failure processes caused by 

shocks are dependent. From a multi-component system level perspective, the dependent 
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characteristics from shocks are complex and detailed, so the research is organized into 

several scenarios, i.e., dependent failure processes are considered in different ways. 

Stochastically dependent component degradation processes are also studied, and extended 

gamma process models are used to model the dependent degradation process. Based on 

these new reliability models, different maintenance policies are derived to provide cost 

effective maintenance plans. Different maintenance policies are investigated, including: 

(1) age replacement policies; (2) periodic inspection maintenance policies; (3) Condition-

based maintenance policies; and (4) Individual component maintenance policy. This 

research has many meaningful research contributions. The dependent scenarios described 

above for shocks are studied for the first time in system reliability modeling, and it is also 

the initial system model based on stochastically dependent component degradation using 

the gamma process. Additionally, the on-condition maintenance plans and the individual 

component maintenance based on steady state system behavior are investigated for the first 

time. They represent more practical and cost effective policies for many engineering 

applications. 
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List of Notation 

The notation used in formulating the reliability and maintenance models is listed below. 

N(t) number of shock loads that have arrived by time t; 

Ni(t) number of shocks for ith specific type having arrived by time t considering 

component shock set; 

N number of components in a series or parallel system; 

Λ arrival rate of random shocks; 

λi arrival rate of ith type shocks to the system considering component shock set; 

K number of required components in a k-out-of-n system; 

l  Shock set for component l; 

Di threshold for catastrophic/hard failure of ith component; 

D threshold for catastrophic/hard failure of component in the k-out-of-n system; 

Wl,j,k hard failure damage of the kth shock belonging to jth type hitting component l 

considering component shock set; 

Wij size/magnitude of the jth shock load on the ith component; 

Wj size/magnitude of the jth shock load on the component in the k-out-of-n system; 

W̃ij purely random shock effect for the jth system shock to the ith component hard failure 

process (not proportional to system shock size) 

Fl,j(w) cumulative distribution function (cdf) of Wl,j,k considering component shock set; 

FWi(w) cumulative distribution function (cdf) of Wij ; 

FW(w) cumulative distribution function (cdf) of Wj in the k-out-of-n system; 

Hi critical wear degradation failure threshold of the ith component; 

H critical wear degradation failure threshold of the component in the k-out-of-n 

system; 

Xi(t) wear volume of the ith component due to continuous degradation at t; 

X(t) wear volume of the component due to continuous degradation at t in the k-out-of-n 

system; 

XSi(t) total wear volume of the ith component at t due to both continual wear and 

instantaneous damage; 

XS(t) total wear volume of the component at t due to both continual wear and 

instantaneous damage in the k-out-of-n system; 

Yl,j,k damage size to soft failure of component l caused by the kth shock load from the jth 

type in the shock set; 

Yij damage size contributing to soft failure of the ith component caused by the jth shock 

load; 

Yj damage size contributing to soft failure of the component caused by the jth shock 

load in the k-out-of-n system; 

Ỹij purely random shock damage effect for the jth system shock to the ith component soft 
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failure process (not proportional to system shock size) 

Si(t) cumulative shock damage to soft failure process of the ith component at t; 

S(t) cumulative shock damage size of the component at t in the k-out-of-n system; 

Gi(xi,t) cumulative distribution function (cdf) of Xi(t); 

G(x,t) cumulative distribution function (cdf) of X(t) in the k-out-of-n system; 

Ga(xi| ) cumulative distribution function (cdf) of Xi(t), Xi(t) is a Gamma process; 

Zj jth system shock size or magnitude 

αi transmission parameter from system shock size to the ith component transmitted 

shock size (hard failure process) 

γi transmission parameter from system shock size to the ith component shock damage 

(soft failure process) 

θi scale parameter for Gamma process; 

 iv t  intensity measure, is a non-decreasing, right-continuous function for t > 0; 

FXi(xi,t) cdf of XSi(t); 

FX(x,t) cdf of XS(t); 

fZj(zj) pdf of the system shock size Zj 

fZj
<m>(zj) pdf of the sum of m independent and identically i.i.d. Zj variables 

fYi
<k>(y) pdf of the sum of k independent and identically distributed (i.i.d.) Yij variables 

fY(y) probability density function (pdf) of Y in the k-out-of-n system; 

fY
<k>(y) 

pdf of the sum of k independent and identically distributed (i.i.d.) Y variables in the 

k-out-of-n system; 

fYl
<k>(y) pdf of the sum of Yl,j,k variables considering all number of shocks for all types  

fT(t) in component l shock set; 

FT(t) cdf of the failure time, T; 

Ui Initial degradation level for component i considering individual component 

maintenance policy; 

P() System survival probability in one inspection interval  considering individual 

component maintenance policy; 

V periodic replacement interval; 

C(t) cumulative maintenance cost by time t; 

CR(V) average long-run maintenance cost rate of the age replacement policy; 

E[U] expected value of the renewal cycle length, U of the age replacement policy; 

E[G] expected value of the number of failures, G in a renewal cycle; 
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xiii 

 

E[TC] expected value of the total maintenance cost of the renewal cycle, TC; 

CR replacement cost per unit; 

CF cost of replacement caused by failure; 

 periodic inspection interval; 

CR() average long-run maintenance cost rate of the second policy; 

E[K] expected value of the renewal cycle length, K of the second policy; 

E[NI] expected value of the number of inspections NI; 

E[ρ] expected value of system downtime or the time from a system failure to the next 

inspection when the failure is detected ρ; 

CR replacement cost per unit; 

CI cost associated with each inspection; 

Cρ penalty cost rate during downtime; 
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1. Introduction 

This research focuses on reliability of multi-component systems subject to multiple 

dependent competing failure processes, and associated maintenance policies and 

optimization. Previous research studied one single unit or a simple system, or relies on 

unrealistic assumptions of independent failure processes or shock damage within a 

component or among components. In this research, reliability models are derived for multi-

component systems considering different dependent patterns within and among component 

failure processes, and different maintenance policies are defined and optimized to 

minimize maintenance cost per unit time.  

System designers pursue new technologies because they potentially can provide 

desirable functions and features with superior reliability at a competitive cost. Therefore, 

reliability and cost are two critical factors that need to be analyzed and optimized. 

Recent design and development innovations for many evolving technologies have 

been particularly impressive offering great potential. Commercialization of these new and 

exciting technologies has required advancements in material science, electrical, 

mechanical and biomedical engineering. The next stage of technological advancement 

requires that the manufacturing process is high-yield, low cost and highly-reliable. 

Traditional approaches of reliability analysis are sometimes inappropriate or inefficient for 

some new devices because either they are too reliable to observe failure time data in a 

reasonable time period, or the time period between design and product release is too short 

[1]. If new technologies are to be transitioned from low volume production or relatively 

simple design applications, new and innovative research focusing on system reliability 

issues must be considered [2]. Without new practical and effective models, the continued 
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advancement of these new devices may not reach its potential to satisfy consumers’ 

demanding requirements and expectations. 

For complex systems, reliability modeling can be a very complicated research topic 

involving a number of intricacies and difficulties. There are different factors that can 

influence reliability of engineering devices and systems. Environmental factors are some 

examples, e.g., temperature, humidity, wind speed, mechanical shocks etc. Also, aging, 

wearing, corrosion, mechanical fatigue and other physical changes can occur due to the 

regular operational and environmental exposure [3]. For many engineering applications, it 

is difficult to assess system reliability because traditional estimation methods, such as those 

based on observing failure times (even with accelerated life testing) are not appropriate or 

efficient, or has other limitations. However, system reliability is a very important issue [4], 

and to fully investigate system reliability, possible failure mechanisms of each component 

should be identified to further study their effects on the components and system functions. 

System reliability should be analyzed combining different failure mechanisms, since 

common issues can have effects on multiple failure mechanisms [5-7]. For example, 

material fatigue and aging under long-term repeated cyclical loading may lead to potential 

device deterioration, which in turn impacts the device reliability.  

For many devices, reliability cannot be adequately measured and controlled. 

Reliability is time-dependent and can only be predicted or estimated but not measured 

exactly [8-10]. Considering liquefied natural gas pipeline for example, there are various 

factors that can degrade the reliability of natural gas pipelines. One major factor is 

corrosion, which is the gradual destruction of the surfaces of the pipelines as a result of 

chemical reactions with the environment [11]. Figure 1.1 shows the destruction that causes 
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the surfaces of the pipeline to degrade over time, and may ultimately lead to a failure. Some 

of the published research addressing pipeline reliability uses a simple linear defect growth 

model, i.e., a constant growth rate to estimate corrosion rate. Additionally, shocks from the 

environment and/or intervention from a third party can cause catastrophic failure suddenly, 

or cause incremental damage to the degradation process.  

 

Figure 1.1: LNG pipeline failure due to corrosion 

System reliability is a critical design characteristic that designers and manufacturers 

must aggressively address before introducing a new product to the market or during 

operation and service. For example, on April 20, 2010, the deep water horizon semi-

submersible mobile offshore drilling rig explosion results in a massive offshore oil spill in 

the Gulf of Mexico. One main cause is the poor equipment reliability, which is a result of 

http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
http://en.wikipedia.org/wiki/Gulf_of_Mexico
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drilling priorities taking precedence over maintenance [12]. Another example relates to 

commercial airline safety and reliability. A fleet was grounded in 1979, after a McDonnell 

Douglas DC-10 crashed shortly after take-off at O’Hare Airport in Chicago, killing 273 

people [13]. In the last five years, the death risk for passengers in the United States has 

been one in 45 million flights. In other words, flying has become so reliable that a traveler 

could fly every day for an average of 123,000 years before being in a fatal crash [13]. These 

two cases demonstrate the importance of reliability on the world society and economy.  

In traditional reliability analyses, failure-time-based reliability models are commonly 

used for many engineering applications. They are straightforward, but have limitations. In 

this research, failure mechanisms are investigated and combined with probabilistic 

modeling to develop new system reliability models. For reliability analysis, one thoroughly 

studied area is the reliability of systems subject to random shocks at random times [14]. 

Also, degradation is one of the common failure mechanisms that have been widely 

investigated [15]. Without loss of generality, reliability models are developed for systems 

subject to both degradation processes and random shock processes, considering that they 

are competing and dependent, and implement appropriate maintenance policies. 

This chapter starts with the problem statement that describes the complicated system 

reliability problems. Then, motivation of this research is stated with inspiration from many 

practical engineering applications. Finally, objectives and contributions of this research are 

discussed. 

1.1 Problem Statement 

Modern products are developed to be more reliable with longer lifetime and higher 

performance, so it is very challenging to obtain accurate and sufficient time-to-failure data 

http://query.nytimes.com/mem/archive/pdf?res=F20714FE3E5D12728DDDAF0A94DD405B898BF1D3
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in a cost effective way before releasing the product. When traditional failure-based 

reliability methods are not applicable due to the lack of failure data or other limitations, a 

methodology based on only limited or no actual failure data can be used, such as random 

shock and degradation based reliability analysis. Degradation is one of the common failure 

mechanisms that have been widely investigated [15-18]. Degradation-based reliability 

analysis is gaining extensive attention recently because degradation data can provide more 

information than failure time data, and can be used to predict the reliability performance 

even beyond the experimental time. Another extensively explored area is the reliability of 

systems subject to shocks occurring at random times with random magnitude [19-22]. 

Degradation modeling based on probabilistic modeling of a failure mechanism 

degradation path and comparison of a projected distribution to a pre-defined failure 

threshold has already been successfully applied for many applications [23]. Reliability 

analysis based on degradation modeling is a convenient and effective method for some 

highly reliable components or systems when observations of failures are rare. There are 

many examples of failure mechanisms where reliability prediction based on degradation 

modeling is an effective approach. Failure mechanisms are understood from a physical 

perspective and typical degradation measures include wear, drug stability, deterioration, 

degraded light intensity, crack propagation, resistance drift and loss of structural strength.  

Random shock modeling is another important failure mode representing the sudden 

impacts from the external environment on the system. Shock models in system reliability 

are normally defined by the time between two consecutive shocks, the damage caused by 

a shock, and the dependence among the above elements [14]. Reliability models for 

systems have been extensively studied when they are exposed to external shock 
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environments. Various models developed are physically motivated. For instance, the 

extreme and cumulative shock models are appropriate for the fracture of brittle materials, 

and for the damage due to the earthquakes or volcanic activity, respectively.  

There have been some notable reliability models developed based on the combination 

of random shock and degradation modeling [16]. Though studies have developed reliability 

models for combined degradation and random shocks, relatively scant research has been 

devoted to reliability analysis of systems with multiple components and multiple dependent 

competing failure processes. Multiple failure processes that a system experiences are often 

assumed to be independent in previous research, which restricts applications to systems 

when no interactions or correlations exist among those multiple failure processes. However, 

for complex systems where one failure process can affect another failure process or when 

multiple failure processes are simultaneously affected by some shared external stresses, the 

assumption of independence among multiple failure processes may not be valid, and the 

traditional reliability models may not accurately predict the system reliability. Therefore, 

new reliability models are needed for systems subject to multiple dependent failure 

processes.  

In this study, the reliability models for systems subject to multiple dependent 

competing failure processes among multiple components is investigated. This is a very 

challenging problem if dependent shock damage effects or stochastically dependent 

component degradation processes are considered. The research investigates new reliability 

models for systems with dependent competing failure processes, dependent component 

failure times, and dependent damage to both   a hard failure process and a soft failure 

process caused by the shocks, and stochastically dependent component degradation paths. 
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Based on these new reliability models, appropriate maintenance policies are chosen and 

optimization models are developed to minimize a maintenance cost rate by determining 

replacement/inspection time intervals. 

1.2 Motivation of Research 

Earlier research on system reliability pertains to either random shocks or degradation 

modeling. Later, multiple failure processes have been studied as an effective method for 

system reliability analysis, which are applicable for independent failure processes. 

Although dependent and competing failure processes are recently considered, the 

dependent characteristics of those models is limited to single-unit systems or one 

component, and are based on the shared exposure to the shock processes. Scant research 

has been devoted to reliability analysis of systems with multiple dependent competing 

failure processes among components considering dependent component failure times, 

dependent shock damage to component failure processes, and stochastically dependent 

component degradation paths. 

To sufficiently study system reliability based on component degradation, it is 

necessary and practical to consider many different dependent scenarios and patterns of 

multiple failure processes to better estimate system reliability. For many engineering 

applications, even very small errors can cause disasters or terrible consequences. For a 

multi-component system, if one component fails, it is probabilistically possible that the 

whole system has experienced a certain level of degradation and numbers of shocks, and 

other components may also fail soon as well. That is, these component failure times are 

probabilistically dependent often beyond the extent typically associated with competing 

failure processes due to shared with shock processes.  Also, there are many engineering 
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applications, in which shocks with specific sizes or function can affect one or more 

components in the system but not necessarily all components. Therefore, classifying shocks 

according to their sizes, functions, acting points and categorizing them into different shock 

set is reasonable to achieve better reliability models. For example, a car can receive a 

random shock, which can be a thermal shock, mechanical shock, voltage shock, etc. 

Different shocks can affect different car components. Overall, it is realistic and practical to 

classify shocks into different sets based on shock size, function, and other factors for many 

engineering application devices.  

Furthermore, dependent scenarios from different perspectives can be quantitatively 

considered, i.e., dependent shock damage to multiple failure processes within and among 

components, and stochastically dependent component degradation processes. For 

dependent shock damage, from a multi-component system level perspective, the dependent 

characteristic is complicated. Types of dependency are: (1) Shock damage to hard failure 

processes among components are dependent; (2) Shock damage to soft failure processes 

among components are dependent; (3) Shock damage to hard failure processes among 

components are dependent, and damage to soft failure processes are dependent, but they 

are mutually independent; and (4) Shock damage to hard failure processes among 

components are dependent, and damage to soft failure processes are dependent, they are 

also mutually dependent. For the degradation paths, dependent characteristics arise due to 

many reasons, including (a) components are physically touching each other, and one can 

directly influence the degradation of other components; (b) components are physically 

close to each other; (c) components exist in the shared environment, and the factors like 
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temperature, wind speed, voltage can affect all the component degradation paths at the 

same time; (d) components are in a load sharing design situation. 

In previous research, different scenarios have been considered in modeling the 

reliability for systems subject to dependent competing failure processes, including: 

dependent component failure times, dependent shock damage to specific failure process 

and other dependent patterns. However, the scenarios mentioned above have not been 

considered in reliability modeling of complex systems. To achieve more accurate system 

reliability prediction, new system reliability models need to be developed to consider these 

different dependent characteristics beyond dependent failure processes due to the exposure 

to the same shocks. Based on the new reliability models, appropriate maintenance policies 

are optimized to assure system availability and performance and minimize system 

maintenance cost. 

1.3 Research Contributions 

In this research, new models are developed to analyze the reliability of complicated 

multi-component system subject to multiple dependent and competing failure processes. 

The main contribution is that we extend the single component and simple system to 

complex system and develop the new reliability models.  

1. Reliability models are developed for multi-component complex system with each 

component subject to multiple failure processes and component failure times are 

shown to be dependent. Previous research pertained to either simple systems or 

required independent components.  

2. In this research, the new reliability models are developed considering the dependent 

shock damage to two failure processes among components, which can be divided 
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into four different scenarios.  In previous research, failure processes are only 

dependent due to shared shock process.  

3. New system reliability models are developed considering stochastically dependent 

component degradation processes, and the gamma process is chosen to model the 

degradation process. Previous research has the limitation that system reliability 

modeling is based on the assumption that component degradation paths are 

independent.  

4. Age replacement policy, periodic inspection maintenance policy and condition-

based maintenance policy are common policies that have been applied to many 

systems. However, they are never considered based on the new reliability models 

for complex systems with components subject to multiple dependent competing 

failure processes, and in this research, these maintenance policies are considered 

and optimization problems are solved based on the new reliability models.  

5. An individual component maintenance policy is studied based on steady state 

system behavior, and the system inspection interval is optimized, while previous 

research is based on the assumption that when one component fails, the whole 

system needs to be repaired or replaced. 
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2. Background and Literature Review 

In this section, the literature is reviewed on reliability modeling for systems 

experiencing two or more failure processes (i.e., degradation processes and random shock 

processes) and maintenance policies associated with such systems. 

2.1 Previous research on system reliability with multiple failure 

processes 

2.1.1 Methods to model system degradation 

Degradation is defined as the reduction in performance, reliability and life span of 

assets. Many failure mechanisms can be traced to an underlying degradation process. 

Degradation as a stochastic process can be modelled using several approaches [24].   

Degradation can be categorized into two types: natural and forced degradation [25, 

26]. Natural degradation is a time-dependent internal process in systems where gradual 

degradation brings the systems closer to failure. Forced degradation is external to systems, 

where its loading gradually increases so that a point is reached beyond which the systems 

fail. 

Degradation models represent the underlying model of performance deterioration. 

