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Ecosystem-based management requires a holistic view of the impacts of 

management activities, and a number of modelling techniques have been suggested as 

appropriate for the task at hand. In the first chapter I utilized fuzzy logic cognitive 

mapping to develop conceptual models of a Barnegat Bay, a lagoonal estuarine system, 

among four stakeholder groups. These findings suggest that while all of the stakeholders 

interviewed perceive the subject ecosystem as a complex series of social and ecological 

interconnections, there is a core set of components that are present in most of the groups’ 

models that are viewed as crucial in managing the system towards some desired outcome.  

However, the variability in the connections between these core components and the rest 

of the categories influences the exact nature of these outcomes.   
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In the second chapter I constructed a trophic-based ecosystem model for the same 

estuary and included mortality associated with a nuclear generating station.  Under a 

scenario where the generating station substantially reduces its water withdrawals, the 

effect on the biomass of an individual species tended to be small (<3%), and the direction 

of the change varied by species.  However, trophic interactions played an important role 

in determining the overall change in a species’ biomass, as some species directly 

impacted by the generating station had a reduced biomass in the decommissioning 

scenario due to increased predation mortality.   

In the third and fourth chapters I reviewed the available literature regarding 

incorporation of eutrophication and other anthropogenic impacts into the trophic-based 

model.  I then reduced nutrient loads within models developed in the previous chapters to 

understand how they can be best utilized to meet the needs of resource managers.  Both 

models responded to the nutrient load reduction in a similar fashion, despite the 

differences in data sources, approaches, and methodology.  This suggests that in data-

poor situations local ecological knowledge, collected in a stakeholder-based conceptual 

modelling framework, can be used to understand the patterns and relative magnitude of 

changes to an ecosystem that can be expected given proposed management actions.  

However, a more powerful approach would be to use the two models in combination, 

maximizing the strengths of each. 
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Introduction 

Estuaries are highly productive ecosystems that provide a wide range of goods 

and services, such as disturbance regulation, nutrient cycling, biological control, 

habitat/refugia, food production, raw material, and recreational opportunities.  Worldwide 

they are estimated to be worth over $28,000 ha-1yr-1 in 2007 dollars (Costanza et al. 

2014). With a mosaic of diverse habitats located within close proximity to each other 

(fringing wetlands, open waters, submerged aquatic vegetation beds, unvegetated 

bottoms) estuaries are home to a variety of aquatic organisms, many of which are of 

commercial or recreational importance (Beck et al. 2001). Within temperate estuaries this 

includes both resident and transient fish across all life history stages (Able and Fahay 

2010).  Because of this critical habitat function, fishery production within estuaries is 

higher than most other marine systems (Pauly and Yanez-Arancibia 1994).     

The continued high level of fishery productivity of estuaries is currently 

threatened, however, by a variety of natural and anthropogenic stressors (Kennish and 

Paerl 2010).   Changes in the long-term trends of storm duration and intensity, drought, 

storm surge, sea level rise, and flooding, all associated with climate change, affect the 

physicochemical conditions within estuaries that species have adapted to (Anthony et al. 

2009). Additional acute impacts will be felt as human populations continue to swell 

within the coastal zone (Bricker et al. 2007). Coastal development such as dredging, 

bulkheading, channel and inlet stabilization, and wetland filling leads to the loss and/or 

degradation of estuarine habitat.  The impact of excessive nutrient loading in estuaries 

from anthropogenic processes (agricultural runoff, atmospheric deposition, non-point 

source pollution, etc.) has been well documented (Bricker et al. 2007, Conley et al. 2009), 
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and can lead to hypoxia (Howarth et al. 2011), algal blooms (Kennish et al. 2007), and 

changes in species composition (Purcell et al. 2007).  Power generation stations are often 

sited in estuaries and other coastal habitats to be near the large volumes of water required 

as part of the generating process or to cool equipment (Dempsey 1988). Planktonic larvae 

and juvenile stages of fish and invertebrates are susceptible to injury or mortality 

associated with impingement on screens or filters located at the entrance to the plant or 

via entrainment through the plant’s pumps and other equipment (Fletcher 1990, Mayhew 

et al. 2000, Newbold and Iovanna 2007, Barnthouse 2013). The harvest of fish and 

invertebrates over levels that promote long-term sustainability also has a ripple effect 

through the foodwebs to which these species belong (Pikitch et al. 2004). 

The effects of these multiple stressors across various temporal and spatial scales 

have complicated the management of fisheries resources in estuarine and coastal systems, 

which has historically operated on a single species or sector level.  The need to consider 

the effects of the broader environment when managing fisheries (Ecosystem Principles 

Advisory Panel 1998, Pew Oceans Commission 2003, U.S. Commission on Ocean Policy 

2004) led to the concept of ecosystem-based management (EBM), an integrated approach 

that considers the interaction between ecosystem components and the cumulative impacts 

of a full range of management activities (Rosenberg and McLeod 2005). This broad 

definition of EBM thus describes a gradient of interconnectivity, from a focus on multi-

species interactions across a range of trophic levels, including some abiotic factors, to a 

comprehensive view which includes human impacts other than fishing (Hilborn 2011). 

While this approach is being pursued at several management levels (NOAA 2006), there 
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are a number of questions and concerns regarding how to best implement such a complex 

framework (Hilborn 2011, Fletcher et al. 2010, Levin et al. 2009).    

One class of tools used to assess the effects of changes in resource management 

strategies at an ecosystem level are quantitative and qualitative models.  From the 

perspective of an ecosystem approach to fisheries management, a myriad of quantitative 

models have been developed to support the transition from single species/sector to 

ecosystem - based management, each with particular strengths and weaknesses (see 

Plagányi 2007 for a thorough overview). A suite of models extend single-species 

assessment to take a few additional interactions into account (e.g. Extended Single-

species Assessment Models (ESAM) - Livingston and Methot 1998), some are restricted 

to those species most likely to have important interactions with the species of interest 

(e.g. Multi Species Virtual Population Assessment (MSVPA) - Pope 1991, Minimum 

Realistic Models (MRM) - Punt and Butterworth 1995), while others attempt to capture 

all trophic levels in the ecosystem as well as important physical forces.  These include 

Ecopath with Ecosim (Christensen and Walters 2004) and ATLANTIS (Fulton and Smith 

2004).   

In addition to the development of quantitative models, the move to EBM has 

given rise to conceptual, qualitative frameworks that are designed to incorporate 

complexity and institutional cooperation into decision-making (Levin et al. 2009).  

Foremost among these is coupled human and natural systems (CHANS), also known as 

social-ecological systems (SES) (An and Lopez-Carr 2012).  This paradigm stresses the 

integration of human and natural systems with an emphasis on their complexity due to 

feedbacks, nonlinearities, and other unique properties (Liu et al. 2007).  Taking 
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advantage of the collaboration between the social and ecological realms, this synthetic 

approach allows us to bring to bear social science modeling techniques for understanding 

how humans and the environment interact, and how human decisions are made within the 

context of those interactions (An and Lopez-Carr 2012).  

An example useful to the realm of EBM is Fuzzy Cognitive Mapping (FCM), a 

type of qualitative model that has been used to identify critical ecosystem components as 

perceived by stakeholders (Özesmi and Özesmi 2004).  This dynamic model is a useful 

tool for understanding how the identified key structures and critical drivers may respond 

to an ever-changing environment. Because an SES framework can be constructed using 

various means of stakeholder input, management strategies developed directly from an 

SES model, or through an SES-influenced quantitative model, should have the added 

benefit of early stakeholder “buy-in”, which typically leads to greater acceptance of the 

results of the models and any integrated management plans subsequently generated (NRC 

2008). 

This dissertation explores how qualitative and quantitative ecosystem models can 

be used separately, and in conjunction, to understand how non-trophic management 

activities affect estuarine fauna.  In the first chapter, I use a semi-qualitative modelling 

framework to develop a suite of conceptual models of a complex estuarine ecosystem 

among four stakeholder groups.  I then compare the group’s models via a number of 

indices to understand where there are commonalities between them that can form the 

basis for future management actions.  This chapter is published in Journal of 

Environmental Management (Vasslides and Jensen 2016). 
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The second chapter utilizes a quantitative “whole ecosystem” model to predict 

future changes in the aquatic fauna of an estuarine ecosystem associated with the 

impending closure of a nuclear generating station.  Ecopath with Ecosim is a popular 

trophic mass balance analysis paired with a dynamic modeling module. Ecopath, the 

mass balance analysis, was constructed and balanced for the base year of 1981, and the 

Ecosim dynamic module was fitted to existing data from 1981-2013.  A baseline scenario 

and a closure scenario were extended from 2014 to 2030, and the changes in biomass 

between the scenarios was examined to determine the mechanisms driving the 

differences.  This chapter is in review at Estuaries and Coasts (Vasslides, Townsend, 

Belton, and Jensen, in review). 

My third chapter is a review of how watershed-based management actions can be 

incorporated into Ecopath with Ecosim (EwE).  This chapter focuses on the mechanisms 

for including the effects of eutrophication, salinity changes, and habitat restoration into 

EwE, with a goal of providing resource managers with a comparison of the potential 

mechanisms available to them when developing their own models.  This chapter is in 

review at Coastal Management (Vasslides, deMutsert, Christensen, and Townsend, in 

review). 

The final chapter in this dissertation compares the results of the semi-qualitative 

model to those of the EwE model under comparable nutrient reduction scenarios.  The 

semi-qualitative model developed in Chapter 1 was used to simulate a reduction in 

nutrients to the system, and the response of the ecosystem was compared to a “status 

quo” scenario.  The mechanisms for including non-trophic impacts into EwE models 

identified in Chapter 3 were used to modify the EwE model developed in Chapter 2 to 



6 

 

 

 

include a reduction in nitrogen loads to the ecosystem, and the change in biomass under 

the nitrogen reduction scenario was compared to a “status quo” scenario.  The behaviors 

of both models were compared, and the relative strengths and weaknesses of each 

approach in a management context were evaluated. 
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Abstract 

Ecosystem-based approaches, including integrated ecosystem assessments, constitute a 

popular methodology being used to holistically address management issues in social-

ecological systems worldwide.  In this study we utilized fuzzy logic cognitive mapping to 

develop conceptual models of a complex estuarine system among four stakeholder 

groups.  The average number of categories in an individual map was not significantly 

different among groups, and there were no significant differences between the groups in 

the average complexity or density indices of the individual maps. When ordered by their 

complexity scores, eight categories contributed to the top four rankings of the stakeholder 

groups, with six of the categories shared by at least half of the groups.  While non-metric 

multidimensional scaling (nMDS) analysis displayed a high degree of overlap between 

the individual models across groups, there was also diversity within each stakeholder 

group. These findings suggest that while all of the stakeholders interviewed perceive the 

subject ecosystem as a complex series of social and ecological interconnections, there is a 

core set of components that are present in most of the groups’ models that are crucial in 

managing the system towards some desired outcome.  However, the variability in the 

connections between these core components and the rest of the categories influences the 

exact nature of these outcomes.  Understanding the reasons behind these differences will 

be critical to developing a shared conceptual model that will be acceptable to all 

stakeholder groups and can serve as the basis for an integrated ecosystem assessment.  

 

Keywords: ecosystem based management; Barnegat Bay; fuzzy logic cognitive mapping; 

FCM  
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1.0 Introduction 

 It is widely accepted that the sustainable management of natural resources must 

include consideration of human interactions with the environment, not only from a 

unidirectional perspective (humans impacting natural systems or vice-versa), but with the 

understanding that these coupled socio-ecological systems are dynamic and have a 

variety of two-way interactions and feedbacks (An and Lopez-Carr 2012, Liu et al. 2007).  

The realization that the use of natural resources is inextricably interwoven with the social, 

political, and economic complexities of human systems has led to these management 

challenges being called “wicked problems” (Xiang 2013), i.e. “problems which are ill-

formulated, where the available information is confusing, where there are many clients 

and decision makers with conflicting values, and where the ramifications in the whole 

system are thoroughly confusing” (Churchman 1967). With an ever increasing number of 

wicked problems recognized in social-ecological systems throughout the globe (Sayer et 

al. 2013, Jentoft and Chuenpagdee 2009, Ludwig 2001), the idea of ecosystem-based 

management has gained traction, particularly in marine policy in the United States 

(NOAA 2006).  Ecosystem-based management (EBM) attempts to look at a defined 

geographic area in a holistic manner, defining management strategies for an entire system 

rather than individual components (Levin et al. 2009).   

 To successfully manage resources from an ecosystem-wide perspective it is 

necessary to gather pertinent information on all of the system components, but by 

definition the data available in instances of wicked problems are confusing, as no clear 

patterns are readily emergent, or if there are patterns they are often contradictory.  One 
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organizing framework to synthesize and analyze large amounts of confusing data to 

support EBM is the Integrated Ecosystem Assessment, or IEA (Levin et al. 2009).  The 

IEA approach is a series of formal processes during which relevant stakeholder groups 

(including public representatives, scientists, managers and policy makers) synthesize 

existing knowledge regarding the ecosystem in question, set ecosystem management 

objectives, select management options, and then adjust future management actions based 

on feedback from continuing monitoring.  The initial activity in the IEA process is the 

scoping step, during which stakeholder groups define the ecosystem to be addressed, 

review existing information, construct a conceptual ecological model that identifies 

ecosystem attributes of concern and relevant stressors, and develop appropriate 

management objectives (Levin et al. 2008).  Generally, this step is conducted during one 

or more workshops (Hobbs et al. 2002, McClure and Ruckelshaus 2007) where 

participants interact in a facilitated format designed to generate consensus on the 

ecosystem attributes and management objectives.  However, there are concerns with the 

quality of both the process and the outcome when public participation is included in 

solving environmental issues (Gray et al. 2014, NRC 2008).  In particular, prior studies 

have shown that groups tend to converge on majority views, that powerful or influential 

individuals or groups may attempt to dominate or unduly influence the proceedings, and 

that quality processes and outcomes, especially those related to consensus building, can 

be cost prohibitive (NRC 2008).     

