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Multi-input and multi-output (MIMO) radars achieve high resolution of arrival direction

by transmitting orthogonal waveforms, performing matched filtering at the receiver end

and then jointly processing the measurements of all receive antennas. This dissertation

studies the use of compressive sensing (CS) and matrix completion (MC) techniques

as means of reducing the amount of data that need to be collected by a MIMO radar

system, without sacrificing the system’s good resolution properties. MIMO radars with

sparse sensing are useful in networked radar scenarios, in which the joint processing of

the measurements is done at a fusion center, which might be connected to the receive

antennas via a wireless link. In such scenarios, reduced amount of data translates into

bandwidth and power saving in the receiver-fusion center link.

First, we consider previously defined CS-based MIMO radar schemes, and propose

optimal transmit antenna power allocation and transmit waveform design schemes that

improve target localization performance. The optimization criterion is to minimize the

coherence between the columns of the sensing matrix. In addition, we propose a clutter

suppression scheme based on the Capon beamforming in the CS-based MIMO radars.

Second, we propose a novel MIMO radar approach based on matrix completion,

termed as MIMO-MC, in which each receive node either performs matched filtering
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with a small number of randomly selected dictionary waveforms, or obtains sub-Nyquist

samples of the received target echoes at randomly sampled instants, and forwards the

results to a fusion center. Based on the received samples, and with knowledge of the

sampling scheme, the fusion center partially fills a matrix, referred to as the data ma-

trix and subsequently applies matrix completion techniques to estimate the full matrix.

The completed data matrix is used for target estimation with standard array signal

processing methods. We show that MIMO-MC radars share the advantages of the CS-

based radars, i.e., high resolution with reduced amounts of data, but unlike CS-based

radars do not require grid discretization and thus are not sensitive to basis mismatch.

For MIMO radars with uniform linear arrays, we investigate the relationship between

the coherence of the data matrix and the transmit waveforms, and formulate an opti-

mal waveform design problem. This is an optimization problem on the complex Stiefel

manifold, which is then solved via the modified steepest descent and the modified New-

ton algorithms with nonmonotone line search methods. We also propose transmit and

receive beamforming schemes to significantly reduce the sampling rate at the receiver

end in MIMO-MC radars.
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Chapter 1

Introduction

In this chapter, we provide the necessary background on multi-input multi-output

(MIMO) radars, sparse sensing in MIMO radars based on compressed sensing and

matrix completion theory.

1.1 Radar Basics

A radar is a configuration of transmit and receive antennas, used for detecting targets

and estimating their parameters, namely, range, direction of arrival (DOA) and speed

[1]. It operates by transmitting a particular type of waveform and then processing the

target returns as received by its receive antennas.

A pulse radar sends out signals in short bursts or pulses [2]. At the receivers,

matched filters are applied to yield maximum signal-to-noise ratio (SNR) output, as-

suming that the received signal can be modeled as target returns in additive white

Gaussian noise (AWGN). Let us consider a radar system in which both transmit and

receive antennas are stationary and colocated. At the transmitter, the transmitted

waveform is typically modeled as [2]

x̄ (t) = a (t) sin (2πft+ ϕ (t)) , (1.1)

where f is the carrier frequency in Hertz. The term a (t) represents amplitude modula-

tion of the carrier. In a pulsed radar, this is typically a rectangular function. The term

ϕ (t) models any phase or frequency modulation of the carrier.

The real-valued waveform of (1.1) is more conveniently modeled by its complex
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equivalent

x̄ (t) = s (t) e−j2πft, (1.2)

where

s (t) = a (t) e−jϕ(t) (1.3)

is the complex baseband signal. The baseband signal s (t) can be obtained by filtering

x̄ (t) with a baseband filter, which is referred to as demodulation process [3].

• Range estimation: Consider the simple case of a stationary target. The noise-free

target return at the receiver, r (t), can be written as [4]

r (t) = βs (t− τ0) e
−j2πf(t−τ0), (1.4)

where β is the target scattering coefficient. The round trip delay is τ0, based on

which, the distance between the radar and the target, i.e., range, is

d =
τ0c

2
, (1.5)

where c is the speed of light.

• Doppler estimation: A moving target introduces Doppler shift in the carrier fre-

quency. Assume the target is moving with velocity v towards radar and v
c ≪ 1.

The received signal can be written as [4]

r (t) = βs

(

t− τ0 +
2vt

c

)

e−j2πf(t−τ0+
2vt
c ). (1.6)

Assume the transit signal does not change appreciably in a time equal to 1
B , i.e.,

2vT

c
≪ 1

B
, (1.7)

or equivalently,

BT ≪ c

2v
. (1.8)

Then, we can ignore the time-scale change of the transmitted signal. And the

complex envelope of the receive signal can be simplified as [4]

r (t) ≈ βs (t− τ0) e
−j2π(ft−fτ0+νt), (1.9)
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where ν = 2vf
c is the Doppler shift. To extract the Doppler information, pulse

radar needs to transmit multiple pulses.

• DOA estimation: Multiple receive antennas are required to extract the DOA

information. Let us consider a uniform linear array (ULA) with the inter-spacing

between receive antenna is dr, shown in Fig. 1.1. Assume a stationary target is

located in the far field and its distance to the nearest receive antenna is d and

the round trip delay is τ0 =
2d
c . The noise free receive signal at the m-th receive

antenna can be written as

ri (t) = βs

(

t− τ0 −
(m− 1) dr sin θ

c

)

e
−j2πf

(

t−τ0− (m−1)dr sin θ

c

)

. (1.10)

Let T and B denote the duration and bandwidth of the transmit signal, respec-

tively. Assume that the transmitted signal is narrowband, i.e.,

1

T
≪ f. (1.11)

For example, suppose dr =
λ
2 , where λ is the wavelength. Then, it holds that

(m− 1)dr sin θ

c
=

(m− 1)λ sin θ

2c
=

(m− 1) sin θ

2f
≪ T. (1.12)

Consequently, we can ignore the delay term (m−1)dr sin θ
c and the receive signal at

the m-th receiver can be written as

rm (t) ≈ βs (t− τ0) e
−j2πf

(

t−τ0− (m−1)dr sin θ

c

)

. (1.13)

Let α = fdr sin θ
c = dr sin θ

λ , where λ is the wavelength of the signal waveform; α

is referred to as the spatial frequency [3]. All the antennas in the receive array

perform sampling simultaneously following the Nyquist rule. The collection of

samples from all antennas in the receive array at a single time instant is referred

to as snapshot. At a given time instant, the snapshot can be viewed as a complex

sinusoid of frequency α (spatial frequency). If we apply the fast Fourier transform

(FFT) on a single snapshot, the peak locations in the FFT index will correspond

to the spatial frequency α, based on which the DOA θ can be obtained as long as

θ ∈ [−90◦, 90◦]. More accurate DOA information can be extracted using subspace
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Figure 1.1: Radar with Mr receive antennas.

methods which rely on the spatial covariance matrix, such as multiple signal

classification (MUSIC) algorithm [5]. The spatial covariance matrix is estimated

using multiple snapshots.

In the following, we present the radar ambiguity function and its properties. Let us

consider non-stationary targets. The equivalent complex baseband signal of (1.9) can

be written as

r (t) = βs (t− τ0) e
−j2π(−fτ0+νt) + n (t) , (1.14)

where n (t) is the noise. The return r (t) then goes through a matched filter, i.e., r (t)

is correlated with the transmitted signal s (t). The output of the correlator is given by

m (τ − τ0, ν) = βej2πfτ0
∫ +∞

−∞
s (t− τ0) s

∗ (t− τ) e−j2πνtdt+

∫ +∞

−∞
n (t) s∗ (t− τ ) dt.

(1.15)

The constant τ0 can be removed without affecting the analysis. Without loss of gener-

ality, we assume τ0 = 0. Then, the matched filter output is

m (τ, ν) = βA (τ, ν) +

∫ ∞

−∞
n (t) s∗ (t− τ) dt, (1.16)
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where

A (τ, ν) =

∫ ∞

−∞
s (t) s∗ (t− τ)e−j2πνtdt (1.17)

is referred to as the ambiguity function of the radar waveform s (t) [6].

The ambiguity function is a major tool for radar signal analysis. The ambiguity

function evaluated at (τ, ν) = (0, 0) is equal to the matched filter output that is perfectly

matched to the signal reflected from the target. The ambiguity function along the zero-

Doppler axis (corresponding Doppler shift ν = 0) is the autocorrelation function of the

waveform

A (τ, 0) =

∫ ∞

−∞
s (t) s∗ (t− τ)dt = Rs (τ) . (1.18)

Consider a single rectangular pulse signal with duration T . There would be a single

peak along the zero-Doppler axis as well as zero-delay axis.

Figure 1.2 shows the output of a perfect matched filter with the input as a rect-

angular pulse, which is a triangular envelope of width 2T with a central peak. If the

second target is located from the first one with a time delay of T seconds. At a radar

receiver, the matched filter output of these two closely spaced targets is plotted in Fig.

1.3. It can be found that the two peaks are resolvable if the the range between two
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targets, i.e., the range resolution, satisfies

∆R ≥ cT

2
. (1.19)

Therefore, the range resolution is proportional to the width T . Shortening the width

of pulse would increase the range resolution. The ideal ambiguity function along the

zero-Doppler axis, i.e., the autocorrelation function, would be a delta function. On the

other hand, for the radar pulse with imperfect autocorrelation function, a weak target

located at the neighborhood of a strong target could be masked by the sidelobe of the

ambiguity function centered around the strong target. Therefore, radar pulses that

have good correlation properties not only help to improve the range accuracy but also

help to distinguish closely located multiple targets.

As discussed above, the range resolution can be improved by using short pulses [7].

However, by transmitting short pulses, the average transmitted power would be reduced

since the maximal transmit power of radar is limited and fixed. It is desirable to increase

the pulse width, i.e., to increase the average transmitted power, or equivalently increase

the average SNR, while maintaining good range resolution. This goal is achieved by

employing the pulse compression techniques. Pulse compression allows us to increase

the average transmitted power by transmitting a relative longer pulse, while obtain

range resolution corresponding to a short pulse [7]. The pulse compression can be

achieved either by linear frequency modulation (LFM) or phase coding [7], such as

Barker sequences [8].

In the additive white Gaussian noise, the output of the matched filter maximizes the

SNR. To improve the orthogonality of the signals at the receiver end, it is possible to

use mismatched filters [9]. Mismatched filters have been introduced in radars to reduce

the sidelobes at the cost of a reduce of the SNR at the filter output [9].

1.2 MIMO Radars

Inspired by the idea of MIMO communications, MIMO radar systems have received

significant attention during the past decade [10] [11]. In phased-array radar, multiple
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transmit antennas emit a scaled version of a single waveform [12], i.e., coherent wave-

forms are transmitted to illuminate certain directions of interests with maximum target

illuminating power [13]. However, scanning a wide sector requires significant amount

of time, and during each scan cycle only a few pulses reach the targets. Unlike phased-

array radars, MIMO radars transmit independent waveforms through their transmit

antennas. Therefore, the beampattern of MIMO radars is omnidirectional, which in-

dicates that the whole search space would be illuminated simultaneously during the

search mode. At the receivers, these waveforms can be separated with the help of a

matched filter bank constructed based on the transmit waveforms. MIMO radars are

configured in two scenarios, i.e., widely separated MIMO radars [10] [14] [15] [16] [17]

and colocated MIMO radars [18] [19].

1.2.1 Widely Separated MIMO Radars

In widely separated MIMO radar systems, the transmit antennas are deployed far apart

from each other as compared with their distance to the target [10] [14] [15] [16] [17] . The

transmit antennas emit independent waveforms from decorrelated transmitters. Theses

waveforms are transmitted through independent paths to the target. As a result, each

target return contains independent information about the target. This configuration

enables the radar to view the target from different directions simultaneously. Diversity

gain could be achieved by combining these independent target returns and MIMO radar

systems could reduce the radar cross section (RCS) scintillation of the target.

Non-coherent and coherent methods can be applied to process the radar observa-

tions. Only the signal envelope information is utilized in non-coherent methods and

therefore only time synchronization between transmit and receive antennas is required.

On the other hand, coherent methods utilize both envelop and phase information, which

requires both time and phase synchronization.

1.2.2 Colocated MIMO Radars

In the colocated MIMO radar systems, the antennas are deployed close to each other

and thus the RCS corresponding to different paths could be viewed as the same [18] [19].
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Figure 1.4: The colocated MIMO radar system is equipped with Mt transmit antennas

and Mr receive antennas. Both transmit and receive arrays follow the ULA model.

Suppose the number of transmit and receive antennas are Mt and Mr. By transmitting

independent waveforms at the transmit end and using matched filter bank to separate

them at each receiver, the MIMO radar system is equivalent to a long virtual array

with MtMr elements [19]. This suggests that the colocated MIMO radars can provide

a much higher degree of freedom (DOF) with only a small number of transmit and

receive antennas. This enables the colocated MIMO radars to achieve superior spatial

resolution as compared with traditional radar systems.

Let us consider a stationary point target located in the far filer of the antennas;

the target’s direction of departure (DOD) and direction of arrival angles are the same,

denoted by θ. The transmit and receive antennas are configured in a uniform linear

array (ULA), as shown in Fig. 1.4. Let dt and dr denote the inter-spacing between the

transmit and receive array, respectively. Let s1 (n) be the discrete time baseband signal

emitted from the m-th transmit antenna. Let rl (n) denote the received signal at the

l-th receive antenna and let

r (n) = [r1 (n) , · · · , rMr (n)]
T , n = 1, · · · , N, (1.20)

where N denotes the number of samples during the transmit pulse. Let

a (θ) =
[

e−j2πfτ1(θ), e−j2πfτ2(θ), · · · , e−j2πfτMt
(θ)
]T

, (1.21)

b (θ) =
[

e−j2πfτ̃1(θ), e−j2πfτ̃2(θ), · · · , e−j2πfτ̃Mr (θ)
]T

, (1.22)
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where τm (θ) is the propagation time of the transmitted signal between the m-th trans-

mit antenna and the target located at θ, and τ̃l (θ) is the time for the corresponding

reflected signal to reach the l-th receive antenna. Under the point target assumption,

the noise free received data vector can be written as [19]

r (n) =
K∑

k=1

βkb (θk)a
T (θk) s (n) , (1.23)

where s (n) = [s1 (n) , · · · , sMr (n)]
T . If the transmitted waveforms from the Mt anten-

nas are linearly independent of each other, i.e.,

rank {[s (1) , · · · , s (N)]} = Mt, (1.24)

the identifiability equation

K∑

k=1

β̃kb
(

θ̃k

)

aT
(

θ̃k

)

s (n) =

K∑

k=1

βkb (θk)a
T (θk) s (n) (1.25)

would be equivalent to [19]

K∑

k=1

β̃kb
(

θ̃k

)

aT
(

θ̃k

)

=
K∑

k=1

βkb (θk) a
T (θk), (1.26)

or Ãβ̃ = Aβ, where

Ã =
[

a
(

θ̃1

)

⊗ b
(

θ̃1

)

, · · · ,a
(

θ̃K

)

⊗ b
(

θ̃K

)]

(1.27)

A = [a (θ1)⊗ b (θ1) , · · · ,a (θK)⊗ b (θK)] (1.28)

and β̃ =
[

β̃1, · · · , β̃K
]T

, β = [β1, · · · , βK ]T . When dt
dr

= Mr, the vector a (θ)⊗ b (θ)

would contain MtMr distinct elements, i.e.,

a (θ)⊗ b (θ) =
[

1, e−jω, · · · , e−j(MtMr−1)ω
]T

, (1.29)

where ω = 2πfτ (θ) and τ (θ) is the inter-element delay difference in the receive ULA.

In other words, a virtual array of MtMr elements is achieved with only Mt + Mr

elements [19]. As a result, colocated MIMO radars is capable to achieve superior angular

resolution as compared to phased-array radars with the same number of antennas.

For the matched filter to work at the receive antennas, the transmit waveforms must

be orthogonal. However, due to the time delay and Doppler shift, the waveforms or-

thogonality might be lost at the receiver end. The mismatched filter has been proposed

to address this issue [20].
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1.2.3 MIMO Radar Ambiguity Function

The MIMO radar ambiguity function under the arbitrary array configurations are given

in [21]. Here, we state the ambiguity function of MIMO radars under ULA configura-

tions. We consider a MIMO radar system with ULA transmit/receive arrays of inter-

element spacing dt and dr, respectively. Let γ
∆
= dt/dr. For a single target at direction

θ, we define the normalized spatial frequency as

α =
dr
λ

sin θ. (1.30)

The demodulated receive signal in the l-th receive antenna is proportional to

rτ,ν,fl (t) ≈
Mt−1∑

m=0

sm (t− τ) ej2πνtej2πf(γm+l). (1.31)

At the receiver, the target information is captured with a matched filter with the

parameters (τ ′, ν ′, α′). The matched filter output is [22]

Mr−1∑

l=0

∫ ∞

−∞
rτ,ν,αl (t) ·

(

rτ
′,ν′,α′

l

)∗
(t)dt

=

(
Mr−1∑

l=0

ej2π(α−α′)l

)(
Mt−1∑

m=0

Mt−1∑

m′=0

∫ ∞

−∞
sm (t− τ) s∗m′

(
t− τ ′

)
ej2π(ν−ν′)tdt · ej2π(αm−α′m′)γ

)

(1.32)

The MIMO radar ambiguity function under ULA configurations is defined as [22]

A
(
τ, ν, α, α′) ∆

=

Mt−1∑

m=0

Mt−1∑

m′=0

Am,m′ (τ, ν) ej2π(αm−α′m′)γ , (1.33)

where

Am,m′ (τ, ν)
∆
=

∫ ∞

−∞
sm (t) s∗m′ (t+ τ) ej2πνtdt (1.34)

is called the cross ambiguity function.

In the pulse MIMO radars, the transmitted signal is

sm (t) =

Q−1
∑

q=0

φm (t− qTPRI). (1.35)
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The duration of pulse φm (t), i.e., Tφ, satisfies Tφ ≪ TPRI . Assume that Tφν ≈ 0. The

ambiguity function for the pulse MIMO radars is [22]

A
(
τ, ν, α, α′) =

Mt−1∑

m=0

Mt−1∑

m′=0

Rφ
m,m′ (τ) e

j2π(αm−α′m′)γ ·
Q−1
∑

q=0

ej2πνqTPRI , (1.36)

for |τ | < TPRI −Tφ. Here, R
φ
m,m′ (τ) is the cross correlation between φm (t) and φm′ (t),

defined as

Rφ
m,m′ (τ)

∆
=

∫ Tφ

0
φm (t)φ∗

m′ (t+ τ) dt. (1.37)

The pulse MIMO radar ambiguity function shown in (1.36) indicates that the Doppler

processing is separable from the correlation function under the assumption of slow mov-

ing targets and short pulses [22]. Consequently, the choice of the waveforms {φm (t)}

does not affect the Doppler resolution.

1.3 Compressive Sensing (CS) Based MIMO Radars

Compressive sensing (CS) [23] [24] [25], is a relatively recent development for finding

sparse solutions to under-determined linear systems. CS theory states that a K-sparse

signal x of length N can be recovered exactly with high probability from O(K logN)

linearly compressed measurements. CS finds applications in MIMO radar systems [26]

[27] [28] [29] [30]. In CS based MIMO radars, the target parameters are estimated by

exploiting the sparsity of targets in the angle, Doppler and range space, referred to

as the target space. It is assumed that the targets are sparsely located in the target

space space. Each receive antenna performs a sub-Nyquist sampling and forwards the

samples to the fusion center, where the target is estimated via sparse signal recovery

techniques, such as the Dantzig selector [29], orthogonal matched pursuing (OMP) [31].

1.3.1 Compressive Sensing

A K-sparse signal x of length N can be represented as

x = Ψs, (1.38)
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where Ψ is the N × N basis matrix spanning the space under which x is sparse; s is

the coefficient vector whose K elements have large magnitude and the magnitudes of

the remaining elements are negligible or zeros. If K ≪ N , the signal x is sparse and

compressible.

Suppose we collect linear measurements of x as

y = Φx = Θs, (1.39)

where Φ is an M × N matrix, referred as the measurement matrix and Θ = ΦΨ,

referred as the sensing matrix in the CS society, respectively.

To recover the signal x with samples y of length M and M ≪ N , it requires to solve

an under-determined linear system. To find the sparest solution of x, an optimization

problem is formulated as

min
s

‖s‖0

s.t. y = Θs, (1.40)

where ‖·‖0 denotes the ℓ0 norm which is number of nonzero elements of the argument.

The ℓ0 norm optimization problem is not convex. A convex relaxation is to solve the

ℓ1 norm optimization problem, defined as

min
s

‖s‖1

s.t. y = Θs, (1.41)

where ‖·‖1 denotes the ℓ1 norm which is the sum of absolute value of all the elements

in the argument. Consequently, the optimization problem (1.41) a linear programming

(LP) optimization problem. Under noisy measurement cases, the recovery problem can

be formulated as a second-order cone programming (SOCP) problem. When the size

of the optimization is relatively large, greedy algorithms, such as orthogonal matched

pursuing [31], are also used to find the support of the sparse vector.

1.3.2 CS-Based Colocated MIMO Radars

Let us consider a MIMO radar system consisting of Mt TX antennas and Nr RX

antennas. In the far field of the antennas there are K targets that need to be estimated.
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For simplicity, we will assume that the targets are not moving, thus the only parameters

that needs to be estimated are the target azimuth angles θk, k = 1, ...,K. The results

can be easily extended to the case of moving targets.

Let us assume that the transmit and receive antennas are closely spaced, with the

i-th trasnmit/receive antenna placed at location (rti , α
t
i)/(r

r
i , α

r
i ) (in polar coordinates).

Let L denote the number of Ts-spaced samples of the transmitted waveforms. The effect

of the compressive receiver in Fig. 1 of [29] is equivalent to pre-multiplying by matrix

Φ a Ts-sampled version of the received signal. The size of Φ is M × L.

Under the narrowband transmitted signal assumption, the received baseband signal

at the l-th receive antenna can be approximated by

rl ≈
K∑

k=1

βke
j 2πf

c
ηr
l
(θk)ΦXvt (θk) +Φnl, (1.42)

where X is an L×Mt matrix that contains the transmit waveforms as its columns; βk

is the reflection coefficient of the k-th target;

vt(θk) = [ej
2πf
c

ηt1(θk), ..., e
j 2πf

c
ηt
Mt

(θk)]T (1.43)

is the transmit steering vector associated with angle θk; and η
t/r
i (θk) = r

t/r
i cos(θk −

α
t/r
i ); nl is the interference at the l-th receiver, arising due to the interference and

thermal noise.

Let us discretize the angle space into N discrete angles [a1, . . . , aN ]. The discretiza-

tion step is small enough so that each target falls on some angle grid point. Then,

(1.42) can be rewritten as

rl = ΦΨl
︸︷︷︸

Θl

s+Φnl, (1.44)

where Ψl =
[

ej
2πf
c

ηr
l
(a1)Xvt (a1) , ..., e

j 2πf
c

ηr
l
(aN )Xvt (aN )

]

; s = [s1, ..., sN ]T , with sn

being zero if there is no target at angle an, otherwise being equal to the reflection

coefficient of the target at that angle.

By stacking the received data from each antenna into a long vector, we form y, for
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which it holds

y =
[
rT1 , ..., r

T
Nr

]T

=
[

(ΦΨ1)
T , ..., (ΦΨNr)

T
]T

︸ ︷︷ ︸

Θ

s+
[

(Φn1)
T , ..., (ΦnNr)

T
]T

︸ ︷︷ ︸

z

. (1.45)

According to the CS formulation, Θ is the sensing matrix and Ψl is the basis matrix

for the l-th antenna. If the number of targets is small as compared to N , then s is a

sparse vector, with the locations of its non-zero elements providing information on the

target angles. A variety of CS methods can be applied to the recovery of s, e.g., basis

pursuit [32], matching pursuit [31] and Lasso methods [33].

1.3.3 Basis Incoherence in CS-Based MIMO Radars

The widely used analysis tool for sparse signal processing is the uniform uncertainty

principle (UUP) defined in [34] [35] [36]. UUP states that the MNr×N sensing matrix

Θ satisfies the “restricted isometry properties (RIP)”. Let ΘT , T ⊂ {1, . . . ,MNr} be

the matrix constructed from the columns of Θ according to the indices T . The S-

restricted isometry constant δS of Θ defined in [36] is the smallest number such that

(1− δS) ‖c‖22 ≤ ‖ΘT c‖22 ≤ (1 + δS) ‖c‖22 (1.46)

for all subsets T with |T | ≤ S and coefficient sequence (cj)j∈T . The restricted isometry

property requires that every set of columns with cardinality less than S is approximately

orthonormal. It is shown in [36] that if S satisfies δS+δ2S+δ3S < 1, then solving (1.41)

could recover any sparse signal s with supporting size |T0| ≤ S.

Verifying that a given matrix meets the RIP condition is not computationally fea-

sible [31]. The other commonly used framework is the mutual incoherence properties

(MIP) [37]. The mutual incoherence is defined as

µ = max
i 6=j

|〈Θi,Θj〉| . (1.47)

To satisfy the MIP, the parameter µ needs to be small [31]. Suppose the vector s is

K-sparse, i.e., |supp (s)| ≤ K. Then, it was shown in [38] that µ < 1
2K−1 is a sufficient

condition to recoverK-sparse signal correctly using orthogonal matching pursuit (OMP)
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in the noiseless case. In the presence of noise, it was shown in [31] that under the MIP

µ < 1
2K−1 and a minimum magnitude condition on the nonzero element in the vector s,

the sparse signal can be recovered exactly using the OMP in bounded noise case, and

with a high probability in Gaussian noise case.

One can see that, to make µ small, the columns of the sensing matrix Θ need to

be as orthogonal as possible. Based on this conclusion, in Chapter 2 we propose power

allocation and waveform design algorithms to improve the performance of CS-based

MIMO radars by minimizing the difference between the Gram of sensing matrix and

an identity matrix.

1.3.4 Basis Mismatch in CS-Based MIMO Radars

When applying CS in MIMO radars to do target estimation, the target space (DOA,

range and velocity) needs to be discretized into a fine grid, based on which the basis

matrix is constructed. Other information that is used to construct the basis matrix

includes transmit waveforms, radar antenna positions (see equation (1.44)). However,

the performance of CS-based MIMO radars degrades when there are errors in the con-

structed basis matrix, a case also known as basis mismatch [39] [40].

The first possible scenario resulting in basis mismatch can be due to the small

errors in the antenna positions. For example, consider the scenario of a radar formed

by antennas placed on the backpacks of soldiers. The measurement data from each

receive antenna is forwarded to a fusion center via a wireless link. The positioning of

each soldier may contain small errors, especially when the soldiers are moving. Figure

1.5 (a) shows the random positions of Mt = 20 TX and Nr = 6 RX antennas in

2D Cartesian coordinates. The carrier frequency is set to f = 0.1GHz, and thus the

wavelength equals λ = 3m. In each dimension, the position error of each antenna

is set to a random number in λ/5 = 0.6m with a random sign. There are K = 3

targets located in a far field of antennas with DOAs as [1.1◦, 3.4◦, 4.5◦]. The target

reflection coefficients are all set to 1. Hadamard waveforms with Mt = 20 and L = 32

are transmitted. To apply the CS theory to estimate the target DOAs, we discretize

the angle space [0◦, 5◦] on a grid with spacing of 0.1◦. At each receive antenna, a
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Figure 1.5: The basis mismatch due to antenna position errors: (a) The true and

estimated positions of Mt = 20 TX and Nr = 6 RX antennas; (b) The performance of

CS when there is basis mismatch due to antenna position errors within λ
5 .

measurement matrix Φ ∈ C
M×L with Gaussian elements is used to pre-multiply the

samples. Here, M = round(p ∗ L) and p = 0.7 is the portion of selected samples. The

received data is corrupted with thermal noise and the signal-to-noise ratio (SNR) is set

to 0dB. Figure 1.5 (b) shows the CS recovery performance using the Dantzig selector.

One can see that the true target directions cannot be found via CS, i.e., a small basis

mismatch error could yield big recovery errors, as shown in [39]. The antenna position

errors would results in phase error in radar systems. Our simulations show that when

the antenna position errors are larger than λ/10, there would be large target estimation

error with CS.

Another basis mismatch scenario is when the targets fall between grid points. Con-

tinuing on setting in Fig. 1.5, let us assume that the antenna positions are perfectly

known. There are K = 3 targets located in a far field of antennas with DOAs as

[1.15◦, 3.45◦, 4.55◦]. Figure 1.6 (a) shows the CS performance using the OMP algo-

rithm with grid size 0.1◦. It can be found that the recovered target angles are the grid

points which are the closest to the true angles. We next increase the grid density by

setting the grid size to 0.01◦. Consequently, the targets are on the grid under the new

discretization. However, Figure 1.6 (b) shows that the recovered target angles do not

coincide with the truth as one would expect. This is because the grid density cannot be
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Figure 1.6: The CS recovery performance in the off-grid target scenario using orthogonal

matching pursuit: (a) gird size as 0.1◦; (b) gird size as 0.01◦.

increased without decreasing the incoherence of the basis matrix of CS, which results

in worse CS performance.

In this thesis, we propose a novel MIMO radar approach using matrix completion

(MC), termed as MIMO-MC, which exploits the low-rank structure of the data matrix

arising in MIMO radars. The new approach shares the same advantage of CS-based

MIMO radars, i.e., significant reduction of samples required for high resolution target

estimation, but does not require discretization of the target space. In the following, we

give a brief introduction of matrix completion theory.

1.4 Matrix Completion Theory

Matrix completion is of interest in cases in which we are constrained to observe only a

subset of the entries of an n1 × n2 matrix, because for example, the cost of collecting

all entries of a high dimensional matrix is high. If a matrix is low rank and satisfies

certain conditions [41], it can be recovered exactly based on observations of a small

number of its randomly selected entries. In this section we provide a brief overview of

the problem of recovering a rank r matrix M ∈ C
n1×n2 based on partial knowledge of

its entries using the method of [41] [42] [43].
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Let us define the observation operation Y = PΩ (M) as

[Y]ij =







[M]ij, (i, j) ∈ Ω

0, otherwise
(1.48)

where Ω is the set of indices of observed entries with cardinality m. According to [42],

when M is low-rank and meets certain conditions (see (A0) and (A1), later in this

section), M can be estimated by solving a nuclear norm optimization problem

min ‖X‖∗

s.t. PΩ (X) = PΩ (M) (1.49)

where ‖·‖∗ denotes the nuclear norm, i.e., the sum of singular values of X.

In practice, the observations are typically corrupted by noise, i.e., [Y]ij = [M]ij +

[E]ij , (i, j) ∈ Ω, where, [E]ij represents noise. In that case, it holds that PΩ (Y) =

PΩ (M)+PΩ (E), and the completion of M is done by solving the following optimization

problem [43]

min ‖X‖∗

s.t. ‖PΩ (X−Y)‖F ≤ δ. (1.50)

Assuming that the noise is zero-mean, white, δ > 0 is a parameter related to the noise

variance, σ2, as δ2 = (m+
√
8m)σ2 [43].

The conditions for successful matrix completion involve the notion of coherence,

which is defined next [41].