A popular failure time model is the Weibull distribution; since it can represent different 

types of behavior including infant mortality and wear-out in the bathtub-tube curve [27]. 

However, the Weibull distribution is generally used for failure time, while a more advanced 

perspective is to have the distribution for a random degradation measure. Model-based 

approaches for degradation use mathematical dynamic models for a monitored asset. These 

approaches can be applicable in physics-based models and statistical models [28-31]. 
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Knowledge-based approaches appear to be promising, because they require no defined 

models [29]. These approaches are employed where accurate mathematical models are 

difficult to define or select in the real world, or limitations of using model-based 

approaches become significant. Data-driven approaches are based upon statistical and 

learning techniques from pattern recognition [32]. Degradation models in reliability 

analysis can potentially be classified into two categories as shown in Figure 2.1, and are 

described in the following paragraphs [24]. 

 

Figure 2.1: Classification of degradation models in reliability analysis 

1. Normal degradation models: These models are used to estimate reliability with 

degradation data from normal operating conditions. Normal degradation models can be 

classified into two groups: degradation models with and without stress factors [24]. The 

difference is whether degradation is a function of defined stress and related reliability can 

be estimated at fixed levels of stress. These degradation models can be further classified as 

follows. 

(1) General degradation path model: It fits the degradation observations using a regression 

model with random coefficients. Bagdonavičius et al. considered a degradation process 

using general nonparametric, nonlinear path models [33]. Lu et al. studied a model with 
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random regression coefficients and standard-deviation function for analyzing linear 

degradation data from semiconductors [34]. 

(2) Random process model: It fits degradation measures at each observation time by a 

specific distribution with time dependent parameters. Lu and Meeker fitted a random-

effects model to fatigue degradation data and then used simulation-based methods to make 

inferences about the corresponding failure-time distribution [35]. In this method, multiple 

degradation data at a certain time have to be collected and treated as scattered points 

without orientation. 

(3) Time series model: Lu et al. [36] developed a technique to predict individual system 

performance reliability in real-time considering multiple failure modes. It yields statistical 

results that reflect reliability characteristics of the population, includes on-line multivariate 

monitoring and forecasting of selected performance measures and conditional performance 

reliability estimates. The performance measures across time are treated as multi variate 

time series.  

(4) Stress-strength interference model: In this model, there is random dispersion in the 

stress, which results from applied loads. Asset reliability corresponds to the event that 

strength exceeds stress can be developed. An et al. develops a model in which stress and 

strength are treated as discrete random variables, and a discrete stress-strength interference 

model is presented by using the universal generating function method [37].  

(5) Stochastic degradation models: Brownian motion and gamma process models are 

continuous-time models that are appropriate for modeling continuous degradation process. 

These two models as well as Markov models are widely applied for degradation modelling. 

A Brownian motion model has an additive effect on the degradation. The conventional 
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Markov process model has been developed to the semi-Markov process model and the 

hidden Markov model to address more general reliability analysis problems [38]. For some 

applications with affecting the system and a self-recovering mechanism due to material 

resilience, Brownian motion is widely used to model the non-monotone deterioration with 

increasing tendency. The gamma process model has been increasingly used as a 

degradation process in maintenance optimization models, because strictly monotonically 

increasing property of the gamma process can be suitable for many engineering 

applications [39].  

2. Accelerated degradation models: These models make inferences about reliability at 

normal conditions by using data obtained at accelerated time or stress conditions. To obtain 

data efficiently from a degradation test, it is often practical and efficient to employ an 

accelerated life test. Accelerated degradation models consist of physics-based models and 

the statistics-based models. Nelson [40] extensively describes both the physics-based 

models and statistics-based models. Furthermore, the statistical models with the 

accelerated failure time model are also reviewed in greater details [41]. 

2.1.2 Methods to model random shocks 

Shock models in system reliability are normally defined by the time between two 

consecutive shocks, the damages caused by shocks, the system failure criteria and the 

dependence relationship among the above elements. Four categories of random shock 

models are classified: (i) an extreme shock model, where failure occurs when the 

magnitude of any shock exceeds a specified threshold; (ii) a cumulative shock model, 

where failure occurs when the cumulative damage from shocks exceeds a critical value; 

(iii) a run shock model, where failure occurs when there is a run of shocks exceeding a 
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critical magnitude; and (iv) a δ–shock model, where failure occurs when the time lag 

between two successive shocks is shorter than a threshold. This topic has been extensively 

studied and provides realistic formulations for modelling reliability systems exposed to a 

random environment [14]. 

1. Independence between the shock effect and the shock arrival time: The probability that 

the system still operates without failure after the kth shock can be defined. According to the 

time between consecutive shocks, these models are divided into four types: homogeneous 

Poisson process, non-homogeneous Poisson process, non-stationary pure birth process and 

renewal process. For the homogeneous Poisson process, conditions on these sequence of 

shocks are obtained to guarantee distribution properties of the survival function [42]. Some 

of these results are extended to non-homogeneous Poisson process [43] and non-stationary 

pure birth process [44]. Skoulakis [45] describes a general shock model for a reliability 

system. 

2. Dependence between the effect of the shock and its arrival time: The damage caused by 

a shock is modelled by a random variable representing the shock’s magnitude. Three major 

models are considered: extreme shock model, where the system fails as soon as the 

magnitude of a shock exceeds some given level; cumulative shock model, where the system 

fails when the cumulative shock magnitude exceeds some given level and run shock model, 

where the system works until k consecutive shocks with critical magnitude occur. An 

extension of the cumulative shock model is when the system failure depending on the 

cumulative damage of shocks whose magnitude exceeds a pre-specified threshold 

[46].Anderson developed a general model in which limit theorems apply for the first time 

the magnitude of a shock exceeds a threshold and the historical maximum magnitude are 
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given [47]. Anderson considered a shock model in which the time intervals between shocks 

are in the domain of attraction of a stable law-of-order less than a certain level or relatively 

stable [48]. Gut studied a theory for stopped two-dimensional random walk, which is well 

suited for cumulative shock models and failure is caused by a shock which is larger than a 

certain critical level [19, 20]. Shanthikumar and Sumita developed a general shock model 

associated with a correlated pair of renewal sequences, where system fails when shock 

damage exceeds threshold level [49]. They also studied some distribution properties of the 

system failure time in general shock models with a correlated renewal sequence [50]. 

Sumita investigated a class of cumulative shock models with a bivariate sequence of 

correlated random variables [51].  

2.1.3 Model multiple failure processes  

Common failure mechanisms and causes include wear, corrosion, fracture, shock 

loads, fatigue, etc. For many cases, a system suffers multiple failure mechanisms. 

Competing failure processes may occur and any of them can cause the system to fail. 

Competing means no matter which failure process occurs first, the system fails. These 

multiple competing failure processes may be independent or dependent.  

Zuo et al. [52] develops a mixture model considering hard failures and degradation 

failures by assigning two failure mechanisms with different weights. A cumulative damage 

model is based on the cumulative damage theory for a degradation process exposed to 

discrete stresses and also the state of the process is assumed to be discrete. The common 

assumption of this model is that the shocks occur according to a Poisson process, and the 

amount of damage per shock is independently and identically distributed based on some 

arbitrarily selected common distribution [42, 53, 54]. Li and Pham studied a multi-state 
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degraded system reliability model subject to multiple competing failure processes, 

including two degradation processes and random shocks [55]. Hao and Su developed a new 

multiple competing failure models, in which multiple degradation processes and random 

shocks are considered [56]. Peng et al. developed a reliability model based on degradation 

and random shock modeling, which is then extended to a linear degradation path and 

normally distributed shock damage [57]. 

Wang et al. [58] investigated the system reliability with shock effect on the 

degradation process was considered and degradation analysis is conducted under fuzzy 

degradation data. Jiang et al. [59] developed reliability models for system subject to 

multiple dependent competing failure process correlated in two respects. The arrival of 

each shock impacts both failure processes, and also the shock process affects the hard 

failure threshold level. Two cases of dependency between the shock process and the hard 

failure threshold level were investigated. Lei [60] also developed reliability model for 

systems subject to multiple dependent competing failure processes with a changing, 

dependent failure threshold, which means when withstanding shocks, the system is 

deteriorating, and its resistance to failure is weakening. Rafiee [61] studied reliability 

models for devices subject to dependent competing failure processes of degradation and 

random shocks with a changing degradation rate according to particular random shock 

patterns.  

2.2 Previous research on maintenance policy 

Maintenance optimization models focus on finding either the optimal balance 

between costs and benefits of maintenance or the most appropriate time to execute 

maintenance [62]. It is conducted to achieve multiple maintenance targets, such as safety 
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control, reliability, system availability, and costs. Generally maintenance optimization 

models are classified according to the way they describe and represent natural variability 

and uncertainty in parameters, models and scenarios. Sherif and Smith [63] categorized the 

deterioration models into deterministic models and stochastic models. Stochastic models 

can be divided into risk and uncertainty. In the case of risk, it is assumed that a probability 

distribution of the time-to-failure is available, which is not true in the case of uncertainty. 

The optimization methods employed include linear and nonlinear programming, dynamic 

programming, Markov decision methods, decision analysis techniques, search techniques 

and heuristic approaches [64]. 

Maintenance policies can be classified as corrective maintenance, condition-based 

maintenance and preventive maintenance. Parameters considered in maintenance 

optimization are the cost of failure, the cost per time unit of downtime, the cost rate of 

corrective and preventive maintenance and the cost of repairable system replacement. 

2.2.1 Models on optimization of preventive maintenance policies 

Among the different types of maintenance policy, preventive maintenance is often 

chosen for large systems such as production systems, transport systems, etc. Preventive 

maintenance contains a set of management, administrative and technical actions to reduce 

the component age in order to improve the reliability of a system by replacing an older one 

with a newer one. These actions can be characterized according to their effects on the 

component age; the component becomes “as-good-as-new”, the component age is reduced, 

or the state of the component is lightly affected only to ensure its necessary operating 

conditions, e.g., the component appears to be “as-bad-as-old”. Preventive maintenance is 

a main maintenance policy used to reduce failure costs. Four categories can describe 
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preventive maintenance model classification: inspection models, minimal repair models, 

shock models, and miscellaneous replacement models. 

Inspection models: System status is unknown unless an inspection is performed. 

Upon every inspection point, two decisions that have to be made: (1) whether to take 

maintenance action, and whether the system should be replaced or repaired to a certain 

state or whether the system should be left as is; (2) when the next inspection is to occur. 

Thus, the decision space of a maintenance inspection problem is two dimensional [65]. 

Barlow et al. [66] developed a basic pure inspection model for age replacement; i.e., no 

preventive maintenance is assumed, and the system is replaced only at failure. Luss [67] 

presented an approach to study systems where the degree of degradation can be measured 

through inspections, which reveals that the system is in one of several intermediate states 

of deterioration. Christer and Walter [68] developed models for optimal inspection and 

replacement for both perfect and imperfect inspection, in which they use delay time 

analysis. Anderson and Friedman [69] presented the optimal inspection times to minimize 

the total cost for a Brownian motion, in which inspections are costly as compared to other 

operating costs. At times inspection procedures themselves may pose a hazard to the 

system being checked. Chou and Butler [70] found optimal policies that maximize the 

expected lifetime of the system under inspection assuming that each inspection either 

causes immediate failure or else increases the failure rate. 

Minimal repair: A repair or replacement of the failed component restores function 

to the system but the susceptibility of system failure remains as it was just before failure. 

In recent years, researchers have given more attention to the problem of optimal age 

replacement of complex systems subject to minimal repair at failure. Using the basic 



20 

 

 
  

minimal repair model, Tilquin and Cleroux [71] investigate an optimal replacement policy 

for a system when an adjustment cost is also considered. Boland and Proschan [72] studied 

a model where the minimal repair cost depends on the number of minimal repairs the 

system has suffered since the last replacement. Muth [73] developed a model in which 

minimal repair is executed if a failure occurred before a fixed time t* and have system 

replacement at the first failure after t*. Nakagawa [74] developed a minimal repair model 

combining the fixed-time and a counting replacement policy. 

Replacement of system subject to shocks:  Taylor [75] studies a maintenance 

policy of systems assuming that shocks occur according to a Poisson process and the 

damages caused by shocks are i.i.d exponential random variables.  Feldman [76] assumes 

that the cumulative damage is a non-decreasing semi-Markov process and derives the 

expression for the long-run expected cost rate allowing the times between shocks to be 

arbitrarily distributed and dependent on the cumulated damage. Zuckerman [77] 

generalizes Taylor's model by not restricting the amount of damage caused by each shock 

to be exponential random variables. He allows the replacement cost before failure to be a 

non-decreasing function of the accumulated damage with a bound, i.e., the replacement 

cost of a failed system. 

Miscellaneous replacement models:  There are conditions in which systems can 

be observed continuously and failures detected immediately. However, at failure the 

system cannot be repaired and returned to an operating state with an unchanged failure rate. 

Instead, it has to be replaced at a cost. If the system is replaced before failure, then a lower 

replacement cost is incurred. Ansell et al. [78] developed an age replacement policy to 

model a system with increasing failure rate that is used over a finite time horizon. Derman 
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et al. [79] study the case in which the number of spares available is limited to n. If the 

system fails, it can neither be repaired nor replaced, but the system stops functioning. 

However, the system can be replaced before failure and continue functioning.  Monahan 

[80] investigates a system whose degradation is partially observed, but inspection can be 

performed to observe the real state of the system. Nakagawa [81] describes ten replacement 

models by using combinations of age replacement, block replacement, and periodic 

replacement with minimal repair at failure. 

2.2.2 Models on optimization of corrective maintenance policies 

The actions that occur after the system fails are defined as corrective maintenance, 

which is thus a reactive strategy. The task of the maintenance in this scenario is usually to 

make repairs as soon as possible. Costs associated with corrective maintenance include 

repair costs, lost production and lost sales. To minimize the effects of lost production and 

accelerate repairs, actions such as increasing the size of maintenance teams, the use of 

back-up systems and implementation of emergency procedures can be considered. 

Unfortunately, such measures are relatively costly and/or only effective in the short-term. 

Although corrective maintenance has a direct influence on the components of a system, 

this was not sufficiently studied. 

Sheut and Krajewski [82] studied a model that evaluates alternative corrective 

maintenance policies. Data analysis for the estimation of parameters of the failure process 

and effective corrective maintenance without preventive maintenance effect for repairable 

units is developed [83].  Lucia et al. [84] conducted an empirical assessment and 

improvement of the effort estimation model for corrective maintenance. Ding et al. [85] 

considers an aging multi-state system, whose failure rate varies with time. After any failure, 
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maintenance is performed with repair rate and cost of each repair determined by a 

corresponding corrective maintenance contract. Viles et al. [86] developed a functional 

network for the communication systems of trains and conducted a functional study and 

developed a tool for the improvement of the corrective maintenance. Goel [87] considers 

one unit system operating and the other as a cold standby. At random intervals, a check is 

done to determine the need for corrective maintenance.  

2.2.3 Models on optimization of condition-based maintenance policies 

Condition-based maintenance is a maintenance policy that assists maintenance 

decisions based on the information collected through condition monitoring. It consists of 

three main steps: data acquisition, data processing and maintenance decision-making. 

Condition-based maintenance attempts to avoid unnecessary maintenance tasks by taking 

maintenance actions only when there is evidence of abnormal behaviors of a physical asset. 

Condition-based maintenance can significantly reduce maintenance cost by reducing the 

number of unnecessary scheduled preventive maintenance operations, if it is properly 

established and effectively implemented.  

Jardine [88] reviewed commonly used condition-based maintenance decision 

strategies such as trend analysis that is rooted in statistical process control, expert systems, 

and neural networks. Wang and Sharp [89] reviewed the recent development in modelling 

condition-based maintenance decision support. Wang [90] developed a condition-based 

maintenance model based on a random coefficient growth model where the coefficients of 

the regression growth model are assumed to follow known distribution functions. Grall et 

al. [91] assumed a multi-level control-limit rule replacement policy and obtained the 

optimal thresholds and inspection schedule by minimizing the expected maintenance cost 
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rate. Dieulle et al. [92] assumed a one-level replacement policy and a sequentially chosen 

inspection interval using a maintenance schedule function, and obtained the optimal 

threshold and inspection schedule by minimizing the global cost rate.  

Amari and McLaughlin [93] used Markov chains to describe the condition-based 

maintenance model for a degradation system subject to periodic inspection. The optimal 

inspection frequency and maintenance threshold were found to maximize the system 

availability. Berenguer et al. [94] presented a condition-based maintenance policy for 

continuously deteriorating multi-component systems, which allows cost savings by 

performing simultaneous maintenance actions. Marseguerra et al. [95] utilized genetic 

algorithms to find the optimal thresholds by simultaneously optimizing profit and 

availability. Hosseini et al. [96] employed generalized stochastic Petri nets to represent a 

condition-based maintenance model for a system subject to deterioration failures and 

Poisson failures. Deterioration failures are assumed to be restored by a major repair and 

Poisson failures are restored by minimal repair. The optimal maintenance policy and 

inspection interval were then found to maximize system throughput. 

For partially observable systems, Ohnishi et al. [97] applied a Markov decision 

process model for a discrete-time deterioration system to find the optimal replacement 

policy in which minimal repair is used to restore a failure if the decision is not to replace. 

Hontelez et al. [98] modeled a discrete Markov decision problem based on a continuous 

deterioration process to find the optimum maintenance policy with respect to cost. 

Aven [99] presented a counting process approach to determining the replacement policy 

minimizing the long-run expected cost. Barbera et al. [100] developed a condition-based 

maintenance model assuming exponential failure times with failure rate depending on 
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condition variables, and fixed inspection intervals. Christer et al. [101] developed a 

replacement cost model to obtain the optimal replacement policy given all available 

information.  

Kumar and Westberg [102] developed a reliability-based approach for predicting 

the optimal maintenance time interval or the optimal threshold to minimize the total cost 

per unit time. Makis and Jardine [103] established a condition-based maintenance model 

using a Markov process to describe the evolution process of condition variables and a 

proportional hazard model to describe the failure mechanism that depends both on age and 

condition variable. The optimal replacement policy of the hazard control-limit type was 

determined by minimizing the long-run expected total cost rate. Barros et 

al. [104] considered an optimal condition-based maintenance policy for a two-unit parallel 

system of which unit-level monitoring information is imperfect and/or partial. 
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3. System Reliability Models with Degrading Components 

In this section, system reliability models considering different dependent patterns are 

developed. First, reliability models of multi-component system subject to multiple 

dependent competing failure processes are developed, and component failure times are 

proven to be dependent. Based on this model, the system reliability model is extended to 

categorizing shocks into distinct shock sets according to different shock size, function and 

acting points. These studies focus on quantitative analyses, i.e., failure processes are 

defined to be ‘dependent’ due to the shared shock process. Later in this section, we extend 

to the case that system shock effect to the component failure processes are dependent, 

which can be divided into four different dependent scenarios, and system reliability models 

are developed accordingly. The four dependent patterns are: (1) Transmitted shock size 

affecting hard failure process among all components are dependent from each shock. (2) 

Damage to a soft failure process among all components are dependent from each shock. (3) 

Transmitted shock size affecting hard failure process among all components are dependent 

from each shock, and damage to soft failure process among all components are dependent 

from each shock. However, damage to hard failure and soft failure are independent. (4). 

