3D SEISMIC EVIDENCE FOR MULTIPLE MOVEMENT DIRECTIONS AND DETACHED EXTENSION DURING MESOZOIC RIFTING IN THE JEANNE D'ARC BASIN, OFFSHORE

NEWFOUNDLAND, CANADA

by

NATALIE ELIZABETH STIER

A thesis submitted to the

Graduate School–New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate program in Geological Sciences

Written under the direction of

Dr. Martha Oliver Withjack

Dr. Roy W. Schlische

And approved by

New Brunswick, New Jersey

January 2016

ABSTRACT OF THE THESIS

3D SEISMIC EVIDENCE FOR MULTIPLE MOVEMENT DIRECTIONS AND DETACHED EXTENSION DURING MESOZOIC RIFTING IN THE JEANNE D'ARC BASIN, OFFSHORE NEWFOUNDLAND, CANADA

By NATALIE ELIZABETH STIER

Thesis Directors:

Dr. Martha O. Withjack and Dr. Roy W. Schlische

The Jeanne d'Arc rift basin formed during the breakup of Pangea from Late Triassic through Early Cretaceous time. My study focuses on the Flying Foam region, which lies east of the NNE-striking, ESE-dipping Mercury fault in the northwestern section of the basin. Multiple phases of deformation, along with the presence of evaporites within the latest Triassic to earliest Jurassic Argo Formation, make it difficult to constrain the timing of tectonic activity and the extension direction in the basin. Using 3D seismic data (donated by WesternGeco). I focused on constraining the slip on faults through time to better understand the evolution of the basin.

Previous 3D seismic studies have identified corrugations subparallel to the slip direction on the surface of a fault. I identified corrugations on the Mercury fault that indicate an ESE-movement direction during the first phase of rifting from the Late Triassic to the earliest Jurassic. During the second phase of rifting (earliest Jurassic – latest Jurassic), a relay ramp formed in the southern part of the study

ii

area, between the basement-involved Mercury and Murre faults, resulting in a northeastward tilt of strata in the hanging wall of the Mercury fault. During the third phase of rifting (latest Jurassic – Early Cretaceous), evaporites within the Argo formation acted as a detachment fault zone. N-directed gravity sliding along the detachment fault zone tilt resulted in NE-oriented extension. Concurrently, the Nstriking, basement-involved Flying Foam fault imparted a component of top-to-the east motion on the detachment fault zone. This resulted in geographic and temporal variation in the movement direction on the detachment fault zone from the latest Jurassic through the Early Cretaceous. As the Flying Foam fault propagated southward, the Flying Foam anticline formed above it. Breakup in the northern part of the Jeanne d'Arc basin occurred in the earliest Aptian. However basementinvolved faulting with a dip-slip normal component continued through the Aptian, and offset of a late Albian unconformity indicates that NNE-directed detached faulting continued into the Albian.

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Martha Withjack and Dr. Roy Schlische for their constant support and assistance during my time at Rutgers and their contribution to this work. Additionally, thank you to my committee member, Dr. Christopher Potter, for his continuous feedback and support throughout this process. I would also like to thank Iain Sinclair from Husky Energy for his input, and Kevin Lyons from Schlumberger for permission to publish seismic and well data. Thank you to WesternGeco, the Canada-Newfoundland Offshore Petroleum Board, and IHS Kingdom for providing the seismic data, well data, and SMT seismic interpretation software, respectively. Thank you to the Department of Earth and Planetary Sciences of Rutgers University and Husky Energy for providing financial support. Finally, thank you to my family, friends, and the faculty from the Earth and Planetary Sciences Department for providing support and encouragement over the past few years.

TABLE	OF	CONTENT	'S
		CONTINUE	0

ABSTRACT OF THE THESIS	ii.
ACKNOWLEDGMENTS	iv.
1. Introduction	1.
2. Background Information	
2.1 The eastern North American rift system	2
2.2 Flying Foam region of the Jeanne d'Arc basin	3
2.3 Strain state in the Jeanne d'Arc basin	4
2.4. Tectonostratigraphic packages defined by Serrano Suarez (2013)	6
3. Data Methodology	7
3.1 3D seismic data	
3.2 Seismic interpretation and methodology	
4. Mercury fault	12
5. Detachment fault zone	13
6. Detached faults	14
7. Discussion	15
7.1 When was the Mercury fault active? What was the movement direction on the	4 5
Mercury fault?	
7.2 When did the Flying Foam fault form?7.3 When was the detachment fault zone active? What was the slip direction on the	18
detachment fault zone	18
7.4 When were the detached faults active?	20
7.5 How are faults in the Flying Foam region of the Jeanne d'Arc basin related to each	
other temporally?	
7.5.1 Late Triassic – earliest Jurassic (phase1)	
7.5.2 Earliest Jurassic – Tithonian (phase 2)	21
<u>7.5.3 Tithonian – Albian (phase 3)</u>	22
7.5.5 Albian - Present (post-rift)	23
8. Conclusions	24
References	26

LIST OF TABLES

LIST OF APPENDICES

Appendix 1. Seismic processing report	78
Appendix 2. Seismic line HBV-195	
Appendix 3. Velocities used to calculate the average velocity	130
Appendix 4. List of formation tops from wells	

LIST OF ILLUSTRATIONS

Figure 1. Tectonic setting of the Jeanne d'Arc basin	33
Figure 2. Map of the Jeanne d'Arc basin	34
Figure 3. Lithostratigraphic chart of the Jeanne d'Arc basin	35
Figure 4 Line locations and interpreted time slice at 3.5 s	36
Figure 5. Line drawing of seismic line B	
Figure 6. Example of an extensional forced fold	40
Figure 7. Examples of corrugations	
Figure 8. Examples of fault linkage	42
Figure 9. Example of fault corrugations from Granger (2006)	43
Figure 10. Example of fault corrugations from Lohr et al. (2008)	44
Figure 11. Seismic line A	45
Figure 12. Seismic line B	47
Figure 13. Seismic line C	49
Figure 14. Seismic line D	51
Figure 15. Seismic line E	53
Figure 16. Seismic line F	
Figure 17. Example of peg-leg multiples	
Figure 18. Seismic line B compared with Serrano Suarez (2013)	
Figure 19. Construction of Mercury fault structure-contour map	59
Figure 20. Mercury fault structure-contour map	
Figure 21. Construction of detachment fault zone structure-contour map	62
Figure 22. Detachment fault zone structure-contour map	63
Figure 23. Shaded version of detachment fault zone structure-contour map	
Figure 24. Package D growth packages	
Figure 25. Enlarged section of seismic line E	
Figure 26. Distribution of package B in a topographic low on the Mercury fault	
Figure 27. Inferred location of a pre-existing Paleozoic thrust fault	
Figure 28. Enlarged section of line F	
Figure 29. Relay ramp between the Mercury and Murre faults	
Figure 30. Line drawing of seismic line B highlighting the Flying Foam anticline	
Figure 31. Schematic evolution of the top of the detachment fault zone	
Figure 32. Timing of activity in the Flying Foam region	
Figure 33. Schematic restoration after phase 1 of rifting	
Figure 34. Schematic restoration after phase 2 of rifting.	
Figure 35. Schematic restoration during phase 3 of rifting	
Figure 36. Schematic restoration during post-rift activity	77

1. Introduction

The petroliferous Jeanne d'Arc rift basin is part of the passive margin of eastern North America (Figs. 1 and 2). The basin has a protracted geologic history, and controversy surrounds the number of rifting phases and their extension directions (*e.g.*, Hubbard *et al.*, 1985; Tankard and Welsink, 1987; Hubbard, 1988; Sinclair, 1988; Grant and McAlpine, 1990; McAlpine, 1990; Sinclair and Riley, 1995; Sinclair *et al.*, 1999; Welsink and Tankard, 2012; Withjack *et al.*, 2012; Serrano Suarez, 2013). Reactivation of preexisting zones of weakness during rifting in the Jeanne d'Arc basin (Enachescu, 1987; Tankard and Welsink, 1989; Withjack and Schlische, 2005) makes determining the slip on faults difficult. During fault reactivation, slip on the preexisting structure depends on the angle between the extension direction and the strike of the preexisting structure (*e.g.*, Ratcliffe and Burton, 1985; Henza *et al.*, 2010). Therefore, the strike of a fault is an unreliable indicator of the slip direction during reactivation. Unfortunately, more reliable slip indicators, such as slickenlines, are below seismic resolution.

The presence of the ductile, latest Triassic – earliest Jurassic Argo Formation (Fig. 3) adds another complication to the Jeanne d'Arc basin (Tankard and Welsink, 1987; Withjack and Callaway, 2000; Withjack and Schlische, 2005; Serrano Suarez, 2013). Ductile units decouple deep deformation from shallow deformation, possibly resulting in contrasting structural styles in overlying and underlying strata (*e.g.*, Withjack *et al.*, 1990; Withjack and Callaway, 2000). Closely examining fault-surface topography, along with interpretation of growth packages and secondary structures, provides a way of determining the slip on faults in the Jeanne d'Arc basin while taking the effects of a ductile unit (*i.e.*, the Argo Formation) into consideration.

2. Background information

2.1 The eastern North American rift system

The eastern North American rift system extends from northern Florida to the Grand Banks of Canada, and formed in the Mesozoic during the break up of Pangea when eastern North America separated from northwestern Africa and Iberia (Fig. 1 inset) (*e.g.*, Louden, 2002; Seton *et al.*, 2012; Withjack *et al.*, 2012a). Rifting was underway along the entire rift system by the Late Triassic. Magnetic anomalies in oceanic crust and the age of preserved syn-rift strata indicate that the rift/drift transition was diachronous, beginning in the latest Triassic in the south and the Early Cretaceous in the north (Withjack *et al.*, 1998; Schlische *et al.*, 2002; Withjack *et al.*, 2012a). Withjack *et al.*, 2002; Withjack *et al.*, 2012a). Withjack *et al.*, 2005) divided the rift system into the southern, central, and northern geographic segments, based on the inferred timing of breakup (Fig. 1).

Previous studies divided rifting in the Jeanne d'Arc basin, part of the northern segment of the eastern North American rift system (Figs. 1 and 2), into multiple tectonic phases:

1) active rifting from the Late Triassic to the earliest Jurassic;

2) tectonic quiescence with thermal subsidence from the earliest Jurassic to the latest Jurassic;

3) active rifting from the latest Jurassic to the Early Cretaceous

(*e.g.*, Hubbard *et al.*, 1985; Tankard and Welsink, 1987; Hubbard, 1988; Sinclair, 1988; Grant and McAlpine, 1990; McAlpine, 1990; Sinclair and Riley, 1995; Sinclair *et al.*, 1999; Welsink and Tankard, 2012; Withjack *et al.*, 2012). However, Serrano Suarez (2013), using 3D seismic data from the Flying Foam region of the Jeanne d'Arc basin, concluded that rifting in the basin was continuous from the Late Triassic through the Early Cretaceous (Fig. 3). She identified growth beds within Upper Triassic through Lower Cretaceous strata indicating syn-rift deposition.

2.2 Flying Foam region of the Jeanne d'Arc Basin

The Flying Foam region is in the northwestern part of the Jeanne d'Arc basin (Fig. 2). Several basement-involved normal faults were active in the Flying Foam region during the breakup of Pangea from Late Triassic through Early Cretaceous time (*e.g.,* Enachescu, 1987; Driscoll *et al*, 1995; Serrano Suarez, 2013). The NNE-striking, ESE-dipping Mercury fault bounds the Flying Foam region in the west (Figs. 2, 4c, and 5). The N-striking, E-dipping Murre fault is only present in the southeastern part of the basin (Figs. 2 and 4c). Several other NNW-striking, ENE-dipping basement-involved faults are present between the Murre and Mercury faults in the southern part of the study area (Fig. 4c). Another NNE-striking, ESE-dipping, basement-involved fault, the Flying Foam fault, underlies the Flying Foam anticline (Fig. 5) (*see section 7.3 for further discussion*). Additionally, a set of approximately E-striking, N-dipping minor detached normal faults is present between the Mercury fault and the Flying Foam anticline (Fig. 4c).

The Flying Foam anticline developed above the sub-salt basement-involved Flying Foam fault (Fig. 5) (*see section 7.2 for further discussion*). It is both an extensional forced fold and an extensional fault-bend fold (Withjack and Callaway, 2000; Serrano Suarez, 2013). After running scaled experimental models with both sand and clay, Withjack and Callaway (2000) concluded that in the presence of a ductile layer, movement on a basement-involved fault will likely fold the cover layer, producing a forced fold (Fig. 6). The ductile unit decouples deep, faulted strata from shallow, folded strata as it does in the southern Rhine graben and the Suez rift (*e.g.*, Laubscher, 1982; Withjack *et al.*, 1990; Maurin, 1995). The fault-bend fold (*e.g.*, Xiao and Suppe, 1992; Schlische, 1995) formed because of movement of the lower Jurassic and younger cover strata above the non-planar detachment fault zone between the Mercury fault and Flying Foam fault concurrent with displacement on the Flying Foam fault. Withjack and Callaway (2000) and Serrano Suarez (2013) describe the development of the Flying Foam anticline in greater detail.

2.3 Strain state in the Jeanne d'Arc basin

Some studies suggest that the extension direction in the Jeanne d'Arc basin changed through time (Sinclair, 1995a,b; Sinclair *et al.*, 1999; Tankard and Welsink, 1987; Withjack and Schlische, 2005); these studies used the strike of basementinvolved faults, the orientation of dykes and secondary faults, and growth patterns within syn-rift strata. However, this conclusion is suspect given the likely presence of preexisting zones of weakness and a ductile layer that likely decoupled the deep and shallow deformation. Identifying the sense and direction of slip on faults would improve our understanding of the strain state, but determining slip on faults is especially difficult when using seismic data because slip indicators, such as slickenlines, are below seismic resolution. Previous studies have documented fault-surface undulations with axial traces parallel or sub-parallel to the slip direction on faults in natural exposures and experimental models (Fig. 7) (Marchal *et al.*, 1998 and 2003; Granger, 2006; Granger *et al.*, 2008; Fossen, 2010; Withjack *et al.*, in prep). In this thesis, I call undulations that parallel the slip direction fault-surface corrugations. Large-scale fault-surface corrugations likely result from linkage of originally isolated fault segments (Marchal *et al.*, 1998, 2003). If two faults with sub-parallel strikes are propagating radially, they can link up and create a larger undulating fault (Fig. 8) (Marchal *et al.*, 1998, 2003).

Granger (2006) conducted scaled experimental clay models with a known extension direction. She observed small faults linking together as the model progressed resulting in a larger, undulating fault surface. These undulations had axial traces sub-parallel to the slip direction, and to the extension direction. Therefore, by definition, these undulations were fault-surface corrugations (Fig 9). Withjack *et al.* (in prep) also observed the formation of fault surface-corrugations in scaled experimental clay models with two phases of non-coaxial extension. Small and large-scale corrugations trending parallel to the slip direction formed during the first phase of extension. During the second phase of extension small-scale corrugations were overprinted, but the large-scale corrugations, which formed during fault-linkage, were mostly preserved (Fig. 8). I am not the first to use large-scale undulations to define slip direction. Lohr *et al.* (2008) inferred slip on a fault in the Northwest German Basin using large-scale undulations on the fault surface. Lohr *et al.* (2008) mapped the fault using 3D seismic data and then created a 3D rendering of the fault surface. They then inferred the slip direction using the principal orientation of the axial traces of the undulations by assuming that the undulations were actually corrugations. Although not every axial trace is continuous along the fault surface, they calculated a slip direction with an overall trend of 089° (Fig. 10).

2.4. Tectonostratigraphic packages defined by Serrano Suarez (2013)

Serrano Suarez (2013) studied the spatial and temporal evolution of the Flying Foam region using 3D seismic and well data. She divided the strata in the study area into tectonostratigraphic packages A-E based on previously defined phases of rifting (*e.g.*, Hubbard *et al.*, 1985; Tankard and Welsink, 1987; Hubbard, 1988; Sinclair, 1988; Grant and McAlpine, 1990; McAlpine, 1990; Sinclair and Riley, 1995; Sinclair *et al.*, 1999; Welsink and Tankard, 2012) (Fig. 3). Serrano Suarez (2013) then studied the characteristics of the reflections within each package and the 3D geometry of the packages. She concluded that rifting in the Jeanne d'Arc basin was not episodic as suggested in many previous studies. Instead, she determined that rifting was continuous from the Late Triassic through the Early Cretaceous, because she observed growth beds within the Upper Triassic through Lower Cretaceous strata. Following are interpretations of each package from Serrano Suarez (2013): *Package A* – pre-rift basement rock

Package B – syn-rift strata deposited during the first phase of rifting from the Late Triassic to the earliest Jurassic

Package C – syn-rift strata deposited during the second phase of rifting from the earliest Jurassic to the latest Jurassic

Package D – syn-rift strata deposited during the third phase of rifting from the latest Jurassic through the Aptian

Package E – post-rift strata deposited from the Albian to the present

Additionally, Serrano Suarez (2013) concluded, because the top of package B behaved ductilely and decoupled the deep deformation from the shallow deformation, that both basement-involved and detached structures formed in the study area. My study uses the same 3D seismic survey studied by Serrano Suarez (2013) in the Flying Foam region of the Jeanne d'Arc basin. After my own detailed analysis of this data set, I concur with Serrano Suarez's major conclusions. However, I made several changes to her interpretations (*see section 3.2*) and divided package E into subpackages E1 and E2 (*see section 7.3*). Table 1 and Figure 3 give the formations included in each package.

3. Data and methodology

3.1 3D seismic data

The 3D seismic data from the Flying Foam region, interpreted in this study, consist of 1532 E-W inlines, 3150 N-S crosslines, and 2250 time slices acquired by WesternGeco in 1995. Table 2 lists the main seismic-acquisition parameters, and Appendix 1 gives the seismic processing report (Schlumberger and Geco-Prakla, 1996). Inlines and crosslines are seismic profiles, or cross sections, from a 3D seismic volume. Inlines are parallel to the movement direction of the ship during data acquisition, and crosslines are perpendicular to the inlines. A time slice is a horizontal slice through the 3D seismic volume at a given two-way travel-time. The inlines and crosslines from the Flying Foam seismic survey are 39 km long with interpretable lengths of approximately 30 km and 36 km, respectively. Therefore, the interpretable area of the 3D survey is approximately 1080 km².

3.2 Seismic interpretation and methodology

The seismic interpretation and methodology included the following:

1) interpreting the surfaces that divide the study area into tectonostratigraphic packages A-E2 modified from Serrano Suarez (2013) (Table 1);

2) mapping the basement-involved faults and detached faults throughout the study area;

3) generating contour maps of two-way travel time to the Mercury fault surface and to the top of the detachment fault zone in in order to analyze the fault surfaces;

4) identifying growth packages to constrain timing of deformation.
Figure 4b gives the locations of the six fully interpreted seismic profiles presented in this study (Figs. 11-16). All seismic profiles are displayed at 1:1 using a velocity of 4.0 km/s. Velocity analyses from line HBV83-195, located near seismic line B, support this average velocity (Serrano Suarez, 2013) (Appendices 2 and 3).

Serrano Suarez (2013) constructed time-depth functions for the West Flying Foam I-13 and Flying Foam L-23 wells (Fig. 4b) to tie the well data to the seismic data in two-way time by using velocity data from line HBV83-195 (Appendices 2 and 3). I used formation tops from these wells to identify and trace the base Paleogene, late Albian, Aptian and Tithonian unconformities throughout the study area (Fig. 12b) (Appendix 4) (McAlpine,,1990; CNLOPB, 2012). No wells in the study area reached the basement or the Argo Formation. A high-amplitude reflection separates package B and package C in the northwestern part of the study area (Figs. 11-16). In other parts of the study area, the position of this horizon was less clear because of problems with data quality and the nature of seismic imaging of ductile units. Tying inlines, crosslines, and time slices and interpreting arbitrary lines (seismic profiles with orientations other than that of the inlines and crosslines) helped define surfaces in areas of uncertainty.

Interpreted faults include the Mercury fault, Murre fault, Flying Foam fault, and detached faults. Some faults produce high-amplitude fault-surface reflections on seismic profiles and time slices; other faults were interpreted based on offset strata. The Mercury fault is well imaged on inlines and time slices (Figs. 4 and 11-14). The Mercury fault has several per-leg multiples; therefore, I interpreted the first high-amplitude reflection encountered as the fault surface (Fig. 17). The Murre fault is well imaged on time slices (Fig. 4). Therefore, I loop tied the fault from time slices to seismic profiles, making sure not to mistake high-amplitude reflections from package B, which overlies the Murre fault, as the fault surface (Figs. 4 and 14). The Flying Foam fault is poorly imaged in the study area. Although the exact location of

the fault is unknown, I interpreted the tip of the fault to lie approximately beneath the bisector of the two limbs of the Flying Foam anticline, and assumed a dip magnitude similar to other basement-involved faults in the study area. My interpretation of the Flying Foam fault is similar to that of Withjack and Callaway (2000), who interpreted the fault location using the results of experimental models involving basement-involved faulting beneath a ductile unit. Detached faults are well imaged in the study area (Figs. 4 and 15). The numerous detached faults made mapping individual faults throughout the study area difficult. I chose two particularly well-imaged detached faults, labeled 1 and 2, and mapped them throughout the study area (Figs. 4c and 15b).

Figure 18 compares the interpretation of line B from Serrano Suarez (2013) to line B from my study, at the same location in both studies. I divided package E into package E1 and E2. In my interpretation, the base-Paleogene is stratigraphically higher based on my interpretation of the base-Paleogene unconformity. Additionally, I interpreted a suprasalt, detached fault offsetting the Flying Foam anticline after observing offset strata in the crest of the anticline. I also placed the Flying Foam fault (called the Murre fault in Serrano Suarez (2013) and Withjack and Callaway (2000)) closer to the Mercury fault. My interpretation is similar to the interpretation of Withjack and Callaway (2000).

After interpreting the faults in the 3D seismic data, I generated structurecontour maps for the Mercury fault and the top of the detachment fault zone (top of package B), which allowed for detailed analysis of the fault surfaces (Figs. 19-22). Construction of these maps involved placing traces from seven time slices, from 2 s to 5 s in 0.5 s intervals of two-way travel time, on the same map. Filling in topographic lows and highs on the fault surfaces with blue and red, respectively, highlighted any undulations or irregularities. To decrease uncertainty in my structure-contour map of the top of the detachment fault zone, I did not include the part of the study area east of the Flying Foam fault, because of poor imaging of the top of the detachment fault zone in that part of the study area. Undulations on uncertain contours on the detachment fault zone (dotted black lines) are not highlighted with red or blue. In this study, I refer to any undulation, or irregularity on a fault surface, with potential kinematic significance as a corrugation.

While corrugations assist in constraining the slip direction on a fault (Marchal *et al.,* 1998 and 2003; Granger, 2006; Granger, 2008; Fossen, 2010), growth beds provide information on the timing of deformation. For example, reflections within hanging-wall strata deposited during faulting diverge toward the fault, whereas fold-related growth beds thin toward the crest of antiforms (*e.g.* Withjack *et al.,* 2002).

4. Mercury fault

All six tectonostratigraphic packages are present on the downthrown side of the Mercury fault, but only packages A and E are present on the footwall (Figs. 11-14). Because normal separation on the Mercury fault juxtaposed packages B through D in the hanging wall against package A (basement) in the footwall, it is a basementinvolved fault. The Mercury fault has an irregular trace (Fig. 4c), but it generally strikes NNE and dips ESE. With the seismic section plotted at 1:1 assuming a velocity of 4 km/s, the Mercury fault dips about 25° at 6 s two-way travel time, and 50-60° at 2 s two-way travel time (Fig. 11-14). Using a higher or lower velocity would increase or decrease the dips, respectively. However, velocity analyses from line HBV83-195 support an average velocity of 4 km/s (Serrano Suarez, 2013) (Appendices 2 and 3). The dip of the deep segments of the Mercury fault are anomalously low for a normal fault (*e.g.*, Anderson, 1951). The Murre fault, present in the southern part of the Flying Foam region (Figs. 4c and 14), also has an anomalously low dip for a normal fault. Previous studies proposed that the Murre fault is a reactivated Paleozoic thrust fault to explain its low dip (Enachescu, 1987; Tankard and Welsink, 1989; Withjack and Schlische, 2005). This reasoning likely also explains the anomalously low dip of the Mercury fault.

The structure-contour map of the surface of the Mercury fault shows undulations on the fault surface (Figs. 19 and 20). The wavelengths of the undulations generally decrease up-dip and to the south. Similar to the fault surface interpreted by Lohr *et al.* (2008) (Fig. 10), not all undulations are continuous along the entire fault surface (Fig. 20b). Overall, continuous ESE-trending axial-traces connect the longer wavelength undulations (Fig. 20b). Although not quite as continuous, axial traces connecting the shorter wavelength undulations still trend ESE (Fig. 20b). With the exception of a topographic low and high on the northeastern part of the fault surface, the undulations are fairly low amplitude (Fig. 20).

5. Detachment fault zone

The evaporites within the Argo Formation, deposited during the first phase of rifting, acted as a detachment fault zone during the third phase of rifting (Serrano Suarez, 2013). The strike of the top of the detachment fault zone parallels the strike of the Mercury fault, NNE, in the northwestern part of the study area. The strike becomes NW to ESE in the south. Finally, it becomes parallel to the strike of the Flying Foam fault, NNE, in the northeastern part of the study area (Fig. 4c). The structure-contour map of the top of the detachment fault zone shows that these changes in strike occur farther north at deeper levels because the surface tilts toward the NE (Figs. 21 and 22). The shaded structure-contour map illustrates the trough-shaped surface of the detachment fault zone resulting from this NE tilt and the changes in strike (Fig. 23). Short-wavelength, low-amplitude undulations are present on the surface of the detachment fault zone (Fig. 22a). In the southern part of the study area, fairly continuous NE-trending axial surfaces connect the undulations (Fig. 22b). Sharp irregularities on the surface of the detachment fault zone in the northeastern part of the study area are associated with detached faults (Fig. 22b).

Stratigraphic patterns within package D, in the hanging wall of the detachment fault zone, vary from north to south (Figs. 11-13 and 24). On line A, the reflections within package D diverge toward the detachment fault zone below the late Albian unconformity and above the Tithonian unconformity and converge toward the crest of the Flying Foam anticline (Figs. 11 and 24). On line B, reflections between the Aptian and late Albian unconformities diverge toward the detachment fault zone and converge toward the Flying Foam anticline (Figs. 12 and 24), whereas reflections below the Aptian unconformity are sub-parallel (Figs. 12 and 24). On line C, reflections within the strata below the Aptian unconformity diverge toward the Flying Foam anticline (Figs 13 and 24). Some shallow reflections toward the top of the strata between the Aptian and late Albian unconformities likely diverge toward the detachment fault zone, but are obscured by peg-leg multiples from the base Paleocene unconformity (Figs. 13 and 24).

On line E, reflections within package D terminate against the top of the detachment fault zone in the southern part of the study area (Fig. 15). Termination of reflections is either due to onlap or faulting. In this case, onlap implies unrealistically deep water (almost 4 km assuming a velocity of 4 km/s) for the deposition of the lithologies that compose package D (Deptuck, *et a.*, 2003; CNLOPB, 2012) (Fig. 1). Therefore, faulting likely resulted in the southward termination of reflections against the top of the detachment fault zone.

6. Detached faults

A set of approximately E-striking, N-dipping normal faults are present in the study area between the Mercury fault and the Flying Foam anticline (Figs. 4c and 15b). They are slightly curved in map view and mostly planar in cross-sectional view (Fig. 4c and 15b). Most detached faults have an apparent dip of approximately 60° in a N-oriented seismic section. However, several faults dip only 30° (Fig. 15b), which is possibly a result of fault rotation. Faults 1 and 2, two representative detached faults, offset the late Albian, Aptian and Tithonian unconformities and the top of package B before detaching within ductile package B (Fig. 15b). Offsets of the top of package B associated with these detached faults are visible on the contour map of the detachment fault zone (Fig. 22b). None of the faults offset the basement (Fig. 15b).

Normal offset on the detached faults is consistent for most affected reflections (Fig. 15b). Thus, the faults formed after deposition of these reflections. Strata in package E1, above the late Albian unconformity, clearly thicken across detached fault 2 on line E (Fig. 25). No obvious growth related to the detached faults is present within the section between the Aptian and late Albian unconformities even though the thickness of this unit varies slightly (Figs. 15b and 25). Because the late Albian unconformity is an angular unconformity, erosion likely explains these thickness changes.

7. Discussion

7.1 When was the Mercury fault active? What was the movement direction on the Mercury fault?

I propose that ESE-trending undulations on the surface of the Mercury fault (Fig. 20b) are corrugations reflecting fault slip during the first phase of rifting for the following reasons:

 The geometry of these undulations resembles corrugations formed during fault linkage in experimental models of normal faulting (Fig. 8);
 The geometry of these undulations resembles those observed on fault surfaces defined by 3D seismic data (Fig. 10); 3) This ESE-movement direction during the first phase of rifting is consistent with previous literature on the Jeanne d'Arc basin (Tankard and Welsink, 1987; Sinclair, 1995a; Sinclair *et al.*, 1999) and the strain state during intrusion of the earliest Jurassic, NE-striking Avalon dyke exposed in Newfoundland (Pe-Piper *et al.*, 1992; Sinclair, 1995a; Pe-Piper and Piper, 1999) (Fig. 1).

Breaching of relay-zones during fault linkage produces an undulating fault surface with topographic lows and highs similar to those present on the Mercury fault (Fig. 8). For example, on the northern part of the fault surface a prominent topographic low lies between two topographic highs (Fig. 20). Three overlapping fault segments with similar strikes possibly existed during initial faulting, but the center fault was slightly farther to the west than the other faults (Fig. 20c). Formation of relay ramps between the fault segments and subsequent breaching of these relay ramps likely resulted in this topographic low (Fig. 20c). Experimental models show that even though many faults link during extension, the linkages perpendicular to the slip direction have the best chance of preservation (Withjack *et al.,* in prep). If these undulations formed during fault linkage, then they are corrugations, and indicate an ESE-movement direction on the Mercury fault when the corrugations formed (Fig. 20b).

Why were the corrugations not overprinted during subsequent extension? Package B is a ductile syn-rift unit (Serrano Suarez, 2013). In addition to decoupling the basement from the cover layer, the evaporites preferentially accumulated or were preserved in the topographic low areas on the Mercury fault (Fig. 26). I hypothesize that the evaporites prevented overprinting of the corrugations during later phases of rifting by not allowing the cover layer to come into direct contact with the basement. Additionally, experimental models show large-scale corrugation formed during fault linkage are not completely overprinted during a second phase of deformation (Fig. 8) (Withjack *et al.,* in prep).

Although the Mercury fault is likely a reactivated Paleozoic structure, these corrugations are probably not preserved Paleozoic features for the following reason. A shallowly-dipping reflection possibly related to an old Paleozoic thrust fault exists beneath the reflection of the Mercury fault (Fig. 27) and appears to merge with the Mercury fault at about 6 s TWT. This is similar to the extensional reactivation of a preexisting thrust, with a new normal fault splaying off the thrust, as described by Morley (2014). The branchpoint for the splay occurs at 6 s TWT, but the structure-contour map (showing the ESE-trending corrugations) only covers the interval between 2s and 5 s TWT (Figs. 19 and 20). Thus, the structure-contour map likely only represents features on the new normal fault, not the reactivated thrust.

Relay ramps, present between adjacent normal faults that overlap in map view, produce inclined zones between overlapping faults (*e.g.*, Peacock and Sanderson, 1991, 1994). The northeastward tilt of strata in the hanging wall of the Mercury fault (Fig. 15), along with northward diverging reflections within package C (Fig. 16 and 28), reflect the formation of a relay ramp between the overlapping Mercury and Murre faults in the southern part of the study area during the second phase of rifting (Fig. 29). Formation of this relay ramp provides evidence for continued movement on the Mercury fault during the second phases of rifting from the earliest Jurassic to the latest Jurassic. However, without slip indicators, determining an exact movement direction on the Mercury fault during the second phase of rifting is not possible.

7.2 When did the Flying Foam fault form?

Lack of a thickness change in package C across the Flying Foam fault (Figs. 11-13 and 24) indicates this fault was not active until deposition of package D during the third phase of rifting. Previous studies refer to this fault as the northern extent of the Murre fault (Withjack and Callaway, 2000; Serrano Suarez, 2013) but, in this study, I refer to it as the Flying Foam fault because it appears it moved independently of the Murre fault. Movement on the detachment fault zone in the northern part of the study area was likely coupled with movement on the Flying Foam fault (*see section 7.3 for further discussion*).

7.3 When was the detachment fault zone active? What was the slip direction on the detachment fault zone?

Formation of the relay ramp between the Mercury and Murre fault tilted strata in the hanging wall of the Mercury fault to the NE during the second phase of rifting (Fig. 29). Tilted strata included the ductile Argo Formation, which acted as the detachment fault zone during the third phase of rifting from the latest Jurassic to the Albian. The northeastward tilt of the detachment fault zone possibly resulted in gravity-driven, NE-directed movement on the detachment fault zone throughout deposition of package D. On line E (Fig. 15), faulting with a normal dip-slip component likely resulted in the southward termination of reflection against the top of the detachment fault zone in the southern part of the study area. Additionally, if the undulations with NE-trending axial traces present on the surface of the detachment fault zone in the southern part of the study area are corrugations, they support NE-directed movement on the detachment fault zone during the third phase of rifting on the southern part of the detachment fault zone (Fig. 22b). As top-to-the northeast movement occurred on the detachment fault zone in the southern part of the study area package D filled the available accommodation space.