Definition 1. Let U be a subspace of Cn1 of dimension r that is spanned by the set

of orthogonal vectors {ui ∈ C
n1}i=1,...,r, PU be the orthogonal projection onto U , i.e.,

PU =
∑

1≤i≤r
uiu

H
i , and ei be the standard basis vector whose ith element is 1. The

coherence of U is defined as

µ (U) =
n1

r
max

1≤i≤n1

‖PUei‖2 ∈
[

1,
n1

r

]

. (1.51)

Let the compact singular value decomposition (SVD) of M be M =
r∑

k=1

ρkukv
H
k ,

where ρk, k = 1, . . . , r are the singular values, and uk and vk the corresponding left and
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right singular vectors, respectively. Let U, V be the subspaces spanned by uk and vk,

respectively. Matrix M has coherence with parameters µ0 and µ1 if

(A0) max (µ (U) , µ (V )) ≤ µ0 for some positive µ0.

(A1) The maximum element of the n1×n2 matrix
∑

1≤i≤r
uiv

H
i is bounded by µ1

√

r/(n1n2)

in absolute value, for some positive µ1.

In fact, it was shown in [41] that if (A0) holds, then (A1) also holds with µ1 ≤ µ0
√
r.

Now, suppose that matrix M ∈ C
n1×n2 satisfies (A0) and (A1). The following

lemma gives a probabilistic bound for the number of entries, m, needed to estimate M.

Theorem 1. [41] Suppose that we observe m entries of the rank−r matrix M ∈

C
n1×n2 , with matrix coordinates sampled uniformly at random. Let n = max{n1, n2}.

There exist constants C and c such that if

m ≥ Cmax
{

µ2
1, µ

1/2
0 µ1, µ0n

1/4
}

nrβ log n

for some β > 2, the minimizer to the program of (1.49) is unique and equal to M with

probability at least 1− cn−β.

For r ≤ µ−1
0 n1/5 the bound can be improved to

m ≥ Cµ0n
6/5rβ log n,

without affecting the probability of success.

Theorem 1 implies that the lower the coherence parameter µ0, the fewer entries of

M are required to estimate M. The smallest possible value for µ0 is 1.

Further, [43] establishes that, when observations are corrupted with white zero-mean

Gaussian noise with variance σ2, when solving (1.50), the recovery error is bounded as

∥
∥
∥M− M̂

∥
∥
∥
F
≤ 4

√
1

p
(2 + p)min (n1, n2)δ + 2δ, (1.52)

where p = m
n1n2

is the fraction of observed entries, and δ2 = (m+
√
8m)σ2.

There are several MC techniques in the literature [41–46]. For example, in [41–43],

recovery can be performed by solving a nuclear norm optimization problem, which

basically finds the matrix with the smallest nuclear norm out of all possible matrices
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that fit the observed entries. Other matrix completion techniques are based on non-

convex optimization using matrix manifolds, such as Grassmann manifold [44,45], and

Riemann manifolds [46].

1.5 Contributions of the Dissertation

1.5.1 Performance Optimization and Clutter Suppression in CS-Based

MIMO Radars

By exploring sparsity in the target space, CS-based MIMO radar systems achieve ei-

ther the same localization performance as traditional methods but with significantly

fewer measurements, or significantly improved performance with the same number of

measurements. The recovery requires that the product of the measurement matrix and

the sparsifying basis matrix, referred to as the sensing matrix, satisfies the uniform un-

certainty principle (UUP); in other words, the sensing matrix exhibits low correlation

between its columns. To improve the CS-based MIMO radars performance, the columns

of the sensing matrix should be as orthogonal as possible. We propose algorithms on

power allocation among transmit antennas to improve the orthogonality of the columns

of the sensing matrix arising in both colocated and widely separated MIMO radars.

Furthermore, we propose waveform design algorithm to improve the performance CS-

based colocated MIMO radars by minimizing the coherence between the target returns

from different search cells, or equivalently, the coherence of the columns of the sensing

matrix.

In the presence of clutter, the sparsity assumption does not hold. Under the assump-

tion that the clutter covariance is known, we propose an approach to suppress clutter

in the context of CS-based MIMO by applying the Capon beamforming at the fusion

center on compressively obtained data, which are forwarded by the receive antennas.

Subsequently, the target is estimated using CS theory, by exploiting the sparsity of the

beamformed signals. Furthermore, we propose algorithm of power allocation among

transmit antennas to further improve the CS performance in the clutter scenario.

This work has been published in
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• Y. Yu, S. Sun, R. N. Madan, and A. P. Petropulu, “Power allocation and waveform

design for the compressive sensing based MIMO radars,” IEEE Trans. Aerosp.

Electron. Syst., vol. 50, no. 2, pp. 898-909, 2014.

• Y. Yu, S. Sun and A. P. Petropulu, “A Capon beamforming method for clutter

suppression in colocated compressive sensing based MIMO radars,” SPIE Defense,

Security, and Sensing, Baltimore, MD, April 29-May 3, 2013.

1.5.2 MIMO-MC Radar: A MIMO Radar Approach Based on Matrix

Completion

We show that in a typical MIMO radar scenario with large scale transmit and receive

arrays, the data matrix constructed at the fusion center based on the measurements

of all antennas, is low-rank, and thus can be recovered based on knowledge of a small

subset of its entries via matrix completion techniques. The recovered data matrix,

in conjunction with standard array processing schemes leads to target detection and

parameter estimation. Leveraging the low-rank property of that matrix, we propose

a new MIMO radar approach, termed, MIMO-MC radar, in which each receive node

either performs matched filtering with a small number of randomly selected dictionary

waveforms, or obtains sub-Nyquist samples of the target returns at random sampling

instants, and forwards the results to a fusion center. Based on the received samples,

and with knowledge of the sampling scheme, the fusion center partially fills the data

matrix and subsequently applies MC techniques to estimate the full matrix. MIMO-MC

radars share the advantages of the CS-based MIMO radars, i.e., high resolution with

reduced amounts of data, but do not require grid discretization. Thus, the proposed

approach does not suffer from the target off-grid issues of CS-based MIMO radars.

This work has been published in

• S. Sun, W. U. Bajwa, and A. P. Petropulu, “MIMO-MC radar: A MIMO radar

approach based on matrix completion,” IEEE Trans. Aerosp. Electron. Syst.,

vol. 51, no. 3, pp. 1839-1852, 2015.

• S. Sun, A. P. Petropulu, and W. U. Bajwa, “Target estimation in colocated MIMO
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radar via matrix completion,” in Proc. of IEEE 38th International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May

2013.

• S. Sun, A. P. Petropulu, and W. U. Bajwa, “High-resolution networked MIMO

radar based on sub-Nyquist observations,” in Signal Processing with Adaptive

Sparse Structured Representations Workshop (SPARS), EPFL, Lausanne, Switzer-

land, July 8-11, 2013.

• D. S. Kalogerias, S. Sun, and A. P. Petropulu, “Sparse sensing in colocated MIMO

radar: A matrix completion approach,” in Proc. of IEEE 13th International

Symposium on Signal Processing and Information Technology (ISSPIT), Athens,

Greece, Dec. 12-15, 2013.

1.5.3 Coherence Analysis and Optimal Waveform Design in MIMO

Radars with Matrix Completion

We first study the applicability of matrix completion (MC) theory on the data matrix

arising in colocated MIMO radars using uniform linear arrays. We show that the data

matrix coherence, and consequently the performance of MC, is directly related to the

transmit waveforms. Among orthogonal waveforms, the optimum choices are those for

which, any snapshot across the transmit array has a flat spectrum.

We then propose waveform design methods for MIMO-MC radars. The problem

of waveform design is formulated as an optimization problem on the complex Stiefel

manifold, and is solved via the modified steepest descent method, or the modified

Newton algorithm with nonmonotone line search.

Although the optimal waveforms are designed for the case of targets falling in the

same range bin, we conduct the sensitivity analysis of the proposed optimal waveform

to assess the performance degradation when the targets fall in different range bins.

Specially, we show that when transmit waveforms have ideal correlation properties, the

coherence upper bound of the data matrix in MIMO-MC radar is minimal.

This work has been published in
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• S. Sun and A. P. Petropulu, “Waveform design for MIMO radars with matrix

completion,” IEEE Journal of Selected Topics in Signal Processing, to appear in

the December Issue, 2015.

• S. Sun and A. P. Petropulu, “On waveform conditions and range compression

in MIMO radars using matrix completion,” in Proc. of 49th Annual Asilomar

Conference on Signals, Systems, and Computers (Asilomar), Pacific Grove, CA,

Nov. 8-11, 2015.

• S. Sun and A. P. Petropulu, “On waveform design for MIMO radar with matrix

completion,” in Proc. of IEEE Global Conference on Signal and Information Pro-

cessing (GlobalSIP), Information Processing for Big Data Symposium, Atlanta,

GA, Dec. 3-5, 2014.

• S. Sun and A. P. Petropulu, “On the applicability of matrix completion on MIMO

radars,” in Proc. of 48th Annual Asilomar Conference on Signals, Systems, and

Computers (Asilomar), Pacific Grove, CA, Nov. 2-5, 2014.

1.5.4 Transmit and Receive Beamforming in MIMO Radars with Ma-

trix Completion

In the tracking mode of MIMO radars, the transmit antennas transmit correlated wave-

forms to illuminate certain directions. We propose a matrix completion based colocated

MIMO radar (MIMO-MC) approach that employs transmit beamforming. Each receive

antenna performs sub-Nyquist sampling of the target returns at uniformly random

times. Based on the forwarded samples, the fusion center partially fills a matrix, recov-

ers the Nyquist rate samples via matrix completion, and subsequently proceeds with

target estimation via standard techniques. The performance of matrix completion de-

pends on the matrix coherence. We derive the relations between transmit waveforms

and matrix coherence. Specifically, it is shown that, for a rank-1 beamformer, the

coherence is optimal, i.e., 1, if and only if the waveforms are unimodular. For a multi-

rank beamformer, the coherence of the row space of the data matrix is optimal if the

waveform power is constant across each snapshot.
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We propose a receive beamforming scheme using matrix completion in a radar array

with a relative large scale sensors. Beamforming methods rely on training data to

estimate the covariance matrix of the interference pulse noise, which requires a large

numbers of training snapshots to maintain good performance. In a distributed array, in

which the array nodes are connected to a fusion center via a wireless link, the estimation

of the covariance matrix would require the communication of large amounts of data, and

thus would consume significant power. We propose a matrix completion based approach

that enables good beamforming performance while requiring substantially fewer data

to be transmitted to the fusion center. The main idea is based on the fact that when

the number of signal and interference sources is much smaller than the number of

array sensors, the training data matrix is low rank. Thus, the training data matrix

can be recovered via matrix completion based on sub-Nyquist samples of the array

sensors. Following the recovery of the training data matrix, and to cope with the errors

introduced during the matrix completion process, we propose a robust optimization

approach, which obtains the beamforming weight vector by optimizing the worst-case

performance.

This work has been published in

• S. Sun and A. P. Petropulu, “On transmit beamforming in MIMO radar with ma-

trix completion,” in Proc. of IEEE 40th International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Brisbane, Australia, April 2015.

• S. Sun and A. P. Petropulu, “Robust beamforming via matrix completion,” in

Proc. of 47th Annual Conference on Information Sciences and Systems (CISS),

Baltimore, MD, March 20-22, 2013.

1.6 Outline of the Dissertation

The dissertation is organized as follows.

In Chapter 2, based on the UUP condition introduced in compressive sensing theory,

we propose power allocation and waveform design algorithms to minimize the coherence

of the sensing matrix arising in both colocated and widely separated MIMO radars to
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improve the target estimation performance of CS-based MIMO radars.

In Chapter 3, we propose a Capon beamforming approach to reject the clutter in

the compressive sensing based MIMO radars.

In Chapter 4, we propose a new radar approach based on matrix completion, termed

as MIMO-MC radar.

In Chapter 5, we conduct the coherence analysis of the data matrix arising in MIMO

radars and the condition of optimal waveform in term of matrix coherence minimization

is derived for MIMO radars using matrix completion.

In Chapter 6, we derive the optimal waveform conditions of the transmit beam-

forming in MIMO-MC radar, in terms of matrix coherence and subsequently matrix

completion performance, for both rank-1 and multi-rank beamformers.

In Chapter 7, to overcome the large amount data collection requirement for esti-

mation of the covariance matrix arising in the standard array beamforming processing,

we propose a robust receive beamforming scheme for large scale array with matrix

completion.

Finally, Chapter 8 contains conclusions and possible future research directions.

1.7 Notation

We use lower-case and upper-case letters in bold denote vectors and matrices, respec-

tively. See Table 1.1 for other notations used in the dissertation.
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Table 1.1: Notations

ℜ{·}: the real part of {·}

ℑ {·}: the imaginary part of {·}

1L: the vector of length L with each element as 1

‖a‖2: the Euclidean norm of a vector a

A∗: the complex conjugate of a matrix A

AT : the transpose of a matrix A

AH : the conjugate transpose of a matrix A

tr (A): the trace of a matrix A

λmin (A): the minimal singular value of a matrix A

‖A‖F : the Frobenius norm of a matrix A

‖A‖∗: the nuclear norm of a matrix A, i.e., the sum of singular values

vec (A): the vectorization of a matrix A

A⊗B: the Kronecker product of two matrices A and B

A⊙B: the Hadamard product of two matrices A and B

IM : the identity matrix of dimension M ×M
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Chapter 2

Power Allocation and Waveform Design in Compressive

Sensing Based MIMO Radars

Compressive sensing (CS) based multi-input multi-output (MIMO) radars systems, by

exploring sparsity in the target space achieve either the same localization performance

as traditional methods but with significantly fewer measurements, or significantly im-

proved performance with the same number of measurements. This chapter investigates

the performance gain of CS-MIMO radars, stemming from optimal power allocation

among the transmit antennas, or optimal waveform design. In both cases, the op-

timization criterion is the minimization of the coherence between the target returns

from different search cells, or equivalently, the coherence of the columns of the sensing

matrix.

2.1 Introduction

Due to their potential to improve target detection, multiple-input and multiple-output

(MIMO) radar systems have received considerable attention in recent years. Unlike

traditional phased-array radar, a MIMO radar transmits multiple independent wave-

forms from its antennas. Depending on the transmit (TX) and receive (RX) antenna

configuration, MIMO radar systems are classified as widely separated [17] and colo-

cated [18]. The former view the target from multiple uncorrelated directions and thus

achieve improved target detection performance benefiting from spatial diversity. The

latter exploit waveform diversity to form a long virtual array, much longer than tradi-

tional radar systems with the same number of TX and RX antennas, and as a result

enjoy superior spatial resolution.
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Compressive sensing (CS) is a relatively recent development for finding sparse solu-

tions to underdetermined linear systems [23] [24] [25]. CS theory states that a K-sparse

signal x of length N can be recovered exactly with high probability from O(K logN)

linearly compressed measurements. The recovery requires that the product of the mea-

surement matrix and the sparsifying basis matrix, referred to as the sensing matrix,

satisfies the uniform uncertainty principle (UUP) [25] [34] [35]; in other words, the

sensing matrix exhibits low correlation between its columns.

CS in the context of MIMO radars has been studied in [47] [26] [29] [48] [49] [50];

[47] [26] [29] considered the application of CS to colocated MIMO radars with point

targets, while [48] [49] [50] considered the application of CS to widely separated MIMO

radars with extended targets. Both cases of CS-MIMO radars exploit the sparsity of

targets in the target space and enable target estimation based on a small number of

samples obtained at the RX antennas.

There are several techniques to further improve the detection performance of CS-

MIMO radars. For example, significant gain in range resolution can be achieved by using

a step-frequency approach during transmission [51] [52] [53]. We can also improve the

detection performance by using a measurement matrix that minimizes the coherence

of the sensing matrix and/or the signal-to-inference ratio (SIR) [54]. In this paper, we

investigate power allocation and/or waveform optimization as means of improving the

detection performance. Previous works [55] and [56] have discussed power allocation

for traditional MIMO radars. In [55], the authors proposed to minimize the total

transmitted power such that a predefined Cramer-Rao bound (CRB) is met, or to

minimize the CRB by optimizing power allocation among the transmit radars for a

given total power budget. A power allocation scheme was proposed in [56] for correlated

MIMO radar systems in the presence of Rician scattering. Less power was allocated

to the antennas that are correlated, or that suffer low line-of-sight reflectivity, so that

the total available power was spread across uncorrelated branches and strong reflectors.

In [49], an energy allocation scheme for CS-based widely separated MIMO radars was

proposed that determines the transmit energies for the next set of transmit pulses

based on the estimates of targets obtained from the previously received signals. The
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goal of [49] is to maximize the minimum target returns so that the probability of missing

weak targets is reduced. In this paper, since UUP indicates that the sensing matrix

should be as orthogonal as possible in order to guarantee reliable performance, we

allocate the power among the transmit antennas so that we minimize the difference

between the Gram of the sensing matrix, i.e., ΘHΘ and an identity matrix. This

improves the condition of the sensing matrix and enables performance enhancement.

Based on the same optimization criterion, we also propose waveform design, aiming at

improving the orthogonality of the sensing matrix.

2.2 Compressive Sensing (CS) Based MIMO Radars

Let us consider a MIMO radar system consisting of Mt TX antennas and Nr RX

antennas. In the far field of the antennas there are K targets that need to be estimated.

For simplicity, we will assume that the targets are not moving, thus the only parameters

that needs to be estimated are the target azimuth angles θk, k = 1, ...,K. The results

can be easily extended to the case of moving targets. In the following, we will consider

separate the case of colocated and widely separated antennas.

2.2.1 CS-Based Colocated MIMO Radars

Let us assume that the transmit and receive antennas are closely spaced, with the i-th

trasnmit/receive antenna placed at location (rti , α
t
i)/(r

r
i , α

r
i ) (in polar coordinates). Let

L denote the number of Ts-spaced samples of the transmitted waveforms. The effect

of the compressive receiver in Fig. 1 of [29] is equivalent to pre-multiplying by matrix

Φ a Ts-sampled version of the received signal. The size of Φ is M × L. The details of

CS-based colocated MIMO radars formulation can be found in Section 1.3.2 of Chapter

1.

2.2.2 CS-Based Widely Separated MIMO Radars

Let us assume a widely separated antenna scenario with K targets. Typically, in this

scenario each target is viewed as a collection of multiple independent and isotropic
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scatterers. However, if the TX waveforms are sufficiently narrowbanded, the target

scatterers are unresolvable, and thus each extended target can be modeled as a point

target located at the the target gravity center, denoted here by (xk, yk) (in cartesian

coordinates). Let (xti, y
t
i) and (xrl , y

r
l ) denote the locations of the i-th TX and the l-th

RX antenna, respectively.

The i-th antenna transmits the signal xi(t). Assuming that the antennas transmits

on different channels, the target returns due to each transmit antenna can be separated.

The baseband signal at the l-th receive antenna, arising due to the transmission of the

i-th antenna equals [17]

zil (t) =
K∑

k=1

hilkxi (t− τik − τkl) + nil (t) , (2.1)

where τik = dtik
/
c is the propagation delay between the i-th transmit antenna and

the gravity center of the k-th target, with dtik =
√

(xti − xk)
2
+ (yti − yk)

2
; τkl is the

propagation delay between the gravity center of the k-th target and the l-th receive

antenna; hilk =
∑Q

q=1 h
il
qk represents the channel gain associated with the k-th target

and the TX-RX antenna pair (i, l). nil(t) denotes interference and noise.

Let us discretize the target state space into N grid points, i.e., [(xn, yn)], n =

1, . . . , N and let siln denote the coefficient associated with the n-th grid point for the

TX-RX antenna pair (i, l). By choosing the measurement matrix Φ as an identity ma-

trix, the received signal zil(t) can be rewritten as a linear combination of target returns

reflected from all grid points, i.e.,

ril (t) =

N∑

n=1

silnxi (t− τin − τnl) + nil (t)

= pT
il (t) s

il + nil (t) , (2.2)

where pil (t) = [xi (t− τi1 − τ1l) , . . . , xi (t− τiN − τNl)]
T and sil = [sil1 , . . . , s

il
N ]T . If the

k-th target is located at (xn, yn), the coefficient siln equals hilk ; otherwise, it equals zero.
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On denoting by L the number of Ts-spaced samples, we stack L samples correspond-

ing to the TX-RX antenna pair (i, l) into a vector ril as

ril = [zil(0Ts), . . . , zil((L− 1)Ts)]
T

= Ψils
il + nil, (2.3)

where Ψil = [pil(0Ts), . . . ,pil((L− 1)Ts)]
T and nil = [nil(0Ts), . . . , nil((L− 1)Ts)]

T .

We can stack the received samples from all the pairs of TX and RX antenna into a

vector y of length MtNrL, i.e.,

y =
[
rT11, . . . , r

T
1Nr

, rTMt1, . . . , r
T
MtNr

]T

= diag {[Ψ11,Ψ12, . . . ,ΨMtNr ]} s+ n, (2.4)

where s =
[(
s11
)T

,
(
s12
)T

, . . . ,
(
sMtNr

)T
]T

.

Note that for all pairs (i, l), the vector sil contains zeros everywhere except at

locations corresponding to the grid points occupied by targets. Thus, s is a sparse

vector. If there is a target at the n-th grid point, all n-th entries of sil corresponding to

all TX-RX antenna pairs, i.e., siln, i = 1, . . . ,Mt, l = 1, . . . , Nr, are non-zero. Therefore,

by appropriately rearranging the columns of the basis matrix, the non-zero elements

of s corresponding to different pairs and the same target can be clustered together,

which makes s to appear as group sparse. On letting un
il denote the n-th column of

Ψil, the columns of the basis matrix Ψg that induce group sparsity can be arranged as

follows [50], [49]:

Ψg =
[

Ψ̃1, . . . , Ψ̃N

]

(2.5)

where Ψ̃n = diag
{[

un
11, . . . ,u

n
1Nr

,un
21, . . . ,u

n
MtNr

]}
.

The sparse vector s associated with Ψg contains K groups of non-zeros entries and

each of group is of length MtNr. The group sparsity of s can be exploited using a group

Lasso approach [57] [58], i.e.,

argmin
s

1

2
‖ΦH

g (y −Ψgs)‖22
︸ ︷︷ ︸

f1(s)

+λ

N∑

n=1

‖sn‖2
︸ ︷︷ ︸

f2(s)

(2.6)



32

where sn = [s11n , . . . , sMtNr
n ]. f2(s) can be recast the ℓ1 norm of vector λ[‖s1‖2, . . . , ‖sN‖2]T .

Minimization of f2(s) produces a group-sparse solution [57] [58]. Due to the nature of

ℓ2 norm, all entries of the n-th group sn will be zero if ‖sn‖2 is zero, and will be non-zero

otherwise. Since f2(s) is non-smooth, it is not trivial to directly solve (2.6). Instead

of minimizing f1(s) and f2(s) simultaneously, the proximal gradient algorithm [59] [60]

proceeds by dealing with f1(s) and fs(s) individually in an iterative way. Let ŝ denote

the solution to (2.6). We can formulate the target indicator vector, d, so that its n-th

entry equals ‖ŝn‖22. The peaks of d will provide the target information.

2.3 Power Allocation and Waveform Design for Colocated CS-MIMO

Radars

2.3.1 Power Allocation

Suppose that the total power allocated to the transmit antennas is fixed, equal to Pt.

We next determine how Pt should be distributed among the transmit antennas so that

it helps the CS recovery.

UUP [25] [34] [35] indicates that for the recovery of the sparse vector with high

probability, the sensing matrix should be orthogonal. This is impossible for a fat mea-

surement matrix, however, we can force the sensing matrix Θ to be as orthogonal as

possible, i.e., by minimizing the difference between ΘHΘ and an identity matrix of size

N . Let p = [p1, ...., pMt ]
T denote the transmit power allocated to Mt TX antennas,

with
∑Mt

i=1 pi = Pt. Then, the k-th column of the sensing matrix equals

uk =

[

ej2π
ηr1(ak)f

c , . . . , ej2π
ηr
Nr

(ak)f

c

]T

⊗ (ΦXV(ak)p̃) (2.7)

where V(ak) = diag{vt(ak)} and p̃ =
√
p.

In particular, the power allocation problem can be formulated as the following op-

timization problem:

min
p̃

∑

k 6=k′

|uH
k′uk|2 +

∑

k

|uH
k uk − PtNr|2

s.t. p̃H p̃ = Pt, p̃ ≥ 0Mt×1, p̃ ≤
√

Pm1Mt×1 (2.8)
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where the objective function is the squared difference between ΘHΘ and PtNrIN , with

the first term, denoted by SCSM, being the sum of the square magnitude of the cross-

correlation of column pairs uk,uk′ of the sensing matrix. Pm is the maximum transmit

power of each TX antenna. It holds that

|uH
k′uk|2 = ukk′ |p̃HBkk′p̃|2

= ukk′
[
(p̃HBrkk′p̃)

2 + (p̃HBikk′p̃)
2
]

(2.9)

where ukk′ =

∣
∣
∣
∣

∑Nr

l=1 e
j2π

(ηr
l
(ak)−ηr

l
(a

k′
))f

c

∣
∣
∣
∣

2

, Bkk′ = VH(ak′)X
HΦHΦXV(ak), Brkk′ =

Bkk′+BH
kk′

2 andBikk′ =
Bkk′−BH

kk′

2j . It is easy to see that Bkk′ is not a positive semidefinite

(PSD) matrix unless k = k′ and thus the objective function is nonconvex. However, we

can me the objective function convex via the following trick:

(p̃TBrkk′p̃)
2 = (p̃T (Brkk′ +

b

Pt
I

︸ ︷︷ ︸

Crkk′

)p̃− b)2

= (p̃TCrkk′p̃)
2 + p̃T (−2bCrkk′ +

d

Pt
I

︸ ︷︷ ︸

Drkk′

)p̃+ Cr (2.10)

where b and d are nonnegative real scalars that let Crkk′ and Drkk′ be PSD matrices,

i.e., b
Pt

+ λmin(Brkk′) ≥ 0 and d
Pt

+ λmin(−2bCrkk′) ≥ 0. C is a constant that will not

affect the objective function.

(2.10) is convex since Crkk′ and Drkk′ are PSD matrices. By performing the same

trick on (p̃HBikk′p̃)
2, we can obtain

(p̃TBikk′p̃)
2 = (p̃TCikk′p̃)

2 + p̃T (Dikk′)p̃+ Ci (2.11)

In the same way, the second term in the objective function (2.8) can be rewritten as

|uH
k uk − PtNr|2 = N2

r (p̃
T (Bkk − I)p̃)2

= (p̃TCkkp̃)
2 + p̃T (Dkk)p̃+ C (2.12)

Then the objective function of (2.8) can be transformed into a convex function as follows

min
p̃

∑

k 6=k′

(p̃TCrkk′p̃)
2 + (p̃TCikk′p̃)

2 + p̃T (Drkk′ +Dikk′)p̃+
∑

k

(p̃TCkkp̃)
2 + p̃T (Dkk)p̃

s.t. p̃H p̃ = Pt, p̃ ≥ 0Mt×1, p̃ ≤
√

Pm1Mt×1 (2.13)
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Looking at the constraints of (2.13), we can see that the first constraint is nonconvex.

We can approximate that constraint by its local affine approximation, i.e.,

(p̃)T p̃ ≈ (p̃j)T p̃j + 2(p̃j)T (p̃− p̃j) (2.14)

where (p̃j) is the estimate of p̃ at the j-th iteration. The solution to (2.13) can be

obtained in an iterative fashion as follows.

1. Set p̃(0) = [1, 1, . . . , 1]T at the initial iteration;

2. At the j-th iteration, p̃(j) is obtained by solving

min
p̃

∑

k 6=k′

|uH
k′uk|2 +

∑

k

|uH
k uk − PtNr|2

s.t. (p̃(j−1))H p̃(j−1) + 2(p̃(j−1))H(p̃− p̃(j−1)) = Pt,

p̃ ≥ 0Mt×1, p̃ ≤
√

Pm1Mt×1 (2.15)

3. If the stop criterion is not satisfied, go to 2); otherwise, output p̃ = p̃(j).

In applications, the implementation of the measurement matrix may increase the

complexity of the analog circuit. Therefore, we can skip the step of linear compression

and directly collect a small number of samples at the RX antennas, i.e., L is small.

If the TX antennas transmit orthogonal waveforms, i.e., XHX = I, then Bkk is a

diagonal matrix. Then (2.8) can be reduced to a simple convex problem as follows:

min
p

pT (
∑

k 6=k′

ukk′b
∗
kk′b

T
kk′)p

s.t. 1TMt×1p = Pt, p ≥ 0, p ≤ Pm1Mt×1 (2.16)

where bkk′ is the diagonal vector of Bkk′ .

We should note here that the power allocation vector obtained from (2.8) or (2.16)

will not affect the SIR since the total transmitted power is fixed. Therefore, the per-

formance gain stems from the improved sensing matrix only. If some TX antenna

contributes to the sensing matrix negatively, the power allocated to those TX antennas

will be very small. This indicates that the proposed scheme will reduce the number of

active TX antennas as compared to the uniform power allocation.
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2.3.2 Waveform Design

Along the lines of optimal power allocation, we can also optimize the transmit wave-

forms to further improve the performance of the CS-based MIMO radars. Let us again

consider as design criterion the minimization of the difference between the Gram of

the sensing matrix and an identity matrix for a fixed total transmit power. The k-th

column of the sensing matrix becomes

uk =

[

ej2π
ηr1(ak)f

c , . . . , ej2π
ηr
Nr

(ak)f

c

]T

⊗ (ΦṼ(ak)x) (2.17)

where Ṽ(ak) = IL ⊗ vT
t (ak) and x = vec(XT ). Since the total power is set to Pt, it

holds that xHx = Pt.

We can formulate the following optimization problem:

min
x

∑

k 6=k′

|uH
k′uk|2 +

∑

k

|uH
k uk − PtNr|2

s.t. xHx = Pt (2.18)

It is worth noting that

• (2.18) is not convex and thus we can only find a local minimum that depends on

the initial waveforms.

• The method for waveform design is quite similar to that for power allocation

except that the formulation is a little different. However, the number of variables

for waveform design is much larger than that for power allocation, i.e., the former

is MtL while the latter is Mt.

2.4 Power Allocation for Widely Separated CS-MIMO Radars

Suppose that the total power is set to Pt. Let p denote the transmit power allocated

to Mt TX antennas, and thus
∑Mt

i=1 pi = Pt. Again, we force Φg to be as orthogonal as

possible by minimizing the difference between the Gram matrix of the sensing matrix,

i.e., ΦH
g Φg and an identity matrix of size MtNrN . In particular, we formulate the
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following optimization problem:

min
p

‖ΦH
g Φg − I‖2F

s.t. 1TMt×1p = Pt, p ≥ 0Mt×1, p ≤ Pm1Mt×1 (2.19)

where Pm is the maximum transmitted power accepted by a TX antenna.

The Gram matrix ΦH
g Φg can be rewritten as

ΦH
g Φg =

[

Ψ̃1, . . . , Ψ̃N

]H [

Ψ̃1, . . . , Ψ̃N

]

=









DpD11 · · · DpD1N

... · · · ...

DpD1N · · · DpDNN









(2.20)

where Dkk′ = Ψ̃H
k Ψ̃k′ , k, k′ = 1, . . . , N are diagonal matrices due to the special sparse

structure of Ψ̃N as shown in (2.5) and Dp = diag{p⊗ 1Nr×1}. Since the waveform of

each TX antenna is of unit power, Dkk = I, k = 1, . . . , N .