Shock effects to the two failure processes among all components are dependent from each 

shock, and they are mutually dependent. Finally, the system reliability considering 

stochastically dependent component degradation processes is investigated, and the gamma 

process with a random scale parameter is chosen to model the degradation process. 

For all of these reliability models, components in the systems are subject to two failure 

processes, i.e., the soft failure process caused by continuous smooth degradation and 

additional abrupt degradation damages due to a shock process, and hard failures caused 
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immediately from the system shock process. The failure processes are competing, since the 

system fails when any failure process occurs first, and they are dependent due to the shared 

shock process. 

1. Hard failures due to shocks: Figure 3.1(b) shows that component i fails due to fracture 

when the jth load damage of the ith component exceeds hard failure threshold Di. The 

probability that the ith component survives the jth shock is [57]: 

( ) ( )
iij i W iP W D F D      for i = 1, 2, …, n and  j = 1, 2, …                         (1) 

If the Wij  are assumed to be i.i.d. random variables distributed according to the 

normal distribution,  

Wij ~ N( 2,
i Wi

W  ), then the probability that each component survival of a shock 

becomes[57]: 
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Li W i
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    fori = 1, 2, …, n,                                      (2) 

where  (.) is the cumulative distribution function (cdf) of a standard normally distributed 

random variable. Eq. (1) is a generalized equation for probability of no hard failure. The 

normal distribution is not a required assumption for Wij. Other distributions such as 

exponential or Weibull distributions can be considered according to practical engineering 

applications. 

2. Soft failures due to degradation and shocks: Soft failures of the ith component can 

occur when the overall degradation of the component is beyond a threshold level Hi. As 

shown in Figure 3.1(a), the total degradation XSi(t), is the sum of the degradation due to 

continual wear and the instantaneous damages due to shocks. A linear degradation path is 

shown in Figure 3.1(a), Xi(t) = φi+βit, where the initial value φi and the degradation rate βi 
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can be constant or random variables. This model is based on random effects models [35] 

and suitable for other applications, whose degradation is linear or can be transformed into 

a linear degradation path. 
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Figure 3.1: Two dependent competing failure processes for component i 

(a) soft failure process, and (b) hard failure process[57] 

Degradation shifts can accumulate instantaneously when a shock arrives. Each shock 

impacts both failure processes of components. The cumulative damage due to random 

shocks until time t, Si(t), is given as [57] 



28 

 

 
  

( )

1

,         if    ( ) 0,
( )         

0,               if    ( ) 0,

N t

ij

ji

Y N t
S t

N t






 
 


                                                  (3) 

where N(t) is the total number of shocks that have arrived by time t, and N(t) is a random 

variable. The overall degradation of the ith component is expressed as XSi(t) = Xi(t) + Si(t).  

The probability that the total degradation at time t is less than xi,  

FX(xi, t), can be derived as [57] 
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Furthermore, if Gi(xi, t) is considered to be the cdf of Xi(t) at t, ( )
jYf y  to be the 

probability density function (pdf) of Yij, and ( )
i

k

Yf y 
 to be the pdf of the sum of ki.i.d. Yij 

variables, then the cdf of XSi(t) in Eq. (4) can be derived using a convolution integral [57]: 
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If the shock damage on soft failure process of the ith component are i.i.d. normal random 

variables, Yij~N(
iY ,

2

iY ), the degradation path is linear with a constant initial value φi and 

a normal distributed degradation rate βi, with βi~N(
2,  

i i   ), and shocks arrives following 

a Poisson process with constant rate λ, then a more specific model can be determined based 

on Eq. (5) [57]: 
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Eq. (5) is a generalized equation for probability of no soft failure. The normal 

distribution is not a required assumption for soft failure process either, and other 

distributions like exponential distribution, Weibull distribution, etc, can also be considered 

according to engineering applications. The idea of using the Poisson process to model the 

shock process is well known in reliability literature. It is a very natural way of approaching 

modeling of the shock process. First, the shock process is part of environment, and it is not 

anticipated to have fundamental shifts. Second, the Poisson process is a logical choice, but 

the model can be extended to other pressures or serve as an approximation for other 

stationary processes.  

Combining hard failure process and soft failure process, component reliability can 

be obtained as [57]: 
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                                    (7) 

3.1 System reliability model with dependent component 

degradation due to shared shock exposure 

In this section, reliability of systems subject to dependent and competing failure 

processes is studied considering independent damage to soft/hard failure processes for all 

components. That is, when a shock arrives to the system, transmitted shock size to hard 

failure processes for all components are independent (independent Wij), and shock damages 

to soft failure processes for all components are independent (independent Yij). However, 

due to the shared exposure to the same shock process, both failure processes among all 

components are proven to be dependent [105]. In this section, reliability models for multi-

component systems subject to multiple dependent competing failure processes are 
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developed, and component failure times are proven to be dependent. Later in this section, 

the model is extended by categorizing the shocks into distinct shock sets according to 

different shock size, function and acting points. 

3.1.1 System reliability model with dependent component failure time 

A reliability model is developed for systems with dependent competing failure 

processes for each component and also dependent component failure times considering 

different structures/configurations. Two failure processes for each component are 

dependent due to the exposure to shared shocks, but damage to two failure processes by 

individual shocks are independent. Component failure times are also dependent, which 

means if one component fails prematurely, it is possible or likely that the whole system 

experienced certain levels of degradation and/or shocks, and it is probabilistically possible 

that other components will also fail soon. 

Specific assumptions used for the reliability and maintenance modeling in this section 

are as follows: 

1. When the threshold value Hi is exceeded by the total degradation of a component, soft 

failure occurs.  

2. When the transmitted shock size on hard failure process exceeds the maximum strength 

Di, hard failure occurs. 

3. Random shocks arrive according to a Poisson process.  

4. For series system, the system fails when the first component fails. For k-out-of-n system, 

the system works satisfactorily while at least k components survive both soft failure and 

hard failure processes. Parallel systems fail when all components experience either soft 

failure or hard failure. The reliability of a series-parallel system at time t is the 
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probability that at least one component within each sub-system survives both failure 

processes. 

3.1.1.1 Series system 

Figure 3.2 shows a series system with n components. The reliability of this system 

at time t is the probability that the each component in the system survives each of the N(t) 

shock loads (Wij<Di for j=1, 2, …) and the total degradation is less than the threshold level 

(XSi(t)<Hi): 

 

Figure 3.2: Series system example 

The reliability can be expressed as the intersection of the events that each 

component has not failed up to time t. For each component to survive, it must withstand 

all N(t) shocks and the total degradation much be less than the soft failure threshold. 
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3.1.1.1 Random effect model 

The random effect model is based on linear degradation models, in which the 

degradation rate is distributed as normal distribution [35, 57]. The number of shocks N(t) 

has an effect on each component. When N(t) is large enough, the sum of damage to soft 

failure process of each component caused by shocks is large, and a failure is more frequent 

for all components. Alternatively, when there are relatively few shocks, times-to-failure 

are relatively longer for all components. Thus, this result causes component failure times 

to be probabilistically dependent. Conditioning on the number of shocks by time t [105, 
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106]: 
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Shocks arriving at random time intervals are modeled as a renewal process with Poisson 

process. When the system is shocked (at rate λ), all components experience a shock. Then, 

the system reliability function can be derived for the general case as [105, 106]: 
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Based on Equations (1-5), the reliability function can be expressed as [105, 106]: 
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The reliability function for the more specific case with normally distributed Wij, Yij, and 

βi can be expressed as [105, 106]: 
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(12) 

where PLi is given by Eq. (2) and ( )   is the pdf of a standard normally distributed variable. 

As another example simply to demonstrate that Eq. (11) is a general model, the 

reliability function with exponentially distributed Wij (with parameter γ), exponentially 

distributed Yij (with parameter θ), and normally distributed βi, can be expressed as [105, 



33 

 

 
  

106]: 
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Although the example is hypothetical, the parameters in Table 3.1 are estimated based 

on actual test data for MEMS [107]. According to Eq. (12), system reliability R(t) is plotted 

in Figure 3.3. Also, in Figure 3.3, system reliability is presented for an analogous system 

with identical component failure processes but independent component failure processes. 

In this way, it is possible to observe one of the meaningful contributions from this new 

model, which is to explicitly consider components with dependent failure processes. As 

indicated in the figure, an incorrect component independence assumption would provide 

invalid results. 

Figures 3.4 through 3.6 presents sensitivity analyses of μYi or λ or both on R(t). From 

Figures 3.4 through 3.6, decreased μYi or decreased λ or both increases the reliability of 

both the dependent component system and the independent component system as expected. 

For the comparison, the decreased shock arrival rate is 10 times less frequent, and the mean 

shock damage is 30% of the previous amount for all components. When the damage to soft 

failure by shocks μYi and shock arrival rate λ are decreased, the reliability for the dependent 

component system get closer to the reliability for the similar independent component 

system. This is also as expected because the covariance is smaller.  
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Table 3.1: Parameter values for series system reliability analysis 

Parameters component 1 & 2 component 3 & 4  Sources 

Hi 0.00125 μm3 0.00127 μm3 Tanner and 

Dugger[107] 

Di 1.5Gpa(for polysilicon 

material) 

1.4 Gpa(for polysilicon 

material) 

Tanner and 

Dugger[107] 

φi 0 0 Tanner and 

Dugger[107] 

βi βi 

~N(μβi,σβi
2)μβi=8.4823×10-

9μm3 

σβi=6.0016×10-10μm3 

βi ~N(μβi,σβi
2)μβi=8.4936×10-

9μm3 

σβi=5.9011×10-10μm3 

Tanner and 

Dugger[107] 

 

λ 2.5×10-5 2.5×10-5 Assumption 

Yij Yij ~N(μYi,σYi
2)  

μYi =1×10-4 μm3 

σYi =2×10-5 μm3 

Yij ~N(μYi,σYi
2)  

μYi =0.9×10-4 μm3 

σYi =2.1×10-5 μm3 

Assumption 

Wij Wij ~N(μWi,σWi
2) 

μWi =1.2Gpa, σWi =0.2GPa 

Wij ~N(μWi,σWi
2) 

μWi =1.22 Gpa,σWi =0.18 GPa 

Assumption 

ci 2×10-6 2×10-6 Assumption 

bi 2.2 2.2 Assumption 

θi 1.5 1.5 Assumption 

Sensitivity analysis was also performed on the ratio of system reliability with 

dependent and independent component failure processes, and the results are presented in 

Figure 3.7. System reliability was computed at t = 2×104, and compared with the analogous 

system with independent components. The interesting parameters are the arrival rate of 

shocks λ and mean damage size for the ith component soft failure process from shocks, μYi. 

The ratio R(dependent)/R(independent) increases approximately linearly as λ increase. 

That means, if the shock arrival rate is higher, and its effect on system reliability is more 

pronounced, the difference between R(dependent) and R(independent) is larger, and the 

dependency is more notable.  
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Figure 3.3: Plot of reliability function R(t) of a series system with four components 

 

Figure 3.4: Sensitivity analysis of μYi on R(t)  
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Figure 3.5: Sensitivity analysis of λ on R(t)  

 

Figure 3.6: Sensitivity analysis of λ and μYi on R(t) 

Also, R(dependent)/R(independent) increases as μYi increases, but not linearly. When 
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the shock damage size contribution to soft failure processes increases, system reliability is 

affected more intensely by each shock.  

 

Figure 3.7: Ratio of R(t) with dependent / independent failure processes versus λ and μYi   

For a multi-component system, the number of shocks N(t) has an effect on each 

component. When N(t) is sufficiently large, the sum of the shock damage size contributing 
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to soft failure for each component is large, and there are also greater opportunities for hard 

failure; thus, a failure is more likely for all components. Alternatively, when there are 

relatively few shocks, times to failure are relatively longer for all components. Thus, the 

component failure processes are probabilistically dependent.  

From the proof in Appendix, it can be concluded that component failure processes are 

dependent. If the covariance of two events is greater than zero, then the occurrences of 

these two events are correlated, and they are probabilistically dependent (but not 

necessarily physically dependent). With this idea, it is shown that soft failure processes for 

all components are dependent in the Appendix. Similar covariance derivations were 

performed for hard failure events. Because both the soft failure process and hard failure 

process for all components are probabilistically dependent, it can be logically concluded 

that component survival events are also dependent.  

3.1.1.2 Gamma process for degradation 

A gamma process is a random process with independent gamma distributed 

increments:  

Xsi(t2) - Xsi (t1)~Γ(i(t2) -i(t1),θi). The difference between the degradation of component at 

two different times follows a gamma distribution with shape parameter i(t2) -i(t1) and 

scale parameter θi. 

Based on Eq. (8), using the gamma process to model component degradation path: 
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( )iv t is a non-decreasing, right-continuous function for t > 0. Separating the hard 

failure process and soft failure processes, Eq. (14) can be re-written: 
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An an example, by assuming Wij to be i.i.d. random variables, and considering that soft 

failure processes are independent after conditioning: 
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Assuming shock damage to soft failure process Yij to be i.i.d. random variables with a 

normal distribution, Yij ~N(μYi, σYi
2), and using convolution integral for the the sum of Yij: 
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The gamma process is used for degradation path Xi(t):  
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Where   1, a z

z x

a x z e dz
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a z
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   , and ( )iv t is a non-decreasing, 

right-continuous function for t > 0. Eq. (19) is the general reliability model for system with 

component stochastic degradation processes. Empirical studies show the deterioration at 

time t is often proportional to a power law, which means vi(t)=cit
b. (1) degradation of 

concrete due to corrosion bi=1, and it is linear; (2) sulphate attack (parabolic, bi=2); (3) 

diffusion-controlled aging (square root, bi=0.5), and other cases [108]. 

Considering vi(t)=cit
bi, the equation becomes: 
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A special case when N(t)=0 by time t, which means pure degradation, i.e., no shock 

arrives to the system, and with bi= 0.5: 
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Using the parameters in Table 3.1 for a gamma process, according to Eq. (22), system 

reliability R(t) is plotted in Figure 3.8.  

 

Figure 3.8: Plot of reliability function R(t) of series system using Gamma process to 

model  component degradation 

3.1.1.2 k-out-of-n system 

The reliability of k-out-of-n systems has been studied for many years. Adding 

redundancy is a traditional way to achieve reliability improvement. The components can 

achieve reliability of a working system by forming a partnership. In this part, a reliability 

model is developed for a k-out-of-n system, in which all components have the same 
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properties and experience two dependent/correlated failure processes and failure times of 

components are dependent and statistically correlated [109]. An age replacement policy is 

considered with a fixed replacement interval. We demonstrate the developed reliability 

model and maintenance policy for a k-out-of-n system subject to MDCFP using a 

representative example [109].  

There has been significant and meaningful prior research done on k-out-of-n system 

reliability. Huang et al [110] presented a general multi-state k-out-of-n system model in his 

research.  

For the k-out-of-n model, each component may fail due to two competing dependent 

failure modes, and the component fails when either of the two competing failure modes 

occurs. For a k-out-of-n system with all components having the same characteristics, the 

system fails when more than (n-k) components fail. Here, S is defined as the set of system 

components and (t) as a set of working components at time t, (t)  S. In this model, all 

components are the same type, and the i subscript can be omitted from Wij, Yij, etc. 
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Figure 3.9 shows a k-out-of-n system. The system functions when at least k of those n 

components are available, i.e., have not failed. The reliability of this system at time t is the 

probability that at least k components survive each of the N(t) shock loads (Wj<D for j=1, 

2, …) and the total degradation of component i is less than the threshold level (XSi(t)<Hi) .         
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Figure 3.9: k-out-of-n system arranged in parallel. 

System reliability can be derived based on the probability of the intersection of the 

events that the component degradation paths are within their safe regions, i.e., below the 

failure thresholds. Each component survives when the total wear volume is less than the 

degradation threshold and it survives from each shock [109].
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In Eq. (26), | ( ) |t represents the size or cardinality of set ( )t . In this model, shocks 

arriving at random time intervals are modeled as a Poisson process. When a shock impacts 

on the system at rate λ, all components are affected. Based on the random effect model, if 

the component survival probabilities are conditioned on the number of shocks, reliability 

is the sum of binomial probability mass functions [109]: 
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Since the hard failure damage size for each component by each shock is i.i.d random 

variable, the system reliability function can be derived as follows [109]: 
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The reliability function can be generally expressed as[109]: 
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The reliability function for the more specific case with random effect degradation 

path and normally distributed Wj, Yj, and β, can be expressed as [109]:

 

   
2 2 2 2 2 2

( )

(

1

( )

1
( ) ( )

1

i n i
n

i k

i

t

Y Y

Y

n i

Y

n
m m

W W

m i k

H t H t
e

t t

H t m H t m

t m

n
R t

i

n
F D

t
F D

i m

  

 

 

 

   

 

     

   









 


    

       
      

      
      

   

        
   
    

 

 

  

 
         

    
   





)

( )

!
          

t me t

m

 



 

(30) 

Using a gamma process to model the degradation, the reliability for k-out-of-n 

system can be generally expressed: 
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Table 3.2: Parameter values for k-out-of-n system reliability analysis 

Parameters All four components Sources 

H 0.00125 μm3 Tanner and Dugger [107] 

D 1.5 Gpa (for polysilicon material) Tanner and Dugger [107] 

Φ 0 Tanner and Dugger [107] 

Β β~N(μβ,σβ
2), μβ=8.4823×10-9 μm3 

σβ=6.0016×10-10 μm3 

Tanner and Dugger [107] 

Peng et al [57] 

Λ 2.5×10-5 Assumption 

Yj Yj ~N(μY,σY
2), μY =1×10-4 μm3 

σY =2×10-5 μm3 

Assumption 

Wj Wj ~N(μW,σW
2), μW =1.2 GPa 

σW =0.2 GPa 

Assumption 

A system reliability model for k-out-of-n system is developed based on a random 

effect degradation model. Here is a numerical example for a 2-out-of-4 system with four 

of the same components. The parameters for reliability analysis are provided in Table 3.2. 

Based on Eq. (30), the reliability function R(t) and the pdf of failure time fT(t) are plotted 

in Figure 3.10, where ( ) ( )T T

d
f t F t

dt
 . 

A sensitivity analysis was performed to assess the effects of k on R(t) and fT(t). The 

results are shown in Figure 3.11.Given a fixed n, by changing k, both the reliability and the 

time to failure distribution are sensitive to the number of working components, k. When k 
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increases from 1 to 4, R(t) shifts left. When k=1, it is a parallel system, and when k=4, it is 

a series system.  