Westward diverging growth beds within package D indicate an E-directed component of movement on the detachment fault zone beginning in the northern part of the study area, concurrent with NE-directed movement on the detachment fault zone in the south (Fig. 24). As movement began on the Flying Foam fault in the north, non-planar movement with an E-directed component began on the detachment fault zone. An extensional forced fold, the Flying Foam anticline, developed above the Flying Foam fault as movement on the detachment fault zone and the sub-salt Flying Foam fault progressed (Fig. 30) (Withjack and Callaway, 2000; Serrano Suarez, 2013). As the Flying Foam anticline developed, the flanks of the structure were down-dropped relative to the crest, producing the trough-shaped detachment fault zone (Fig. 31).

Movement with an E-directed component on the detachment fault zone beginning in the north, concurrent with movement on the Flying Foam fault and formation of the Flying Foam anticline, explains why the westward divergence of reflections within package D involves younger parts of the section toward the south (Figs. 24). The E-directed component of movement on the detachment fault zone beginning in the north also explains why strata beneath the Aptian unconformity on line C thicken toward the Flying Foam anticline (Fig. 24), indicating that at the time of their deposition, this area was a low. This means that E-directed movement on the underlying basement-involved fault had not started this far south, and motion on the detachment fault zone only had a NE-directed component.

7.4 When were the detached faults active?

The offset of the late Albian unconformity, along with growth within package E2 (Fig. 25), indicates active faulting occurred during late Albian time, and ended sometime after the deposition of the beds above the unconformity. Additionally, because these detached faults strike approximately E-W (Fig. 8) and are N-dipping (Fig. 4c and 15b), their slip had a northward component. Because the detached, normal faults are not reactivated faults, their strike is likely to be perpendicular to the slip direction (*i.e.*, N-S). Offset from detached faults 1 and 2 are visible on the structure-contour map of the top of the detachment fault zone (Fig. 22b). These offsets are not corrugations, and would give an incorrect movement direction if interpreted as such.

7.5 How are faults in the Flying Foam region of the Jeanne d'Arc basin related to each other temporally?

7.5.1 Late-Triassic – earliest Jurassic (phase 1)

Syn-rift deposition of package B and ESE-oriented corrugations suggest mostly normal slip and ESE extension on the Mercury fault during the first phase of rifting (Figs. 32 and 33). The Flying Foam fault, previously referred to as the northern Murre fault, was likely not active in the study area during the first phase of rifting (Edwards, 1989; Sinclair, 1995a). Additionally, the detachment fault zone was not active during the first phase of rifting.

7.5.2 Earliest Jurassic – Tithonian (phase 2)

Stratigraphic patterns in package C indicate movement on the Mercury fault continued during the second phase of rifting (Figs. 28 and 34a) (Serrano Suarez, 2013). A relay ramp developed between the overlapping parts of the Mercury and Murre faults in the southern part of the study area during the second phase of rifting (Fig. 34b). The development of this relay ramp produced a northward tilt of all the strata in the hanging wall of the Mercury fault, including the Argo Formation that later acted as the detachment fault zone (15 and 34a). Without any slip indicators, the exact movement direction during this phase of rifting is unknown. Most previous literature labels this a period of thermal subsidence without active faulting (Hubbard *et al.*, 1985; Tankard and Welsink, 1987; Hubbard, 1988; Tankard *et al.*, 1989; Grant and McAlpine, 1990; Sinclair, 1995a; Sinclair and Riley, 1995; Sinclair *et al.*, 1999), and therefore, those authors did not specify a movement direction.

<u>7.5.3 Tithonian – Aptian (phase 3)</u>

Movement on the detachment fault zone occurred during phase three of rifting, and the movement direction varied geographically through time (Figs. 15, 22, 24 and 32). Tilting of package B during the second phase of rifting resulted in NE-directed movement on the detachment fault zone during the third phase of rifting, possibly due to gravity sliding (Fig. 15, 32 and 34) (Tankard and Welsink, 1987). NE-trending corrugations on the surface of the detachment fault zone, along with the termination of reflections, likely due to faulting, between the detachment fault zone and the top of package D in the southern part of study area, support this NE-oriented movement of the detachment fault zone in the southern part of the study area (Figs. 15, 24, and 32).

Growth beds in package D indicate movement on the detachment fault zone had an E-directed component in the northern part of the study area, concurrent with the NE-directed movement in the south (Fig. 24 and 32). Once extension with an E-directed component began on the Flying Foam fault, top-to-the east movement began on the non-planar detachment fault zone, and the Flying Foam anticline developed above the Flying Foam fault (Fig. 32 and 35a). Growth beds in package D indicate that this component of E-directed movement on both the Flying Foam fault and the detachment fault zone, along with the development of the Flying Foam anticline, began in the north and propagated southward. This resulted in temporal and spatial variation in the movement direction on the detachment fault zone throughout the third phase of rifting (Fig. 32 and 35b). Magnetic anomalies give the age of the oldest oceanic crust adjacent to the continent-ocean boundary. Magnetic anomaly 0 (M-0), in oceanic crust directly adjacent to the northeastern Grand Banks (Fig. 1), suggests that breakup in this region began in the early Aptian (Fig. 1) (*e.g.*, Driscoll *et al.*, 1995; Srivastava *et al.*, 2000; Shipboard Scientific Party, 2003; Withjack and Schlische, 2005). Usually breakup implies the end of tectonic activity. However, my work shows basement-involved movement on the Flying Foam fault with a dip-slip normal component continued through the Aptian (Fig. 35).

7.5.4 Albian – Present (post-rift)

By late Albian time drifting was underway (*e.g.*, Driscoll *et al.*, 1995; Srivastava *et al.*, 2000; Shipboard Scientific Party, 2003; Withjack and Schlische, 2005) and basement-involved had ceased in the northern part Jeanne d'Arc basin. Therefore, the detached faults indicate that minor faulting in the basin continued after rifting ended. Post-rift strata make up all of package E, but growth beds and offset of the late Albian unconformity indicate deposition of package E1 occurred during small-magnitude, approximately NNE-oriented detached extension (Figs. 25, 32, and 36). In contrast, deposition of package E2 occurred during tectonic quiescence (Serrano Suarez, 2013).

Detached faults are likely related to either post-rift salt movement (Tankard and Welsink, 1987; Withjack and Schlische, 2005) or separation of northern Canada from Greenland (Tankard and Welsink, 1987; Foster and Robinson, 1993; Sinclair, 1995b; Withjack and Schlische, 2005). If the faults reflect deep-seated extension related to separation of northern Canada from Greenland, then a basement-involved normal fault, accommodating a component of N-directed extension, must lie outside of the study area.

8. Conclusions

In an extensional basin with reactivated faults, fault slip need not be perpendicular to the strike of the faults. Additionally, the presence of a ductile unit complicates structural development by decoupling deep structures from shallow structures. Thus, strata above a ductile unit may move and deform independently from strata beneath the ductile unit. Interpretation of fault-surface topography, growth packages, and secondary structures provides a way of constraining slip direction and timing.

ESE-oriented corrugations on the surface of the Mercury fault, most likely formed during linkage of smaller fault segments, indicate ESE-oriented movement during the first phase of rifting in the Jeanne d'Arc basin (Late Triassic – earliest Jurassic). These corrugations provide a slip indicator independent of the strike of the fault. The upper part of package B, deposited during this first phase of rifting, is a highly ductile evaporitic unit and acted to decouple the basement and cover layer, thus preserving the corrugations.

Northward tilting of strata in the hanging wall of the Mercury fault in the southern part of the study area, along with northward diverging reflections in package C, indicates the formation of a relay ramp between the Mercury and Murre faults in the southern part of the study area during the second phase of rifting (earliest Jurassic – latest Jurassic). Formation of this relay ramp indicates movement continued movement on the Mercury fault; it also tilted package B, which later acted as a detachment fault zone.

Detached extension, with a geographically and temporally varied movement direction, occurred on the detachment fault zone during the third phase of rifting. Possible gravity sliding along the NE-dipping detachment fault zone resulted in NEoriented detached extension. Concurrently, as movement with an east-side-down component began on the southward propagating Flying Foam fault, westwarddiverging growth beds within package D indicate the detachment fault zone also gained a component of top-to-the east motion. The southward decrease in age of these westward-diverging growth beds indicate that, as the Flying Foam fault propagated southward, a component of E-oriented movement on the detachment fault zone affected areas farther south. Also, as the Flying Foam fault propagated southward, the Flying Foam anticline, an extensional forced fold and extensional fault-bend fold, formed above it. M-0 indicates breakup in the Jeanne d'Arc basin occurred in the earliest Aptian. However, this study indicates basement-involved faulting continued through the Aptian.

Basement-involved faulting had ended and drifting was underway by the late Albian, but growth above the late Albian unconformity indicates detached faulting continued into the Albian. Detached faulting either relates to post-rift salt movement or separation of Greenland from northern Canada or both.

References

- Anderson, E.M. (1951), The dynamics of faulting and dyke formation with applications to Britain: Oliver and Boyd, Edinburg, 206.
- CNLOPB (2012), www.cnlopb.nl.ca/well_alpha.shtml.
- Deptuck, M. E., MacRae, A., Shimeld, J. W., Williams, G., and Fensome, R. A. (2003), Revised Upper Cretaceous and lower Paleogene lithostratigraphy and depositional history of the Jeanne d'Arc Basin, offshore Newfoundland, Canada, *AAPG Bulletin*, *87*(9), 1459 - 1483.
- Driscoll, N.W., Hogg, J. R., Christie-Blick, N., and Karner, G. D. (1995), Extensional tectonics in the Jeanne d'Arc Basin, offshore Newfoundland: implications for the timing of break-up between Grand Banks and Iberia, *Geological Society, London, Special Publication, 90*(1), 1-28.
- Edwards, A. (1989), Seismic studies of the Jeanne d'Arc Basin. Geological Survey of Canada, Open File, 2098.
- Enachescu, M. E. (Ed.) (1987), *Tectonic and structural framework of the northeast Newfoundland continental margin*, 117-146 pp., Canadian Society of Petroleum Geologist.
- Fossen, H. (2010), Structural Geology. Cambridge New York: Cambridge University Press. Print.
- Foster, D.G., and A.G. Robinson (1993), Geological history of the Flemish Pass basin, offshore Newfoundland: AAPG Bull., v. 77, p. 588-609.
- Granger, A.B. (2006). Influence of basal boundary conditions on normal-fault systems in scaled physical models. Masters thesis, Rutgers University.
- Granger, A.B., Withjack, M.O., Schlische, R.W. (2008), Fault surface corrugations: insights from scaled experimental models of extension. In: "Fault Zones: Structure, Geomechanics, and Fluid Flow" Conference, Abstracts Volume. Geological Society of London, page 38.
- Grant, A. C., and McAlpine, K. D. (1990), The continental margin around Newfoundland, in *Geology of the continental margin of Eastern Canada*, edited by Keen, M. J. and Williams, G. L., pp. 241-292.
- Henza, A. A., Withjack, M. O., and Schlische, R. W. (2010), Normal-fault development during two phases of non-coaxial extension: An experimental study, *Journal of Structural Geology*, *32(11)*, 1656-1667.

- Hubbard, R. J. (1988), Age and Significance of Sequence Boundaries on Jurassic and Early Cretaceous Rifted Continental Margins, *AAPG Bulletin*, *72*(1), 49-72.
- Hubbard, R. J., Pape, J., and Roberts, D. G. (1985), Depositional sequence mapping to illustrate the evolution of a passive continental margin, in *Seismic Stratigraphy II*, edited by Berg, O. R. and Woolverton, D. G., pp. 79-115.
- Lohr, T., Krawczyk, C. M., Oncken, O., David C. Tanner, D.C. (2008), Evolution of a fault surface from 3D attribute analysis and displacement measurements: Journal of Structural Geology, v. 30, p. 690-700
- Louden, K. (2002), Tectonic evolution of the East Coast of Canada, *Canadian Society* of Exploration Geophysicist Recorder, 2, 37-48.
- Laubscher, H. P. (1982), Die Südostecke des Rheingrabens—ein kinematisches und dynamisches Problem: Eclogae Geologicae Helvetiae, v. 75, p. 101–116.
- Magoon, L. B., Hudson, T. L., and Peters, K. E. (2005), Egret-Hibernia(!), a significant petroleum system, northern Grand Banks area, offshore eastern Canada, *AAPG Bulletin*, 89(9), 1203-1237.
- Marchal D., Guiraud, M., Rives, T., and Van den Driessche, J. (1998), Space and time propagation processes of normal faults, in Jones, G., Fisher, Q.J., and Knipe, R.J., eds., Faulting, Fault Sealing, and Fluid Flow in Hydrocarbon Reservoirs: Geological Society, London, Special Publication 147, p. 51-70.
- Marchal, D., Guiraud, M., and Rives, T. (2003), Geometric and morphological evolution of normal fault planes and traces from 2D to 4D data: Journal of Structural Geology, v. 25, p. 135-158.
- Maurin, J.-C. (1995), Drapage et décollement des séries jurassiques sur la faille de détachement majeure du rift rhénan sud: implications sur la géométrie des dépôts syn-rifts oligocenes: Comptes Rendus Académie des Sciences Paris, v. 321, p. 1025–1032.
- McAlpine, K. D. (1990), Mesozoic stratigraphy, sedimentary evolution, and petroleum potential of the Jeanne d'Arc Basin, Grand Banks of Newfoundland, *Geological Survey of Canada, paper 89-17*, 1-50.
- Morley, C.K. (2014). The widespread occurrence of low-angle normal faults in a rift setting: Review of examples from Thailand, and implications for their origin and evolution. Earth-Science Reviews, 133, 18-42.
- Olsen, P.E. (1997), Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift sys- tem: Annual Reviews of Earth and Planetary Science, v. 25, p. 337-401.

- Peacock, D.C.P., and Sanderson, D.J. (1991), Displacements, segment linkage and relay ramps in normal fault zones: Journal of Structural Geology, v. 13, p. 721–733.
- Peacock, D. C. P., and Sanderson, D. J. (1994), Geometry and development of relay ramps in normal fault systems, *AAPG Bulletin*, *78*(2), 147-165.
- Pe-Piper, G., Jansa, L.F., Lambert, R.S.J. (1992), Early Mesozoic magmatism of the Eastern Canadian margin; petrogenetic and tectonic significance, *in* J.H.
 Puffer and P.C. Ragland, eds., Eastern North American Mesozoic Magmatism: Geological Society of America Special Paper 268, p. 13-36.
- Pe-Piper, G., and Piper, D.J.W. (1999), Were Jurassic tholeiitic lavas originally widespread in southeastern Canada?: a test of the broad terrane hypothesis, Canadian Journal of Earth Sciences 36, no. 9 (1999): 1509-1516.
- Ratcliffe, N.M., and Burton, W.C., 1985, Fault reactivation models for the origin of the Newark basin and studies related to U.S. eastern seismicity: U.S. Geological Survey Circular 946, p. 36-45.
- Schlische, R. W. (1995), Geometry and origin of fault-related folds in extensional settings, *AAPG Bulletin*, *79*(11), 1661-1678.
- Schlische, R. W., Withjack, M. O., and Olsen, P. E. (2002), Relative Timing of CAMP, Rifting, Continental Breakup, and Basin Inversion: Tectonic Significance, in *The Central Atlantic Magmatic Province*, edited by Hames, W. E., McHone, G. C., Renne, P. and Ruppel, C., American Geophysical Union Monograph.
- Schlumberger and Geco-Prakla (1996), 1995/6 Marine 3D survey Newfoundland Grand Banks. Final processing report for Exploration Services Geco-Prakla, 51 pp, Houston.
- Serrano Suarez (2013), Evolution of the Jeanne d'Arc basin, offshore Newfoundland, Canada: 3D seismic evidence for >100 million years of rifting, Masters thesis, Rutgers University.
- Seton, M., Muller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., and Chandler, M. (2012), Global continental and ocean basin reconstructions since 200 Ma, *Earth-Science Reviews*, 113, 212-270.
- Shipboard Scientific Party (2003), Leg 210 Preliminary Report. ODP Preliminary Report 110 [Online], http://www-odp.tamu.edu/publications/prelim/ 210_prel/210PREL.PDF.

- Sinclair, I. K. (1988), Evolution of Mesozoic-Cenozoic sedimentary bains in the Grand Banks area of Newfoundland and comparison with Falvey's (1974) rift model, *Bulletin Canadian Petroleum Geology*, *36*(3), 255-273.
- Sinclair, I. K. (1995)a, Transpressional inversion due to episodic rotation of extensional stresses in Jeanne d'Arc Basin, offshore Newfoundland, in *Basin Inversion*, edited by Buchanan, J. G. and Buchanan, P.G., pp. 249-271, Geological Society Special Publication 88.
- Sinclair, I.K., (1995)b, Sequence stratigraphic response to Aptian-Albian rifting in conjugate margin basins: A comparison of the Jeanne d'Arc basin, offshore New- foundland, and the Porcupine basin, offshore Ireland, *in* R.A. Scrutton, M.S. Stoker, G.B. Shimmield, and A.W. Tudhope, eds., The Tectonics, Sedimentation and Paleooceanography of the North Atlantic Region: Geological Society Special Publication no. 90, p. 29-49.
- Sinclair, I. K., and Riley, L. A. (1995), Separation of Late Cimmerian rift and post-rift megasequences: comparison of the Jeanne d'Arc Basin, Grand Banks and the Outer Moray Firth, North Sea, in *Sequence Stratigraphy on the Northwest European Margin*, edited by Steel, R. J. e. a., pp. 347-363, Elsevier, Amsterdam.
- Sinclair, I. K., Evans, J. E., Albrechtsons, E. A., and Sydora, L. J. (1999), The Hibernia Oilfield - effects of episodic tectonics of stuctural character and reservoir compartmentalization, in *Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference*, edited by Fleet, A. J. and Boldy, S. A. R., pp. 517-528.
- Srivastava, S.P., Sibuet, J.C., Cande, S., Roest, W.R., and Reid, I.D. (2000), Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins: Earth and Planetary Science Let- ters, v. 182, p. 61-76.
- Tankard, A. J., and Welsink, H. J. (1987), Extensional tectonics and stratigraphy of Hibernia oil field, Grand Banks, Newfoundland, *AAPG Bulletin*, *71*, 1210-1232.
- Tankard, A. J., and Welsink, H. J. (1989), Mesozoic Extension and Styles of Basin Formation in Atlantic Canada, in *Extensional Tectonics and Stratigraphy of the North Atlantic Margins*, AAPG Memoir, 46, pp. 175-195
- Tankard, A. J., Welsink, H. J., and Jenkins, W. A. M. (1989), Structural styles and Stratigraphy of the Jeanne d'arc basin, Grand Banks of Newfounland, in *Extensional Tectonics and Stratigraphy of the North Atlantic Margins*, AAPG Memoir, 46, pp. 265-282.
- Welsink, H. J., and Tankard, A. J. (2012), Extensional tectonics and stratigraphy of the Mesozoic Jeanne d'Arc basin, Grand Banks of Newfoundland, in *Regional*

geology and tectonics: Phanerozoic passive margins, cratonic basins and global tectonic maps, edited by Roberts, D. G. and Bally, A. W., pp. 337-381, Elsevier, New York.

- Whipp, P.S., Jackson, C.A.L., Schlische, R.W., Withjack, M.O., Gawthorpe, R.L. (2015), Spatial distribution and evolution of fault-segment boundary types in rift systems; observations from experimental clay models: *Geological Society of London Special Publication*, in press.
- Withjack, M. O., Olson, J., and Peterson, E. (1990), Experimental-Models of Extensional Forced Folds, *AAPG Bulletin*, 74(7), 1038-1054.
- Withjack, M. O., Schlische, R.W., and Olsen, P.E. (1998), Diachronous rifting, drifting, and inversion on the passive margin of Central Eastern North America: An analog for other passive margins, *AAPG Bulletin*, *82*(5A), 817-835.
- Withjack, M. O., and Callaway, S. (2000), Active normal faulting beneath a salt layer: An experimental study of deformation patterns in the cover sequence, *AAPG Bulletin*, *84*(5), 627-651.
- Withjack, M. O., Schlische, R. W., and Olsen, P. E. (2002), Rift-basin Structure and its Influence on Sedimentary Systems, in *Sedimentation in Continental Rifts*, edited by Ranaut, R. W. and Ashley, G. M., pp. 57-81. SEPM Special Publication 73.
- Withjack, M. O., and Schlische, R.W. (2005), A review of tectonic events on the passive margin of eastern North America, in *Petroleum Systems of Divergent Continental Margin Basins: 25th Bob S. Perkins Research Conference*, edited by Post, P.J., pp. 203-235, Gulf Coast Section of SEPM.
- Withjack, M. O., and Schlische, R.W. (2006), Geometric and experimental models of extensional fault-bend folds, in *Analogue and Numerical Modelling of Crustal-Scale Processes*, edited by Buiter, S. J. H. and Schreurs, G., Geological Society of London, Special Publication 253.
- Withjack, M. O., Schlische, R.W., and Olsen, P.E. (2012), Development of the passive margin of Eastern North America, in *Phanerozoic Rift Systems and Sedimentary Basins*, edited by Roberts, D. G. and Bally, A. W., pp. 300-335, Elsevier, New York.
- Withjack, M.O., Henza, A.A., and Schlische, R.W. (in prep), 3D fault geometries and interactions during multiphase extension: An experimental modeling study.

Xiao, H., and Suppe, J. (1992), Origin of rollover, AAPG Bulletin, 76(4), 509-529.

Table 1. Summary of the tectonostratigraphic units present in the Flying Foam area,

Jeanne d'Arc basin, offshore eastern Canada. Modified from Serrano Suarez (2013).

Packages and Horizons	Seismic-reflection geometries	Unit, lithology, and age
Package E2 (post-rift)	Continuous, sub-parallel, low- to high-amplitude reflections	Banquereau Fm. (shales); Paleogene - Recent (Paleogene – present) (CNLOPB, 2012; Deptuck, <i>et al.</i> , 2003)
base-Paleogene unconformity	Erosional truncation surface	Early Paleogene
Package E1 (post-rift)	Continuous, mostly sub-parallel, low- amplitude reflections	Dawson Canyon Fm. (shales, limestones), Wyandot Fm. (chalks and marlstones) and Otter Bay Fm. (sandstones) (Late Cretaceous) (CNLOPB, 2012; Deptuck, <i>et al.</i> , 2003)
late Albian unconformity	Inferred unconformity	Late Cretaceous
Package D (syn-rift)	Continuous, low- to high-amplitude reflections; the geometry of the reflections varies from north to south and from west to east.	Ben Nevis Fm. (shales and some sandstones), Nautilus Fm. (calcareous shales). Avalon Fm. (sandstones), Whiterose Fm. (shales and limestones), Catalina Mb. (sandstones), Hibernia Fm. (sandstones), Fortune Bay Fm. (shales) and Jeanne d'Arc Fm. (sandstones); Late Jurassic – Early Cretaceous (CNLOPB, 2012; McAlpine, 1990; Sinclair, 1999)
Tithonian unconformity	Inferred unconformity	Late Jurassic
Package C (syn-rift)	Continuous, mostly sub-parallel, low- to high-amplitude reflections	Rankin Fm. (limestones), Downing Fm. (shales with interbedded limestones) and Iroquois Fm. (dolomites and limestones); Early to Late Jurassic (?) (McAlpine, 1990; Sinclair <i>et al.</i> , 1999)

top of salt	Relatively high-amplitude reflection	earliest Jurassic
Package B (syn-rift)	Chaotic and locally grading to low- to moderate-amplitude parallel reflections	Eurydice Fm. (continental red beds) and Argo Fm. (mainly salt); Late Triassic – Early Jurassic (?) (McAlpine, 1990; Sinclair <i>et al.</i> , 1999)
top of basement	Inferred angular unconformity; poorly imaged	Late Triassic
Package A (pre-rift)	No primary reflections	Pre-Triassic strata and basement (Sinclair <i>et al.</i> , 1999)

Table 2. Main parameters of the 3D seismic data set from the Flying Foam area.

Number of inlines (E-W orientation)	1532
Number of crosslines (N-S orientation)	3150
Inline spacing	25 m
Crossline spacing	12.5 m
Processing record length	9 s
Processing sample interval	4 ms
Nominal fold	32

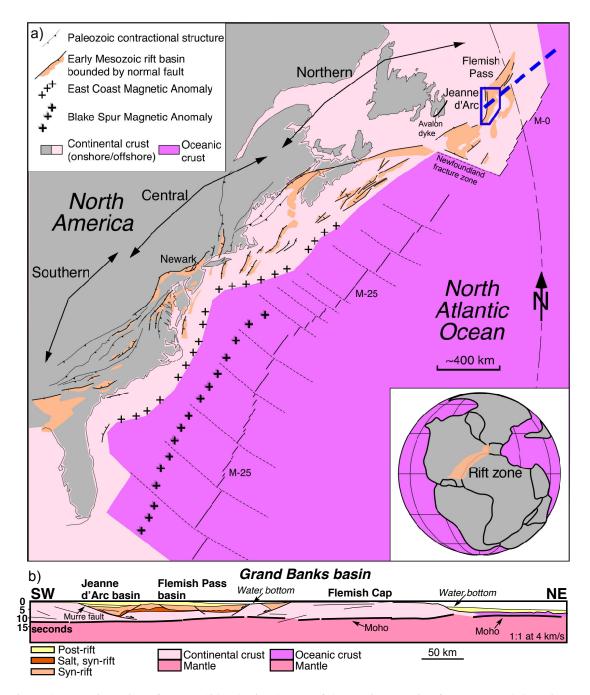


Figure 1. Tectonic setting of Jeanne d'Arc basin. a) Map of the passive margin of eastern North America showing Mesozoic rift basins (modified from Withjack et al., 2012). Locations of M-0 and the Avalon dyke are from Shipboard Science Party (2003) and Pe-Piper and Piper (1999), respectively. The ages of M-0 and M-25 are approximately125 my and 155 my, respectively. See Figure 2 for an enlargement of the area in the blue polygon. Inset shows Pangea during Late Triassic time (Olsen, 1997) and highlights the rift zone between eastern North America and northwest Africa and Iberia. b) Regional transect from offshore Canada (location given by dashed line in part a) showing tectonostratigraphic features of the Grand Banks basin (modified from Withjack et al., 2012).

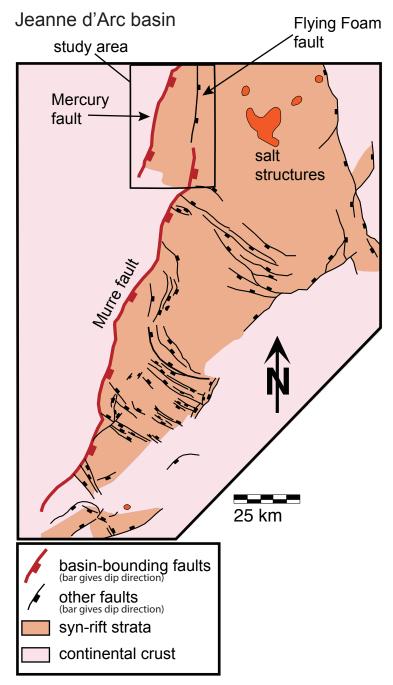


Figure 2. Map of the Jeanne d'Arc basin highlighting the Flying Foam study area. The Flying Foam fault was named in this study. Southern part of map shows faults cutting prominent Middle Jurassic reflection, and northern part shows faults cutting Aptian/Albian sequence (modified from Sinclair, 1995b; Withjack and Schlische, 2005).

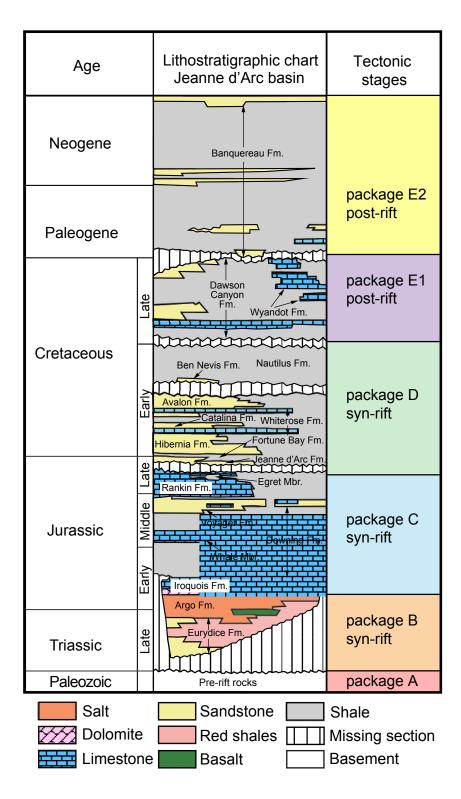
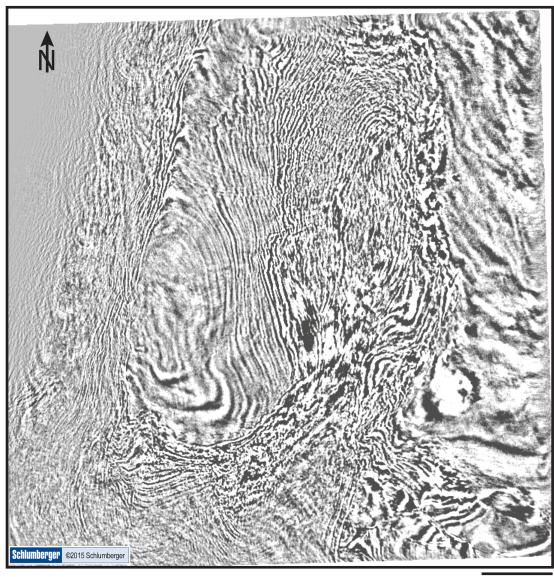
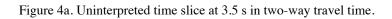




Figure 3. Lithostratigraphic chart of the Jeanne d'Arc basin highlighting tectonostratigraphic packages and tectonic stages defined by Serrano Suarez (2013). This color scheme applies to all subsequent figures. The subdivision of package E into E1 and E2 is new to this study. Modified from Sinclair et al. (1999), Magoon et al. (2005), and Serrano Suarez (2013).

5 km

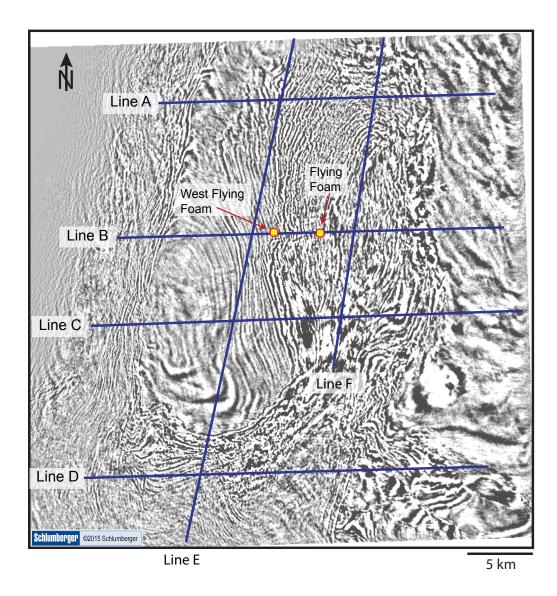


Figure 4b. Time slice at 3.5 s in two-way travel time showing locations of seismic sections presented in this study. Yellow squares are locations of two exploration wells.

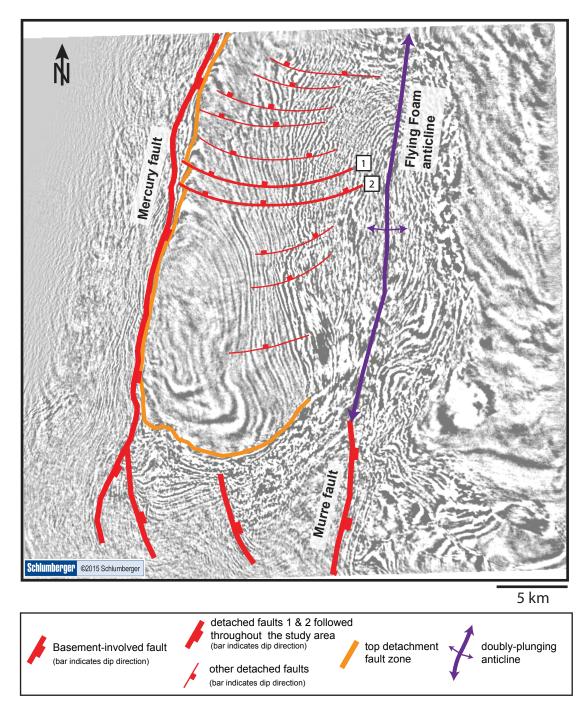


Figure 4c. Interpreted time slice at 3.5 s in two-way travel time showing faults discussed in this study and the Flying Foam anticline.