In light of the potential problems described above, there is a clear need for a 

strategy that can combine traditional scientific knowledge with public local context, 

thereby reducing uncertainty and providing for a diversified and adaptable knowledge 
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base (Raymond et al. 2010, Gray et al. 2014).  One methodology to improve stakeholder 

involvement that has been suggested is Fuzzy Logic Cognitive Maps (FCMs) (Axelrod 

1976).   FCMs are a simplified way of mathematically modeling a complex system 

(Özesmi and Özesmi 2004), and have been used to represent both individual and group 

knowledge (Papageorgiou and Kontogianni 2012, Gray et al. 2012).  This approach has 

been applied to processes and decisions in human social systems, the operation of 

electronic networks, and in the ecological realm to identify the interactions between 

social systems, biotic, and abiotic factors in lakes (Özesmi 2003, Hobbs et al. 2002), coal 

mine environs (Zhang et al. 2013), farming systems (Vanwindekens et al. 2013), fisheries 

(Gray et al. 2012), and nearshore coastal zones (Meliadou et al. 2012, Kontogianni et al. 

2012a), but applications in estuaries or as part of a formal assessment process have been 

rare.   

The FCM approach has several advantages that encourage its use in 

environmental management (but see Kok 2009 for general limitations).  Recognizing how 

stakeholders perceive relationships between components and the chains of cause and 

effect related to anthropogenic perturbations allows for the development of policy 

prescriptions that can be broadly supported by the community (Kontogianni et al. 2012b).  

A shared understanding of the important components and processes of the ecosystem in 

question is also critical if stakeholder groups are to fully “buy-in” to future management 

decisions (Ogden et al. 2005).  The FCM methodology ameliorates many of the 

challenges associated with integrating the different types of stakeholder knowledge (Gray 

et al. 2014), and the transparent nature of the model combination allows stakeholders to 

identify how each groups’ model contributes to the overall understanding.  We do not 
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expect the different groups’ conceptual models to share all of the components; rather we 

anticipate these differences to be highly informative.  Indeed, understanding why these 

differences occur is likely to help us avoid misunderstandings and disagreements during 

future phases of the IEA process (Kontogianni et al. 2012b).  

In this paper we utilize fuzzy logic cognitive mapping to investigate differences in 

stakeholders’ perceptions of the relationships within an estuarine system and develop a 

shared conceptual ecosystem model that can serve as the basis for an integrated 

ecosystem assessment.  We begin by constructing stakeholder group conceptual models 

and then compare their structure and components for similarities and differences.  We 

then combine those models into a shared community conceptual model.  The final step is 

to compare the community model to that of the stakeholder groups to understand how 

combining the models effects our understanding of the ecosystem.      

  

2.0 Methodology 

2.1 Study Site 

The social ecological system we have chosen to study is the Barnegat Bay, a 279 

km2 lagoonal estuary located in central New Jersey, USA (Figure 1).  The surrounding 

1,730 km2 watershed is home to an estimated 580,000 year round residents (US Census 

Bureau 2012), with a summer population that swells to over 1 million with the influx of 

tourists.  The physical setting of the watershed is well described by Kennish (2001), but 

points germane to our study are repeated here.  Land use is a mix of urban and suburban 

uses in the northeast and along the barrier islands, grading to less sparsely populated 

forested areas to the south and west.  Portions of the E.B. Forsythe National Wildlife 

Refuge and the Pinelands National Reserve are located along the eastern and western 
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sides of the watershed, respectively.  There is limited extractive and agricultural land use, 

and other than minor hard clam and blue crab fisheries, no real commercial fishing.  The 

watershed is considered “highly eutrophic” (Bricker et al. 2007), mainly due to nutrient 

enrichment through non-point source pollution.  The nation’s oldest continuously 

operating nuclear power plant, Oyster Creek Nuclear Generating Station, is located 

within the watershed.  There is extensive recreational use of the bay’s waters for fishing, 

boating, sailing, and to a lesser degree, bathing. 

 

2.2 Data collection 

FCMs are models of a how a system operates based on key components and their 

causal relationships.  The components can be tangible aspects of the environment (a 

biotic feature such as fish or an abiotic factor such as salinity) or an abstract concept such 

as aesthetic value.  The individual participants identify the components of the system that 

are important to them, and then link them with weighted, directional arrows.  The 

weighting can range from -1 to +1 (Hobbs et al. 2002, Özesmi and Özesmi 2004, Gray et 

al. 2012), and represents the amount of influence (positive or negative), that one 

component has on another. 

To collect FCM from a wide variety of stakeholders with knowledge of the 

Barnegat Bay ecosystem we contacted the Barnegat Bay Partnership, a US 

Environmental Protection Agency National Estuary Program, to obtain a list of their 

management and science committee members, as well as a list of public citizens who 

have expressed long-term interest in the ecosystem.  While the map of an individual 

stakeholder provides information regarding that particular individual’s conception of the 
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important components and linkages within the system, it can be combined with maps for 

other individuals within the group to produce a more robust picture of the group’s 

understanding of the system (Özesmi and Özesmi 2004).  In addition, all of the individual 

stakeholder maps can be combined into a single map depicting the collective 

understanding of the system.  To this end, the individuals were divided into four groups 

that were determined a priori: scientists (n=19), managers (n=11), environmental non-

governmental organizations (n=6), and local residents (n=6) (Table 1).  These groups 

were selected to represent several (though not all) of the major categories of stakeholders 

present in ongoing efforts to manage and improve the bay’s natural resources.   The 

scientist group consisted of individuals from academia, state, and federal institutions who 

have conducted research within the Barnegat Bay watershed, while managers were from 

federal, state, county, or local natural resource management agencies which had 

jurisdiction on some form of activity within the watershed.  Environmental non-

governmental organizations included local, statewide, and regional groups who are active 

in watershed protection.  The local residents were referred to us by other interviewees, 

and included commercial fisherman, baymen, and long-term residents with a long-

standing interest in the bay.   

In accordance with the procedures used in prior studies (Carley and Palmquist 

1992, Özesmi and Özesmi 2004, Gray et al. 2012) individuals were interviewed 

separately, and each interview began with an overview of the project, a promise of 

anonymity, and an example of a simple FCM related to an issue outside of the realm of 

ecology, namely traffic flow.  Interviewees were then asked to describe what they 

considered to be the key components of the Barnegat Bay social-ecological system and 
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how those components relate to one another.  They were then asked to score the strength 

and direction of the relationship using positive or negative; high, medium, or low.  The 

discussion continued until the interviewee was satisfied that the map as drawn accurately 

depicted their understanding of the system.  This ranged anywhere from 45 minutes to 

180 minutes, with the typical session lasting 90 minutes.  Once mapping was complete, 

the interviewees were asked which of the components in their maps they would like to 

see increased and which decreased.  The interviews were conducted under an approved 

human subjects protocol (number: E13-560). 

 

2.3 Data Analysis 

 A number of different methods can be used to analyze the data contained within 

an FCM, many of which are based upon graph theory (Harary et al. 1965, Özesmi and 

Özesmi 2004, Kosko 1991).  To better understand the structure of an individual FCM we 

translated each map into a square adjacency matrix, with all of the variables acting as 

potential transmitters (influencing other variables) vi on the vertical axis and the same set 

of variables acting as receivers (influenced by other variables) vj on the horizontal axis 

(see Supplemental Figure 1 for an example).  A list of all individual variables mentioned 

throughout the process was compiled and redundant variables (plurals, different names 

for the same species, etc.) were eliminated.  When two variables represented opposite 

directions of the same concept (i.e. dam construction and dam removal) the more 

prevalent variable was retained and the other variable was renamed, with the polarity of 

the interactions reversed, in keeping with accepted practices (Kim and Lee, 1998). The 
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interactions strengths between variables were then scored, with high interactions scored 

as 0.75, medium as 0.5, and low as 0.25 (Harary et al. 1965).   

To more easily understand the components and patterns within an individual FCM 

it is often helpful to simplify the map by reducing the number of variables (Harary et al. 

1965).  After all of the maps were completed we listed the full set of variables and 

identified those most often mentioned.  We then subjectively combined less frequently 

mentioned variables into larger categories based on shared characteristics, a process 

known as qualitative aggregation.  For example, “homes”, “urban development”, 

“housing”, and “overdevelopment”, were combined, with a number of other similar 

variables, into a category called “development”. 

With the large list of variables reduced into broader categories, the type of 

categories, and number of each, were identified to provide additional insight into the 

overall structure of the map and how these categories relate to each other (Bougon et al. 

1977, Eden et al. 1992, Harary et al. 1965).  Each category was classified as transmitter, 

receiver, or ordinary (both influenced by and influencing other categories), based on its 

indegree and/or outdegree (Table 2).  Indegree is the cumulative strength of the 

connections entering the category (sum of the absolute values within a column in the 

matrix), while outdegree is the cumulative strength of the connections exiting the 

category (sum of the absolute values within a row in the matrix) (Özesmi and Özesmi 

2004).  A transmitter category has positive outdegree and no indegree, a receiver 

category has no outdegree and a positive indegree, and an ordinary category has positive 

indegrees and outdegrees (Bougon et al. 1977). Finally, the centrality, or a measure of a 

category’s connectedness to other categories within the map, as well as the overall 
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strength of those connections, was calculated as the sum of the indegree and outdegree 

values of a given category (Harary et al. 1965).   

Indices of complexity and density were also determined for each stakeholder map.  

The complexity of a map is calculated as the ratio of receiver categories to transmitter 

categories (R/T).  A large number of receiver categories in a map suggests a system 

where there are multiple outcomes (Eden et al. 1992), while a large number of transmitter 

categories suggest that a system is hierarchical in nature, and driven by “top down” 

thinking (Özesmi and Özesmi 2004).  Density describes how well connected categories 

are within the map, and is determined by dividing the number of connections present by 

the maximum number of connections possible (Hage and Harary 1983).  A dense map 

suggests that an interviewee (or stakeholder group) perceives a number of possible 

pathways to influence a variable in their map (Özesmi and Özesmi 2004).   

In addition to developing indices for each individual map, maps were combined 

1) within stakeholder groups to produce four group maps and 2) across all individuals to 

produce a community map.  To combine maps the connection values between two given 

categories are added, so connections represented in multiple maps are reinforced 

(provided they have similar signs) while less common connections are not reinforced, but 

are still included in the map (Özesmi and Özesmi 2004).  To compare connection values 

across group maps, the summed values are divided by the number of individuals in the 

group.      

Non-metric multidimensional scaling (nMDS) was used to assess the similarities 

between individual stakeholder maps (R v3.0.2). This technique orders samples by rank 

similarity along their two most important latent gradients and has an advantage over other 
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ordination techniques in that it has a greater ability to accurately represent complex 

relations among samples in two-dimensional space (Clarke and Warwick 2001). The 

nMDS data were calculated as each category’s centrality score for an individual 

stakeholder and then the Bray Curtis index was used to construct the sample similarity 

matrix (variable by stakeholder array).  The nMDS plot was then visually assessed to 

identify patterns between stakeholder groupings.   

Besides understanding the structure of the stakeholder groups’ and community 

maps, maintaining the initial conditions through time allows us to determine if the model 

will coalesce around a stable state, go into a limit cycle, or enter into a chaotic pattern 

(Dickerson and Kosko 1994).  To generate this steady state, the adjacency matrix of the 

cognitive map is multiplied by an initial steady state vector (a value of 1 for each element 

of the vector).  The resulting vector is then subject to transformation using a logistic 

expression (1/(1 + e−1×x)) to bound the results in the interval [0,1] (Kosko 1987).  This 

new vector is then multiplied by the original adjacency matrix and again subject to the 

logistic function, repeating these steps until an end result is reached.   

If the model reaches a steady state outcome, it is then possible to run hypothetical 

“what-if” scenarios to compare the function of the various models.  The hypothetical 

scenario developed for our simulation was to maintain the category “development” at 0, 

which is a possible policy prescription, albeit a potentially unpopular one.  To do this we 

utilize the process described above to determine the stable state, but this time the value of 

the category “development” in the vector is maintained at 0 in each time step.  Setting the 

value of a category of interest in the multiplication vector between 0 and 1 at each time 

step was referred to as “clamping” by Kosko (1986).  The difference between the values 
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of the final vector of the clamped procedure compared to the steady state vector describe 

the relative change to the conceptual system given the framework provided by each 

stakeholder group. A conceptual schematics of map aggregation and steady state 

calculations are provided in Supplemental Figure 1 and a flow diagram of the steps in the 

data analysis process is provided as Supplemental Figure 2.  