 

Figure 3.10: Plots of reliability function R(t) and failure time distribution fT(t) 

As expected, Figure 3.10 indicates that when k is decreasing, the working requirements 

of the system are less demanding. When k=1, it means at least one component must be 

functioning, and the system is operational. The reliability of this system is higher than the 

reliability of systems when other k values are chosen. In Figure 3.11, before time 1.2×105, 

fT(t) increases for all cases and fT(t) for k=3 is higher than fT(t) for other k values except 



47 

 

 
  

k=4. Also, after time t=1.2×105, fT(t) decreases for all cases and fT(t) for k=1 is higher than 

fT(t) for other k values. System reliability changes quickly around t=1.2×105. 

 

Figure 3.11: Sensitivity analysis of R(t) and fT(t) on k 

3.1.1.3 Parallel systems 

Figure 3.12 presents a parallel system composed of n components. The reliability of 

the parallel system at time t is the probability that at least one component of this system 

survives each of the N(t) shock loads (Wij<Di for j=1, 2, …), and the total degradation of 
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that same component is less than the threshold level (XSi(t)<Hi). The system fails when all 

components experience either soft failure or hard failure.  

 

Figure 3.12: Parallel system example   

System reliability for a parallel system based on random effect degradation model is 

given by the following equations for the two specific cases introduced in the previous 

section [105]. 
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Given exponentially distributed Wij (with parameter γ), exponentially distributed 

Yij (with parameter θ), and normally distributed βi, parallel system reliability be expressed 

as [105] 
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Alternatively, system reliability for a parallel system for gamma process degradation 

model is given by the following equations. 
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3.1.1.4 Series-parallel systems 

Figure 3.13 depicts a series-parallel system made up of s subsystems. Sl is the set of 

components in subsystem l with no component being used in more than one system (Sl ∩ 

Sk =  for all l, k), and each subsystem has nl components with nl = | Sl |. For the example 

depicted in the figure, S1 = {1, 4, 7}, and n1 = 3; Sl = {5, 6, 8, 12}, and nl = 4; Sk = {2, 10, 

11}, and nk = 3; and Ss = {3, 9}, and ns = 2. 

 

Figure 3.13: Series-parallel system example 

The reliability of a series-parallel system at time t is the probability that at least one 

component within each subsystem survives each of the N(t) shock loads (Wij<Di for j=1, 

2, …), and the total degradation is less than the threshold level (XSi(t)<Hi) for that same 

component. The system fails when all components for at least one parallel subsystem 

experience either soft failure or hard failure. 

System reliability for a series-parallel system is given by the following equations for 

general and exponential cases previously introduced [105]: 
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System reliability for a series-parallel system using the gamma process to model 

degradation is given by the following equations for the two specific cases previously 

introduced. 
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(39) 

Overall, in this section multi-component system reliability with different system 

structure is studied, and the failure processes are considered dependent among components. 

This represents a fundamental extension and advancement because previous research and 

models were either limited to an individual component or it was assumed that the failure 

processes were independent. In Appendix A, the proof is provided to show that failure 

processes among components are dependent.  

3.1.2 System reliability with distinct component shock sets  

In this section, reliability is studied for multi-component systems subject to dependent 

competing risks of degradation wear and random shocks, with distinct shock sets [111, 

112]. In practice, many systems are exposed to distinct and different types of shocks that 
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can be categorized according to their sizes, frequency, function, affected components or 

acting positions. In this new model, random shocks are classified into different sets. Shocks 

with specific sizes, frequency or function can selectively affect one or more components 

in the system but not necessarily all components. Additionally the shocks from the different 

shock sets can arrive at different rates and have different relative magnitudes. A MEMS 

(Micro-electromechanical systems) oscillator is a typical system subject to dependent and 

competing failure processes, and it is used in a numerical example to illustrate new 

reliability models. 

Many systems or components are subject to competing risks of degradation processes 

and random shocks. Some researchers assume that when a shock comes, it affects all 

components in the system. However, shocks with specific sizes or function may selectively 

affect one or more components in the system, but not necessarily all components. Therefore, 

it is practical and realistic for some applications to classify random shocks into different 

sets based on their sizes and function, and the affected components.  

Consider a battery used in a laptop computer that supplies electric power by a chemical 

reaction. It gradually weakens through usage, and becomes ineffective once the chemicals 

in the battery are exhausted, which can be considered as a soft failure process. When shocks 

arrive to the system, they also cause incremental damage to this degradation. In addition, 

environmental shocks, overheating or over-voltage can cause abrupt battery failure, which 

can be considered as a hard failure process. These two failure processes are competing, i.e., 

no matter which failure process happens first, the battery fails. Alternatively, striking the 

keyboard is a different type of shock which probably has no effect on battery life, but may 

impact other components of the laptop. There is significant interest in categorizing each 
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component’s own shock set for the reliability modeling of a system subject to dependent 

and competing failure processes.  

Scant research has been done on system reliability with specific and distinct 

component shock sets. The idea of component shock sets originates from many engineering 

applications. Considering a complex system of an automobile, shocks affecting a car can 

be categorized according to their attributes: mechanical shocks, thermal shocks, voltage 

shocks and other types of shocks. Within the category of mechanical shocks, different types 

of failures can be caused due to the sizes, function, affected components, e.g., fracture of 

steering and brake system, disconnection of fuel system, rupture of engine cooling fan 

blade or tire puncture. 

Mathematical models are derived for system reliability for the distinct shock set 

problem. A non-linear maintenance optimization model is formulated and solved based on 

an iterative numerical search, i.e., golden section search method. Each component has its 

distinct shock set, meaning a set of shocks that impact the particular component. If two or 

more components share a common shock type in their shock sets, the times-to-failure of 

these components are dependent. This potentially causes components sharing the same type 

of shocks to fail more often as well.  

We define for component l, the soft failure threshold is Hl, and the hard failure threshold 

is Dl Wi,j,k is shock effect on hard failure processes caused by the kth shock of jth type 

belonging to component l shock set, and Yi,j,k is shock effect on soft failure processes caused 

by the kth shock of jth type belonging to component l shock set. 

Figure 3.14 shows two failure processes for component l. This depicts just one of n 

components within the system. These two failure processes are dependent and competing. 
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Two life cycles are shown in the figure. In the first life cycle, component l fails due to soft 

failure, because component degradation exceeds the soft failure threshold level Hl. A 

random shock belonging to the component’s shock set can cause hard failures when the 

hard failure threshold level Dl is exceeded. Therefore, in the second life cycle, component 

l fails due to hard failure, because damage to hard failure process Wl,2,3 (the third shock of 

second type belonging to component l shock set) exceeds the hard failure threshold Dl. Soft 

failure threshold Hl, and hard failure threshold Dl for component l are different fixed values. 

The component fails when either of the two failure processes occurs, i.e., they are 

competing. 

Each component has its own shock set, defined as the set of those shock types that 

affect that component. Taking component l for example, Figure 3.14 shows that there are 

two different types of shocks that affect it: two shocks from Type 1 and three shocks from 

Type 2, and the third Type 2 shock causes hard failure. Although there are other types of 

shocks impacting the system during this time period, they have no effect on component l, 

due to the size, function or other aspects. The shock set for component l is denoted as l = 

{1,2}. In general, hard failure occurs when any shock k of the jth type associated with 

component l exceeds the threshold Dl. 

All types of shocks having an effect on component l compose its shock set. When one 

type of shock affects multiple components, this shock type is represented in multiple shock 

sets according to the components affected. Failure times of components are dependent due 

to the shared common shock types in their shock sets [62]. 

The two failure processes have different failure thresholds (Hl is the failure threshold 

for the soft failure process and Dl is the failure threshold for the hard failure process). If 
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there are more than one shock type in shock set l (|l | > 1), there could be separate hard 

failure thresholds for each relevant shock type (Dlj instead of Dl), but each relevant shock 

type for a particular component is assumed to be associated with the same hard failure 

threshold (Dlj = Dl for all j). 
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Figure 3.14: Dependent competing failure processes for component l with two types of 

shocks: (a) soft failure process and (b) hard failure process 

The probabilistic model for the hard failure process is from Peng et al. [57]. The 

probability that component l in a n component system survives the kth shock of the jth type 

associated with this component is [111, 112]: 

, , , ,( ) ( )l j k l l j W lP W D F D  ,  for l = 1, 2, …, n, 
lj  , and k = 1, 2, … Nj(t).           (40) 

As an example, consider that Wl,j,k are random variables following a normal 

distribution,  

Wl,j,k~N(
,l jW ,

,

2

l jW ), then the probability of component l survival of a shock of the jth type 

becomes: 
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 for l = 1, 2, …, n,  
lj                 (41) 

where ( ) is the cdf of a standard normally distributed random variable. Notice that Wl,j,k 

can be negative given the normal distribution, although in practice it must be non-negative. 

Therefore, it is important to choose appropriate values for the mean and variance such that 

the probability that Wl,j,k can be a negative value is almost 0. 

Soft failure is the combined effect of pure degradation and degradation damage 

increment caused by shocks. This is the second of the competing failure processes. Soft 

failures of component l occurs when the total degradation is greater than Hl. Total 

degradation XSl(t) is the sum of the degradation due to continual wear and the instantaneous 

damage shifts caused by all types of shocks that can have an effect on this component, i.e., 

all the components included in component l shock set. Cumulative damage due to random 

shocks until time t, Sl(t), is given as [111, 112]: 
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Nj(t) is the number of shocks of the jth type that have arrived by time t. Nj(t) is a 

random variable so there is a random number of terms in the sum. The overall degradation 

of the lth component is XSl(t) = Xl(t) + Sl(t). This is an extension of Peng et al. [57]. Then, 

the probability that the total degradation at time t is less than xl can be derived as 
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    .               (43) 

Different types of shock processes arriving to the system are assumed to be 

independent of each other. After conditioning on the numbers of shocks for all types, 
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different types of shocks arriving to the system are summed over all p. If some types of 

shocks do not belong to shock set of component l, they are not included in the shock set, 

jl, and the effect is 0. Summing over the types of shocks not belonging to component l’s 

shock set does not change the probability [111, 112]: 
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Consider G(xl, t) to be the cdf of Xl(t) at t, fYl
<c>(u) to be the pdf of the sum of cYl,j,k 

variables, ( )l

lYf u m
 to be the pdf of the sum of Yl,j,k variables as defined by vector mϕl, a 

vecter of all mj for jl. The cdf of XSl(t) in Eq. (44) can be derived using a convolution 

integral [111, 112]: 
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A Poisson process is an appropriate and common model for the shock arrival rates 

given a stationary usage environment. If the frequency rate of shocks is increasing or 

decreasing, then this model is not appropriate. The ith type of shocks follows a Poisson 

process with rate λi. Then Eq. (45) can be rewritten as: 
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If damages to the degradation process from shocks of all types associated with 

component l are normally distributed random variables, Yl,j,k ~ N(
,l jY ,

,

2

l jY ), and the 

degradation path is linear with a constant initial value φl and a normally distributed 
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degradation rate βl with βl ~N(
2,  

l l   ), then the probability that component l does not 

experience soft failure before time t is: 
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The example system configuration described in this section is a series system. 

However, the concepts described in this paper can be extended to other system 

configurations. For a series system with n components, the system reliability is the 

probability of an intersection of events in which the degradation path of each component 

is within its safe region, i.e., below the soft failure threshold, and each component survives 

all types of shocks in its shock set (Wl,j,kDl, 
lj  ) [111, 112]: 
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(48) 

When a shock belonging to component l shock set arrives to the system, it has effect 

on both of two failure processes, and Yl,j,k and Wl,j,k are assumed to be independent. When 

more than two components share a common type of shocks in their shock sets, reliabilities 

of these components are dependent. This phenomenon makes the problem more 

complicated, since times-to-failure are dependent for the components due to sharing the 

same type of shocks. The reliability for the system can be obtained by conditioning on the 
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numbers of shocks of all types [111, 112]: 
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There are p types of shocks that can affect the whole system, and l p  , which means 

items in component l’s shock set should be less than or equal to the total types of shocks 

that impact the whole system. The ith type of shocks arrives according to a Poisson process 

with rate λi, for i = 1, 2, …, p. The reliability function for a series system can be written as 

follows [111, 112]: 
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The reliability of each component at time t is the probability that each component 

survives all shocks in its shock set, and the total degradation is less than the threshold level 

[111, 112]: 
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Component failure times are dependent due to shared exposure of shocks, and it is the 

random number of shocks that is responsible for the dependency. After conditioning on the 

number of shocks for each shock set, the hard and soft failure processes for a component 

become independent. Based on Equations (2) and (5), the reliability function can be 

expressed as [111, 112] 
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Using convolutional integral for soft failure process based on random effect degradation 

modeling [111, 112]: 
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In practice, fYl
<k>(y) can be difficult to evaluate for general shock distributions, but 

there are simple and closed-form expressions for particular examples. Even in other cases, 

Monte Carlo simulation can be used to estimate fYl
<k>(y). For example, if the degradation 

path is linear and Wl,j,k, Yl,j,k, and βl are normally distributed and independent of each other, 

i.e., Wl,j,k,~N(μWl,j, σWl,j)., Yl,j,k ~N(μYl,j, σYl,j)., βl~N(μβl, σβl), the reliability function can be 

expressed as [116, 117]: 
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Alternatively, the gamma process could be applied to model component degradation. 

Based on Eq. (52), the reliability function can be expressed as: 
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Here is an application of a system subject to dependent and competing failure processes 

with components distinct shock sets. MEMS oscillators shown in Figure 3.15 are timing 

devices that generate highly stable reference frequencies to sequence electronic systems, 

manage data transfer, define radio frequencies and measure elapsed time. Electronic 

systems are typical systems that suffer both mechanical shocks and voltage shocks. MEMS 

oscillators are replacing quartz crystal oscillators due to several advantages [113]. MEMS 

oscillators are attached to electronic circuits, often called sustaining amplifiers, to drive 

them in continuous motion. In most cases these circuits are located near the oscillators and 

in the same physical package. 

 

Figure 3.15: (a) 32.768 kHz comb-drive oscillator; 

(b) wafer level packaged resonator with oscillator circuits on PCB [114] 

To ensure the performance is satisfactory for important electronics applications, 

MEMS oscillators have to pass the standard Joint Electron Device Engineering Council 

http://en.wikipedia.org/wiki/Data_transfer
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Crystal_oscillators
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(JEDEC) reliability tests such as aging, solder reflow, thermal shock and autoclave. 

MEMS oscillators vibrate at their natural resonant frequency. Due to the working loss 

of operation, MEMS oscillator mass decreases after a period of time. The decrease of mass 

can cause the frequency of vibration to increase, which is an obvious common phenomenon 

that exists in MEMS oscillators. The quality factor Q of an individual reactive component 

depends on the frequency ω at which it is evaluated, which is the oscillators’ frequency of 

the circuit that it is used in. Q is a dimensionless parameter which increases when ω 

increases, and this conclusion can be easily obtained from Eq. (57), where ω is frequency 

in radians per second, L is the inductance, XL is the inductive reactance, and RL is the series 

resistance of the inductor. On the other hand, a system with a low quality factor is said to 

be over-damped, and such a system does not oscillate strongly [114]. 

 =L
L

L L

X L
Q

R R


                                                               (57) 

A MEMS oscillator is a typical multi-component system subject to multiple competing 

and dependent failure processes. The change of frequency Δω caused by each shock can 

be considered as a hard failure process, while the shifting quality factor Q can be considered 

as a soft failure process. As time passes, mass decreases, and frequency ω increases due to 

the decreasing mass. Then as a result, the quality factor Q increases due to the increasing 

ω. When there is high frequency and a very high value of Q, degradation wear is severe 

and considered as a soft failure. On the other hand, when there is a thermal shock, jitter or 

other vibration from the environment, it can cause a sudden change of frequency. If the 

shock or vibration is large enough to cause large Δω instantaneously, hard failure occurs. 

As these shocks are quite different, it is reasonable to categorize them into different 

component shock sets.  

http://en.wikipedia.org/wiki/Electrical_reactance#Inductive_reactance
http://en.wikipedia.org/wiki/Overdamping
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MEMS oscillators are a particularly interesting example because the hard failure 

process and soft failure process are dependent, since Q and ω have a close relationship with 

each other. Here, it is important to state that the quality factor is a positive number at the 

beginning of operation; that is, the linear degradation has positive initial intercept, and a 

linear degradation model is chosen. 

 

Figure 3.16: A series system with different shock set for each component 

Consider a series system with four components in Figure 3.16, i.e., four comb-drive 

resonators in a system. Table 3.3 indicates the shock set information for these four 

components. In this example, the MEMS oscillator operates in a stable environment with 

shocks arriving as Poisson processes. There are four different types of shocks arriving to 

the system, and they are assumed to have constant arrival rates. Binary variables 0 and 1 

in Table 3.3 represent the elements of the shock sets for each component. For example, the 

value of 1 in the table for component 2 and type 2 shock means that type 2 shock exists in 

the component 2 shock set, i.e., 2l. The parameters in Eq. (56) for reliability analysis are 

provided in Table 3.4. Without lack of generality, parameters of component 1 and 2 are 

assumed to be the same, and parameters for component 3 and 4 are the same. Most of the 

example parameters are from [114]. Based on Eq. (56), the reliability function R(t) and the 

pdf of time-to-failure fT(t) are plotted in Figure 3.17. System reliability R(t) changes 

dramatically when time is between 300 months and 600 months.  

Table 3.3: Shock set information for system reliability analysis 

 Type 1 shock Type 2 shock Type 3 shock 

Component 1 1 0 0 

Component 2 1 1 0 

Component 3 0 1 0 

2,2={1,2} 3，3={2} 4，4={3} 1，1={1} 
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Component 4 0 0 1 

shock arrival rate 1.30×10-2 1.32×10-2 1.31×10-2 

 
 

Table 3.4: Parameter values for system reliability with different component shock set 

Parameters component 1 & 2 component 3 & 4 Sources 

Hl 8100 8200 Assumption 

Dl 92 MHz  93 MHz  Assumption 

φl 4000 3700 Hsu [114] 

βl βl ~N(μβ,σβ
2) 

μβ=0.90 

σβ=0.080 

βl ~N(μβ,σβ
2) 

μβ=0.93 

σβ=0.078 

Hsu [114] 

Yl,j,k Yl,j,k ~N(μY,σY
2)  

μY1,1 =400, σY1,1 =15 

μY2,1 =410, σY2,1 =18 

μY2,2 =390, σY2,2 =17 

Yl,j ~N(μY,σY
2)  

μY3,2 =408, σY3,2 =16 

μY4,3 =402, σY4,3 =15 

Hsu [114] 

Wl,j,k Wl,j,k ~N(μW,σW
2) 

μW1,1 =72.6 MHz, σW1,1 =6.3 MHz  

μW2,1 =71.8 MHz, σW2,1 =6.1 MHz 

μW2,2 =70.2 MHz, σW2,2 =5.8 MHz 

Wl,j ~N(μW,σW
2) 

μW3,2 =71.1 MHz, σW3,2 =6.0 MHz 

μW4,3 =70.3 MHz, σW4,3 =5.9 MHz 

Hsu [114] 
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Figure 3.17: Reliability function R(t) and time-to-failure distribution fT(t) 

 



65 

 

 
  

Figure 3.18: Reliability for system with dependent and independent component failure 

times 

 

Figure 3.19: Sensitivity analysis of R(t) and fT(t) on λ 

If more than two components share the same shock type in their shock sets, time-to-

failure of these components are dependent. This is evaluated by analyzing another system 

with the same configuration and parameters as the series system, except that component 2 

does not suffer type 1 shock, but instead suffers from a type 4 shock that has exactly the 

same parameters as a type 1 shock. Similarly, component 3 does not suffer type 2, but type 

5 instead with the same parameters as shock type 2. Since no common types of shocks are 

shared in shock sets for the new system, times-to-failure of all components are independent.  