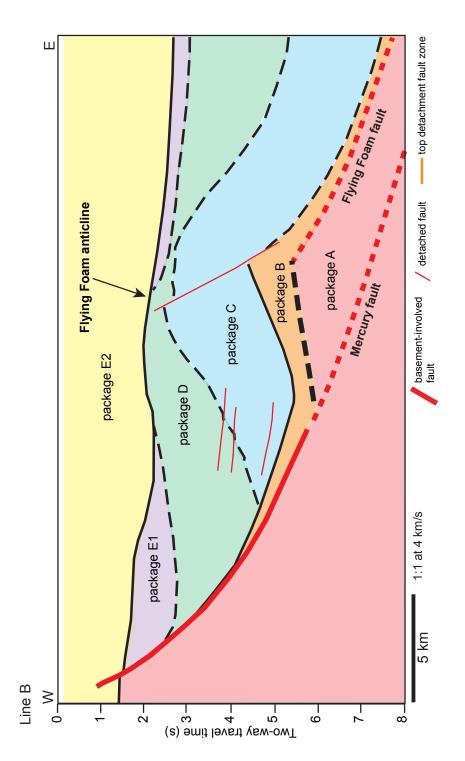


Figure 5. Line drawing of seismic line B showing the six tectonostratigraphic packages, the Mercury fault, the Flying Foam fault, and the Flying Foam anticline. Dashed lines indicate uncertainty. See line location in Figure 4b or uninterpreted line and fully interpreted line in Figure 12.

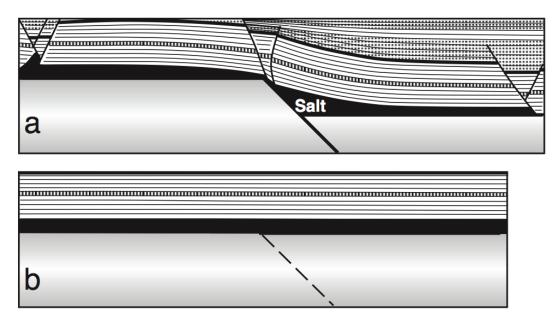
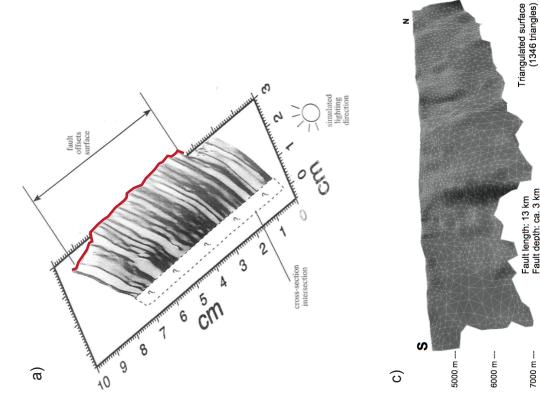



Figure 6. Example of an extensional forced fold based on a scaled experimental model (from Withjack and Callaway, 2000). a) Geometry after movement on subsalt fault. b) Geometry prior to faulting. In the presence of a ductile unit (salt), movement on a fault will fold the cover layer rather than propagating through it, producing an extensional forced fold.

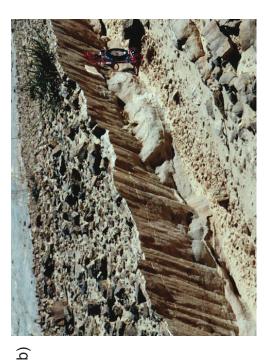
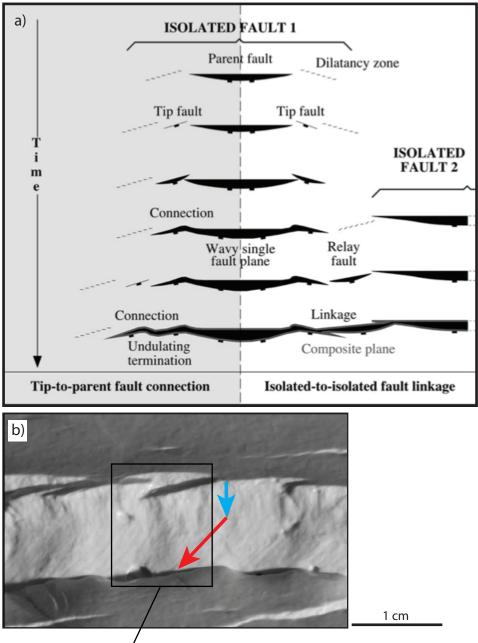
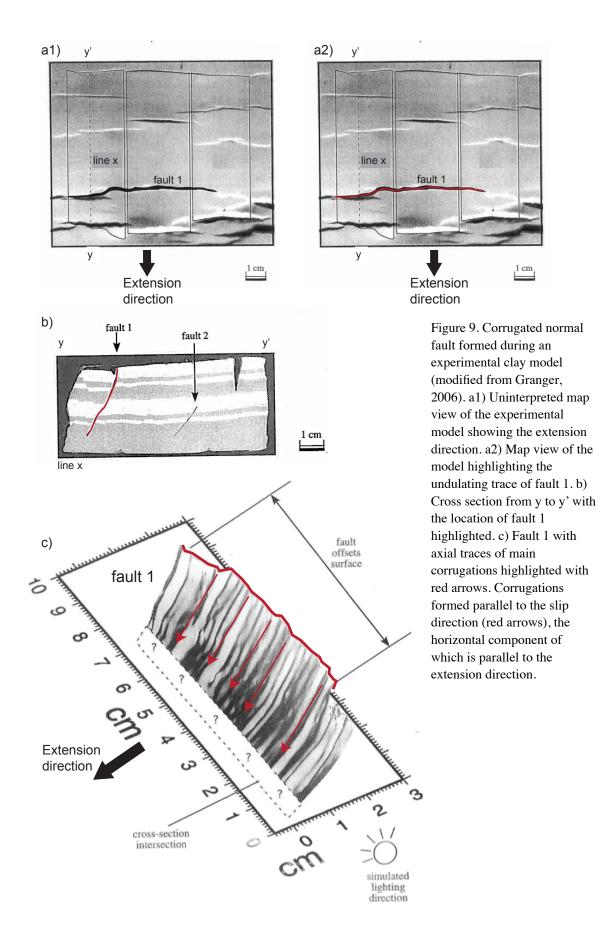



Figure 7. Examples of fault corrugations. a) Corrugations (undulations in Compass shown for scale (Fossen, 2010). c) Corrugation on fault surface interpreted in 3D seismic data. Lohr et al. (2008) used these corrugations linkage during an experimental model (centimeter scale). The axial trace detailed view at this fault (Granger, 2006). b) Corrugations in outcrop in to determine slip on the fault surface (kilometer scale). See Figure 10 for the Entrada Sandstone located in the Rafael Desert, Utah (meter scale). of these corrugations is parallel to the slip direction. See Figure 9 for the footwall cutoff highlighted with red) formed as a result of fault detailed look at this fault.

> --- 5000 m --- 6000 m - 7000 m


> > Fault length: 13 km Fault depth: ca. 3 km

7000 m ---

large-scale undulation associated with fault linkage

Figure 8. Examples of fault linkages resulting in an undulating fault surface. a) General model of normalfault propagation and linkage (Marchal et al., 2003). As two faults propagate radially, they eventually overlap, form a relay fault, and then link. This process of linkage produces large-scale corrugations on the fault surface oriented parallel or sub-parallel to the slip direction. This model is based on experimental sand models. b) Example of an undulating fault surface formed during an experimental clay model with two phases of non-coaxial deformation (from Withjack et al., in prep). Breaching of relay ramps between overlapping fault segments resulted in fault linkage and formation of an undulating fault surface. Largescale corrugations, formed during fault linkage, parallel the slip direction during the first phase of extension (blue arrow). These large-scale corrugations were mostly preserved during the second phase of extension. Small-scale corrugations that formed during the first phase of extension were overprinted during the second phase of extension (red arrow).

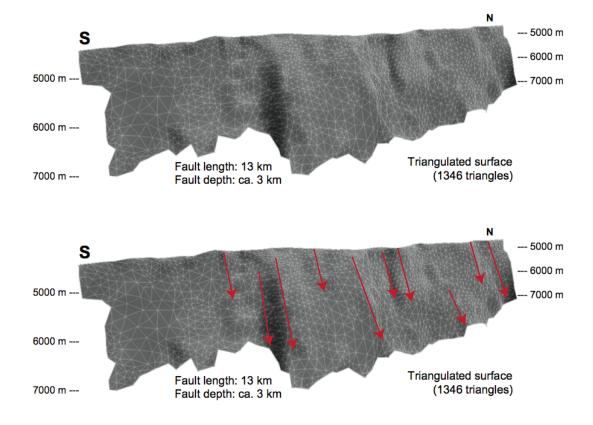


Figure 10. 3D rendering of a normal fault from the Northwest German basin (modified from Lohr et al., 2008). Lohr et al. (2008) determined the slip direction of the fault using the orientation of fault-surface undulations that they assumed to be corrugations (highlighted with red arrows). The axial traces of the corrugations do not necessarily extend the entire way down the fault surface, but overall, their rake is 89°.

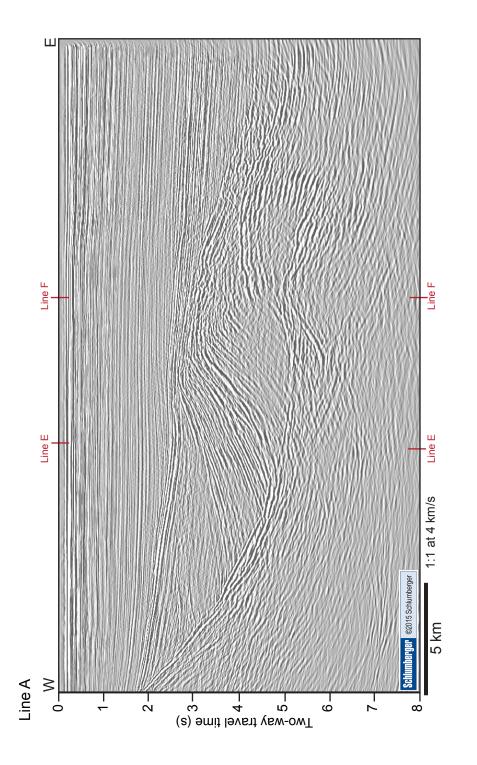
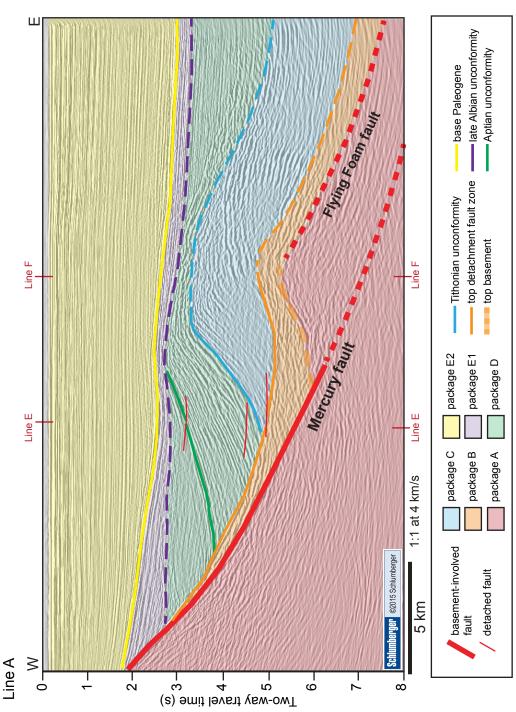



Figure 11a. Uninterpreted seismic line A. See line location in Figure 4b.

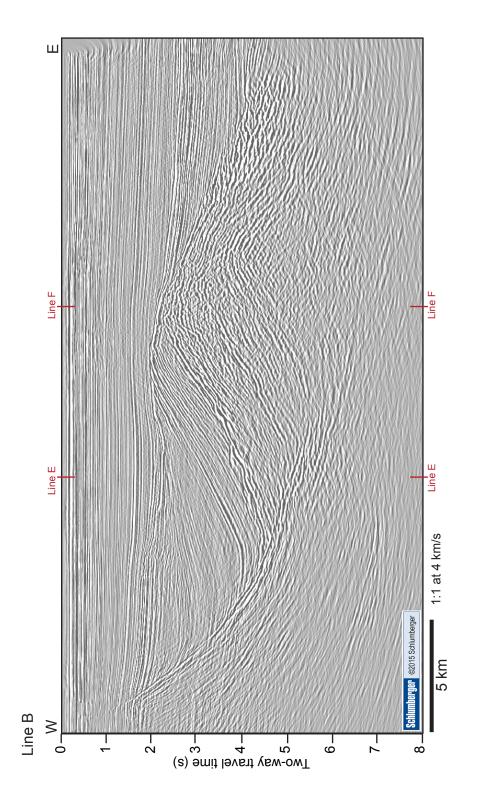
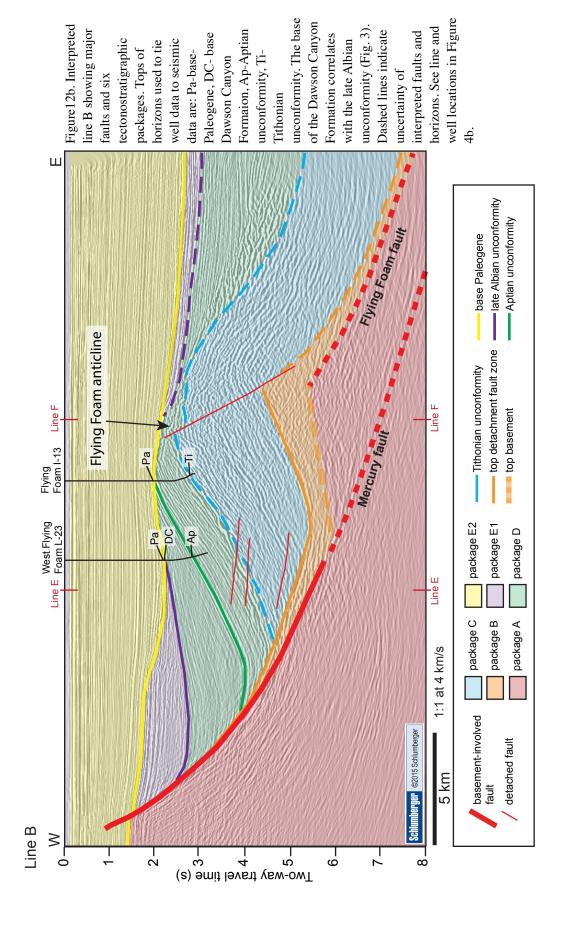
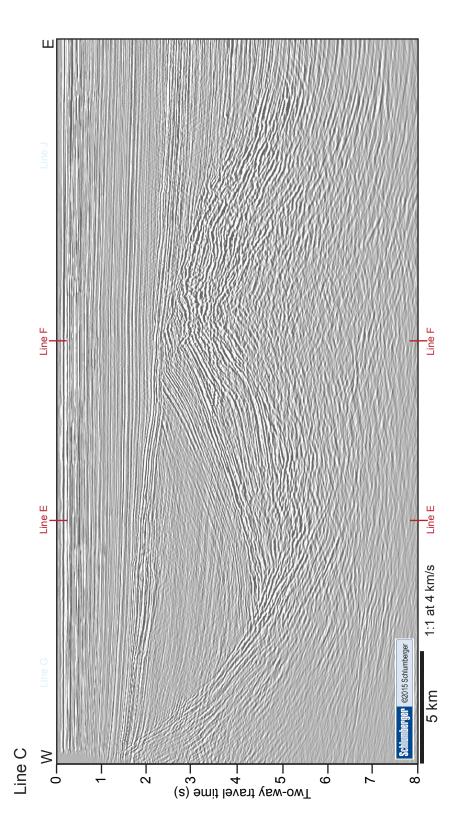
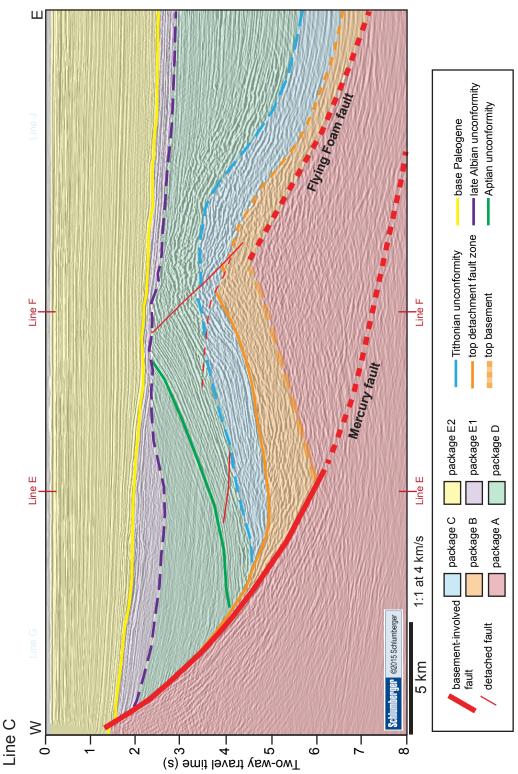
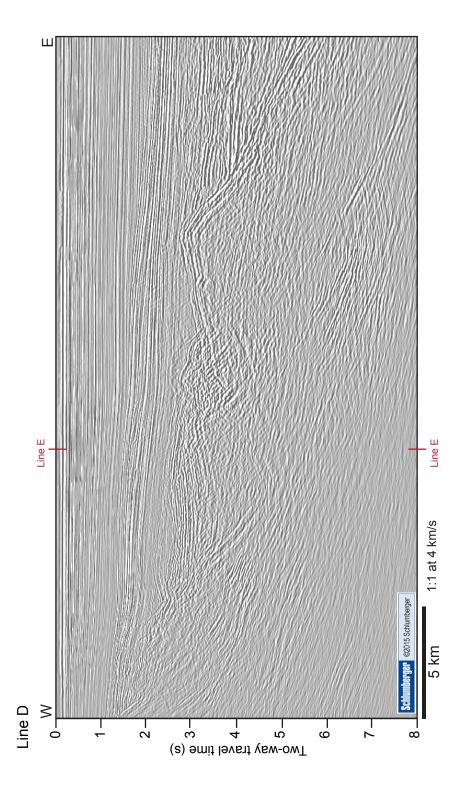
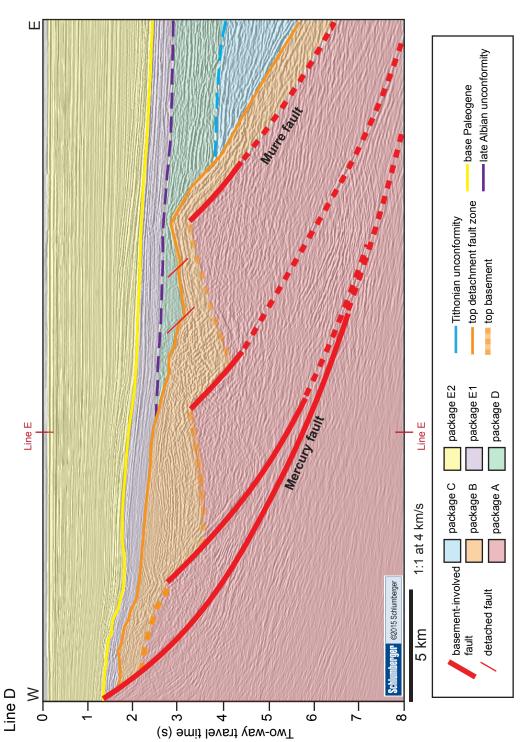
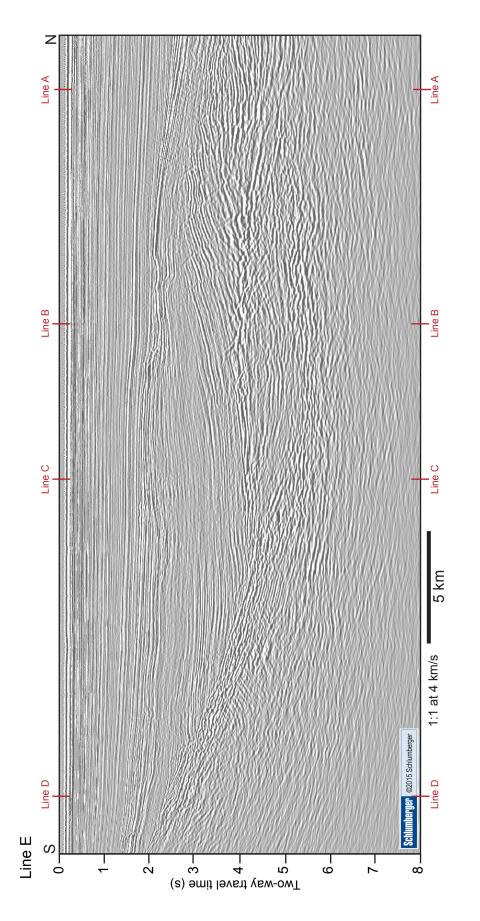
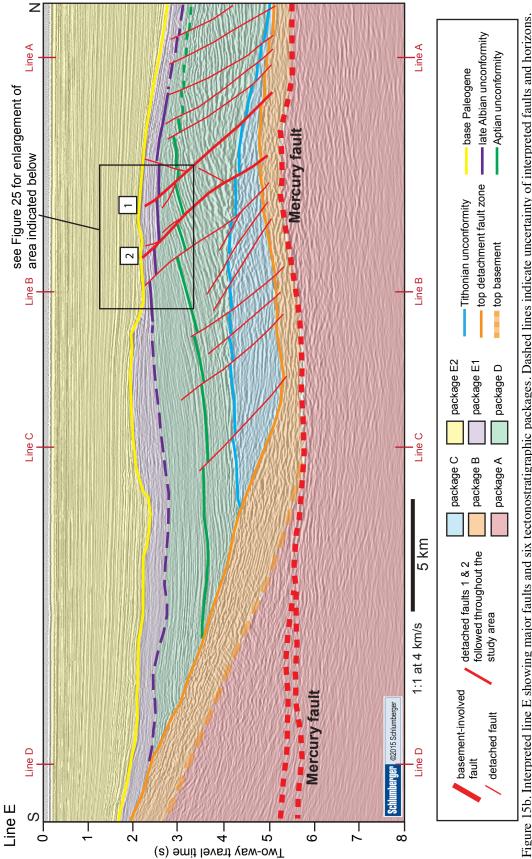





Figure 12a. Uninterpreted seismic line B. See line location in Figure 4b.


Figure 14a. Uninterpreted seismic line D. See line location in Figure 4b.

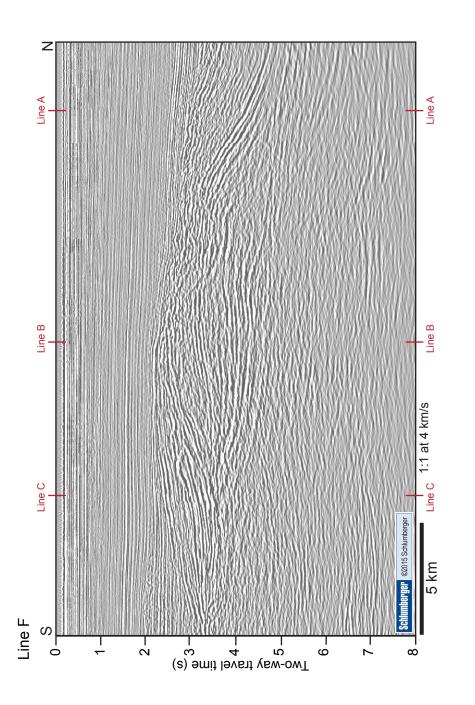


Figure 16a. Uninterpreted seismic line F. See line location in Figure 4b.

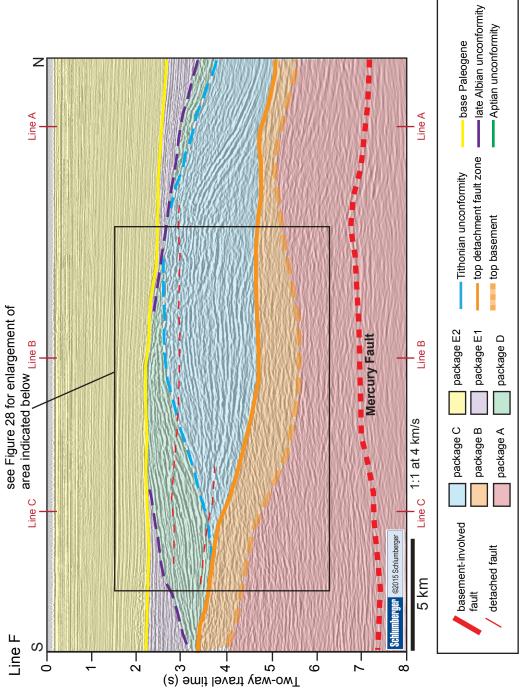


Figure 16b. Interpreted line F showing major faults and six tectonostratigraphic packages. Dashed lines indicate uncertainty of interpreted faults and horizons. See line location in Figure 4b.

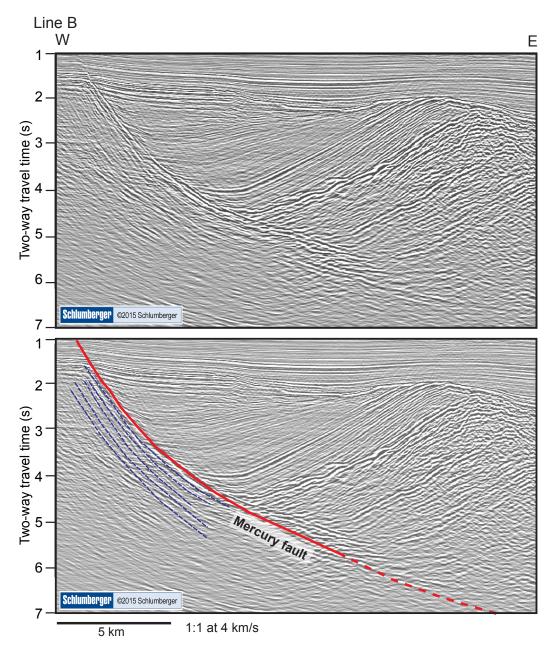


Figure 17. Section of seismic line B showing the the Mercury fault (red line) and peg-leg multiples of the Mercury fault (blue dashed lines). See complete line in Figure 12 and line location in Figure 4b.

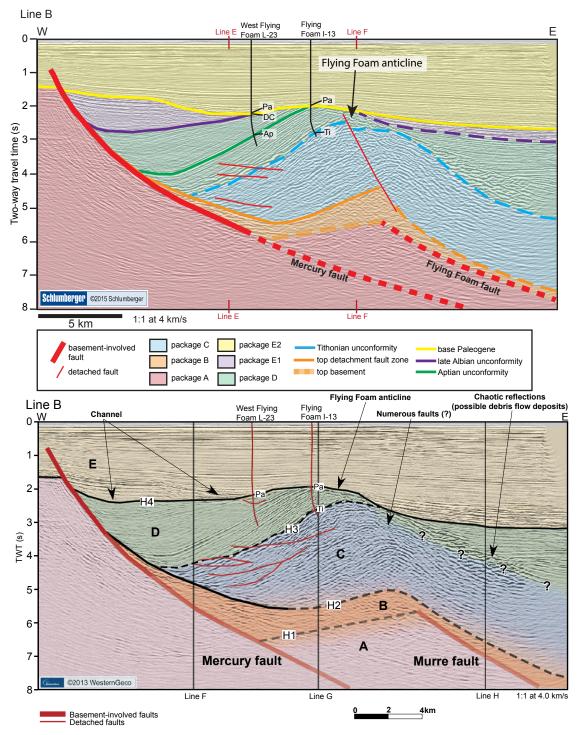


Figure 18. Comparison of the interpretation of line B in this study (top) to the interpretation by Serrano Suarez (2013)(bottom). H1, H2, H3, and H4 in the interpretation by Serrano Suarez (2013) correlate with the top of basement, the top of the detachment fault zone, the Tithonian unconformity, and the base-Paleogene, respectively. See line location in Figure 4b and an uninterpreted line B in Figure 12a.

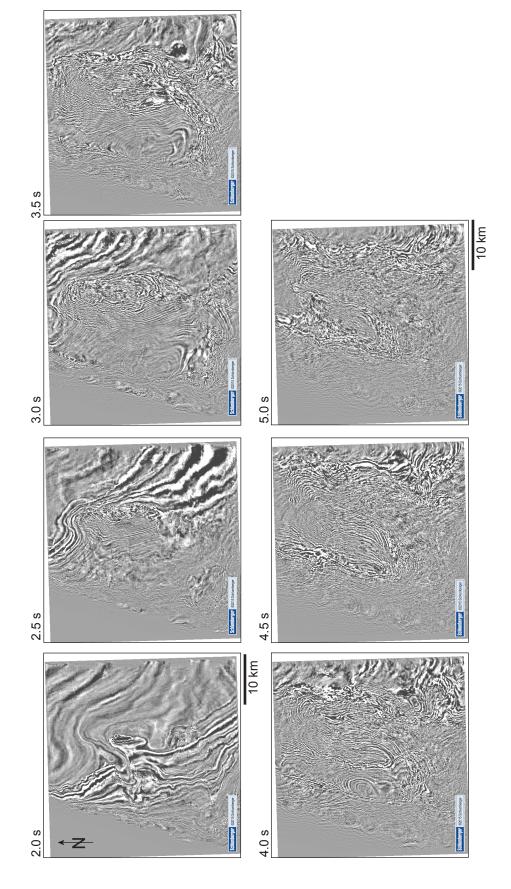
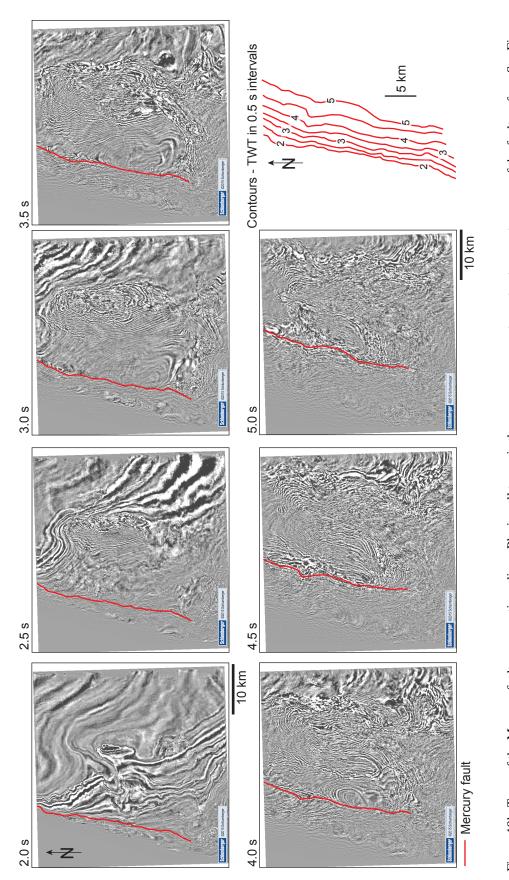
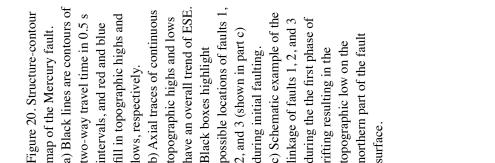
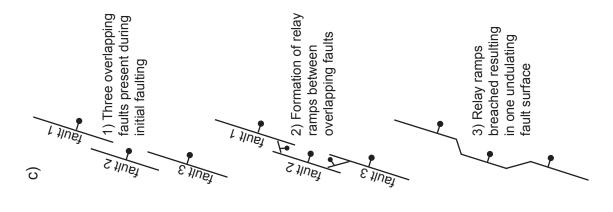
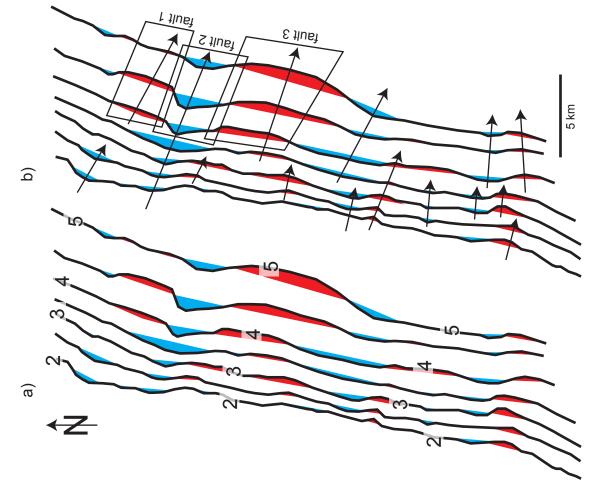
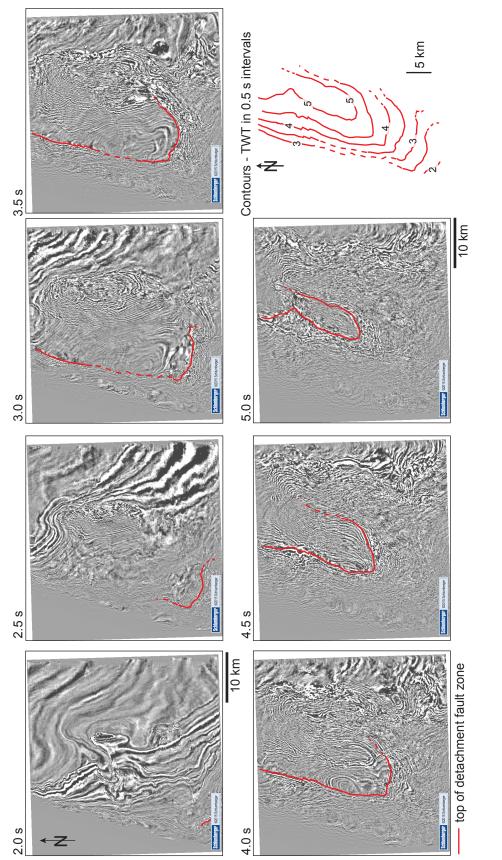
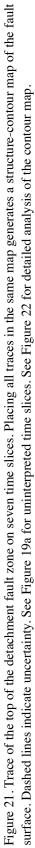


Figure 19a. Seven uninterpreted time slices from 2 s to 5 s in 0.5 s intervals of two-way travel time.