 

3.0 Results 

We created fuzzy cognitive maps for 42 individuals from the four targeted 

stakeholder groups (Table 1).  The stakeholders identified 346 unique variables as 

important to understanding the Barnegat Bay social – ecological system, which were then 

aggregated into 84 categories for further analysis.  Individual maps contained an average 

of 25 variables, which when aggregated led to an average of approximately 20 categories 

per map.  The average number of categories in an individual map was not significantly 

different among groups, with the exception of NGOs (p = 0.02), who had an average of 

nearly 30 categories per map (Table 3).  An examination of the accumulation curves for 

the total number of categories versus the number of interviews shows that the managers 

and scientists were well sampled, while the NGO and local residents’ curves had not yet 

flattened out (Supplemental Figure 3).  Representatives from all of the NGOs active in 

the watershed at the time of the study were interviewed, limiting the number of samples 

of available.  The pool of potential interviewees who met the criteria for the local resident 

group was also limited in size. However, the trajectories of these two groups is similar to 

that of the scientists and managers, suggesting that few new categories would have been 

added through additional interviews.     
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There were no significant differences between the groups in the average 

complexity (df=38, p=0.492) or density (df= 38, p=.129) indices of the individual maps 

(Table 3).   The environmental NGOs and local residents had slightly higher complexity 

scores (more receiver categories) than the other two groups, while the managers and 

scientists had slightly higher average densities.  The community map, by definition, 

contained the full suite of categories, but had an order of magnitude more connections 

than the group maps, leading to a map with the most interconnections between categories, 

and therefore the highest density.    The increased number of interconnections in the 

community map led to all of the categories being classified as “ordinary” (i.e., both a 

transmitter and a receiver), with the exception of biodiversity, which was a receiver 

category. A subset of the community map that includes the categories with centrality 

scores greater than one, and their interconnections, is shown in Figure 2.  For a complete 

list of all variables and their centrality scores please see Table S1 in the supplemental 

information. 

When ordered according to their centrality scores, eight different categories 

contributed to the top 4 rankings of the stakeholder groups, and six of the categories were 

shared by at least half of the groups (Table 4).  Development had the strongest 

interactions for managers and local residents and was second only to nutrients for 

scientists and NGOs.  Pollution, bay water quality, seagrass, and human population were 

also key shared categories, though the strength of the interactions, and their ranking, 

varied between groups.   The outdegree strength for development and human population 

was at least two times that of the indegree, while pollution and bay water quality had 

indegrees slightly larger than outdegrees.  The direction and magnitude of the strengths 
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for seagrass varied between groups, with local residents giving it a moderately larger 

outdegree and scientists scoring the indegree twice as high.  

There was substantial overlap in nMDS space between the individual cognitive 

maps of scientists and all other groups, moderate overlap among managers and NGOs 

and local residents, and little overlap between NGOs and local residents (Figure 3a).  The 

individuals within each stakeholder group were spread along both nMDS axes, indicating 

that there is a diversity of conceptual models within each group.  When viewed as 

aggregated stakeholder groups, the Scientist and NGO conceptual models are most 

similar, while the others are quite dissimilar (Figure 3b).  

The hypothetical scenario model run further elucidated similarities and 

differences between the conceptual models of the stakeholder groups (Fig 2.4).  When 

development was clamped to a low level, nutrients and pollution, two of the more central 

categories in all groups’ models, both decreased compared to the steady state models, 

though the degree of decline varied among groups.  The declines in these two categories 

were driven primarily by the direct linkages participants made between them and 

development.  The increase in bay water quality and decrease in gelatinous zooplankton 

(primarily identified by participants as the nuisance jellyfish Chrysaora quinquecirrha, or 

stinging sea nettle) across all groups’ models appears to be driven by a number of indirect 

linkages to development.  In the case of bay water quality, one potential pathway 

identified was a decrease in development leading to a decrease in impervious surfaces, 

which lead to a decrease in runoff, which improved bay water quality.  While the prior 

examples showed concurrence in the effects of low development across the groups’ 

models, they differed in the outcome of the economic value category; the NGOs’ and 
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locals’ models predicted a decrease in economic value associated with a decrease in 

development, while the managers’ models predicted an increase in economic value.     

 

4.0 Discussion 

4.1 The applicability of FCMs in estuarine environments 

Fuzzy cognitive maps have been used to model stakeholder perceptions of causal 

relationships in social-ecological systems in a variety of settings (Özesmi and Özesmi 

2003, Meliadou et al. 2012, Gray et al. 2012, Kontogianni et al. 2012a, Vanwindekens et 

al. 2013, Zhang et al. 2013). This study is the first to apply the methodology to an 

estuarine ecosystem.  Estuaries are both an ecosystem in their own right as well as an 

ecotone between terrestrial and aquatic and between freshwater and the ocean.  Thus, we 

might expect that people’s perceptions of estuaries could be more heterogeneous than 

FCMs of other systems.  The complexity of estuaries is reflected in the large number of 

unique variables mentioned by the stakeholders during the creation of their FCMs.  While 

caution should be used when comparing FCM indices between studies due to potential 

differences in methodology (Eden et al. 1992), the number of variables recorded in this 

study exceeds those compiled using similar methods for a large lacustrine system 

(Özesmi and Özesmi 2003) and a nearshore coastal region (Meliadou et al. 2012).  This 

level of detail was not driven by a small number of stakeholders in any particular group; 

the mean number of categories per map, complexity, and density were all similar across 

groups, suggesting that all of the stakeholders recognize the complexity and 

multidimensionality of estuaries.   
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A potential downside to this is the resulting intricacy of the overall community 

model, which includes 84 categories even after aggregation. Jørgensen (1994) theorized 

that quantitative ecological models have a bell-shaped curve in regard to performance 

verses complexity, and others have suggested that cognitive maps are most easily 

interpreted when the number of variables ranges from the low teens (Buede and Ferrell 

1993) to 30 (Özesmi and Özesmi 2004).  Due to its semi-quantitative nature it is difficult 

to determine how close a FCM approximates the realities of the social–ecological system.  

However, the models developed here reach a stable state during the scenario analysis in 

less than 10 iterations and generally follow well established ecological theory, providing 

additional support for the validity of the findings.      

While fuzzy cognitive mapping is robust enough to handle the large number of 

variables associated with a complex ecosystem, the applicability of this technique is 

constrained by how well (or poorly) it handles non-monotonic responses (Carvalho 

2013).  This is particularly true for temperate estuaries, where long gradients in 

environmental factors like temperature and salinity can lead to dome-shaped response 

curves.  Many of the interviewees attempted to side-step this issue by framing the 

response in terms of what they anticipated the departure from the current range of the 

condition would be.  For example, interviewees said that increased temperature would 

lead to an increase in the abundance of a given biota (through some physiological or 

habitat mediated mechanism) up to some degree, after which increasing temperatures 

would lead to decreases in abundance.  They then posited that it would be unlikely that 

temperatures in the estuary would ever exceed the inflection point, and thus the overall 

response is positive.  This solution is similar to that previously identified by Hobbs et al. 
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(2002) in their construction of an FCM for Lake Erie.   Differences in an individual’s 

interpretation on how best to address non-monotonic responses likely led to conflicting 

causal relationships when aggregating FCMs for the community map.  Thus the response 

of some categories to changes in the scenario model is dampened, though based on notes 

taken during the interview process it would be limited to a few biotic components and the 

strength of the interactions tended to be low.        

 

4.2 Similarities and differences in stakeholder cognitive models 

To develop a comprehensive management plan for complex systems a shared 

understanding of the components among the stakeholders is a prerequisite (Ogden et al. 

2005).  The findings of this study suggest that while all of the stakeholders interviewed 

perceive the Barnegat Bay ecosystem as a complex series of social and ecological 

interconnections and shared common structural elements, there are differences in the 

components and linkages of their aggregated conceptual models which influence the final 

state of the system.  There is a core set of components that are present in most of the 

stakeholder groups’ FCMs and have high centrality scores; the stakeholder groups all 

agree that these components are crucial in managing the system towards some desired 

outcome.  However, the number and strength of linkages between these key components 

and the rest of the social-ecological system varies, such that the FCMs of two stakeholder 

groups can have opposite outcomes.  This was seen in the scenario modeling, where low 

levels of development through time led to an increase in the economic value of the bay in 

the Manager’s FCM and a decrease in economic value in the NGO and Local models.   
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One potential reason for the opposing results in the group models may be the 

primary focus of the groups themselves, including their conception of the relevant 

“social” dimensions of the system.  The individuals comprising the Manager group are 

tasked with regulating the use of the biological resources of the estuary (fish, crabs, 

clams, birds), and in their maps a decrease in development yields an increase in biomass 

and a concomitant increase in economic value through commercial harvest or other 

recreational opportunities.  In contrast, the environmental NGOs often take a broadly 

anthropocentric view of the social-ecological interactions of the estuary, and their maps 

contained social and political actors that were not mentioned by others.  These social 

concepts (taxes, land price) often had strongly positive relationships between 

development and economic value.  

While the aggregated community map incorporates multiple perspectives, and 

thus should be a more complete representation of the system (Gray et al. 2012), being 

able to articulate where, and why, stakeholder groups may have similar or diverging 

views on important causal relationships will be critical to developing the consensus 

approach needed to plan appropriate management actions for protection and restoration.  

A starting point for understanding the convergences or divergences is seen in the 

arrangement of the group maps in the nMDS, which suggests that the scientists and 

NGOs place similar importance on a broad variety of categories.  This stands in contrast 

with the managers and local residents, who do not share similar centrality scores among 

categories.  Thus one would expect, and should plan for, the additional effort that will be 

required to bring these two groups to consensus.    
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4.3 Further FCM benefits 

By combining the individual models into stakeholder group models and into a 

shared community model we were able to combine the knowledge of both traditional and 

non-traditional experts, reducing uncertainty and filling in data gaps (Papageorgiou and 

Kontogianni 2012).  However, gaps in our knowledge and uncertainty about the 

interaction between components may still exist.  Opposite interactions (positive versus 

negative) between two components shared across groups’ conceptual models may reflect 

differences of opinion or perspective but also may point to areas where the understanding 

of the relationships between concepts is incomplete, such as the effects of climate change 

on biodiversity and species invasions, and changes to the bay’s water quality associated 

with changes in freshwater input.  The identification of these knowledge gaps through 

FMCs combined with the management objectives developed during the initial stages of 

the integrated ecosystem assessment will allow for a prioritization of future research and 

funding needs.  These divergences may also indicate subjects where more recent 

scientific findings have not yet been widely incorporated by those outside specific fields 

of study (i.e. saltmarsh – nutrient interactions, biochemical and physical induced changes 

in nutrient loads, the pathway and flow of nutrients around the bay) and therefore where 

additional education/outreach may be warranted.   

Additionally, the community map can assist in the selection of variables for 

monitoring once a course of actions has been agreed upon.  Given a modeled scenario, or 

suite of scenarios, the components along the causal chain can be identified, eliminating 

potential indicators that are not responsive to the management efforts proposed, or do not 

meet the criteria for informative indicators (Rice and Rochet 2005).  This is particularly 
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important in an age of shrinking research budgets and results-focused management at 

resource agencies.   

 

5.0 Conclusion 

 We have shown that Fuzzy Cognitive Mapping can be a useful tool for organizing 

the intricate connections between social and ecological concepts within a highly complex 

ecosystem, and when applied across stakeholder groups can elucidate not only those 

mechanisms for which there is a shared understanding, but also highlight where 

additional resources should be focused to gain the greatest insights into system operation.  

While subject to limitations associated with the semi-quantitative nature of the approach 

and the representation of non-monotonic response variables, FCMs can nevertheless 

serve as a basis from which the initial steps of an Integrated Ecosystem Assessment can 

proceed.  In particular, the individual interview procedure utilized herein avoids some of 

the pitfalls associated with group participation in the scoping process and provides a clear 

scaffolding upon which potential management and policy scenarios can be evaluated. 
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Table 2 - Fuzzy Cognitive Map Indices 

Term Definition 

Indegree 
Cumulative strength (absolute value) of the connections entering a 

category 

Outdegree 
Cumulative strength (absolute value) of the connections exiting a 

category 

Centrality Sum of the indegree and outdegree for a given category 

Receiver A category with a positive indegree and no outdegree 

Transmitter A category with no indegree and a positive outdegree 

Ordinary A category with positive indegree and outdegree 

Complexity 
The ratio of receiver categories to transmitter categories within a map 

(R/T) 

Density 
The number of connections within a map divided by the total 

connections possible between categories (C/N2) 

 

  

Table 1 - Information on stakeholders who completed fuzzy cognitive maps on the 

Barnegat Bay social-ecological system 

Stakeholder group Maps 

(N) 

People 

(N) 

Occupation/organization/social group 

Scientists 19 19 Academic scientists, federal and state agency 

research scientist 

Managers 11 11 Federal, state, county, and local resource 

managers 

Environmental 

NGOs 

6 6 Regional, statewide, and local environmental 

non-profits 

Local people 6 6 Baymen, commercial fisherman, longtime 

(+40 year) residents 
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Table 3 - Graph indices by stakeholder group.  All values, except for number of maps, 

are mean and standard deviation.  

 Scientists Managers 

Environmental 

NGOs 

Local 

people Community 

Maps  19 11 6 6 42 

Number of 

categories 

(N) 

20.6 (4.3) 21.2 (5.3) 29.8 (13.4) 
19.3 

(3.6) 
84 

Number of 

transmitter 

categories 

(T) 

5.1 (2.7) 4.4 (2.7) 5.8 (3.3) 4.7 (2.5) 0 

Number of 

receiver 

categories 

(R) 

3.2 (2.8) 2.3 (1.9) 4.5 (2.9) 4.3 (1.8) 1 

Number of 

ordinary 

categories 

12.3 (4.3) 14.5 (4.0) 19.5 (10.8) 
10.3 

(2.7) 
83 

Number of 

connections 

(C) 

38.3 (13.3) 49 (17.8) 64 (40.7) 
29.5 

(9.3) 
1071 

C/N 1.9 (0.5) 2.3 (0.6) 2.1 (0.5) 1.5 (0.4) 12.75 

Complexity 

(R/T) 
0.7 (0.8) 0.6 (0.5) 0.9 (0.5) 1.1 (0.6)  

Density 0.09 (0.03) 0.11 (0.04) 0.08 (0.03) 
0.08 

(0.02) 
0.15 
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Table 4 - Category centrality scores by stakeholder group.  Centrality is the sum of the 

indegree and outdegree for each category and is an index of its connectedness to other 

variables within the map.  The categories included below represent the top four 

categories of each stakeholder group. 