Figure 3.18 indicates that the reliability for the system with dependent component 

failure time is similar from the reliability for a system with independent component failure 

time, but not the same. The difference is relatively small due to the parameter values in the 

example. However, if other values are chosen for parameters or use another application, 
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the difference would be larger. 

A sensitivity analysis was performed to assess the effects of different shock arrival 

rates on R(t). In Figure 3.19, it can be observed that increasing the arrival rate of any type 

of shocks can decrease system reliability. When the increase in arrival rates of these three 

types of shocks is the same, type 1 and type 2 shocks affect reliability more dramatically 

than type 3 shocks. That is because both type 1 and type 2 shocks affect two components, 

but type 3 shocks only affects one component. 

To summarize, in Section 3.1, reliability is studied for a system subject to dependent 

and competing failure processes focusing on qualitative analysis. That is, failure processes 

are dependent due to the exposure of shared shocks. System reliability with dependent 

failure processes among components is developed considering different system 

configuration. Then, a new reliability model is developed considering that different 

components possess distinct shock sets, since shocks with specific sizes or function may 

selectively affect one or more components in the system, but not necessarily all 

components.  

3.2 System reliability with dependent W and/or dependent Y 

System reliability was previously investigated with two failure processes for each 

component. The failure processes and component failure times are dependent due to the 

shared shock process. However, the correlation of transmitted shock magnitude or damage 

to any specific failure process among all components from the same shock was not 

considered. This can potentially cause poor reliability prediction. If that assumption is not 

appropriate. The dependence of shock sizes and damages to multiple failure processes from 

a quantitative analysis perspective is important in reliability analysis of system. In this 
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section, four different dependent patterns/scenarios of dependent shock damages on 

multiple failure processes for all components are considered [115]. For any specific shock 

arriving to the multi-component system, it is probabilistically likely that damages on one 

specific failure process (hard or soft) among all components by this specific shock are 

dependent. Also, it is probabilistically likely that for each shock, damages to both 

components failure processes, i.e., soft failure processes and hard failure processes are 

separately or mutually dependent at the same time.  Without considering dependent shock 

damages to failure processes and quantifying the correlation, reliability prediction cannot 

be satisfied for many engineering applications.  

In mechanics, an ‘impact’ is a high force or shock applied on system, which usually 

has a greater effect than a lower force effect. Furthermore, given the same impact on the 

whole system, all components with different materials, different connection modes or 

different damping ratios can behave in quite different ways. Ductile materials 

like steel tend to be more brittle at high loading rates, and spalling may occur on the 

reverse side to the impact location if penetration does not occur. Considering a multi-

component system as shown in Figure 3.20, the jth shock arrives to the system with shock 

size Zj. Springs or effective springs connect each component within the whole system. 

Given different damping ratio for each connection, transmitted shock size to each 

component Wij (transmitted shock size to ith component by jth shock) can be obtained, and 

accordingly obtain shock damage Yij (i
th component degradation increment caused by jth 

shock). 

http://en.wikipedia.org/wiki/Mechanics
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Shock_(mechanics)
http://en.wikipedia.org/wiki/Ductile
http://en.wikipedia.org/wiki/Steel
http://en.wikipedia.org/wiki/Brittle
http://en.wikipedia.org/wiki/Spalling
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Figure 3.20: Different component effect caused by the same shock arriving to the system 

3.2.1 Dependent W and independent Y: Scenario 1 
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Figure 3.21: Dependent shock damage to hard failure processes in scenario 1 

In this scenario, system reliability is studied considering dependent transmitted 

shock sizes to hard failure processes among all components. Considering a series system 

with n components, Fig. 3.21 shows hard failure process for component 1 and 2 (other n - 

2 components have similar hard failure processes). Given a shock arriving to the system, 

the transmitted shock size to each component according to transmission parameter αi can 

be obtained. Components are exposed to different level effects at the same time t1 when 

the first shock arrives to the system, and W11, W21,…, Wn1 for all n components are 

considered to be dependent due to the shared exposure to the first shock to the whole system. 

It is similar for other shocks, i.e., W1m, W2m,…, Wnm for all n components are dependent 
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due to the shared exposure to the mth shock arriving to system.  

There are different ways to consider the dependent characteristic, like additive 

dependent, proportional correlated and other more complicated models. Here it is 

formulated as: +ij ij i jZW W  , in which Zj is the magnitude of jth shock, and αi is the 

transmission parameter from system shock size to transmitted shock size of component i 

affecting the hard failure process. W̃ij is the shock contribution to ith component hard failure 

process by jth shock not proportional to system shock size (which can be defined to be 0 

for all j if shock transmission is directed proportional). As for shock damages to soft failure 

process caused by shocks, i.e., Y1m, Y2m,…, Ynm, they are assumed to be independent in this 

scenario, and their dependent case is studied in a later scenario. For a series system, 

reliability is the probability that by time t, degradation for each component is less than a 

soft failure threshold and transmitted shock sizes to hard failure process is less than hard 

failure threshold level.  

According to Eq.(8), with 
)
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(58) 

Rearrange the grouping terms from components to shocks, and system reliability 

can be expressed as: 
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The two failure processes are then independent after conditioning of the number of 

shocks 

 1 1 1

0 11 1

( ) ,..+ ., ( ) ( ) )+ (j j nj n j i

m n m

n ij i

m jj i

Z ZR t P W D W D P X t Y H P N t m 


  

 
      

 
    

(60) 

Conditioning on the size of jth shock and integrating over all the zj value and 

assuming shocks following a Poisson process: 
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Since both ijW  and
jZ are iid random variables, Eq. (52) can be simplified as follow:
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Based on a random effect model for degradation, using convolutional integral, Eq. 

(63) can be expressed as: 
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As an example, if it is assumed that Wij, Yij, and βi follow normal distributions, the 

reliability function for the more specific case can be expressed as: 
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(65) 

Considering the gamma process to model degradation, with vi(t)=cit
bi as the 

component gamma process shape parameter or degradation path with bi=0.5 
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(66) 

3.2.1.1 Numerical example 

A three component series system numerical example is used to illustrate the reliability 

models of different dependent shock damage scenarios. The example is a hypothetical 

system for demonstration purposes. Values of parameters are shown in Table 3.5 for the 

random effect model. 
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Table 3.5: Parameter values for multi-component system reliability analysis for four 

different dependent shock damage scenarios 

Parameters component 1 component 2 component 3 

Hl 0.001265 0.00127 0.00126 

Dl 1.5 1.4 1.45 

φl 0 0 0 

βl βl ~N(μβ,σβ
2) 

μβ=8.4886×10-8 

σβ=1.9216×10-8 

βl ~N(μβ,σβ
2) 

μβ=8.4936×10-8 

σβ=1.9011×10-8 

βl ~N(μβ,σβ
2) 

μβ=8.4876×10-8 

σβ=1.9520×10-8 

Yl,j Yl,j ~N(μY,σY
2)  

μY1=0.93×10-4 

σY1 =2.07×10-5 

Yl,j ~N(μY,σY
2)  

μY2 =0.9×10-4 

σY2 =2.1×10-5 

Yl,j ~N(μY,σY
2)  

μY3 =0.95×10-4 

σY3 =2.05×10-5 

Wl,j Wl,j ~N(μW,σW
2) 

μW1=0.9 

σW1 =0.2 

Wl,j ~N(μW,σW
2) 

μW2 =0.92 

σW2 =0.18 

Wl,j ~N(μW,σW
2) 

μW3 =0.91 

σW3 =0.19 

γi 5.1×10-5 5.2×10-5 5.0×10-5 

αi 0.04 0.042 0.041 

λ 3×10-5 

μz 5 

σz 0.5 

Based on Eq. (65) in Section 3.2.1, the reliability function R(t) and the pdf of time-to-

failure fT(t) are plotted in Figures 3.22 and 3.23 for dependent transmitted shock size on 

hard failure process case. System reliability decreases smoothly before t=1×104, and 

changes dramatically between time 1×104 and 1.5×104. 

 

Figure 3.22: System reliability in scenario 1 
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Figure 3.23: Time to failure in scenario 1 

3.2.2 Independent W and dependent Y 

For scenario 2, the system reliability with dependent shock damage to soft failure 

process among components is studied. For a series system with n components, Figure 3.24 

shows that when a specific shock arriving to the system at time t1, damage increments to 

degradation of component 1 and 2 caused by the first shock, Y11 and Y21 are dependent. It 

is also similar for other (n - 2) components in the system, which means the shock damages 

to soft failure process of all components are linear dependent, i.e., Y11, Y21,…, Yn1 for all n 

components by the first shock are linear dependent. Similarly,Y1m, Y2m,…, Ynm for all n 

components by mth shock arriving to system are linear dependent. It is formulated as:

+ij ij i jY Y Z , in which Zj is jth shock size, and γi is the transmission parameter from system 

shock size to component i soft failure damage. Ỹij is the damage to ith component soft failure 

process by jth shock not proportional to shock size. The transmitted shock sizes caused by 
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these shocks, i.e., W1m, W2m,…, Wnm, are assumed to be independent in this case.  
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Figure 3.24: Dependent shock damage to soft failure processes in scenario 2 

For a series system, the initial reliability equation is shown in Eq. (8), with 

+ij ij i jY Y Z  and conditioning on the number of shocks: 
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(67) 

Hard failure processes for all components are independent after conditioning on the 

number of shocks by time t, and soft failure processes are dependent due to the shared item 

Z1, Z2 ,…, ZN(t): 
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 (68) 

Since ijW are i.i.d random variables: 
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(69) 

Conditioning on the sum of shock damage for all shocks arriving to system by time 

t, and integrating over all the value of this sum: 
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Also, conditioning on the damage to ith component soft failure process by all shock 

not depending on shock size,
1

m

ij
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If random effect model is considered for degradation, define G(xi, t) to be the cdf 

of Xi(t) at t: 
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For examples where Wij, Yij, and Zj follow normal distributions, the reliability function 

for the more specific case can be expressed as: 
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Using the gamma process model for the degradation: 
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3.2.2.1 Numerical example 

A three component series system is used to illustrate the reliability models of different 

dependent shock damage scenarios. Values of the parameters are shown in Table 3.5. 

Based on Eq. (76) in Section 3.2.2, the reliability function R(t) and the pdf of time-to-

failure fT(t) are shown in Figure 3.25 and 3.26 for dependent damage on soft failure process 

case. System reliability does not change notably before time 1×104.  

 

Figure 3.25: System reliability in scenario 2 
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Figure 3.26: Time to failure in scenario 2 

3.2.3 Dependent W and dependent Y 

In last two sections, when a specific system shock arrives to the system, all 

components receive shock effects, and the shock effects to one failure process for all 

components are dependent while the effect to the other failure process for all components 

are independent. In this scenario, the shock effects to the two failure process are separately 

dependent. From Figure 3.27, jth shock arriving to the system, it causes damage to all n 

components soft failure processes in the series system Y 1j, Y 2j,…, Y nj and also transmitted 

shock sizes W 1j, W2j,…, Wnj. This study case assumes Y 1j, Y 2j,…, Y nj are dependent, W 1j, 

W2j,…, W nj dependent. However, damages to these two failure processes are mutually 

independent, i.e., Wij and Yij are independent. It also works for other n-2 components in the 

system. It is formulated as Wij = W̃ij+αiZ1j,  Yij = Ỹij+γiZ2j, in which Z1j is jth system shock 

size related to hard failure process and Z2j is an associated  jth shock size related to soft 

failure process, and Z1j and Z2j are independent. αi is the transmission parameter from shock 

size to hard failure process damage of ith component, and γi is the transmission parameter 

from shock size to soft failure process damage to ith component. W̃ij is the damage to ith 
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component hard failure process by jth shock not proportional to shock size, and Ỹij is the 

damage to ith component soft failure process by jth shock not proportional to shock size. 

The shared item Z1j makes Wij dependent, and the shared item of Z2j makes Yij dependent. 

Since Wij and Yij share no common item, damages to these two processes are mutually 

independent.  

For a series system, a general system reliability equation is shown in Eq. (8). With 

Wij = W̃ij + αiZ1j, Yij = Ỹij + γiZ2j and conditioning on the number of shocks, Eq. (78) can be 

obtained. 

     

 

Figure 3.27: Separately dependent shock damage to two failure processes in scenario 3 
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Replace
1 jZ with 1u , and subtract from both sides in the equation, and then 

integrating results in 
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(83) 

With ( )
iW

F w as the cdf of ijW , and conditioning on the specific value 2u for 2

1

m

j

j

Z


 , 

and integrating over all the value of 2u : 
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Replace 2

1

m

j

j

Z


 with 2u , and subtract it from both sides in the equation, and then 

integrating 
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Similarly, conditioning on the specific value y for 
1

m

ij

j

Y


 , and integrating over all 

the value of y: 
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Replace
1

m

ij

j

Y


 with y, and subtract it from both sides in the equation, Eq. (87) can 

be expressed as: 

   



1

2

0
0 1 10 0

1 1 1 2

2 2

( ) ( )

                                                                      

( )

exp( )
( )

(

!
( )

)

ji

i

m
n n

Z iW
m

i i i i

m

i i

m m

ZY

R t F D f d P

f y dy f

u u u

u du

X t H u y

t t

m









  

  

 
     





 
    

        

(88) 

Considering the random effect model for degradation, and define G(xi, t) to be the 

cdf of Xi(t) at t, Eq. (88) can be expressed: 
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(89) 

For example where  Wij, Yij, and Z2j follow normal distribution, the reliability function 

for the more specific case can be expressed as: 
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(90) 

Alternatively, using Gamma process to model degradation:  
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(91) 

3.2.3.1 Numerical example 

A three component series system is again used to illustrate the reliability models of 

different dependent shock damage scenarios. Values of the parameters are shown in Table. 

3.5. 

Based on Eq. (90) in Section 3.2.3, the reliability function R(t) and the pdf of time-to-

failure fT(t) are shown in Figure 3.28 and 3.29 for dependent transmitted shock size and 
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dependent damage on soft failure process case, in which they are separately dependent. 

 

Figure 3.28: System reliability in scenario 3 

 

Figure 3.29: Time to failure in scenario 3 
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3.2.4 System reliability with dependent W, Y 

In this scenario, shock damage to hard failure process among components is 

considered to be dependent, shock damage to soft failure process among components is 

dependent, and shock damage to two failure processes is also mutually dependent, i.e., Wij 

and Yij are dependent. For the jth shock arriving to the system, it causes degradation damage 

increments to all components in the system Y1j, Y2j,…, Ynj and transmitted shock sizes to 

hard failure processes W1j, W2j,…, Wnj. This scenario is formulated as Wij = W̃ij + αiZj, Yij = 

Ỹij + γiZj, in which Zj is jth system shock size, and αi is the transmission parameter from 

system shock size to hard failure process transmitted shock size, and γi is the transmission 

parameter from shock size to soft failure process damage. W̃ij and Ỹij are damage to two 

failure processes not proportional to shock size. The common item Zj makes Yij dependent, 

Wij  dependent and each pair of Wij and Yij  dependent, which means damages of these two 

failure processes are mutually dependent. Figure 3.30 shows the scenario with component 

1 and 2. It also works for other n - 2 components in the system. 
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Figure 3.30: Mutually dependent shock damage to two failure processes in scenario 4 

For a series system, With Wij = W̃ij + αiZj, Yij = Ỹij + γiZj and conditioning on the 

number of shocks 
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(92) 

Recursively conditioning on the specific values zj for sizes of shocks Zj arriving to 

the system, and integrating over all the value of zj: 
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(93) 

 

After conditioning on Zj, two failure processes for all components are independent. 

Eq. (93) can be expressed as:  
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Conditioning on the specific value y for 
1

m

ij

j

Y


 , and integrating over all the value of 

y 
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Replace
1

m

ij

j

Y


 with y, and subtract it from both sides in the equation, Eq. (86) can 

now be expressed as 
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If random effect model is considered for degradation, and defineG(xi, t) to be the 

cdf of Xi(t) at t: 
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For example where Wij, Yij, Zj follow normal distribution, the reliability function for the 

more specific case can be expressed as: 
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(99) 

Eq. (99) involves infinite number of integrals when the number of shocks by time t 

goes to infinity. This problem cannot be solved numerically, but can be solved efficiently 

using simulation.  

Using a gamma process to model degradation: 
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3.2.3.1 Numerical example 

A three component series system is used to illustrate the reliability models of different 

dependent shock damage scenarios. Values of parameters are shown in Table 3.5. For 

mutually dependent scenario, according to Eq. (99) in Section 3.3, infinite integrals are 

involved in system reliability equation. For this case, Monte Carlo simulation is used to 

estimate system reliability. The reliability function R(t) and the pdf of time-to-failure  fT(t) 

are shown in Figures 3.31 and 3.32. 

 

Figure 3.31: System reliability in scenario 4 
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Figure 3.32: Time to failure in scenario 4 

3.3 System reliability with stochastically dependent component 

degradation 

In this section, the system reliability is studied for complex multi-component systems 

with each component subject to multiple failure processes, and component degradation 

paths are stochastically dependent. This is an entirely new formulation that has not been 

considered before. The gamma process is used to model the stochastic process of 

component degradation. In this new model, degradation paths among components are 

considered to be dependent, which is very challenging but also a very practical situation 

that could not be neglected.  