Let dkk′
i denote the i-th group of the diagonal elements of Dkk′, whose length is Nr.

Then the optimization problem in (2.20) can be further written as

min
p

pTDp+Nrp
Tp (2.21)

s.t. 1TMt×1p = Pt, p ≥ 0Mt×1, p ≤ Pm1Mt×1

where D is a diagonal matrix whose i-th diagonal element equals
∑

k 6=k′ |dkk′
i |22. The

first term of the objective function sums up the squared correlation of cross column

pairs in the sensing matrix. The second term represents the squared error between

the column norm of the sensing matrix and 1, in which the constant terms have been

removed.

One may wonder whether minimizing (2.21) requires that the column norms of the

sensing matrix approache 1, or equivalently, p approaches a unit vector. For large

N , the second term in the objective function is small as compared to the first term,

so that the solution p = 1 can be avoided. From the perspective of the CS recovery

methods, the column norm of the sensing matrix for the group Lasso method is not as

important as in the Lasso method, since the group Lasso approach forces the coefficients
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within a group to be nonzero or zero simultaneously. This indicates that the sum of

the squared norm of the columns within a group (SSNCG), rather than of a single

column of the sensing matrix weighs in the group Lasso approach. Due to the special

structure of the sensing matrix, as seen in (2.5), the SSNCG of different groups is the

same, independent of the power vector p, and lies between
P 2
t

Mt
and CP 2

m+(Pt−CPm)2,

where C = ⌊Pt/Pm⌋. Therefore, the column norm of the sensing matrix does not have

to approach 1 when the group Lasso method is used. It is also reasonable to remove

pTp from the objective function.

The power allocation vector obtained from (2.21) will not affect the SIR since the

total transmit power is fixed. Therefore, the performance gain stems from the improved

sensing matrix only. If some TX antenna contributed to the sensing matrix negatively,

the power allocated to those TX antennas would be reduced.

2.5 Simulations

2.5.1 Simulation Results for Colocated CS-MIMO Radars

Power Allocation

We consider a MIMO radar system with TX and RX antennas, uniformly located on

a disk of radius 10m. The carrier frequency is f = 5GHz. Each TX antenna uses

an orthogonal waveform sequence of length L = 32 and unit power. The received

signal is corrupted by zero-mean Gaussian noise of unit power. The SNR is set to 0dB.

Three targets are present on the angle grid [0o, 0.1o,. . . ,4.9o,5o]. The total transmitted

power is set to Mt and the maximum transmit power for each antenna is 9W. In the

simulations, the identity matrix is used as the measurement matrix Φ. The power

allocation vector is obtained by solving the problem of (2.16).

Figure 2.1 demonstrates the average coherence of a column pair of the sensing ma-

trix, corresponding to the proposed power allocation (PPA) scheme, computed over

100 independent runs and for Mt = 5, 10, 15, 20, 25, 30. For comparison purposes, the

corresponding results for uniform power allocation (UPA) and random power allocation

(RPA) are also shown in the same figure. It can be seen from Fig. 2.1 that the PPA
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Figure 2.1: SCSM versus Mt under optimal (PPA), uniform (PPA) and random (RPA)

power allocation in CS-based colocated MIMO radars. Case (I) Nr = 6; Case (II)

Nr = 12; in both cases L = 32.

scheme can reduce the SCSM as compared to the UPA and RPA schemes. Figure 2.1

also shows that the SCSM can be reduced by increasing the number of RX antennas.

The performance gain with the increase of the number of TX/RX antennas is more

prominent at low SNR. This is because using more TX/RX antennas effectively in-

creases the array aperture. In addition, an increase in the number of TX antennas can

also improve the SNR of the received signal at the RX antennas, as in our simulations

the transmit power for each TX antenna is fixed.

Figure 2.2 shows the receiver operating characteristic (ROC) curves of the angle

estimates, obtained based on 500 independent runs. In each run, three targets are

randomly generated on the angle grid. Here, the probability of detection (PD) is the

percentage of cases in which all the targets are detected. The probability of false alarm

(PFA) is defined as the percentage of cases in which false targets are detected. The

cases of Mt = 12 and Nr = 6, 12 are shown in Fig. 2.2. One can see that the PPA

scheme can improve the ROC performance as compared to the UPA scheme. Again,

an increase in the number of RX antennas can improve the detection performance.

Increasing the number of RX antennas cannot boost SNR and thus the performance
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Figure 2.2: The ROCs of angle estimates under power allocation in CS-based colocated

MIMO radars with L = 32.

gain comes from the improvement of the sensing matrix as shown in Fig. 2.1.

In addition to performance improvement, the PPA scheme also reduces the number

of active TX antennas. For example, in the case of Mt = 30 and Nr = 12, 11 TX

antennas are allocated power less than 0.0001W on an average of 500 runs. This

indicates that the PPA scheme only requires 19 TX antennas to be active while all

30 TX antennas are needed for the UPA scheme. Figure 2.3 (a) shows the distribution

of TX antennas which were assigned assigned power less than 0.0001W in one run; the

non-needed antennas are marked on the figure. Figure 2.3 (b) demonstrates the power

allocation results in this case.

Waveform Design

We consider a MIMO radar system with 10 TX and RX antennas uniformly located

on a disk of radius 10m. The carrier frequency is f = 5GHz. The received signal is

corrupted by zero-mean Gaussian noise of unit power. Three targets are present on

the angle grid [0o, 0.2o,. . . ,2o]. The total transmitted power is set to Mt. The initial

waveform x(0) uses an orthogonal Hadamard sequence of length L = 16 and unit power.

The measurement matrix Φ is chosen as a random matrix with M = round (0.7L),
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Figure 2.3: The TX distribution in CS colocated MIMO radars with Mt = 30, Nr = 12

and L = 32.

which means each RX antenna forwards M = 11 samples. The ROC curves of the

angle estimates produced by the proposed waveform-design method is shown in Fig.

2.4 which demonstrates the performance improvement due to the designed waveform.

2.5.2 Power Allocation for Widely Separated CS-MIMO Radars

In this section, we demonstrate the performance of the PPA and the UPA schemes

based on the group Lasso method in the context of widely separated MIMO radars.

We consider a MIMO radar system with TX and RX radars that are uniformly lo-

cated on a circle of radius 6000m and 3000m, respectively. The carrier frequency is

f = 5GHz. Each transmit radar uses orthogonal Hadamard waveform sequences of
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Figure 2.4: The ROCs of angle estimates under waveform design in CS-based colocated

MIMO radars with Mt = Nr = 10, L = 16 and M = 11.

length L = 20, and unit power. In the simulations, the measurement matrix Φ is

chosen as an identity matrix. Three targets are assumed to be present in the search

space [1000, 1050, . . . , 1200]m× [1000, 1050, . . . , 1200]m, and in each run, the targets are

randomly located on grid points. The target reflectivity is a Gaussian random variable

with unit variance. The total power varies with the number of TX antennas and is set

to Mt. The power threshold for each TX antenna is 2.

Figure 2.5 compares the PPA and the UPA schemes in terms of the squared dif-

ference between the Gramian of the sensing matrix and the identity matrix (SEGI),

averaged over the NMtNr elements of the Gramian matrix of the sensing matrix. It

can be seen from Fig. 2.5 that the PPA scheme reduces SEGI as compared to UPA,

and also that the SEGI decreases with the number of TX and RX antennas.

Figure 2.6 shows the ROC curves of the angle estimates, obtained based on 1000

independent runs. In each run, three targets are randomly generated on the angle grid

of interest. Four cases are shown, i.e., (Mt = 10, Nr = 1,SNR = 10dB), (Mt = 5, Nr =

2,SNR = 10dB), (Mt = 10, Nr = 1,SNR = 20dB) and (Mt = 5, Nr = 2,SNR = 20dB).

One can see that the PPA scheme can improve the performance in terms of the ROCs

as compared to the UPA scheme. With the same number of TX and RX antennas,
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43

−6000 −4000 −2000 0 2000 4000 6000
−6000

−4000

−2000

0

2000

4000

6000

x(m)

y(
m

)

 

 
TX antennas
RX antennas

(a)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

TX antenna index

po
w

er
 a

llo
ca

tio
n

(b)

Figure 2.7: The TX distribution in CS colocated MIMO radar with Mt = 30, Nr = 2

and L = 32.

the performance improvement of the PPA scheme diminishes at higher SNR scenarios.

Figure 2.7 shows the distribution of TX and RX antennas in one run where Mt =

10, Nr = 1, and power allocation results based on the PPA scheme in this case. Unlike

in the colocated MIMO radars, all TX antennas are needed for widely separated MIMO

radars. This is because the antennas in this case see different aspects of the target and

so the received signals due to each TX-RX antenna pairs are separated and stacked

together at the fusion center.

2.6 Summary

We have proposed power allocation schemes for colocated and widely separated CS-

based MIMO radar systems. The proposed schemes aims at rendering the sensing
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matrix as orthogonal as possible. It has been shown that the estimation of DOA can

be improved by allocating power adaptively to TX antennas given a total transmit-

ted power. Furthermore, the proposed scheme can reduce the number of active TX

antennas as compared to the uniform power allocation scheme. This is because the

TX antennas that cause the sensing matrix to be more correlated are eliminated by

the proposed power allocation scheme. Along the lines of optimal power allocation,

we also developed a waveform design method that further improves the performance

of CS-MIMO radars in the colocated case. The method proceeds by minimizing the

difference between the Gram matrix of the sensing matrix and an identity matrix with

respect to the vector of the transmitted waveforms, while the total transmitted power is

fixed. Simulations showed substantial detection performance improvement when using

the optimally designed waveform as compared to the already good performance corre-

sponding to the Hadamard waveform. The improvement is clearly observed at the very

low probability of false alarm range, which is the only region in which the Hadamard

waveform did not yield good performance.
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Chapter 3

Clutter Suppression in Colocated Compressive Sensing

Based MIMO Radars

In this chapter, we proposed a Capon beamforming based clutter suppression scheme in

the context of compressive sensing based colocated MIMO radars. Capon beamforming

is applied at the fusion center on compressively obtained data, which are forwarded by

the receive antennas. Subsequently, the target is estimated using CS theory, by exploit-

ing the sparsity of the beamformed signals. The power allocation scheme is proposed

to further improve the target estimation performance by minimizing the coherence be-

tween the columns of the sensing matrix.

3.1 Introduction

CS-based colocated MIMO radars [47] [26] [29] exploit the sparsity of targets in the

target space and enable target estimation based on a small number of samples obtained

at the RX antennas. The assumed sparsity, however, diminishes in the presence of

clutter, and as result the performance of CS-based MIMO radars in the presence of

clutter degrades. In this chapter we proposed a scheme to suppress clutter in the

context of collocated MIMO radars. When clutter and signal of interest have different

Doppler shifts, clutter suppression can be relatively easily done, especially when the

source of clutter is static while the target is moving [61] [62] [63]. In this chapter,

we will consider the more challenging case, in which Doppler differences cannot be

exploited to separate clutter from signal of interest, e.g., when both the target and

the source of clutter are static. We will assume that the clutter covariance is known.

Typically, clutter has high space correlation to its neighboring range cells [64] [65].
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Therefore, the received signals at neighboring range cells can be used to estimate the

clutter covariance matrix of the current range cell. The proposed schemes consists of

first applying at the fusion center Capon beamforming on the received compressively

obtained data, which are forwarded by the receive antennas, and second, recovering the

target using CS theory, by exploiting the sparsity of the beamformed signals. Further,

based on the uniform uncertainty principle (UUP) [25] [34] [35], we propose a power

allocation scheme to improve the CS performance after beamforming.

The proposed scheme has been shown to significantly improve detection performance

in the presence of strong clutter.

3.2 Clutter Rejection in CS-Based MIMO Radars

Let us consider a MIMO radar system consisting of Mt TX antennas and Nr RX

antennas that are closely spaced in an arbitrary configuration. Let L denote the number

of Ts-spaced samples of the transmitted waveforms. The size of measurement matrix

is Φ is M × L. The details of CS-based colocated MIMO radars have been introduced

in Section (1.3.2) of Chapter 2. Let us form the (M × Nr) matrix Y = [r1, ...., rNr ],

where rl defined in (1.44) is a vector containing the compressed samples forwarded to

the fusion center by the l-th receive antenna.

It holds that

YT =

K∑

k=1

βkvr(θk)v
T
t (θk)X

TΦT + Z (3.1)

where

• Y: the received signal at Nr RX antennas, of which the i-th column contains the

received signal from the i-th RX antenna

• vt(θk): the transmit steering vector at the direction of θk, defined in (1.43)

• vr(θk): the receive steering vector at the direction of θk, defined similarly to

vt(θk)

• Z: the clutter matrix, whose covariance Rz is assumed to be known
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The SCNR of compressed receiving data without beamforming is

SCNRCS =

∥
∥
∥
∥
vec

(
K∑

k=1

βkvr (θk)v
T
t (θk)X

TΦT

)∥
∥
∥
∥

2

‖vec (ZΦT )‖2
. (3.2)

The Capon beamformer, w, allows the signal from a particular direction θ to pass

undistorted, while it minimizes the power coming from all other directions. The esti-

mation of w is formulated as

min
w

wHRzw s.t. wHvr(θ) = 1. (3.3)

The solution of (3.3) is

w(θ) =
R−1vr(θ)

vH
r (θ)R−1vr(θ)

. (3.4)

Let wn denote the Capon beamformer that focuses on the discrete angle an of the

N -point angle grid. Let us apply wn on the received data matrix Y to produce ỹn, i.e.,

ỹn = (wH
n YT )T = Yw∗

n

= Θ̃ns+ ZTw∗
n n = 1, . . . , N (3.5)

where

Θ̃n = ΦX
[
vt(a1)v

T
r (a1)w

∗
n, . . . ,vt(aN )vT

r (aN )w∗
n

]

and s is a sparse vector, the non-zero elements of which indicate the target locations.

The vector ỹn (M × 1) is the beamformer output corresponding to angle an, com-

puted based on M snapshots of the data received at the fusion center. If there is a

target at an then all elements of ỹn will have a large magnitude, otherwise, they will
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have low magnitudes. The SCNR of the signal yn after beamforming is

SCNRn =
wH

n RYwn

wH
n ZΦT (ΦT )HZHwn

= wH
n RYwn

(

vH
r (θn) R̃

−1vr (θn)
)

=
vH
r (θn) R̃

−1

vH
r (θn) R̃−1vr (θn)

RYwn

(

vH
r (θn) R̃

−1vr (θn)
)

= vH
r (θn) R̃

−1RYwn

=
vH
r (θn) R̃

−1RYR̃−1vr (θn)

vH
r (θn) R̃−1vr (θn)

, (3.6)

where RY =

(
K∑

k=1

βkvr (θk)v
T
t (θk)X

TΦT

)(
K∑

k=1

β∗
k

(
ΦT
)H(

XT
)H

v∗
t (θk)v

H
r (θk)

)

.

Stacking ỹn, n = 1, ..., N into a vector, i.e., ỹ, which has a block-sparse like appear-

ance (see Fig. 3.2), and which can be expressed as:

ỹ =
[
ỹT
1 , ..., ỹ

T
N

]T

=











N∑

k=1

skΦXvt (θk)v
T
r (θk)w

∗
1

...
N∑

k=1

skΦXvt (θk)v
T
r (θk)w

∗
N











+









ZTw∗
1

...

ZTw∗
N









=
[

Θ̃T
1 , ..., Θ̃

T
N

]T

︸ ︷︷ ︸

Θ̃

s+
[
wH

1 Z, ...,wH
NZ
]T

︸ ︷︷ ︸

Z̃

= Θ̃s+ Z̃. (3.7)

Here, ỹ provides a high resolution target picture. However, by exploiting the struc-

ture of (3.7), we can further improve resolution. This can be achieved by compressing

ỹ through a matrix Φ̃ and applying CS theory to recover the vector s. We should note

that the compression through Φ̃ is not necessary but it reduces the dimensionality of

the problem and thus the complexity of the recovery. If the measurement matrix Φ̃ is
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Figure 3.1: The diagram for the proposed CS-Capon method

an identity matrix, then the SCNR of CS-Capon method can be written as

SCNRCS Capon

=

N∑

n=1
wT

n

(
K∑

k=1

β∗
kv

∗
r (θk)v

H
t (θk)X

HΦH

)(
K∑

k=1

βkΦXvt (θk)v
T
r (θk)

)

w∗
n

N∑

n=1
wT

nZ
∗ΦHΦZTw∗

n

=

N∑

n=1
wH

n

(
K∑

k=1

βkvr (θk)v
T
t (θk)X

TΦT

)(
K∑

k=1

β∗
k

(
ΦT
)H(

XT
)H

v∗
t (θk)v

H
r (θk)

)

wn

N∑

n=1
wH

n ZΦT (ΦT )HZHwn

=

N∑

n=1
wH

n RYwn

N∑

n=1
wH

n ZΦT (ΦT )HZHwn

. (3.8)

It is easy to verify that

min {SCNR1, ..., SCNRN} ≤ SCNRCS Capon ≤ max {SCNR1, ..., SCNRN}

3.3 Power Allocation in CS-based Clutter Suppression

The CS-based recovery requires that the product of the measurement matrix and the

sparsifying basis matrix, referred to as the sensing matrix, satisfies the uniform uncer-

tainty principle (UUP) [25] [34] [35]; in other words, the sensing matrix exhibits low
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correlation between its columns. Let p denote the the transmit power vector for Mt

transmit antennas and suppose the total power is Pt. Let uk denote the k-th column

of the sensing matrix Θ̃ defined in (3.7) and it can be written as

uk = [ck1, ..., ckN ]⊗ΦXVt (ak) p̃, (3.9)

where Vt (ak) = diag (vt (ak)), p̃ =
√
p, ckn = vT

r (ak)w
∗
n for n = 1, . . . , N .

The power allocation for CS-Capon can be formulated as the following optimization

problem

min
p̃

∥
∥
∥Θ̃

HΘ̃− I

∥
∥
∥

2

F

s.t. p̃H p̃ = Pt, p̃ ≥ 0Mt×1, p̃ ≤
√

Pm1Mt×1 (3.10)

The optimization problem (3.10) can be further formulated as

min
p̃

∑

k 6=k′

|uH
k uk′ |2 +

∑

k

|uH
k uk − 1|2

s.t. p̃H p̃ = Pt, p̃ ≥ 0Mt×1, p̃ ≤
√

Pm1Mt×1 (3.11)

The correlation of the k-th and k′-th column in the sensing matrix can be written and

simplified as

∣
∣uH

k uk′
∣
∣
2
= ukk′

∣
∣p̃HBkk′p̃

∣
∣
2

(3.12)

where ukk′ =
∣
∣
∣
∑N

n=1 c
∗
knck′n

∣
∣
∣

2
, Bkk′ = VH(ak′)X

HΦHΦXV(ak). It can be verified that

matrix Bkk′ is not positive semidefinite. To make sure the objective function in the

optimization problem is convex, we use the same trick as that in [30] to rewritten the

objective function. The first constraint in (3.11) is not convex. We use it local affine

function to approximate it. The optimization problem (3.11) is solved recursively.

In practice, we may skip the compression step and collect a few samples at each

RX antenna. If the transmit waveform is orthogonal, i.e., XHX = I, then Bkk′ is a

diagonal matrix, then the problem (3.11) has a simplified convex version

min
p

pT (
∑

k 6=k′

ukk′b
∗
kk′b

T
kk′)p

s.t. 1TMt×1p = Pt, p ≥ 0, p ≤ Pm1Mt×1 (3.13)

where bkk′ is the diagonal vector of Bkk′ .
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Figure 3.2: Contour of the beamformed receive data matrix for Nr = 20 and Nr = 200,

respectively.

3.4 Simulations

We consider a MIMO radar system with TX and RX antennas uniformly located on

a disk of radius 10m. The carrier frequency is f = 5GHz. Each TX antenna uses

Hadamard orthogonal waveform sequence of length L = 128 and unit power. The

received signal is corrupted by zero-mean Gaussian noise of unit power. Three targets

are present on the angle grid [−30o,−29o, . . . , 30o]. The signal-to-noise ratio (SNR)

is set as 0dB. The clutter signal is constructed as the sum of returns reflected by

3000 reflectors, located in the DOA angle space [−30o,−30o + 60/1500o , . . . , 30o]. The

reflection coefficient of each reflector is 0.15. Randommatrix is used as the measurement

matrix Φ ∈ RM×L with M = 50.

Figure 3.2 shows the contour of the beamformed receive data matrixY = [ỹ1, . . . , ỹN ]

for Nr = 20 and Nr = 200, respectively. In both cases, the number of TX antennas is

set as Mt = 20. Assume there are K = 3 targets reflected from directions [−20o, 0o, 15o]

and the target reflect coefficients are set as [1, 1, 1]. It can be found from Fig. 3.2 that,

as Nr is large enough, there are K = 3 columns with large amplitude in matrix Y

whose column indexes are corresponding to the indexes of each target’s DOA in the
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Figure 3.3: SCNR comparisons with/without beamforming with Nt = 20.

discretized angle space. This indicates that the stacked receive data vector ỹ defined

in (3.7) is relatively block-sparse after applying the Capon-beamformer.

Figure 3.3 shows the averaged signal-to-clutter-plus-noise ratio (SCNR) versus the

number of RX antennas. The SCNR without beamforming is obtained according to

(3.2). The SCNR of CS-Capon is defined according to (3.8). Here, we also plot

the maximum and minimum of SCNR for all beamformed receive vector ỹn, n =

1, . . . , N . In simulations, K = 3 targets are generated randomly on the DOA grid

[−30o,−29o, . . . , 30o] and the target reflect coefficients are set as [1, 1, 1]. The clutter

signal is constructed as the sum of returns reflected by 3000 reflectors, located in the

DOA angle space [−30o,−30o + 60/1500o, . . . , 30o]. The reflection coefficient of each

reflector is 0.15. The number of TX antennas is set as Nt = 20. For each Nr, 100

runs have been carried out and average SCNR is calculated. It can be found from Fig.

3.3 that, without beamforming, the SCNR of the received signal defined in (3.1) is

around −10dB and does not change much with the increase of Nr. With beamforming,

the SCNR of the CS-Capon estimator defined in (3.8) is around 20dB when Nr = 50

and would go up with the increase of Nr. This indicates that the proposed CS-Capon
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Figure 3.4: SCSM versus Mt under optimal (PPA), uniform (UPA) and random (RPA)

power allocation in CS-Capon method with Nr = 20.

method could achieve a significant gain in SCNR performance, i.e., a strong clutter sup-

pression capability. We can also find from Fig. 3.3 that, the SCNR of the CS-Capon

estimator falls in the middle between the maximum and minimum SCNR of all beam-

formed vector ỹn, n = 1, . . . , N . This is because SCNR of the CS-Capon estimator

defined in (3.8) is a divisor of the averaged beamformed vector in the numerator and

denominator, respectively.

Figure 3.4 shows the distribution of the sum of the square magnitude (SCSM) of

the cross-correlation of column pairs in the sensing matrix of the CS-Capon estimator

versus Mt for optimal (PPA), uniform (UPA) and random (RPA) power allocation

schemes, respectively. For simplicity, in the simulations, the identity matrix is used as

the measurement matrix and the optimal power allocation is done by solving the convex

optimization problem (3.13). The number of RX antennas is set as Nr = 20. The total

power budget for all TX antennas equals Mt. The DOA angle search space is discretized

into [−8o,−8o + 0.2o, . . . , 8o]. The clutter signal is constructed as the sum of returns

reflected by 300 reflectors, located in the DOA angle space [−8o,−8o+16/300o, . . . , 8o].

The reflection coefficient of each reflector is 0.15. It can be found from Fig. 3.4 that
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in CS-Capon as well as Capon method with Nt = 50 and Nr = 20.

the coherence under PPA is smaller than the UPA and RPA. With the increase of Mt,

the coherence under all power allocation schemes would decrease.

Figure 3.5 plots the ROC curves of the angle estimates that are obtained based on

50 random and independent runs. In each run, K = 3 targets are randomly generated

on the angle grid of interest [−8o,−8o+0.2o, . . . , 8o] with random reflection coefficients

drawing from [0.4, 1], respectively. In the simulations, Nt = 50, Nr = 20, and SNR

is set to 0dB. Identity matrix is used as the measurement matrix. One can see that

the proposed CS-Capon method outperforms the CS method and Capon method. In

addition, the optimal power allocation could further improve the detection performance

in the CS-Capon estimator due to its capability to reduce the coherence of sensing

matrix.

Note: If the reflection coefficient of each target is identical, Capon performs as well

as the proposed CS-Capon method. While the reflection coefficients of three targets are

different, the ripples generated by Capon may mask the targets with smaller reflectivity.
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3.5 Summary

We have considered the scenario that strong clutter is present in the context of colocated

MIMO radars and thus sparsity condition might not hold for compressive sensing based

MIMO radars. By applying the Capon beamforming to the compressed received data,

we showed that the beamformed compressed data is block sparse and its signal-to-

clutter-noise ratio (SCNR) is improved greatly. Compressive sensing is subsequently

applied to the beamformed compressed data for target estimation. Based on the uniform

uncertainty principle, we further proposed a power allocation scheme to minimize the

coherence between the columns of the sensing matrix in CS, and thus to improve the CS

performance. Simulation results showed accurate target estimation could be achieved

using CS when there is strong clutter in the colocated MIMO radar scenarios.
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Chapter 4

A MIMO Radar Approach Based on Matrix Completion

In a typical MIMO radar scenario, the receive nodes transmit to a fusion center either

samples of the target returns, or the results of matched filtering with the transmit

waveforms. Based on the data it receives from multiple antennas, the fusion center

formulates a matrix, referred to as the data matrix, which, in conjunction with stan-

dard array processing schemes leads to target detection and parameter estimation. In

this chapter, it is shown that under certain conditions, the data matrix is low-rank,

and thus can be recovered based on knowledge of a small subset of its entries via ma-

trix completion (MC) techniques. Leveraging the low-rank property of that matrix, we

propose a new MIMO radar approach, termed, MIMO-MC radar, in which each re-

ceive node either performs matched filtering with a small number of randomly selected

dictionary waveforms or obtains sub-Nyquist samples of the target returns at random

sampling instants, and forwards the results to a fusion center. Based on the received

samples, and with knowledge of the sampling scheme, the fusion center partially fills

the data matrix and subsequently applies MC techniques to estimate the full matrix.

MIMO-MC radars share the advantages of the MIMO radars with compressive sensing,

(MIMO-CS), i.e., high resolution with reduced amounts of data, but unlike MIMO-CS

radars do not require grid discretization. The MIMO-MC radar concept is illustrated

through a linear uniform array configuration, and its target estimation performance is

demonstrated via simulations.
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4.1 Introduction

MIMO radar systems have received considerable attention in recent years due to their

superior resolution [17] [18] [66]. The MIMO radars using compressed sensing (MIMO-

CS) maintain the MIMO radars advantages, while significantly reducing the required

measurements per receive antenna [28] [29]. In MIMO-CS radars, the target parameters

are estimated by exploiting the sparsity of targets in the angle, Doppler and range space,

referred to as the target space; the target space is discretized into a fine grid, based on

which a compressive sensing matrix is constructed, and the target is estimated via sparse

signal recovery techniques, such as the Dantzig selector [29]. However, the performance

of CS-based MIMO radars degrades when targets fall between grid points, a case also

known as basis mismatch [39] [40].

In this chapter, a novel approach to lower-complexity, higher-resolution radar is

proposed, termed MIMO-MC radars, which stands for MIMO radars using matrix com-

pletion (MC). MIMO-MC radars achieve the advantages of MIMO-CS radars without

requiring grid discretization. Matrix completion is of interest in cases in which we are

constrained to observe only a subset of the entries of an n1 × n2 matrix, because the

cost of collecting all entries of a high dimensional matrix is high. If a matrix is low rank

and satisfies certain conditions [41], it can be recovered exactly based on observations

of a small number of its randomly selected entries. There are several MC techniques in

the literature [41–46]. For example, in [41–43], recovery can be performed by solving a

nuclear norm optimization problem, which basically finds the matrix with the smallest

nuclear norm out of all possible matrices that fit the observed entries. Other matrix

completion techniques are based on non-convex optimization using matrix manifolds,

such as Grassmann manifold [44,45], and Riemann manifolds [46].

In a typical MIMO radar scenario [66], transmit nodes transmit orthogonal wave-

forms, while each receive node performs matched filtering with the known set of transmit

waveforms, and forwards the results to the fusion center. Based on the data it receives

from multiple antennas, the fusion center formulates a matrix, which, in conjunction

with standard array processing schemes, such as MUSIC [5], leads to target detection
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and estimation. In this paper, we show that under certain conditions, the data matrix

at the fusion center is low-rank, which means that it can be recovered based on knowl-

edge of a small subset of its entries via matrix completion (MC) techniques. Leveraging

the low-rank property of that matrix, we propose MIMO-MC radar, in which, each

receive antenna either performs matched filtering with a small number of dictionary

waveforms or obtains sub-Nyquist samples of the received signal and forwards the re-

sults to a fusion center. Based on the samples forwarded by all receive nodes, and with

knowledge of the sampling scheme, the fusion center applies MC to estimate the full

matrix. Although the proposed ideas apply to arbitrary transmit and receive array

configurations, in which the antennas are not physically connected, in this paper we

illustrate the idea through a linear uniform array configuration. The properties and

performance of the proposed scheme are demonstrated via simulations. Compared to

MIMO-CS radars, MIMO-MC radars have the same advantage in terms of reduction

of samples needed for accurate estimation, while they avoid the basis mismatch issue,

which is inherent in MIMO-CS radar systems.

4.2 Colocated MIMO Radar System Model

Let us consider a MIMO pulse radar system that employs colocated transmit and re-

ceive antennas, as shown in Fig. 1.4. We use Mt and Mr to denote the numbers of

transmit and receive antennas, respectively. Although our results can be extended to

an arbitrary antenna configuration, we illustrate the ideas for uniform linear arrays

(ULAs). The inter-element spacing in the transmit and receive arrays is denoted by dt

and dr, respectively. The pulse duration is Tp, and the pulse repetition interval is TPRI .

The waveform of the ith transmit antenna is si (τ) =
√

E
Mt

φi (τ), where E is the total

energy for all the transmit antennas, and φi (τ) , i = 1, . . . ,Mt are orthonormal. The

waveforms are transmitted over a carrier with wavelength λ. Let us consider a scenario

with K point targets in the far field at angles θk, k = 1, . . . ,K, each moving with speed

ϑk.

The following assumptions are made:
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• The transmit waveforms are narrowband, i.e., 1
Tp

≪ c
λ , where c is the speed of

light.

• The target reflection coefficients {βk} , k = 1, . . . ,K are complex and remain

constant during a number of pulses, Q. Also, all parameters related to the array

configuration remain constant during the Q pulses.

• The delay spread in the receive signals is smaller than the temporal support of

pulse Tp.

• The Doppler spread of the receive signals is much smaller than the bandwidth of

the pulse, i.e., 2ϑ
λ ≪ 1

Tp
.