Figure 19b. Trace of the Mercury fault on seven time slices. Placing all traces in the same map generates a structure-contour map of the fault surface. See Figure 20 for detailed analysis of the contour map.

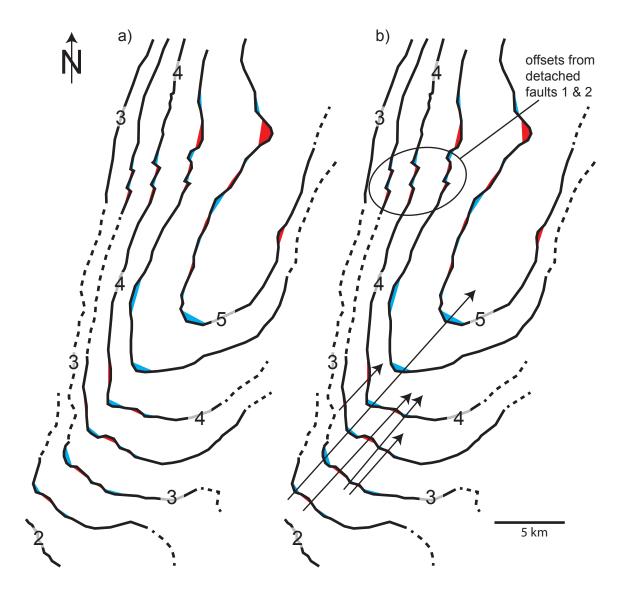
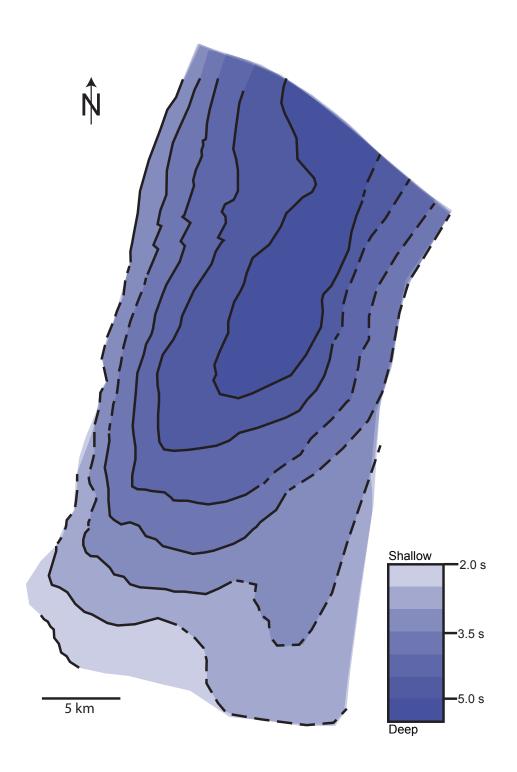
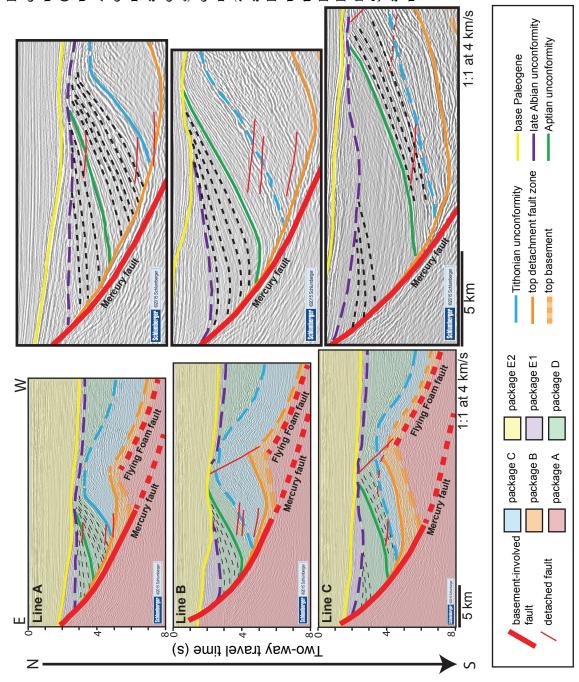
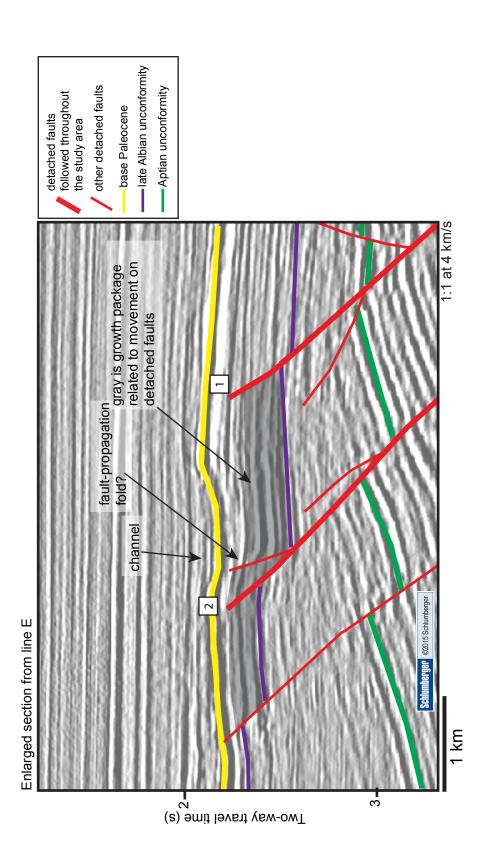
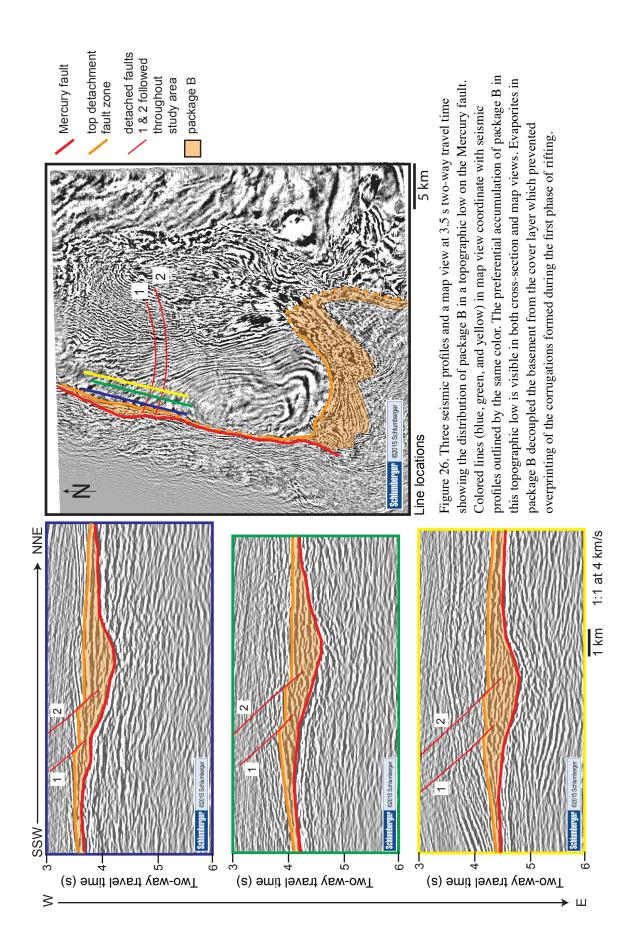


Figure 22. Structure-contour map of the top of the detachment fault zone. a) Black lines are contours of two-way travel time in 0.5 s intervals, and red and blue fill in topographic highs and lows, respectively. Undulations on uncertain contours on the detachment fault zone (dotted black lines) are not highlighted with red or blue. The fault zone strikes NNE in the northern part of the study area and ESE in the southwestern part. This change in strike occurs farther north at deeper levels, which is a result of the northwestward tilt of the detachment fault zone. Dashed lines indicate uncertainty. b) Detached faults offset the top of the detachment fault zone and produce alignments in bends in the contour lines. Undulations on the southern part of the top of the detachment fault zone have axial traces trending NE. These are not undulations related to fault linkage.


Figure 23. Shaded structure-contour map of the top of detachment fault zone illustrating the trough shape of the fault surface. Dashed lines indicate uncertainty.

enlarged view of package D (green movement on the detachment fault Foam anticline, indicating that the See Figure 4b for location of lines, reflections within package D. The Flying Foam anticline had not yet unconformities). Green line is the dashed lines highlight diverging zone (orange) began in the north formed here during depositions. unconformity on line C thicken diverging reflections decreases Reflections beneath the Aptian toward the crest of the Flying (purple) and Tithonian (blue) unit between the late Albian Aptain unconformity. Black southward, indicating that a age of the oldest westward and propagated southward. Figure 24. Lines A-C with component of E-directed and Figures 11-13 for uninterpreted lines.

present between the Aptian and late Albian unconformities, but growth packages may have undergone erosion during formation of the late Albian unconformity. the gray package is a growth package and indicates movement on the detached faults after formation of the late Albian unconformity. No clear growth strata are Figure 25. Interpreted, enlarged section of line E. See Figure 15 for location. The gray unit is thicker in the hanging wall than the footwall of fault 2. Therefore, Dashed lines indicate uncertainty.

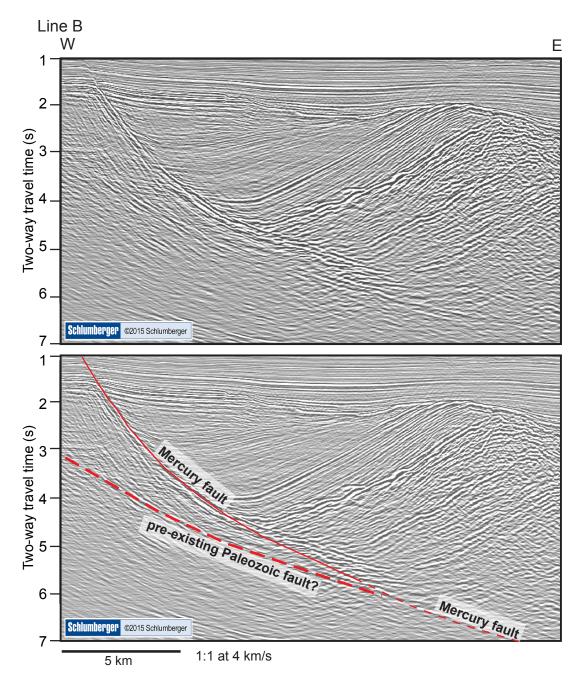
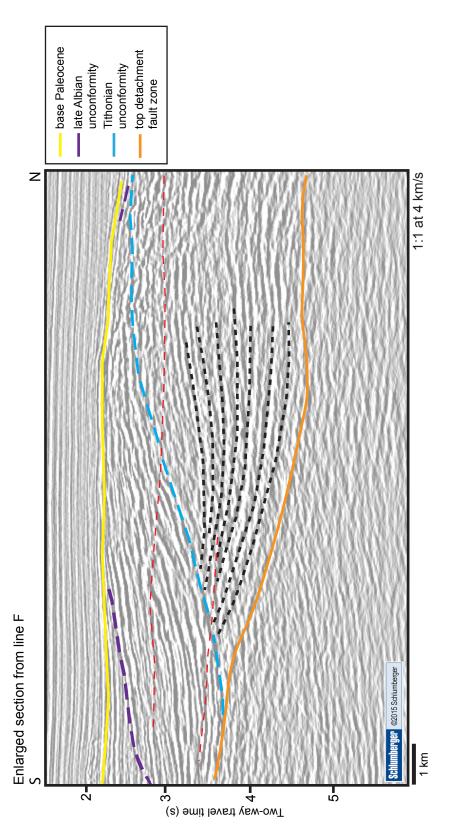
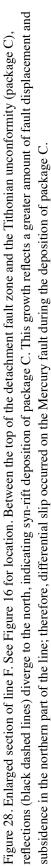




Figure 27. Part of seismic line B showing the present day Mercury fault and the location of the inferred pre-existing Paleozoic thrust fault. Reactivation may have occurred on this pre-existing zone of weakness at depth during rifting, and the present day Mercury fault splayed from the pre-existing fault at shallow levels. See complete line in Figure 12 and line location in Figure 4b.

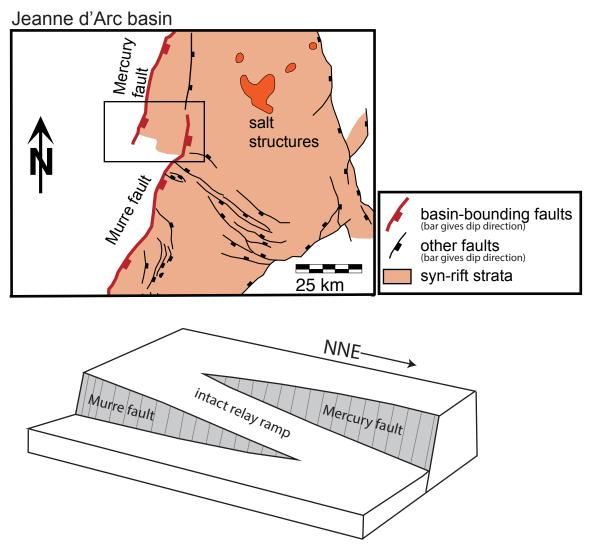


Figure 29. Relay ramp between the overlapping Mercury and Murre basin-bounding faults. a) Geologic map of part of the Jeanne d'Arc basin; see Figure 2 for a more complete map (modified from Withjack and Schlische, 2005; Sinclair, 1995). Black box shows area where relay ramp formed. b) Schematic illustration of relay ramp between the Mercury and Murre faults (modified from Whipp et al., 2015).

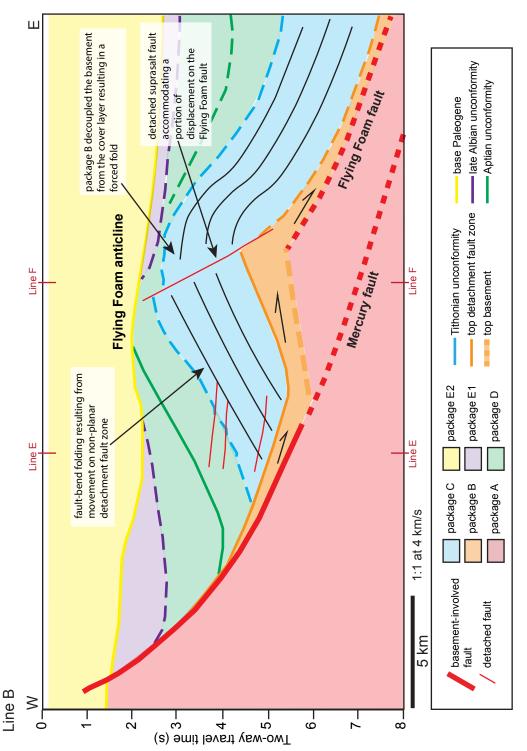


Figure 30. Line drawing of seismic line B showing a detailed analysis of the Flying Foam anticline. Black half arrows show the in-plane movement direction on the detachment fault zone during formation of the Flying Foam anticline. See line location in Figure 4b and uninterpreted line in Figure 12.

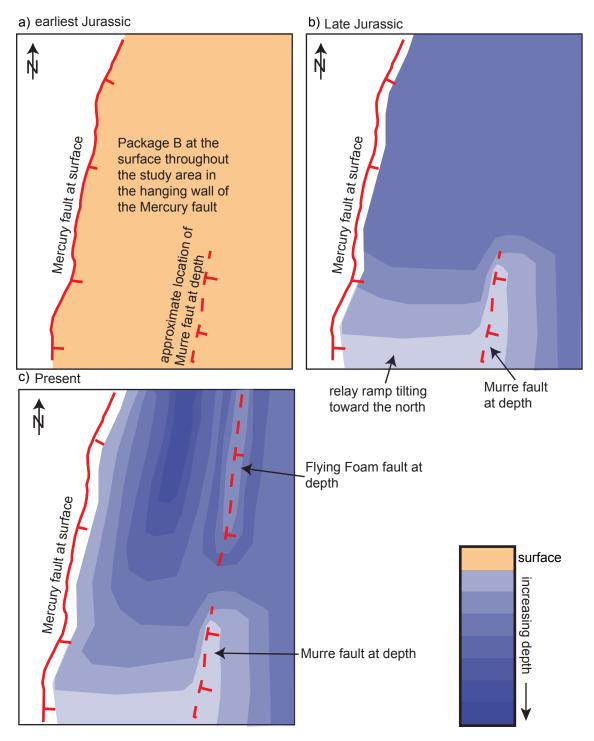


Figure 31. Schematic illustration showing evolution of the top of the detachment fault zone. a) At end of earliest Jurassic, package B was present at the surface in the hanging wall of the Mercury fault. b) Development of relay ramp in southern part of the study area between the Mercury and Murre faults during the second phase of rifting (Late Jurassic) resulted in a northward tilt of strata in the hanging wall of the Mercury fault. c) Development of Flying Foam anticline during the third phase of rifting (Early Cretaceous). Folding in the eastern part of the study area produced the current trough shape of the detachment fault zone.

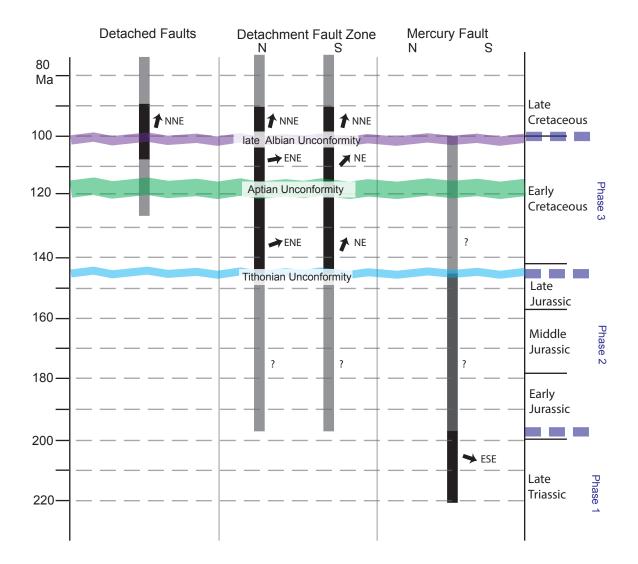
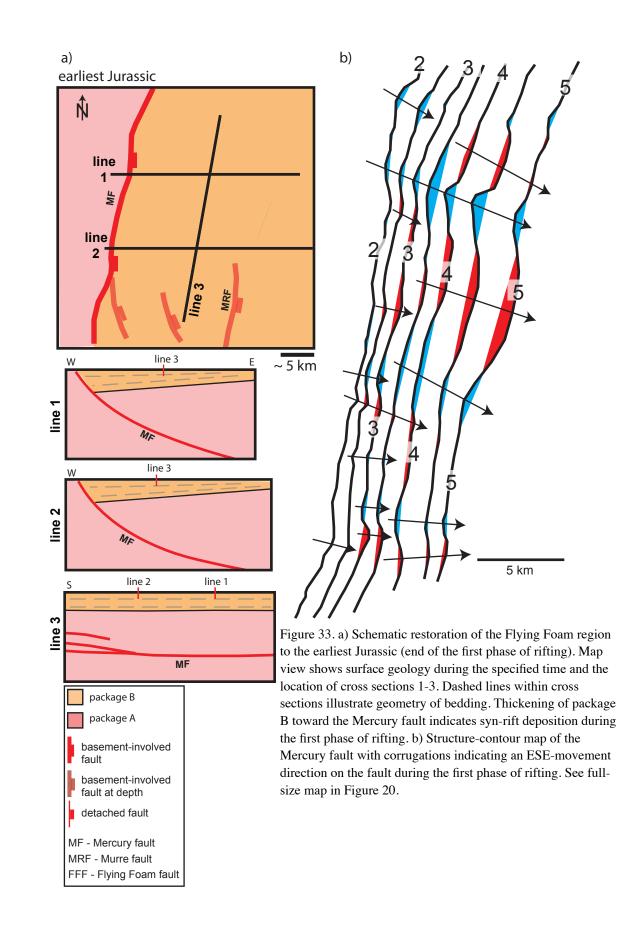
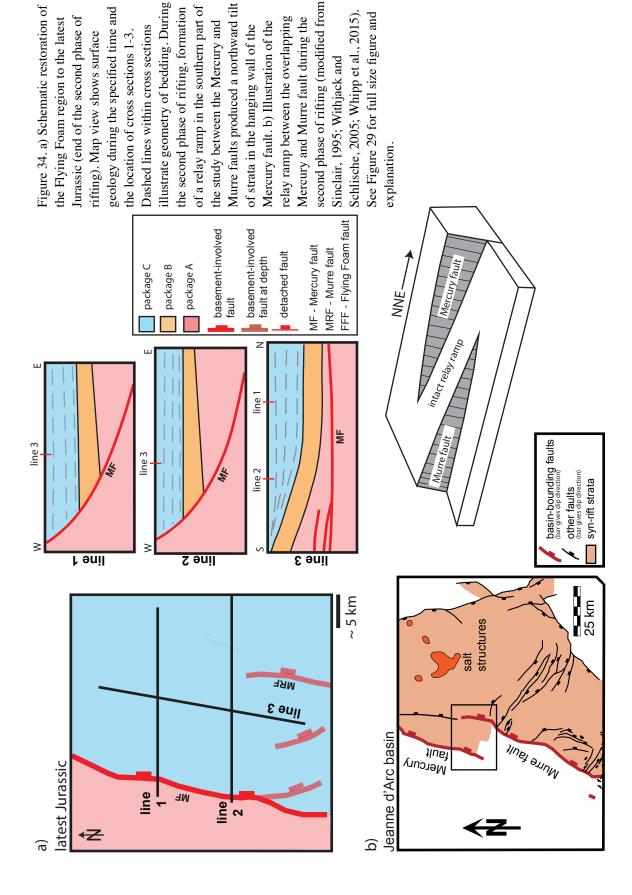
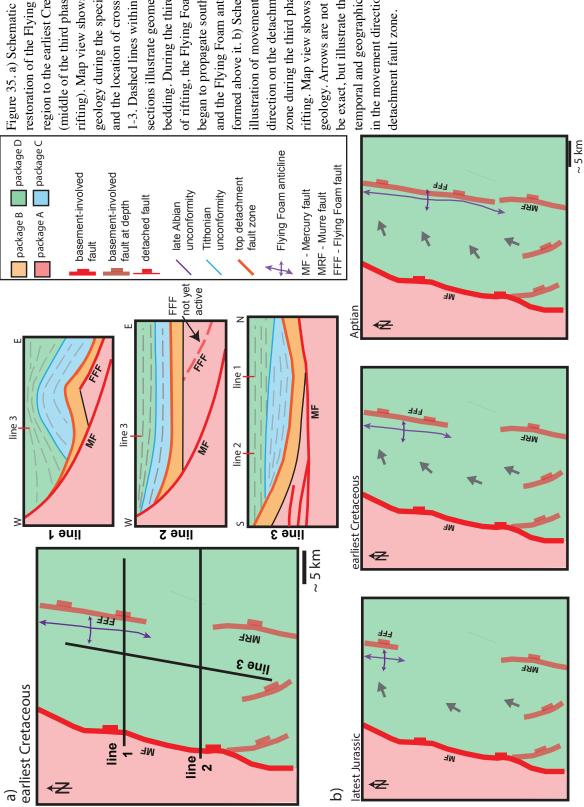






Figure 32. Timing of fault activity in the northern and southern sections of the Flying Foam region of the Jeanne d'Arc basin. Darker colors indicate more certainty about fault activity. Black arrows give inferred movement direction (in map view) during probable fault activity. Divisions between rift phases 1, 2, and 3 are based on published literature.

geology during the specified time and the location of cross sections geology. Arrows are not meant to rifting). Map view shows surface direction on the detachment fault in the movement direction on the rifting. Map view shows surface temporal and geographic change region to the earliest Cretaceous bedding. During the third phase of rifting, the Flying Foam fault restoration of the Flying Foam sections illustrate geometry of and the Flying Foam anticline 1-3. Dashed lines within cross began to propagate southward formed above it. b) Schematic zone during the third phase of (middle of the third phase of be exact, but illustrate the illustration of movement

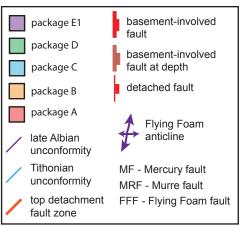


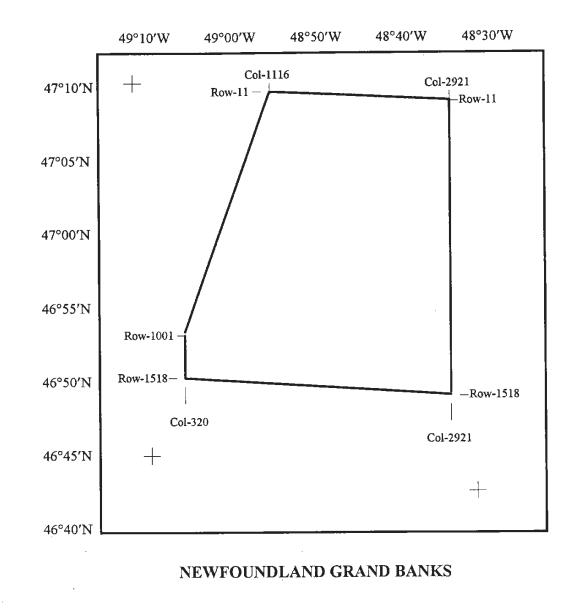
Figure 36. Schematic restoration of the Flying Foam region to the Albian (post-rift detached extension). Map view shows surface geology during the specified time and the location of cross sections 1-3. Dashed lines within cross sections illustrate geometry of bedding. NNE-oriented detached extension occurred on the detachment fault zone between the Mercury fault and Flying Foam anticline after rifting ended in the Jeanne d'Arc basin. Gray arrows are not meant to be exact but illustrate the approximate movement direction on the detachment fault zone.

APPENDIX 1

Schlumberger Geco-Prakla

1995/6 Marine 3D Survey Newfoundland Grand Banks Final Processing Report for EXPLORATION SERVICES Geco-Prakla

by


.

SCHLUMBERGER GECO-PRAKLA 1325 South Dairy Ashford Houston, Texas 77077

1.	Introduction
2.	Acquisition Parameters4
з.	Processing Resources
4.	Processing Parameters 6 4.1 Grid Orientation 6 4.2 Processing sequence 7
5.	Final Products.135.1 Film displays.135.2 Versatec displays.135.3 Deliverables on Tape.14
6.	Line Statistics
7.	Processing Time Line
8.	Notable Processing Problems and Solutions
9.	Conclusion
10.	3-D Velocity Fields
11.	Job Setups for Main Processing Steps
12.	Figures
	Figure 1. Production designature operator
13.	Appendix

1. Introduction

This report summarizes the processing of the Marine 3D survey in GRAND BANKS area, Newfoundland, Canada, by Geco-Prakla, Houston, in 1996. The survey was shot east-west by M/V Geco Diamond. The survey spanned in-lines 11 to 1518 and cross-lines 320 to 2921.

2. Acquisition Parameters

Shot by

Boats

Navigation

Source Configuration Guns/Array Volume Pressure Source Depth Source Separation Shot Interval Pop Interval

Streamer Cable length Streamer separation Group Interval Cable Depth Hydrophone per Group Nominal Fold

Recording System

Field Filters Low-cut High-cut

Record Length Sampling Interval

Processing Record Length Processing Sample Interval

DGPS Triple Airgun Array Flip/Flop/Flap 18, subdivided into 3 strings 5400 cubic inches per array 2000 psi 6 meters 50 meters 25 meters 75 meters GECO HSSJ 4 X 4800 meters 150 meters 25 meters 9 meters 40 32 NESSIE III 3 Hz 18 dB/octave slope 125 Hz 70 dB/octave slope 9.5 seconds 2 ms 9.0 seconds

Geco-Prakla Schlumberger

July - September 1995

M/V Geco Diamond

4 ms

3. Processing Resources

3.1 Personnel

Processing Manager	Mark Bull
Processing Supervisor	Tony Johns
Group Supervisor	Catherine Tsai
Geophysicist	Indro Lawu, Mike Fagg

3.2 Software and Hardware

Software	Gecoseis System
Hardware	Fujitsu VPX240, Sun Workstation

4. Processing Parameters

4.1 Grid Orientation

Processing coordinates	
Base Angle	88.34 degrees
Side Angle	178.34 degrees
First in-line number on final migrated volume	1
In-line number increment	1
Distance between adjacent in-lines	25 meters
First cross-line number on final migrated volume	1
Cross-line number increment	1
Distance between adjacent cross-lines	12.5 meters
Spheroid	WGS-84
Projection	UTM
Scale factor on CM	0.9996
Central Meridian	-51.00 degrees
Grid System	TM
Grid Unit	Meters
False Northing	0.0
False Easting	500000
X-coordinate of in-line 1 cross-line 1	645410
Y-coordinate of in-line 1 cross-line 1	5226665

4.2 Processing sequence

4.2.1 Resample

Resample data from 2 ms to 4 ms with a 90 Hz 72 dB/octave high-cut filter.

4.2.2 Editing

Bad traces and/or shots flagged by Field Observers were deleted from the dataset.

4.2.3 Spherical Divergence Correction

Spherical divergence effects were removed by computing a scalar for each time sample from the following formula:

- Scalar= $T^*(V_T/V_0)^2$
- T = seismic two-way time in seconds.
- $V_0 = \text{RMS}$ velocity at time zero in meters/second.
- $V_T = \text{RMS}$ velocity at time T in meters/second.

The following velocity function was used for the above calculation:

Time (sec)	Velocity (m/sec)
0.000	1472
0.500	1647
1.000	1813
1.500	2000
2.000	2221
2.500	2630
3.000	2990
3.500	3274
4.000	3548
4.500	3749
5.000	3920
5.500	4076
6.000	4218
6.500	4335
7.000	4450
7.500	4483
8.000	4509

4.2.4 Exponential Gain Correction

Exponential gain was applied to compensate for amplitude decay with time. The gain applied to the data for a sample at any time was determined by the following functions:

for 0.2 < T < 4.0

 $Gain = e^{aT}$

where,

a = (a user specified exponential gain value in dB/sec)*ln(10)/20. The user specified exponential gain value was +3 dB/sec.

 $T=t-t_0$, where t is the sample time and t_0 is the start time for the gain function in seconds. The gain calculated at 4.0 seconds was applied to the end of the trace.

4.2.5 Source Signature and Instrument Compensation

An inverse filter was designed by Trilogy to convert the recorded source signature into a band limited minimum phase wavelet. The characteristics of this output wavelet were as follows :

Low cut filter and slope : 6 Hz, 50 dB/octave High cut filter and slope : 85 Hz, 90 dB/octave

This inverse filter was applied to the shot record data for removal of the known component of source wavelet before predictive deconvolution. See Section 12, *Figure 1*, for the production designature operator and *Figure 2* for the conditioned gun signature.

4.2.6 3-D XY Coordinate Merge

Cable position information from the processed navigation data was merged with the seismic data.

4.2.7 Prestack Predictive Deconvolution

Trace by trace predictive deconvolution was applied to further whiten the spectrum and to suppress reverberations. Based on the results of Trilogy testing, the following decon parameters were selected for production processing :

- Design window length: 6000 ms
- Operator length: 320 ms
- Gap length: 4 ms
- Prewhitening: 0.1 %

A job setup for the Deconvolution is attached in Sec. 11.1

4.2.8 Automatic Trace Editing

Data with anonymously large amplitude were edited prior to DMO stacking. From the tests performed, sample values above 10 could be identified as noise spikes for shot data. The near and far windows for this analysis were 1000-9000ms and 4500-9000ms, respectively. Whenever a sample above amplitude 10 was encountered in a window, a mute was applied from the previous sample to the end of the trace.

4.2.9 3-D Elastic Binning

The navigation information was extracted from the merged decon trace headers to generate coverage of the 3-D survey. The coordinates of each data trace were analyzed and each trace was assigned the following information:

- In-line bin number
- Cross-line bin number
- Micro-bin numbers (two values) Each bin was subdivided into a 100 X 100 grid. Micro-inline and micro-cross-line numbers were assigned from this micro-grid.
- Offset group (32 offset group numbers defined) Offset group 1 being the near, group 32 being the far.