The dependent characteristic of stochastic degradation paths among components is a 

challenging issue because it causes the complexity of system reliability modeling and 

calculation difficulties. However, for some systems, it is practical and realistic concern that 

should not be neglected. The dependent degradation paths characteristics arise due to 

different reasons: (1) Components co-exist in the same shared environment, and the factors, 

such as temperature, humidity and voltage can affect all the component degradation paths 
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at the same time. For example, in an offshore wind farm, many wind turbines experience 

similar wind speed and directions, and potentially tidal wave. These are the main factors 

having effect on wind turbine fatigue and corrosion, which are the main failure mechanisms 

for wind turbine blade, gear box, etc; (2) Degradation status of some components can 

directly influence the degradation of other components, and in return, the degradation of 

other components may also affect the original instigating components or other components, 

which means they are dependent or correlated. For another example, in an electronic 

system, a transformer is an electrical device which transfers energy 

through electromagnetic induction, and its degradation can affect the performance of 

the central processing unit (CPU). Also, the degradation situation of the CPU can influence 

the degradation of transformer in return, or have effect on the degradation level of other 

components, such as a resistance-capacitance filter (RC filter).  

There are different models to model stochastic deterioration. Either the simple failure 

rate function or more complicated stochastic processes such as a random deterioration rate, 

Markov process, Brownian motion with drift (also called the Wiener process), the 

compound Poisson process, and the gamma process can be considered. 

The Brownian motion with drift is a stochastic process with independent, real-valued 

increments and decrements having a normal distribution, and the limitation of this model 

is that it is not  monotonically increasing or decreasing. Thus, it is not appropriate for many 

hardware design applications whose degradation is a monotone function. The compound 

Poisson process is a stochastic process with i.i.d jumps which occur according to a Poisson 

process. It has a finite number of jumps in finite time intervals. Therefore, it is suitable for 

modelling usage such as damage due to sporadic shocks. A gamma process is a stochastic 

http://en.wikipedia.org/wiki/Electromagnetic_induction
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process with independent, non-negative increments having a gamma distribution with an 

identical scale parameter. It has an infinite number of jumps in finite time intervals, and it 

is suitable to model gradual damage monotonically accumulating over time in a sequence 

of tiny increments, such as wear, fatigue, corrosion, crack growth, erosion, consumption, 

etc. An advantage of modeling deterioration processes through gamma processes is that the 

required mathematical calculations are relatively straightforward. In this section, gamma 

process is used to model components degradation path. 

3.3.1 Reliability modeling for series system 

An example system configuration is a series system with n components, in which a 

component fails when either of the two dependent and competing failure modes occurs, 

and all components in the system behave similarly. The reliability of this series system at 

time t is the probability that each component survives each of the N(t) shock loads (Wij< 

Di for j=1, 2, …) and the total degradation of each component is less than the soft failure 

threshold level ( XSi(t)< Hi) . A gamma process is a random process with independent 

gamma distributed increments: Xsi(t2) - Xsi (t1)~Γ(i(t2) -i(t1),θi). The difference between 

the degradation of component at two different times follows a gamma process with shape 

parameter (i(t2) -i(t1) and scale parameter θi.  

Based on Eq. (8), using gamma process to model component degradation path: 
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Using the gamma process to model component degradation path 
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 iv t is a non-decreasing, right-continuous function for t > 0. Separating the hard 

failure process and soft failure process, Eq. (102) can be re-written: 
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Assuming Wij to be i.i.d. random variables: 
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(104) 

We use the gamma process to model component stochastic degradation path. As 

mentioned above, degradation paths among components are dependent. Define θ as random 

variable. By assuming =i i   , the common θ can achieve the dependent characteristic. 

Conditioning on θ and integrating yields 
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Conditioning on the sum of Yij and integrating yield: 
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With the gamma process used for degradation path Xi(t):  
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Where   1, a z

z x

a x z e dz



 



   and   1

0

a z

z

a z e dz



 



   , and  iv t is a non-decreasing, 

right-continuous function for t > 0.Eq. (98) is the general reliability model for system with 

dependent component stochastic degradation processes. Empirical studies show the 

deterioration at time t is often proportional to a power law, which means vi(t)=cit
bi. (1) 

degradation of concrete due to corrosion bi=1, and it is linear; (2) sulphate attack (parabolic 

bi=2); (3) diffusion-controlled ageing (square root, bi=0.5), and other cases. Substitute v(t) 

with cit
bi 
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A special case is when m=0 by time t, which means pure degradation, i.e., no shock 

come to the system. With bi= 0.5: 
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3.3.2 Reliability modeling for parallel system 

The reliability of a parallel system at time t is the probability that at least one 

component of this system survives each of the N(t) shock loads (Wij<Di for j=1, 2, …),and 

the total degradation of that same component is less than the threshold level (XSi(t) < Hi). 

The system fails when all components experience either soft failure or hard failure. System 

reliability for a parallel system with dependent degradation paths is given by the following 

equations. 
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3.3.3 Reliability modeling for series-parallel system 

The reliability of a series-parallel system at time t is the probability that at least one 

component within each subsystem survives each of the N(t) shock loads (Wij < Difor j= 1, 

2, …), and the total degradation is less than the threshold level (XSi(t) < Hi) for that same 

component. The system fails when all components for at least one parallel subsystem 

experience either soft failure or catastrophic failure. 

System reliability for a series-parallel system is given by the following equations for 

the two specific cases previously introduced. 
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3.3.4 Numerical example 

Considering a series system with four components, the parameters for reliability 

analysis are provided in Table 3.6. For this example, Wij and Yij follow normal distributions, 

and ( )iX t  is modeled as a gamma process with ( )iv t and =i i   . Without loss of 

generality, parameters of component 1 and 2 are assumed to be the same, and parameters 

of component 3 and 4 are the assumed to be same. Figure 3.33 illustrates the reliability of 

the system. Figure 3.34 shows time-to-failure pdf. 

Table 3.6. Parameter values for multi-component system reliability analysis 

Parameter component 1 & 2 component 3 & 4 

Hi 0.00125 0.00127 

Di 1.5 1.6 

φi 0 0 

ci 2.5×10-6 2.5×10-6 

λ 2.5×10-5 2.5×10-5 

Yij Yij ~N(μYi,σYi
2)  

μYi =7×10-5, σYi =1.6×10-5 

Yij ~N(μYi,σYi
2)  

μYi =6×10-5, σYi=1.5×10-5 

Wij Wij ~N(μWi,σWi
2) 

μWi =1.2, σWi =0.16 

Wij ~N(μWi,σWi
2) 

μWi =1.22, σWi =0.18 

αi 2 2 

b 2.2 2.2 
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Figure 3.33: Four components series system reliability R(t) 

 

Figure 3.34: Time-to-failure distribution for the system 

Figures 3.33 and 3.34 show that system reliability decreases dramatically before time 

reaches t=200. After that, reliability is below 0.1 and changes slowly. This new model is 

important for system maintenance policy and maintenance frequency decisions. To better 
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understand parameter effect on system reliability, sensitivity analysis is conducted The 

interesting parameters are αi, and two parameters in vi(t): ci and bi.  

The gamma process is chosen to model component stochastic degradation path. 

Degradation paths among components are dependent through assuming parameter: =i i  

, i.e., the common item θ can achieve the dependent characteristic. For Eq. (103), if αi 

increases, the upper bound of the integral for z increases, and the whole value of the 

numerator increase. Hence, system reliability increases. It is reflected in Figure 3.35. 

 

 

Figure 3.35: System reliability sensitivity analysis for parameter αi 
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Figure 3.36: System reliability sensitivity analysis for parameter ci 

Empirical studies show the deterioration at time t is often proportional to a power law, 

which means vi(t)=cit
bi. Given the same bi value, when ci increases, components in the 

system degrade faster. Therefore the system has the higher probability to fail given the 

same time. Figure 3.36 shows when ci value increases, system reliability decreases. 

 

Figure 3.37: System reliability sensitivity analysis for parameter αi 
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The simple stochastic process is defined as a time-dependent function for which the 

average rate of degradation per unit time is a random quantity. For example, Xi(t)=At, where 

the average degradation rate A has a probability distribution. Empirical studies show the 

degradation at time t is often proportional to a power law, which means cit
bi. Different bi 

value can affect reliability. From Figure 3.37, when bi value increases, i.e., degradation 

rate increases, each component in the system degrades faster. Therefore, the system 

reliability value for higher bi is smaller for any specific time t. 

For a parallel system with two components, the parameters for reliability analysis 

are provided in Table 3.6. Figure 3.38 illustrates the reliability of the system. Figure 3.39 

shows the time-to-failure pdf distribution.  

 

Figure 3.38: Two component parallel system reliability R(t) 
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Figure 3.39: Time-to-failure distribution for the parallel system 

We developed a new reliability model for systems with dependent component 

degradation paths, and the gamma process is chosen for the stochastic degradation 

modeling. For systems with components that share the similar environment or degradation 

status of some components that can directly or indirectly affect the degradation of other 

components, it is more practical and realistic to model the reliability in this way, which can 

provide better and accurate estimation. A numerical example of a four component series 

system is illustrated to demonstrate the reliability modeling. Sensitivity analysis is 

conducted for parameter α i in the gamma process, and parameter ci and bi in degradation 

model. Higher αi, and lower ci and bi value increase the system reliability. 
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4.  Maintenance Policies and Optimization 

Systems used in the production of goods and delivery of services constitute the vast 

majority of most industry's capital. These systems are subject to deterioration with usage 

and age. Most of them are maintained or repairable systems. For some systems, such as 

aircraft, submarines, military systems, and nuclear systems, it is important to avoid failure 

during actual operation because it can be dangerous or disastrous. Therefore, both 

corrective and preventive maintenance to these systems is necessary since it can improve 

availability and minimize life cycle costs. The growing importance of maintenance has 

generated an increasing interest in the development and implementation of optimal 

maintenance strategies for improving system performance, preventing the occurrence of 

system failures, and reducing maintenance costs of deteriorating systems. In this section, 

different maintenance policies are considered and the maintenance optimization problems 

are solved based on the new reliability models developed in Section 3.  

New reliability models have been developed for complex system with components 

subject to multiple failure processes. Since they are new reliability models considering 

more complicated dependent scenarios, no maintenance policies have been developed for 

the system under these conditions. In this section, first, the traditional age replacement 

policy and periodic inspection policy are determined for the systems based on the new 

reliability modeling. Furthermore, condition-based maintenance policy combining 

advantages of other maintenance policies is considered for multi-component system based 

on the new reliability modeling, which has not been studied before. All these policies are 

based on the condition that if one component fails, the whole system is replaced. Though 

it is challenging, an individual maintenance policy is more practical, realistic and cost 
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effective for many engineering system applications. In this section, the individual 

component maintenance policy is studied and the inspection interval is optimized based on 

steady state system behavior using two methods, including: (1) uniform distribution 

approximation of initial degradation; and (2) geometric distribution of component survival 

intervals. It is the first time individual component maintenance policy is considered for a 

complex system with components subject to multiple failure processes. 

Specific assumptions used for the maintenance modeling in this section are as follows: 

1. In Section 4.1, models are developed for systems that are assumed to be packaged 

and sealed together, making it impossible or impractical to repair or replace 

individual components within the system, e.g., MEMS, encapsulated printed circuit 

cards. In Section 4.3, the individual component maintenance instead of group 

maintenance is studied, which is more cost effective. 

2. For age replacement maintenance policy, the system is preventively replaced at a 

fixed age. However, if the system fails before the specified age, it is replaced 

correctively immediately. Replacements are assumed to be instantaneous and 

perfect, when it is applicable.  

3. For a periodic inspection maintenance policy, the system is inspected at periodic 

intervals. If the system fails before the specified inspection interval, it is not 

replaced until the next inspection. There is penalty cost associated with failures of 

the system during downtime, e.g., cost associated with loss of production or 

opportunity costs. 

4. A condition-based maintenance policy is studied with the following policy: (1) The 

system is defined to be within a safe region upon an inspection when degradation 
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is below a defined on-condition threshold, and nothing is done; (2) It is working, 

but has a high probability to fail soon when degradation is between the on-condition 

threshold and a failure threshold upon the inspection. In this case, the system is 

replaced preventively; (3) At any time, the system can fail when degradation is 

above the failure threshold. Failure is not detected until the next inspection 

schedule, and the system is correctively replaced with a new one upon the 

inspection. 

5. For a series systems, the system fails when the first component fails. For k-out-of-

n system, the system works satisfactorily when at least k components survive both 

soft failure and hard failure processes. Parallel systems fail when all components 

experience either soft failure or hard failure. The reliability of a series-parallel 

system at time t is the probability that at least one component within each subsystem 

survives both failure processes. 

4.1 Age replacement and periodic inspection maintenance policy 

Maintenance policies are determined for systems to achieve high system 

availability and low cost. The objective function studied in this research is the maintenance 

cost rate, which is the ratio of total maintenance cost and time duration associated with the 

cost. We are interested in the long time maintenance cost rate, but one life cycle can be 

considered as equivalent because successive life cycles behave similarly. Considering 

multi-component systems subject to multiple dependent competing failure processes, there 

can be different applicable maintenance strategies for systems subject to multiple failure 

processes based on the new reliability models. Maintenance policies can be developed for 

any or all of the reliability models developed in Section 3, but only some examples are 
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demonstrated in this section. For series systems, two different maintenance policies are 

considered. First, an age replacement policy with a fixed replacement interval is considered 

for a system with multiple components each exposed to two competing dependent failure 

processes. Then, a periodic inspection maintenance policy is considered for the same 

system.  

4.1.1 Series system 

For the age replacement policy, to evaluate the performance of the maintenance 

policy, an average long-run maintenance cost rate model is used, in which the periodic 

replacement interval V is the decision variable. In the model at time V, the system is 

replaced with a new one, with all new components. However, if the system fails before 

time V, it is replaced immediately. The average long-run total maintenance cost per unit 

time can be evaluated by: 

Expected maintenance cost between two replacements ( )
lim( ( ) / )

Expected time between two replacements ( )t

E TC
C t t

E U
               

(119) 

where TC is the total maintenance cost of a renewal cycle, and U is the length of a cycle 

that takes a value of V or time-to-failure T if T < V [57]. Then the expected total 

maintenance cost is given as 

( ) ( )F T RE TC C F V C                                                      (120) 

where CF is the cost (both direct and indirect) that can be attributed to a unanticipated 

failure, CR is the replacement cost, and V is the time of the periodic replacement. Expected 

time between two replacements or expected cycle length is  

0 0
( ) ( ) ( )d ( )

V V

TE U VR V tf t t R t dt                                       (121) 
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Based on Eqs. (12, 119-121), the average long-run maintenance cost rate as a function 

of V, CR(V ), is given as 
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To obtain an analytical result of the optimal solution, the first derivative of the objective 

function is calculated in Eq. (122), as given below:  

  
0

2

0

( ) ( ) ( ) 1 ( )

( ) 0

( )

V

F T T F T R T

V

C f V V F t dt C F V C F V

CR V

R t dt

    
    

 
  




                             

(123) 

Different optimization techniques that are found in the literature can be broadly 

classified into three categories: calculus-based techniques, enumerative techniques, and 

stochastic search algorithms. Numerical methods, also called calculus-based methods, use 

a set of necessary and sufficient conditions that must be satisfied by the solution of the 

optimization problem. Enumerative techniques involve evaluating each and every point of 

the finite, or discretized infinite, search space in order to arrive at the optimal solution. 

Guided random or stochastic search techniques are based on enumerative methods, but they 

use additional information about the search space to guide the search to potentially more 

promising regions of the search space. For the age replacement policy optimization 

problem, the objective function is cost rate or maintenance cost per unit time, and the only 

decision variable is system replacement interval. In this case, an enumerative technique is 
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used. 

The second model is a maintenance policy with an inspection interval. At intervals of 

time τ, the system is inspected. If the system fails before time τ, it is not replaced until the 

next inspection. If the system is still operating satisfactorily with no failed components, 

nothing is done. For this model, average long-run maintenance cost rate model is also used, 

in which the periodic inspection interval τ is the decision variable: 

Expected maintenance cost between two replacements

Expected time between two replacements

( )
lim( ( ) / )

( )t

E TC
C t t

E K
                   

(124)    

where TC is the total maintenance cost of a renewal cycle, and K is the length of a cycle 

that takes a value of a multiple of τ. Then, the expected total maintenance cost is given as 

( ) ( ) ( )I I RE TC C E N C E C                                            (125)    

The expected value of the number of inspections NI is 

 
1

( ) ( ( ) (( 1) ))I T T

i

E N i F i F i 




                                            (126) 

In which, FT (t) = 1 - R(t), which is the probability of failure. The expected value of 

system downtime or the expected time from a system failure to the next inspection when 

the failure is detected is 
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The expected time between two replacements or expected cycle length is  

  
1 1

( ) [ | ] ( ) ( ( ) (( 1) ))I I T T

i i

E K E K N i P N i i F i F i  
 

 

                              (128) 
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Based on Eq. (125) through (128), the average long-run maintenance cost rate as a 

function of t is given as 

    ( 1)
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(129) 

Here a numerical example is presented to illustrate the maintenance models. A series 

system with four components is a typical example for demonstration purposes. 

Enumerative techniques are used for evaluating each and every point of the finite, or 

discretized infinite, search space in order to arrive at the optimal solution, and this method 

is used to solve maintenance optimization problem.  

The first maintenance policy is the age replacement policy, i.e., replace the system at a 

fixed interval V. Choosing CF=$150and CR=$30, according to Eq. (123), the minimum 

average long-run maintenance cost rate of $1.958×10−3/cycle, which is obtained at 

V*=0.9×105, the optimal replacement interval for dependent component system. Figure 4.1 

illustrates CR(V) as a function of V.  
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Figure 4.1: Cost rate versus replacement interval for dependent component system 

The second maintenance policy is to inspect a system at intervals of τ, and to replace 

the system when it is observed to have failed. Choosing CI=$100, Cρ=$200, and CR=$200, 

according to Eq. (129), the minimum average long-run maintenance cost rate of 

$0.242/cycle, which is obtained at τ*=1.731×103 for the dependent component system, as 

shown in Figure 4.2.  

 

Figure 4.2: Cost rate versus inspection interval for dependent component system 

4.1.2 k-out-of-n System 

The reliability of k-out-of-n systems is studied, and a corresponding reliability model 

is presented in Section 3.1.1.2. An age replacement policy is considered for k-out-of-n 

systems. Choosing CF=$150and CR=$30, the minimum average long-run maintenance cost 

rate is $1.5343×10−3/cycle, which is obtained at V*=1.354×105, the optimal number of 

revolutions for periodic replacement. Figure 4.3 illustrates CR(V) as a function of V.  

A sensitivity analysis was performed to analyze the effects of the model parameters on 

the optimal solutions. The parameters of interest from the model are CR and CF. The results 

are shown in Figures 4.4 and 4.5, respectively. 
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Figure 4.3: Average long-run maintenance cost rate versus replacement interval 

When CF increases from $120 to $720 as shown in Figure 4.4, the minimum average 

long-run maintenance cost rate, CR(V*), increases from $0.00128 to $0.00636, and the 

optimal replacement interval does not change significantly. This implies that a higher 

failure cost leads to a higher potential of cost, and this range of failure costs does not have 

a great effect on the replacement interval.  