Under the narrowband transmit waveform assumption, the delay spread in the base-

band signals can be ignored. For slowly moving targets, the Doppler shift within a pulse

can be ignored, while the Doppler changes from pulse to pulse. Thus, if we express time

as t = qTPRI + τ , where q is the pulse index (or slow time) and τ ∈ [0, Tp] is the time

within a pulse (or fast time), the Doppler shift will depend on q only, and the received

signal at the l-th receive antenna can be approximated as [66]

xl

(

qTPRI + τ +
2d

c

)

≈
K∑

k=1

βke
j 2π

λ
(2ϑk(q−1)TPRI+(l−1)dr sin(θk))aT (θk) s (τ) + wl

(

qTPRI + τ +
2d

c

)

, (4.1)

where d is the distance of the range bin of interest; wl contains both interference and

noise;

a (θk) =
[

1, ej
2π
λ
dt sin(θk), . . . , ej

2π
λ
(Mt−1)dt sin(θk)

]T
, (4.2)

and s (τ) = [s1 (τ) , . . . , sMt (τ)]
T . For convenience, the signal parameters are summa-

rized in Table 4.1.

At the l-th receive node, for (l = 1, . . . ,Mr), a matched filter bank [66] is used to

extract the returns due to each transmit antenna [66] (see Fig. 4.1 (a)). Consider a filter

bank composed of Mt filters, corresponding to the Mt orthogonal transmit waveforms.

The receive node performsMt correlation operations and the maximum of each matched
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Table 4.1: List of parameters used in the signal model

dt spacing between the transmit antennas

dr spacing between the receive antennas

Mt number of transmit antennas

Mr number of receive antennas

Q number of pulses in a coherent processing interval

TPRI radar pulse repetition interval

q index of radar pulse (slow time)

τ time in one pulse (fast time)

ϑ speed of target

φm baseband waveform

d distance of range bin of interest

c speed of light

θ direction of arrival of the target

β target reflect coefficient

λ wavelength of carrier signal

wl interference and white noise in the lth antenna

Tp duration of one pulse

Ts Nyquist sampling period

filter is forwarded to the fusion center. At the fusion center, the received signal due to

the i-th matched filter of the l-th receive node, during the q-th pulse, can be expressed

as

xq(l, i) =

K∑

k=1

βke
j 2π

λ
(2ϑk(q−1)TPRI+(l−1)dr sin(θk)+(i−1)dt sin(θk)) + wq(l, i) (4.3)

for l = 1, . . . ,Mr, i = 1, . . . ,Mt, and q = 1, . . . , Q, where wq(l, i) is the corresponding

interference plus white noise.

Based on the data from all receive antennas, the fusion center can construct a matrix

XMF
q , of size Mr×Mt, whose (l, i) element equals xq(l, i). That matrix can be expressed
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as

XMF
q = BΣDqA

T

︸ ︷︷ ︸

ZMF
q

+WMF
q , (4.4)

where WMF
q is the filtered noise; Σ = diag ([β1, . . . , βK ]); Dq = diag (dq), with dq =

[

ej
2π
λ
2ϑ1(q−1)TPRI , . . . , ej

2π
λ
2ϑK(q−1)TPRI

]T
; A is the Mt × K transmit steering matrix,

defined asA = [a (θ1) , . . . ,a (θK)]; B is theMr×K dimensional receive steering matrix,

defined in a similar fashion based on the receive steering vectors

b (θk) =
[

1, ej
2π
λ
dr sin(θk), . . . , ej

2π
λ
(Mr−1)dr sin(θk)

]T
. (4.5)

4.2.1 MIMO Radars without Matched Filtering

In this scenario, each receive antenna performs Nyquist sampling to obtains N samples

from the target returns and forwards them to the fusion center (see Fig. 4.1 (b)). If

the data forwarded by the l-th antenna (l = 1, . . . ,Mr) during pulse q are inserted in

the l-th row of an Mr ×N matrix, Xq, then, an equation similar to (4.4) holds, except

that now the transmit waveforms also appear in the expression, i.e., [67]

Xq = BΣDqA
TS

︸ ︷︷ ︸

Zq

+Wq, (4.6)

where S = [s (0Ts) , . . . , s ((N − 1)Ts)] ∈ C
Mt×N .

4.3 The proposed MIMO-MC radar approach

Looking at (4.4), if Mt > K and Mr > K, both matrices Σ and Dq are rank-K. Thus,

the rank of the noise free matrix ZMF
q ∈ C

Mr×Mt is K, which implies that matrix ZMF
q

is low-rank if both Mt and Mr are much larger than K.

Similarly, looking at (4.6), both matrices Σ and Dq are rank-K. The rank of matrix

S is min {Mt, N}. Let us assume that N > Mt. For Mt > K, the rank of the noise

free data matrix Zq ∈ C
Mr×N is K. In other words, for Mr ≫ K the data matrix Zq is

low-rank.

Therefore, in both sampling schemes, assuming that the conditions (A0) and (A1)

are satisfied, the fusion center matrix can be recovered from a small number of its
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Figure 4.1: Two sampling schemes in the colocated MIMO radars system: (a) Sampling

scheme I; (b) Sampling scheme II.

entries. The estimated matrices corresponding to several pulses can be used to estimate

the target parameters via MUSIC [5], for example.

In the following, we leverage the low-rank property of the data matrices at the

fusion center to propose a new MIMO radar approach. Since both Zq and Zq
MF are

formulated based on different sampling schemes at the receive nodes, we will study two

cases, namely, sampling scheme I, which gives rise to Zq
MF , and sampling scheme II,

which gives rise to Zq.

4.3.1 MIMO-MC with Sampling Scheme I

Suppose that the lth receive node uses a random matched filter bank (RMFB), as shown

in Fig. 4.2, in which, a random switch unit is used to turn on and off each matched

filter. Suppose that L1 matched filters are selected at random out of the Mt available

filters, according to the output of a random number generator, returning L1 integers in

[0,Mt − 1] based on the seed sl. Let J l denote the set of indices of the selected filters.

The same random generator algorithm is also available to the fusion center. The l-th

receive antenna forwards the L1 samples along with the seed sl to the fusion center.

Based on the seed sl, the fusion center generates the indices J l. Then, it places the

j-th sample of the l-th antenna in the Mr × Mt matrix Zq
MF at location (l,J l(j)).

In total, L1Mt entries of the matrix are filled. The fusion center declares the rest of
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Figure 4.2: Structure of the random matched filter bank (RMFB).

the entries as “missing” and assuming that Zq
MF meets (A0) and (A1), applies MC

techniques to estimate the full data matrix.

Since the samples forwarded by the receive nodes are obtained in a random sampling

fashion, the filled entries of ZMF
q will correspond to a uniformly random sampling of

ZMF
q . In order to show that ZMF

q indeed satisfies (A0), and as a result (A1), we need to

show that the maximum coherence of the spaces spanned by the left and right singular

vectors of ZMF
q is bounded by a number, µ0. The smaller that number, the fewer

samples of ZMF
q will be required for estimating the matrix. The theoretical analysis

is pursued separately in [68]. Here, we confirm the applicability of MC techniques via

simulations.

We consider a scenario with K = 2 point targets. The DOA of the first target, θ1,

is taken to be uniformly distributed in [−90◦, 90◦], while the DOA of the second target

is taken to be θ2 = θ1+∆θ. The target speeds are taken to be uniformly distributed in

[0, 500]m/s, and the target reflectivities, βk are taken to be zero-mean Gaussian. Both

the transmit and receive arrays follow the ULA model with dt = dr = λ
2 . The carrier

frequency is taken as f = 1× 109Hz.

The left and right singular vectors of ZMF
q were computed for 500 independent

realizations of θ1 and target speeds. The probability that max (µ (U) , µ (V )) > µ0

among all the runs is shown in Fig. 4.3 (a) for ∆θ = 5◦ and different values of Mr,Mt.

One can see from the figure that in all cases, the probability that the coherence is
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Figure 4.3: Scheme I,K = 2 targets: (a) the probability of Pr (max (µ (U) , µ (V )) > µ0)

of ZMF
q for ∆θ = 5◦; (b) the average max (µ (U) , µ (V )) of ZMF

q as function of number

of transmit and receive antennas, and for ∆θ = 5◦; (c) the average max (µ (U) , µ (V ))

of ZMF
q as function of DOA separation.
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Figure 4.4: Scheme I, K = 2 targets: The max (µ (U) , µ (V )) in terms of Mr for

∆θ = 0◦, Mt = Mr.

bounded by a number less than 2 is very high, while the bound gets tighter as the

number of receive or transmit antennas increases. On the average, over all independent

realizations, the max (µ (U) , µ (V )) corresponding to different number of receive and

transmit antennas and fixed ∆θ, appears to decrease as the number of transmit and

receive antennas increases (see Fig. 4.3 (b)). Also, the maximum appears to decrease

as ∆θ increases, reaching 1 for large ∆θ (see Fig. 4.3 (c)). The rate at which the

maximum reaches 1 increases as the number of antennas increases.

It is interesting to see what happens at the limit ∆θ = 0, i.e., when the two targets

are on a line in the angle plane. Computing the coherence based on the assumption of

rank 2, i.e., using two eigenvectors, the coherence shown in Fig. 4.4 appears unbounded

as Mr changes. However, in this case, the true rank of ZMF
q is 1, and ZMF

q has the

best possible coherence. Indeed, as it is shown in the Appendix A, for a rank-1 ZMF
q ,

it holds that µ0 = µ1 = 1. Consequently, according to Theorem 1, the required number

of entries to estimate ZMF
q is minimal. This explains why in Fig. 4.8 (discussed further

in Section 4.4) the relative recovery error of ZMF
q goes to the reciprocal of SNR faster

when the two targets have the same DOA. Of course, in this case, the two targets with

the same DOA appear as one, and cannot be separated in the angle space unless other

parameters, e.g., speed or range are used. For multiple targets, i.e., for K ≥ 3, if there
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are n (n < K) targets with the same DOA, the rank of ZMF
q is K − n, which yields a

low coherence condition since these K − n DOAs are separated.

4.3.2 MIMO-MC with Sampling Scheme II

Suppose that the Nyquist rate samples of signals at the receive nodes correspond to

sampling times ti = iTs, i = 0, . . . , N −1 with N = Tp/Ts. Instead of the receive nodes

sampling at the Nyquist rate, let the l-th receive antenna sample at times τ lj = jTs, j ∈

J l, where J l is the output of a random number generator, containing L2 integers in the

interval [0, N − 1] according to a unique seed sl. The l-th receive antenna forwards the

L2 samples along with the seed sl to the fusion center. Under the assumption that the

fusion center and the receive nodes use the same random number generator algorithm,

the fusion center places the j-th sample of the l-th antenna in the Mr×N matrix Zq at

location (l,J l(j)), and declares the rest of the samples as “missing”. Therefore, under

conditions (A0) and (A1), Zq can be estimated based on m = L2Mr elements, for m

sufficiently large.

The left singular vectors of Zq are the eigenvectors of ZqZ
H
q = HSSHHH , where

H = BΣDqA
T . The right singular vectors of Zq are the eigenvectors of SHHHHS.

Since the transmit waveforms are orthogonal, it holds that SSH = I [20]. Thus, the

left singular vectors are only determined by matrix H, while the right singular vectors

are affected by both transmit waveforms and matrix H.

Again, to check whether Zq satisfies the conditions for MC, we resort to simulations.

In particular, we show that the maximum coherence of Zq is bounded by a small

positive number µ0. Assume there are K = 2 targets. The DOA of the first target,

θ1, is uniformly distributed in [−90◦, 90◦] and the DOA of the second target is set as

θ1 + ∆θ. The corresponding speeds are uniformly distributed in [150, 450]m/s. The

target reflectivities, βk, are zero-mean, Gaussian distributed. The transmit waveforms

are taken to be complex Gaussian orthogonal (G-Orth). The carrier frequency is f =

109 Hz, resulting in λ = c/f = 0.3 m. The inter-spacing between transmit and receive

antennas is set as dt = dr = λ/2, respectively.
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Figure 4.5: Scheme II, K = 2 targets, and G-Orth waveforms: (a) The probability

of Pr (max (µ (U) , µ (V )) > µ0) of Zq for ∆θ = 5◦ and N = 256; (b) The average

max (µ (U) , µ (V )) of Zq as function of N , for ∆θ = 5◦ and different values of Mt,Mr;

(c) The average max (µ (U) , µ (V )) of Zq as function of ∆θ, for N = 128, 256, and

different combinations of Mr,Mt.

The left and right singular vectors of Zq are computed for 500 independent re-

alizations of θ1 and target speeds. Among all the runs, the probability that the

max (µ (U) , µ (V )) > µ0 is shown in Fig. 4.5, for different values of Mt,Mr, ∆θ = 5◦,

and N = 256. One can see from the figure that in all cases, the probability that the

coherence is bounded by a number less than 7 is very high, while the bound gets tighter

as the number of receive or transmit antennas increases. On average, over all indepen-

dent realizations, the max (µ (U) , µ (V )) corresponding to different values of Mt,Mr

and a fixed ∆θ appears to increase with N , (see Fig. 4.5 (b)), while the increase is not
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Figure 4.6: The maximal power spectrum of the orthogonal waveforms over N = 32

snapshots for Mt = 10.

affected by the number of transmit and receive antennas. The average maximum does

not appear to change as ∆θ increases, and this holds for various values of Mt, N (see

Fig. 4.5 (c)).

Based on our simulations, the MC reconstruction depends on the waveform. In

particular, the coherence bound is related to the power spectrum of each column of the

waveform matrix (each column can be viewed as a waveform snapshot across the trans-

mit antennas). Let S̃i (ω) denote the power spectrum of the i-th column of S ∈ C
Mt×N .

If S̃i (ω) is similar for different i’s, the MC recovery performance improves with in-

creasing Mt (or equivalently, the coherence bound decreases) and does not depend on

N ; otherwise, the performance worsens with increasing N (i.e., the coherence bound

increases). When the S̃i (ω) has peaks at certain ω’s that occur close to targets, the

performance worsens. In Fig. 4.6, we show the maximum power spectra values corre-

sponding to Hadamard and G-Orth waveforms for Mt = 10 and N = 32. It can be seen

in Fig. 4.6 that the maximum power spectrum values corresponding to the Hadamard

waveform have strong peaks at certain ω’s, while those for the G-Orth waveforms fluc-

tuate around a low value. Suppose that there are two targets at angles θ1 = 20◦ and
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Figure 4.7: The comparison of matrix completion in terms of relative recovery errors

with Mr = 128,Mt = 10, N = 32, SNR = 25dB. There are K = 2 targets located at

(a) 20◦ and 40◦; (b) 0◦ and 80◦.

θ2 = 40◦, corresponding to ω1 =
1
2 sin

(
π
9

)
and ω2 = 1

2 sin
(
2π
9

)
, respectively. From Fig.

4.6 one can see that the targets fall under low power spectral values for both waveform

cases. The corresponding MC recovery error, computed based on 50 independent runs

is shown in Fig. 4.7 (a). One can see that the error is the same for both waveforms.

As another case, suppose that the two targets are at angles 0◦, 80◦, corresponding to

ω1 = 0, ω2 =
1
2 sin

(
4π
9

)
, respectively. Based on Fig. 4.6, one can see that ω1 and ω2 fall

under high spectral peaks in the case of Hadamard waveforms. The corresponding MC

recovery error is shown in Fig. 4.7(b), where one can see that Hadamard waveforms

yield higher error.

4.3.3 Discussion of MC in Sampling Schemes I and II

To apply the matrix completion techniques in colocated MIMO radars, the data matri-

ces Zq ∈ C
Mr×N and ZMF

q ∈ C
Mr×Mt need to be low-rank, and satisfy the coherence

conditions with small µi, i = 0, 1.

We have already shown that the rank of the above two matrices equals the number

of targets. In sampling scheme I, to ensure that matrix ZMF
q is low-rank, both Mt

and Mr need to be much larger than K, in other words, a large transmit as well as a
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large receive array are required. This, along with the fact that each receiver needs a

filter bank, make scheme I more expensive in terms of hardware. However, the matched

filtering operation improves the SNR in the received signals. Although in this paper we

use the ULA model to illustrate the idea of MIMO-MC radar, the idea can be extended

to arbitrary antenna configurations. One possible scenario with a large number of

antennas is a networked radar system [69] [70], in which the antennas are placed on the

nodes of a network. In such scenarios, a large number of collocated or widely separated

sensors could be deployed to collaboratively perform target detection.

In sampling scheme II, assuming that more samples (N) are obtained than existing

targets (K), Zq will be low-rank as long as there are more receive antennas than targets,

i.e., Mr ≫ K. For this scheme, there is no condition on the number of transmit antennas

Mt if G-Orth waveform is applied.

Based on Figs. 4.3 and 4.5, it appears that the average coherence bound, µ0,

corresponding to Zq is larger than that of ZMF
q . This indicates that the coherence

under scheme II is larger than that under scheme I, which means that for scheme II,

more observations at the fusion center are required to recover the data matrix with

missing entries.

4.3.4 Target Parameters Estimation with Subspace Methods

In this section we describe the MUSIC-based method that will be applied to the esti-

mated data matrices at the fusion center to yield target information.

Let Ẑq denote the estimated data matrix for sampling scheme II, during pulse q.

Let us perform matched filtering on Ẑq to obtain

Yq =
1

L
ẐqS̃

H = BΣDqA
T + W̃q, (4.7)

where W̃q is noise whose distribution is a function of the additive noise and the nuclear

norm minimization problem in (1.50). For sampling scheme I, a similar equation holds

for the recovered matrix without further matched filtering.

Then, let us stack the matrices into vector yq = vec (Yq), for sampling scheme II,

or yq = vec
(

ẐMF
q

)

, for sampling scheme I. Based on Q pulses, the following matrix
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can be formed: Y = [y1, . . . ,yQ] ∈ C
MtMr×Q, for which it holds that

Y = V (θ) X̃+W, (4.8)

where X̃ = [x̃1, . . . , x̃Q] is a K × Q matrix containing target reflect coefficient and

Doppler shift information; x̃q = [x̃1,q, . . . , x̃K,q]
T and x̃k,q = βke

j 2π
λ
2ϑk(q−1)TPRI ; V (θ) =

[v (θ1) , . . . ,v (θK)] is a MtMr ×K matrix with columns

v (θ) = a (θ)⊗ b (θ) (4.9)

and W =
[

vec
(

W̃1

)

, . . . , vec
(

W̃Q

)]

.

The sample covariance matrix can be obtained as

R̂ =
1

Q

Q
∑

n=1

yny
H
n =

1

Q
YYH . (4.10)

According to [5], the pseudo-spectrum of MUSIC estimator can be written as

P (θ) =
1

vH (θ)EnEH
n v (θ)

(4.11)

where En is a matrix containing the eigenvectors of the noise subspace of R̂. The DOAs

of target can be obtained by finding the peak locations of the pseudo-spectrum (4.11).

For joint DOA and speed estimation, we reshape Y into Ỹ ∈ C
QMt×Mr and get

Ỹ = FΣ [b (θ1) , . . . ,b (θK)] +W, (4.12)

where

F = [d (ϑ1)⊗ a (θ1) , . . . ,d (ϑK)⊗ a (θK)] ,

d (ϑ) =
[

1, ej
2π
λ
2ϑTPRI , . . . , ej

2π
λ
2ϑ(Q−1)TPRI

]T
.

The sampled covariance matrix of the receive data signal can then be obtained as

R̂Ỹ = 1
Mr

ỸỸH , based on which DOA and speed joint estimation can be implemented

using 2D-MUSIC. The pseudo-spectrum of 2D-MUSIC estimator is

P (θ, ϑ) =
1

[d (ϑ)⊗ a (θ)]HEnEH
n [d (ϑ)⊗ a (θ)]

(4.13)

where En ∈ C
QMt×(QMt−K) is the matrix constructed by the eigenvectors corresponding

to the noise-subspace of R̂Ỹ .
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4.4 Numerical Results

In this section we demonstrate the performance of the proposed approaches in terms of

matrix recovery error and DOA resolution.

We use ULAs for both transmitters and receivers. The inter-node distance for the

transmit array is set to Mrλ/2, while for the receive antennas is set as λ/2. Therefore,

the degrees of freedom of the MIMO radars is MrMt [19], i.e., a high resolution could be

achieved with a small number of transmit and receive antennas. The carrier frequency

is set to f = 1×109Hz, which is a typical radar frequency. The noise introduced in both

sampling schemes is white Gaussian with zero mean and variance σ2. The data matrix

recovery is done using the singular value thresholding (SVT) algorithm [71]. Nuclear

norm optimization is a convex optimization problem. There are several algorithms

available to solve this problem, such as TFOCS [72]. Here, we chose the SVT algorithm

because it is a simple first order method and is suitable for a large size problem with

a low-rank solution. During every iteration of SVT, the storage space is minimal and

computation cost is low.

We should note that in the SVT algorithm, the matrix rank, or equivalently, the

number of targets, is not required to be known a prior. The only requirement is that

the number of targets is much smaller than the number of TX/RX antennas, so that the

receive data matrix is low-rank. To make sure the iteration sequences of SVT algorithm

converge to the solution of the nuclear norm optimization problem, the thresholding

parameter τ should be large enough. In the simulation, τ is chosen empirically and set

to τ = 5ζ, where ζ is the dimension of the low-rank matrix that needs to be recovered.

4.4.1 Matrix Recovery Error under Noisy Observations

We consider a scenario with two targets. The first target DOA, θ1 is generated at

random in [−90◦, 90◦], and the second target DOA, is taken as θ2 = θ1 + ∆θ. The

target reflection coefficients are set as complex random, and the corresponding speeds

are taken at random in [0, 500]m/s. The SNR at each receive antenna is set to 25dB.

In the following, we compute the matrix recovery error as function of the number
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Figure 4.8: Scheme I, K = 2 targets: the relative recovery error for ZMF
q under different

values of DOA separation. Mr = Mt = 40.

of samples, m, per degrees of freedom, df, i.e., m/df, a quantity also used in [43]. A

matrix of size n1 × n2 with rank r, has r (n1 + n2 − r) degrees of freedom [41]. Let φ
Ẑ

denote the relative matrix recovery error, defined as:

φ
Ẑ
=
∥
∥
∥Ẑ− Z

∥
∥
∥
F

/

‖Z‖F , (4.14)

where we use Z to denote the data matrix in both sampling schemes, and Ẑ to denote

the estimated data matrix.

Figure 4.8 shows φ
Ẑ

under sampling scheme I, versus the number of samples per

degree of freedom for the same scenario as above. The number of transmit/receiver

antennas is set as Mt = Mr = 40. It can be seen from Fig. 4.8 that when m/df

increases from 2 to 4, or correspondingly, the matrix occupancy ratio increases from

p1 ≈ 0.2 to ≈ 0.4, the relative error φ
Ẑ
drops sharply to the reciprocal of the matched

filter SNR level, i.e., a “phase transition” [44] occurs. It can be seen in Fig. 4.8 that,

when the two targets have the same DOA, the relative recovery error is the smallest.

This is because in that case the data matrix has the optimum coherence parameter,

i.e., µ0 = 1. As the DOA separation between the two target increases, the relative

recovery error of the data matrix in the transition phase increases. In the subsequent

DOA resolution simulations, we set the matrix occupancy ratio as p1 = L1Mr

MtMr
= 0.5,



74

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

m/df

R
el

at
iv

e 
R

ec
ov

er
y 

E
rr

or
s

 

 
Reciprocal of SNR

Hadamard: ∆θ=0°

G−Orth: ∆θ=0°

Hadamard: ∆θ=1°

G−Orth: ∆θ=1°

Hadamard: ∆θ=5°

G−Orth: ∆θ=5°

Figure 4.9: Scheme II, K = 2 targets: the relative recovery errors for Zq under

Hadamard and Gaussian Orthogonal waveforms, and different values of ∆θ. Mr =

Mt = 40, N = 256.

which corresponds to m/df ≈ 5, to ensure that the relative recovery error has dropped

to the reciprocal of SNR level.

Figure 4.9 shows the relative recovery errors, φ
Ẑ
, for data matrix Zq (sampling

scheme II), corresponding to Hadamard or Gaussian orthogonal (G-Orth) transmit

waveforms, and the number of Nyquist samples is taken to be N = 256. Different

values of DOA separation for the two targets are considered, i.e., ∆θ = 0◦, 1◦, 5◦,

respectively.

The results are averaged over 100 independent angle and speed realizations; in each

realization the L2 samples are obtained at random among the N Nyquist samples at

each receive antenna. The results of Fig. 4.9 indicate that, for the same ∆θ, as m/df

increases, the relative recovery error, φ
Ẑ
, under Gaussian orthogonal waveforms (dash

lines) reduces to the reciprocal of the SNR faster than under Hadamard waveforms

(solid lines). A plausible reason for this is that under G-Orth waveforms, the average

coherence parameter of Zq is smaller as compared with that under Hadamard wave-

forms. Under Gaussian orthogonal waveforms, the error φ
Ẑ
decreases as ∆θ increases.

On the other hand, for Hadamard waveforms the relative recovery error appears to

increase with an increasing ∆θ, a behavior that diminishes in the region to the right of
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the point of “phase transition”. However, the behavior of the error at the left of the

“phase transition” point is not of interest as the matrix completion errors are pretty

high and DOA estimation is simply not possible. At the right of the “phase transition”

point, the observation noise dominates in the DOA estimation performance.

In both waveforms, the minimum error is achieved when ∆θ = 0◦, i.e., when the

two targets have the same DOA, in which case the rank of data matrix Zq is rank-1.

The above observations suggest that the waveforms do affect performance, and optimal

waveform design would be an interesting problem. The waveform selection problem

could be formulated as an optimization problem under the orthogonal and narrow-band

constraints. We plan to pursue this in our future work.

It can be seen from Fig. 4.8 and Fig. 4.9 that in the noisy cases, as the matrix

occupancy ratio increases, the relative recovery errors of the matrices decreases to the

reciprocal of SNR.

4.4.2 DOA Resolution with Matrix Completion

In this section we study the probability that two DOAs will be resolved based on the

proposed techniques. Two targets are generated at 10◦ and 10◦ + ∆θ, where ∆θ =

[0.05◦, 0.08◦, 0.1◦, 0.12◦, 0.15◦, 0.18◦, 0.2◦, 0.22◦, 0.25◦, 0.3◦]. The corresponding target

speeds are set to 150 and 400 m/s. We set Mt = Mr = 20 and Q = 5. The DOA

information is obtained by finding the peak locations of the pseudo-spectrum (4.11). If

the DOA estimates θ̂i, i = 1, 2 satisfy
∣
∣
∣θi − θ̂i

∣
∣
∣ ≤ ε∆θ, ε = 0.1, we declare the estimation

a success. The probability of DOA resolution is then defined as the fraction of successful

events in 200 iterations. For comparison, we also plot the probability curves with full

data matrix observations.

First, for scheme I, L1 = 10 matched filers are independently selected at random at

each receive antenna, resulting matrix occupancy ratio of p1 = 0.5. The corresponding

probability of DOA resolution is shown in Fig. 4.10. As expected, the probability of

DOA resolution increase as the SNR increases. The performance of DOA resolution

based on the full set of observations has similar behavior. When SNR = 25dB, the

performance of MC-based DOA estimation is close to that with the full data matrix.
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Figure 4.10: Scheme I: DOA resolution. The parameter are set as Mr = Mt = 20,

p1 = 0.5 and SNR = 10, 25dB, respectively.

Interestingly, for SNR = 10dB, the MC-based result is better than that corresponding

to a full data matrix. Most likely, the MC acts like a low-rank approximation of ZMF
q ,

and thus eliminates some of the noise.

The probabilities of DOA resolution of DOA estimates under scheme II, with G-

Orth and Hadamard waveforms are plotted in Fig. 4.11 (a) and (b), respectively. The

parameters are set to N = 256 and p2 = 0.5, i.e., each receive antenna uniformly selects

L2 = 128 samples at random to forward. Similarly, the simulation results show that

under scheme II, the performance at SNR = 10dB is slightly better than that with full

data access. In addition, it can be seen that the performance with G-Orth waveforms

is better than with Hadamard waveforms. This is because the average coherence of

Zq under Hadamard waveforms is higher than that with G-Orth waveforms. As shown

in Fig. 4.11, increasing the SNR from 10dB to 25dB can greatly improve the DOA

estimation performance, as it benefits both the matrix completion and the performance

of subspace based DOA estimation method, i.e., MUSIC (see chapt. 9 in [5]).

4.4.3 Comparisons of Sampling Schemes I and II

Comparing the two sampling methods based on the above figures (see Figs. 4.10, and

4.11 (a),(b)) we see that although the performance is the same, sampling scheme I uses
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Figure 4.11: Scheme II, K = 2, Mr = Mt = 20, N = 256, p2 = 0.5, SNR = 10, 25dB.

DOA resolution with (a) G-Orth waveforms; (b) with Hadamard waveforms.

fewer samples, i.e., 10 × 20 samples, as compared to sampling scheme II, which uses

128 × 20 samples. To further elaborate on this observation, we compare the perfor-

mance of the two sampling schemes when they both forward to the fusion center the

same number of samples. The parameters are set to SNR = 25dB, p1 = p2 = 0.5 and

Mt = N . Therefore, in both schemes, the number of samples forwarded by each receive

antenna was the same. The number of transmit antenna was set as Mr = 40 and 80,

respectively. Gaussian orthogonal transmit waveforms are used. Two targets are gener-

ated at random in [−90◦, 90◦] at two different DOA separations, i.e., ∆θ = 5◦, 30◦. The

results are averaged over 100 independent realizations; in each realization, the targets

are independently generated at random and the sub-sampling at each receive antenna

is also independent between realizations. The relative recovery error comparison is

plotted in Fig.4.12.

It can be seen in Fig. 4.12 that as N (or equivalently Mt) increases, the relative

recovery error corresponding to Zq and ZMF
q decreases proportionally to the reciprocal

of the observed SNR. The relative recovery error under scheme I drops faster than under

scheme II for both Mr = 40 and Mr = 80 cases. This indicates that scheme I has a

better performance than scheme II for the same number of samples.
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Figure 4.12: Comparisons of the relative recovery errors in terms of number of N (Mt)

for Mr = 40, 80. The matrix occupancy is set to p1 = p2 = 0.5. Two targets are

generated at random in [−90◦, 90◦] with DOA separation ∆θ = 5◦, 30◦.

4.5 Summary

We have proposed MIMO-MC radars, which is a novel MIMO radar approach for high

resolution target parameter estimation that involves small amounts of data. Each

receive antenna either performs matched filtering with a small number of dictionary

waveforms (scheme I) or obtains sub-Nyquist samples of the received signal (scheme

II) and forwards the results to a fusion center. Based on the samples forwarded by all

receive nodes, and with knowledge of the sampling scheme, the fusion center applies MC

techniques to estimate the full matrix, which is then used in the context of existing array

processing techniques, such as MUSIC, to obtain target information. Although ULAs

have been considered, the proposed ideas can be generalized to arbitrary configurations.

MIMO-MC radars are best suited for sensor networks with large numbers of nodes.

Unlike MIMO-CS radars, there is no need for target space discretization, which avoids

basis mismatch issues. It has been confirmed with simulations that the coherence of

the data matrix at the fusion center meets the conditions for MC techniques to be

applicable. The coherence of the matrix is always bounded by a small number. For

scheme I, that number approaches 1 as the number of transmit and receive antennas
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increases and as the targets separation increases. For scheme II, the coherence does

not depend as much on the number of transmit and receive antennas, or the target

separation, but it does depend on N , the number of Nyquist samples within one pulse,

which is related to the bandwidth of the signal; the coherence increases as N increases.