 Scientists Managers Environmental 

NGOs 

Local 

people 

Community 

Development 1.91 3.93 3.50 3.0 2.75 

Human 

population 
 3.15  2.48  

Bay 

ecological 

condition 

   2.25  

Seagrass 1.68   1.92  

Bay water 

quality 
 3.27 2.75  1.96 

Nutrients 3.10  4.25  2.48 

Pollution  3.03 3.29  2.00 

Fish 1.33     
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Figure 1 – Map of Barnegat Bay watershed with New Jersey inset. 
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Figure 2 - Subset of the community conceptual model.  The twelve nodes with centrality 

scores greater than 1.0 are shown.  Node size is related to centrality score, solid lines are 

positive interaction strengths, dotted lines are negative interactions strengths. 
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Figure 3 - nMDS plot of the a) individual and b) stakeholder group fuzzy cognitive maps 

based on centrality scores. Because nMDS is a non-metric procedure, the axes labeled 

NMDS1 and NMDS2 have no units associated with them. Stress values were 0.279 and 

0.169, respectively. Stakeholder groups include Managers (Mgr), Environmental non-

governmental organizations (NGO), Scientists (Sci), and Local residents (Local). 

 
 a) 

 
b) 
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Figure 4 - Results of the scenario model when development was clamped to a low level.  

Relative change along the y-axis is the difference between the “low development” 

scenario compared to the initial steady-state solution for a given category. Stakeholder 

group models were constructed for Local residents (Local), Managers, Environmental 

non-governmental organizations (NGO), Scientists, and an aggregate of all cognitive 

maps (Community). 
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8.0 Supplemental Information 
 

Table S1: Centrality scores by stakeholder group cognitive models.  A blank value 

indicates a category not included in that particular group’s model.  The Community 

model is the aggregate of all individual models. 

Category Scientist Manager NGO Local 

residents 

Community 

agriculture 0.34 0.20 0.08  0.22 

algal blooms 0.25 0.18 0.54 0.25 0.27 

atmospheric 

deposition 0.43 0.64 1.12  0.43 

bay biota 0.61 1.32 2.35 0.71 1.04 

bay ecological 

condition 0.30 1.02 0.50 2.25 0.71 

bay salinity 0.99 0.57 1.48 0.38 0.82 

bay water quality 1.04 3.27 2.75 1.88 1.96 

bay water 

temperature 0.78 0.80 1.92 0.42 0.71 

benthic biota 0.96   0.25 0.47 

benthic infauna 0.41    0.19 

biochemical/physical 

processes 0.86  0.17 0.13 0.41 

biodiversity 0.12 0.20 0.25  0.11 

birds 0.20 0.09 0.54 0.79 0.30 

blue crab 0.33 0.34 0.50 0.54 0.39 

boating 0.91 0.70 1.04 1.27 0.88 

bulkheading/docks 0.57 0.86 0.71 0.71 0.61 

climate change 0.59 1.07 1.37  0.71 

commercial fishing 0.28 1.10 0.13 0.13 0.44 

conservation 0.03 0.77 0.13 0.88 0.29 

depth 0.24 0.07 0.50 0.25 0.16 

development 1.91 3.93 3.50 3.00 2.75 

dissolved oxygen 0.80 0.33 0.79 0.75 0.63 

dredging 0.20  0.25 0.25 0.16 

economic value 0.37 1.49 0.88 0.50 0.75 

ecosystem services  0.68 0.21  0.21 

effective management 0.24 0.78 2.16  0.62 

elected officials   1.24 0.50 0.25 

erosion 0.28 0.18 0.54 0.25 0.27 

fish 1.33 1.39 1.54 1.50 1.33 

fishing 0.58 1.02 1.75 0.38 0.81 

freshwater input 1.13 2.44 2.15 0.13 1.34 

freshwater quality 0.33 0.72 1.33 0.75 0.61 

freshwater use 0.50 1.07 1.42 0.38 0.71 
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Table S1: Centrality scores by stakeholder group cognitive models.  A blank value 

indicates a category not included in that particular group’s model.  The Community 

model is the aggregate of all individual models. 

Category Scientist Manager NGO Local 

residents 

Community 

gelatinous 

zooplankton 1.05 0.39 1.33 0.63 0.86 

geomorphological 

processes 0.29 0.47 0.17  0.27 

government 0.04 0.60 1.46 0.38 0.34 

hard clams 0.38 0.66 0.38 0.50 0.47 

harmful algal blooms 0.45 0.32 0.25  0.31 

household inputs 0.30 0.39 0.25 1.00 0.42 

human population 0.88 3.15 1.50 2.48 1.74 

impervious surfaces 0.22 1.09 1.96  0.67 

intangible values 0.17 0.86 0.42 0.38 0.38 

invasive species 0.18 0.51  0.29 0.25 

larval supply 0.50 0.32 0.17  0.33 

macroalgae 0.18 0.11 0.46 0.88 0.30 

microbial loop 0.41  0.33  0.23 

natural habitat 0.99 1.64 1.27 0.38 1.08 

NGOs   1.19 0.54 0.25 

nutrients 3.10 2.10 4.25 0.63 2.48 

ocean exchange 1.31 1.18 1.63 0.25 1.00 

OCNGS 0.49 0.66 1.83 0.08 0.60 

other crustaceans  0.18  1.13 0.21 

other groups  0.36 0.34  0.12 

other land use 0.58 0.84 1.33 0.38 0.68 

other plankton 0.22  0.54 0.25 0.21 

other recreational use 1.25 1.62 1.00 1.88 1.32 

oysters 0.16  0.29 0.38 0.17 

phytoplankton 1.27 0.40   0.64 

policy decisions 0.13 1.50 0.46 0.13 0.47 

pollution 1.32 3.03 3.29 1.63 2.00 

precipitation 0.16 0.12 0.46  0.17 

preserved open space 0.33 1.30 1.04 0.50 0.71 

public 0.17 0.41 1.04  0.33 

public awareness 0.20 0.91 1.08 1.58 0.68 

recreational fishing 0.28 0.68  0.13 0.27 

regulations 0.30 0.30 0.63 0.25 0.32 

residence time 0.59 0.98 0.58  0.58 

resource users 0.04  1.92  0.29 

runoff 0.53 0.39 1.17 0.63 0.60 

salt marshes 0.59 0.59 0.17 0.38 0.48 

scientists   1.33  0.19 
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Table S1: Centrality scores by stakeholder group cognitive models.  A blank value 

indicates a category not included in that particular group’s model.  The Community 

model is the aggregate of all individual models. 

Category Scientist Manager NGO Local 

residents 

Community 

seagrass 1.68 1.00 1.17 1.92 1.46 

sediment 0.73 0.34   0.42 

sewer systems 0.07 0.08 1.08 0.63 0.26 

shellfish 0.70 0.66 0.88 0.71 0.67 

stormwater 0.12 0.57 0.13 0.13 0.24 

tides 0.33 0.32 0.54  0.27 

tourism 0.09 1.23 1.88 0.25 0.67 

turbidity 0.93 0.18 0.54 0.50 0.62 

vehicles 0.07 0.50 0.67 0.42 0.32 

water circulation 0.74 0.30 0.25 0.25 0.41 

wetlands 0.04 1.03 0.21  0.32 

wind 0.13  0.29 0.13 0.12 

zooplankton 0.64 0.16 0.38 0.25 0.42 
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Figure S1.  Conceptual schematic of the FCM combination process and steady state 

calculation. 
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Figure S2.  A flow diagram of the data analysis steps. 
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Figure S3.  Accumulation curves for the total number of categories versus the number of 

interviews.  The black line is scientists, red is managers, blue is local people, and green is 

environmental NGOs.   
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Abstract: While a number of studies have looked at the impingement and entrainment 

impacts of power generation facilities on recreationally and commercially important fish 

species, few have assessed the effects on forage species or the broader aquatic 

community.  Here we constructed a trophic-based ecosystem model for the Barnegat Bay 

estuary, which is home to the Oyster Creek Nuclear Generating Station.  Utilizing this 

model we developed two scenarios, a baseline scenario for 1981-2030 and a 

decommissioning scenario where the generating station substantially reduces its water 

withdrawals beginning in 2020.  The effect on the biomass of an individual species 

tended to be small ( <3%), and the direction of the change varied by species.  Trophic 

interactions played an important role in determining the overall change in a species’ 

biomass, as some species directly impacted by the generating station had a reduced 

biomass in the decommissioning scenario due to increased predation mortality.  The 

differences in results between the static Mixed Trophic Impact analysis and the dynamic 

simulations analysis highlights the value of dynamic modeling in assessing management 

strategies.    
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Keywords: Ecopath with Ecosim, Barnegat Bay, trophic interactions, power generation 

facility 

 

Introduction 

Historically, management of natural resources, particularly in marine systems, has 

occurred on a species or sector level. This single species approach has had mixed success, 

with recent analyses suggesting that 28% of the world’s major fish resources are 

overexploited or depleted (FAO, 2009).  In response to perceived shortcomings in the 

single species approach, management agencies began to utilize a multi-species approach 

in some circumstances, whereby the trophic interactions between a target stock and its 

prey were taken into account. The assumption was that a reduction in a predator’s forage 

base would lead to reduced productivity of the predator, and thus reduced biomass 

available to the fishery.        

While the multi-species approach accounted for single predator - prey dynamics, 

it was broadly recognized that fish stocks of interest were impacted by more than this 

simple interaction; that there was a need to consider the effects of the broader 

environment when managing fisheries (Ecosystem Principles Advisory Panel 1998, Pew 

Oceans Commission 2003, U.S. Commission on Ocean Policy 2004).  This lead to the 

advancement of the concept of ecosystem-based management (EBM), an integrated 

approach that considers the interaction between ecosystem components and the 

cumulative impacts of a full range of management activities (Rosenberg and McLeod 

2005).  The broad definition of EBM thus describes a gradient of interconnectivity, from 
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a focus on multi-species interactions across a range of trophic levels, including some 

abiotic factors, to a comprehensive view which includes human impacts other than 

fishing (Hilborn 2011).   

Aquatic communities are subject to a myriad of anthropogenic influences, both 

direct and indirect.  Indirect human-mediated impacts include increasing water 

temperatures associated with a warming climate, changes in salinity due to alterations in 

freshwater flow, and the ripple effects of increasing nutrient loads.  In addition to the 

direct removal through commercial and recreational harvest, power generation can also 

negatively affect aquatic biota.  Power generation stations require large volumes of water 

as part of the generating process or to cool equipment, and are therefore often located 

adjacent to waterbodies from which they can withdraw water (Dempsey 1988). In the 

older open-cycle design, water is withdrawn from a waterbody, utilized within the plant, 

and then discharged into the same, or nearby waterbody (Kelso and Milburn 1979).  

During this process planktonic larvae and juvenile stages of fish and invertebrates are 

susceptible to injury or mortality associated with impingement on screens or filters 

located at the entrance to the plant or via entrainment through the plant’s pumps and 

other equipment (Fletcher 1990, Mayhew et al. 2000, Newbold and Iovanna 2007, 

Barnthouse 2013). 

While estimates of losses due to impingement and entrainment at power 

generation stations are often calculated as part of the permitting process, they are 

typically focused on commercially and recreationally important species, dubbed 

representative important species (Greenwood 2008, Ehrler et al. 2002, Saila et al. 1997, 

Heimbuch et al. 2007), with fewer studies of species that serve  important ecosystem 
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roles, such as forage fish (but see Summers 1989)).  Thus, while there are calculations of 

the impacts of power generation on individual species through production-forgone 

models (Rago 1984, EPRI 2004) adult equivalency models (Goodyear 1978, Ehrler et al. 

2002, Saila et al. 1997, Greenwood 2008, there is little understanding of how these 

removals impact the broader food web, and what these losses mean for species that may 

not be directly affected by impingement or entrainment.  This is of particular interest 

given the age of many power generating stations within the United States which are 

transitioning to closed-loop cooling systems or are being decommissioned.   

In this study we utilize a widely-used trophic based ecosystem model, Ecopath 

with Ecosim (Colléter et al. 2015), to predict changes to an estuarine food web associated 

with the upcoming decommissioning of a nuclear generating station.  We first develop a 

balanced static model of the estuary, and then create a dynamic “key run” for the system 

using 22 years of time-series data.  The dynamic model is then extended into the future 

under a status quo scenario and a scenario where water withdrawal volumes associated 

with the nuclear generating station are substantially reduced during the model run.  The 

results of the two model runs are then compared and discussed. 

    

Methods 

Study Area 

Barnegat Bay is a temperate lagoonal estuary located in central New Jersey, USA 

(Figure 1).  The estuary stretches nearly 70 km north to south and ranges from 2 -6 km in 

width for a total surface area of 279 km2 including tidal portions of its tributaries 

(Kennish 2001a).  With an average depth of 1.5 meters, it has a volume of approximately 
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4.39 x 108 m3.  There are two main sources of tidal exchange: Barnegat Inlet in the center 

of the estuary and Little Egg Inlet at its southern terminus. A third source of ocean 

exchange is the manmade Manasquan Canal at the northern end, which connects the bay 

to the Manasquan River and inlet. The surrounding 1,730 km2 watershed is home to an 

estimated 580,000 year round residents (US Census Bureau 2012), with a summer 

population that swells to over 1 million with the influx of tourists.  Land use is a mix of 

urban and suburban uses in the northeast and along the barrier islands, grading to less 

sparsely populated forested areas to the south and west (Kennish 2001a).  Portions of the 

E.B. Forsythe National Wildlife Refuge and the Pinelands National Reserve are located 

along the eastern and western sides of the watershed, respectively.  The blue crab fishery 

is the main commercial fishery within the bay, though there are still remnants of a 

historic hard clam fishery that was highly productive in the past (Bricelj et al. 2012).  