As shown in Figure 4.5, when CR increases from $30 to $930, the minimum average 

long-run maintenance cost rate increases from $0.00153 to $0.00939, and the optimal 

replacement interval increases from 1.400×105 to 1.475×105 revolutions. This indicates 

that a larger replacement cost results in a longer replacement interval and higher cost rate. 

As a result, the system should be replaced less frequently when the cost of replacement is 

higher. 
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Figure 4.4: Sensitivity analysis of CR(V*) and V* on CF 

 

Figure 4.5: Sensitivity analysis of CR(V*) and V* on CR 

4.1.3 Shock sets 

For a multi-component system with each component has its own shock set, i.e., a shock 

can affect one or more components but not necessarily all components in the system, 

preventive maintenance optimization models are developed for the system. Decision 

variables for two different maintenance scheduling problems, the preventive maintenance 

replacement time interval, and the preventive maintenance inspection time interval, are 

determined by minimizing a defined system cost rate. Sensitivity analysis is performed to 
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provide insight into the behavior of the maintenance policies. The MEMS (Micro-

electromechanical systems) oscillator example studied in Section 3.1.2 is used again to 

illustrate maintenance policies. 

Two different preventive maintenance policies are considered for the system. The first 

maintenance policy is to replace the system at a fixed interval V. Choosing CF=$150and 

CR=$30, the minimum average long-run maintenance cost rate is $0.1518/cycle, which is 

obtained at V*=91 months, the optimal periodic replacement interval. Figure 4.6 illustrates 

CR(V) as a function of V.  

 

Figure 4.6: Average long-run maintenance cost rate versus replacement interval 

A sensitivity analysis was performed to analyze the effects of the model parameters on 

the optimal solutions. The model parameters of interest are CR and CF. The results are 

shown in Figures 4.7 and 4.8, respectively. There are results for five different points, and 

then straight lines connect those points on the graph. This is to provide a better indication 

of the trend, and it is not intended to precisely indicate the function between the five points. 

When CF increases from $50 to $150 as shown in Figure 4.7, the minimum average 
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long-run maintenance cost rate, CR(V*), increases from $0.1506 to $0.1518, and the 

optimal replacement interval decreases from 100 to 92 months. This implies that a higher 

failure cost leads to a higher potential cost rate and lower replacement interval. As a result, 

the system should be replaced more frequently when the cost of failure is higher. 

As shown in Figure 4.8, when CR increases from $10 to $90, the minimum average 

long-run maintenance cost rate increases from $0.07 to $0.43, and the optimal replacement 

interval increases from 92 to 104 months. This indicates that a larger replacement cost 

results in a longer replacement interval and higher cost rate. As a result, the system should 

be replaced less frequently when the cost of replacement is higher. 

 

Figure 4.7: Sensitivity analysis of CR(V*) and V* on CF 
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Figure 4.8: Sensitivity analysis of CR(V*) and V* on CR 

The second maintenance policy is to inspect the system at intervals of  and to replace 

the system when it is observed to have failed. Choosing CI=$200, Cρ=$4 and CR=$300, the 

minimum average long-run maintenance cost rate is $0.9978/cycle, which is obtained at 

*=94 months, the optimal number of months for periodic replacement. Figure 4.9 

illustrates CR() as a function of .  
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Figure 4.9: Average long-run maintenance cost rate versus replacement interval 

A sensitivity analysis was performed to analyze the effects of the model parameters on 

the optimal solutions. The model parameters of interest include CI, Cρ and CR. The results 

are shown in Figures 4.10 to 4.12. Similar to the discussion about Figures 4.8 and 4.9, there 

are only results for five points, and straight lines are used to connect those points to provide 

an indication of the overall trend.  

When CI increases from $200 to $400 as shown in Figure 4.10, the minimum average 

maintenance cost rate, CR(*), increases from $0.9978 to $3.0542, and the optimal 

inspection interval increases from 94 to 101 months. This implies that a higher inspection 

cost leads to a higher potential cost rate and higher inspection interval. As a result, the 

system should be inspected less frequently when the cost of inspection is high. 

As shown in Figure 4.11, when Cρ increases from $2.5 to $4.0, the minimum average 

long-run maintenance cost rate decreases from $2.4986 to $0.9978, and the optimal 

inspection interval decreases from 120 to 94 months. This indicates that a higher cost of 
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downtime results in a shorter inspection interval, and lower cost rate. As a result, the system 

should be inspected more frequently when the cost of inspection is high. 

When CR increases from $300 to $500 as shown in Figure 4.12, the minimum average 

long-run maintenance cost rate, CR(*), increases from $0.9978 to $3.0318, and the optimal 

inspection interval increases from 94 to 99 month. This implies that a higher replacement 

cost leads to a higher potential of cost rate and higher inspection interval. As a result, the 

system should be inspected less frequently when the cost of replacement is high. 

 

Figure 4.10: Sensitivity analysis of CR(τ*) and τ* on CI 
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Figure 4.11: Sensitivity analysis of CR(τ*) and τ * on Cρ 

 

Figure 4.12: Sensitivity analysis of CR(τ*) and τ * on CR 

4.2 Condition-Based Maintenance 

In this section, a maintenance optimization model is presented to determine on-

condition failure thresholds and inspection intervals for complex multi-component systems 
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with each component experiencing multiple failure processes due to simultaneous exposure 

to degradation and shock loads. On-condition maintenance optimization is considered for 

systems of degrading components, which offers cost benefits over time-based preventive 

maintenance or replace-on-failure policies. For systems of degrading components, this can 

be a particularly difficult problem because of the dependent degradation and dependent 

failure times. 

Traditional system models are based on failure time distribution, and it cannot be used 

to determine on-condition thresholds, however, condition-based maintenance policy can 

be applied to systems based on the degradation modeling. In previous research, preventive 

maintenance and periodic inspection models have been considered, but for systems whose 

costs due to failure are high, it is prudent to avoid the event of failure, i.e., the components 

or system should be repaired or replaced before the failure occurs. The determination of 

optimal on-condition thresholds for all components is effective to avoid the event of failure 

and to minimize cost. Low on-condition thresholds are often inefficient because they waste 

component life, and high on-condition thresholds are risky because the system is prone to 

costly failure. 

For this new model, a new optimization model is formulated and solved to determine 

optimal on-condition thresholds and inspection intervals. Corresponding system models 

with time-to-failure distribution cannot be used to do this. It is important to note that when 

a system is inspected, we are inspecting all components. An inspection interval may be 

optimal for one component, but might not be for another component, so the optimization 

requires a compromise. The on-condition maintenance optimization model is demonstrated 

on a series system example with dependent degrading components because of shared shock 



120 

 

 
  

exposure (independent Wij and Yij). Specific maintenance optimization policies could be 

developed based on any of the reliability models from Section 3, but it is only demonstrated 

on one type of model. The new model offers cost benefits and performance improvement 

over time-based preventive maintenance or replace-on-failure policies. Specific 

assumptions in this section are as follows: 

1. The model is for systems that are sealed or packaged together, making it 

impossible or impractical to repair or replace individual components within the 

system, e.g., MEMS. 

2. An on-condition threshold is defined for the soft failure process as Hi
2, which is 

less than or equal to the failure threshold of Hi
1 (note that 1 and 2 are superscripts 

and not exponents). 

3. For the maintenance, the system is inspected at periodic intervals and no 

continuous monitoring is performed. Replacements are assumed to be 

instantaneous and perfect. 

4. Upon an inspection, if the overall degradation of all n components is lower than 

their individual on-condition threshold Hi
2, then the system is within the high 

safety level area, and nothing is done. 

5. If the degradation of any component is between  Hi
1 and Hi

2, the system does not 

fail, but is prone to high failure risk, then the system is replaced with a new one 

preventively.  

6. If the system fails, that is, the total degradation of any component is higher than 

Hi
1  before the next specified inspection interval, it is not immediately detected 

and not replaced until the next inspection. There is a penalty cost associated with 
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the failure of system during downtime, e.g., cost associated with loss of 

production, opportunity costs, etc. 

For some systems, when the cost/consequence of failure are excessive compared to a 

comparable preventive repair cost, replacement cost or other kinds of cost, it is prudent to 

prevent the failure from happening or replace the equipment at the earliest convenience 

after it has sufficiently aged, rather than allowing the failure to occur and possibly cause 

severe consequences. The concept of condition-monitoring and on-condition thresholds for 

the components is adopted as criteria to evaluate and measure system status, and therefore, 

increase the opportunity to detect the components’ critical and degraded situation and to 

avoid the failure events. 
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Figure 4.13: Two thresholds divide system status into three regions 

In Figure 4.13, 1

iH is the soft failure threshold for component i and 2

iH is the on-
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condition threshold for component i, and 2 1

i iH H  (considering 1

iH  and 2

iH , the 

superscript is not an exponent). At each inspection point, the condition for each component 

is determined and compared to a threshold. The action taken depends on a selection of 

condition-based operational status data and the defined maintenance condition rules. In 

Figure 4.13, given a fixed on-condition threshold 2

iH for component i (lower bar and dash 

line in soft failure process), rulers related to this on-condition degradation threshold are 

adopted to take action based on the component degradation state.  

At each inspection interval, if no hard failure occurs, and at the same time, total 

degradation of the ith component is less than Hi
2, the on-condition threshold for ith 

component, the component is in the safe region. The safe region is defined as the 

combination of soft failure process and hard failure process both below their respective 

thresholds and this status is defined as event A shown in Table 3.3. If no hard failure occurs, 

and total degradation is between Hi
2 and Hi

1 for the ith component, this component still has 

not failed. However, probabilistically it may fail within a short period, and this status can 

be indicated as the combination of soft failure process area between Hi
2 and Hi

1, and hard 

failure process area below the hard failure threshold, which is defined as event B shown in 

Table 4.1. If there has been a hard failure or the total degradation of any component i is 

greater than Hi
1 (higher dash line in soft failure process), this situation is defined as a 

failure. The status can be defined as the union of the soft failure process area above 1

iH , 

and hard failure process area above Di, and this status is defined as event C. 

Define the probability that component total degradation less than x by time t as Ψ(x): 
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Considering the safe region case for example, conditioning on m shocks arriving to 

the system by time t with probability
exp( )( )

!

mt t

m

 
, the probability of no hard failure is 

PLi
m, and the probability that total degradation is less than Hi

2 is

2

2 2

0
( , )( ) ( )

i

i

H
m

i i i YH G H u t f u du    . Combining both the soft failure process and hard 

failure process, the probability for event A, the component is in safe region is

2
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  . 

Similarly, for event B, the component is still working, but it is likely to fail within the 

next inspection interval. The probability of no hard failure is PLi
m, and the probability that 

total degradation is between Hi
1 and Hi

2 is 1 2( ) ( )i iH H  , which can also be expressed 

as:
1 2

1 2

0 0
( , ) ( ) ( , ) ( )

i i

i i

H H
m m

i i Y i i YG H u t f u du G H u t f u du       . Combining both the soft 

failure process and the hard failure process, the probability for event B can be obtained. 

For event C, either soft failure happens or hard failure happens, and the probability equals 

to one minus the probability that neither of these two failure happens. Finally, the 

maintenance policy is summarized in Table 4.1.
 

Table. 4.1 component status defined with two soft failure thresholds and one hard failure 

threshold 

Event Description Probability 

A component is in safe region: 

do nothing 

2
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B component is working, but 

probabilistically fails soon: 

replace preventively 
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C component fails: replace 

correctively 
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To evaluate the performance of the condition-based maintenance policy, the average 

long-run maintenance cost rate model is used, in which the periodic inspection interval 

for the whole system and on-condition thresholds Hi
2 for all components are the decision 

variables. Upon an inspection, the system is changed with a new one when a hard failure 

has occurred or total degradation is greater than the on-condition threshold. The expected 

value of the number of inspections NI, in which H2=(
2 2 2

1 2, ,..., nH H H ) is given by 

2 2

1

( ) ( ( ) (( 1) ))I T T

m

E N m F m F m 




   H H

                                               (131) 

In which
  

2

TF tH

is the cdf for the time when system is replaced for any reason, either 

preventive or corrective maintenance. It can be expressed entirely as a function of H2 (and 

not H1) because any degradation beyond results in a replacement. It is also the probability 

that no hard failure occurs but component degradation above on-condition threshold Hi
2. 

From Figure 4.14, system downtime is the time duration between a failure occurrence 

and the next time an inspection is performed and a failure detected. Conditioning on the 

event that a failure occures at time t between the (m-1)th and mth inspection [(m-1)τ, mτ] 

with probability  
2 2

( ) (( 1) )T TF m F m  H H
, and defining the failure time as 

't , the system 

downtime is mτ -
't . The expected value of system downtime or the expected time from a 
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system failure to the next inspection when the failure is detected, can then be determined 

as 1

( 1)

( ) ( )

m

T

m

m t dF t









H .

 In which, 

1

( )TF tH is the cdf of system failure time without preventive 

replacement, i.e., failure occurs when degradation reaches Hi
1. It is also the probability that 

either there is a hard failure or component degradation is above the soft failure threshold 

Hi
1 for some components.

 

Summing over the probability that failure can occur in any inspection interval, the 

expected system downtime can be obtained as follows: 
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The expected time between two replacements or expected cycle length is  

2 2

1 1

( ) [ | ] ( ) ( ( ) (( 1) ))I I T T

m i

E K E K N m P N m m F m F m  
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Figure 4.14: System downtime under periodic inspection maintenance policy 

Condition-based maintenance offers the promise of enhancing the effectiveness of 

maintenance programs in an effective way. The practical case is considered that when the 

penalty cost due to downtime is relatively higher than the corresponding preventive 

maintenance cost, it is better to replace the whole system before the wear volumes of 

components reach their critical degradation thresholds. For some systems, it is best to just 

let them fail, but those cases are not considered in this paper. 

Optimization of the on-condition degradation threshold can achieve the idea of 
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replacing the system before failure by providing the criteria to detect the degradation of 

component beyond the on-condition threshold. If the on-condition threshold is too low and 

far away from the failure threshold level, then the whole system has to be replaced more 

frequently, and there is extra cost due to the waste of system life. Alternatively, if the 

threshold is too high, then the system may fail before the next inspection leading to 

potentially expensive downtime cost. Therefore, the on-condition degradation thresholds 

for all components and an inspection interval for the whole system are chosen to be 

decision variables in this maintenance optimization problem.  

To evaluate the performance of the condition-based maintenance policy, an average 

long-run maintenance cost rate model is again used, in which the periodic inspection 

interval for the whole system and on-condition thresholds Hi
2 for all components are the 

decision variables. At time , and subsequent inspection intervals of time the entire 

assembled system is inspected. If the system is still operating satisfactorily with no 

component wear volume above the on-condition threshold, nothing is done. If degradation 

thresholds for all components are below the fixed critical degradation thresholds Hi
1 but 

some are above the on-condition threshold Hi
2, the whole system is replaced preventively. 

If hard failure occurs or at least one component’s wear volume is above the critical 

degradation threshold Hi
1prior to inspection, then the system is not replaced with a new 

one correctively until the next inspection. Still, the average long-run maintenance cost per 

unit time is evaluated.  

The defined cost rate is 2( , )CR  H  and it is defined as the ratio of expected total cost 

to the expected cycle duration. 

2( , ) ( ) / [ ]CR E TC E K H                                                                (134) 
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The expected total maintenance cost is then given as:  

( ) ( ) ( )I I RE TC C E N C E C                                                (135) 

where CI is the cost of each inspection. CR is the replacement cost, Cρ is the penalty cost 

incurred during down time, and is the time interval for periodic inspection. Based on Eq. 

(131) to (135), the average long-run maintenance cost rate is given as 
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(136) 

For this maintenance optimization problem, there are n components in the system, and 

(n+1) decision variables; namely n on-condition thresholds for all components and periodic 

inspection interval for the whole system. The objective is to minimize the maintenance cost 

rate, and constraints are that on-condition thresholds for all components should be less than 

or equal to their critical failure thresholds, and inspection interval should be a positive 

value. Therefore, the maintenance optimization problem can be formulated as follows: 

2

2 1

1 1

2 1

2 2

2 1

min             ( , )
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                        ...

                   0 ,
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n n

CR
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                                                     (137) 

It is a difficult non-linear optimization problem with continuous decision variables and 

a convex feasible region. For constrained nonlinear optimization problems, there are many 

available algorithms to obtain optimal solutions.  
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To solve the approximate problem, an interior point method is used (as implemented 

as the fmincon algorithm in the MATLAB optimization toolbox). The method consists of 

a self-concordant barrier function used to encode the convex set. Contrary to the simplex 

method, it reaches an optimal solution by traversing the interior of the feasible region. The 

algorithm uses one of two main types of steps iteration [116]. By default, the algorithm 

first attempts to take a direct step within the feasible region. A direct step attempts to solve 

the Karush Kuhn Tucker (KKT) equations for the approximate problem via a linear 

approximation, which is also called a Newton step. Given the approximate problem, its 

Lagrangian and Hessian matrix can be obtained. By solving the KKT equations, we can 

get the direct step and the solution for the next iteration. If it cannot take a direct step, it 

attempts a conjugate gradient step, and minimizes a quadratic approximation to the 

approximate problem in a trust region, subject to linearized constraints. One case where it 

does not take a direct step is when the approximate problem is not locally convex near the 

current iteration. At each iteration, the algorithm decreases a merit function. A new solution 

point is reached after taking the step and a new iteration is started. By countinuing with 

successive iterations, optimal solution can be obtained when a pre-defined stopping 

criterion is met. 

A series system with four components which has dependent degradation paths due to 

shared shock exposure (independent Wij and Yij) is considered as an example. The 

parameters for reliability analysis are provided in Table 4.2. For this example, Wij and Yij 

follow normal distributions. Without loss of generality, parameters of component 1 and 2 

are assumed to be the same, and parameters of component 3 and 4 are assumed to be the 

same. This is a conceptual example to demonstrate the reliability function and maintenance 

http://en.wikipedia.org/wiki/Self-concordant
http://en.wikipedia.org/wiki/Barrier_function
http://en.wikipedia.org/wiki/Convex_set
http://en.wikipedia.org/wiki/Simplex_algorithm
http://en.wikipedia.org/wiki/Simplex_algorithm
http://en.wikipedia.org/wiki/Feasible_region
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models. Although the example is conceptual, Hi
1, Di and Xi(t)=i+it are estimated based 

on documented degradation trends. In this part, maintenance optimizations are performed 

for both the series system and all the individual components making up the system 

separately, and the results are discussed. 