Comparing the two sampling schemes, scheme I has better performance than scheme II

for the same number of forwarded samples.
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Chapter 5

Waveform Design for MIMO Radars with Matrix

Completion

It was shown in Chapter 4 that MIMO radars with sparse sensing and matrix comple-

tion can significantly reduce the volume of data required for accurate target detection

and estimation. Based on sparsely sampled target returns, forwarded by the receive

antennas to a fusion center, a matrix, referred to as the data matrix, can be partially

filled, and subsequently completed via MC techniques. The completed data matrix

can then be used in standard array processing methods to estimate the target parame-

ters. This chapter studies the applicability of MC theory on the data matrix arising in

colocated MIMO radars using uniform linear arrays. It is shown that the data matrix

coherence, and consequently the performance of MC, is directly related to the transmit

waveforms. Among orthogonal waveforms, the optimum choices are those for which,

any snapshot across the transmit array has a flat spectrum. The problem of waveform

design is formulated as an optimization problem on the complex Stiefel manifold, and

is solved via the modified steepest descent method, or the modified Newton algorithm

with nonmonotone line search. Although the optimal waveforms are designed for the

case of targets falling in the same range bin, sensitivity analysis is conducted to assess

the performance degradation when the targets fall in different range bins.

5.1 Introduction

Unlike traditional phased-array radars which transmit fully correlated signals through

their transmit antennas, MIMO radars [18] transmit mutually orthogonal signals. The

orthogonality allows the receive antennas to separate the transmitted signals via matched
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filtering. The target parameters are obtained by processing the phase shifts of the re-

ceived signals. MIMO radars offer a high degree of freedom [19] and consequently,

enable improved resolution. Since the transmitted signals are orthogonal, the trans-

mit beam is not focused on a particular direction [73], thus resulting in decrease of

illumination power. Pulse compression techniques are typically used to improve the

range resolution as well as strengthen the receive signal power. The transmit pulse can

be coded or modulated, e.g., phase-coded pulse or linear frequency modulated (LFM)

pulse [74].

The idea of using low-rank matrix completion (MC) techniques in MIMO radars

(termed as MIMO-MC radars) was first proposed in [75], [76] as means of reducing the

volume of data required for accurate target detection and estimation. In particular, [76]

considers a colocated pulse MIMO radar scenario with uniform linear arrays (ULAs)

at the transmitter and the receiver. Each receive antenna samples the target returns

and forwards the obtained samples to a fusion center. Based on the data received, the

fusion center formulates a matrix, referred to as “data matrix”, which can then be used

in standard array processing methods for target detection and estimation. If the data

samples are obtained in a Nyquist fashion, and the number of targets is small relative

to the number of transmit and receive antennas, the data matrix is low-rank [75].

Thus, it can be recovered from a small subset of its uniformly spaced elements via

matrix completion (MC) techniques. By exploiting the latter fact, the MIMO-MC radar

receive antennas obtain a small number of samples at uniformly random sampling times.

Based on knowledge of the sampling instances, the fusion center populates the data

matrix in a uniformly sparse fashion, and subsequently recovers the full matrix via MC

techniques. This is referred to as Scheme II in [76]. Alternatively, the receive antennas

can perform matched filtering with a randomly selected set of transmit waveforms, and

forward the results to the fusion center, partially populating the data matrix. The

data matrix is subsequently completed via MC. This is referred to as Scheme I in [76].

Both Schemes I and II reduce the number of samples that need to be forwarded to

the fusion center. If the transmission occurs in a wireless fashion, this translates to

savings in power and bandwidth. As compared to MIMO radars based on sparse signal
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recovery [26], [27], [29], it has been shown in [76] that MIMO-MC radars achieve similar

performance but without requiring a target space grid. This is because MC techniques

do not require building a basis matrix based on the discretized target space. However,

this advantage is achieved at a cost of higher computation complexity arising from the

need of both matrix recovery and subspace estimation methods.

Details on the general topic of matrix completion and the conditions for matrix

recovery can be found in [41], [42], [43]. The conditions for the applicability of MC on

Scheme I of [76] ULA can be found in [68]. In that case, and under ideal conditions,

the transmit waveforms do not affect the MC performance. On the other hand, for

Scheme II of [76], it was shown in [76], [77] that the transmit waveforms affect the

matrix completion performance, as they directly affect the data matrix coherence [42];

a larger coherence implies that more samples need to be collected for reliable target

estimation. That observation motivates the work in this paper, where we explore the

relationship between matrix coherence and transmit waveforms for Scheme II of [76],

and design waveforms that result in the lowest possible coherence. Waveform design in

the context of MIMO radars has been extensively studied. For example, in [78], [79],

the waveforms are designed to maximize the mutual information between target im-

pulse response (which are assumed known) and reflected signals. In [80], waveforms

with good correlation properties are designed under the unimodular constraint. In [81],

clutter mitigation is considered in waveform design for ground moving-target indica-

tion (GMTI). Orthogonal phase-coded waveforms are designed in [82] via simulated

annealing. Frequency hopping waveforms are designed in [22] to reduce the sidelobe of

the radar ambiguity function [21]. For MIMO radars with sparse signal recovery, e.g.,

in [83], [30], the goal of waveform design is to reduce the coherence of sensing matrix.

In this chapter, we aim to design waveforms so that the coherence of the receive

data matrix attains its lowest possible value. Since the waveforms are constrained to

be orthogonal, we formulate the design problem as an optimization problem on the

complex Stiefel manifold [84], and for its solution employ the modified steepest descent

algorithm [85] and the modified Newton algorithm. The local gradient and Hessian

of the cost functions are derived in closed forms. We also provide sensitivity analysis
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of the optimized waveforms in the scenario of targets falling in different range bins.

In particular, we show that for relatively small delays, i.e., of the order of the radar

pulse duration, the matrix coherence increases only slightly as the maximal range delay

increases. Numerical results show that good angle and speed estimation performance

could be achieved under the optimized waveforms.

5.2 Background of MIMO-MC Radar

We consider the problem formulation proposed in [76] for scheme II. The scenario

involves narrowband orthogonal transmit waveforms, transmitted in pulses with pulse

repetition interval TPRI and carrier wavelength λ, K far-filed targets at angles θk,

and ULAs for transmission and reception, equipped with Mt transmit and Mr receive

antennas, respectively, and inter-element spacing dt and dr, respectively (see Subsection

B of Section II in [76]).

During each pulse, the m-th, m ∈ N
+
Mt

antenna transmits a coded waveform con-

taining N symbols {sm (n)} , n = 1, · · · , N of duration Tb each, which can be written

in the baseband as

φm (t) =

N∑

n=1

sm (n)Λ

[
t− (n− 1)Tb

Tb

]

, t ∈ [0, Tφ] , (5.1)

where sm (n) = am (n) ejϕm(n), with {ϕm (n)} uniformly distributed in [−π, π], and

{am (n)} taking arbitrary positive values; Λ (t) is a rectangular pulse and Tφ = NTb

is the duration of the entire pulse. In this chapter, we relax the constant amplitude

requirement to exploit more degrees of freedom for waveform design. A similar relax-

ation was also exploited in [83] [30]. We admit that this relaxation would put some

difficulties in the radar transmitters. We will assume that the waveforms are sufficiently

narrowband, i.e., 1
Tφ

≪ c
λ and targets are slow moving, i.e., 2ϑ

λ ≪ 1
Tφ

, where c is the

speed of light and ϑ is target speed.

In the following, we do the analysis for a scenario in which all targets are in the

same range bin [18] [19]; in Section 5.5, we will study sensitivity issues arising from

targets appearing in different range bins. Suppose that the receive antennas sample the

target echoes with sampling interval Tb and forward their samples to a fusion center.
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Let X be the matrix formulated at the fusion center based on receive antenna samples

data with each antenna contributing a row to X. It holds that

X = W + J, (5.2)

where J is an interference/noise matrix and

W = BDATST , (5.3)

where A ∈ C
Mt×K is the transmit steering matrix (respectively defined is B ∈ C

Mr×K)

with [A]mk = e−j2π(m−1)αt
k and αt

k
∆
= dt sin(θk)

λ , (m,k) ∈ N
+
Mt

×N
+
K , where θk is the angle

of the k-th target, or equivalently, αt
k is the spatial frequency corresponding to the k-th

target.

D
∆
= diag

([

β1ζq1 β2ζq2 · · · βKζqK

])

, (5.4)

where ζqk = ej2πνk(q−1)TPRI , with q denoting the pulse index, νk = 2ϑk

λ denoting the

Doppler shift of the k-th target, and {βk}k∈N+
K
, {ϑk}k∈N+

K
denoting contain target re-

flection coefficients and speeds, respectively. S = [s (1) , . . . , s (N)]T ∈ C
N×Mt with

s (i) = [s1 (i) , . . . , sMt (i)]
T , is the sampled waveform matrix, with its vertical dimen-

sion corresponding to sampling along time and its horizontal dimension corresponding

to sampling across the array (sampling in space). The i-th row of S can be thought

of as the snapshot of the waveforms across the transmit antennas at sampling time i.

Due to the assumed orthogonality of the waveforms, it holds that SHS = IMt when

N ≥ Mt [67].

When both Mr,Mt as well as N are larger than K, the noise free data matrix W is

rank-K and can be recovered from a small number of its entries via matrix completion.

This fact motivated the approach of [75] [76], which calls for subsampling the target

echoes at the receive antennas in a uniformly pseudo-random fashion, partially filling

the data matrix at the fusion center, and then completing the data matrix via MC

techniques. This approach reduces the number of samples that need to be forwarded

to the fusion center. It turns out that the applicability of MC depends on the transmit

waveforms. In the next section, we derive the necessary and sufficient conditions the
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transmit waveforms must satisfy so that the coherence of W is asymptotical optimal,

i.e., it approaches 1 as Mt increases.

5.3 Data Matrix Coherence Analysis and Optimal Waveform Condi-

tions

In this section, we analyze the coherence of W, for the MIMO radar system defined in

the previous section. In particular, (1) we provide sufficient and necessary conditions

for the optimal transmit waveforms under which the coherence of W attains its low-

est possible value; (2) under those conditions, we show asymptotic optimality of the

coherence of W w.r.t. the number of transmit/receive antennas; (3) we show that the

coherence of W does not depend on the Doppler shift.

5.3.1 The Coherence of Data Matrix in MIMO-MC Radar

Let Si(α
t
k) denote the discrete-time Fourier transform (DTFT) of the i-th snapshot of

the transmit waveforms evaluated at spatial frequency αt
k, i.e.,

Si

(
αt
k

)
=

Mt∑

m=1

sm (i) e−j2π(m−1)αt
k , (5.5)

where {{sm (i)}m∈N+
Mt

} are the elements in the i-th row of S.

Before we proceed we provide a lemma that will be useful in the subsequent theo-

rems.

Lemma 1. For the MIMO radar system described in Section 5.2 with dt = λ/2, and

K targets randomly located at angles
{
θk ∈

[
−π

2 ,
π
2

]}

k∈N+
K

, or equivalently, at spatial

frequencies
{
αt
k ∈

[
−1

2 ,
1
2

]}

k∈N+
K

, it holds that

N∑

i=1

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2 = KMt. (5.6)

Proof of Lemma 1. See the Appendix B for the proof.

The waveforms conditions under which the coherence of W attains its lowest value

are summarized in the following theorem.
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Theorem 2. (Optimal Waveform Conditions): Consider the MIMO radar systems as

defined in Section 5.2, with dt =
λ
2 .

The necessary condition under which the coherence of W attains its lowest possible

value is

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2 =

KMt

N
, ∀ i ∈ N

+
N . (5.7)

A sufficient condition for the coherence of W to attain its lowest possible value, inde-

pendent of the target angles is

∣
∣Si

(
αt
l

)∣
∣2 =

Mt

N
, ∀ i ∈ N

+
N and ∀ αt

l ∈
[

−1

2
,
1

2

]

. (5.8)

Proof of Theorem 2. To make the proof more tractable, we break it into two parts. In

the first part, we characterize the SVD of the matrix W in order to identify the actions

that are needed in order to bound its coherence. In the second part, we derive the

optimal conditions of the coded orthogonal waveforms.

1) Characterization of the SVD of W: The compact SVD of W can be expressed

as

W = UΛVH , (5.9)

where U ∈ C
Mr×K , V ∈ C

N×K such that UHU = IK , VHV = IK , and Λ ∈ R
K×K is

a diagonal matrix containing the singular values of W.

Consider the QR decomposition of B, i.e., B = QrRr, with Qr ∈ C
Mr×K , such

that QH
r Qr = IK and Rr ∈ C

K×K an upper triangular matrix. Similarly, consider the

QR decomposition of SA, i.e., SA = QsRs, with Qs ∈ C
N×K , such that QH

s Qs = IK

and Rs ∈ C
K×K an upper triangular matrix. The matrix RrDRT

s ∈ C
K×K is rank-K

and its SVD can be expressed as RrDRT
s = Q1∆QH

2 . Here, Q1 ∈ C
K×K is such that

Q1Q
H
1 = QH

1 Q1 = IK (the same holds for Q2) and ∆ ∈ R
K×K is non-zero diagonal,

containing the singular values of RrDRT
s . Therefore, it holds that

W = QrQ1∆QH
2 QT

s = QrQ1∆(Q∗
sQ2)

H , (5.10)

which is a valid SVD of W since (QrQ1)
H
QrQ1 = IK and (Q∗

sQ2)
H
Q∗

sQ2 = IK . Via

the uniqueness of the singular values of a matrix, it holds that Λ = ∆, thus U = QrQ1

and V = Q∗
sQ2.
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Let Qi
r denote the i-th row of of Qr. The coherence of the row space of W is

µ (U) =
Mr

K
sup

i∈N+
Mr

∥
∥Qi

rQ1

∥
∥
2

2
=

Mr

K
sup

i∈N+
Mr

∥
∥Qi

r

∥
∥
2

2
(5.11)

It can be seen from (5.11) that µ (U) is determined by Qr, which is only related to the

receive steering matrix B and is independent of the transmit waveform S. In the MIMO

radar systems under ULA configuration with dr = λ
2 , under the assumption that the

target angles set {θk}k∈N+
N

are distinct with minimal spatial frequency separation ξ, it

was shown in [68] that

µ (U) ≤
√
Mr√

Mr − (K − 1)
√

βMr (ξr)
, (5.12)

where βMr (ξr) is the Fejér kernel (see (5.23)).

Let Q
∗(i)
s and S∗(i), i ∈ N

+
N denote the i-th row of Q∗

s and S∗, respectively. For the

coherence of the row space of W we have

µ (V ) =
N

K
sup
i∈N+

N

∥
∥
∥Q

∗(i)
s Q2

∥
∥
∥

2

2
=

N

K
sup
i∈N+

N

∥
∥
∥Q

∗(i)
s

∥
∥
∥

2

2

=
N

K
sup
i∈N+

N

∥
∥
∥S

∗(i)A∗(R∗
s)

−1
∥
∥
∥

2

2

≤ N

K
sup
i∈N+

N

∥
∥S∗(i)A∗∥∥2

2

σ2
min (R

∗
s)

, (5.13)

where

σ2
min (R

∗
s) = λmin

(

(R∗
s)

H
R∗

s

)

= λmin

(
RH

s Rs

)

= λmin

(
RH

s QH
s QsRs

)
= λmin

(

(SA)HSA
)

= λmin

(
AHA

)
. (5.14)

Here, we use the symbol λmin (·) to denote the minimal eigenvalue of a matrix. In

addition, we apply the fact that the eigenvalues of a Hermitian matrix are real, and

the eigenvalues of X∗ are the complex conjugate of the eigenvalues of X. Thus, if X is

Hermitian, its eigenvalues are equal to eigenvalues of X∗.

In the MIMO radar systems under ULA configuration with dt = λ
2 , under the

assumption that the target angles are distinct with minimal spatial frequency separation
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ξt, it was shown in [68] that

λmin

(
AHA

)
≥ Mt − (K − 1)

√

MtβMt (ξt) (5.15)

where βMt (ξt) is the kernel defined in (5.23). Therefore, regarding the coherence of the

column space of W, we have

µ (V ) ≤ N

K
sup
i∈N+

N

∥
∥S∗(i)A∗∥∥2

2

Mt − (K − 1)
√

MtβMt (ξt)
. (5.16)

Next, we focus on finding the minimum of the supremum of
∥
∥S∗(i)A∗∥∥2

2
over i ∈ N

+
N ,

which results in the optimal waveform conditions.

2) Optimal Waveform Conditions: The transmit steering matrix A has the Vander-

monde form under ULA configuration. Consequently, it holds that

∥
∥
∥S

∗(i)A∗
∥
∥
∥

2

2

=S∗(i)A∗
(

S∗(i)A∗
)H

=
K∑

k=1

Mt∑

m=1

sm (i)e−j2π(m−1)αt
k

Mt∑

m′=1

s∗m′ (i) ej2π(m
′−1)αt

k

=
K∑

k=1

∣
∣
∣
∣
∣

Mt∑

m=1

sm (i)e−j2π(m−1)αt
k

∣
∣
∣
∣
∣

2

=
K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2, (5.17)

Therefore, the coherence bound of the row space of W is

µ (V ) ≤ N

K

sup
i∈N+

N

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2

Mt − (K − 1)
√

MtβMt (ξt)
. (5.18)

The lowest possible coherence bound of µ (V ) can be achieved by finding waveforms

that minimize sup
i∈N+

N

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2. This can be formulated as a min-max optimization

problem subject to the constraint given in Lemma 1, i.e.,

min
S

(

max
i∈N+

N

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2

)

s.t.

N∑

i=1

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2 = KMt (5.19)
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Since
K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2 ≥ 0, for i ∈ N

+
N , the optimal solution of the min-max optimization

problem is

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2 =

KMt

N
, ∀ i ∈ N

+
N . (5.20)

The solution, as shown in (5.20) depends on the specific target spatial angles
{
αt
k

}

k∈N+
K

.

Since these angles are not known, we need to consider every possible angle θl in the angle

space
[
−π

2 ,
π
2

]
, or every αt

l ∈
[
−1

2 ,
1
2

]
. Thus, the optimal waveforms should sufficiently

satisfy:

∣
∣Si

(
αt
l

)∣
∣2 =

Mt

N
, ∀ i ∈ N

+
N and ∀ αt

l ∈
[

−1

2
,
1

2

]

. (5.21)

The condition of (5.21) indicates that the power spectrum of each snapshot should be

flat in the spatial frequency range αt
l ∈

[
−1

2 ,
1
2

]
, and thus each waveform snapshot

must be white noise type sequence with variance Mt/N . This completes the proof of

Theorem 2.

Under the optimal waveforms conditions stated in the Theorem 2, the coherence of

matrix W is asymptotical optimal, as stated in the following theorem.

Theorem 3. (Coherence of W): Consider the MIMO radar system as presented in

Section 5.2 and K distinct targets. Let the minimum spatial frequency separation of the

targets be

x = min
(i,j)∈N+

K
×N

+
K
,i 6=j

dh
λ

(sin θi − sin θj) , h ∈ {t, r} . (5.22)

and assume that |x| ≥ ξh 6= 0, h ∈ {t, r}. Let us also define

βMh
(x) =

1

Mh

sin2 (πMhx)

sin2 (πx)
, (5.23)

For dt = dr = λ
2 and under the optimal waveform conditions stated in Theorem 2, as

long as

K ≤ min
h∈{t,r}

{√

Mh

βMh
(ξh)

}

, (5.24)
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the matrix W obeys the conditions (A0) and (A1) with

µ0
∆
= max

h∈{t,r}

{ √
Mh√

Mh − (K − 1)
√

βMh
(ξh)

}

, (5.25)

and µ1
∆
=

√
Kµ0 with probability 1.

Proof of Theorem 3. Following Theorem 2, for waveforms that satisfy the necessary

condition (5.20), it holds that

µ (V ) ≤ inf
S








N

K
sup
i∈N+

N

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2

Mt − (K − 1)
√

MtβMt (ξt)








=

√
Mt√

Mt − (K − 1)
√

βMt (ξt)
. (5.26)

Consequently, under the optimal waveforms conditions, and via inequality (5.12), we

get (5.25). It was shown in [41] that in the general case, µ1 = µ0

√
K always holds true.

Consequently, the conditions (A0) and (A1) hold.

5.3.2 Remarks

1) Asymptotic Optimal Coherence of W

It should be noted that kernel βMh
(x) , h ∈ {t, r} is a periodic function of x.

For dt = dr = λ
2 , the spatial frequency separation corresponding to both transmit

and receive arrays, satisfy |x| ∈
(
0, 12
]
. If ξ

∆
= max {ξr, ξt} 6= 0, we can find a small

constant ξ and 0 < ξ < 1
min{Mt,Mr} such that the Dirichlet kernel sin(πMhξ)

sin(πξ) = O (1)

and the kernel βMh
(ξ) satisfies

√

βMh
(ξ) = sin(πMhξ)√

Mh sin(πξ)
= O

(
1√
Mh

)

. Consequently,

the values of βMh
(ξ) decrease as Mh, h ∈ {t, r} increase. Then for any fixed K, if

√
Mh ≥ K

√

βMh
(ξ), h ∈ {t, r}, or equivalently

Mh ≥ K
sin (πMhξ)

sin (πξ)
= O (K) , (5.27)

both (5.12) and (5.26) hold. Consequently, under the optimal waveform conditions, it

holds that

lim
Mt→∞

µ (V ) ≤ lim
Mt→∞

√
Mt√

Mt − (K − 1)
√

βMt (ξ)
= 1.
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Since µ (V ) ≥ 1, via the coherence definition, it must hold that under the optimal

waveform conditions µ (V ) = 1 in the limit w.r.t. Mt. Similarly, it must hold that

µ (U) = 1 in the limit w.r.t. Mr. As a result, the coherence of W is asymptotically

optimal.

It should be noted that the spatial frequency separation requirement is not restric-

tive. For example, in a ULA with M antennas, the spatial frequency separation of

targets should be larger than the resolution of the array, i.e., 1
M . As it can be seen in

the proof of Theorem 3, Theorem 3 holds even when the spatial frequency separation

of the targets is less than the resolution of the array.

2) Coherence and Doppler Shift

It can be easily seen from Theorem 3 that the coherence of W does not depend on

the Doppler shift {νk}k∈N+
K

under the assumption that targets are slow moving.

5.3.3 Comparative Study of Two Orthogonal Waveforms

This section provides a comparative study of Hadamard and randomly generated Guas-

sian Orthogonal (G-Orth) waveforms.

Let us consider a ULA transmit array with carrier frequency fc = 1×109Hz, dt =
λ
2 ,

Mt = 40 and N = 64. The corresponding waveform matrix S ∈ C
N×Mt contains

Hadamard or G-Orth waveforms.

Two targets are considered at θ1 = 0◦, θ2 = 20◦, or equivalently, αt
1 = 0, αt

2 =

1
2 sin

(
π
9

)
. The target angle search space is [−90◦, 90◦] and the corresponding spatial

frequency range is αt
k ∈

[
−1

2 ,
1
2

]
. The power spectra of the waveform snapshots i ∈ N

+
N

corresponding to Hadamard and G-Orth waveforms are shown in Fig. 5.1.

It can be seen in Fig. 5.1 (a) that the power spectra of the snapshots corresponding

to the Hadamard case have high values at some specific snapshots and angles, while

those of G-Orth case are spread out across all snapshots and angles (see Fig. 5.1

(c)). In addition, the maximum power spectral value for the Hadamard case is much

higher than that of the G-Orth case. Thus, based on (5.18), the coherence bound

µ (V ) corresponding to the Hadamard waveforms is larger than that for the G-Orth

waveforms. The lower coherence bound result is better MC recovery performance for the
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Figure 5.1: The power spectra
∣
∣Si

(
αt
k

)∣
∣2 for αt

k ∈
[
−1

2 ,
1
2

]
with Mt = 40 and N =

64. (a) Hadamard waveform; (b) Magnitudes of
∣
∣Si

(
αt
1

)∣
∣2 +

∣
∣Si

(
αt
2

)∣
∣2 of Hadamard

waveform; (c) G-Orth waveform; (d) Magnitudes of
∣
∣Si

(
αt
1

)∣
∣2 +

∣
∣Si

(
αt
2

)∣
∣2 of G-Orth

waveform.
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Figure 5.2: Comparison of MC error w.r.t. Hadamard and G-Orth waveforms as func-

tion of the matrix occupancy ratio.
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G-orth waveforms; this can be seen in Fig. 5.2 where the horizontal axis is the portion

of entries of W that were available. In the simulations, the data matrix corresponding

the two targets are recovered via the SVT algorithm [71] forMr = 128,Mt = 40, N = 64

and SNR = 25dB. The simulation results are averaged over 50 independent runs. In

each run, the G-Orth waveforms are randomly generated.

5.4 Waveform Design under Spatial Power Spectra Constraints

Theorem 2 states that, among the class of orthogonal waveforms, and for MIMO radars

using ULAs, the optimal waveform matrix should have rows that are white-noise type

functions, i.e., the waveform snapshots across the transmit antennas should be white. In

this section, we propose a scheme to optimally design the transmit waveform matrix for

MIMO-MC radars. In particular, the design problem is formulated as optimization on

matrix manifolds [86]. Due to the orthogonality constraint on the transmit waveforms,

i.e., the columns of matrix S, the matrix manifold is the complex Stiefel manifold,

which is non-convex. The solution can be obtained via the modified steepest descent

algorithm [85], or the modified Newton algorithm with a nonmonotone line search

method [87]. The derivative and Hessian of the objective function w.r.t. the waveform

matrix are obtained in a closed form.

5.4.1 Problem Formulation

Let us discretize the angle space
[
−π

2 ,
π
2

]
into L phases {θl}l∈N+

L
, corresponding to the

spatial frequencies
{
αt
l

}

l∈N+
L

. Let cil = S∗(i)A∗ (θl) for i ∈ N
+
N . According to the

optimal condition (5.21), it holds that

|cil|2 =
∣
∣Si

(
αt
l

)∣
∣2 =

Mt

N
, i ∈ N

+
N , l ∈ N

+
L . (5.28)

Define A∗ = [A∗ (θ1) , . . . ,A∗ (θL)] and F = S∗A∗. It holds that [F ⊙ F∗]il = |cil|2.

Based on (5.21), let us define the objective function

f (S) =

∥
∥
∥
∥
F⊙ F∗ − Mt

N
1N1TL

∥
∥
∥
∥

2

F

. (5.29)
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The waveform design problem is formulated as

min f(S)

s.t. SHS = IMt. (5.30)

Due to the orthogonal constraint, S belongs to the complex Stiefel manifold S (N,Mt),

defined as

S (N,Mt) =
{
S ∈ C

N×Mt : SHS = IMt

}
. (5.31)

The nonconvexity of the orthogonal constraint on the complex Stiefel manifold makes

the waveform design problem challenging. In the following we adopt the modified steep-

est descent algorithm [85], or the modified Newton algorithm on the Stiefel manifold to

solve the problem of (5.30).

5.4.2 Derivative and Hessian of Cost Function f (S)

In this subsection, we will address the derivative and Hessian of the cost function f (S)

defined in (5.29) w.r.t. the variables S. First, based on the second order Taylor series

approximation (see [85]), the cost function f : CN×Mt → R can be written as

f (S+ δZ) =f (S) + δℜ
{
tr
(
ZHDS

)}

+
δ2

2
vec(Z)HHSvec (Z)

+
δ2

2
ℜ
{

vec(Z)TCSvec (Z)
}

+O
(
δ3
)
, (5.32)

where DS ∈ C
N×Mt is the derivative of f evaluated at S, and the matrix pair HS,CS ∈

C
NMt×NMt are the Hessian of f evaluated at S. To ensure uniqueness, we require

HS = HH
S ,CS = CT

S .

The complex-valued derivative DS is used in the modified steepest descent method.

To calculate the Newton direction with the standard Newton method [88], we will

use the second order Taylor series expansion of the function f : R2NMt → R in the

well-known vector form with real-valued elements as

f (s+ δz) = f (s) + δzTd+
δ2

2
zTHz+O

(
δ3
)
, (5.33)
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where the vector s ∈ R
2NMt is defined as

s
∆
=




sre

sim




∆
=




ℜ{vec (S)}

ℑ {vec (S)}



 . (5.34)

In the above, d ∈ R
2NMt is the derivative of f (s) evaluated at s, similarly defined in

terms of its real and imaginary parts as s in equation (5.34), and H ∈ R
2NMt×2NMt is

the Hessian of f (s) evaluated at s (for definitions, see Section 5.4.4). The derivatives

and Hessians developed in the above two Taylor series expansion forms of (5.32) and

(5.33) can be transformed into each other [89].

In the following, we list the derivative and Hessian of the cost function f (S). The

derivation details are given in Appendix C.

DS =2
{
[(S∗A∗)⊙ (SA)−N]⊙YT

}
AH , (5.35)

HS =4PMt×N (IN ⊗A∗) diag
(

vec
(

2H̃T −NT
)) (

IN ⊗AT
)
PN×Mt , (5.36)

CS =4PMt×N (IN ⊗A) diag (vec (Y∗ ⊙Y∗))
(
IN ⊗AT

)
PN×Mt , (5.37)

where N = Mt

N 1N1TL , H̃ = (S∗A∗) ⊙ (SA) ∈ R
N×L and Y = ATST ∈ C

L×N . In the

above, PN×Mt is a commutation matrix, such that

vec
(
ZT
)
= PN×Mtvec (Z) , (5.38)

which can be expressed as [90]

PN×Mt =

N∑

m=1

Mt∑

n=1

(
Emn ⊗ET

mn

)
, (5.39)

where Emn is a matrix of dimension N × Mt with 1 at its mn-th position and zeros

elsewhere. It holds that PN×Mt = PT
Mt×N . It is easy to verify that HS = HH

S ,CS = CT
S .

5.4.3 Modified Steepest Descent on the Complex Stiefel Manifold

Here, we apply the modified steepest descent method of [85] to solve the optimization

problem of (5.30). Let TS (N,Mt) denote the tangent space, i.e., the plane that is

tangent to the complex Stiefel manifold at point S ∈ S (N,Mt) [84]. The inner product
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in the tangent space is defined using the canonical metric [84] in the complex-value

case, i.e.,

〈Z1,Z2〉 = ℜ
{

tr

[

ZH
2

(

I− 1

2
SSH

)

Z1

]}

, (5.40)

for Z1,Z2 ∈ TS (N,Mt).

Let Zk ∈ TS (N,Mt) be the steepest descent at point Sk ∈ S (N,Mt) in the k-th

iteration. The steepest descent algorithm starts from Sk and moves along Zk with a

step size δ, i.e.,

Sk+1 = Sk + δZk. (5.41)

To preserve the orthogonality during the update steps, the new point Sk+1 is projected

back to the complex Stiefel manifold, i.e., Sk+1 = Π
(
Sk + δZk

)
, where Π is the projec-

tion operator. For a matrix S ∈ C
N×Mt with N ≥ Mt and with SVD S = ŨΣṼH , the

point in the Stiefel manifold that is nearest to S in the Frobenius norm sense is given

by Π (S) = ŨIN,MtṼ
H [85].