Commercial fishing, once an important source of income for local baymen, is now a 

minor component of the regional economy (Kennish 2001a).  The Barnegat Bay is a 

popular destination for recreational fishing, crabbing, and clamming. The bay suffers 

from symptoms of eutrophication, mainly due to nutrient enrichment through non-point 

source pollution (Bricker et al. 2007).  

Located in the central portion of Barnegat Bay between Oyster Creek and Forked 

River is the Oyster Creek Nuclear Generating Station (OCNGS), the nation’s oldest 

continuously operating nuclear power plant (Figure 1).  OCNGS, which commenced 

operation in 1969, utilizes a once-through cooling system where water is withdrawn from 

the Forked River and discharged into a canal that flows into Oyster Creek.  During 

normal plant operations approximately 662 million gallons of water per day (MGD)  are 
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withdrawn from Forked River for cooling the main condenser at the facility (CWIS) and 

an additional 749 MGD are withdrawn from Forked River for diluting the thermal effects 

of the condenser cooling water (DWIS) (NJDEP 2010).  Under an Administrative 

Consent Order agreed upon between the State of New Jersey and the operators of 

OCNGS, power generation at the facility will cease no later than December 31, 2019. 

   

Ecosystem model  

We developed a trophic model for the Barnegat Bay using the Ecopath with 

Ecosim 6.4.3 (EwE) software package (Christensen and Pauly 1992, Christensen and 

Walters 2004).  EwE is a well-known program for addressing questions of aquatic 

ecosystem changes with over 400 trophic mass balance models built for a variety of 

ecosystems, ranging in size from oceanic basins to small estuaries (Colléter et al. 2015), 

including other estuaries within the mid-Atlantic region of the United States (Christensen 

et al 2009, Frisk et al. 2011).  Ecopath is a trophic mass balance analysis program that 

parameterizes an initial model using two master equations, one to describe the production 

term for each group: 

 

Production = catch + predation + net migration + biomass accumulation + other 

mortality 

 

 and one equation for the energy balance for each group: 

 

Consumption = production + respiration + unassimilated food 
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This “base” model provides the foundation for the simulation component of EwE, 

Ecosim, where a series of coupled differential equations are used to simulate biomass 

dynamics through time, fitting the model to time-series reference data and forcing 

functions entered by the user. 

Ecopath requires four groups of basic input parameters to be entered into the 

model for each of the species (or groups) of interest: diet composition, biomass 

accumulation, net migration, and catch (for fished species). Three of the following four 

additional input parameters must also be entered: biomass, production/biomass (P/B), 

consumption/biomass (Q/B), and ecotrophic efficiency, which is the fraction of the 

production consumed or harvested within the system. The model uses the input data 

along with algorithms and a routine for matrix inversion to estimate any missing basic 

parameters so that mass balance is achieved (Christensen et al. 2008). Once the Ecopath 

model has been balanced the mass-balanced linear equations are then re-expressed as 

coupled differential equations so that they can be used by the Ecosim module to simulate 

what happens to the species groups over time (Christensen and Walters, 2004).  Model 

runs are compared with time-series data and the closest fit is chosen to represent the 

system.  Time-series data for model calibration are thus essential for developing and 

validating an Ecosim model (Christensen et al. 2009).  Therefore, time-series data 

depicting trends in relative and absolute biomass, fishing effort by gear type, fishing and 

total mortality rates, and catches for as long a period as possible should be viewed as 

additional data requirements. 
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Barnegat Bay Ecopath Model 

Our model of the Barnegat Bay ecosystem is comprised of 27 biomass groups, 

including 12 fish species, 5 benthic invertebrate groups, 2 gelatinous zooplankton 

species, 3 planktonic groups, 2 benthic vegetation groups, 2 shorebird groups, and a 

detrital pool. A complete description of the sources used to determine the parameter 

values for each of the biomass groups is available in the Electronic Supplementary 

Material (ESM) 1, with a summary provided here.  

The Ecopath model was developed for 1981, the earliest year for which reliable 

catch data for many of the fish species is available and shortly after a large research 

initiative in the central portion of Barnegat Bay was completed (Sugihara et al. 1979).  

For most of the species/groups P/B and Q/B were taken from published studies of the 

same species/groups in a different location, which is common in the development of these 

models as those parameter values are fairly consistent across systems or can be modified 

based on local conditions (Christensen et al. 2008).  Standing biomass estimates specific 

to Barnegat Bay were only available for bay anchovy (Vougliotis et al. 1987), hard clams 

(Celestino 2002), and submerged aquatic vegetation (Lathrop et al. 2001).  Sea nettle 

(Chrysaora quinquecirrha) biomass for 1981 was estimated by reducing a current 

biomass estimate by 75% to reflect the apparent scarcity of sea nettles in the bay at that 

time (Young et al in review).  Atlantic croaker (Micropogonias undulatus), a common 

component of contemporary field surveys, was recorded only sporadically in samples 

collected during the mid and late 1970s (McClain et al. 1976).  In order to include this 

species in the model its biomass was estimated by the software to balance the 

requirements of its predators and fishery at their earliest recorded values for Barnegat 
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Bay.  Biomass of the remaining groups was modified from literature values or estimated 

by the software assuming literature derived Ecotrophic Efficiencies.  The diet data for 

most of the fish groups are based on a diet study conducted in the Barnegat Bay by Festa 

et al. (1978), with the diets of the remaining groups taken from literature values or other 

models (see ESM 2 for the initial diet matrix).  For predatory fish, when stomach 

contents were listed as “unidentified fish” or as a species not included in the model that 

percentage of the diet was redistributed amongst the other diet categories in proportion to 

their prevalence by weight in the identified portion of the diet.  As described above, 

Atlantic croaker were scarce in the Barnegat Bay at the time of the diet study, and were 

not listed as a prey item for any of the piscivorous fish in the model.  We know from 

studies in other nearby systems that when croaker are present they are a common food 

source for weakfish, striped bass, and bluefish (Nemerson and Able 1994, Frisk et al. 

2006, Christensen et al. 2009).  Limited predation on Atlantic croaker was therefore 

added to the initial diet matrix of the model as it is not possible to add them as a prey 

item during the simulation procedure (Pinnegar et al. 2014).  The levels of predation on 

croaker are based on the consumption rates found in EwE models of the Delaware Bay 

(Frisk et al. 2006) and Chesapeake Bay (Christensen et al. 2009).  Thus Atlantic croaker 

biomass in the early years of the model is likely overestimated.  The last input required 

for the Ecopath module is harvest data, which is incorporated as the landings (t/km2/year) 

for the year in which the model is initiated.  The Barnegat Bay model includes gear 

specific landings for the blue crab fishery provided by the NJ Bureau of Marine Fisheries 

and species specific landings for other fish and invertebrates, which combines the 

National Oceanic and Atmospheric Administration’s recreational landings as recorded in 
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the Marine Recreational Fishing Survey and Marine Recreational Information Program 

(NOAA 2015a) and commercial landings as recorded by the Fisheries Statistics Division  

(NOAA 2015b).  This large amount of data was reduced through a series of gear and 

location filters to approximate landings for Barnegat Bay as they are not collected at the 

estuary level in New Jersey (see ESM 1 for the process).  To assess the impacts of the 

Oyster Creek Nuclear Generating Station (OCNGS) on the biota of Barnegat Bay we 

treated the power plant as a “fishery” to account for the mortality due to the use of bay 

water for cooling the power plant (Amergen 2008). Because the mortality caused by 

OCNGS is not removed from the system as a landing we modeled it as discards that flow 

into a detrital pool.  The landings values included in the model are in Table 1, with details 

on their derivations found in ESM 3.    

The initial values for the input parameters were assessed using the PREBAL 

routine (Link 2010) to identify issues of model structure and data quality prior to 

balancing.  The diagnostics evaluate the parameter’s consistency with general ecological 

and fishery principals to ensure both theoretical and practical rigor.  Each input parameter 

for each biomass group was also assigned a degree of uncertainty based on the 

provenance of the data.  Taxa specific data collected within Barnegat Bay is given the 

highest pedigree (lowest uncertainty), followed by species specific sampling from other 

systems, literature derived values, best professional judgment, and finally parameters 

estimated by Ecopath.  We then balanced the model by changing values for those 

parameters with the highest degree of uncertainty based on the data pedigree. 

 

Barnegat Bay Ecosim Model 
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Baseline model  

With balancing complete, we then incorporated time-series data to model 

ecosystem dynamics for the period 1981-2013.  Fishery dependent time-series data were 

used to force changes in the Ecosim module. Because time-series data must be 

continuous to be used to “drive” the model we used catch time series data for commercial 

and recreational finfish landings (NOAA 2015a, NOAA 2015b)  Another common source 

of data for ecosystem models are formal stock assessments, which utilize similar time 

series data for single species management.  Unfortunately there are no stock assessments 

specific to Barnegat Bay.  While there is no formal stock assessment for blue crab, the NJ 

Bureau of Marine Fisheries does collect commercial blue crab landings data by gear and 

location.  This data was used to create gear specific time series, which consisted of the 

ratio of the landings in a given year to the initial year’s landings, and used to force the 

model.  It should be noted that the NJ blue crab landings data collection in Barnegat Bay 

began in 1995, so data from 1981-1994 are estimated from NMFS statewide landings 

based on a regression of the Barnegat Bay data against statewide landings over the same 

period.  The final source of Barnegat Bay specific fishery dependent time series data 

comes from OCNGS. Because of the nature of OCNGS operations, the cooling and 

dilution intake structures function nearly continuously, with the only shutdowns 

associated with temporary, short term maintenance.  As such the plant flow has been 

fairly consistent over the timeframe in question, and therefore the impacts of the plant 

have been modeled as a steady effort. 
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Fishery independent time-series were used to assess the model fit.  Again, there 

are limited repeated assessments of biota specific to Barnegat Bay; however to assess the 

model fit it is not necessary to have records for each year in the time series.  Thus we 

used a combination of fishery independent surveys spanning a variety of timeframes to 

determine how well our model reflects changes in the ecosystem (see ESM 4 for a 

complete listing and their derivations). Available data included a Rutgers University 

Marine Field Station long-term otter trawl survey (1995-2013;  Vasslides et al. 2011), 

hard clam surveys conducted by the NJ Department of Environmental Protection 

(NJDEP) in 1986/1987, 2001, and 2011 (Celestino 2002, Celestino 2013), and short-term 

(2011-2013) surveys for benthic infauna, copepods, and microzooplankton.  The only 

consistent time series directly available for primary producers is for submerged aquatic 

vegetation (SAV).  SAV coverage for the bay is available for 1980, 1987, 1999, 2003, 

and 2009 based on aerial photograph analysis in Lathrop et al. (2001) and Lathrop and 

Haag (2011).  The acreage of seagrass in each year serves as a datapoint of relative 

abundance, though this method can mask declines in overall biomass due to changes in 

density or condition. A shorter time series (2008-2013) of relative abundance of 

phytoplankton bay-wide was estimated from chlorophyll a readings taken via aircraft 

remote sensing.  

An additional source of fish time-series data incorporated into the model is an 

index of biomass generated from the near-shore trawl surveys conducted each fall by the 

NJDEP.  While sampling for this survey occurs along the New Jersey coast adjacent to 

Barnegat Bay, it provides an estimate of relative biomass in each year for those species 

that leave the estuary each fall for offshore or southern waters.   
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An a priori determination was made that some of the sampling methods could not 

be relied upon to provide a reliable time series of relative abundance for select species, 

and these time series were not used in the model fitting.  The vulnerability values for 

certain groups were also modified from the default value.  Vulnerability is a term in the 

consumption equation for Ecosim that enables the modeler to specify how trophic flows 

of biomass are controlled (Walters et al. 2000).  The model system may be more 

predator-controlled (top-down) or prey-controlled (bottom-up).  The vulnerability term of 

the consumption equation for a given predator prey-interaction determines the level of 

predation mortality for the prey that results from a large increase in predator biomass 

(Walters and Juanes 1993). A low vulnerability value means that a large increase in 

predator biomass causes a small change in predation mortality for a given prey group. 

Conversely a high vulnerability value means that a large increase in predator biomass 

causes a similarly large change in predation mortality for a given prey group. A high 

vulnerability value results in a more Lotka-Volterra-like model behavior. Vulnerability 

values were adjusted for only those groups with a time series of at least 3 years through 

the automated “fit to time series” algorithm, which seeks to minimize the sum of squares 

difference between the observed and modeled results. The vulnerability values for sea 

nettles and Atlantic croaker were both adjusted to reflect the known increases in biomass 

of those groups within the modeled time period.  All other vulnerability values were set at 

the default value, v=2.   In practice, adjustments to the vulnerability parameter improves 

the model fit to data and helps explain some of the variability in the data 

The Monte Carlo approach was used to test for sensitivity of Ecosim's outputs to 

Ecopath input parameters. Mean, lower limit and upper limit of the distribution used to 



62 

 

 

 

draw random values for key input parameters (B, P/B, and Ecotrophic Efficiency) for 

each group in the model was determined based on the model pedigree. The software 

made 100 random draws from range of possible input values, determined whether the set 

of parameters resulted in a balanced model, then ran the Ecosim simulation based on the 

new randomly selected parameters. The output from the Monte Carlo simulations was 

plotted (biomass over time for each group) and visually inspected to determine if 

temporal patterns in group biomasses were consistent or divergent. Consistent patterns 

suggest that although some underlying uncertainty in the input parameters for the model 

exists, the conclusions about factors influencing those patterns are robust.  As a result 

point estimates from the model output may have a high level of uncertainty, but relative 

changes in biomass from comparing the baseline scenario to test scenarios are 

meaningful. 