Five values were used to uniquely defined a trace and tabulate binning statistics. From this information five tables were made.

- Total number of traces in each bin with All offset groups 1 32.
- Total number of traces in each bin with Nears offset groups 1 8.
- Total number of traces in each bin with MidNears offset groups 9 16.
- Total number of traces in each bin with MidFars offset groups 17 24.
- Total number of traces in each bin with Fars offset groups 25 32.

The coverage plots constructed from these tables reflect the actual live seismic data.

Because the binning was constructed from the merged decon trace headers, any missing and edited bad shots and traces were not included in the binning process. Elastic binning and redundancy editing trials were then performed. Each bin was searched in each offset group in an attempt to achieve a nominal 32-fold coverage throughout the survey, with maximum one trace contributing to each of the 32 allowed offset groups. If a particular bin contained more than one trace per offset group, the one trace closest to the bin center was accepted. If a particular bin and offset group contained no traces, adjacent bins were searched for traces in that offset group. If the traces found were within a user specified distance from the boundary of the primary bin, these traces were borrowed and allowed to stack into the bin. The user specified distances were expressed in terms of percentage of cross-line bin size. In this survey the cross-line bin size was 25 meters. A maximum of 2 traces per offset group were allowed in order to obtain nominal 32 fold.

Supergroups were used to describe groups of offset groups to be taken together for flexible redundancy editing. In this survey, the supergroups defined were: offsets 1-8, 9-16, 17-24, and 25-32 with each supergroup having a minimum fold requirement of 8. If normal flexing did not get enough traces in the supergroup to meet the minimum fold requirement, one additional trace from each group (1-32) which has surplus traces was accepted until the minimum fold was met.

Bin expansion tests were conducted at four parts of the survey area at 10, 20, 30 and 40 % respectively. The five coverage plots were once again generated and from these plots the following elastic binning parameters were chosen:

- For all offset groups: 40% bin expansion in cross-line direction. This expanded the cross-line bin size by 10 meters either side, from 25 meters to 45 meters.
- The five coverage plots were once again generated for the final binning table.

4.2.10 Normal Moveout

Normal Moveout was applied to the data using a fully interpolated 3-D velocity cube. See Sec. 10.1 "Stacking Velocity Field".

4.2.11 First Break Suppression

The data was muted in the following manner:

- Offsets up to 575 meters were not muted.
- Offset of 576 meters was muted at 500 ms.
- Offset of 5200 meters was muted at 4200 ms.

Mute times for offsets between the above offsets were calculated by linear interpolation.

4.2.12 3-D DMO and Stack with Elastic Binning

Common azimuth DMO was performed on the data. The procedures were as follows:

The final stack volume was allocated on disk. As traces were used, the DMO operator for each trace was calculated along the source to receiver azimuth.

The primary trace was stacked into the midpoint bin and stacking normalization information was recorded for that bin. The DMO energy traces were stacked into their proper bins but no normalization information was recorded.

As the traces were processed they were checked against the binning information. Redundant traces were discarded and flexed traces were copied if they were flagged as such by the binning information.

When all the data had gone through DMO/stacking procedure the normalization information was utilized to scale each sample of every trace by the inverse of the square root of the number of primary and flexed traces that contributed to the sample in question. This normalization scheme was used to scale down low fold areas that had poor signal to noise ratios. A job setup for 3-D DMO and stack with Elastic Binning is attached in Sec. 11.2.

4.2.13 In-line K-Filter

A k-filter was applied to remove aliased noise in the in-line direction caused by acquisition geometry. The filter was applied fully from 0.0 - 3.0 seconds and tapered off at 4.0 seconds. A job setup for In-line k-filter is attached in Sec. 11.3.

A sample of the Stack Timeslice at 2.0 sec is shown in Section 12, Figure 3.

4.2.14 3-D FXY-filter

3-D fxy-filter was applied to attenuate random noise. A job setup for 3-D fxy-filter is attached in Sec. 11.4.

A sample of the Stack Timeslice at 2.0 sec is shown in Section 12, Figure 4.

4.2.15 Datuming

A static shift of +12 ms was applied to the stacked data to compensate for the depth of source and the streamers below mean-sea-level.

4.2.16 One Pass Phase Shift Migration

Upon completion of various 2-D migration tests with different velocity reduction percentages of the RMS stacking velocities, the following parameters were used:

Time (seconds)	Percent
0.0	100
4.0	100
6.0	95
9.0	85

The following frequency and dip limits were used :

Time (seconds)	Max Frequency (Hz)
0.0	75

Time (seconds)	Max Dip (degrees)
0.0	60
3.0	60
6.0	40
9.0	10

After the parameters were picked on the 2-D tests, the southern half of the 3-D data-set, (in-line range 780-1532, cross-lines 1-3200), was migrated and provided as a preliminary deliverable to the underwriters on June 30th.

During the QC of the initial 3-D migrated volume there were some regions that were discovered to be slightly under-migrated.

Residual migration tests were performed using 103% and 106% of the above time-variant velocity reduction. These tests indicated that increasing the original reduction by 3% yielded improved imaging.

The following final velocity reductions of the RMS stacking velocities were used for the final 3D migration :

Time (seconds)	Percent
0.0	103
4.0	103
6.0	97.9
9.0	87.6

The phase shift migration uses a spatial operator, which allows accurate treatment of dips and gives a full 3-D operator. Since this operator must be laterally invariant, the data is stretched prior to the migration to accommodate lateral changes in velocity. The stretch function is computed by using a nonlinear optimization method developed at Geco-Prakla. Vertical velocity variations are handled exactly by the phase shift method without stretching.

A spatially and temporally smoothed interval velocity cube was used for input into this optimization algorithm. See Sec. 10.2 "Migration Velocity Field".

The phase shift migration was applied in the following 3 steps:

- The first step reads the unmigrated data by in-lines, stretches the data, and transforms the data into wave number domain over the in-line dimension, after padding to prevent wraparound. A job setup for Step-I is attached in Sec. 11.5.
- The second step transforms the data in time and in the cross-line direction, performs the migration, and then inverse transforms the data over time and cross-line. A job setup for Step-II is attached in Sec. 11.6.
- The third step reads the data from Step-II by in-lines, inversely transforms the data over the in-line dimension and unstretches the data. A job setup for Step-III is attached in Sec. 11.7

See Section 12, *Figure 5* for the Quicklook cube Migration at 2.0 seconds. See Section 12, *Figure 6* for the Final Migration timeslice at 2.0 seconds.

5. Final Products

5.1 Film displays

5.1.1 In-line AGC 3-D migration Every 1500 meters (every 60th in-line) from in-line 61 to 1501 at 1:36,000 scale.

5.1.2 In-line RAP 3-D migration Every 1500 meters (every 60th in-line) from in-line 61 to 1501 at 1:36,000 scale.

5.1.3 Cross-line AGC 3-D migration Every 1500 meters (every 120th cross-line) from cross-line 360 to 2880 at 1:36,000 scale.

5.1.4 Cross-line RAP 3-D migration Every 1500 meters (every 120th cross-line) from cross-line 360 to 2880 at 1:36,000 scale.

5.1.5 Timeslices

Every 200 ms of the final migrated volume from 0.2 - 6.0 sec. and every 1000 ms from 0.5 to 5.5 sec. at 1:48,000 scale.

5.2 Versatec displays

5.2.1 Binning/Index/Grid Plots

All, Nears, MidNears, MidFars, and Fars offset groups for edited and flexed index at 1:48,000 scale.

5.3 Deliverables on Tape

5.3.1 Decon SEGY Tapes With navigation merge and designature filter applied.

5.3.2 Grid file SEGY Tapes All, Nears, MidNears, MidFars, and Fars Offset groups from edited and flexed Index.

5.3.3 Binning/Index Offset groups FBKUP tapes Edited and flexed index.

5.3.4 3-D Stack SEGY tapes In-line ordered, with K-filter, 3D FXY-filter and +12 ms static shift applied.

5.3.5 3-D Migration SEGY tapes In-line ordered.

5.3.6 3-D Migration SEGY tapes Cross-line ordered.

5.3.7 3-D Migration SEGY film tapes In-line ordered, every 60th in-line, from row 61 through to row 1501.

5.3.8 3-D Migration SEGY film tapesCross-line ordered, every 120th cross-line, from column 360 through to column 2880.

5.3.9 3-D DMO Gather SEGY tapes Used in the velocity analysis for all 47 velocity lines.

5.3.10 Migration Timeslice Gather SEGY tapes. Gathers are every 200ms from 0.200 - 6.000secs and every 1000ms from 0.500 - 5.500secs. 5.3.11 Migration Velocity Cube Timeslice SEGY tapes.

Every 200ms to 6.000secs.

5.3.12 Stack Velocity Cube Timeslice SEGY tapes.

Every 200ms to 6.000secs.

5.3.13 Following 8 mm velocity tapes:

- Navigation datasets in G2000 format.
- Stacking RMS velocity VBASE ASCII format
- Stacking RMS velocity VCUBE 200*250 meter grid. i.e. every 8th row & every 20th column ASCII format.
- Migration interval velocity VCUBE 200*250 meter grid. i.e. every 8th row & every 20th column ASCII format.
- Migration interval velocity (with percentage reduction scheme applied) VCUBE 200*250 meter grid. i.e. every 8th row & every 20th column ASCII format.
- Migration Interval velocity VBASE ASCII format.
- Decon Reel dbase and Edit files.
- Spectra contour, CDP, and MVFS for all 47 velocity lines.

5.3.14 Floppy diskette.

Containing:

- source signature.
- designature operator used in the processing.

6. Line Statistics

an for the ~ مانية امتحا سرام ontir as 62643 kilometers.

Gra	nd tota	al mileag	ge for	the e	ntire s	urvey	' wa
Syst	tem `A	r					
spir	nt*grp:	int*noch	h*fcd;	o*			
75.0	0 25.0	0 384	1				
seq	*punit	*navn***	*rbi*	fsp*	rei*	*lsp**	fre
040	a00	1p0101					
042	a01	110101	1399	1399	2410	2410	D00.
034	a10	1p0113	1395	1395	2409	2409	D00
020	a20	1p0125	1391	1391	2409	2409	D00
032	a21	1i0125	1391	1391	2409	2409	D00:
018	a30	1p0137	1387	1387	2410	2410	D00
008	a40	1p0149	1383	1383	2410	2410	D00
010	a50	1p0161	1379	1379	2409	2409	D00
016	a60	2p0173	1375	1375	2409	2409	D00
014	a70	1p0185	1372	1372	2410	2410	D00
024	a71	1i0185	1372	1372	2409	2410	D00;
028	a80	1p0197	1368	1368	2409	2409	D00;
038	a81	210197	1368	1368	2409	2409	D00:
026	a90	1p0209	1364	1364	2409	2409	D00:
022	b00	1p0221	1360	1360	2410	2410	000
005	b10	1p0233	1356	1356	2409	2409	0003

75.0 25.		1	-										
seq*punit	*navn**	*rbi*	*fsp*	*rei*	*lsp*	*freel*	*lreel*	*nch	*ns	*nb	*dpt	*dir*	*nav**
040 a00	1p0101	1399	1399	2410	2410	D00345	D00348	384	2	1	11	088.	021
042 a01						D00365				1	11	088.	
034 al0						D00305				1	11	088.	
020 a20 032 a21						D00167				1	9	088.	
032 a21 018 a30						D00285				1	11	088.	
008 a40	100137	1302	1307	2410	2410	D00147 D00070	D00150	384		1	9	088.	
010 a50	1p0145	1370	1970	2410	2410	D00070	D00073	304	2	1	11	088.	
016 a60						D00127			2 2	1	11 11	088.	
014 a70						D00127				1	11	088. 088.	
024 a71						D00205				1	9	088.	
028 a80						D00245				1	11	088.	
038 a81						D00325				1	11	088.	
026 a90						D00225				1		088.	
022 b00	1p0221	1360	1360	2410	2410	000534	000558	384	2	1	9	088.	
005 b10	1p0233	1356	1356	2409	2409	000113	000137	384	2	1	9	068.	
003 b20	1p0245	1352	1352	2409	2409	000061	000085	384	2	1	11	088.	
044 b30	1p0257	1348	1348	2409	2409	001105	001130	384	2	1	11	088.	
047 b31	110257	1348	1348	2409	2409	001158	001182	384	2	1	11	088.	041
043 b40						001078			2	1	11	268.	041
049 b41						001212			2	1	11	088.	041
041 b50						001027			2	1	11	268.	041
033 b60						000823			2	1	9	268.	
039 b61						000977			2	1	11	268.	
031 b70 019 b80	120305	2301	2301	1225	1224	000772	000797	384	2	1	11	268.	
013 b90	120317	2301	2301	1220	1220	000454	000481	384	2	1	9	268.	
004 c00	1p0329	2260	2301	1212	1210	000299	000324	384	2	1	11	268.	
050 c01						000088 001227				1	9	268.	
009 c10						0001227			2	1	11	088.	
011 c20						000248			2 2	1 1	9 11	268. 268.	
015 c30	100377	2300	2300	1201	1201	000350	000275	384	2	1	11	268. 268.	
017 c40	100389	2301	2301	1197	1197	000402	000427	384	2	1	- 11	268.	
021 c50	1p0401	2301	2301	1193	1193	000507	000533	384	2	1	9	268.	
027 c60	1p0413	2301	2301	1189	1189	000664	000690	384	2	ī	9	268.	
035 c61						000873			2	1	11	268.	
023 c70						000559			2	1	- 9	268.	
002 c80	1p0437	2301	2300	1183	1182	000034	000060	384	2	1	11	268.	
007 c90	1p0449	2301	2301	1178	1178	000144	000171	384	2	1	9	268.	
046 d00						001131			2	1	11	268.	041
048 d01	110461	2300	2300	1174	1174	001184	001211	384	2	1	11	268.	041
025 d10	1p0473	2300	2300	1170	1170	000611	000638	384	2	1	9	268.	
030 d20 052 d30	100485	1275	1275	2410	2410	000745	000771	384	2	1	11	088.	
052 d30 059 d31						001260				1	11	088.	
124 d32						001420				1	11	088.	
054 d40	100509	1268	1269	2400	2400	003303 001316	0013407	384	2	1	11	088.	
057 d50	1p0500	1264	1264	2409	2403	001374	001342	304	2 2	1	11	089.	
061 d60						001374			2	1	11 11	088. 088.	
065 d70						001590			2	1	11	088.	
069 d71	110545	1256	1256	2409	2409	001704	001731	384	2	1	11	088.	
071 d72	210545	1317	1317	2409	2409	001761	001786	384	2	1	11	088.	
073 d80	1p0557	1252	1252	2409	2409	001816	001843	384	2	ī	11	088.	
075 d90	1p0569	1248	1248	2380	2380	001874	001900	384	2	1	11	088.	
081 d91	2p0569	1240	1248	2409	2409	002045	002072	384	2	ī	11	088.	
067 e00	1p0581	1244	1244	2407	2410	001647	001674	384	2	1	11	088.	
063 e10	1p0593	1241	1241	2410	2410	001533	001560	384	2	1	11	088.	
077 e20	1p0605	1237	1237	2410	2410	001931	001958	384	2	1	11	088.	
079 e30	1p0617	1233	1233	2407	2410	001988	002015	384	2	1	11	088,	
083 e40	100629	1229	1229	2410	2410	002101	002128	384	2	1	9	088.	
082 e50 125 e51	110641	2300	2300	1116	1116	002073	002100	384	2	1	11	268.	
080 e60						003308				1	11	268.	
000 000	rb0000	SOAT	2001	TTTS	TTT	002016	002043	384	2	1	9	268.	061

0.22	900							002010			1	2	000.	VOZ	
	g60	1p0893	1144	1144	2410	2410	002222	002251	384	2	1	9	088.	082	
126	g61	1i0693	1580	1580	2410	2410	003336	003361	384	2	1	11	088.		
001	g70	1p0905	1140	1140	2406	2410	000001	000032	384	2	1	11	088.		
085		1p0917									1	9	088.		
118	g81	110917	1173	1173	2014	2015	003198	003219	384	2	1	11	088.		
089	q90							002313			ĩ		088.		
	ñoo							002499			1	11	088.		
	h01							003256			1	11	088.		
	h10							002562			î	9	088.		
	h20	100965	1121	1121	2410	2410	002781	002811	384	2	1	9	088.		
	h21	110965	1158	1158	2410	2410	003038	003068	384	2	1	11	088.		
	h30	100977	1117	1117	2410	2410	002720	002750	384	2	1	11	088.		
		1p0989									1	9	088.		
		1p1001									1	9	088.		
		1p1013									1	9	088.		
	h61							002340			1				
		1p1025										11	088.		
	h71	111025	1390	1200	2409	2409	002974	003007	384	2	1	11	088.		
		1p1025									1	11	088.		
											1	11	088.		
	h82	111037	1090	1098	2409	2409	003213	003554	384	Z	1	11	088.		
		211037	1000	1600	2409	Z409	005330	005349	384	Z	1	11	088.		
		1p1049									1	9	268.		
		1p1061						002221			1	9	268.		
		1p1073			977	9/1	002374	002405	384	2	1	9	268.		
	i11	111073	1122	1122	2409	2409	005375	005413	384	2	1	11	088.		
	i20	1p1085	2301	2301							1	11	268.		
		1p1097						002655			1	9	268.		
		1i1097					003220	003232	384	2	1	11	268.		
	i32	2i1097									1	11	268.		
		1p1109						002719			1	11	268.		
	i41	li1109			966	966	003362	003394	384	2	1	11	268.		
		1p1121									1	9	268.		
121	i51	1r1121	1450	1450	962			003269			1	11	268.	121	
		1p1133									1	9	268.	101	
		lp1145						002973			1	9	268.		
		1p1157						003101			1	11	268.		
	i81	1i1157			950			003197			1	11	268.	101	
		1p1169						003587			1	11	268.	121	
		1p1181			943	943	003694	003728	384	2	1	11	268.	121	
	j01	lil181			943		003765	003798	384	2	1	9	260,	121	
		1p1193			939			004006			1	11	268.	141	
		1p1205			935	935	003622	003657	384	2	1	11	268.	121	
	j21	1i1205	2301	2301	1078	1078	004179	004209	384	2	1	11	268.		
	j22	2i1205	1753	1753	1354	1354	005320	005329	384	2	1	11	268.		
141	j30	1p1217	2301	2301	931	931	003833	003867	384	2	1	9	268.		
143	j40	1p1229	2301	2301	927	927	003904	003938	384	2	1	9	268.		
147	j50	1p1241	2301	2301	924	923	004041	004074	384	2	1	11	268.		
152	j51	1i1241	1032	1032	2410	2410	004210	004243	384	2	1	11	088.		

1p0665 2301 2301 1108 1108 001959 001987 384 2 1

1p0677 2301 2301 1105 1105 001504 001532 384 2

110677 2301 2301 1105 1105 001902 001930 384 2

1p0689 2300 2300 1101 1101 001231 001259 384 2

1p0701 2301 2301 1099 1097 000716 000744 384 2

1p0713 2301 2301 1094 1093 001287 001315 384 2

1p0725 2300 2300 1800 1800 001343 001354 384 2

3p0725 1799 1799 1089 1089 001402 001418 384 2

1p0737 2301 2301 1086 1085 001447 001475 384 2

110737 2301 2301 1085 1085 001561 001589 384 2

1p0749 2301 2301 1081 1081 001618 001646 384 2

110749 2301 2301 1081 1081 001675 001703 384 2

1p0761 2300 2300 1078 1078 001732 001760 384 2 1p0773 2300 2300 1074 1074 001767 001615 384 2

1p0785 2301 2301 1070 1070 001844 001872 384 2

210785 2301 2301 1118 1118 003429 003457 384 2

1p0797 2300 2300 1066 1066 002129 002159 384 2

1p0809 2245 2245 1063 1062 002253 002281 384 2

2p0809 2300 2300 1062 1062 003008 003037 384 2

1p0821 2300 2300 1064 1058 002314 002343 384 2

li0821 2005 2005 1058 1058 003491 003518 384 2 1p0833 2300 2300 1056 1054 002563 002592 384 2

1p0845 2300 2300 1052 1051 002751 002780 384 2

1p0857 1156 1156 2407 2409 002845 002876 384 2

100869 1152 1152 2409 2409 002406 002435 384 2 110869 1152 1152 2404 2409 003132 003163 384 2