The modified steepest descent is defined as follows [85]. Let g
(
Zk
)
= f

(
Π
(
Sk + Zk

))

be the local cost function for Sk ∈ S (N,Mt). The gradient of g
(
Zk
)
at Zk = 0 under

the canonical inner product (5.40) is

∇̃Sf
(

Sk
)

= ∇Sf
(

Sk
)

− Sk
(

∇Sf
(

Sk
))H

Sk, (5.42)

where ∇Sf (S) = DS denotes the derivative of f (S) (see (5.35)). Then, the modified

steepest descent is Zk = −∇̃Sf
(
Sk
)
.

The step size δ is chosen using a nonmonotone line search method based on [87],

i.e., so that

f
(

Π
(

Sk + δZk
))

≤ Ck + βδ
〈

∇̃Sf
(

Sk
)

,Zk
〉

, (5.43)

〈

∇̃Sf
(

Π
(

Sk + δZk
))

,Zk
〉

≥ σ
〈

∇̃Sf
(

Sk
)

,Zk
〉

. (5.44)

Here, Ck is taken to be a convex combination of function values f
(
S0
)
, f
(
S1
)
, . . . , f

(
Sk
)
,

i.e.,

Ck+1 =
[

ηQkCk + f
(

Sk+1
)]/

Qk+1, (5.45)
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where Qk+1 = ηQk+1, C0 = f
(
S0
)
and Q0 = 1. In the above, the parameter η controls

the degree of nonmonotonicity. When η = 0, the line search is the usual monotone Wolfe

or Armijo line search [91]. When η = 1, then

Ck =
1

k + 1

k∑

i=0

f
(
Si+1

)
. (5.46)

The modified steepest descent algorithm is summarized in Algorithm 1.

Algorithm 1 Modified steepest descent algorithm

1: Initialize: Choose S0 ∈ S (N,Mt) and parameters α, η, ǫ ∈ (0, 1), 0 < β < σ < 1.

Set δ = 1, C0 = f
(
S0
)
, Q0 = 1, k = 0.

2: Descent direction update: Compute the descent direction as Zk = −∇̃Sf
(
Sk
)

via equation (5.42).

3: Convergence test: If
〈
Zk,Zk

〉
≤ ǫ, then stop.

4: Line search update: Compute Sk+1 = Π
(
Sk + δZk

)
and ∇̃Sf

(
Sk+1

)
. If

f
(
Sk+1

)
≥ βδ

〈

∇̃Sf
(
Sk
)
,Zk

〉

+ Ck and
〈

∇̃Sf
(
Sk+1

)
,Zk

〉

≤ σ
〈

∇̃Sf
(
Sk
)
,Zk

〉

,

then set δ = αδ and repeat Step 4.

5: Cost update: Qk+1 = ηQk + 1, Ck+1 =
[
ηQkCk + f

(
Sk+1

)]/
Qk+1.

6: Perform update Sk+1 = Π
(
Sk + δZk

)
, k = k + 1. Go to Step 2.

5.4.4 Modified Newton Algorithm on the Complex Stiefel Manifold

With expressions for the derivative and Hessian of the cost function given in (5.35),

(5.36) and (5.37), we can now formulate the Newton method [88] to solve the waveform

design problem of (5.30).

First, the Newton search direction is calculated as follows. Let Zk ∈ C
N×Mt denote

the Newton search direction in the k-th iteration. In a similar way as in [92], we arrange

the complex-valued elements of Zk into a real-valued vector zk of length 2NMt, defined

as

zk
∆
=




zkre

zkim




∆
=




ℜ
{
vec
(
Zk
)}

ℑ
{
vec
(
Zk
)}



 . (5.47)
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Let us also define the real-valued vector

dk ∆
=




ℜ{vec (DSk)}

ℑ {vec (DSk)}



 , (5.48)

and the real-valued matrix

Hk ∆
=




ℜ{HSk +CSk} −ℑ{HSk +CSk}

ℑ {HSk − CSk} ℜ {HSk − CSk}



 . (5.49)

Following the standard Newton method, the vector zk is computed as

zk = −
[

Hk + σkI
]−1

dk, (5.50)

where σk ≥ 0 is chosen to make the matrixHk + σkI positive definite. Consequently, the

complex-valued Newton search direction can be found as Zk = matN×Mt

(
zkre + jzkim

)
,

corresponding to the inverse vector operation defined in (5.47).

In the k-th iteration, the standard Newton method performs the update

Sk+1 = Sk + δZk, (5.51)

where δ is the step size. Since the waveforms are on the complex Stiefel manifold,

to preserve the orthogonality in the modified Newton method, the new point Sk+1 is

projected back to the complex Stiefel manifold, i.e.,

Sk+1 = Π
(

Sk + δZk
)

. (5.52)

It should be pointed out that the Hessian matrix defined in (5.49) is not always

positive definite. In each step we choose σk such that Hk + σkI is positive definite. If

matrix Hk has nonpositive eigenvalues, σk should be larger than −λmin (Hk), where

λmin is the minimal eigenvalue of Hk. In the local area of the minimum, the modified

Newton update will approach the pure Newton step. However, if σk is chosen very large,

the modified Newton search direction will be close to the negative steepest descent.

Last, the step size δ could be obtained using a similar nonmonotone line search method

[87]. Throughout the modified Newton method, the inner product of two matrices

Z1,Z2 ∈ C
N×Mt is defined as 〈Z1,Z2〉 = tr

(
ZH
1 Z2

)
. The modified Newton algorithm

is summarized in Algorithm 2.
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Algorithm 2 Modified Newton algorithm

1: Initialize: Choose S0 ∈ S (N,Mt) and parameters α, η, ǫ ∈ (0, 1), 0 < β < σ < 1.

Set δ = 1, C0 = f
(
S0
)
, Q0 = 1, k = 0.

2: Compute the derivative DSk with equation (5.35) as well as Hessian HSk ,CSk with

equations (5.36) and (5.37).

3: Convergence test: If 〈DSk ,DSk〉 ≤ ǫ, then stop.

4: Newton search direction computation: Compute the real-valued vector

dk with (5.48), as well as the real-valued matrix Hk with (5.49). Compute

the vector zk with (5.50). The Newton search direction is arranged as Zk =

matN×Mt

(
zkre + jzkim

)
.

5: Line search update: Compute Sk+1 = Π
(
Sk + δZk

)
and DSk+1 . If f

(
Sk+1

)
≥

βδℜ
{〈

DSk+1 ,Zk
〉}

+ Ck and ℜ
{〈

DSk+1 ,Zk
〉}

≤ σℜ
{〈

DSk ,Zk
〉}

, then set δ = αδ

and repeat Step 5.

6: Cost update: Qk+1 = ηQk + 1, Ck+1 =
[
ηQkCk + f

(
Sk+1

)]/
Qk+1.

7: Perform update Sk+1 = Π
(
Sk + δZk

)
, k = k + 1. Go to Step 2.

5.5 Performance Analysis of the Proposed Waveform When Targets

Fall In Different Range Bins

In the above derivation of the optimum waveform we used the model of [18], which

is valid for targets falling in the same range bin. When the targets fall in different

range bins, the model has to be modified to account for different delays in the transmit

waveforms, corresponding to the different targets. In that case, the orthogonality of

the delayed waveforms cannot be guaranteed.

In this section, we consider the scenario of targets falling in different range bins, and

determine the effect on performance when using the waveforms designed in Section 5.4,

i.e., waveforms optimized under the simplified scenario of targets falling in the same

range bin. In the following we will assume that the orthogonal waveforms satisfy (5.21).

To model this case we will adopt the model of [51], modified for a ULA array con-

figuration and assuming that the Doppler shifts within a pulse can be ignored because

the targets are moving slowly. Let dmax (0) and dmin (0) be the maximum and minimum
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ranges of the K far field targets at the initial sampling time. The maximum range delay

normalized by Ts is

N1 =

⌊
2 (dmax (0)− dmin (0))

cTs

⌋

. (5.53)

Let us set the length of the sampling window at the receiver end to Ñ = N + N1,

where N1 < N and Ñ < TPRI ; we will assume that the target reflections fall within

this sampling window. During the q-th pulse, the k-th target echo received at the l-

th receive antenna and the corresponding demodulated baseband signal are given in

equations (3) and (4) of [51], respectively. For our scenario, the noise-free sampled

received data at the l-th receive antenna during the q-th pulse can be approximated as

rTl ≈
K∑

k=1

βkζqke
−j2π2dk(0)

λ e−j2π(l−1)αr
kaT (θk)S

TCT
τk
, (5.54)

where αr
k

∆
= dr sin(θk)

λ , τk =
⌊
2(dk(0)−dmin(0))

cTs

⌋

with dk (0) denoting the range of the k-th

target at the initial sampling time; ζqk is the Doppler shift defined in (5.4); Cτk =
[

0N×τk IN 0N×(N1−τk)

]T

∈ C
Ñ×N ; a (θk) =

[

1, e−j2παt
k , · · · , e−j2π(Mt−1)αt

k

]T
is

the transmit steering vector. By collecting samples from all receive antennas at the

fusion center, the noise-free data matrix can be constructed as

W = [r1, · · · , rMr ]
T = BΣΓT , (5.55)

where

Γ =[Cτ1Sa (θ1) , · · · ,CτKSa (θK)] ∈ C
Ñ×K ,

Σ =diag
{[

β1ζq1e
−j2π2d1(0)

λ , . . . , βKζqKe
−j2π2dK (0)

λ

]}

.

We should note that although W and Σ do depend on the pulse index, this dependance

will not be shown for notational convenience.

To analyze the coherence µ (V ) of W, we do a QR decomposition of Γ, along the

lines of Section 5.3, i.e., Γ = QsRs with Qs ∈ C
Ñ×K such that QH

s Qs = IK . Let Q
∗(i)
s

denote the i-th row of Q∗
s. It holds that

µ (V ) =
Ñ

K
sup
i∈N+

Ñ

∥
∥
∥Q

∗(i)
s

∥
∥
∥

2
≤ Ñ

K
sup
i∈N+

Ñ

∥
∥Γ∗(i)∥∥2

σ2
min (R

∗
s)
, (5.56)
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where σ2
min (R

∗
s) = λmin

(
RH

s QH
s QsRs

)
= λmin (Φ) and Φ = ΓHΓ with [Φ]k1k2 =

aH (θk1)S
HCT

τk1
Cτk2

Sa (θk2). It holds that SHCT
τk1

Cτk2
S = SHJτk2−τk1

S = RT
τk2−τk1

,

whereRn is the waveform covariance matrix [80] with [Rn]m1m2
=

N∑

k=n+1

sm1 (k) s
∗
m2

(k − n)

and Jn is a shifting matrix defined as [80]

Jn =













n
︷ ︸︸ ︷

0 · · · 0 1 0

. . .

0

1













N×N

= JT
−n, (5.57)

for n = 0, · · · , N1. Since the waveforms are orthogonal it holds that R0 = IMt, and Φ

becomes

Φ =









Mt · · · aH (θ1)R
∗
τK−τ1a (θK)

...
. . .

...

aH (θK)RT
τK−τ1a (θ1) · · · Mt









. (5.58)

In order to compute bounds for λmin(Φ), we need to compute tr(Φ) and tr(Φ2) (see

[93]). It can be seen than tr (Φ) = KMt and tr
(
Φ2
)
= KM2

t + 2
K∑

k2=k1+1

K∑

k1=1

|[Φ]k1k2 |2

with

[Φ]k1k2 =aH (θk1)R
∗
τk2−τk1

a (θk2)

=

Mt∑

m2=1

Mt∑

m1=1

e
j2π

[

(m1−1)αt
k1

−(m2−1)αt
k2

]

r∗m1m2
(τk2 − τk1) . (5.59)

The lower bound of λmin (Φ), can be found as (see Theorem 2.1 in [93])

λmin (Φ) ≥ tr (Φ)

K
−

√
K − 1

√

tr (Φ2)

K
−
(
tr (Φ)

K

)2

= Mt −
√

1− 1

K

√
√
√
√2

K∑

k2=k1+1

K∑

k1=1

|[Φ]k1k2 |2. (5.60)

Next, we find the minimum supremum of
∥
∥Γ∗(i)∥∥2 over i ∈ N

+
Ñ
. Without loss of

generality, we assume that the ranges of targets are ordered as d1 (0) ≤ · · · ≤ dK (0).

Thus, τ1 = 0, τK = N1. To better understand the term
∥
∥Γ∗(i)∥∥2, in Fig. 5.3 we give an
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Figure 5.3: Illustration of transmit waveform spectra in the order of the transmit

waveform arrival at the receiver end.

illustration of the power spectra of the transmitted waveforms corresponding to spatial

frequency αt
k, in the order in which the waveforms arrive at the receiver end. It holds

that

∥
∥
∥Γ

∗(i)
∥
∥
∥

2
=







∣
∣Si

(
αt
1

)∣
∣2, 1 ≤ i ≤ τ2

2∑

k=1

∣
∣Si−τk

(
αt
k

)∣
∣2, τ2 < i ≤ τ3

...
K∑

k=1

∣
∣Si−τk

(
αt
k

)∣
∣2, N1 < i ≤ N

K∑

k=2

∣
∣Si−τk

(
αt
k

)∣
∣2, N < i ≤ N + τ2

...
∣
∣Si−N1

(
αt
K

)∣
∣2, N + τK−1 < i ≤ N +N1

(5.61)

It is easy to verify that

Ñ∑

i=1

∥
∥
∥Γ

∗(i)
∥
∥
∥

2
=

N∑

i=1

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2 =KMt. (5.62)

It can be seen that the maximum value of
∥
∥Γ∗(i)∥∥2 over i ∈ N

+
Ñ

is determined by the

spatial power spectra Si

(
αt
k

)
, i ∈ N

+
N as well as the delay corresponding to each target.

Based on the conditions of (5.21), it holds that sup
i∈N+

Ñ

∥
∥Γ∗(i)∥∥2 =

K∑

k=1

∣
∣Si−τk

(
αt
k

)∣
∣2 = KMt

N .
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Combining the above we get

µ (V ) ≤
(
1 + N1

N

)
Mt

Mt −
√

1− 1

K

√

2
K∑

k2=k1+1

K∑

k1=1

|[Φ]k1k2
|2
. (5.63)

One can see that as Mt increases, the above bound tends to 1 + N1
N < 2.

Corollary 1. If the orthogonal waveforms not only satisfied the sufficient condition

stated in (5.21) but were also designed to have zero auto and cross-correlations for

maximal normalized delay range N1, i.e., Rn = 0Mt , n = 1, . . . , N1, then it would

hold that Φ = MtIMt and thus λmin (Φ) = Mt. As a result,

µ (V ) ≤
(

1 +
N1

N

)

< 2. (5.64)

Proof. The conclusion is straightforward from the above analysis and the proof is omit-

ted here.

The above analysis shows that, if the proposed waveforms were to be used in a

scenario in which the targets fall in different range bins, the coherence µ (V ) would

increase slightly as the maximum normalized range delay increases. Fortunately, the

coherence µ (V ) is bounded by 2 for most of the possible values of N1 < N (see Fig. 5.7

(b) for an example). Our analysis also indicates that if the proposed waveforms were

designed to additionally have good correlation properties, they would yield the lowest

upper bound of coherence µ (V ). One could design waveforms with good correlation

properties for the scenario in which targets fall into different range bins. The condition

of (5.21) can be combined with waveform correlation requirements in waveform design

in MIMO radars [80] [94]. This kind of design will be subject of future study.

5.6 Numerical Results

In this section, we provide numerical results to demonstrate the performance of the

proposed waveform matrix design schemes. Both transmit and receive antennas are

configured as ULAs with dt = λ/2, dr = Mtλ/2 and carrier frequency fc = 5 × 109Hz.

The pulse repetition interval is TPRI = 1/4000s and pulse duration is Tφ = N × 8 ×
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10−7s. The target reflection coefficients {βk}k∈N+
K
remain constant during the coherent

processing interval [74].

5.6.1 Performance Comparison of Waveform Design Methods

We first design the waveform matrix by applying the modified steepest descent method.

We take N = 64,Mt = 40 for DOA space [−10◦ : 1◦ : 10◦]; correspondingly, αt
k ∈

[−0.0868, 0.0868]; the number of discretized angles is L = 21 and the steering matrix

A has a dimension 40 × 21. In the nonmonotone line search, we chose β = 0.01 and

σ = 0.99. These values are selected by trial and error to satisfy the Wolfe conditions

(5.43) and (5.44). In addition, we set α = 0.5 to adjust the step size, and ǫ = 10−5

as the stopping check value. The initial step size is set to δ = 0.1. The iteration is

initialized with a column-wise Hadamard matrix S0 ∈ S (64, 40), i.e., a matrix that

has Hadamard sequences in its columns. The convergence of the proposed modified

steepest descent algorithm for η = 1, 0.5, 0 is shown in Fig. 5.4 (a). As it can be seen

from Fig. 5.4 (a), the objective value f under η = 0.5 decreases the fastest, while under

η = 1 decreases very slowly for number of iterations less than 2000. The simulation

results indicate that the performance of the line search method could be improved if

historical objective values in each iteration are partially utilized, as indicated in (5.45).

The simulation results also show that the value of the objective function, f , approaches

its global minimal, i.e., 0. The corresponding optimal solution, S, is not unique, and

depends on the initial point and the step size. Based on extensive simulations, not

shown here due to space constraints, all solutions result in very similar MC recovery

performance (see simulations in [95]).

Since the complex Stiefel manifold is not a convex set, there is no guarantee that the

algorithms will converge to the global minimum. In the problem of (5.30), the number of

equations is Mt(Mt+1)
2 +NL, which should be less than the total available combinations,

2MtN . Consequently, to make the objective function zero, it must hold that L <

2Mt − M2
t +Mt

2N . Our simulations show that for the entire DOA space [−90◦ : 1◦ : 90◦],

corresponding to L = 181, when the dimension of S is relatively small, e.g., N =

64,Mt = 40 and therefore L > 2Mt − M2
t +Mt

2N ≈ 67, the objective value gets stuck to
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Figure 5.4: Objective function of (5.29) vs. iterations: (a) DOA space [−10◦ : 1◦ : 10◦]

under modified steepest descent algorithm; (b) DOA space [−90◦ : ∆θ : 90◦], ∆θ =

1◦, 5◦ under the modified steepest descent algorithm; (c) comparison of the modified

steepest descent algorithm and the modified Newton algorithm for Mt = 20, N = 32

and DOA space [−5◦ : 1◦ : 5◦].
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local minima; however, if the spacing increases, for example to 5◦, corresponding to

L = 37, the iteration converges to the global minimum. If the dimension is relatively

large, e.g., N = 512,Mt = 500, even for small spacing, i.e., 1◦, the objective value

converges to its global minimum (see Fig. 5.4 (b) for η = 0).

Next we provide a numerical example to compare the performance of the modified

steepest descent algorithm and the modified Newton algorithm. Since the complexity

of the Newton method increases with the size of the matrix, we do the comparison for

N = 32,Mt = 20 and DOA space [−5◦ : 1◦ : 5◦]. A column-wise Hadamard waveform

matrix S0 ∈ C
32×20 is used as initial search point for both algorithms. The performance

comparison is illustrated in Fig. 5.4 (c), where it can be seen that the value of the

objective function, f (S), under the modified Newton algorithm decreases much faster

than that under the modified steepest descent algorithm.

5.6.2 Spatial Power Spectra of Optimized Waveform Snapshots

The power spectra of the optimized waveform snapshots, i.e., the rows of the optimized

waveform matrix S, are plotted in Fig. 5.5 (b) and (d) for the same parameters defined

in Section 5.6.1, i.e., Mt = 40, N = 64 and DOA space [−10◦ : 1◦ : 10◦], corresponding

to αt
k ∈ [−0.0868, 0.0868]. In the simulation, a waveform matrix that is either column-

wise Gaussian Orthogonal (G-Orth) or Hadamard, is used as the initial search point,

respectively. The power spectra of the rows of the initial waveform matrix fluctuate

over different DOAs (see Fig. 5.5 (a) and (c), respectively). As can be seen in Fig. 5.5

(b) and (d), the optimized waveform matrix yields almost flat row power spectra, with

value Mt

N = 0.625, which, according to Theorem 2, corresponds to the lower possible

coherence value.

5.6.3 Coherence Properties Under Optimized Waveforms

Targets in the Same Range Bin

We first look at the coherence properties under the optimized waveforms for the sce-

nario that all targets fall in the same range bin. In Fig. 5.6, we plot the coherence µ (V )
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Figure 5.5: Power spectra
∣
∣Si

(
αt
k

)∣
∣2 for αt

k ∈ [−0.0868, 0.0868] with Mt = 40 and

N = 64 and DOA space [−10◦ : 1◦ : 10◦]. (a) Hadamard waveforms; (b) Optimized

waveforms using Hadamard waveforms as initialization; (c) G-Orth waveforms; (d)

Optimized waveforms using G-Orth waveforms as initial.
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Figure 5.6: Coherence µ (V ) and its bound defined in (5.26) for targets in the same

range bin. The K = 4 targets are located at [−10◦,−5◦, 0◦, 1◦].

of matrix W and its bound, defined in (5.26), versus the number of transmit antennas,

for K = 4 targets located at angles [−10◦,−5◦, 0◦, 1◦]. The optimized waveforms for

different values of Mt are obtained by solving the problem of (5.30) via Algorithm 1

focusing on DOA space [−10◦ : 1◦ : 10◦], i.e., L = 21. For comparison, the coherence

µ (V ) under the G-Orth waveform matrix is also plotted, where the results are averaged

over 100 independent implementations, and in each implementation the waveforms are

generated randomly. It can be found that the averaged coherence under G-Orth wave-

forms is higher than the coherence under optimized waveforms over the entire Mt range.

On the other hand, under the optimized waveforms, our simulations show that for dif-

ferent number of targets, the coherence is always bounded by the bound of (5.26) and

approaches its smallest value (not necessarily in a monotone way) when Mt increases.

The simulation results in Fig. 5.6 confirm the conclusions in Theorem 3, i.e., when the

waveforms satisfy the optimal waveform conditions stated in Theorem 2, the matrix

coherence µ (V ) is asymptotically optimal w.r.t. Mt. We should note, however, that

the rather big coherence difference between the optimized and the G-Orth waveforms,

does not translate in to substantial difference in terms of matrix recovery error. Indeed,

the G-Orth waveforms perform very closely with the optimized ones when Mt becomes

larger.
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Figure 5.7: Coherence µ (V ) for K = 4 targets located at [−10◦,−5◦, 0◦, 1◦]. (a) µ (V )

versus N1 with Mt = 40, N = 64 for targets in different range bins; (b) µ (V ) and it

bound defined in (5.63) with N1 = N/2 for targets in different range bins.

Targets in Different Range Bins

Next, we conduct simulations considering the scenario of targets falling into different

range bins, and test the coherence µ (V ) for different maximum normalized delay N1

and number of transmit antennas Mt.

In Fig. 5.7 (a), we plot the coherence µ (V ) versus N1 for K = 4 targets located at

[−10◦,−5◦, 0◦, 1◦] for Mt = 40, N = 64. The maximum range dmax (0) is set so that N1

takes values from 0 to N−1. The simulation results are averaged over 100 independent

implementations, and in each implementation the ranges of the middle two targets are

chosen randomly in [dmin (0) , dmax (0)]. It can be seen from Fig. 5.7 (a) that µ (V )

increases as N1 becomes larger. In addition, µ (V ) under the optimized waveforms is

the lowest as compared to Hadamard and G-Orth waveforms, which is slightly higher

than 1+N1/N and is less than 2 for mostN1 values. In Fig. 5.7 (b), we plot µ (V ) versus

Mt for K = 4 targets located at [−10◦,−5◦, 0◦, 1◦], where N1 = N/2. The results are

averaged over 100 independent implementations, and in each implementation the two

middle target ranges are chosen randomly in [dmin (0) , dmax (0)] and G-Orth waveforms

are randomly generated. It can be seen from Fig. 5.7 (b) that the averaged µ (V ) under

the optimized waveforms decreases slightly as Mt increases and is bounded by (5.63).
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Our simulation results show that when targets are not all in the same range bin,

µ (V ), computed under the optimized waveforms, is close to 1+N1/N for a wide range

of Mt, N1 values.

5.6.4 Matrix Recovery Error Performance

Here, we look at the MC performance as function of the portion of observed en-

tries, p, corresponding to the optimized waveform matrix for K = 4 targets located

[−1◦, 0◦, 0.1◦, 0.5◦], respectively. For each configuration, both Mr = 20 and Mr =

40 antennas are applied, respectively. The targets are moving slowly with speeds

[1, 5, 10, 15]m/s. The signal-to-noise ratio (SNR), defined as the power of all receive

signals at the receiver end over the power of noise, is set to 25dB. The simulation

results are averaged over 50 independent runs, where in each run, the noise is randomly

generated. The optimized waveform matrices with Mt = 20, N = 64 are obtained via

Algorithm 1, focusing on DOA space [−5◦ : 0.1◦ : 5◦]. In the simulations, the data

matrix is recovered via the SVT algorithm of [71].

Targets in the Same Range Bin

We take all targets to fall in the same range bin. Fig. 5.8 (a) shows the recovery

error, suggesting that the optimized waveform matrix results in significantly better

performance as compared to the column-wise Hadamard matrix, especially for small

values of p. One can see that in order to achieve an error around 5%, MC with the

optimized waveforms requires about 50% of the data matrix entries for Mr = 20, and

30% for Mr = 40. On the other hand, MC with a column-wise Hadamard matrix

requires more than 60% of the data matrix entries for both Mr = 20 and Mr = 40. In

the same figure, we also compare the optimized waveforms against column-wise G-Orth

waveforms. One can see that the former result in lower MC recover error for smaller

p’s, while their advantage diminishes for higher p’s. Based on our experience with

simulations, the range of p over which the optimized waveforms have an advantage over

the G-Orth waveforms shrinks as Mt increases. This observation suggests that for large

number of transmit antennas, the G-Orth waveforms behave like optimal in the sense
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Figure 5.8: MC error vs. p for targets located at [−1◦, 0◦, 0.1◦, 0.5◦]. (a) all targets fall

in the same range bin; (b) the ranges are [2020, 3820, 3820, 6220]m.

that they achieve a comparable MC performance as the optimized waveforms. Due to

the substantially lower computational cost involved, in such cases G-Orth waveforms

would be preferable in a practical scenario.

Although the waveform design requires angle space discretization, the sensitivity

due to targets falling off grids is rather low. Also, although the optimized waveforms

are not unique, all solutions result in almost identical MC performance (see simulations

in [95]).

Targets in Different Range Bins

Let us continue on the configuration in Fig. 5.8 (a) but set the K = 4 target ranges

to [2020, 3820, 3820, 220]m, corresponding to maximal normalized delay N1 = 35. As

shown in Fig. 5.8 (b), the recovery error under the optimized waveform matrix has a

similar performance trend as the scenario considered in Fig. 5.8 (a), i.e., the optimized

waveform matrix results in significant performance improvement as compared to the

Hadamard matrix. As compared to Fig. 5.8 (a), a slightly larger portion of samples is

required for MC under optimized waveforms to achieve a recovery error less than the

inverse of SNR, i.e., the ratio of noise power over the targets’ power. This is because

the coherence in the scenario of targets falling in different range bins is slightly higher,

as indicated in (5.63).
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In both Fig. 5.8 (a) and (b), one can see that smaller p’s are required to achieve an

error around 5% for all waveforms by increasing Mr.

5.6.5 Target Estimation Performance via MC

Continuing on the scenario in Fig. 5.8 (b), we look at the target estimation performance

after the data matrix is recovered via MC. Since the targets fall in different range

bins, the range compression (pulse compression) is first applied to the recovered data

matrix. Then, the DOA and speed estimation follow using the subspace methods, such

as MUSIC [5]. The details of DOA estimation using MUSIC method are addressed in

equation (17) of [76].

Fig. 5.9 shows the Angle-Range image of the target scene of Fig. 5.8 (b), using

the MUSIC method following MC recovery. Total Q = 40 pulses are transmitted and

p = 0.35 portion samples are collected from Mr = 20 antennas. One can see that

the performance of optimized and G-Orth waveforms is better than that of Hadamard

waveform. False alarms at angles −1◦ and 0.5◦ in the wrong range bins are triggered

under the Hadamard waveform; this is due to the waveform poor correlation proper-

ties. Furthermore, the two middle targets at range 3820m, are unresolvable under the

Hadamard waveform. In this case, the performance under the optimized waveform is

slightly better than that under G-Orth waveform in terms of magnitude, which would

result in better DOA resolution. However, as p increases, the two waveforms perform

comparably (see Fig. 5.8 (b)).

Next, we access the capability of the MC based method to resolve two closely located

targets in the same range bin. We change the scenario in Fig. 5.9 by setting θ3 = θ2+∆θ

and keep the rest parameters unchanged, where θk denotes the angle of the k-th target.

Two targets are considered to be resolved if
∣
∣
∣θ̂k − θk

∣
∣
∣ ≤ ∆θ/2, k = 2, 3, where θ̂k

denotes the estimation of the k-th target [5]. Figure 5.10 shows the probability of

resolution comparison between the optimized and G-Orth waveforms for p = 0.35.

The results are obtained based on 50 independent runs, and in each run, the noise is

randomly generated. The probability of resolution is calculated by counting the number

of successful resolvable events over the total number of runs. It can be seen that the
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Figure 5.9: Angle-Range images using MIMO-MC radars for K = 4 targets located

at [−1◦, 0◦, 0.1◦, 0.5◦] with ranges as [2020, 3820, 3820, 6220]m: (a) Hadamard; (b) G-

Orth; (c) Optimized waveforms. The other parameters are Mt = 20, N = 64,Mr =

20, Q = 40, p = 0.35.
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Figure 5.10: Probability of resolution comparison for optimized and G-Orth waveforms

for p = 0.35.
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Figure 5.11: Pseudo-spectra of speed estimation using MUSIC with Q = 40 pulses. The

left and right side of the figure correspond to p = 0.3 and p = 0.5, respectively.
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optimized waveform results in a better probability of resolution as compared to the

G-Orth waveform. High resolution could be achieved using MC under both optimized

and G-Orth waveforms.

Figure 5.11 shows the pseudo-spectra of speed estimation using MUSIC for the

scenario of Fig. 5.8 (b) for Mr = 40 and Q = 40. Range compression corresponding

to range 3820m is applied first, and MUSIC is subsequently used to extract the speed

information of the middle two targets, i.e, ϑ2 = 5m/s and ϑ3 = 10m/s, where ϑk denotes

the speed of the k-th target. It can seen that the Hadamard waveform with both p = 0.3

and p = 0.5 yields the worst performance, exhibiting a false peak corresponding to

speed of 15m/s at range 6220m. Under the G-Orth waveform, a false peak is found

at p = 0.3, corresponding to speed of 1m/s at range 2020m. The optimized waveform

results in the best performance at p = 0.3. The performance under the optimized and

G-Orth waveforms is comparable at p = 0.5, in which case the recovery error under

both waveforms drops below the noise level (see Fig. Fig. 5.8 (b)).

5.7 Summary

In this chapter, we have presented an analysis of the coherence of the data matrix arising

in MIMO-MC radar with ULA configurations and transmitting orthogonal waveforms.

We have shown that, the data matrix attains its lowest possible coherence if the wave-

form snapshots across the transmit array have flat power spectra for all time instances.