 

Oyster Creek Nuclear Generating Station (OCNGS) closure scenario 

 After the baseline Ecosim scenario was fit to the available time-series data, the 

model can be extended to make predictions about the future state of the ecosystem under 

different management strategies. To assess potential ecosystem changes associated with 

the cessation of power generation at OCNGS by 2020 we developed two scenarios.  

Under the baseline scenario all of the time series forcing data for 2013 were extended 

until 2030, including the OCNGS “fishing” effort.  Under the OCNGS closure scenario, 

all of the time series forcing data from 2013 are extended until 2030 except the plant’s 

fishing effort, which is reduced to 4% of the full operating capacity from 2020-2030. 
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Ecosystem metrics 

 The trophic structure of the ecosystem was described using a graphical 

representation, which documents the flow of energy between individual groups.  Within 

Ecopath, producer groups are assigned a trophic level of 1 while consumers are given a 

trophic level of 1 + (the weighted average of their prey’s trophic level) (Christensen et al. 

2008).  The direct and indirect effects that a small change in biomass of one group (or 

fishery effort) will have on the biomass of the other groups can be evaluated through the 

Mixed Trophic Impacts (MTI) analysis, which is based on the approach developed by 

Ulanowicz and Puccia (1990).  We evaluated the MTI of OCNGS at model initialization 

and again in 2019, the year prior to OCNGS decommissioning.   

 

Results  

Barnegat Bay Ecopath Model  

 The static model shown in Figure 2 represents a balanced model of the trophic 

connections within Barnegat Bay in 1981 (given the data) with the groups arranged by 

trophic level.  Changes to the initial input parameters in order to balance the model were 

primarily limited to small adjustments to the diet matrix, particularly for non-fish groups, 

which tended to be from published studies from different locations.  The need to adjust 

input values was further moderated by the fact that biomass for many of the groups was 

estimated internally within EwE, which allowed for a greater degree of flexibility. The 

final parameter values and their pedigrees are given in Table 1.   

 The MTI analysis (Figure 3) suggests that the direct and indirect impacts of 

OCNGS are negligible when compared to the effects associated with inter-species trophic 
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interactions.  While OCNGS had both positive (spot) and negative (weakfish, Atlantic 

croaker) impacts in the initial model year they were an order of magnitude smaller than 

the impact of the strongest effects calculated for the other groups.  In 2019, the year prior 

to the simulated closure, the relative size of the OCNGS effects remains small. However, 

OCNGS now has a net positive effect on Atlantic croaker.    

   

Barnegat Bay Ecosim Model  

 When the time series data are incorporated into the model and the vulnerability 

values are adjusted to fit the time series, the overall fit of the model prediction to the 

available data is reasonable, and the model generally behaves as expected. There is 

variability in how well the predicted biomass trends match the available time-series data 

among the groups (Figure 4).   For winter flounder, summer flounder, Atlantic croaker, 

and blue crab the overall trends in biomass are captured by the model, but annual 

fluctuations are not well represented.  In contrast, the decline in hard clams that occurred 

during the early part of the time period is not at all captured in the model.   

When we ran 100 Monte-Carlo simulations utilizing the pedigree values set 

during the Ecopath model construction the current model was the best-fit.  For the 

remainder of the trials the biomass trends were similar, though the relative abundance 

varied between simulations.  

 

Oyster Creek Nuclear Generating Station closure scenario 

 The total system biomass summed for 2020-2030 under the baseline scenario was 

2637.04 t/km2, compared to 2637.45 t/km2 for the same timeframe under the OCNGS 
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closure scenario.  While the change in overall biomass was small, the effect on the 

biomass of individual groups varied, though never by more than 3% (Figure 5).  Of the 

groups directly impacted by OCNGS impingement and entrainment, Atlantic croaker has 

the greatest response associated with the plant closure, decreasing in biomass by nearly 

2.5% compared to the baseline simulation. Weakfish and blue crab both see a greater than 

1.5% increase in biomass under this scenario. Changes in biomass to groups not directly 

impacted by OCNGS were smaller in magnitude, with only striped bass having a change 

greater than 0.5%.    

 

Discussion 

 As power generating plants around the world age and are decommissioned or 

replaced with improved environmentally protective technologies there will be impacts to 

the aquatic ecosystems that provide cooling water for their operation and receive process 

water.  Here we developed an ecosystem model that describes the changes expected to an 

estuarine community in response to the decommissioning of a nuclear generating station 

with a once-through cooling system.  While we are not the first to include the effects of a 

power generating station within an EwE model (Lobry et al. 2008), we are the first to use 

the Ecosim module to predict how altering a power generating plant’s water use will 

impact the ecosystem as a whole.   

Our results indicate that indirect effects mediated through trophic interactions 

may be more substantive, and of opposite direction, than what would be expected from a 

single species approach. Atlantic croaker in our system is a prime example.  Based solely 

on the impingement and entrainment impact studies conducted by the plant, one would 
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expect Atlantic croaker to benefit from the reduced mortality associated with the plant’s 

decommissioning.  However, weakfish, which are one of the most important predators of 

Atlantic croaker are predicted to increase in biomass as result of reduced mortality from 

the OCNGS.  Our model predicts that the net effect on Atlantic croaker biomass in 

Barnegat Bay will be a slight decline compared to a no-change scenario due to increased 

predation mortality.    

 Comparison of the results of the dynamic simulations with the static mass balance 

model, highlights the value of simulation.  The results of the scenario modeling are 

different from what would be expected given the MTI analysis, particularly for the initial 

year of the model.  The negative impact of OCNGS on Atlantic croaker in the initial 

model year should translate into additional croaker biomass if the OCNGS effort is 

reduced, which contradicts the results of the Ecosim scenario.  However, the MTI 

analysis for the year immediately prior to the OCNGS decommissioning suggests a 

positive impact on croaker associated with the plant operations, which is consistent with 

the results of the Ecosim scenario.  Thus at some point during the modeled timeframe the 

dominant impact of OCNGS on croaker switched from direct mortality to indirect effects 

associated with their predators.  As noted by Christensen et al. (2008), MTI analysis is 

not amenable to making predictions of what will happen in the future given changes in 

interaction terms specifically because changes in abundance may lead to changes in diet 

composition, and that is not accommodated within this routine.  This switching behavior 

reinforces the desirability of using the Ecosim module to assess the potential indirect 

effects of non-trophic related activities compared with assumptions of a steady-state 

system.   
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 The trophic level at which the effects of the power generating station are most 

visible in our model is higher than those of other models.  Lobry et al.’s (2008) results 

based on MTI analysis suggest that the primary effects of a nuclear generating station in 

the Gironde estuary of France were on intermediate trophic level (TL) species (TL range: 

2.03-3.25).  In our study the species impacted by OCNGS ranged in trophic level from 

2.93 for blue crab to 3.89 for weakfish.  Our higher trophic level impacts are driven by a 

combination of direct power plant mortality on early life history stages of predators as 

well as indirect effects through a reduction in biomass of their prey.  In comparison, the 

main upper trophic level species in the Gironde model enter the estuary as juveniles or 

adults and likely do not experience the same level of power plant related mortality (Lobry 

et al. 2003). Thus impacts of power generating stations on aquatic biota may be system 

specific and related to the presence of vulnerable early life stages of predator and prey 

fishes.            

 The limited availability of data specific to Barnegat Bay led to compromises in 

the overall structure of the model.  For instance, all of the biomass groups within the 

model are represented by a single age stanza.  For many of the species/groups, this is 

unimportant as their role in the food web does not depend on life history, i.e. 

phytoplankton, zooplankton, benthic invertebrates, SAV.  However, for species for which 

we wish to investigate management actions or where there may be ontogenic shifts in diet 

preferences, age-structured stanzas provide increased resolution into the interactions in 

question.  As pointed out above, mortality associated with impingement and entrainment 

at OCNGS occurs primarily to early life history stages of the taxa within the system, and 

separating that from juvenile and adult mortality would reduce uncertainty within the 
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model. Of course, this increased level of resolution requires ever increasing amounts of 

data to populate the input parameters. The current single stanzas model appears to capture 

the overall trends in biomass (where available) reasonably well, and is thus useful for 

investigating questions of ecosystem functioning and exploring scenario development.    

It should be noted that the outcomes of management scenarios are only as reliable 

as the data used to construct them. The OCNGS “fishery” data had to be extensively 

manipulated (ESM 3) to expand the reported mortality from numbers of individuals to 

weights, particularly for entrainment losses.  The methodology used to determine 

impingement and entrainment losses and mortality in the Amergen (2008) report were 

slightly modified from those of earlier studies at OCNGS (EA Engineering 1981), which 

were the subject of a critical external peer review (Summers et al. 1989).  In addition, 

there was a change in intake protection structures, and thus mortality rates, between the 

start of our model and the 2008 mortality study.  Thus the OCNGS removals used here 

are a likely conservative estimate. 

One of the main benefits of this type of holistic model is the ability to develop and 

evaluate a number of potential management scenarios from an ecosystem-wide 

perspective.  This approach can lead to some surprising findings, as was seen in the 

OCNGS decommissioning scenario. Understanding how changes in anthropogenic 

activities interact with natural process to alter multiple components within an ecosystem 

will allow resource managers to better assess the impacts of proposed undertakings, and 

hopefully lead to more resilient and sustainable systems.     
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Fig. 1 Map showing the location of the Barnegat Bay estuary system.  The location of the 

Oyster Creek Nuclear Generating Station is denoted by a star 
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Fig 2 Barnegat Bay Ecosystem Model for 1981.  Numbered horizontal lines indicate trophic level. The size of the circle indicates 

relative biomass, while the lines indicate energy flow from one group to another 
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Fig 3 Mixed Trophic Impact (MTI) analysis showing direct and indirect impacts.  Red blocks show a positive impact, blue blocks a 

negative impact. The values are not considered absolute, but are comparable between groups 
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Fig 4 Relative abundance (filled circles) and predicted biomass (lines) for the Ecosim 

model for Atlantic croaker, blue crab, hard clam, summer flounder, and winter flounder 
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Fig 5 Percent change in biomass between the OCNGS closure simulation and the baseline simulation for 2030 

 



79 

 

 

 

Table 1: Basic input parameters for the Barnegat Bay Ecosystem Model. Catch includes fishery 

landings and OCNGS discards. Color scale represents the level of confidence in data inputs for 

Biomass, P/B, Q/B, and EE. Estimated from a variety of sources as described in ESM 1. 

       
Scale       

 Sampling based high precision 

 Sampling based low precision 

 Approximate or indirect method 

 Best Professional Judgement 

 From other model 

 Estimated by Ecopath 

       
Group name Trophic 

Level 
Biomass 

(t/km2) 

P/B 

(year-1) 

Q/B 

(year-1) 

Ecotrophic 

Efficiency 

Catch 

(t/km2) 

Piscivorous seabirds 4.21 0.250 0.163 120 0.0  

Non-piscivorous 

seabirds 

2.73 0.121 0.511 120 0.0  

Weakfish 3.89 3.969 0.26 3 0.95 0.0383 

Striped bass 4.19 1.383 0.4 2.4 0.9 0.00001 

Summer flounder 3.95 2.300 0.52 2.6 0.95 0.8067 

Bluefish 3.85 2.733 0.52 3.1 0.95 0.750021 

Winter flounder 3.09 4.661 0.52 3.4 0.95 0.93205 

Atlantic silversides 3.15 4.461 0.8 4 0.95 0.0248 

Atlantic croaker 3.22 0.179 0.916 4.2 0.9 0.01311 

Spot 3.17 0.561 0.9 6.2 0.9 0.00398 

Atlantic menhaden 2.77 12.427 0.5 31.42 0.95 0.058616 

River herring 3.39 1.180 0.75 8.4 0.95 0.004322 

Mummichog 2.78 3.465 1.2 3.65 0.95 0.000001 

Bay anchovy 3.41 4.86 3 9.7 0.839 0.0112 

Benthic 

infauna/epifauna 

2.10 77.425 2 10 0.9  

Amphipods 2 3.323 3.8 19 0.9  

Blue crab 2.93 6.257 1.21 4 0.95 1.4406 

Hard clams 2 26.18 0.5 5.1 0.629  

Oyster 2 0.001 0.63 2 0  

Copepods 2.72 12.485 25 83.33333 0.95  

Microzooplankton 2 6.694 140 350 0.95  

Sea nettles 4.15 0.345 13 20 0  

Ctenophores 3.47 5.29 16.2 35 0.042  

Benthic algae 1 3.533 80  0.899  

Phytoplantkon 1 21.273 160  0.95  

SAV 1 5.82 5.11  0.317  

Detritus 1 1   0.132  
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ESM 1: Initial parameter values for the 1981 Ecopath model 

 

Fish 

Atlantic Croaker 

Q/B - Estimates of consumption to biomass ratio was calculated in FishBase 

(Froese and Pauly, 2004) as 4.2 year-1, assuming an annual temperature of 

the Barnegat Bay of T = 15 oC, aspect ratio = 1.32, Winf = 815.3, and 

carnivorous feeding.  