1p0881 1148 1148 2409 2410 002344 002373 384 2 1

11 268. 061

268. 061

268. 061

268. 041

268. 021

268. 041

268. 041

268. 041

268. 060

268. 061

268. 061

268. 061

268. 061

268. 061

268. 061

268. 082

268, 082

268. 082

268. 101

268. 082

268. 121

268. 082

268. 101

088. 101

088, 082

088, 101

9 088. 082

1 11

1 11

1

1 11

1 11

1 11

1 11

1 11

1 11

1 11

1 11

1

1 11

1 11

1 11

1

1

1 11

1 9

1

1

1 11

1 9

1 9

1 11

11

9

9

11

g

11

078 e70

062 e80

076 e81

051 e90

029 f00

053 f10

055 f20

058 f21

060 f30

064 f31

066 f40

068 f41

070 f50

072 f60

074 f70

129 f71

084 f80

088 f90

112 f91

090 g00

1**3**1 g01

098 g10

104 g20

107 g30

093 g40

116 g41

091 g50

148 j60	151253	1028	1028	2410	2410	004075	004109	204	~	1	1 1	000	
150 j61							004178			1	11	088.	
146 j70							004040			1	11	088.	
134 j80										1	11	088.	
							003621			1	11	088.	
136 j90							003693			1	11	088.	
138 k00							003764			1	9	088.	121
140 k01	li1301	1013	1013	2410	2410	003799	003832	364	2	1	9	088.	121
142 k10	lp1313	1009	1009	2410	2410	003868	003903	384	2	1	9	088.	
144 kl1	1i1313	1009	1009	2410	2410	003939	003972	384	2	1	11	088.	
154 k20										1	11	088.	
156 k30							004391			1	11	088.	
159 k40							004504						
161 k41										1	11	088.	
							004577			1	11	088,	
163 k50							004646			1	11	088.	161
165 k60							004714			1	11	088.	161
167 k70	1p1385	1001	1001	1674	1674	004749	004766	384	2	1	11	088.	161
168 k71	2p1385	1675	1675	2410	2410	004767	004784	384	2	1	11	088.	161
170 k80	1p1397	1001	1001	2409	2409	004821	004855	384	2	1	11	088.	
172 k81	1i1397	1001	1001	2409	2409	004891	004926	384	2	1	11	088.	
149 k90	1p1409			892			004143			1	11	268.	
184 k91					1050	004110	005319	204	2				
153 100										1	11	088.	
	1p1421			893			004281			1	11	268.	
155 110	lp1433			892			004353			1	11	268.	141
158 120	1p1445			893	692	004435	004468	384	2	1	11	268.	141
160 121	111445	2300	2300	892	892	004505	004538	384	2	1	11	268.	141
162 130	1p1457	2301	2301	892	892	004578	004611	384	2	1	11	268.	161
$164 \ 140$	1p1469	2301	2301	893	892	004647	004680	384	2	1	11	268.	161
183 141				1630			005297			1	11	268.	
166 150	1p1481			892			004748						
169 160	1p1493			892						1	11	268.	
							004820			1	11	268.	
171 170	1p1505			892			004890			1	11	268.	
173 180	1p1517			892			004960			1	11	268,	161
175 181	1i15 17			892			005036			1	11	268.	161
177 190	1p1529	2301	2301	892	892	005073	005106	384	2	1	11	268.	161
179 m00	lp1541	2301	2301	892			005179			1	11	268.	
181 m10	1p1553			892			005242			1	11	268.	
182 mll					2409	005243	005276	304	2	1	11	088.	
176 m20	1p1565	1001	1001	2409	2409	005037	005072	384	2	1	11	088.	161
176 m20 174 m30	1p1565 1p1577	$\begin{array}{c} 1001\\ 1001 \end{array}$	$\begin{array}{c} 1001 \\ 1001 \end{array}$	2409 2410	2409 2410	005037 004961	005072 005002	384 384	2 2	1 1	11 11	088. 088.	161 161
176 m20 174 m30 178 m40	1p1565 1p1577 1p1589	1001 1001 1001	1001 1001 1001	2409 2410 2409	2409 2410 2409	005037 004961 005108	005072 005002 005143	384 384 384	2 2 2	1 1 1	11 11 11	088. 088. 088.	161 161 161
176 m20 174 m30	1p1565 1p1577 1p1589	1001 1001 1001	1001 1001 1001	2409 2410 2409	2409 2410 2409	005037 004961 005108	005072 005002	384 384 384	2 2 2	1 1	11 11	088. 088.	161 161 161
176 m20 174 m30 178 m40 180 m50	1p1565 1p1577 1p1589 1p1601	1001 1001 1001	1001 1001 1001	2409 2410 2409	2409 2410 2409	005037 004961 005108	005072 005002 005143	384 384 384	2 2 2	1 1 1	11 11 11	088. 088. 088.	161 161 161
176 m20 174 m30 178 m40 180 m50 System `E	1p1565 1p1577 1p1589 1p1601	1001 1001 1001 1001	1001 1001 1001 1001	2409 2410 2409 2409	2409 2410 2409 2409	005037 004961 005108 005180	005072 005002 005143 005213	384 384 384 384	2 2 2 2	1 1 1 1	11 11 11 11	088. 088. 088. 088.	161 161 161 161
176 m20 174 m30 178 m40 180 m50 System `E seq*punit	1p1565 1p1577 1p1589 1p1601 3*	1001 1001 1001 1001 *ffil*	1001 1001 1001 1001 *fsp**	2409 2410 2409 2409	2409 2410 2409 2409	005037 004961 005108 005180	005072 005002 005143 005213	384 384 384 384	2 2 2 2	1 1 1 1	11 11 11 11	088. 088. 088. 088.	161 161 161 161
176 m20 174 m30 178 m40 180 m50	1p1565 1p1577 1p1589 1p1601 3* *navn*** 1p0101	1001 1001 1001 1001 *ffil* 1399	1001 1001 1001 1001 *fsp** 1399	2409 2410 2409 2409 2409 *1fil* 2410	2409 2410 2409 2409 1sp** 2410	005037 004961 005108 005180 freel* 101003	005072 005002 005143 005213 *lreel** 101026	384 384 384 384 nch	2 2 2 2 *ns	1 1 1	11 11 11 11	088. 088. 088. 088. 088.	161 161 161 161 nav*
176 m20 174 m30 178 m40 180 m50 System `E seq*punit	1p1565 1p1577 1p1589 1p1601 3* *navn*** 1p0101	1001 1001 1001 1001 *ffil* 1399	1001 1001 1001 1001 *fsp** 1399	2409 2410 2409 2409 2409 *1fil* 2410	2409 2410 2409 2409 1sp** 2410	005037 004961 005108 005180 freel* 101003	005072 005002 005143 005213 *lreel** 101026	384 384 384 384 nch	2 2 2 2 *ns	1 1 1 *nb*	11 11 11 11 11 *dpt	088. 088. 088. 088. *dir** 088.	161 161 161 161 nav* 021
176 m20 174 m30 178 m40 180 m50 System `E seq*punit 040 a00	1p1565 1p1577 1p1589 1p1601 3* *navn*** 1p0101 1i0101	1001 1001 1001 1001 *ffil* 1399 1399	1001 1001 1001 1001 *fsp** 1399 1399	2409 2410 2409 2409 *1fil* 2410 2410	2409 2410 2409 2409 *1sp** 2410 2410	005037 004961 005108 005180 freel** 101003 101053	005072 005002 005143 005213 *lreel** 101026 101076	384 384 384 384 384 (nch) 384 384	2 2 2 2 * ns 2 2	1 1 1 *nb* 1	11 11 11 11 11 *dpt 11 11	088. 088. 088. 088. *dir** 088. 088.	161 161 161 161 nav* 021 041
176 m20 174 m30 178 m40 180 m50 System 'E seq*punit 040 a00 042 a01 034 a10	1p1565 1p1577 1p1589 1p1601 3* **navn*** 1p0101 1i0101 1p0113	1001 1001 1001 *ffil* 1399 1399 1395	1001 1001 1001 *fsp** 1399 1399 1395	2409 2410 2409 2409 *1fil* 2410 2410 2409	2409 2410 2409 2409 :1sp** 2410 2410 2409	005037 004961 005108 005180 freel* 101003 101053 100849	005072 005002 005143 005213 *lreel** 101026 101076 100872	384 384 384 384 384 384 384 384	2 2 2 2 *ns 2 2 2 2	1 1 1 * nb* 1 1 1	11 11 11 11 11 *dpt 11 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021
176 m20 174 m30 178 m40 180 m50 System `F seq*punit 040 a00 042 a01 034 a10 020 a20	1p1565 1p1577 1p1589 1p1601 3* **navn*** 1p0101 1i0101 1p0113 1p0125	1001 1001 1001 *ffil* 1399 1399 1395 1391	1001 1001 1001 *fsp** 1399 1399 1395 1391	2409 2410 2409 2409 *1fil* 2410 2410 2409 2409	2409 2410 2409 2409 2409 2409 2410 2410 2409 2409	005037 004961 005108 005180 freel* 101003 101053 100849 100482	005072 005002 005143 005213 *lreel** 101026 101076 100872 100505	384 384 384 384 384 384 384 384	2 2 2 2 * ns 2 2 2 2 2	1 1 1 1 * nb* 1 1 1	11 11 11 11 11 *dpt 11 11 11 9	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 001
176 m20 174 m30 178 m40 180 m50 System `H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0113 1p0125 1i0125	1001 1001 1001 *ffil* 1399 1395 1391 1391	1001 1001 1001 1001 *fsp** 1399 1399 1395 1391 1391	2409 2410 2409 2409 2409 2409 2410 2410 2409 2409 2409	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409	005037 004961 005108 005180 ffreel** 101003 101053 100849 100482 100798	005072 005002 005143 005213 *lreel** 101026 101076 100872 100505 100822	384 384 384 384 384 384 384 384 384 384	2 2 2 2 *ns 2 2 2 2 2 2 2	1 1 1 1 * nb* 1 1 1 1	11 11 11 11 11 *dpt 11 11 11 9 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 021 021 021 001 021
176 m20 174 m30 178 m40 180 m50 System `B seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30	1p1565 1p1577 1p1589 1p1601 3* *navn*** 1p0101 1p0103 1p0125 1i0125 1p0137	1001 1001 1001 *ffil* 1399 1395 1391 1391 1387	1001 1001 1001 1001 *fsp** 1399 1399 1395 1391 1391 1387	2409 2410 2409 2409 2409 2409 2410 2410 2409 2409 2409 2409 2410	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2410	005037 004961 005108 005180 ffreel** 101003 101053 100849 100482 100798 100429	005072 005002 005143 005213 *lreel** 101026 101076 100872 100505 100822 100453	384 384 384 384 384 384 384 384 384 384	2 2 2 2 * ns 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 9 11 9	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 021 021 021 001 021 001
176 m20 174 m30 178 m40 180 m50 System 'E seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40	1p1565 1p1577 1p1589 1p1601 3* **navn*** 1p0101 1p0101 1p0113 1p0125 1i0125 1p0137 1p0149	1001 1001 1001 *ffil* 1399 1395 1391 1391 1387 1383	1001 1001 1001 1001 *fsp** 1399 1399 1395 1391 1391 1387 1383	2409 2410 2409 2409 2409 2409 2410 2410 2409 2409 2409 2410 2410	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2410 2410	005037 004961 005108 005180 freel** 101003 101053 100482 100482 100482 100492 100172	005072 005002 005143 005213 *lreel** 101026 101076 100872 100872 100805 100822 100453 100196	384 384 384 384 384 384 384 384 384 384	2 2 2 2 * ns 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 * nb* 1 1 1 1	11 11 11 11 11 *dpt 11 11 11 9 11	008. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 021 001 001
176 m20 174 m30 178 m40 180 m50 System `F seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50	1p1565 1p1577 1p1589 1p1601 3* *navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161	1001 1001 1001 1001 *ffil* 1399 1395 1391 1391 1387 1383 1379	1001 1001 1001 1001 *fsp** 1399 1395 1391 1391 1387 1383 1379	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2410 2410 2410 2410	005037 004961 005108 005180 freel** 101003 101053 100849 100482 100798 100422 100172	005072 005002 005143 005213 *lreel** 101026 101076 100872 100505 100822 100453 100196 100247	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 9 11 9	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 021 001 001
176 m20 174 m30 178 m40 180 m50 System `F seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60	1p1565 1p1577 1p1589 1p1601 3* **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173	1001 1001 1001 *ffil* 1399 1395 1391 1391 1387 1383 1379 1375	1001 1001 1001 1001 *fsp** 1399 1395 1391 1391 1387 1383 1379 1375	2409 2410 2409 2409 2409 *1fil* 2410 2409 2409 2409 2409 2410 2410 2410 2409 2409	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2410 2410 2410 2409 2409	005037 004961 005108 005180 ffreel** 101003 101053 100492 100429 100429 100429 100172 100223	005072 005002 005143 005213 *1reel** 101026 101076 100872 100852 100822 100453 100196 100247	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 9 11 9 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 021 001 001 001
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70	1p1565 1p1577 1p1589 1p1601 3* **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185	1001 1001 1001 1001 *ffil* 1399 1395 1391 1387 1383 1379 1375 1372	1001 1001 1001 1001 *fsp** 1399 1395 1391 1391 1387 1387 1387 1375 1375	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2409 2410	005037 004961 005108 005180 005180 101003 101053 100849 100482 100798 100429 100172 100223 100325	005072 005002 005143 005213 *1ree1** 101026 101076 100872 100852 100822 100453 100196 100247 100401 100349	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 9 11 9 11 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 021 001 021 001 001 001
176 m20 174 m30 178 m40 180 m50 System `F seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60	1p1565 1p1577 1p1589 1p1601 3* **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185	1001 1001 1001 1001 *ffil* 1399 1395 1391 1387 1383 1379 1375 1372	1001 1001 1001 1001 *fsp** 1399 1395 1391 1391 1387 1387 1387 1375 1375	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2409 2410	005037 004961 005108 005180 005180 101003 101053 100849 100482 100798 100429 100172 100223 100325	005072 005002 005143 005213 *1ree1** 101026 101076 100872 100852 100822 100453 100196 100247 100401 100349	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 9 11 11 1	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 001 001 001 001 001
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70	1p1565 1p1577 1p1589 1p1601 **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185	1001 1001 1001 *ffil* 1399 1399 1399 1395 1391 1387 1383 1379 1375 1372	1001 1001 1001 1001 *fsp** 1399 1395 1391 1391 1387 1383 1379 1375 1372 1372	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2410 2409 2409 2410 2410	005037 004961 005108 005180 101003 101053 100053 100849 100798 100429 100172 100223 100377 100325	005072 005002 005143 005213 *1ree1** 101026 101076 100872 100505 100822 100453 100196 100247 100247 100401 100349 100610	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 001 021 001 001 001 001 001 00
176 m20 174 m30 178 m40 180 m50 System `H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80	1p1565 1p1577 1p1589 1p1601 3* *navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1p0187	1001 1001 1001 *ffil* 1399 1395 1391 1391 1387 1383 1379 1375 1372 1372 1372	1001 1001 1001 1001 *fsp** 1399 1399 1395 1391 1391 1387 1383 1379 1375 1372 1372 1372	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2410 2410 2409 2410 2410 2410 2410 2409	005037 004961 005108 005180 ffreel** 101003 101053 100492 100492 100429 100172 100223 100377 100325 100586	005072 00502 005143 005213 *1reel*** 101026 101076 100872 100505 100822 100453 100196 100247 100401 100349 100610 100715	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 161 021 021 021 001 001 001 001 001 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81	1p1565 1p1577 1p1589 1p1601 3* 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1p0197 2i0197	1001 1001 1001 *ffil: 1399 1395 1391 1391 1387 1383 1379 1375 1372 1372 1368	1001 1001 1001 1001 *fsp** 1399 1395 1391 1391 1387 1383 1379 1375 1372 1372 1368	2409 2410 2409 2409 2409 2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2409 2409 2410 2409 2409 2409 2409	005037 004961 005108 005180 005180 101053 101053 100482 100482 100429 100172 100223 100325 100325 100586 100691	005072 00502 005143 005213 *1ree1** 101026 101076 100872 100505 100247 100453 100196 100247 1004010 100349 100610 100715	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 088. 088. 098. 09	161 161 161 161 161 021 021 021 001 001 001 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90	1p1565 1p1577 1p1589 1p1601 3* **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1i0185 1p0197 2i0197	1001 1001 1001 *ffil* 1399 1395 1391 1387 1383 1375 1372 1372 1372 1372 1368 1368 1368	1001 1001 1001 1001 *fsp** 1399 1395 1391 1391 1387 1383 1375 1372 1372 1372 1372 1368 1368 1364	2409 2410 2409 2409 2409 2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 01003 101053 101053 100849 100429 100429 100429 100429 100429 100425 100526 100586 100691 100952	005072 005002 005143 005213 *1ree1** 101026 101076 100872 100822 100453 100196 100247 100401 100349 100610 100715 100976	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 001 001 001 001 001 021 02
176 m20 174 m30 178 m40 180 m50 System `F seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 022 b00	1p1565 1p1577 1p1589 1p1601 3 * navn** 1p0101 1p0113 1p0125 1i0125 1i0125 1i0125 1i0149 1p0161 2p0173 1p0185 1i0185 1p0197 2i0197 1p0209 1p0221	1001 1001 1001 *ffil* 1399 1395 1399 1395 1391 1387 1383 1379 1375 1372 1368 1368 1368 1368	1001 1001 1001 1399 1399 1395 1391 1391 1391 1387 1383 1379 1375 1372 1368 1368 1368 1368 1368	2409 2410 2409 2409 2409 2409 2410 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2409 2409 2409 2409 2410 2410 2409 2409 2409 2410 2409 2410 2409 2410 2409 2409 2410 2409 2409 2409 2409	005037 004961 005108 005180 freel** 101003 101053 100482 100482 100482 100429 100172 100225 100252 100592 100639	005072 00502 005143 005213 005213 101026 100872 100822 100453 100196 100247 100401 100349 100610 100615 100976 100663 100558	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 021 001 001 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System `H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 022 b00 005 b10	1p1565 1p1577 1p1589 1p1601 3* *navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1i0185 1p0197 2i0197 1p0209 1p0221 1p0223	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1372 1375 1372 1368 1364 1366 1356	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1375 1375 1375 1376 1368 1368 1368 1368 1368 1364 1366	2409 2410 2409 2409 2409 2410 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 101003 101053 100482 100482 100482 100429 100172 100325 100586 100586 100952 100639 100534 100113	005072 00502 005143 005213 *1reel*** 101026 101076 100872 100505 100822 100453 100196 100247 100401 100349 100715 100976 100976 100976	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 098. 098. 098.	161 161 161 161 161 021 021 021 021 001 001 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 026 a80 038 a81 026 a90 022 b00 005 b10 003 b20	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1p0197 2i0197 1p0209 1p0221 1p0223 1p0245	1001 1001 1001 1001 *ffil* 1399 1395 1391 1383 1379 1375 1372 1372 1372 1372 1368 1364 1366 1356	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1372 1372 1372 1372 1372 1376 1376 1376 1356 1356	2409 2410 2409 2409 2409 2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2409 2409 2409 2409 2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 005180 101053 101053 100482 100482 100482 100429 100172 100223 100325 100586 100691 100952 100639 100534 100113 100061	005072 00502 005143 005213 *1ree1** 101026 101076 100872 100505 100453 100196 100247 1004010 100349 100610 100715 100976 100963 100958 100137	384 384 384 384 384 384 384 384 384 384	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 161 021 021 021 021 001 001 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 022 b00 035 b10 003 b20 044 b30	1p1565 1p1577 1p1589 1p1601 3* * navn*** 1p0101 1i0101 1p0125 1p0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1p0197 2i0197 1p0209 1p0221 1p0233 1p0245 1p0245	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1379 1372 1372 1372 1372 1372 1372 1368 1364 1360 1356 1356 1356	1001 1001 1001 1001 1399 1399 1395 1391 1391 1387 1383 1372 1372 1372 1372 1372 1372 1372 137	2409 2410 2409 2409 2409 2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2409 2409 2409 2409 2409 2409 2409	005037 004961 005108 005180 005180 101053 101053 100492 100429 100429 100429 100429 100375 100355 100586 100691 100952 100534 1000534 100133 100061 10105	005072 00502 005143 005213 *1ree1** 101026 101076 100872 100505 100423 100196 100247 100401 100247 100610 100715 100963 100658 1001558 100137 100085	384 384 384 384 384 384 384 384 384 384	2 2 2 2 5 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 098. 098. 098.	161 161 161 161 021 021 021 021 001 001 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 022 b00 038 a81 026 a90 022 b00 005 b10 003 b20 044 b30 047 b31	1p1565 1p1577 1p1589 1p1601 3 * navn** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0149 1p0161 2p0173 1p0185 1p0197 2i0197 1p0209 1p0231 1p0245 1p0257 1i0257	1001 1001 1001 *ffil* 1399 1399 1395 1391 1387 1383 1379 1375 1372 1372 1368 1368 1368 1366 1356 1356 1352 1348	1001 1001 1001 1399 1399 1399 1395 1391 1387 1387 1387 1387 1372 1372 1372 1372 1372 1372 1372 137	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 101003 101053 100849 100492 100798 100429 100172 100223 100377 100325 100584 100584 100691 100592 100639 100513 100051 100510	005072 00502 005143 005213 *1reel** 101026 101076 100872 100453 100196 100247 100401 100349 100610 100976 100976 100976 100558 100137 100130	384 384 384 384 384 384 384 384 384 384	2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 088. 088. 088.	161 161 161 161 021 021 021 021 001 001 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System `H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 038 a81 026 a90 035 b10 003 b20 044 b30 043 b40	1p1565 1p1577 1p1589 1p1601 3* *navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1i0185 1p0197 2i0197 1p0203 1p0245 1p0257 1i0257 1p0269	1001 1001 1001 1001 *ffil* 1399 1395 1391 1387 1383 1375 1372 1375 1372 1375 1372 1368 1364 1366 1356 1352 1348 2300	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1375 1375 1375 1375 1376 1368 1368 1368 1368 1366 1355 1352 1348 2300	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 005180 101053 101053 100649 100429 100429 100429 10072 100325 100586 100592 100592 100593 100534 100153 100105 101158	005072 00502 005143 005213 *1reel*** 101026 101076 100872 100505 100822 100453 100196 100247 100401 100349 100401 100349 100610 100976 100658 100158 100130 101130	384 384 384 384 384 384 384 384 384 384	2222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	088. 088. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 021 021 021 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 022 b00 038 a81 026 a90 022 b00 005 b10 003 b20 044 b30 047 b31	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1p0197 2i0197 1p0209 1p0245 1p0245 1p0257 1p0269 1i0269	1001 1001 1001 1001 *ffil* 1399 1395 1391 1383 1379 1375 1372 1368 1364 1368 1364 1356 1356 1356 1356 1356 1356 1356 1356	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1372 1372 1372 1368 1368 1364 1366 1352 1348 1348 2300 1345	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 005180 101053 101053 100649 100429 100172 100223 100325 100586 100691 100534 100113 100051 101158 101158 101212	005072 00502 005143 005213 *1ree1** 101026 101076 100872 100505 100453 100453 100247 100640 100247 100640 100715 100976 100976 100976 100975 100196 100975 100975 100975 100196 100975 100196 100975 100197 1000107 1000107 1000107 1000107 1000107 1000107 1001130 1001103 1001103 100126 100126 100126 100126 100126 100126 100126 100107 1001100 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 100000000	384 384 384 384 384 384 384 384 384 384	2 2 2 2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 098. 098. 098.	161 161 161 161 021 021 021 001 001 001 021 02
176 m20 174 m30 178 m40 180 m50 System `H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 038 a81 026 a90 035 b10 003 b20 044 b30 043 b40	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1p0197 2i0197 1p0209 1p0245 1p0245 1p0257 1p0269 1i0269	1001 1001 1001 1001 *ffil* 1399 1395 1391 1383 1379 1375 1372 1368 1364 1368 1364 1356 1356 1356 1356 1356 1356 1356 1356	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1372 1372 1372 1368 1368 1364 1366 1352 1348 1348 2300 1345	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 005180 101053 101053 100649 100429 100172 100223 100325 100586 100691 100534 100113 100051 101158 101158 101212	005072 00502 005143 005213 *1ree1** 101026 101076 100872 100505 100453 100453 100247 100640 100247 100640 100715 100976 100976 100976 100975 100196 100975 100975 100975 100196 100975 100196 100975 100197 1000107 1000107 1000107 1000107 1000107 1000107 1001130 1001103 1001103 100126 100126 100126 100126 100126 100126 100126 100107 1001100 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 100000000	384 384 384 384 384 384 384 384 384 384	2 2 2 2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 088. 088. 088.	161 161 161 161 161 021 021 021 001 021 001 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 022 b00 038 a81 026 a90 022 b00 035 b10 003 b20 044 b30 047 b31 043 b40 041 b50	1p1565 1p1577 1p1589 1p1601 3 *navn** 1p0101 1i0101 1p0113 1p0125 1i0125 1i0125 1i0125 1i0149 1p0161 2p0173 1p0149 1p0185 1i0185 1p0197 2i0197 1p0209 1p0221 1p0257 1i0257 1i0257 1p0269 1i0269	1001 1001 1001 *ffil* 1399 1395 1391 1391 1387 1383 1379 1375 1372 1372 1368 1368 1368 1366 1356 1356 1356 1352 1348 2300 1348 2300	1001 1001 1001 1001 *fsp** 1399 1395 1391 1391 1387 1375 1372 1375 1372 1368 1368 1368 1368 1366 1356 1356 1356 1352 1348 2300 1345 2301	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 freel** 101003 101053 100482 100482 100482 100429 100172 100223 100377 100325 100534 100552 100691 100952 100639 100534 100513 100061 101158 101158 101178	005072 00502 005143 005213 005213 005213 101026 100872 100822 100453 100196 100247 100401 100349 100610 10063 100558 100137 100685 101130 101182 101132 101103 101226 1010226	384 384 384 384 384 384 384 384 384 384	2222 * 2222222222222222222222222222222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 098. 098. 098.	161 161 161 161 021 021 021 021 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System `H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 022 b00 035 b10 003 b20 044 b30 047 b31 043 b40 049 b41 041 b50 033 b60	1p1565 1p1577 1p1589 1p1601 3 * navn** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1i0185 1i0185 1i0185 1i0185 1i0185 1i0197 2i0197 1p0203 1p0245 1p0257 1p0269 1p0281 1p0293	1001 1001 1001 *ffil* 1399 1399 1395 1391 1387 1383 1379 1375 1372 1372 1372 1372 1372 1372 1372 1368 1368 1368 1366 1356 1356 1356 1356 1356 1356 1356	1001 1001 1001 1001 1399 1399 1399 1395 1391 1387 1383 1379 1375 1372 1372 1372 1372 1376 1356 1356 1356 1356 1356 1356 1356 135	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 011003 101053 100849 100429 100172 100429 100172 100223 100377 100325 100534 100534 100661 100133 100013 100105 101158 101078 101078	005072 00502 005143 005213 *1reel** 101026 101076 100872 100453 100196 100247 100401 100349 100610 100976 100976 100976 100976 100976 100103 100137 100085 101130 101103 101226 100824	384 384 384 384 384 384 384 384 384 384	2 2 2 2 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 088. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 001 001 001 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punt 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 022 b00 035 b10 003 b20 044 b30 047 b31 043 b40 049 b41 041 b50 039 b61	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1i0185 1p0197 2i0197 1p0209 1p0223 1p0245 1p0257 1i0257 1i0257 1i0257 1i0257 1i0269 1i0269 1i0269 1i0293	1001 1001 1001 1001 *ffil* 1399 1395 1391 1387 1383 1375 1372 1375 1372 1375 1372 1375 1375 1372 1368 1364 1366 1356 1352 1348 1348 1348 1348 1348 1348 1348 1348	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1375 1375 1375 1375 1375 1376 1368 1368 1368 1366 1356 1352 1348 1348 1348 1348 2300 1345 2301 2301	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 005180 101053 101053 100639 100429 100429 100422 100223 100377 100325 100586 100592 100534 100113 100115 101158 101105 101158 101212 101027 100823 100977	005072 00502 005143 005213 *1reel** 101026 101076 100872 100505 100822 100453 100196 100247 100401 100349 1002401 100976 100663 100558 100135 101130 101132 101102 101226 100252 101052 101052	384 384 384 384 384 384 384 384 384 384	2222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 098. 098. 098.	161 161 161 161 021 021 021 021 001 001 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 026 a90 022 b00 038 a81 026 a90 022 b00 04 b30 045 b10 045 b10 047 b31 043 b40 049 b41 041 b50 039 b61 031 b70	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1p0197 2i0197 1p0203 1p0245 1p0257 1p0269 1p0269 1p0281 1p0293 1i0293 1i0293 1p0293	1001 1001 1001 1001 *ffil* 1399 1395 1391 1383 1379 1375 1372 1372 1368 1364 1366 1356 1356 1356 1356 1356 1356 1356	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1372 1372 1372 1368 1364 1366 1352 1348 1368 1364 1352 1348 1348 2301 2301 2301	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 005180 101053 101053 100849 100429 100429 100429 100429 100377 100325 100586 100691 100534 100113 1000534 100113 1000534 101158 101105 101158 101222 10027 100823 100977	005072 00502 005143 005213 *1ree1** 101026 101076 100872 100453 100453 100453 100247 1004010 100247 1004010 100715 1004010 100755 101130 101182 101130 101226 101226 101252 101052	384 384 384 384 384 384 384 384 384 384	2222 m22222222222222222222222222222222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 021 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System F seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 022 b00 038 a81 026 a90 022 b00 035 b10 038 a81 026 a90 044 b30 047 b31 043 b40 047 b31 043 b40 049 b41 041 b50 033 b60 039 b61 031 b70 019 b80	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1i0125 1i0125 1i0125 1i0185 1p0185 1p0185 1p0187 1p0245 1p0245 1p0257 1i0257 1p0269 1i0269 1i0293 1p0281 1p0305	1001 1001 1001 *ffil* 1399 1395 1391 1387 1387 1387 1387 1387 1387 1375 1372 1372 1372 1372 1372 1372 1368 1368 1368 1360 1356 1352 1348 2300 1348 2301 2301 2301	1001 1001 1001 1001 *fsp** 1399 1395 1391 1387 1387 1387 1387 1387 1387 1375 1372 1375 1372 1368 1368 1368 1368 1366 1356 1352 1348 2300 1345 2301 2301 2301	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005108 101003 101053 100849 100429 100429 100172 100325 100631 100526 1006691 100526 100639 100534 100113 100105 101158 101078 101172 101022 100823 100977 100772	005072 00502 005143 005213 005213 101026 100872 100822 100453 100196 100247 100401 100349 100610 10063 100137 100685 101130 101226 101032 101103 101226 100848 101002	384 384 384 384 384 384 384 384 384 384	2222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 098. 098. 098.	161 161 161 161 021 021 021 021 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System `H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 022 b00 005 b10 003 b20 047 b31 043 b40 049 b41 041 b50 033 b60 039 b61 031 b70 019 b80 013 b90	1p1565 1p1577 1p1589 1p1601 3 * navn** 1p0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1i0185 1i0185 1i0185 1i0185 1i0185 1i0185 1i0185 1i0185 1i0185 1i0185 1i0209 1p0231 1p0269 1i0293 1i0293 1i0293 1p0317 1p0329	1001 1001 1001 *ffil* 1399 1399 1395 1391 1387 1383 1379 1375 1372 1375 1372 1375 1372 1368 1368 1368 1368 1356 1356 1356 1356 1356 1356 1356 1356	1001 1001 1001 1001 1399 1399 1395 1391 1391 1387 1383 1379 1375 1372 1372 1375 1372 1375 1372 1376 1356 1356 1356 1356 1356 1356 1356 135	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 011003 101053 100849 100422 100798 100422 100798 100422 100223 100377 100325 100534 100534 100051 100151 100151 101158 101158 101107 101212 101027 100823 100977 100772 100454	005072 00502 005143 005213 *1reel*** 101026 101076 100872 100453 100196 100453 100196 100247 100401 100349 100610 100976 100055 100137 100085 101130 101226 101082 100182 101084 101022 100840 101084 101084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100085 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100084 100088 100088 100088 100088 100088 100088 100088 100088 100088 100088 100088 100088 100088 100188 100188 100188 10088 1	384 384 384 384 384 384 384 384 384 384	2222 * n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 088. 088. 088. 088. 088.	161 161 161 161 021 021 021 021 001 021 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punt 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 022 b00 035 b10 003 b20 044 b30 047 b31 043 b40 049 b41 041 b50 033 b60 039 b61 031 b70 013 b80 004 c00	1p1565 1p1577 1p1587 1p1601 3 **navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0165 1i0185 1i0185 1p0197 2i0197 1p0203 1p0245 1p0257 1i0257 1i0257 1p0269 1i0269 1i0269 1i0269 1i0269 1i0293 1p0329 1p0321	1001 1001 1001 1001 *ffil* 1399 1395 1391 1387 1383 1375 1372 1375 1372 1375 1372 1368 1364 1366 1352 1348 1366 1352 1348 2300 1345 2301 2301 2301 2301 2301 2260	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1372 1375 1372 1368 1364 1366 1352 1348 1366 1352 1348 2300 1345 2301 2301 2301 2301 2301	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 005180 101053 100653 100482 100482 100429 100172 100325 100586 100952 100639 100534 100115 101105 101158 100122 101027 101027 101027 100023 100977 100772	005072 00502 005143 005213 *1reel** 101026 101076 100872 100505 100822 100453 100196 1002401 100349 100610 100976 100663 100182 101035 101130 101226 101052 100055 101052 101052 101052 100055 101052 101055 101055 101055 100105 100055 100105 100055 100055 100105 100055 100105 100055 100105 100105 100105 100055 100105 100105 100105 100105 100055 100105 100105 100105 100105 100105 100105 100105 100105 100055 100105 100105 100105 100105 100105 100105 100105 100105 100105 100105 100055 100105 100105 100055 100105 100055 100105 100055 1005	384 384 384 384 384 384 384 384 384 384	2222 * n22222222222222222222222222222222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 088. 088. 088. 088. 088.	161 161 161 161 161 021 021 001 001 001 001 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 026 a90 022 b00 038 a81 026 a90 022 b00 038 a81 026 a90 022 b00 04 b30 044 b30 047 b31 043 b40 049 b41 041 b50 033 b60 039 b61 031 b70 019 b80 013 b90 004 c00 050 c01	lp1565 lp1577 lp1587 lp1601 3 * *navn*** lp0101 li0101 lp0125 lj0125 lp0137 lp0149 lp0161 lp0149 lp0161 lp0173 lp0185 lj0197 lp0203 lp0245 lp0257 lj0269 lp0245 lp0257 lj0269 lj0269 lj0269 lj0269 lj0269 lj0269 lj027 lp0293 lj00305 lj0317 lp0329 lp0341 lr0341	1001 1001 1001 1001 *ffil* 1399 1395 1391 1387 1383 1379 1375 1372 1372 1372 1372 1372 1372 1368 1364 1356 1356 1356 1356 1356 2301 2301 2301 2301 2301 2301 2301 2301	1001 1001 1001 1001 1399 1399 1395 1391 1387 1383 1375 1372 1372 1372 1368 1364 1366 1352 1348 1368 1364 1352 1348 2301 2301 2301 2301 2301 2301 2301 2301	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 005180 101053 100849 100482 100482 100429 100172 100325 100586 100691 100534 100113 1000534 100113 1000534 101158 101105 101158 101072 100823 100977 100823 100977 100722 100454 100299 100287	005072 00502 005143 005213 *1ree1** 101026 101076 100872 100505 100453 100453 100453 100247 100610 100715 100976 100663 100558 100137 100663 100158 100137 100182 101130 101226 101052 1010848 101022 100797 100481 100324 100325 10035 1005 1005 1005 1005 1005 1005 1005 105	384 384 384 384 384 384 384 384 384 384	2222 * n2222222222222222222222222222222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 088. 088. 088.	161 161 161 161 021 021 021 001 001 001 021 02
176 m20 174 m30 178 m40 180 m50 System `F seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 028 a80 038 a81 026 a90 022 b00 005 b10 003 b20 044 b30 047 b31 043 b40 049 b41 041 b50 033 b60 039 b61 031 b70 019 b80 013 b90 004 c00	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1p0197 2i0197 1p0209 1p0245 1p0257 1i0257 1p0269 1i0253 1p0305 1p0353	1001 1001 1001 *ffil* 1399 1399 1395 1391 1387 1387 1387 1387 1387 1387 1387 1375 1372 1372 1372 1372 1372 1372 1375 1372 1375 1372 1375 1372 1375 1375 1372 1375 1372 1375 1372 1375 1375 1372 1368 1368 1368 1356 1356 1356 1356 1356 1356 1356 1356	1001 1001 1001 1001 1399 1399 1399 1399	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 freel** 101003 100849 100429 100422 100798 100429 100172 100325 100584 100584 100582 100691 100592 100639 100513 100513 100513 100510 100522 100534 100172 100823 100977 100772 100454 100299 100454	005072 00502 005143 005213 005213 101026 100872 100822 100453 100196 100247 100401 100349 100610 100633 100137 100085 101103 101103 101226 101052 100102 100102 100102 100241 100234 100221 100324 100221 100324 10034 10044 10044 10044 10044 10044 1	384 384 384 384 384 384 384 384 384 384	22222	1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 088. 088. 088. 088. 088. 088.	161 161 161 161 161 021 021 021 001 001 001 021 02
176 m20 174 m30 178 m40 180 m50 System 'H seq*punit 040 a00 042 a01 034 a10 020 a20 032 a21 018 a30 008 a40 010 a50 016 a60 014 a70 024 a71 026 a90 022 b00 038 a81 026 a90 022 b00 038 a81 026 a90 022 b00 04 b30 044 b30 047 b31 043 b40 049 b41 041 b50 033 b60 039 b61 031 b70 019 b80 013 b90 004 c00 050 c01	1p1565 1p1577 1p1589 1p1601 3 **navn*** 1p0101 1i0101 1p0113 1p0125 1i0125 1p0137 1p0149 1p0161 2p0173 1p0185 1p0197 2i0197 1p0209 1p0245 1p0257 1i0257 1p0269 1i0253 1p0305 1p0353	1001 1001 1001 *ffil* 1399 1399 1395 1391 1387 1387 1387 1387 1387 1387 1387 1375 1372 1372 1372 1372 1372 1372 1375 1372 1375 1372 1375 1372 1375 1375 1372 1375 1372 1375 1372 1375 1375 1372 1368 1368 1368 1356 1356 1356 1356 1356 1356 1356 1356	1001 1001 1001 1001 1399 1399 1399 1399	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	2409 2410 2409 2409 2409 2409 2409 2409 2409 240	005037 004961 005108 005180 freel** 101003 100849 100429 100422 100798 100429 100172 100325 100584 100584 100582 100691 100592 100639 100513 100513 100513 100510 100522 100534 100172 100823 100977 100772 100454 100299 100454	005072 00502 005143 005213 *1reel** 101026 101076 100872 100505 100822 100453 100196 1002401 100349 100610 100976 100663 100182 101035 101130 101226 101052 100055 101052 101052 101052 100055 101052 101055 101055 101055 100105 100055 100105 100055 100055 100105 100055 100105 100055 100105 100105 100105 100055 100105 100105 100105 100105 100055 100105 100105 100105 100105 100105 100105 100105 100105 100055 100105 100105 100105 100105 100105 100105 100105 100105 100105 100105 100055 100105 100105 100055 100105 100055 100105 100055 1005	384 384 384 384 384 384 384 384 384 384	22222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11	098. 098. 098. 098. 098. 088. 088. 088.	161 161 161 161 021 021 021 021 001 021 021 02

Page 1	9 of	51
--------	------	----

0.05 0.0										_			
015 c30						100350				1	11	268.	
017 c40 021 c50						100402 100507		384 384		1 1	9 9	268. 268.	
021 C50 027 c60						100664				1	9	268.	
035 c61						100873			2	1	11	268.	
023 c70						100559		384		ī	9	268.	
002 c80	~					D00015			2	1	11	268.	
007 c90						100144		384	2	1	- 9	268.	
046 d00	3p0461	2300	2300	1174	1174	101131	101157	384	2	1	11	268.	041
048 d01	1i0461	2300	2300	1174	1174	101184	101211	384	2	1	11	268.	041
025 d10						100611		384	2	1	9	268.	021
030 d20						100745		384	2	1	11	088.	
052 d30						101260				1	11	088.	
059 d31						101420		384	2	1	11	088.	
124 d32 054 d40						103303 101316		384 384	2 2	1	11 11	088. 088.	
057 d50						101374		384		1	11	088.	
061 d60						101476		384	2	î	11	088.	
065 d70						101590		384	2	î	11	088.	
069 d71						101704		384	2	1	11	088.	
071 d72						101761		384	2	1	11	088.	
073 d80	1p0557	1252	1252	2409	2409	101816	101843	384	2	1	11	088.	061
075 d90	1p0569	1248	1248	2380	2380	101874	101900	384	2	1	11	088.	061
081 d91						102045		384		1	11	088.	
067 e00						101647		384		1	11	088.	
063 e10						101533		384	2	1	11	088.	
077 e20						101931		384	2	1	11	088.	
079 e30 083 e40						101988		384	2	1	11	088.	
082 e50						102101 102073		384	2 2	1	9 11	088. 268.	
125 e51						103308		384		1	11	268	
080 e60						102016		384		1	- 9	268.	
078 e70						101959				1	11	268.	
062 e80						101504		384	2	1	11	268.	
076 e81	1i0677	2301	2301	1105	1105	101902	101930	384	2	1	11	268.	
051 e90	1p0689	2300	2300	1101	1101	101231	101259	384	2	1	11	268.	041
029 f00						100716		384	2	1	11	268.	021
053 fl0						101287			2	1	11	268.	
055 f20						101343		384		1	11	268.	
058 f21						101402		384	2	1	11	268.	
060 f30						101447		384	2	1	11	268.	
064 f31 066 f40						101561 101618				1	11	268.	
068 f41						101618		384		1 1	$\frac{11}{11}$	268. 268.	
070 f50						101732		384		1	11^{11}	268.	
072 f60						101787				1	11	268.	
074 £70						101844				1	11	268.	
129 f71						103429		384		1	11	268.	
084 f80						102129		384	2	1	9	268.	
088 f90	1p0809	2257	2245	1075	1062	102253	102281	384	2	1	9	268.	
112 f91						103008		384	2	1	11	268.	101
090 g00						102314		384	2	1	9	268,	062
131 g01						103491				1	11	268.	
098 g10						102563				1	9	268.	
104 g20						102751				1	11	268.	
107 g30 093 q40						102845				1	9		101
116 g41						102406 103132				1	9	088.	
091 q50						102344				1 1	11 9	088. 088.	
087 g60						102222				1	9	088,	
$126 \ q 61$						103336				î	11	088.	
001 g70						100001				1	11	088.	
085 g80	1p0917	1136	1136	2410	2410	102160	102189	384	2	1	9	088.	
118 g81						103198				1	11	088.	101
089 g90						102282				1	9	088.	
095 h00						102468				1	11	088.	
120 h01						103233				1	11	088.	
097 h10						102532				1	9	088.	
105 h20						102781				1	9	088.	
113 h21 103 h30						103038				1	11	088.	
						102720 102656				1	11	068.	
101 640				2409	2409	107030	TU7020	384	2	1	9	088.	101
101 h40 099 h50								304			~		
099 h50	1p1001	1109	1109	2410	2410	102593	102623		2	1	9 q	068.	082
	1p1001 1p1013	$\begin{array}{c} 1109 \\ 1106 \end{array}$	$\begin{array}{c} 1109 \\ 1106 \end{array}$	2410 2409	2410 2410		102623 102940	384	2 2		9 9 11		082 101