The waveform design problem has been approached as an optimization problem on the

complex Stiefel manifold and has been solved via the modified steepest descent algo-

rithm and the modified Newton algorithm. The numerical results have shown that as

the number of antennas increases, the optimized waveforms result in optimal data ma-

trix coherence, i.e., 1, and thus, only a small portion of samples are needed for the data

matrix recovery. For a particular array, the optimal waveforms depend on the target

space to be investigated; for different regions of the target space, the corresponding

optimal waveforms can be constructed a priori. Since their construction involves high

computational complexity, the optimal waveforms can be used as benchmark against
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easily constructed waveforms. For example, our simulations revealed that as the num-

ber of transmit antennas increases, simply transmitting G-Orth waveforms results in

comparable matrix recovery performance as transmitting optimized waveforms. Thus,

given the cost of computing the optimized waveforms, certain applications and under

certain conditions may treat G-Orth waveforms as optimal. Although the optimal wave-

forms are designed based on the assumption that the targets fall in the same range bin,

our analysis and simulations showed that they cause only small amount of performance

degradation for relatively small delays, i.e., of the order of the symbol interval when

used in a scenario in which the targets appear in different range bins.
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Chapter 6

On Transmit Beamforming in MIMO Radars with Matrix

Completion

This chapter proposes a matrix completion based colocated MIMO radars (MIMO-

MC) approach that employs transmit beamforming. The transmit antennas transmit

correlated waveforms to illuminate certain directions. Each receive antenna performs

sub-Nyquist sampling of the target returns at uniformly random times, and forwards

the samples to a fusion center along with information on the sampling times. Based on

the forwarded samples, the fusion center partially fills a matrix, recovers the Nyquist

rate samples via matrix completion, and subsequently proceeds with target estimation

via standard techniques. The performance of matrix completion depends on the matrix

coherence. This chapter derives the relations between transmit waveforms and matrix

coherence. Specifically, it is shown that, for a rank-1 beamformer, the coherence is opti-

mal, i.e., 1, if and only if the waveforms are unimodular. For a multi-rank beamformer,

the coherence of the row space of the data matrix is optimal if the waveform power

is constant across each snapshot. Simulation results show that the proposed scheme

achieves high resolution with a significantly reduced number of samples.

6.1 Introduction

A colocated MIMO radar approach based on matrix completion (MC) [41] [42] [43]

(MIMO-MC radar) has been recently proposed in [76] [75] to achieve the high reso-

lution of MIMO radars while requiring significantly fewer samples to be collected and

forwarded to a fusion center. Based In MIMO-MC radars, each receive antenna obtains
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samples at uniformly random times and forwards them to a fusion center, which par-

tially fills a matrix, referred to as the data matrix. The matrix can be subsequently

recovered via matrix completion techniques. As shown in [76] [77], [68] and [96], [97] the

transmit/receive array configuration as well as transmit waveforms affect the matrix

coherence and thus the MC performance.

Most of the work on MIMO radars assumes the transmission of uncorrelated wave-

forms from the transmit antennas. However, for MIMO radars operating in tracking

mode, that considers correlated transmit waveforms [98] [99]. For example, in [98], the

transmit waveforms correlation is designed so that a desired transmit beampattern is

achieved. In [99], the authors proposed a phased-MIMO radar approach by dividing the

transmit array into multiple sub-arrays, with each sub-array coherently transmitting a

waveform which is orthogonal to waveforms transmitted by other sub-arrays. Thus, in

each sub-array, beamforming is achieved. A multi-rank beamformer for MIMO radars

has been recently proposed in [100], which, unlike [98] does not require solving a compli-

cated optimization problem. The multi-rank beamformer is taken as the combination

of rank-1 beamformers with the corresponding multiple waveforms chosen to be orthog-

onal.

In this chapter we consider the same MIMO radars transmit beamforming framework

as in [100]. When the number of illuminated targets is much smaller than the size

of receive array, the data matrix formulated by the fusion center based on Nyquist-

rate samples at the receive antennas is low-rank. Therefore, Nyquist sampling is not

required at each receive antenna. Instead, the antenna can uniformly at random select

samples and forward them to the fusion center, thus partially filling the data matrix. By

applying MC, the fusion center can recover the full matrix. Based on the recovered data

matrix, various methods, e.g., MUSIC [5], can be employed for target estimation. The

advantages of sending fewer samples to the fusion center include power and bandwidth

savings. The focus of this chapter is to determine the suitability of MC in this scenario.

For this purpose, we conduct matrix coherence analysis and derive the optimal waveform

conditions for both rank-1 and multi-rank beamformers.
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6.2 On the Rank-1 beamforming

Let s ∈ C
N×1 be the waveform sequence transmitted by each of the Mt antennas over

one pulse. Let w ∈ C
Mt×1 denote the transmit beamformer. Then, according to [73],

the rank-1 beamformer equals w = a (θ)/‖a (θ)‖, where a (θ) denotes the transmit

steering vector corresponding to direction θ. High angle resolution can be achieved

under the rank-1 beamformer [100] by doing joint transmit and receive beamforming,

which shows great advantage of MIMO radars over phased-array radar for single target

tracking.

Under the narrow-band assumption, the noise free receive data matrix collected at

the fusion center containing the samples of target reflections equalsX = b (θ)βζa(θ)T S̃,

where b (θ) is the receive steering vector w.r.t. direction θ. The transmit signal matrix

equals S̃ = wsT . In addition, β and ζ are the target reflection coefficient and Doppler

shift, respectively.

The matrix X is low rank, and as long as its left and right subspaces coherence

is low, it can be recovered from a small number of its entries, selected uniformly at

random.

In the following theorem we state the conditions so that the coherence of X achieves

it smallest possible value of 1.

Theorem 4. Under a ULA configuration, when the MIMO radar antennas transmit the

same waveform and a rank-1 beamformer is used, i.e., w = a (θ)/‖a (θ)‖, the coherence

of the matrix X achieves its lowest value, i.e., µ (U) = µ (V ) ≡ 1 if and only if the

waveform sequence is unimodular.

Proof. The data matrix X ∈ C
Mr×N as defined above is rank-1. Let its compact

singular value decomposition (SVD) be X = uσvH , where u ∈ C
Mr×1, v ∈ C

N×1

with uHu = 1,vHv = 1 and σ the corresponding singular value. Consider the QR

decomposition of b (θ) given by b (θ) = qrrr, where

qr =
1√
Mr

[

1 ej
2π
λ
dr sin θ · · · ej

2π
λ
(Mr−1)dr sin θ

]T
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such that qH
r qr = 1 and rr =

√
Mr where λ denotes the wavelength. Similarly, we

consider the QR decomposition of S̃Ta (θ) given by S̃Ta (θ) = sa(θ)T a(θ)
‖a(θ)‖ = qsrs, where

qs ∈ C
N×1 such that qH

s qs = 1, and rs is a real number. Then, X = qrrrβζrsq
T
s . The

SVD of the complex number rrβζrs can be written as rrβζrs = q1ρq
∗
2, where |q1| =

|q2| = 1 and ρ is a real number. Therefore, X = qrq1ρq
∗
2q

T
s = qrq1ρ(q

∗
sq2)

H , which is a

valid SVD of X since (qrq1)
H
qrq1 = 1, (q∗

sq2)
H
q∗
sq2 = 1. By the uniqueness of singular

values of a matrix, it holds that σ ≡ ρ. Therefore, we can set u = qrq1,v = q∗
sq2.

Let q
(i)
r denote the i-th element of qr. The coherence of the column space of X is

µ (U) =
Mr

1
sup

i∈N+
Mr

∣
∣
∣q

(i)
r q1

∣
∣
∣

2
= Mr sup

i∈N+
Mr

∣
∣
∣q

(i)
r

∣
∣
∣

2
≡ 1. (6.1)

Let q
∗(i)
s , si denote the i-th element of q∗

s and s, respectively. The coherence of the row

space of X is

µ (V ) =
N

1
sup
i∈N+

N

∣
∣
∣q

∗(i)
s q2

∣
∣
∣

2
= N sup

i∈N+
N

∣
∣
∣q

(i)
s

∣
∣
∣

2

= N sup
i∈N+

N

∣
∣
∣
∣
∣

sia(θ)
T
a (θ)

‖a (θ)‖ rs

∣
∣
∣
∣
∣

2

= N sup
i∈N+

N

a(θ)Ha(θ)∗|si|2a(θ)Ta (θ)
‖a (θ)‖2r2s

. (6.2)

Here, it holds that

r2s = rsq
H
s qsrs = (qsrs)

H
qsrs

=
a(θ)Ha(θ)∗sHsa(θ)Ta (θ)

‖a (θ)‖2
. (6.3)

Consequently,

µ (V ) = N sup
i∈N+

N

|si|2
sHs

. (6.4)

Since
N∑

i=1
|si|2 = sHs and |si|2 ≥ 0, the minimum possible value of µ (V ) could achieve

the minimum value, i.e., 1, if and only if |si|2 = 1
N sHs for any i ∈ N

+
N . This condition

suggests that the transmit power in each snapshot, i.e., |si|2, should equal the total

transmit power sHs divided by N . In other words, the transmit waveform should be

unimodular. Consequently, it holds that µ (U) = µ (V ) ≡ 1, which completes the

proof.
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It is interesting to note that the coherence is optimal independent of the the beam-

forming vector.

6.3 On the Multi-Rank Beamforming

According to [100], to track multiple targets at directions {θk}k∈N+
K
, a rank-K beam-

former W = [w1 · · ·wK ] ∈ C
Mt×K can be used, where wk = a(θk)

‖a(θk)‖ is the beam-

former focussing on direction θk. The sampled transmitted signal matrix equals S̃ =
√

Mt

K WST , where
√

Mt

K is a factor to satisfy that the total transmit energy is Mt;

S ∈ C
N×K contains sampled orthogonal waveforms so that SHS = IK . The transmit

beampattern in direction φ is the sum of K rank-1 beampatterns, i.e.,

PT (φ) =
Mt

K
a(φ)HWWHa (φ)

=
Mt

K

K∑

k=1

a(φ)Hwkw
H
k a (φ) . (6.5)

Under the narrow-band assumption, the noise free receive data matrix is [76]

X = BDAT S̃, (6.6)

where A ∈ C
Mt×K is the transmit steering matrix defined as A = [a (θ1) · · · a (θK)];

B ∈ C
Mr×K is the receive steering matrix, and D ∈ C

K×K is a diagonal matrix

containing target reflection coefficients and Doppler shifts. It can be shown that X

is a low-rank matrix. Thus, depending on how low its coherence is, it can be recovered

based on a small, uniformly sampled subset of its elements. On the coherence of X, we

have the following theorem.

Theorem 5. Consider an ULA configuration and a MIMO radar applying the rank-K

beamformer W = [w1 · · ·wK ] ∈ C
Mt×K to K orthogonal waveforms S ∈ C

N×K .

The coherence of the row space of X is optimal, i.e., µ (V ) ≡ 1, if and only if

S(i)
(

S(i)
)H

=
K

N
, ∀ i ∈ N

+
N , (6.7)

where S(i) ∈ C
1×K denotes the i-th row of S.
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Proof. The compact SVD of X can be expressed as X = UΛVH , where U ∈ C
Mr×K ,

V ∈ C
N×K such that UUH = IK ,VVH = IK , and Λ ∈ R

K×K is a diagonal ma-

trix containing the singular values of X. Consider the QR decomposition of B, i.e.,

B = QrRr, where Qr ∈ C
Mr×K such that QH

r Qr = IK , and Rr ∈ C
K×K is an up-

per triangular matrix. Similarly, we consider the QR decomposition of S̃TA given by

S̃TA = QsRs, where Qs ∈ C
N×K such that QH

s Qs = IK and Rs ∈ C
K×K is an upper

triangular matrix. Then, X = QrRrDRT
s Q

T
s and the matrix RrDRT

s ∈ C
K×K is

rank-K whose SVD is given as RrDRT
s = Q1∆QH

2 . Here, Q1 ∈ C
K×K is such that

Q1Q
H
1 = QH

1 Q1 = IK (the same holds for Q2) and ∆ ∈ R
K×K is non-zero diagonal,

containing the singular values of RrDRT
s . Therefore,

X = QrQ1∆QH
2 QT

s = QrQ1∆(Q∗
sQ2)

H , (6.8)

which is a valid SVD of X since (QrQ1)
H
QrQ1 = IK and (Q∗

sQ2)
H
Q∗

sQ2 = IK . By

the uniqueness of the singular values of a matrix, it holds that Λ ≡ ∆. Therefore, we

can set U = QrQ1 and V = Q∗
sQ2.

Let Q
∗(i)
s ,S(i) ∈ C

1×K denote the i-th row of Q∗
s and S, respectively. Regarding the

coherence of the row space of X, we have

µ (V ) =
N

K
sup
i∈N+

N

∥
∥
∥Q

∗(i)
s Q2

∥
∥
∥

2
=

N

K
sup
i∈N+

N

∥
∥
∥Q

(i)
s

∥
∥
∥

2

=
N

K
sup
i∈N+

N

∥
∥
∥
∥
∥

√

Mt

K
S(i)WTAR−1

s

∥
∥
∥
∥
∥

2

=
N

K
sup
i∈N+

N

Mt

K
S(i)WTAR−1

s

(
R−1

s

)H
AHW∗

(

S(i)
)H

.

Here, since the waveforms are orthogonal, i.e., SHS = IK , it holds that

R−1
s

(
R−1

s

)H
=
(
RH

s Rs

)−1
=
(
RH

s QH
s QsRs

)−1

=
K

Mt

(
AHW∗SHSWTA

)−1

=
K

Mt

(
AHW∗WTA

)−1

=
K

Mt

(
WTA

)−1(
AHW∗)−1

. (6.9)

Consequently, µ (V ) = N
K sup

i∈N+
N

S(i)
(
S(i)
)H

. In addition, it holds that
N∑

i=1
S(i)
(
S(i)
)H

=

K for orthogonal waveforms. Therefore, to find the lowest possible value of µ (V ), we
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solve the following optimization problem

min
i∈N+

N

(

max
i∈N+

N

S(i)
(

S(i)
)H
)

s.t.
N∑

i=1

S(i)
(

S(i)
)H

= K. (6.10)

Since S(i)
(
S(i)
)H ≥ 0, the solutions of the above problem are S(i)

(
S(i)
)H

= K
N ,∀i ∈ N

+
N .

Consequently, the lowest possible value of row space ofX is achieved as µ (V ) ≡ 1, which

completes the proof.

Theorem 5 indicates that the energy of the K orthogonal waveforms should be

constant during each snapshot. It is interesting to note that the coherence of the row

space of X is independent of the multi-rank beamformer. Therefore, the analysis results

hold for all kinds of multi-rank beamformers obtained via different methods, e.g., multi-

rank beamformer for the approximation of a desired beampattern, proposed in [101].

It should be noted that the coherence of the column space of X, i.e., µ (U) coincides

with the results in MIMO-MC radar and interested readers can refer to [68] for detail

discussions.

6.4 DOA Estimation based on Matrix Completion

At the fusion center, for each pulse, the data matrix X is recovered via MC using a

small portion of samples collected uniformly at random. Let X̃ denote the recovered

data matrix. Subsequently, matched filtering is applied on X̃ to obtain

Yq = X̃S∗ =

√

Mt

K
BDATW + Zq, (6.11)

where q is the pulse index and Zq represents noise. Stacking the matrix (6.11) into a

KMr × 1 vector, we get

yq = vec (Yq) =

√

Mt

K

K∑

k=1

dk
(
WTa (θk)

)
⊗b (θk) + zq,

where dk denotes the reflection coefficient and Doppler shift w.r.t. the k-th target;

zq = vec (Zq). With Q pulses data, the sample covariance matrix is obtained as R =
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Figure 6.1: Transmit beampattern under rank-2 beamformer with Mt = 30 for direc-

tions [−11◦, 2◦];

1
Q

Q∑

q=1
yqy

H
q . The pseudo-spectrum of MUSIC estimator is [5]

P (θ) =
1

cH (θ)EnE
H
n c (θ)

, (6.12)

where c (θ) =
(
WTa (θ)

)
⊗ b (θ) and En ∈ C

KMr×(KMr−K) is a matrix containing the

eigenvectors of the noise subspace of R. The angle of the targets can be obtained by

the finding the peak locations of the pseudo-spectrum (6.12).

6.5 Simulations

In the following, we use simulation to test the performance of the proposed approach.

Throughout the simulations, the transmit/receive arrays are configured as ULA with

dt = λ/2 and dr = Mtλ/2. The first K waveforms of the Hadamard sequences are

used for transmit beamforming. The number of pulses is set to Q = 3. The number of

Nyquist samples in one pulse is N = 128. The data matrix X is recovered via the SVT

algorithm [71] using only p = 50% of its entries. The obtained results are averaged

over 100 independent runs. First, a rank-2 beamformer with Mt = 30 is applied to

illuminate K = 2 targets at angles θ1 = −11◦ and θ2 = 2◦. The transmit beampattern
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Figure 6.2: Simulations: (a) RMSE versus SNR with Mr = 60,Mt = 30; (b) Probability

of target resolution with Mr = 60,Mt = 20 and SNR = 25dB. The proposed approach

is based on subsampling by 50%.

of the beamformer is shown in Fig. 6.1. The root mean square error (RMSE) of

the direction of arrival (DOA) estimation for these two targets is plotted in Fig. 6.2

(a) for Mr = 60. It can be found that the RMSE of DOA estimation using MC or

Nyquist sampling decreases as the signal-to-noise ratio (SNR) becomes larger (the SNR

is defined at the fusion center before the matched filtering operation). Interestingly, as

SNR ≥ 25dB, these two RMSE curves become almost identical. This is because the

recovery error of X introduced by MC is quite small when the SNR is high [43]. Next,

we access the capability of the proposed scheme to resolve two closely located targets.

We take the first target to be in direction θ1 = 10◦ and the second in θ2 = θ1+∆θ. The

targets are considered to be resolved if
∣
∣
∣θ̂k − θk

∣
∣
∣ ≤ ∆θ/2, k = 1, 2, where θ̂k denotes the

estimation of the k-th target [5]. The probability of resolution under Mr = 60,Mt = 20

and SNR = 25dB is plotted in Fig. 6.2 (b). It can be found that the proposed MC based

scheme has the same resolution of ∆θ = 0.02◦ as the method with Nyquist sampling.

Therefore, a comparable DOA estimation performance is achieved under the proposed

scheme as the method that uses Nyquist sampling.
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6.6 Summary

In this chapter, we have proposed a MIMO-MC radar approach with transmit beam-

forming. Each receive antenna performs sub-Nyquist sampling and the full data matrix

is recovered at the fusion center via MC. Analysis results have shown that the matrix

coherence is independent of the beamformer. The row space coherence of data matrix

is optimal if and only if the transmit orthogonal waveforms have constant power during

all snapshots. The simulation results show that the proposed scheme could achieve

super resolution at a low sub-Nyquist sampling rate.
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Chapter 7

On Receive Beamforming via Matrix Completion

Beamforming methods rely on training data to estimate the covariance matrix of the

interference pulse noise. Their convergence slows down if the signal of interest is present

in the training data, thus requiring a large numbers of training snapshots to maintain

good performance. In a distributed array, in which the array nodes are connected to a

fusion center via a wireless link, the estimation of the covariance matrix would require

the communication of large amounts of data, and thus would consume significant power.

We propose an approach that enables good beamforming performance while requiring

substantially fewer data to be transmitted to the fusion center. The main idea is based

on the fact that when the number of signal and interference sources is much smaller

than the number of array sensors, the training data matrix is low rank. Thus, based

on matrix completion theory, under certain conditions, the training data matrix can be

recovered from a subset of its elements, i.e., based on sub-Nyquist samples of the array

sensors. Following the recovery of the training data matrix, and to cope with the errors

introduced during the matrix completion process, we propose a robust optimization

approach, which obtains the beamforming weight vector by optimizing the worst-case

performance. Numerical results show that combination of matrix completion and robust

optimization is very successful in suppressing interference and achieving a near-optimal

beamforming performance with only partial training data.

7.1 Introduction

Adaptive beamforming has been widely used in wireless communications, radar and

sonar for signal estimation. The adaptive beamforming method relies on the covariance



128

matrix of the interference-plus noise, which needs to be estimated based on training

data, prior to applying the method for signal estimation. However, in a practical setting,

such as passive source localization applications, the training data always contain the

signal of interest. In that case, the convergence rates of the adaptive beamforming

algorithm are significantly reduced, and can be improved only by considering very long

training data [102]. If those data were collected by distributed nodes and they need to

be forwarded to a fusion enter for the computation of the covariance matrix, a lot of

communication power would be required.

When the number of signals and interference sources is much smaller than the

number of sensors in the array, the training data matrix is low rank. This means that,

under certain conditions, even if some entries of the training data matrix are missing,

the full matrix can be recovered via matrix completion techniques [41] [43]. Based on

the the above observation, we propose a scheme that significantly reduces the number

training data needed for estimating the the sample covariance matrix. The idea is that

during the training phase, each sensor carries out a uniformly random sub-Nyquist

sampling, and forwards the samples to a fusion center. The full training data matrix

can then be recovered using matrix completion.

The matrix completion step introduces errors when noisy observation is consid-

ered. Assuming that the training data matrix satisfies the restricted isometry prop-

erty [36] [103], the relative matrix recovery error is bounded by a number of the order

of the observed inverse signal-and-interference-to-noise ratio. Based on that bound, we

propose a robust adaptive beamforming method with robust optimization [104], which

obtains the beamforming weight vector by optimizing the worst-case performance. Nu-

merical results show that combination of matrix completion and adaptive beamforming

is very successful in suppressing interference and achieving a near-optimal signal-to-

interference-plus-noise ratio (SINR) output with only partial training data.
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7.2 Fundamentals of Classical Beamforming

In array signal processing, it is often desired to estimate the signal s (k) under the

presence of interference and noise with the help of an array of M sensors. The array

observations x (k) ∈ C
M×1 can be written as [105]

x (k) = s (k)a+ i (k) + n (k) , (7.1)

where i (k), n (k) are the interference and noise, respectively. Here, k is the time index

and a is the signal steering vector. The output of a narrow-band beamformer is

y (k) = wHx (k) , (7.2)

wherew ∈ C
M×1 is the complex vector containing the beamforming weights. The SINR

is written as [105]

SINR =
σ2
s

∣
∣wHa

∣
∣2

wHRi+nw
, (7.3)

where

Ri+n = E
{

[i (k) + n (k)] [i (k) + n (k)]H
}

(7.4)

is the interference-plus-noise covariance matrix and σ2
s is the signal power. In the

minimum variance distortionless response (MVDR) beamformer, the weight vector is

obtained by minimizing the output interference-plus-noise power while keeping the sig-

nal from a desirable direction distortionless [105]. This leads to the solution

wopt =
R−1

i+na

aHR−1
i+na

. (7.5)

and optimal SINR

SINRopt = σ2
sa

HR−1
i+na. (7.6)

In practice, the exact interference-plus-noise covariance matrix Ri+n is not available.

Instead, the sample covariance matrix is used, i.e.,

R̂ =
1

L
XXH (7.7)
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where X = [x (1) , ...,x (L)] ∈ C
M×L and L is the number of snapshots. Thus, the

optimization problem of MVDR beamformer and the corresponding solution can be

is rewritten by replacing R with R̂ which is known as Capon method [106], and the

solution, referred to as the sample matrix inversion (SMI) beamformer, is

wSMI =
R̂−1a

aHR̂−1a
. (7.8)

When there is no signal in the training samples, as L increases the SINR under the

weight vector (7.8) converges very fast to the optimal value defined in (7.6). If L ≥ 2M ,

the average performance losses are less than 3dB. However, when the signals are present

in the training samples, the convergence rate to (7.6) is much slower. Usually, in the

later case, L ≫ M is required [102].

7.3 Covariance Matrix Estimation with Matrix Completion

Let us assume the the number of targets and interference sources is K, and the number

of sensors in the array is much larger than K, i.e., M ≫ K. To achieve high output

SINR, the Capon beamformer requires accurate estimation of the sample covariance

matrix, which in turn requires a number of snapshots much larger than the number of

sensors, i.e., L ≫ M . Thus, for a large array, a large number of training data need to

be collected.

The training data matrix in the L snapshots can be rewritten as

X = S+ Z, (7.9)

where S = [s (1) a+ i (1) , ..., s (L)a+ i (L)] is rank K and contains both signal and

interference components. Here, Z = [n (L) , ...,n (L)] is the noise matrix. Under the

above assumption, matrix S is low rank. When the noise level is low, matrix X and the

corresponding covariance matrix, R̂, are approximately low rank. Matrix completion

techniques can thus be applied to recover the training data matrix S based on partial

observations by exploiting its low rank structure.
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7.3.1 Training Data Matrix Estimation via Matrix Completion

In [107], the authors applied matrix completion techniques to estimate the sample

covariance matrix R̂ in a distributed way. However, the estimation of sample covariance

matrix directly based on partial observations of covariance matrix entries does not

reduce the number of samples at each sensor and the amount of local message passing

is also large. This can be seen as follows. In order to recover a matrix, at least one

observation per row and one observation per column are required [41]. Therefore, to

recover R̂ directly, each row and each column of R̂ need to have at least one non-zero

element; corresponding to element (i, j), nodes i and j in the array need to do Nyquist

sampling to obtain L samples and then share those samples. Since R̂ needs to be

uniformly populated, may nodes need to do Nyquist sampling and then share data.

Instead of estimating R̂ directly, in this paper, we recover the training data matrix

S with only partial samples from each sensor. The recovered Ŝ is then used to construct

the sample covariance matrix.

It is difficult to show analytically that the singular vectors of the training matrix

meet the conditions (A0), and (A1). However, for the case of a linear uniform array

and uncorrelated signal and interference, extensive simulation results indicate that the

maximal element values in both left and right singular vectors of matrix S is bounded

by a small number with high probability as M and L are large, i.e., the conditions (A0),

and (A1) hold (see also [75]). Therefore, matrix S satisfies the incoherence properties.

To recover the data matrix S in (7.9) with matrix completion, during the L snap-

shots, each sensor carries out uniformly random sampling and then forwardd the sub-

Nyquist samples to a fusion center. At the fusion center, the observation can be written

in the vector form

b = A (S) + z, (7.10)

where A is a linear transformation mapping M × L matrices into R
m, i.e., A (S) =

[S]ij, (i, j) ∈ Ω. The adjoint of A is denoted as A∗ and PΩ (X) = A∗ (b). Here, z is a

noise vector and its distribution has been described in (7.9).

Considering the corrupted observation case, the matrix recovery is done by solving



132

the following nuclear norm optimization problem with quadratic constraint

min ‖W‖∗ s.t. ‖b−A (W)‖ ≤ δ. (7.11)

The objective in problem (7.11) can be replaced by the approximate function α‖W‖∗+
1
2‖W‖F , where 1

2‖W‖F is a smooth part and the parameter α controls the trade off

between the accuracy of approximation and the performance of the algorithm [72].

Then, the problem of (7.11) is casted as a conic programming problem [71]

min α‖W‖∗ +
1

2
‖W‖F s.t. ‖b−A (W)‖ ≤ δ. (7.12)

The problem of (7.12) can be solved with the singular value thresholding (SVT) algo-

rithm in an iterative fashion (see [71]); the iteration converges to that of the original

matrix completion problem as α → ∞ [71].

The recovered training data matrix Ŝ is the optimal solution Wopt of problem (7.12).

Then, the sample covariance matrix is obtained as

R̂mc =
1

L
ŜŜH . (7.13)

7.3.2 Training Data Matrix Estimation Error Analysis

Define the signal-plus-interference-to-noise ratio over the observed data matrix as

η = ‖PΩ (S)‖F/‖PΩ (Z)‖F .

Define the relative recovery error of the sample data matrix Ŝ as φ
Ŝ
=
∥
∥
∥Ŝ− S

∥
∥
∥
F

/

‖S‖F .

Then, we have the following lemmas.

Lemma 2. The relative recovery error bound of the training data matrix is on the order

of bound of 1
η , i.e., bound

(
φ
Ŝ

)
= (1± ε) bound

(
1
η

)

, where ε is a small number.

The proof is given in Appendix D.

Lemma 3. The error bound of the recovered data matrix Ŝ to the original noisy training

data matrix X is on the order of noise level, i.e.,
∥
∥
∥Ŝ−X

∥
∥
∥
F
≤ (C0 + 1)

√
MLσ with a

numerical constant C0, where σ is the standard deviation of the white noise sequence.

The proof is given in Appendix E.
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7.4 Robust Low Rank Beamforming

The recovered training data matrix Ŝ contains errors which result in degradation of the

performance of the traditional beamforming methods. Therefore, robust beamforming

methods are required. In this paper, with the robust optimization techniques [104], we

develop a beamformer that is robust against training data matrix mismatch, and it is

based on worst-case performance optimization, along the lines of [108].

The training data matrix X can be modeled as

X = Ŝ+∆. (7.14)

Based on Lemma 3, the error matrix ∆ is bounded, i.e., ‖∆‖F ≤ (C0 + 1)
√
MLσ , β.

In the Capon beamformer, the objective is to minimize

wHR̂w =
1

L
wHXXHw

=
1

L

(
XHw

)H (
XHw

)

=
1

L

∥
∥XHw

∥
∥
2
. (7.15)

Therefore, minimizing wHR̂w is equivalent to minimizing
∥
∥XHw

∥
∥. We want to obtain

the weight vector by solving the following optimization problem

min
w

max
‖∆‖F≤β

∥
∥XHw

∥
∥ s.t.

∣
∣wHa

∣
∣ ≥ 1. (7.16)

As in [108], we want to minimize the worst-case output power corresponding to the

worst-case error matrix ∆ subject to the distortionless response for the desired signal.

The problem (7.16) can be equivalently written as

min
w

max
‖∆‖F≤β

∥
∥
∥Ŝ

Hw +∆Hw

∥
∥
∥ s.t.

∣
∣wHa

∣
∣ ≥ 1. (7.17)

Let f (w) = max‖∆‖F≤β

∥
∥
∥ŜHw +∆Hw

∥
∥
∥, then, it was shown in [108] that f (w) =

∥
∥
∥ŜHw

∥
∥
∥+ β ‖w‖.

Thus, we can rewrite the problem of (7.17) as

min
w

∥
∥
∥Ŝ

Hw

∥
∥
∥+ β ‖w‖ s.t.

∣
∣wHa

∣
∣ ≥ 1. (7.18)
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The absolute operation in the constraint of problem (7.18) makes it nonconvex. Fortu-

nately, when the the weight vector w undergoes any phase rotation, the cost function

in (7.18) is unchanged. Therefore, the weight vector w can be chosen to satisfy

ℜe
{
wHa

}
≥ 0, ℑm

{
wHa

}
= 0. (7.19)

Thus, the problem of (7.18) can be equivalently written as

min
w

∥
∥
∥Ŝ

Hw

∥
∥
∥+ β ‖w‖ s.t. wHa ≥ 1. (7.20)

If the constraint of problem (7.20) is true, then the conditions in (7.19) would be

satisfied. Also, the inequality constraint in (7.20) can be replaced by the equality

wHa = 1.