P/B - An annual total mortality for the Chesapeake Bay Atlantic croaker stock 

was estimated to be 55 to 60% per year (Austin et al. 2003). Using the 

higher end as a conservative mortality estimate yields a P/B = 0.916 year-

1. 

Biomass – An EE value of 0.90 was used and EwE estimated the biomass.  

Croaker were rarely identified in Barnegat Bay by Sugihara et. al (1979) 

study. 

Diet – The diet data is based on the work of Nemerson and Able (1994) in the 

Delaware Bay. 

 

Atlantic Menhaden 
 Q/B – A value of 31.42 year-1 taken from Palomares and Pauly (1998).  

P/B – As there was no commercial fishery for menhaden in Barnegat Bay and 

only a limited bait fishery, total mortality was set equal to natural 

mortality, which is estimated at 0.50 year-1 (MSVPA-X averaged across 

all ages and 1982-2008; ASMFC 2011).   

Biomass – Biomass was calculated by EwE setting the EE to 0.95. 

Diet – Diet data is from Festa et al. (1978). 

 

Atlantic Silverside 
Q/B – The consumption ratio for silversides of 4.0 year-1 was determined by 

setting a production/consumption ratio of 0.2 (Christensen et al. 2009). 

P/B – Total mortality for littoral forage fish was estimated by local experts at a 

Chesapeake Bay Ecopath Workshop (Sellner et al. 2001) to be 0.8 year-1 

and was used here for lack of local data. 

Biomass - The biomass for the group was estimated by setting ecotrophic 

efficiency to 0.95.  While baywide biomass was not determined by 

Vouglitois et al. (1987), they suggested it should be comparable, if not 

great than what they determined for bay anchovy, given Atlantic silverside 

was numerically dominant. 

Diet – Diet data is from Festa et al. (1978). 

 

Bay Anchovy 

Q/B - Assuming habitat temperature of 15 oC, W∞ = 20 (g), an aspect ratio of 

1.32, and carnivorous diet, the consumption to biomass ratio is calculated 

by Fishbase to be 9.7 year-1. 

P/B – Christensen et al. (2009) used an initial P/B of 3.0 year-1 for the Chesapeake 

Bay model based on a 95% annual mortality rate reported by Luo and 
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Brandt (1993), while Frisk et al. (2006) estimated a P/B of 2.19 year-1 

from catch curve analysis on adults in Delaware Bay.  We elected to use 

the higher rate. 

Biomass – Vouglitois et al (1987) estimated biomass for 1976 to range from 0.83 

to 4.83 g/m2. In the same study the catch per unit effort for 1981 was 

comparable to that for 1976, and thus the biomass range should be similar.  

Given the ubiquity of the species within the Barnegat Bay, we chose to use 

4.83g/m2 for an initial biomass.  

Diet - Diet data is from Festa et al. (1978). 

 

Bluefish 

Q/B - Assuming habitat temperature of 15 oC, Wmax = 16,962.1 (g), carnivorous 

feeding, and an aspect ratio of 2.55, the resulting consumption to biomass 

ratio is 3.1 year-1. 

P/B – Production/biomass was determined as 0.52 year-1 based on an M = 0.25 

year-1 (Christensen et al. 2009) and an estimate of F = 0.27 year-1 for 1982 

from the NEFSC 41st Stock Assessment Workshop (2005) for Bluefish. 

Biomass – Biomass was calculated by EwE setting the EE to 0.95. 

Diet – Diet data is from Festa et al. (1978) averaged for all size classes. 

 

Mummichog 
Q/B – A Q/B of 3.65 year-1 was used (Pauly 1989).  

P/B – We opted to utilize a P/B of 1.2 year-1 as given in Frisk et al. (2006) from 

“best professional judgement” compared to Valiela 0.287 year-1 (1977 

mortality tables) or Christensen et al. (2009) 0.8 year-1. 

Biomass- The biomass for the group was estimated by setting ecotrophic 

efficiency to 0.95 

Diet – Diet data is from Festa et al. (1978). 

 

River herring 
Q/B – We used a Q/B = 8.4 year-1, which is the average of Pauly (1989; 8.63  at 

temperature = 10C) and Palomares (1991; 8.23 at temperature= 20C). 

P/B - Total mortality for this group was based on the P/B of 0.75 year-1 for 

alewife in Randall and Minns (2000). 

Biomass – Biomass was estimated by EcoPath assuming that the ecotrophic 

efficiency of these species in the Bay was 0.95. 

 Diet – Diet data is from Festa et al. (1978). 

 

Spot 
Q/B – The consumption biomass ratio was estimated as 6.2 year-1 using the model 

in Fishbase.org and a habitat temperature of 15 0C, W∞ = 190g (Piner and 

Jones, 2004) and an aspect ratio of 1.39 (Christensen et al. 2009). 

 P/B - Hoenig’s method estimated an M = 0.9 year-1 given a maximum age of 5 

(Piner and Jones, 2004).  This is consistent with the Z used in the 

Delaware Bay model (Frisk et al. 2006). 
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Biomass – Biomass was estimated by EcoPath assuming that the ecotrophic 

efficiency of this species in the Bay was 0.9.  

Diet – Diet data is from Festa et al. (1978). 

 

Striped bass 
Q/B - Based on empirical relationship provided by Fishbase.org and assuming an 

aspect ratio of 2.31 (Christensen et al. 2009), temperature T = 15 0C, and 

W∞ = 46.6 kg, the estimated consumption ratio was 2.4 year-1. 

P/B – The 1981 ASMFC FMP suggest an M=.15  and an F=.3 for the coastwide 

stock.  Given the reduced fishing mortality in the Barnegat Bay, an F=.25 

is appropriate leading to a P/B of 0.4 year-1.  This is equal to the 

Chesapeake model (Christensen et al. 2009) for resident bass (1-7 years 

old), though their YOY P/B = 1.8 year-1. 

Biomass – The biomass was estimated by EcoPath based on an EE of .90.  

Diet – Diet data is from Festa et al. (1978) averaged across all size classes.   

 

Summer Flounder 
Q/B- Assuming an aspect ratio of 1.32, Wmax = 12kg (Frisk et al. 2006), 

carnivorous feeding, and habitat temperature of 15 oC, the consumption to 

biomass ratio is = 2.6 year-1. 

P/B- A P/B = 0.52 year-1 was used as was done in the Chesapeake Bay 

(Christensen et al. 2009) and Delaware Bay (Frisk et al. 2006) models.   

This value is based on the 2002 NEFSC determination of M=0.2 and F 

ranging between 0.24 and 0.32. 

 Biomass – The biomass was estimated by EcoPath based on an EE of 0.95. 

 Diet – Diet data is from Festa et al. (1978). 

 

Weakfish 
Q/B - Using Fishbase, consumption to biomass was estimated = 3.0 year-1, 

assuming average habitat temperature of 15 0C, aspect ratio of 1.32, 

maximum weight W∞ = 6,190g (Lowerre-Barbieri et al. 1995) and 

carnivorous feeding habitats.  

P/B –Total mortality of Z = 0.26 year-1 was estimated using Hoenig’s method 

(1983) assuming a longevity of 17 years (Lowerre-Barbieri et al. 1995).  

This is in-line with an estimated M of .25 year-1 as used for stock 

assessment purposes (Smith et al. 2000).  Given the low rate of fishing in 

Barnegat Bay, Hoenig’s estimation of Z seem reasonable.  

 Biomass – The biomass was estimated by EcoPath based on an EE of .90. 

Diet – Diet data is from Festa et al. (1978) averaged across all size classes.  

 

Winter Flounder 
Q/B - The estimated consumption ratio of 3.4 year-1 was derived using the 

empirical equation in FishBase (Froese and Pauly, 2004), and was 

calculated assuming that T = 15 °C, Winf = 3,600 g (Fishbase), an aspect 

ratio of 1.32, and a carnivorous diet. 
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P/B – The 2011 Southern New England/Mid-Atlantic stock assessment (ASMFC 

2011b) updated natural mortality (M) to 0.30 year-1 for all ages and all 

years.  Fishing mortality for ages 4-6 was determined as 0.61 year-1 for 

1981.  If one assumes only natural mortality for ages 0-3 and then F+M 

for ages 4-6, total mortality (Z) is 0.52 averaged across all ages.   

Biomass – The biomass was estimated by EcoPath based on an EE of 0.95. 

Diet – Diet data is from Festa et al. (1978). 

 

Piscivorous seabirds  
Biomass - The biomass estimate for piscivorous seabirds of 0.25 t · km-2 is a 

reduction of the Chesapeake Bay model estimate (Sellner et al. 2001). 

P/B - A total mortality estimate for piscivorous seabirds of 0.163 year-1 was based 

on survival rate values of 85-90% for cormorants and 80-93% for alcids in 

the northeast Atlantic (ICES, 2000). 

Q/B - The consumption ratio estimate of 120 year-1 was from data for the 

piscivorous seabirds group in Preikshot (2007). 

Diet compositions - The diet composition for piscivorous seabirds was taken from 

the Chesapeake Bay model (Christensen et al. 2009) and was modified by 

reducing predation on menhaden and increasing imports based on the large 

number of migratory seabirds.  

 

Non-Piscivorous seabirds  
Biomass - The biomass estimate for non-piscivorous seabirds of 0.121 t · km-2 

was taken from the Chesapeake Bay model and was based on advice 

provided in a Chesapeake Ecopath Workshop (Sellner et al. 2001). 

P/B - A total mortality estimate for non-piscivorous seabirds of 0.51 year-1 was 

taken from the Chesapeake model and was based on annual mortality rate 

of 37% for mallard males and 44% females (Anderson 1975). 

Q/B - The consumption ratio estimate of 120 year-1 was from data for the non-

piscivorous seabirds group in Preikshot (2007). 

Diet compositions - The diet composition for non-piscivorous seabirds was taken 

from the Chesapeake Bay model (Christensen et al. 2009). 

 

INVERTEBRATES 

Blue crab 
Biomass – Biomass was estimated by the ecopath software by setting ecotrophic 

efficiency to 0.95.   

Q/B-  The consumption ratio of 4.0 year-1was taken from the Chesapeake Bay 

model (Christensen et al. 2009). 

P/B – A P/B = 1.21 year-1 was used based on a stock assessment for Delaware 

Bay that used a natural morality of M = 0.8 year-1 assuming a lifespan of 4 

years (Kahn  2003) and fishing mortality on total stock (recruits and post 

recruits) was F = 0.41 year-1 (2000-2002). 

Diet – Diet taken from the Chesapeake Bay model (Christensen et al. 2009), 

averaged across stanzas. 
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Hard Clams 

Biomass – A value of 26.18 t/km2 was used based on a density of 1,309,233 

clams per km2 (adjusted values for the 1985-1987 surveys, Celestino 2002) 

and an average mass of 20 g (mean length of 7.46cm, Celestino 2013). 

Q/B - The consumption ratio was estimated to be 5.1 year-1 assuming a P/Q = 

0.20.  

P/B - A production/biomass ratio of 0.5 year-1 was used based on the empirical 

studies of Hibbert (1976). 

Diet – Diet taken from the Chesapeake Bay model (Christensen et al. 2009). 

 

Oyster 

Q/B - The Q/B ratio of 2.0 year-1 was taken from the adult stanza of the 

Chesapeake Bay Model (Christensen et al. 2009). 

P/B – A 2009 survey of the restored oyster reef at Good Luck Point in Barnegat 

Bay determined a mean annual mortality of 47%, or an M=0.63 year-1 

(Calvo 2010).  As oysters in Barnegat Bay are an unfished resource, 

Z=M=.63 year-1.    

Biomass – Based on NJDEP experience there does not appear to be a viable 

oyster set in Barnegat Bay; the known oyster reef is seeded by the NJDEP. 

In order to keep oysters in the model for future management 

considerations the biomass was set to 0.001t/km2 to simulate a very small 

population.  

 Diet – Data taken from the Chesapeake model (Christensen et al. 2009). 

 

Sea Nettles 

Q/B – A Q/B of 20 year-1 was taken from the Chesapeake Bay model (Christensen 

et al. 2009).  This value is based on an assumed P/Q of 0.25.   

P/B – As reported by Matishov and Denisov (1999) the daily growth rate for 

Aurelia aurita  is estimated as 0.053 at 5 ºC to 0.15 at 16.5 ºC. Sea nettle 

medusa are present in the Barnegat Bay during the summer months, when 

waters are typically warmer than 16.5 ºC.  As such the P/B for Barnegat 

Bay was calculated as (0.15*365)/4 ~ 13 year -1.    

Biomass – In 2012, a baywide survey data from Monmouth University led to an 

estimate of 24,711 individuals per km2 (Ursula Howson, unpublished 

data).  Assuming an average wet weight of 56g per individual, this 

translates to a biomass of 1.38t/km2. Recent work by Young et al. (in 

review) suggests that sea nettle abundances were at very low levels 

(unrecorded in contemporary research) until the late 1990’s, and did not 

reach current levels until the mid-2000s.  Therefore we estimate that sea 

nettle biomass was about 1/4th of the current biomass, or 0.345t/km2. 

Diet – The sea nettle diet data was taken from the Chesapeake Bay model 

(Christensen et al. 2009) 

 

Ctenophores 

Q/B - Shushkina et al. (1989) found that ctenophores in their study had growth 

rates 1.5 to 2 times greater than true jellyfish. Therefore, the Q/B value for 
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ctenophores was the value for sea nettles multiplied by 1.75, i.e.Q/B was 

35 year-1. 