111 h70	1p1025	1102	1102	2409	2409	102974	103007	384	2	1	11	088.	1.01
122 h71	111025	1380	1380	2408	2400	103270	103205	204	2	1	11		
130 h80												088.	
						103458			2	1	11	088.	121
132 h81	111037	1098	1098	2409	2409	103519	103554	384	2	1	11	088.	121
186 h82						105330			2	1	11	088.	
108 h90													
	1p1049			985		102877			2	1	9	268.	101
086 iOO	1p1061	2300	2300	982	981	102190	102221	384	2	1	9	268.	082
092 i10	1p1073	2300	2300	977		102374			2	1	9	268.	
188 ill				2409		105374			2	1	11	088.	181
096 i20	1p1085	2301	2301	974	973	102500	102531	384	2	1	11	268,	082
100 i30	1p1097			970		102624							
									2	1	9	268.	
119 i31	li1097	1450	1450	970	970	103220	103232	384	2	1	11	268.	101
187 i32	211097	2215	2215	1405	1405	105350	105372	384	2	1	11	268.	
	1p1109												
102 i40	-			966	966	102687	102/19	384	2	1	11	268.	101
127 i 41	1i1109	2263	2263	966	966	103362	103394	384	2	1	11	268. 3	121
094 i50	161121	2300	2300	1451		102436			2	1	- 9	268.	
121 i51	1r1121			962		103257			2	1	11	268.	121
106 i60	1p1133	2300	2300	956	958	102812	102844	364	2	1	9	268.	101
110 i70	1p1145	2300	2300	954		102941			2	1			
											9	268.	
114 i80	1p1157	2300	2300	950	950	103069	103101	384	2	1	11	268. 3	101
1 17 i81	li1157	2300	2300	950	950	103164	103197	384	2	1	11	268.	101
133 i90	lp1169			946		103555		384					
									2	1	11	268.	
137 j00	lp1181			943	943	103694	103728	384	2	1	11	268. 3	121
139 j01	lil181	2301	2301	943	943	103765	103798	384	2	1	9	268. 3	121
145 j10	lp1193			939									
						103973		384	2	1	11	268. 3	141
135 j20	1p1205	2301	2301	935	935	103622	103657	384	2	1	11	268. 3	121
151 j21	1i1205	2301	2301	1078	1078	104179	104209	384	2	1	11	268.	
185 j22	211205	1753	1753	1004	1050	1011/0	101200						
	211205	1103	1123			105320		384	2	1	11	268. 3	181
141 j30	1p1217	2301	2301	931	931	103833	103867	384	2	1	9	268.	141
143 j40	1p1229	2301	2301	927		103904			2				
										1	9	268, 3	
147 j50	1p1241	2301	2301	924	923	104041	104074	384	2	1	11	268. 1	141
152 j51	1i1241	1032	1032	2410	2410	104210	104243	384	2	1	11	088. 3	
148 j60						104075							
									2	1	11	088. 3	
150 j61						104144			2	1	11	088. :	141
146 j70	1p1265	1025	1025	2410	2410	104007	104040	384	2	1	11	088.	
134 j80						103588							
									2	1	11	088. 3	
136 j90						103658			2	1	11	088. 1	121
138 k00	1p1301	1013	1013	2410	2410	103729	103764	384	2	1	9	088.1	
140 k01	141201	1012	1012	0410	0110	100700	100000	201					
	111301	1012	1012	2410	2410	103799	103835	384	2	1	9	088. 1	121
142 k10	lp1313	1009	1009	2410	2410	103868	103903	384	2	1	9	088. 1	141
144 kll	1i1313	1009	1009	2410	2410	103939	103972	384	2	1	11	088. 1	
154 k20													
						104282			2	1	11	088. 1	141
156 k30	1p1337	1001	1001	2409	2409	104354	104391	384	2	1	11	088.1	141
159 k40						104470		384	2	1	11		
												088.1	
161 k41						104539		384	2	1	11	088.1	161
163 k50	lp1361	1001	1001	2409	2409	104612	104646	384	2	1	11	088. 1	161
165 k60	1p1373	1001	1001	2409	2409	104681	104714	301	2	1	11	088. 1	
167 k70													
	Tbraga	TUUT	TOOT	16/4	16/4	104749	104766	384	2	1	11	088. 1	161
168 k71	2p1385	1675	1675	2410	2410	104767	104784	384	2	1	11	088. 1	161
170 k80	1p1397	1001	1001	2409	2409	104821	104855	391	2	1	11		
172 k81	1 1 2 0 7	1001	1001	0400	2400	104021	104033					088. 1	
						104891		384	2	1	11	088. 1	L61
149 k90	1p1409	2300	2300	892	692	104110	104143	384	2	1	11	268. 1	L41
184 k91	1i1409	1060	1060	1950	1950	105298	105319	384	2	1	11	088. 1	
153 100	1p1421												
				893		104244	104281	384	2	1	11	268. 1	L41
155 110	1p1433	2301	2301	892	892	104317	104353	384	2	1	11	268. 1	41
158 120	1p1445	2300	2300	893	892	104435	104468	384	2	1	11	268. 1	
160 121	1i1445												
				892		104505			2	1	11	268. 1	L41
162 130	1p1457	2301	2301	892	892	104578	104611	384	2	1	11	268. 1	161
164 140	1p1469	2301	2301	893	892	104647	104690	304		1	11	268. 1	
183 141	111460	2201	0201	1 6 2 0	1 0 0 0	105070	104000	204	4				
	TTT403	2001	2001			105278				1	11	268. 1	181
166 150	1p1481	2300	2300	892	892	104715	104748	384	2	1	11	268. 1	161
169 160	1p1493	2301	2301	892		104785				ĩ	11	268. 1	
171 170	1p1505												
				892		104856				1	11	268. 1	61
$173 \ 180$	1p1517				892	104927	104960	384	2	1	11	268. 1	61
175 181	1i1517					105003							
177 190										1	11	268. 1	
	lp1529			892		005073				1	11	268. 1	61
179 m00	1p1541	2301	2301	892	892	105145	105179	384	2	1	11	268. 1	
181 ml0	1p1553	2089	2089	892		105214							
182 m11	141660	1001	1001	2400	2400	105214	105242	504	2	1	11	268. 1	
	111223	TOOT	TOOT	2409	Z409	105243	105276	384	Z	1	11	088. 1	81
176 m20	1p1565	1001	1001	2409	2409	105037	105072	384	2	1	11	088.1	
174 m30	1p1577	1001	1001	2410	2410	104961	105002	204	2				
	1-1500	1001	1001	5410 	2410	104301	103002	384	4	1	11	088. 1	
178 m40	TDT288	1001	1001	2409	2409	105108	105144	384	2	1	11	088, 1	61
100 m50	1p1601	1001	1001	2409	2409	105180	105213	384	2	1	11	088. 1	
								-01	-	-	* T	000. I	. OT

7. Processing Time Line

Decon	August-December 1995
Elastic Binning	April - May 1996
Velocity	January - April 1996
DMO Stack	May - June 1996
Migration	July 1996

8. Notable Processing Problems and Solutions

The benefits from the decision to rebuild the Index from seismic headers instead of using the G2000 navigation files delivered from the Calgary center were not realised until stack production. After 34% of the southern priority area was stacked, it was discovered that the 'dpr' files generated from the G2000 did not agree with the seismic trace headers which created the index file. This discrepancy caused a significant amount of traces to be dropped from the stack. After discussing the problem with the DP support group, stack production resumed by using a processor `dmbgf' which circumvented the input of dpr files. As a consequence, an initial delay of 1 week was encountered, but was later recovered from the assignment of additional cpu resources.

9. Conclusion

Houston DP inherited this project from the Calgary DP Center in late March 1996 when the original deadline was due. After reviewing the previous processing, it soon became obvious that the Index had to be rebuilt from scratch and the velocities had to be partially re-run and completely repicked. However, with the support of the DP management and from the great effort of the processing group, we were able to deliver the Migrated Volume of the Southern priority area of the survey on June 30, while continuing to stack the Northern half. Finally, by the end of July 1996, as promised, the final migration of the entire volume was delivered.

Due to the wide spread deployment of the four streamer and triple source array, the shallow data was heavily contaminated by aliased noise. In fact, the data volume as a whole had a relatively poor signal/noise ratio. It was deemed necessary to apply, post-stack, a shallow in-line K-filter in conjunction with a 3-D FXY noise attenuation filter over the entire record length.

Figures 3 & 4 in Section 12 illustrate the results with and without the 3-D FXY noise attenuation filter.

Also shown in Section 12, Figures 5 and 6 are the timeslices from the QuickLook Cube migration (QLC) and the Final migrated volume, respectively. These timeslices are both at 2.0secs and clearly demonstrate the improvements attained from the final processing sequence.

10. 3-D Velocity Fields

10.1 Stacking Velocity Field

The 3-D stacking velocity field was generated using velocities derived by performing 3-D velocity analysis at selected in-line locations on the 3-D grid. The velocities were to be calculated on an 800 X 800 meter grid. Since the data was acquired with a subsurface line spacing of 25 meters, this required that every 32^{nd} row location be processed in 3-D mode as a velocity line, starting with row 25. The following is a list of the velocity lines that were used for this survey.

Rows 25, 57, 89, 121, 153, 185, 217, 249, 281, 313, 345, 377, 409, 441, 473, 505, 537, 569, 601, 633, 665, 697, 729, 761, 793, 825, 857, 889, 921, 953, 985, 1017, 1049, 1081, 1113, 1145, 1177, 1209, 1241, 1273, 1305, 1337, 1369, 1401, 1433, 1465, and 1497.

The DMO gathers were created on Fujitsu for above velocity lines and transferred to the Geco-Prakla Sun Workstation for velocity analysis. Finally, 2-D DMO stacks were generated to verify velocity interpretation. The stacks were created by using data acquired closest to the velocity row location, merging data with navigation and then stacking into 3-D grid which was allocated with wide bins.

Once all the velocities analyses had been interpreted and approved, a 3-D velocity database was constructed. According to the grid definition, the in-line position and the cross-line position, each velocity location was assigned the proper X, Y coordinate. In order for our program to properly build a velocity cube, the input grid of velocity cube completely covered the survey, the rectangular grid was defined to cover cross-line 1 through 3200 and in-line 1 through 1532. The first and last functions for each velocity line were repeated to cover this area. Once this velocity database was built, velocities were interpolated in time and space.

Temporal resampling to a regular time increment was done first, such that each function now had 76 velocity picks (i.e. 76 velocity timeslices). Each timeslice was then interpolated to fill in all intermediate points. Interpolation of the timeslices was done in the following manner:

- 1. Calculate the midpoint bin number of the four velocities on the regular rectangle bounded input velocities $V_{ij} V_{i+l,j} V_{i,j+l} V_{i+l,j+l}$, where *i* is the in-line number and *j* is the cross-line number.
- 2. Calculate the average velocity of these four velocities weighted by the inverse of the distance to the midpoints.
- 3. Linearly interpolate between known input points in the in-line direction.
- 4. Linearly interpolate between known input points in the cross-line direction.
- 5. Linearly interpolate the midpoints calculated in step 2 in the in-line direction.
- 6. Linearly interpolate the midpoints calculated in step 2 in the cross-line direction.
- 7. Linearly interpolate points along every 64 cross-line.
- 8. Linearly interpolate remaining points in the in-line direction.

10.2 Migration Velocity Field

The migration velocity field was constructed in a similar fashion. This procedure started with the temporally resampled database that was used for the stacking velocity cube. Before spatial interpolation of the functions, the velocities were converted to interval velocities. In addition, these interval velocity functions were temporally smoothed by fitting the time velocity points to a ninth order polynomial. This ensured that there were no unreasonably large temporal velocity changes in the interval velocity functions. These smoothed interval velocity functions were then spatially interpolated as above. After spatial interpolation, a four-pass recursive smoothing filter was applied to the velocity cube. This recursive filter operated in the following manner:

- 1. Each bin was summed with the previous bin in the cross-line direction with the following weights: 0.1 for the current bin and 0.9 for the previous bin. The resultant velocity was immediately written back to the current location. This procedure was repeated at next location and continued until all bins were mixed. The direction of mixing was from highest in-line number to lowest in-line number.
- 2. Same as in 1, but done from lowest in-line number to highest in-line number.
- 3. Same as 1, but in the in-line direction from highest cross-line number to lowest cross-line number.
- 4. Same as 3, but from lowest cross-line number to highest cross-line number.

11. Job Setups for Main Processing Steps

11.1 A job setup for Deconvolution

```
/job
          acct '7263 nf1p0557 explserv segystbd'
          trdcntl '/proj/nav/cntl/g2s0731.cntl'
          format segd datafmt 8015
/seisin
          data 1 9000 2 384 0
          dens hc
          exthdr 12
          extprint
          errtyp 2
          nodummy conskip 999999 totskip 999999
          reel 1816
          reel 1817
          reel 1818
          reel 1819
          reel 1820
          reel 1821
          reel 1822
          reel 1823
          reel 1824
          reel 1825
          reel 1826
          reel 1827
          reel 1828
          reel 1829
          reel 1830
          reel 1831
          reel 1832
          reel 1833
          reel 1834
          reel 1835
          reel 1836
          reel 1837
          reel 1838
          reel 1839
          reel 1840
          reel 1841
          reel 1842
          reel 1843
          bi 1252 ei 2409
          (revfiles
          device 'rmt1'
          ftraces d9,200,1 d201,392,1
(port
               ftraces d1,192,1 d201,392,1
          reseq 1
/deadset
/filter
          butterwo lowpass minimum filt 90 72 nfpts 121
/resamp
          sro 4 noalias
(@zero
/zero ftraces 208
```

/zero ffiles 1278 1353 2219 3 1 2 4 5 6 (23456789012345678901234567890123456789012345678901234567890 1.0 FTR LTR (nf-1p0557 FSP LSP (nf-1p0557 200 200 (nf-1p0557 1278 1278 1.0 (nf-1p0557 1353 1353 1.0 (nf-1p0557 2219 2219 1.0 (23456789012345678901234567890123456789012345678901234567890 (add 384 to port cable only to match p190s and make each kfldtn unique: add kfldtn -8 0 /glmod (port /glmod ftraces d201,392,1 add kfldtn -8 0 (port /glmod add kfldtn 384 0 /sphdiv vel 1. 1472. 500. 1647. 1000. 1813. 1500. 2000. 2000. 2221. 2500. 2630. 3000. 2990. 3500. 3274. 4000. 3548. 4500. 3749. 5000. 3920. 5500. 4076. 6000. 4218. 8000. 4509. 7000. 6500. 4335. 4450. 7500. 4483. 8500. 4509. 9000. 4509 tstop 8000 /expgain begtime 1 200 9999 200 endtime 1 4000 9999 4000 expfunc +3.0 filename '/data11/desig/designature' /filter /merg3d mxtrskip 300000 detnum 768 usefldtr navshots 1252 2409 mxspskip 999 mxsptdlt 30 timediff 2 todmerge (sidfmt '(i8,2x)' line 'nf 1p0557 ' (these blank spaces are needed to make it work.. /preddcon zone 1 operator 1 6000 320 4 operator 9999 design 1 260 400 5050 4700 9999 design apply 1 260 0 5050 0 9999 apply prewhite 0.1 byfile /glmod set kgrrow 0557,0 /glmod setlid nflp kgrrow (this is optional to stop /output putting all reel numbers as "SCRTCH": /hdrsegy cardnum 3 contents 'C 3 REEL NO 1p0557 DAY_START OF REEL YEAR OBSERVER' lname '1p0557' dens hc segyhead gecostrd /output device rmt2 segyhist '/proj/gss/jobs/segy/newf_template' noreseq

```
/eoj
```

/job	acct '0489 g30a nfgb dms' (runcode 0
	(system vpx220
	(division f
	(region 84 Mb
/jobtick	submitby 'group11'
,]	runtime 5.0
	inreel 'D00987'
	inreel 'D00988'
	inreel 'D00989'
	inreel 'D00990'
	inreel 'D00991'
	process 'dmbtd'
	userinst '**** NEW FOUNDLAND **'
	userinst '
	userinst 'RUN ONE JOB AT A TIME'
	userinst '*** dmo stack ******'
	dsn '/prod/dmstk/b4dmstkg30a.s'
/trdfile	use stack ctrlname '/SDP248/grp11/p489/stack.cntl'
	use index ctrlname '/SDP366/grp11/p489/index.cntlall'
	jobrows 759 797
1	jobcols 1 3200
/seisin	data 5 9000 4 384 0
	eofcount 2
	dens silo
	reel D00987 reel D00988
	reel D00989
	reel D00990
	reel D00991
	byfield
	reseq 1
/deadset	*
/grdit	getrwcl
-	xorigin 645410 yorigin 5226665
	basangle 88.34 sidangle 178.34
	rowsize 25.0 colsize 12.50
	nombinsx 100 nombinsy 100
	maxgrdcl 3200
	setcdp setsta
/dmbgf	contfile '/SDP213/grp11/p489/dmbtd.cntl'
/dmbgf	xorigin 645410 yorigin 5226665
/dmbgf	xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34
/dmbgf	xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50
/dmbgf	xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A '
-	xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30
/dmbgf /dmbcd	xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30 contfile '/SDP213/grp11/p489/dmbtd.cntl'
-	<pre>xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30 contfile '/SDP213/grp11/p489/dmbtd.cntl' mappedtr 1200</pre>
-	<pre>xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30 contfile '/SDP213/grp11/p489/dmbtd.cntl' mappedtr 1200 firstrow 763</pre>
-	<pre>xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30 contfile '/SDP213/grp11/p489/dmbtd.cntl' mappedtr 1200 firstrow 763 lastrow 793</pre>
-	<pre>xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30 contfile '/SDP213/grp11/p489/dmbtd.cntl' mappedtr 1200 firstrow 763 lastrow 793 firstcol 1</pre>
-	<pre>xorigin 645410 yorigin 5226665 basangle 80.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30 contfile '/SDP213/grp11/p489/dmbtd.cntl' mappedtr 1200 firstrow 763 lastrow 793 firstcol 1 lastcol 3200</pre>
-	<pre>xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30 contfile '/SDP213/grp11/p489/dmbtd.cntl' mappedtr 1200 firstrow 763 lastrow 793 firstcol 1 lastcol 3200 xorigin 645410 yorigin 5226665</pre>
-	<pre>xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25.0 colsize 12.50 newline '1p0857 A ' print 30 contfile '/SDP213/grp11/p489/dmbtd.cntl' mappedtr 1200 firstrow 763 lastrow 793 firstcol 1 lastcol 3200</pre>

11.2 A job setup for 3-D DMO and Stack with Elastic Binning

Page 27 of 51

/tranalys 265 5040 thres 10.0 firstspk offset 1000 9000 nearwind 4500 9000 farwind taper 200 /zvelocit threed rmsvels notintrp rdthreed 0 100 9000 100 maxrow 1532 3200 maxcol vcubenam 'dsn=/SDP238/grp11/p489/vcub489.cntl;' /nmo fmute10+0575+0576+5005200+4200fmute99999990+0575+0576+5005200+4200 /mute taper 20 useqlcom /deadset (fmute and tmute in headers applied to trace samples /dmbtd stkcntl '/SDP248/grp11/p489/stack.cntl' contfile '/SDP213/grp11/p489/dmbtd.cntl' filetype stack (restart 1 1 1532 1 1532 3200 1 3200 1 1 boundary 763 firstrow 793 lastrow firstcol 1 3200 lastcol feather 200 numbins 5500 unnorm (printbnd use for first dmo run only

/eoj

11.3 A job setup for In-line k-filter

	▲
/job	acct '0489 norm nfgb dms' (runcode 0 (system vpx220 (priority 8 (division e
/jobtick	-
/trdfile	use stack ctrlname '/SDP248/grp11/p489/stack.cntl' jobrows 001 200 jobcols 1 3200
/stkin	data 4 9000 4 1 0 rows 1 200 1 cols 1 3200 1 use stack root
	xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25 colsize 12.5
/deadset /glmod	set kcdp 1 1
/filtwod	nxfilt 25 ntfilt 1 timegate 0 0 3000 4000 kfilt -43 -38 -28 -23
/filtwod	reject costaper nxfilt 25 ntfilt 1 timegate 0 0 3000 4000 kfilt -76 -71 ÷61 -56 reject costaper
/filtwod	nxfilt 25 ntfilt 1 timegate 0 0 3000 4000 kfilt -110 -105 -95 -90 reject costaper
/deadset /stkout	useglcom client 'exp services' area 'n foundland' use stack firstrow 1 lastrow 779
	firstcol 1 lastcol 3200

/eoj

11.4 A job setup for 3-D FXY-filter

	1
/job	acct '0489 rowqc nfgb dms' plotevry 1 (runcode 0 (system vpx220 (division e (priority 8 (region 60 Mb
/jobtick	<pre>submitby 'indro' runtime 1.30 process 'fxy' userinst '***newfoundland***' userinst 'fxy dcn ' userinst '************************************</pre>
/trdfile	use stack ctrlname '/SDP248/grp11/p489/stack.cntl' jobrows 211 278 jobcols 1533 3200
/stkin	data 4 9000 4 1 0 rows 211 278 1 (insert correct row range cols 1533 3200 1 root bycol xorigin 645410 yorigin 5226665 basangle 88.34 sidangle 178.34 rowsize 25 colsize 12.5
/deadset /renumber	firstcdp l
/fxyfilt	ilwind 20 xlwind 20 lenfil 5 (default 3 ,recomm ilovlp 10 xlovlp 10 lowfreq 0 highfreq 75 nscalwin 10 bycol
/deadset u /stkout	client 'exp services' area 'n foundland' use stack
/eoj	firstrow 1 lastrow 1532 firstcol 1 lastcol 3200
, ,	

11.5 A job setup for Migration Step-I

```
acct '0489 1225 nfgb mig'
/job
     (runcode 0
           (system
                    vpx220
           (priority 8
           (region 110Mb
           (division E
           submitby 'nicholas'
/jobtick
           runtime
                     5.00
                     'disk'
           inreel
           outreel
                    'no/op'
           process
                     'mig'
           userinst '*****nfgb****'
           userinst 'migration step 1
           userinst '!!! check memory before'
           userinst 'starting job!!
           userinst '*****nfgb****'
           dsn
                     'N/A'
/trdfile
           use mig
           ctrlname '/SDP248/grp11/p489/mig.cntl'
           jobrows 1051 1225 (reading in 175 in-lines
           jobcols 1 3750 (full range including padded zone
/stkin
           data 4 9000 6 1 0 (without stretch
           use mig
           rows 1051 1225 1 (reading in 175 inlines
           cols 1 3200 1 (full range excluding padded zone
/renumber
           firstcdp 1
/deadset
/mgtda
           qc
                     '3380
           unit
           volser
                     'SDP388'
                     '/SDP388/grp11/p489/mgtdap1_1225.log'
           resfile
           wrkfile
                     '/SDP388/grp11/p489/mgtdap1_1225.wrk'
                     '/SDP388/grp11/p489/mgtdap1_1225.hdr'
           hdrfile
           atap
                     20 (default is 30
           vmax
                     0 (0 for steps 1 and 3 otherwise 5000.0
           use mig
           flagtd
           byrows
                              (byrows or bycols
                     1051
           firstrow
                              (first row forjob
           lastrow
                     1225
                              (last row forjob
           firstcol
                     1
                     3200
           lastcol
                              (excluding padding
           delrow
                     25.0
           delcol
                     12.5
           anone
                     0.5
           antwo
                     1.5
           anthree
                     65
           (anfour
                      75 2.0 70 4.0 50 6.0 40 9.0 30
                     75
           anfour
                     60 3.0 60 6.0 40 9.0 10
           angm
           (bmem
                      0.4
           padt
                     2.0
           interval
                     3.0
           fracv
           dtrms
                     200
           ivpt
                     1
                              (step number 1 2 or 3
```

	nrows ncols ncolsb knsmpa knsmpb minrow mincol oppam	1532 3200 3750 1501 1617 1 1 0 4 4 4	(total, (based	e> ir on	vs scluding icluding 9000ms 9700ms	j pado same	ding for		
2 69955201	opcoef 025518318e-	-12							
-1.5643384	42978 <mark>7</mark> 3967e	e-10							
	836198131e- 409524095e-								
	91235449116								
	643132595e-								
	3531331779€ 273087551e-								
6.56973730	079858209e-	-09							
	5820553167e 556168815e-								
	2775904404								
	5181001961e								
	315522706e- 5226616910¢								
2.0466111	784319987e-	-04							
	7877277321¢ 580708324e-								
-2.0560394	4654967973@	≥-08							
	4421262180e 319867309e-								
	87205236436								
	992355365e-								
	1852597136∉ 7633009887∉								
5.6454287	584597702e-	-06							
	3789517047∉ 663473836e-								
	487347025e-								
	84464723366								
	018693099e- 6720904691¢								
1.93089533	322115055e-	-10							
	2295568208e 8335757044e								
	147391096e-								
	2222806280e 472912061e-								
	7273305824e								
	5427580000@								
	198055027e- 4728528716e								
2.22455279	911552334e-	-04							
	8329775061¢ 061426891e-								
	112172528e-								
	4440579876e 027792361e-								
	435090765e-								
	5480455047e								
2.40611495	572508669e-	-07							

-8.3096238541784616e-07 2.0173669271152617e-09 1.2334199172536735e-07 -8.4742999246973462e-06 1.0141919557191004e-04 -7.0234471937942906e-10 -9.0518773823712036e-07 1.2399309386829978e-05 -4.6301647641408615e-04 -1.0515828579203047e-06 3.3027604263354205e-05 1.4688985990807825e-04 1.8936469985501221e-02 (pilot interval velocities follow vpilot (reduced pilot velocity function 1561.48 (at 0.00000000e+00 milliseconds 1591.35 (at 199.99992 milliseconds 1701.56 (at 399.99976 milliseconds 1849.88 (at 599.99976 milliseconds 1992.02 (at 799.99976 milliseconds 2135.19 (at 999.99976 milliseconds 2314.41 (at 1199.9998 milliseconds 2520.41 (at 1399.9995 milliseconds 2755.25 (at 1599.9993 milliseconds 3005.54 (at 1799.9990 milliseconds 3257.89 (at 1999.9990 milliseconds 3504.06 (at 2199,9998 milliseconds 3735.81 (at 2399.9995 milliseconds 3953.14 (at 2599.9993 milliseconds 4163.26 { at 2799.9990 milliseconds 4332.18 (at 2999.9990 milliseconds 4475.35 (at 3199.9988 milliseconds 4617.49 (at 3399.9995 milliseconds 4724.61 (at 3599.9993 milliseconds 4818.34 { at 3799.9990 milliseconds 4916.19 { at 3999.9990 milliseconds 4727.63 { at 4199.9961 milliseconds 4775.36 (at 4399.9961 milliseconds 4828.32 (at 4599.9961 milliseconds 4890.72 (at 4799.9961 milliseconds 4930.20 { at 4999.9961 milliseconds 4994.20 (at 5199.9961 milliseconds 5043.84 (at 5399.9961 milliseconds 5064.38 (at 5599.9961 milliseconds 5100.93 (at 5799.9961 milliseconds 5110.71 { at 5999.9961 milliseconds 4915.52 { at 6199.9961 milliseconds 4882.66 (at 6399.9961 milliseconds 4838.82 (at 6599.9961 milliseconds 4757.56 (at 6799.9961 milliseconds 4663.44 (at 6999.9961 milliseconds 4574.28 (at 7199.9961 milliseconds 4454.18 (at 7399.9961 milliseconds 4353.84 (at 7599.9961 milliseconds 4260.69 (at 7799.9961 milliseconds 4190,87 (at 7999.9961 milliseconds 4106.28 (at 8199.9961 milliseconds 4021.91 (at 8399.9961 milliseconds 3930.85 (at 8599.9961 milliseconds 3838.66 (at 8799.9961 milliseconds

Page 33 of 51

3746.56 (at 8999.9961 milliseconds 3746.56 (repeat last velocity for stretch 3746.56 (9400 milliseconds 3746.56 (9600 milliseconds 3746.56 (9800 milliseconds /stkout use mig client 'expl' area 'nfgb' firstrow 1051 lastrow 1225 firstcol 1 lastcol 3750 (including padding /eoj

11.6 A job setup for Migration Step-II

/job	acct '048 (runcode (system (priority (region 1	0 vpx220 8	afgb mig'
/jobtick	userinst userinst userinst	<pre>'nichola 6.00 'disk' 'no/op' 'mig' '******** 'migrati '!!! che 'startin</pre>	nfgb*****' .on step 2 ' eck memory before' ng job!! '
/trdfile	jobrows 1	1532 (r	/grp11/p489/mig.cntl' eading in 1532 inlines) (150 cols, last job includes padded zone
/syndata /mgtda	sr 6 msi qc unit volser resfile wrkfile hdrfile atap vmax use mig flagtd bycols firstrow	9700 ntr '3380 ' 'SDP388' 'SDP388' 'SDP388 'SDP388 'SDP388 'SDP388 20 (def 5200 (1 5200 (1 5200 (1 5200 (25.0 12.5 0.5 1.5 65 75	: 1 nrecs 1 datatype shot type 5

1 minrow mincol 1 0444 oppam opcoef 2.6885530025518318e-12 -1.5643384297873967e-10 2.1290515836198131e-09 9.8991836409524095e-10 -3.1765299123544911e-10 1.7937876643132595e-08 -2.5513263531331779e-07 5.8315702273087551e-07 6.5697373079858209e-09 -3.7729275820553167e-07 5.7157588556168815e-06 -2.9293642775904404e-05 -1.9393565181001961e-08 1.5356500315522706e-06 -3.0044565226616910e-05 2.0466111784319987e-04 -4.6059397877277321e-11 2.2498468580708324e-09 -2.0560394654967973e-08 -1.1887344421262180e-07 5.0196558319867309e-09 -2.6580428720523643e-07 3.2847062992355365e-06 -7.8541951852597136e-07 -1.0053347633009887e-07 5.6454287584597702e-06 -8.0992933789517047e-05 3.4944739663473836e-04 2.3097712487347025e-07 -2.1946018446472336e-05 4.3855936018693099e-04 -1.5231606720904691e-03 1.9308953322115055e-10 -6.0785162295568208e-09 -3.9673038335757044e-08 1.5050571147391096e-06 -1.9009562222806280e-08 8.3932435472912061e-07 -5.7555177273305824e-06 -8.2047805427580000e-05 3.3276832198055027e-07 -1.7517174728528716e-05 2.2245527911552334e-04 -4.8666418329775061e-04 8.7828068061426891e-09 4.8522394112172528e-05 -1.2590824440579876e-03 5.6091735027792361e-04 2.9426077435090765e-11 -7.1375725480455047e-09 2.4061149572508669e-07 -8.3096238541784616e-07 2.0173669271152617e-09 1.2334199172536735e-07 -8.4742999246973462e-06

1.0141919557191004e-04

-7.0234471937942906e-10 -9.0518773823712036e-07 1.2399309386829978e-05 -4.6301647641408615e-04 -1.0515828579203047e-06 3.3027604263354205e-05 1.4688985990807825e-04 1.8936469985501221e-02 (pilot interval velocities follow vpilot (reduced pilot velocity function 1561.48 (at 0.00000000e+00 milliseconds 1591.35 (at 199.99992 milliseconds 1701.56 (at 399.99976 milliseconds 1849.88 (at 599.99976 milliseconds 1992.02 (at 799.99976 milliseconds 2135.19 (at 999.99976 milliseconds 2314.41 (at 1199.9998 milliseconds 2520.41 (at 1399,9995 milliseconds 2755.25 (at 1599.9993 milliseconds 3005.54 (at 1799.9990 milliseconds 3257.89 (at 1999.9990 milliseconds 3504.06 (at 2199.9998 milliseconds 3735.81 (at 2399.9995 milliseconds 3953.14 (at 2599.9993 milliseconds 4163.26 (at 2799.9990 milliseconds 4332.18 (at 2999.9990 milliseconds 4475.35 (at 3199.9988 milliseconds 4617.49 (at 3399.9995 milliseconds 4724.61 (at 3599.9993 milliseconds 4818.34 (at 3799.9990 milliseconds 4916.19 (at 3999.9990 milliseconds 4727.63 (at 4199.9961 milliseconds 4775.36 (at 4399.9961 milliseconds 4828.32 (at 4599.9961 milliseconds 4890.72 (at 4799.9961 milliseconds 4930.20 (at 4999.9961 milliseconds 4994.20 (at 5199.9961 milliseconds 5043.84 (at 5399.9961 milliseconds 5064.38 (at 5599.9961 milliseconds 5100.93 (at 5799.9961 milliseconds 5110.71 (at 5999.9961 milliseconds 4915.52 (at 6199.9961 milliseconds 4882.66 (at 6399.9961 milliseconds 4838.82 (at 6599.9961 milliseconds 4757.56 (at 6799.9961 milliseconds 4663.44 (at 6999.9961 milliseconds 4574.28 (at 7199.9961 milliseconds 4454.18 (at 7399.9961 milliseconds 4353.84 (at 7599.9961 milliseconds 4260.69 (at 7799.9961 milliseconds 4190.87 (at 7999.9961 milliseconds 4106.28 (at 8199.9961 milliseconds 4021.91 (at 8399.9961 milliseconds 3930.85 (at 8599.9961 milliseconds 3838.66 (at 8799.9961 milliseconds 3746.56 (at 8999.9961 milliseconds 3746.56 (repeat last velocity for stretch 3746.56 (9400 milliseconds 3746.56 (9600 milliseconds /eoj

11.7 A job setup for Migration Step-III

/job	acct '0489 1225 nfgb mig'
-	(runcode 0
	(system vpx220
	(priority 8
	(region 110Mb
	(division E
/jobtick	submitby 'nicholas'
	runtime 6.00
	inreel 'disk'
	outreel 'no/op'
	process 'mig'
	userinst '*****nfgb****'
	userinst 'migration step 3 '
	userinst '!!! check memory before'
	userinst 'starting job!!
	userinst '*****nfqb****'
	dsn 'N/A'
/trdfile	use mig
,	ctrlname '/SDP248/grp11/p489/mig.cntl'
	jobrows 1051 1225 (reading in 175 inlines
	jobcols 1 3750 (full range including padded zone
/stkin	data 4 9700 6 1 0 (with stretch
	use mig
	rows 1051 1225 1 (reading in 175 inlines
	cols 1 3750 1 (full range including padded zone
/renumber	firstcdp 1
/mgtda	qc
	unit '3380 '
	volser 'SDP388'
	resfile '/SDP388/grp11/p489/mgtdap3_1225.log'
	wrkfile '/SDP388/grp11/p489/mgtdap3 1225.wrk'
	hdrfile '/SDP388/grp11/p489/mgtdap3_1225.hdr'
	atap 20 (default is 30
	vmax 0 (0 for steps 1 and 3 otherwise 5000.0
	use mig
	flagtd
	byrows (byrows or bycols
	firstrow 1051 (first row forjob
	lastrow 1225 (last row forjob
	firstcol 1
	lastcol 3750 (including padding
	delrow 25.0
	delcol 12.5
	anone 0.5
	antwo 1.5
	anthree 65
	(anfour 75 2.0 70 4.0 50 6.0 40 9.0 30
	anfour 75
	angm 60 3.0 60 6.0 40 9.0 10
	(bmem 0.4
	padt 2.0
	interval
	fracv 3.0
	dtrms 200
	ivpt 3 (step number 1 2 or 3
	-