Alternative robust beamforming methods are the diagonal loading (DL) [109] and

the eigenspace-based beamformer [102]. The idea of DL is to replace the sample co-

variance matrix R̂mc with R̂DL = R̂mc + ξI. The main difficulty in the DL method

is in choosing the parameter ξ; if ξ is too large, the beamformer fails to suppress the

interference since most of the effort is used for white noise suppression. In practice, ξ

is usually chosen as 10σ2 [105].

In the eigenspace-based beamformer, the basic idea is to use a projection of the

steering vector a onto the sample signal-plus-interference subspace. The eigenspace

beamformer is known to be powerful but its performance degrades a lot at low SNR

[105].

7.5 Numerical Results

In the simulations, we use a ULA with M = 40 sensors. The interspace distance

between each sensor is set to λ/2. Assume there is one signal source and its direction of

arrival (DOA) is −20◦ and supposed to be known. Two interference sources are in the

plane space with DOA as −15◦ and −10◦, respectively. Thus, K = 3. The frequencies

of both signal and interference sources are set to f = 1× 109Hz. The observation noise

sequence is assumed to be white Guassian with zero mean and standard deviation as σ.

The sample data matrix recovery is done using the SVT algorithm [71]. The parameter
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Figure 7.1: The relative recovery error. The x-axis is the number of samples per degree

of freedom (df).
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Figure 7.2: The relative errors of Ŝ and R̂mc versus INR.

α is set to α = 20
√
ML. Each sensor carries out a uniformly random sampling and

forwards the sub-Nyquist samples to the fusion center. The DL and and eigenspace

beamformers were also implemented. In DL, the diagonal loading factor is chosen as

ξ = 10σ2. Define the interference-to-noise ratio (INR) as INR = ‖Sint‖F /‖Z‖F , where

Sint is the sampled interference data matrix.

Fig. 7.1 shows the relative recovery error φ
Ŝ
of the training data matrix versus

the number of samples per degree of freedom. The simulation parameters are set as

SNR = 10dB, INR = 30dB and L = 2000. The degree of freedom of training data

matrix S is df = (M + L−K)K = 6111. In total, 100 iterations are run and the

relative errors are averaged. It can be seen that when m/df increases from 2 to 4, the
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Figure 7.3: The output SINR versus the number of snapshots.

relative error φ
Ŝ
drops sharply to the reciprocal of the observed signal-plus-interference-

to-noise ratio level, i.e., the “phase transition” happens. In our following simulations,

we set sampling ratio as p = m
ML = 0.5, i.e., m/df ≈ 6.

Fig. 7.2 compares the the reciprocal of the observed signal-plus-interference-to-

noise ratio η and the relative error φ
Ŝ
in Ŝ as well as the relative error in R̂mc. Set

SNR = 10dB and L = 2000. 100 iterations are run and relative errors are averaged. It

can be seen that in the entire INR range, the φ
Ŝ
are much smaller than the reciprocal

of η, which confirms the conclusion in Lemma 2. In addition, the relative error in R̂mc

is even smaller.

Fig. 7.3 compares the performances of several beamformers in terms of the number

of snapshot L, i.e., the robust optimization, DL as well as eigenspace-based beamform-

ers, applied on the covariance matrix estimate obtained via matrix completion (MC).

The SNR and INR are set as 10dB and 30dB, respectively. 100 iterations have been

run to calculate the average output SINR. The optimal SINR (7.6) is also plotted for

reference. It can be seen from Fig. 7.3 that as L increases, the SINR output under

both robust optimization and eigenspace-based low rank beamformers approaches the

optimal SINR within about 3dB. The results also confirms that to achieve a high SINR

output, large snapshots are required. Therefore, our matrix completion based low rank

beamforming method is important.

The SINR performance of these beamformers versus the SNR is shown in Fig. 7.4
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Figure 7.4: The output SINR versus SNR.

for INR = 30dB and L = 2000. 100 iterations were run and the relative errors were

averaged. It should be noted that at low SNR, the signal of interest is buried in the

background noise and the training data matrix X is approximately of rank 2, which is

the number of interference sources. Via matrix completion, the recovered training data

matrix Ŝ is of rank 2, and contains the interference signal information, based on which,

the suppression of interference can be achieved with the beamformers. It can be seen

in Fig. 7.4 that among all matrix completion based robust beamformers, the robust

optimization low rank adaptive beamformer has the best SINR output in the entire

SNR range, and its SINR is identical to that of the robust optimization beamformer

with full data. The DL beamformer loses some performance in the high SNR region,

while the eigenspace-based beamformer does not work well at low SNR.

Last, the beampattern comparison is displayed in Fig. 7.5. The parameters are set

as L = 2000, SNR = 10dB and INR = 30dB. Compared with the DL beamformer, the

proposed robust optimization low rank adaptive beamformer gives the best suppression

to the interference sources at DOA −15◦ and −10◦ while keeping the signal source at

DOA −20◦ distortionless.

7.6 Summary

In this chapter, beamforming problem in the large size sensor array with signal of

interest present has been studied, in which huge training data needs to be collected to
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Figure 7.5: Beampatterns comparison.

generate a comparable SINR output. When the training data matrix is low rank, each

sensor only needs to carries out a uniformly random sampling and forwards the sub-

Nyquist samples to the fusion center. The full training data matrix is reconstructed

by matrix completion. In the noisy observation case, the recovery is not exact. To

deal with the errors in the reconstructed training data matrix introduced by the matrix

completion, robust beamforming method was then proposed based on the worst-case

performance optimization. Numerical results show that the prosed beamformer achieves

near-optimal performance with half observations.
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Chapter 8

Conclusions and Future Research Directions

8.1 Conclusions

The dissertation has exploited the sparsity in the context of MIMO radars.

First, we have proposed power allocation and waveform design algorithms to improve

the target estimation performance in CS-based colocated and widely separated MIMO

radars. In the context of compressive sensing, the uniform uncertain principle (UUP)

states that the columns of the sensing matrix should be as orthogonal as possible.

Based on the UUP, the power allocation and waveform design objective is to minimize

the coherence among the columns of the sensing matrix arising in the CS-based MIMO

radars. However, the design problem is not convex and we have proposed a semidefinite

relaxation approach. The target estimation performance under the proposed algorithms

has been improved greatly compared to the CS-based MIMO radars without power

allocation or waveform design. However, the sparsity assumption of target space does

not hold if there is clutter. In the context of CS-based MIMO radars, we have proposed

a clutter suppression approach based on Capon beamforming. In the proposal, the

Capon beamformer has been applied to the compressed receive data and consequently

the block sparsity of the beamformed data has been exploited for target estimation

using CS. The power allocation scheme based on the UUP has been proposed to further

improve the target estimation performance in the CS-based MIMO radars with clutter

suppression.

In the second part of the dissertation, we have proposed a colocated MIMO radars

approach based on matrix completion, termed as MIMO-MC radar. It has been shown

that the data matrix arising in the fusion center of the colocated MIMO radars with
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large scale antennas is low-rank. Additionally, we have shown that the data matrices

under both sampling schemes, i.e., with and without matched filtering satisfy the coher-

ence conditions required by the matrix completion theory. Consequently, the data ma-

trix can be completed with a small portion of samples collected in a uniformly random

fashion from each receive antenna. The target estimation follows the recovered matrix

using standard array signal processing. The proposed MIMO-MC radar approach does

not require discretization of target space and thus avoids the basis mismatch issues

inherent in CS. High resolution target estimation can be achieved by the proposed

MIMO-MC approach with significantly reduced samples as compared to MIMO radars

with the same number of elements.

We have further conducted an analysis of the coherence of the data matrix arising

in MIMO-MC radars with ULA configurations and transmitting orthogonal waveforms.

We have shown that, the data matrix attains its lowest possible coherence if the wave-

form snapshots across the transmit array have flat power spectra for all time instances.

The waveform design problem has been approached as an optimization problem on the

complex Stiefel manifold and has been solved via the modified steepest descent algo-

rithm and the modified Newton algorithm. The numerical results have shown that

as the number of antennas increases, the optimized waveforms result in optimal data

matrix coherence, i.e., 1, and thus, only a small portion of samples are needed for

the data matrix recovery. Although the optimal waveforms are designed based on the

assumption that the targets fall in the same range bin, our analysis and simulations

showed that they cause only small amount of performance degradation for relatively

small delays, i.e., of the order of the symbol interval when used in a scenario in which

the targets appear in different range bins.

Finally, we have investigated the transmit and receive beamforming problems in

MIMO-MC radar, respectively. In the tracking mode, we have proposed a transmit

beamforming scheme in MIMO-MC radars using sub-Nyquist sampling at the receiver

end while achieving comparable target estimation performance to Nyquist sampling.

The optimal waveform conditions has been derived for both the rank-1 and multi-rank

transmit beamforming in MIMO-MC radars by conducting the coherence analysis of
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the data matrix. A robust receive beamforming scheme based on matrix completion has

been proposed for a large scale sensor array. The performance of receive beamforming

techniques are based on the accurate estimation of the covariance matrix, which requires

a large amount samples, especially when the targets of interest are in the presence of

receive data. Our proposed robust beamforming scheme based on the matrix completion

techniques at the receiver end could yield significantly improved performance with only

a small portion of receive samples.

8.2 Future Research Directions

8.2.1 Waveform Design for Range Compression in MIMO-MC Radars

In Chapter 5, we have conducted coherence analysis of data matrix arising in the

scenario of targets falling into different range bins, and shown in Corollary 1 that the

matrix coherence achieves its lowest upper bound if the proposed waveforms additionally

have good correlation properties. It is worth investigating of joint waveform design

to meet both spatial spectra and correlation properties. It should be noted that it

is impossible to achieve orthogonal waveforms with exactly zero correlations for the

whole delay range [80] due to the lack of degree of freedom. Instead, we could design

waveforms satisfying both spectra conditions and correlation properties only for a small

portion delay or apply weights to correlation conditions.

8.2.2 Waveform Design for Transmit Beamforming in MIMO-MC Radars

In Chapter 6, we have derived optimal waveform conditions for multi-rank transmit

beamforming (see Theorem 5). Additionally, it is shown that the waveform condition is

independent of the multi-rank beamformer. Therefore, the results hold for all kinds of

multi-rank beamformers obtained via different methods, e.g., multi-rank beamformer

for the approximation of a desired beampattern, proposed in [101]. It is worth in-

vestigating of joint waveform design to meet both the waveform conditions stated in

Theorem 5 for matrix completion as well as other design objectives, such as a desired

beampattern. In the joint waveform design problem, the waveform conditions stated in
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Theorem 5 can be formulated as a constraint in the new optimization problem.

8.2.3 Clutter Suppression in MIMO-MC Radars

When there is clutter, the sparsity assumption of CS-based MIMO radars about the

target space does not hold. Similarly, clutter would invalidate the low-rank structure of

the data matrix arising in MIMO-MC radars. In Chapter 3, we proposed a Capon beam-

forming method to suppress the clutter in CS-based MIMO radars assuming knowledge

of the clutter covariance. The key step is applying the Capon beamformer to the com-

pressed receive data and observing that the beamformer output is block sparse.

Clutter suppression in MIMO-MC radars is worth investigating. Under the station-

ary clutter assumption, we can optimally design the transmit waveforms to suppress the

clutter. The objective of the optimization problem would be to minimize the effective

clutter power, which can be calculated assuming that the random matrix completion

sampling pattern as well as the clutter covariance matrix are known prior, subject to the

total transmit power constraint as well as the optimal transmit waveforms conditions

stated in Chapter 5.
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Appendix A

Proof of µ0 = µ1 = 1 for rank-1 matrix ZMF
q

Proof. Suppose that there are K,K ≥ 2 targets in the search space, all with the same

DOA, say θ1. The transmit and receive steering matrices are given by

A = [a (θ1) , . . . ,a (θ1)] , (A.1)

B = [b (θ1) , . . . ,b (θ1)] , (A.2)

where the transmit and receive steering vectors a (θ1) and b (θ1) are defined in equations

(4.2) and (4.5), respectively. The noise-free receive data matrix ZMF
q can be written as

ZMF
q =BΣDqA

T

= [b (θ1) , . . . ,b (θ1)]









β1
. . .

βK









×









d1
. . .

dK









[a (θ1) , . . . ,a (θ1)]
T

=

(
K∑

k=1

βkdk

)

b (θ1) a
T (θ1) , (A.3)

where dk is the Doppler shift of the k-th target. Its compact SVD is

ZMF
q = uσvH , (A.4)

where uHu = 1,vHv = 1, and σ is the singular value.

By applying the QR decomposition to the receive steering vector b (θ1), we have

b (θ1) = qrrr, where qH
r qr = 1 and rr =

√
Mr. The expression of qr is given by

qr =
1√
Mr

[

1, ej
2π
λ
dr sin(θ1), . . . , ej

2π
λ
(Mr−1)dr sin(θ1)

]T
. (A.5)
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Similarly, applying the QR decomposition to the transmit steering vector a (θ1), we

have a (θ1) = qtrt, where qH
t qt = 1 and rt =

√
Mt. The expression of qt is given by

qt =
1√
Mt

[

1, ej
2π
λ
dt sin(θ1), . . . , ej

2π
λ
(Mt−1)dt sin(θ1)

]T
. (A.6)

Therefore, it holds that

ZMF
q = qr rr

(
K∑

k=1

βkdk

)

rt

︸ ︷︷ ︸

η

qT
t , (A.7)

where η is a complex number. Its SVD can be written as η = q1ρq
∗
2, where |q1| = |q2| =

1, and ρ is a real number. Thus,

ZMF
q = qrq1ρq

∗
2q

T
t = qrq1ρ(q

∗
t q2)

H , (A.8)

where (qrq1)
H
qrq1 = |q1|2qH

r qr = 1 and (q∗
t q2)

H
q∗
t q2 = |q2|2

(
qH
t qt

)∗
= 1. By the

uniqueness of the singular value, it holds that ρ = σ. Therefore, we can set u = qrq1

and v = q∗
t q2.

Let q
(i)
r denote the i-th element of vector qr. The coherence µ (U) is given by

µ (U) =
Mr

1
sup

i∈N+
Mr

∥
∥
∥q

(i)
r q1

∥
∥
∥

2

2

= Mr sup
i∈N+

Mr

∥
∥
∥q

(i)
r

∥
∥
∥

2

2

= 1. (A.9)

Let q
∗(i)
t denote the i-th element of vector q∗

t . The coherence µ (V ) is given by

µ (V ) =
Mt

1
sup

i∈N+
Mt

∥
∥
∥q

∗(i)
t q2

∥
∥
∥

2

2

= Mt sup
i∈N+

Mt

∥
∥
∥q

∗(i)
t

∥
∥
∥

2

2

= 1. (A.10)

Consequently, we have µ0 = max (µ (U) , µ (V )) = 1. In addition, we have µ1 ≤

µ0

√
K = 1 [41]. It always holds that µ1 ≥ 1. Thus, µ1 = 1. Therefore, we have

µ0 = µ1 = 1.
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Appendix B

Proof of Lemma 1

Proof. Assume the MIMO radars systems are configured with ULA transmit array of

size Mt and inter-element spacing as dt. There are K targets in the far-field at DOAs
{
θk ∈

[
−π

2 ,
π
2

]}

k∈N+
K

, corresponding to spatial frequencies
{
αt
k ∈

[
−1

2 ,
1
2

]}

k∈N+
K

. Then

the transmit steering matrix A has the Vandermonde form. As a result, it holds that

tr
(
AAH

)
= KMt.

Suppose that orthogonal waveforms are transmitted so that S ∈ C
N×Mt. Since

SHS = IMt, it holds that

N∑

i=1

s∗m′ (i) sm (i) =







1,m = m′

0,m 6= m′
, m,m′ ∈ N

+
Mt

. (B.1)

Consequently,

N∑

i=1

(

S(i)
)H

S(i) = IMt , (B.2)

where S(i) denotes the i-th row of S. Following the equation (5.17), it holds that

N∑

i=1

K∑

k=1

∣
∣Si

(
αt
k

)∣
∣2 =

N∑

i=1

∥
∥
∥S

∗(i)A∗
∥
∥
∥

2

2
=

N∑

i=1

tr

(

AT
(

S∗(i)
)H

S∗(i)A∗
)

=

N∑

i=1

tr

((

S∗(i)
)H

S∗(i)A∗AT

)

=

N∑

i=1

tr

((

S(i)
)H

S(i)AAH

)

= tr

((
N∑

i=1

(

S(i)
)H

S(i)

)

AAH

)

= tr
(
AAH

)

= KMt. (B.3)

Thus the statements in Lemma 1 follow.
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Appendix C

Derivative and Hessian of f (S)

First, we give the following two Lemmas, which will be applied in finding the the

derivation.

Lemma 4. Let A ∈ C
Mt×L,Z ∈ C

N×Mt,Y ∈ C
L×N ,H ∈ R

N×L be arbitrary matrices.

It can be shown that

tr
{
H
[(
AHZH

)
⊙Y

]}
= tr

{
ZH

[(
H⊙YT

)
AH

]}
. (C.1)

Proof. See the Appendix F.

Lemma 5. Let H̃ ∈ C
N×L and G,M ∈ C

L×N be general matrices with arbitrary

elements. It holds that

tr
(

(G⊙M) H̃
)

= [vec (G)]Tvec
(

M⊙ H̃T
)

. (C.2)

Proof. See the Appendix G.

Since F ⊙ F∗ and N are real-valued matrices, the objective function f (S) defined

in (5.29) can be written as

f (S) = tr
{

(F⊙ F∗ −N) (F⊙ F∗ −N)T
}

. (C.3)

In order to find the derivative and Hessian of f (S), we do the following expansion:

f (S+ δZ) =tr
{

[((S+ δZ)∗A∗)⊙ ((S+ δZ)A)−N][((S+ δZ)∗A∗)⊙ ((S+ δZ)A)−N]
T
}

=f (S) + δtr {T}+ δ2tr
{
T′}+O

(
δ3
)
. (C.4)
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Here,

T = {[(S∗A∗)⊙ (SA)]−N}
{

[(S∗A∗)⊙ (ZA)]T + [(S∗A∗)⊙ (ZA)]H
}

+ {[(S∗A∗)⊙ (ZA)] + [(S∗A∗)⊙ (ZA)]∗}
{

[(S∗A∗)⊙ (SA)]T −NT
}

, (C.5)

T′ =[(S∗A∗)⊙ (SA)] [(Z∗A∗)⊙ (ZA)]T +
{

[(S∗A∗)⊙ (SA)] [(Z∗A∗)⊙ (ZA)]T
}T

+ [(S∗A∗)⊙ (ZA)] [(Z∗A∗)⊙ (SA)]T +
{

[(S∗A∗)⊙ (ZA)] [(Z∗A∗)⊙ (SA)]T
}T

+ [(S∗A∗)⊙ (ZA)] [(S∗A∗)⊙ (ZA)]T +
{

[(S∗A∗)⊙ (ZA)] [(S∗A∗)⊙ (ZA)]T
}H

− [(Z∗A∗)⊙ (ZA)]NT −
{
[(Z∗A∗)⊙ (ZA)]NT

}T
. (C.6)

Thus, it holds that

tr (T) =tr
(

2 {[(S∗A∗)⊙ (SA)]−N}
{

[(S∗A∗)⊙ (ZA)]T + [(S∗A∗)⊙ (ZA)]H
})

=ℜ
{
tr
(
H
[(
AHZH

)
⊙
(
ATST

)])}
, (C.7)

where H = 2 [(S∗A∗)⊙ (SA)−N] ∈ R
N×L. Let Y = ATST . Following Lemma 4, it

holds that

tr (T) = ℜ
{
tr
(
ZH

[(
H⊙YT

)
AH

])}
. (C.8)

In addition, it holds that

tr
(
T′) =2tr

(

[(S∗A∗)⊙ (SA)] [(Z∗A∗)⊙ (ZA)]T
)

+ 2tr
(

[(SA)⊙ (Z∗A∗)] [(S∗A∗)⊙ (ZA)]T
)

+ 2ℜ
{

tr
(

[(S∗A∗)⊙ (ZA)] [(S∗A∗)⊙ (ZA)]T
)}

− 2tr
(
N
[(
AHZH

)
⊙
(
ATZT

)])
. (C.9)

Now, we focus on the first term on the right side of equation (C.9). Following

Lemma 5, it holds that

tr
(

[(S∗A∗)⊙ (SA)] [(Z∗A∗)⊙ (ZA)]T
)

=tr
([(

AHZH
)
⊙
(
ATZT

)]
H̃
)

=
[
vec
(
AHZH

)]T
vec
((

ATZT
)
⊙ H̃T

)

, (C.10)
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where H̃ = (S∗A∗) ⊙ (SA) ∈ R
N×L. Further, via equations (5.38) and (H.9), it holds

that

[
vec
(
AHZH

)]T
=
[(
IN ⊗AH

)
vec
(
ZH
)]T

=
{(

IN ⊗AH
) [

vec
(
ZT
)]∗}T

=
{(

IN ⊗AH
)
[PN×Mtvec (Z)]

∗}T

=[vec (Z)]HPMt×N (IN ⊗A∗) , (C.11)

as well as

vec
((

ATZT
)
⊙ H̃T

)

=diag
(

vec
(

H̃T
))

vec
(
ATZT

)

=diag
(

vec
(

H̃T
)) (

IN ⊗AT
)
vec
(
ZT
)

=diag
(

PN×Lvec
(

H̃
)) (

IN ⊗AT
)
PN×Mtvec (Z) . (C.12)

Consequently, it holds that

tr
([(

AHZH
)
⊙
(
ATZT

)]
H̃
)

=[vec (Z)]HPMt×N (IN ⊗A∗) diag
(

PN×Lvec
(

H̃
)) (

IN ⊗AT
)
PN×Mtvec (Z) .

(C.13)

Let us focus on the second term on the right side of equation (C.9). It holds that

tr
(

[(SA)⊙ (Z∗A∗)] [(S∗A∗)⊙ (ZA)]T
)

=tr
([(

AHSH
)
⊙
(
ATZT

)]H [(
AHSH

)
⊙
(
ATZT

)])

=tr
([

Y∗ ⊙
(
ATZT

)]H [
Y∗ ⊙

(
ATZT

)])

=
[
vec
(
Y∗ ⊙

(
ATZT

))]H
vec
(
Y∗ ⊙

(
ATZT

))
, (C.14)

as well as

vec
(
Y∗ ⊙

(
ATZT

))
=diag (vec (Y∗)) vec

(
ATZT

)

=diag (vec (Y∗))
(
IN ⊗AT

)
vec
(
ZT
)

=diag (vec (Y∗))
(
IN ⊗AT

)
PN×Mtvec (Z) . (C.15)
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Consequently, it holds that

tr
([

Y∗ ⊙
(
ATZT

)]H [
Y∗ ⊙

(
ATZT

)])

=[vec (Z)]HPMt×N (IN ⊗A∗) [diag (vec (Y∗))]H

× diag (vec (Y∗))
(
IN ⊗AT

)
PN×Mtvec (Z)

=[vec (Z)]HPMt×N (IN ⊗A∗) diag (vec (Y ⊙Y∗))
(
IN ⊗AT

)
PN×Mtvec (Z) . (C.16)

Next, let us focus on the third term on the right side of equation (C.9). With

equations (H.9) and (C.15), it holds that

tr
(

[(S∗A∗)⊙ (ZA)] [(S∗A∗)⊙ (ZA)]T
)

=
[

vec
(

[(S∗A∗)⊙ (ZA)]T
)]T

vec
(

[(S∗A∗)⊙ (ZA)]T
)

=
[
vec
(
Y∗ ⊙

(
ATZT

))]T
vec
(
Y∗ ⊙

(
ATZT

))

=[vec (Z)]TPMt×N (IN ⊗A) [diag (vec (Y∗))]T

× diag (vec (Y∗))
(
IN ⊗AT

)
PN×Mtvec (Z)

=[vec (Z)]TPMt×N (IN ⊗A) diag (vec (Y∗ ⊙Y∗))
(
IN ⊗AT

)
PN×Mtvec (Z) . (C.17)

Finally, let us focus on the forth term on the right side of equation (C.9). Via

equations (H.2) (C.11) (C.12) and Lemma 5, it holds that

tr
(
N
[(
AHZH

)
⊙
(
ATZT

)])
= tr

([(
AHZH

)
⊙
(
ATZT

)]
N
)

=
[
vec
(
AHZH

)]T
vec
((
ATZT

)
⊙NT

)

=[vec (Z)]HPMt×N (IN ⊗A∗) diag (PN×Lvec (N))
(
IN ⊗AT

)
PN×Mtvec (Z) . (C.18)

Therefore, it holds that

f (S+ δZ) = f (S) + δℜ
{
tr
(
ZH

[(
H⊙YT

)
AH

])}

+ 2δ2[vec (Z)]HPMt×N (IN ⊗A∗) diag
(

vec
(

H̃T +Y ⊙Y∗ −NT
))

×
(
IN ⊗AT

)
PN×Mtvec (Z)

+ 2δ2ℜ
{

[vec (Z)]TPMt×N (IN ⊗A) diag (vec (Y∗ ⊙Y∗))
(
IN ⊗AT

)
PN×Mtvec (Z)

}

+O
(
δ3
)
. (C.19)
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By coefficient comparison between (C.19) and the matrix form of the second-order

Taylor series (5.32), we finally obtain

DS =
(
H⊙YT

)
AH ,

HS =4PMt×N (IN ⊗A∗) diag
(

vec
(

2H̃T −NT
)) (

IN ⊗AT
)
PN×Mt ,

CS =4PMt×N (IN ⊗A) diag (vec (Y∗ ⊙Y∗))
(
IN ⊗AT

)
PN×Mt ,

whereH = 2 [(S∗A∗)⊙ (SA)−N],Y = ATST and the fact H̃T = Y⊙Y∗ =
(
ATST

)
⊙

(
AHSH

)
is applied. It is easy to verify that HS = HH

S ,CS = CT
S .
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Appendix D

Proof of Lemma 2

Proof. The proof of Lemma 2 is based on the assumption that matrix S satisfies the

restricted isometry property (RIP) [36]. The RIP asserts that the sampling operator

obeys

(1− ǫ) p ‖S‖2F ≤ ‖PΩ (S)‖2F ≤ (1 + ǫ) p ‖S‖2F , (D.1)

provided that S is low rank. Here, ǫ is a smaller constant. Since the training data

matrix S satisfies the incoherence properties defined in Section 1.4 of Chapter 1, then

with high probability, on the observation set Ω whose elements are uniformly random

sampled entries, the restricted isometry property holds [71]. The RIP property means

that the ‘energy’ of S on the observation set Ω is about proportional to the size of Ω.

Based on RIP, the results in [103] would yield that the recovered matrix Ŝ by solving

the convex optimization problem (7.11) satisfies

∥
∥
∥Ŝ− S

∥
∥
∥
F
≤ C0δ√

p
, (D.2)

where C0 is a numerical constant [43]. This means that the right hand of (D.2) is on

the order of δ√
p , i.e.,

∥
∥
∥Ŝ− S

∥
∥
∥
F
≤ O

(
δ√
p

)

. Thus, we have

φ
Ŝ
=

∥
∥
∥Ŝ− S

∥
∥
∥
F

‖S‖F
≤

O
(

δ√
p

)

‖S‖F
. (D.3)

From the RIP (D.1), we have ‖PΩ (S)‖F ≍ √
p‖S‖F , where ≍ means there is a smaller

number ǫ in (D.1). Since ‖PΩ (Z)‖F ≤ δ, we have

1

η
=

‖PΩ (Z)‖F
‖PΩ (S)‖F

≤ δ√
p‖S‖F

. (D.4)

By comparing the right hands of inequalities (D.3) and (D.4), the conclusion in Lemma

2 is proved.
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Appendix E

Proof of Lemma 3

Proof. We have

∥
∥
∥Ŝ−X

∥
∥
∥
F
=
∥
∥
∥Ŝ− S+ S−X

∥
∥
∥
F

(E.1)

≤
∥
∥
∥Ŝ− S

∥
∥
∥
F
+ ‖S−X‖F (E.2)

≤ C0δ√
p
+

√
MLσ (E.3)

≤ C0

√

m+
√
8m

p
σ +

√
MLσ (E.4)

≍ (C0 + 1)
√
MLσ. (E.5)

Here, in (E.2) the triangle inequality of matrix norm is applied. In (E.3), the bound

(D.2) is applied.
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Appendix F

Proof of Lemma 4

Proof. We use aij , zij , yij, hij to denote the ij-th element of the corresponding matrices

A ∈ C
Mt×L,Z ∈ C

N×Mt,Y ∈ C
L×N ,H ∈ R

N×L, respectively. It holds that

tr
{
H
[(
AHZH

)
⊙Y

]}
=

N∑

m=1

L∑

n=1

hmn

(
Mt∑

i=1

a∗inz
∗
mi

)

ynm

=

Mt∑

i=1

N∑

m=1

z∗mi

(
L∑

n=1

hmnynma∗in

)

. (F.1)

Let DS ∈ C
N×Mt such that tr

{
H
[(
AHZH

)
⊙Y

]}
= tr

{
ZHDS

}
. We use dij to

denote the ij-th element of DS and it holds that

tr
{
ZHDS

}
=

Mt∑

i=1

N∑

m=1

z∗midmi. (F.2)

By comparing equations (F.1) and (F.2), we have

dmi =
L∑

n=1

hmnynma∗in. (F.3)

As a result, the matrix DS has the form as

DS =
(
H⊙YT

)
AH . (F.4)

Consequently, it holds that tr
{
H
[(
AHZH

)
⊙Y

]}
= tr

{
ZH

[(
H⊙YT

)
AH

]}
, which

completes the proof.
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Appendix G

Proof of Lemma 5

Proof. We use gij ,mij , h̃ij to denote the ij-th element of the corresponding matrices

G,M ∈ CL×N and H̃ ∈ CN×L. Then, it holds that

tr
{

(G⊙M) H̃
}

=

L∑

j=1

N∑

i=1

gjimjih̃ij. (G.1)

On the other hand, it holds that

vec
(

M⊙ H̃T
)

=
[

m11h̃11, · · · ,mL1h̃1L, · · · ,m1N h̃N1, · · · ,mLN h̃NL

]T
, (G.2)

vec (G) = [g11, · · · , gL1, . . . , g1N , · · · , gLN ]T . (G.3)

Consequently, it holds that

vec(G)Tvec
(

M⊙ H̃T
)

=

N∑

i=1

L∑

j=1

gjimjih̃ij

=
L∑

j=1

N∑

i=1

gjimjih̃ij . (G.4)

By comparing equations (G.1) and (G.4), we have

tr
{

(G⊙M) H̃
}

= vec(G)Tvec
(

M⊙ H̃T
)

, (G.5)

which completes the proof.
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Appendix H

Useful Equations

Here, we list some useful equations for deriving the derivative and Hessian of a matrix-

valued cost function with Z ∈ C
N×Mt. They are

‖A‖2F = tr
(
AAH

)
, (H.1)

tr (ZH) = tr (HZ) , (H.2)

tr
(
AT
)
= tr (A) , (H.3)

tr
(
AH

)
= tr (A∗) = (tr (A))∗, (H.4)

(H⊗ Z)T = HT ⊗ ZT , (H.5)

(H⊙ Z)T = HT ⊙ ZT , (H.6)

tr (HZ) =
[
vec
(
HT
)]T

vec (Z) , (H.7)

tr
(
HHZ

)
= [vec (H)]Hvec (Z) , (H.8)

vec (HZG) =
(
GT ⊗H

)
vec (Z) . (H.9)
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