Table 4.2: Parameter values in condition-based maintenance model 

Parameter component 1 & 2 component 3 & 4 Sources 
1

iH  0.00125 μm3 0.00127 μm3 Tanner and Dugger 

[107] 

Di 1.5 Gpa 1.4 Gpa Tanner and Dugger 

[107] 

φi 0 0 Tanner and Dugger 

[107] 

βi βi ~N(μβi,σβi
2) 

μβi=8.4823×10-9 μm3 

σβi=6.0016×10-10 μm3 

βi ~N(μβi,σβi
2) 

μβi=8.4936×10-9 μm3 

σβi=5.9011×10-10 μm3 

Tanner and Dugger 

[107] 

λ 2.5×10-5 2.5×10-5 Assumption 

Yij Yij ~N(μYi,σYi
2)  

μYi =1×10-4 μm3 

σYi =2×10-5 μm3 

Yij ~N(μYi,σYi
2)  

μYi =0.9×10-4 μm3 

σYi=2.1×10-5 μm3 

Assumption 

Wij Wij ~N(μWi,σWi
2) 

μWi =1.2 GPa, σWi =0.2 GPa 

Wij ~N(μWi,σWi
2) 

μWi =1.22 GPa, σWi =0.18 GPa 

Assumption 

First, the maintenance policy is considered for the series system with four 

components, i.e., the whole system is inspected at one interval of  and the whole system 

is replaced when the wear volume is above
2

iH  for any component. Choosing CI=$58, 

Cρ=$300and CR=$200, after 35 steps of iteration, the minimum average long-run 

maintenance cost rate for system is $0.007481954, which is obtained at periodic inspection 

interval *=1219 hours, and on-condition degradation threshold are 


*=

*=0.0010027, and 
*=

*=0.0009214. Figure 4.15 illustrates the iteration 

process of decision variables, i.e., inspection interval, on-condition degradation threshold 

for component 1 and 2, and on-condition degradation threshold for component 3 and 4. 

Figure 4.16 shows the progress of the optimization iterations for the objective function, 
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i.e., the system maintenance cost rate.  

 

Figure 4.15: Iteration process for five decision variables: inspection interval *, and on-

condition threshold for all components 
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Figure 4.16: Iteration process of maintenance cost rate for system with four components 

To evaluate the results, the maintenance policy for individual and independent 

components is considered. That is, four components are treated as individual systems, and 

the individual four components are inspected at their own inspection intervals and 

components are replaced when failure occurs. Since components 1 and 2 share the same 

parameter, the maintenance optimization for them are the same. Choosing CI=$58, 

Cρ=$300 and CR=$200, with 16 steps of iteration, the minimum average long-run 

maintenance cost rate for component 1 and 2 is $0.005041, which is obtained at periodic 

inspection interval *=1862 hours, and on-condition degradation threshold for 

components 
*=

*=0.000623. Figure 4.17 illustrates the iteration process of two 

decision variables: the inspection interval and the on-condition degradation threshold for 

component 1 and 2. Figure 4.18 shows the iteration for objective functions, i.e., the 

maintenance cost rate.  
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Figure 4.17: Iteration process two decision variables: inspection interval *, and on-

condition threshold for components 1 and 2 
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Figure 4.18: Iteration process of maintenance cost rate for component 1 and 2 

Similarly, individual components 3 and 4 are inspected at their own inspection intervals 

and the components are replaced when failure occurs. Given the same cost CI=$58, 

Cρ=$300 and CR=$200, with 19 steps of iteration, the minimum average long-run 

maintenance cost rate for components 3 and 4 is $0.00599, which is obtained at periodic 

inspection interval *=1536 hours, and on-condition degradation threshold for 

components 
*=

*=0.000757. Figure 4.19 illustrates the iteration process of two 

decision variables: inspection interval and on-condition degradation threshold for 

component 3 and 4. Figure 4.20 shows the iterations for objective function, i.e., the 

maintenance cost rate.  
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Figure 4.19: Iteration process two decision variables: inspection interval *, and on-

condition threshold for components 3 and 4 

 

Figure 4.20: Iteration process of maintenance cost rate for components 3 and 4 

Inspection intervals for either component 1 and 2 or component 3 and 4 are greater than 

the inspection interval for the series system, which means we have to compromise to 

inspect the system more frequently if there are more components in the system. Since time-

to-failure for all components are different, and the series system reliability is less than 

individual component reliability given any fixed time, the system should be inspected more 

often to increase the probability of avoiding failure and relatively high downtime cost. 

Also, inspection intervals for components 1 and 2 are greater than the interval for 

components 3 and 4. This is mainly because the degradation rate and the shock damage 

effect for components 1 and 2 are lower compared to components 3 and 4, which means 

the reliability for components 1 and 2 is higher than components 3 and 4. Therefore, 

components 3 and 4 need to be inspected more often, and accordingly, the inspection 

interval for components 3 and 4 is smaller. 

Optimal on-condition threshold values for either the component 1 and 2 or component 
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3 and 4 maintenance case is less than their optimal on-condition threshold value for system 

maintenance case. Inspection interval and on-condition threshold are two variables of the 

trade-off. If the component/system is inspected quite often with a high on-condition 

threshold, there may still have a high probability to detect system status and replace it 

preventively. Alternatively, if they are inspected less often, we can compensate by using a 

lower on-condition threshold value to achieve an effective preventive maintenance. It has 

been explained why the inspection interval for an individual component is greater than 

inspection interval for the series system above. According to the trade-off, optimal on-

condition thresholds for individual component are lower than their value in the series 

system. 

From the result, the maintenance cost rate for either component 1 and 2 or component 

3 and 4 is less than the maintenance cost rate for the whole system. This is mainly due to 

the higher replacement cost for series system. Every time replacement is performed for the 

series system, and all the components need to be replaced. However, the summation of cost 

rate for all four individual components is higher than cost rate for the series system with 

the same four components. All four components in the series system are inspected, and this 

cost is the same as the cost we spend inspecting each individual component. Therefore, the 

inspection cost rate for all four individual component maintenance is higher than inspection 

cost rate for the series system with exactly the same four components.  

4.3 Individual Component Maintenance 

The earlier models were applicable for cases when one component fails in the 

system, upon the scheduled inspection or replacement time point, the whole system is 

replaced. For many systems, this is not cost efficient or practical to maintain the system in 
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this way. In this section, when one component fails in the system, individual component 

maintenance is performed rather than group maintenance. Individual component 

maintenance modeling is a challenging problem, since all components do not share the 

same renewal life.  

In this study, the steady state system behavior is studied considering long-run 

working status and successive failures and replacements. Every time interval , the system 

is inspected. If all components are working well, nothing is done. It is assumed that at most 

one component can fail within any inspection interval, which is reasonable for most reliable 

systems. Upon the inspection, if one component has failed, the failed component is 

replaced with new one and a new life starts for this component. The replacement can be 

achieved immediately.  

Individual component maintenance is based on the individual component 

reliability, i.e., component survival probability in any inspection interval based on system 

steady state behavior. Given this maintenance policy, the system survival probability 

during each inspection interval can be obtained under steady state status. For any inspection 

interval during steady state, Ui is defined as the initial component degradation level for 

component i at the beginning of the inspection interval and fUi(u) is defined as the pdf of 

Ui. Individual component maintenance is investigated based on two methods, including: 

(1) component inspection interval survival probability can be obtained based on the 

approximation that the degradation level of component i at the beginning of any inspection 

interval follows uniform distribution, Ui~uniform(0,Hi); (2) Based on a geometric 

distribution of survival inspection intervals, the pdf of initial component degradation level 

at the beginning of inspection interval can be approximated.  
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For a series system, the probability that each component survives all the shocks 

arriving to the system within the inspection interval, and system total degradation is below 

the failure threshold can be determined based on the distribution of the degradation at the 

beginning of the interval. Component total degradation contains three parts: initial 

degradation at the beginning of the inspection interval, pure degradation during the interval 

and the degradation caused by all the shocks arriving to system within the inspection 

interval. The number of shock prior to the inspection interval is unknown but the 

corresponding cumulative shock damages are part of Ui, and it is known that they are less 

than Hi (or the system would have been replaced at a previous inspection). 

P() is defined as the probability that all components survives both failure processes 

during the inspection interval under steady state, given initial degradation amounts Ui. 

Conditioning on the number of shocks arriving to the system during the interval , the 

system survival probability for a single inspection interval  can be determined. The 

survival probability for a series system is the intersection of the events that no component 

fails. 
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Component failure processes are independent after conditioning on the number of 

shocks 
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Shock arrivals occur as a Poisson process, and shock damage to hard failure process 

are i.i.d. 
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Conditioning on the initial status for degradation of each component, the system 

survival probability is: 
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There are two models developed in this section that can provide the pdf of initial 

component degradation ( )
iUf u under system steady state, which can assist in the 

calculation of system survival probability P() and the individual component maintenance 

cost. 

4.3.1 Uniform initial component degradation 
 

To obtain the system survival probability, first, we need to know ( )
iUf u . Consider 

the system is working under steady state. If the system is inspected at any specific time, 

the degradation of any component upon the inspection interval can be any value between 

0 and component soft failure threshold level Hi. Based on this, we consider the 
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approximation that the degradation level of component i at the beginning of the any 

inspection interval follows uniform distribution, Ui~uniform(0,Hi), i.e., 
1

( )
iU

i

f u
H

  for 

0 iiU H  . 
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Further conditioning on the shock damage to soft failure process:  
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A more specific equation can be developed when the normal distribution for Y and 

, is appropriate. 
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The total cost include inspection cost, downtime cost and replacement cost 
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Where 
iRC  is the replacement cost for component i and 

iP  is the probability that 

component i survives inspection interval  during steady state. ( )E  can be determined as  
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In which 
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To minimize the long-run maintenance cost rate: 
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4.3.2 Initial degradation based on geometric distribution of survival 

intervals 

To better understand the initial component degradation at the beginning of an 

inspection interval, it is important to know its life history, i.e., upon the beginning of the 

inspection interval, how long the component has survived. The number of previous survival 

intervals is a non-negative integer, that is random, but can be considered to be distributed 

as geometric distribution with probability mass function p(1-p), with  = number of 

survival intervals. E[Ti] is the expected component failure time, and pi  /E[Ti] is the 

approximate probability that component i survives one randomly selected inspection 

interval under steady state. Therefore, we can obtain ( )
iU if u  as: 

max

0

( ) ( | survival intervals ) (1 )
i i

v

U i U i i if u f u v p p


 

                           (149) 

We can obtain ( | survival intervals )
iU if u v based on the previous developed 

reliability models.  The probability distribution function of the initial degradation upon the 

inspection point can be estimated based on an aggregation of degradation for known 

survival intervals. For a typical example, Figure 4.21 (a) to Figure 4.25 (a) show the 

individual pdf of initial component degradation considering a specific number of 

component survival intervals before the inspection interval we are interested in. For 

example, the blue line shows the pdf of component initial degradation based on the 

condition that this component has already survived one interval before the interval we are 
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interested in, and red lines mean component has survived two inspection intervals, and so 

on. Figure 4.21 (b) to Figure 4.25 (b) show the combined pdf of initial component 

degradation given all cases of survival intervals. The geometric distribution is an 

approximation, but logical given there is no prior knowledge of ui. Comparing all the figure 

in each column, and when pi value becomes small, the combined pdf is more stable, and it 

begins to resemble a uniform distribution. The right figures can be directly used in the 

simulation of ( )
iU if u , which is the sufficient condition for system survival probability 

( )P   and individual component maintenance cost calculation. For the cases that the 

combined pdf cannot be fitted with a function, Monte Carlo simulation can be used to test 

different value for number of survival interval before the inspection and calculate the initial 

degradation. 

   
Figure 4.21: individual (a) and combined (b) pdf of component initial degradation for 

p=0.1 
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Figure 4.22: individual (a) and combined (b) pdf of component initial degradation for 

p=0.05 

 

 
Figure 4.23: individual (a) and combined (b) pdf of component initial degradation for 

p=0.02 
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Figure 4.24: individual (a) and combined (b) pdf of component initial degradation for 

p=0.01 

 

 
 

Figure 4.25: individual (a) and combined (b) pdf of component initial degradation for 

p=0.005 

4.3.3 Numerical examples 
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A numerical example is used to illustrate the individual component maintenance 

model based on both approximation methods for ( )
iU if u the uniform initial degradation 

approximation, use the parameters in Table 3.1, and considering inspection cost CI=3000, 

downtime cost rate C=50, and replacement cost for components are the same Cr=2000; 

Figure 4.26 shows that if the system is inspected every 8500 time units, the minimal 

maintenance cost rate can be obtained. 

  

Figure 4.26: Individual component maintenance cost rate optimization result 

To better understand parameter effects on the individual component maintenance cost 

rate, sensitivity analysis is conducted. The interesting parameters are inspection cost CI, 

downtime cost rate C, and component replacement cost CRi. 

From Figure 4.27, when inspection cost increases, the optimal inspection interval 

shifts to the right, which means when the system is inspected less frequently, and the cost 

savings can be achieved. Also, when inspection costs increase, the objective function, 

i.e., optimal maintenance cost rate, increases.  
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Figure 4.27: System reliability sensitivity analysis for inspection cost 

From Figure 4.28, when downtime cost rate increases, the optimal inspection 

interval shifts to the left, which means when the system is inspected more frequently, and 

cost savings can be achieved. Also, when the downtime cost rate increases, the objective 

function, i.e., optimal maintenance cost rate increases. 

  

Figure 4.28: System reliability sensitivity analysis for downtime cost rate 

From Figure 4.29, when the component replacement cost rate increases, the optimal 

inspection interval does not significantly change. Also, when the component replacement 
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cost increases, the objective function, i.e., optimal maintenance cost rate, increases.  

 

Figure 4.29: System reliability sensitivity analysis for component replacement cost 
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5. Conclusions 

This research develops reliability models for multi-component systems subject to 

multiple dependent competing failure processes and solves the maintenance optimization 

problem for different maintenance policies. Multiple failure processes for each component 

are dependent, and also time-to-failure for all components are also dependent.  

Reliability models are developed for systems with component degradation models 

for different structures/configurations, including series systems, parallel systems, k-out-of-

n systems, and series-parallel systems. Two special cases are considered: (1) When a shock 

arrives to the system, it affects both hard failure process and soft failure process, and the 

effects on the two failure processes are considered to be dependent. (2) Each component 

within the system has its own shock set, i.e., shocks are divided into different sets according 

to different sizes, functions, acting points and other characteristics.  

Next, the developed reliability models were extended to system reliability models 

considering dependent shock damage sizes to the two failure processes. For the system 

reliability model, failure processes can be dependent/correlated due to the shared exposure 

to the same shocks arriving to the system. However, if one shock arriving to the system 

with multiple components, it is probabilistically likely that its damage impact to all 

component hard failure processes by this specific shock are dependent, and it is also 

probabilistically possible that its damage impact to all component soft failure processes by 

this specific shock are dependent. Therefore, a more detailed dependency pattern is 

considered by assuming transmitted shock sizes for some or all components caused by the 

same shock are dependent, and shock damage for some or all components caused by the 
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same shock are dependent. Further, a more detailed reliability model is studied considering 

Wij dependent, Yij dependent, Wij and Yij mutually dependent.  

Component degradation paths are considered to be dependent since components 

share the same working environment and also degradation of one component can have an 

effect on the degradation of other components. Gamma process models have been used to 

model the degradation paths. System reliability models have been developed considering 

stochastically dependent component degradation paths. 

Finally, an age replacement policy and a periodic inspection policy are then chosen 

as prospective maintenance strategies. Maintenance policies and optimization have been 

conducted for series system, k-out-of-n system, and shock set cases. By optimizing the age 

replacement interval and periodic inspection interval, long-run system maintenance cost 

rate is minimized. Furthermore, a condition-based maintenance model is developed by 

defining a relatively lower degradation threshold compared to the critical soft failure 

threshold. It is an effective maintenance policy for systems because the failure cost is much 

higher than other kinds of cost. Then, an individual component maintenance policy rather 

than group maintenance is considered. The system survival probability is modeled under 

the long-run steady state assumption and the system periodic inspection interval is 

optimized.  

Dependent shock effects and dependent component degradation paths have not 

been considered before in reliability modeling for system with components subject to 

multiple failure processes. Also no maintenance policies have been applied to such systems 

before. Especially, in this research, the individual component maintenance policy is 
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considered for such systems, which is more realistic and cost efficient for many 

engineering applications.  

 There can be many extensions and potential future research based on this work, 

including: (1) combined dependent component degradation with concurrent dependent 

shock damage; (2) stochastic degradation modeling, i.e., geometric Brownian motion; (3) 

other individual maintenance policies, such as age replacement policy, condition-based 

maintenance policy and related multi-objective optimization modeling, etc. 
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Appendix A: proof of component dependent failure times 

In Section 3.1.1, previous research is extended by studying a multi-component system 

and failure processes among components that are also dependent. Here, this extension is 

demonstrated by deriving the covariance of the degradation for any two components, and 

proving that it is greater than zero given the presence of shocks. Furthermore, events for 

component survival from hard failure are defined, and it is demonstrated that the 

covariance of these events for any two components is positive. 

For a multi-component system, the number of shocks N(t) has an effect on each 

component. When N(t) is sufficiently large, the sum of the shock damage size contributing 

to soft failure for each component is large, and there are also greater opportunities for hard 

failure; thus, a failure is more likely for all components. Alternatively, when there are 

relatively few shocks, times to failure are relatively longer for all components. Thus, the 

component failure processes are probabilistically dependent. The dependency of soft 

failure processes for all components is proved.  

If the covariance of two events is greater than zero, then the occurrences of these two 

events are correlated. Probabilistically dependent (but not necessarily physically 

dependent). With this idea, soft failure processes for all components are dependent. The 

covariance of total degradation of component i and component j is 
 

( ( ), ( )) ( ) ( ) ( ) ( ) .
i j i j i jS S S S S SCov X t X t E X t X t E X t E X t          

                       (A1)
 

For component i, XSi(t)= Xi(t)+ Si(t), and this equation applies for all components. 
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Because the value of the first three items are zero 
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(A3) 

As an example, consider that Yij are i.i.d random variables that follow a parametric 

distribution, and shocks arrive as a Poisson process:
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                                 (A4) 

Similar covariance derivations were performed for hard failure events. If Hi = event no 

hard failure of component i, and Hi {0,1}, Hj {0,1}, the covariance of events Hi and Hj 

is greater than zero for two components i and j. 

Applying the law of total probability, and define Pr( ),il ia W D    Pr( )jl jb W D   

,and Pr( ( ) ) lN N t l   

      1 , 2 ,

1 0

( ) ( )
l l

i i i i i i i i liN t
l l

P H P W D W D W D P W D P N t l a N
 

 

                (A5)  
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(A6) 
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We want to prove
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It can be proved easily that ( 2) ( 1)t a b t abe e    for 0 <a< 1 and 0 <b < 1, and  

    ( )i j i jP H H P H P H  .                                                      (A10) 

Cov(Hi, Hj) can similarly be demonstrated to be positive, considering that E[Hj]=P(Hi), 

E[Hj]=P(Hj), and E[Hi  Hj]=P(Hi  Hj). 

Because both the soft failure process and hard failure process for all components are 

probabilistically dependent, it can be concluded that component survival events are also 

dependent. 
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