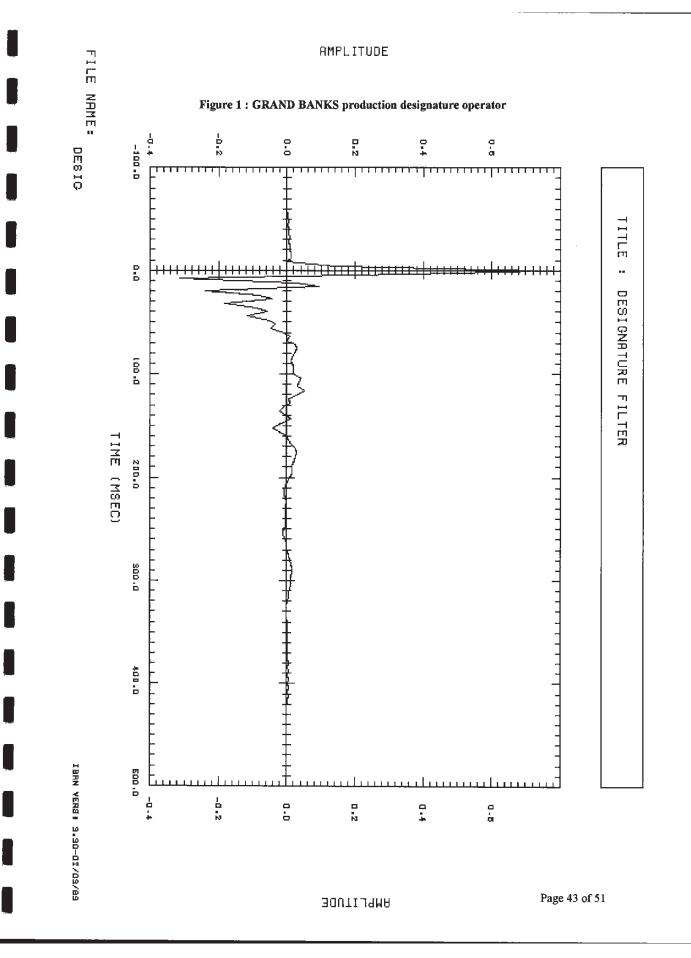
Page 38 of 51

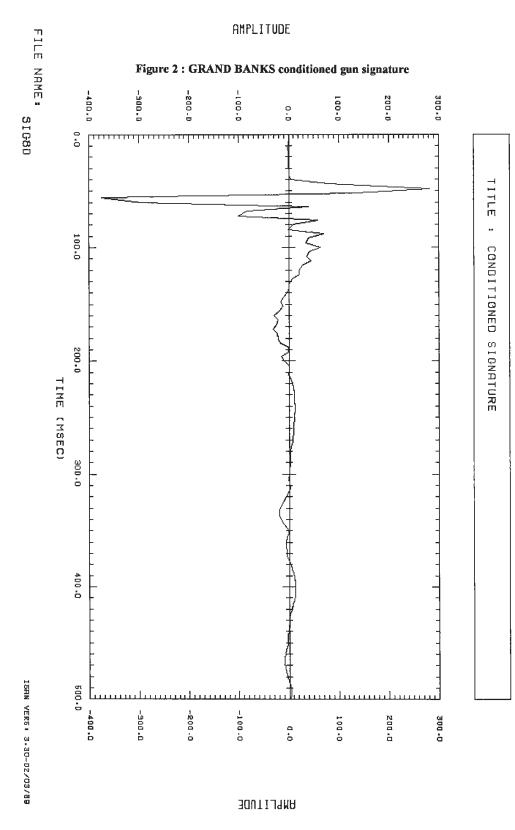
nrows 1532 ncols 3200 ncolsb 3750	<pre>{total rows (total, excluding padding (total, including padding</pre>
knsmpa 1501 knsmpb 1617	(based on 9000ms same for all 3 steps
minrow 1	(based on 9700ms same for all 3 steps
mincol 1	
oppam 044	4
opcoef	-
2.6885530025518318e-12	
-1.5643384297873967e-10	
2.1290515836198131e-09	
9.8991836409524095e-10	
-3.1765299123544911e-10 1.7937876643132595e-08	
-2.5513263531331779e-07	
5.8315702273087551e-07	
6.5697373079858209e-09	
-3.7729275820553167e-07	
5.7157588556168815e-06	
-2.9293642775904404e-05	
-1.9393565181001961e-08	
1.5356500315522706e-06	
-3.0044565226616910e-05 2.0466111784319987e-04	
-4.6059397877277321e-11	
2.2498468580708324e-09	
-2.0560394654967973e-08	
-1.1887344421262180e-07	
5.0196558319867309e-09	
-2.6580428720523643e-07	
3.2847062992355365e-06	
-7.8541951852597136e-07	
-1.0053347633009887e-07 5.6454287584597702e-06	
-8.0992933789517047e-05	
3.4944739663473836e-04	
2.3097712487347025e-07	
-2.1946018446472336e-05	
4.3855936018693099e-04	
-1.5231606720904691e-03	
1.9308953322115055e-10 -6.0785162295568208e-09	
-3.9673038335757044e-08	
1.5050571147391096e-06	
-1.9009562222806280e-08	
8.3932435472912061e-07	
-5.7555177273305824e-06	
-8.2047805427580000e-05	
3.3276832198055027e-07	
-1.7517174728528716e-05 2.2245527911552334e-04	
-4.8666418329775061e-04	
8.7828068061426891e-09	
4.8522394112172528e-05	
-1.2590824440579876e-03	
5.6091735027792361e-04	
2.9426077435090765e-11	
-7.1375725480455047e-09	
2.4061149572508669e-07	

Ī

Page 39 of 51

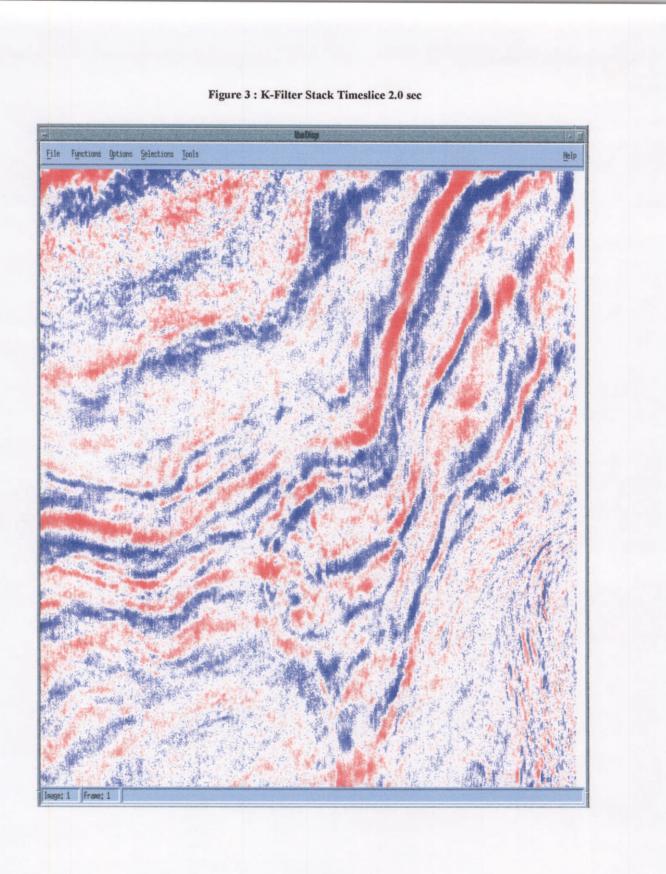
-8.3096238541784616e-	-07
2.0173669271152617e-0	19
1.2334199172536735e-0	
-8.4742999246973462e-	06
1.0141919557191004e-0	
-7.0234471937942906e-	
-9.0518773823712036e-	
1.2399309386829978e-0	
-4.6301647641408615e-	04
-1.0515828579203047e-	06
3.3027604263354205e-0	5
1.4688985990807825e-0	
1.8936469985501221e-0	
(pilot interval veloc	
vpilot (reduced pilot	velocity function
1561.48 (at 0.000000	Obstan millinger
	00e+00 milliseconds
1591.35 (at 199.9999	
1701.56 (at 399.9997	
1849.88 (at 599.9997	
1992.02 (at 799.9997	
2135.19 (at 999.9997	6 milliseconds
2314.41 (at 1199.999	8 milliseconds
2520.41 (at 1399.999	
2755.25 (at 1599.999	
3005.54 (at 1799.999	
3257.89 (at 1999.999	
3953.14 (at 2599.999	
4163.26 (at 2799.999	
4332.18 (at 2999.999	
4475.35 (at 3199.998	
4617.49 (at 3399.999	5 milliseconds
4724.61 (at 3599.999	3 milliseconds
4818.34 (at 3799.999	0 milliseconds
4916.19 (at 3999.999	
4727.63 (at 4199.996	
4775.36 (at 4399.996	
4828.32 (at 4599.996	
4930.20 (at 4999.996	
4994.20 (at 5199.996	
5043.84 (at 5399.996	
5064.38 (at 5599.996	
5100.93 (at 5799.996	
5110.71 (at 5999.996	1 milliseconds
4915.52 (at 6199.996	1 milliseconds
4882.66 (at 6399.996	1 milliseconds
4838.82 (at 6599.996	
4757.56 (at 6799.996	
4663.44 (at 6999.996	
4574.28 (at 7199.996	
4454.18 (at 7399.996	
•	
4260.69 (at 7799.996	
4190.87 (at 7999.996	
4106.28 (at 8199.996	
4021.91 (at 8399.996	
3930.85 (at 8599.996	
3838.66 (at 8799.996	1 milliseconds

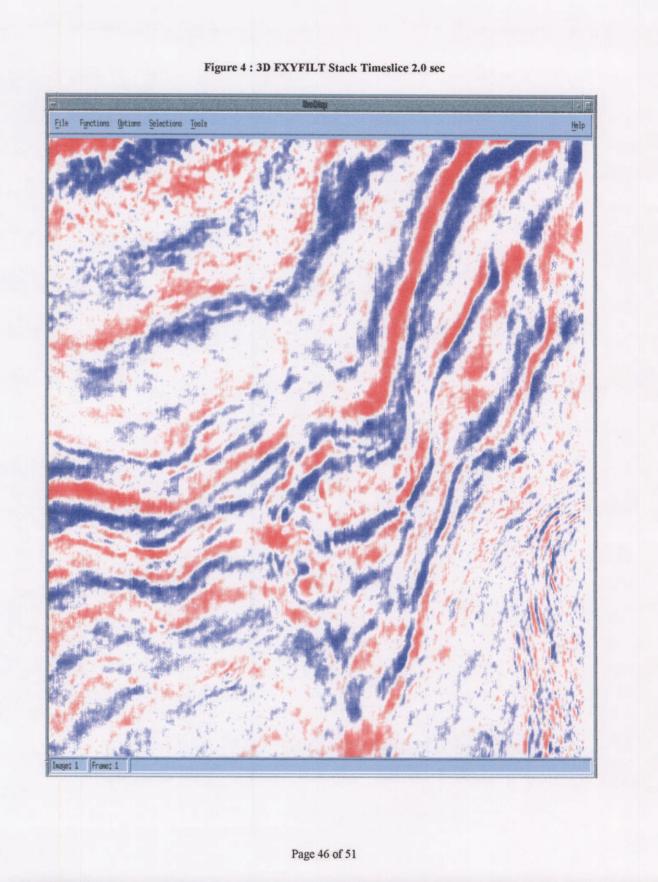

.

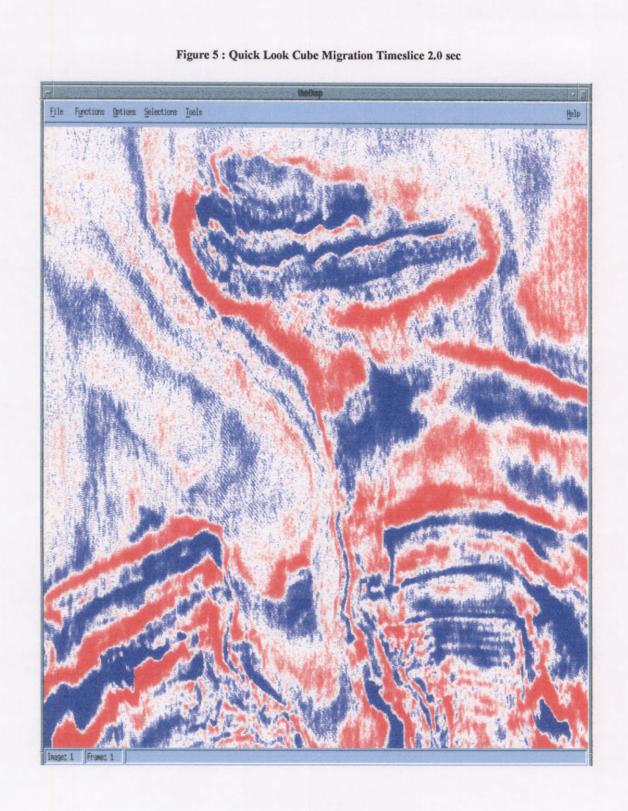

Page 40 of 51

3746.56 (at 8999.9961 milliseconds 3746.56 (repeat last velocity for stretch 3746.56 (9400 milliseconds 3746.56 (9600 milliseconds 3746.56 (9800 milliseconds /renumber firstcdp 1 /glcom grrows 1051 1225 /expgain begtime 1 5000 999999 5000 endtime 1 9000 999999 9000 expfunc +2.0 /stkout use mig client 'expl' area 'nfgb' firstrow 1051 lastrow 1225 firstcol 1 lastcol 3200 (excluding padding /eoj

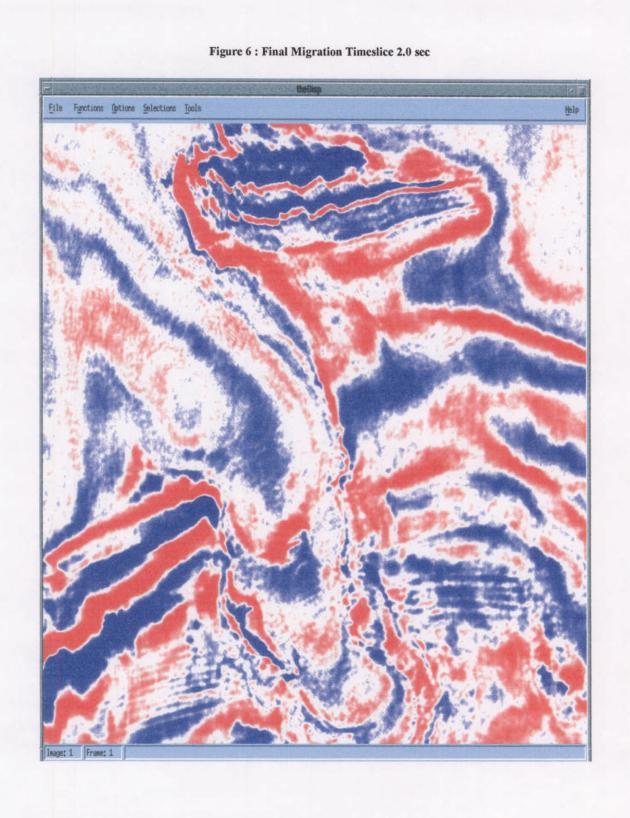
12. Figures


- Figure 1 : GRAND BANKS production designature operator
- Figure 2 : GRAND BANKS conditioned gun signature
- Figure 3 : K-Filter Stack Timeslice 2.0 sec
- Figure 4 : 3D FXYFILT Stack Timeslice 2.0 sec
- Figure 5 : Quick Look Cube Migration Timeslice 2.0 sec
- Figure 6 : Final Migration Timeslice 2.0 sec





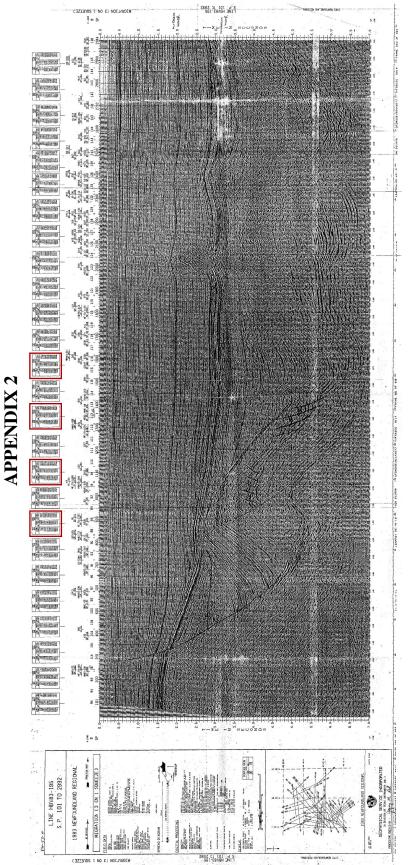
121


Page 44 of 51

Page 47 of 51

13. Appendix

13.1 Average Amplitude Report


	0 1		
after	10 traces. mn/av/mx -2.9757	0.24983	5.1008 samp 1: 1501
after	20 traces. mn/av/mx -2,9757	0.26086	5.6896 samp 1: 1501
after	30 traces. mn/av/mx -3,5370	0.27447	5.8874 samp 1: 1501
after	40 traces. mn/av/mx -3,8205	0.28321	5.8874 samp 1: 1501
after	50 traces. mn/av/mx -3.8205	0.28813	5.8874 samp 1: 1501
	cd	p 51	•
after	60 traces, mn/av/mx -3.8205	0.29130	5.8874 samp 1: 1501
after	70 traces. mn/av/mx -3.8205	0.29214	5.8874 samp 1: 1501
after	80 traces. mn/av/mx -3.8205	0.29232	5.8874 samp 1: 1501
after	90 traces. mn/av/mx -3.8205	0.29432	5.8874 samp 1: 1501
after	100 traces. mn/av/mx -3.8205	0.29570	5.8874 samp 1: 1501
	cd	p 101	*
after	110 traces. mn/av/mx -3.8205	0.29648	5.8874 samp 1:1501
after	120 traces. mn/av/mx -3.8205	0.30070	5.8874 samp 1: 1501
after	130 traces. mn/av/mx -3.8205	0.30416	5.8874 samp 1:1501
after	140 traces. mn/av/mx -3.8205	0.30628	5.8874 samp 1:1501
after	150 traces. mn/av/mx -3.8205	0.30971	5.8874 samp 1: 1501
	cd	p 151	
after	160 traces. mn/av/mx -3.8205	0.31184	5.8874 samp 1:1501
	170 traces. mn/av/mx -3.8205	0.31369	5.8874 samp 1:1501
	180 traces. mn/av/mx -3.8205	0.31572	6.5053 samp 1:1501
	190 traces. mn/av/mx -3.8205	0.31695	6.5053 samp 1: 1501
after	200 traces. mn/av/mx -3.8205	0.31682	6.5053 samp 1:1501
		p 201	
	210 traces. mn/av/mx -3.8205	0.31812	6.5053 samp 1: 1501
	220 traces. mn/av/mx -3.8205	0.31883	6.5053 samp 1: 1501
	230 traces. mn/av/mx -3.8205	0.31920	6.5053 samp 1: 1501
	240 traces. mn/av/mx -3.8205	0.32017	6.5053 samp 1: 1501
after	250 traces. mn/av/mx -4.2455	0.32153	6.5053 samp 1: 1501
		lp 251	
	260 traces. mn/av/mx -4.4773	0.32264	6.5053 samp 1:1501
	270 traces. mn/av/mx -4.4773	0.32424	6.5053 samp 1:1501
	280 traces. mn/av/mx -4.4773	0.32576	6.5053 samp 1: 1501
	290 traces. mn/av/mx -4.4773	0.32604	6.5053 samp 1: 1501
after	300 traces. mn/av/mx -4.4773	0.32712	6.5053 samp 1: 1501
		lp_301	
	310 traces. mn/av/mx -4.4773	0.32850	6.5053 samp 1:1501
	320 traces. mn/av/mx -4.4773	0.32981	6.5053 samp 1:1501
	330 traces. mn/av/mx -4.4773	0.33099	6.5053 samp 1:1501
	340 traces. mn/av/mx -4.4773	0.33178	6.5053 samp 1:1501
after	350 traces. mn/av/mx -4.4773	0.33398	6.5053 samp 1:1501
		lp 351	
	360 traces. mn/av/mx -4.5997	0.33540	6.5053 samp 1: 1501
	370 traces. mn/av/mx -4.5997	0.33567	6.5053 samp 1: 1501
	380 traces. mn/av/mx -5.7632	0.33632	6.5053 samp 1: 1501
	390 traces. mn/av/mx -5,7707	0.33718	6.5053 samp 1: 1501
atter	400 traces. mn/av/mx -5.7707	0.33747	6.5053 samp 1: 1501
	cc	lp 401	

after 410 traces. mn/av/mx -5.7707 0.33797 6.5053 samp 1:1501 6.5053 samp 1: 1501 after 420 traces. mn/av/mx -5.7707 0.33795 6.5053 samp 1:1501 after 430 traces. mn/av/mx -5.7707 0.33767 after 440 traces. mn/av/mx -5.7707 0.33741 6,5053 samp 1:1501 after 450 traces. mn/av/mx -5.7707 0,33730 6.5053 samp 1:1501 cdp 451 after 460 traces. mn/av/mx -5.7707 0.33782 6.5053 samp 1:1501 after 470 traces. mn/av/mx -5.7707 0.33875 6,5053 samp 1:1501 after 480 traces. mn/av/mx -5.7707 0.33930 6,5053 samp 1:1501 after 490 traces. mn/av/mx -5.7707 0.33936 6.5053 samp 1:1501 6.5053 samp 1: 1501 after 500 traces. mn/av/mx -5.7707 0.33927 cdp 501 after 510 traces. mn/av/mx -5.7707 0.33911 6.5053 samp 1: 1501 after 520 traces. mn/av/mx -5.7707 0.33853 6.5053 samp 1: 1501 after 530 traces. mn/av/mx -5.7707 6.5053 samp 1: 1501 0.33766 after 540 traces. mn/av/mx -5.7707 6.5053 samp 1:1501 0.33762 6,5053 samp 1:1501 after 550 traces. mn/av/mx -5.7707 0.33778 cdp 551 after 560 traces. mn/av/mx -5.7707 0.33742 6.5053 samp 1:1501 6,5053 samp 1:1501 after 570 traces. mn/av/mx -5.7707 0.33710 6,5053 samp 1:1501 after 580 traces. mn/av/mx -5.7707 0.33672 6.5053 samp 1:1501 after 590 traces. mn/av/mx -5.7707 0.33622 6.5053 samp 1: 1501 after 600 traces. mn/av/mx -5.7707 0.33583 cdp 601 6.5053 samp 1: 1501 after 610 traces. mn/av/mx -5.7707 0.33600 6.5053 samp 1:1501 after 620 traces. mn/av/mx -5.7707 0.33583 6,5053 samp 1:1501 after 630 traces, mn/av/mx -5.7707 0.33555 after 640 traces, mn/av/mx -5.7707 0.33525 6,5053 samp 1:1501 after 650 traces. mn/av/mx -5.7707 0.33538 6.5053 samp 1:1501 cdp 651 after 660 traces. mn/av/mx -5.7707 0.33537 6.5053 samp 1:1501 after 670 traces. mn/av/mx -5.7707 0.33523 6.5053 samp 1:1501 after 680 traces. mn/av/mx -5.7707 0 33487 6.5053 samp 1:1501 after 690 traces. mn/av/mx -5.7707 6.5053 samp 1:1501 0 33463 after 700 traces. mn/av/mx -5,7707 0.33426 6,5053 samp 1:1501 cdp 701 after 710 traces, mn/av/mx -5,7707 0.33394 6.5053 samp 1: 1501 after 720 traces. mn/av/mx -5.7707 0.33353 6,5053 samp 1:1501 after 730 traces. mn/av/mx -5.7707 0.33315 6,5053 samp 1:1501 6.5053 samp 1:1501 after 740 traces. mn/av/mx -5.7707 0.33284 after 750 traces. mn/av/mx -5.7707 0.33280 6.5053 samp 1:1501 cdp 751 after 760 traces. mn/av/mx -5.7707 0.33277 6.5053 samp 1:1501 after 770 traces. mn/av/mx -5.7707 0.33304 6.5053 samp 1:1501 after 780 traces. mn/av/mx -5.7707 0.33307 6.5053 samp 1:1501 after 790 traces. mn/av/mx -5.7707 0.33335 6.5053 samp 1:1501 after 800 traces. mn/av/mx -5.7707 0.33374 6.5053 samp 1:1501 cdp 801 after 810 traces. mn/av/mx -5.7707 0.33397 6.5053 samp 1: 1501 after 820 traces. mn/av/mx -5.7707 0.33403 6.5053 samp 1: 1501 after 830 traces, mn/av/mx -5,7707 0.33422 6.5053 samp 1:1501 after 840 traces. mn/av/mx -5.7707 0.33427 6,5053 samp 1:1501 after 850 traces. mn/av/mx -5.7707 0.33418 6,5053 samp 1:1501 cdp 851

Page 50 of 51

after	860 traces. mn/av/mx -5.7707	0.33428	6.5053 s	amp 1: 1501
after	870 traces. mn/av/mx -5.7707	0.33446	6.5053 s	amp 1:1501
after	880 traces. mn/av/mx -5.7707	0.33474	6.5053 s	amp 1: 1501
after	890 traces. mn/av/mx -5.7707	0.33478	6.5053 s	amp 1: 1501
after	900 traces. mn/av/mx -5.7707	0.33467	6.5053 s	amp 1: 1501
	cd	р 901		
after	910 traces. mn/av/mx -5,7707	0.33460	6.5053 s	amp 1:1501
after	920 traces. mn/av/mx -5,7707	0.33458	6.5053 s	amp 1: 1501
after	930 traces. mn/av/mx -5.7707	0.33454	6.5053 s	amp 1: 1501
after	940 traces. mn/av/mx -5.7707	0.33467	6.5053 s	amp 1: 1501
after	950 traces. mn/av/mx -5.7707	0.33474	6.5053 s	amp 1: 1501
	cđ	p 951		
after	960 traces. mn/av/mx -5,7707	0.33498	6.5053 s	amp 1: 1501
after	970 traces. mn/av/mx -5.7707	0.33529	6.5053 \$	amp 1: 1501
after	980 traces. mn/av/mx -5.7707	0.33540	6.5053 s	amp 1: 1501
after	990 traces. mn/av/mx -5.7707	0.33574	6.5053 s	samp 1: 1501
after	1000 traces. mn/av/mx -5.7707	0.33608	6.5053 s	amp 1: 1501

after a total of 1000 traces with live data between samples 1 and 1501 avg = 0.3360797

APPENDIX 3

Root mean square velocities (VRMS) from some velocity surveys from line HBV83-195 used to calculate the average velocity of the sedimentary section.

Velocity survey	Time (ms)	Vrms (m/s)
CDP 2698	6005	3910
CDP 3148	6012	4289
CDP 3630	5998	3899
CDP 4080	5999	3689
	Average	3946
		(~4.0 km/s)

C	DP: 26	98	C	DP: 314	48	С	DP: 36	30	С	DP: 408	30
Time (ms)	V _{RMS} (m/s)	Vint (m/s)	Time (ms)	V _{RMS} (m/s)	Vint (m/s)	Time (ms)	Vrms (m/s)	Vint (m/s)	Time (ms)	V _{RMS} (m/s)	Vint (m/s)
117 300 735 1319 1773 2476 3166 3776 4222 5204 6005	1480 1609 1777 1935 2151 2361 2648 2910 3250 3707 3910	1687 1885 2118 2682 2823 3489 4004 5320 5236 5034 5233	143 299 802 1431 1842 2606 3252 3714 4297 5126 6012	1480 1547 1749 1970 2104 2393 2757 3096 3546 3955 4289	1606 1859 2221 2516 2977 3895 4854 5623 5217 5859 5796	167 327 862 1526 1940 2836 3328 3874 4375 4941 5998	1480 1607 1805 2034 2162 2470 2739 3007 3252 3490 3899	1730 1916 2298 2580 3032 3948 4293 4737 4959 5416 5882	157 351 907 1550 2000 2963 3437 3907 4439 5088 5999	1480 1548 1704 1893 2100 2445 2719 2954 3195 3412 3689	1601 1796 2132 2694 3039 4030 4299 4593 4632 4960 5380
7000	4124		7000	4532		7000	4240		7000	3975	

(Serrano Suarez, 2013)

APPENDIX 4

List of formation tops from available wells. Depths are in meters and measured depths. From the BASIN database website (<u>http://basin.gdr.nrcan.gc.ca/wells/index_e.php</u>) (2012)

Well Flying Foam I-13

Year	Author	Depth Type	Тор	Bottom	Units	Formation
2007	CNLOPB	MD		2115.5	М	BANQUEREAU FM
2007			744	768	м	(OLIGOCENE SANDSTONE - UPPER)
2007			940.5	948	М	(OLIGOCENE SANDSTONE - LOWER)
2007			2115.5	2115.5	М	(BASE TERTIARY UNCONFORMITY)
2007			2115.5	2487	М	WHITEROSE FM
2007			2115.5	2467	М	CATALINA
2007			2467	2487	М	"B" MARKER MB
2007			2487	3114	М	HIBERNIA FM
2007			2487	2847	М	SHALE EQUIV OF HIBERNIA UPPER ZONE
2007			2847	3114	М	HIBERNIA LOWER ZONE
2007			3114	3268	М	FORTUNE BAY FM
2007			3268	3268	М	(TITHONIAN UNCONFORMITY)
2007			3268	3683.2	М	RANKIN FM
2007			3281	3353	М	EGRET MB
2007			3592.5	3683.2	М	PORT AU PORT MB
1989	MCALPINE,K.D.			2116	М	BANQUEREAU FM
1989			2116	2116	М	(UNCONFORMITY)
1989			2116	2467	М	CATALINA FM
1989			2467	2487	М	("B" MARKER)
1989			2487	2847	М	WHITEROSE SHALE (LOWER)
1989			2847	3114	М	HIBERNIA FM
1989			3114	3194	М	FORTUNE BAY SHALE
1989			3194	3269	М	JEANNE D'ARC FM
1989			3269	3269	М	(UNCONFORMITY)
1989			3269	3683	М	RANKIN FM
1989			3281	3353	М	EGRET MB
1987	WADE, J.A. & SHERWIN, D.F.				FT	BANQUEREAU FM
1987			6941	6941		(AVALON UNCONFORMITY)
1987			6941	8170		MISSISAUGA EQUIV
1987			8170	10488		VERRILL CANYON FM ?
1987			10488	12084		ABENAKI/MIC MAC ?
1985	MCALPINE,K.D.					(SEE UPDATED REPORT)
1980	WADE, J.A.					(SEE MCALPINE REPORT)

Well	West	Flying	Foam	L-23
------	------	--------	------	------

Year	Author	Depth Type	Тор	Bottom	Units	Formation
2007	CNLOPB	MD		2496	М	BANQUEREAU FM
2007			755	780	М	(OLIGOCENE SANDSTONE - UPPER)
2007			962	968	М	(OLIGOCENE SANDSTONE - LOWER)
2007			2464	2496	М	SOUTH MARA MB
2007			2483	2490	М	(LIMESTONE)
2007			2496	2496	М	(BASE TERTIARY UNCONFORMITY)
2007			2496	3430	М	NAUTILUS FM
2007			3430	3471	М	BEN NEVIS FM
2007			3471	3471	М	(APTIAN UNCONFORMITY)
2007			3471	3580	М	AVALON FM
2007			3493	3564	М	(SHALE TONGUE)
2007			3564	3580	М	"A" MARKER MB
2007			3580	3760	М	WHITEROSE FM
2007			3760	4292	М	CATALINA FM
2007			4167	4292	М	"B" MARKER MB
2007			4292	4553.8	М	HIBERNIA FM
2007			4292	4553.8	М	SHALE EQUIV OF HIBERNIA UPPER ZONE
1989	MCALPINE,K.D.			2496	М	BANQUEREAU FM
1989			2407	2407	М	(UNCONFORMITY)
1989			2407	2496	М	SOUTH MARA UNIT
1989			2496	2496	М	(UNCONFORMITY)
1989			2496	2516	М	DAWSON CANYON FM
1989			2516	3090	М	NAUTILUS SHALE
1989			2570	2570	М	(UNCONFORMITY)
1989			3090	3090	м	(oncontronaint)
1989			3090	3189	м	AVALON FM
1989			3189	3189	М	(UNCONFORMITY)
1989			3189	3760	м	WHITEROSE SHALE
1989			3760	4554	M	CATALINA FM
1987			2293		М	(UPPER CRETACEOUS "K" MARKER)
1987	WADE, J.A. & SHERWIN, D.F.		2483		М	(PETREL LIMESTONE MARKER)
1987			2517	2517	М	(MIDDLE CRETACEOUS UNCONFORMITY)
1985	MCALPINE,K.D.					(SEE UPDATED REPORT)
1982			2292.8		м	("K" MARKER)
1982	MOBIL OIL CANADA LTD		2482.8		М	(PETREL LIMESTONE "P" MARKER)
1982	NODIE OIE OANADA ETD		2516.8		М	(UNCONFORMITY)
1982			2746.8		М	