P/B – Shushkina et al. (1989) found that ctenophores in their study had growth 

rates 1.5 to 2 times greater than true jellyfish. Ctenophores tend to be 

present in Barnegat Bay at cooler temperatures than those of sea nettles, 

therefore the P/B was calculated as 1.75 times the average estimated daily 

growth rate of Aurelia aurita over the course of 3 months 

((((0.053+0.15)/2)*365)/4)*1.75 ~ 16.2 year-1. 

Biomass – A biomass of 7.86 t/km2 was calculated using bay-wide survey data 

collected by Monmouth University during 2012 and an average weight of 

3.42g per individual (Ursula Howson, unpublished data).   

Diet - The ctenophore diet data was taken from the Chesapeake Bay model 

(Christensen et al. 2009). 

 

Benthic infauna/epifauna (shrimp, worms, non-blue claw crabs) 

Q/B – A consumption ration of 5.0 year-1 was estimated by Ecopath after 

designating a P/Q ratio of 0.2, as taken from the Chesapeake Bay Model 

(Christensen et al. 2009). 

P/B – A P/B of 2.0 year-1 was taken from the Chesapeake Bay model (Christensen 

et al. 2009). 

Biomass – Estimated by Ecopath, based on a group ecotrophic efficiency of 0.9. 

 Diet – Diet data taken from Chesapeake Bay model (Christensen et al. 2009). 

 

Amphipods 

This category consists mainly of the genus Ampelisca (A. abdita and A.verrilli) 

and Elasmopus levis based on the work conducted by Haskin and Ray (1977) and 

Taghon et al (2013). 

 

Q/B – Ecopath estimated a Q/B = 5.0 year-1 using a P/Q ratio of 0.2, following the 

Chesapeake Bay model (Christensen et al. 2009). 

P/B – A P/B of 3.8 year-1 was used based on the average P/B of Ampelisca abdita 

at 3 locations within Jamaica Bay (Franz and Tanacredi 1992). A. abdita 

was the most common amphipod found in Barnegat Bay sampling in 2012 

(Taghon et al. 2013). 

Biomass – The biomass of amphipods was estimated by Ecopath using an 

EE=0.900.   

Diet – The diet data for this group is the combination of a Ampelisca abdita from 

Haskin and Ray (1979) and Elasmopus levis as described by Christian and 

Luczkovich (1999). 

 

Copepods (Mesozooplankton) 

Q/B – A consumption ration of 83.333 year -1 was estimated by Ecopath after 

designating a P/Q ratio of 0.3, as taken from the Chesapeake Bay Model 

(Christensen et al. 2009). 

P/B – A mortality rate of 25 year -1 was taken from the Chesapeake Model 

(Christensen et al. 2009). 
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Biomass – The software estimated biomass using an ecotrophic efficiency of 0.95.   

Diet – The diet ratio is from the Chesapeake Bay model (Christensen et al. 2009). 

 

Microzooplankton 

Q/B – A consumption ration of 350 year -1 was estimated by Ecopath after 

designating a P/Q ration of 0.4, as taken from the Chesapeake Bay Model 

(Christensen et al. 2009). 

P/B – A total mortality rate for microzooplankton of 140 year-1 was taken from 

the Chesapeake Bay model (Christensen et al. 2009). 

Biomass – Biomass was estimated based on an assumed EE of 0.95. 

Diet – The 100% phytoplankton diet follows the Chesapeake Bay model 

(Christensen et al. 2009). 

 

Phytoplankton 

P/B – We elected to use the Chesapeake value of 160 year-1 (Christensen et al. 

2009) over the Delaware Bay value of 60 year-1 (Frisk et al. 2006) as the 

Chesapeake is a highly eutrophic system more similar to the conditions 

found in Barnegat Bay. 

Biomass – Biomass was estimated by the software assuming an ecotrophic 

efficiency of 0.95.    

 

Benthic algae 

 P/B – The Chesapeake model assumed a value of 80 year-1 (Christensen et al. 

2009). 

Biomass – Biomass of benthic algae was estimated based on an assumed EE of 

0.9.  

 

SAV 

P/B – Mortality for Z. marina was estimated as Z = P/B =5.11 year-1, which was 

taken from a similar system in Japan (Oshima et al., 1999). 

Biomass – In 1979 there was approximately 8,053 ha of mapped submerged 

aquatic vegetation (Northern segment: 767, Central segment: 5,126, 

Southern segment: 2,160) out of the 27,900 hectares of Barnegat Bay 

(Lathrop et al 2001).  The highest recorded annual eelgrass maximum 

biomass in the southern and central portions of the bay occurred in 2004 

and was 219.7 g dry wt /m2, while the highest Ruppia biomass recorded in 

the northern segment occurred in 2011 and was 32.8 g dry wt/ m2 

(Kennish et al. 2014).  Expanding the biomass estimates over the 1979 

SAV acreage yields a baywide total biomass of 1,625.891t, or 5.82t/km2  
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ESM 2: Ecopath Initial Diet Composition 
 Piscivorous 

seabirds 

Non-

piscivorous weakfish 

striped 

bass 

summer 

flounder bluefish 

winter 

flounder 

Atlantic 

silversides 

Atlantic 

croaker spot 

Atlantic 

menhaden 

Piscivorous seabirds            

Non-piscivorous            

weakfish 0.0056   0.2  0.013      

striped bass 0.0166           

summer flounder 0.011           

bluefish 0.02           

winter flounder 0.0058    0.2       

Atlantic silversides 0.017  0.05 0.221 0.132 0.087      

Atlantic croaker   0.005 0.01  0.005      

spot   0.03   0.011      

Atlantic menhaden 0.1   0.206  0.255      

river herring 0.028           

mummichog 0.03     0.36      

bay anchovy 0.07  0.535 0.2 0.273 0.094 0.018     

benthic 

infauna/epifauna  0.276 0.352 0.06 0.186 0.066 0.742 0.59 0.8 0.509 0.18 

amphipods   0.022    0.07 0.244  0.25  

blue crab 0.004  0.006 0.1 0.2 0.103 0.002     

hard clams  0.01  0.003   0.157   0.057  

oysters            

copepods        0.154 0.2 0.18 0.338 

Microzooplankton            

sea nettles            

ctenophores            

benthic algae            

phytoplankton           0.421 

SAV  0.128          

detritus  0.011   0.009 0.006 0.011 0.012  0.004 0.061 

import 0.692 0.575          
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 river 

herring mummichog 

bay 

anchovy 

benthic 

infauna amphipods 

blue 

crab 

hard 

clams oysters copepods 

Micro 

zoo 

sea 

nettles ctenophores 

Piscivorous              

Non-piscivorous             

weakfish             

striped bass             

summer flounder             

bluefish             

winter flounder             

Atlantic 

silversides            

 

Atlantic croaker             

spot             

Atlantic 

menhaden            

 

river herring             

mummichog             

bay anchovy           0.054  

benthic infauna 0.435 0.260  0.02 0.02 0.5       

amphipods 0.055 0.170 0.044          

blue crab      0.125       

hard clams      0.175       

oysters             

copepods 0.5 0.19 0.582        0.421 0.666 

Microzooplankton   .370 0.08 0.08    0.72   0.334 

sea nettles             

ctenophores           0.525  

benthic algae  0.12  0.3 0.3 0.05 0.5      

phytoplankton 0.005   0.4 0.4  0.25 0.99 0.28 1   

SAV      0.05       

detritus 0.005 0.26 0.004 0.2 0.2 0.1 0.25 0.01     
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ESM 3: Landing Calculations for the Barnegat Bay Ecopath Model 

 

Directed Fisheries 

 

The National Marine Fisheries Service (NMFS) commercial landings database (NOAA 

2015a) is the most comprehensive record of commercial landings available for the time 

period of interest (1950-2011).  However, these data represent landings for all of New 

Jersey, and are not Barnegat Bay specific.  The NMFS landings data used below are a 

subset of the statewide landings based on gear that could be used within an estuary.  Gear 

types considered usable in the bay include the following: by hand; cast nets; dip nets, 

common; fyke and hoop nets, fish; hand lines, other; pots and traps, blue crab; and weirs. 

Because these gear types have been used in the Barnegat Bay as well as other larger 

estuaries throughout the state (Raritan Bay, Delaware Bay, etc.), this subset likely 

overestimates commercial removals from Barnegat Bay.  Where Barnegat Bay specific 

landings data are available they were used to the maximum extent possible.   

 

Recreational landings for finfish were taken from the NMFS Marine Recreational 

Fisheries Statistics Survey (MRFSS) and Marine Recreational Information Program 

(MRIP) for Ocean County, inland waters only (NOAA 2015b).  The landings for 1981 

were used to initialize the model as that is the earliest year for which data is available. 

 

The source and calculations for each species are described below. 

    

Atlantic croaker – Based on the subset of NMFS commercial landing data, there 

was no harvest of Atlantic croaker reported in the 1980s.  There were no 

recreational landings of croaker reported for Ocean County. 

 

Atlantic Menhaden – There was no commercial harvest of menhaden recorded in 

the NMFS landing data for the gear types used in Barnegat Bay in 1980.  

There were no recreational landings of menhaden reported for Ocean 

County in the MRFSS database.  Menhaden are commonly used as bait in 

the recreational fishery in Barnegat Bay, therefore an estimated landing of 

0.2MT was attributed to the recreational fishery, though this likely 

underestimates landings.  

 

Blue Crab – In Barnegat Bay the commercial blue crab fishery can be divided 

into a winter dredge fishery and a pot/trap line fishery in the remainder of 

the year.  Landings data specific to Barnegat Bay were available from the 

NJDEP for 1995-2013 (NJDEP, personal communication), while 

statewide landings were available from NMFSS for 1980-2011.  The 

NJDEP data was regressed on the NMFS data and the results used to 

calculate bay specific total landings for 1981-1994.  The winter dredge 

fishery represented approximately 17% of the baywide total (NJDEP 

data); this ratio was used to estimate the gear specific landings from the 

total baywide landings of 221 metric tons for 1981.  Therefore the winter 

dredge fishery in 1981 landed an estimated 38.1 metric tons while the pots 
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and trot lines accounted for an estimated 183.3 metric tons.  In 2007 the 

recreational harvest of blue crab in Barnegat Bay was estimated to be 80% 

of the total commercial harvest (Macro International Inc. 2008), leading to 

an estimated recreational harvest of 177.1 metric tons in 1981. 

 

Bluefish – Barnegat Bay specific commercial landings were available for bluefish 

for 1997 only (Kennish 2001).  The bay specific landings represented 21% 

of the subset landings for that year (NMFS).  That ratio was utilized to 

calculate an estimated Barnegat Bay specific commercial landing of 0.02 

metric tons for 1980.  In 1981approximately 209.1 metric tons of bluefish 

were landed in Ocean County inland waters (MRFSS).  

 

Hard Clam – Hard clams are historically one of the most important commercial 

fishery resources in Barnegat Bay.  However there are no records for 

commercial or recreational landings of hard clams specific to Barnegat 

Bay.  Based on recommendations of Bureau of Shellfisheries staff and 

long-time commercial clammers an estimate of 0.39t/km2 was developed 

assuming 40 individuals harvesting 3 bushels per day working 200 days 

per year, with a bushel weighing approximately 10lbs. There are no 

estimates of hard clam recreational landings available. 

 

River herring – Alewife and blueback herring have been combined into this 

single category given the similarities in their life history strategies and 

propensity to co-migrate.  In 1981 there were no commercial landings of 

either species in the subset landings, and no landings reported for Ocean 

County’s recreational inland fishery.  However, there were known 

fisheries for river herring within the bay associated with bait collection.  

As such a total landing of 0.1MT was assumed based on the landings in 

subsequent years and split evenly between the recreational and 

commercial sectors.  

 

Spot –There were no commercial landings of spot recorded in the subset landing 

data for the late 1970s through mid-1980s.  There were 1.1 metric tons of 

spot landed in the Ocean County inland recreational fishery in 1981. 

 

Striped Bass – In 1981 there were no commercial landings of striped bass 

recorded in the subset landing data.  There were no landings reported for 

Ocean County’s recreational inland fishery.  However, there was a well-

documented recreational fishery present at the time, therefore 26 MT was 

used, which is the average of reported landings from 1981-201.  

 

Summer flounder – Commercial landings of summer flounder approached 0.2 

metric tons in 1981 according to the subset NMFS database. There were 

224.4 metric tons of summer flounder landed in the Ocean County inland 

recreational fishery in 1981. 
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Weakfish – Barnegat Bay specific commercial landings were available for 

weakfish for 1993 only (Kennish 2001).  The bay specific landings 

represented approximately 5.2% of the gear specific statewide landings for 

that year (NMFS landing data).  That ratio was utilized to calculate an 

estimated Barnegat Bay specific commercial landing of 0.078 metric tons 

for 1981.  There were 3.29 metric tons of weakfish landings reported for 

Ocean County’s recreational inland fishery in 1981. 

 

Winter flounder – The NJDEP Bureau of Marine Fisheries estimates a 

commercial harvest of approximately 10.68 metric tons of winter flounder 

from Barnegat Bay in 1981. In 1981 there were 247 metric tons of winter 

flounder landed in the Ocean County inland recreational fishery. 

 

OCNGS 

  

The Oyster Creek Nuclear Generating Station “landings” info can be divided into two 

categories, impingement/impingeable size losses and entrainment losses.  Impingement 

losses describe those animals that become trapped on the traveling Ristroph screens 

(9mm mesh) associated with the Circulating Water Intake Structure (CWIS) and are 

subsequently deposited into a fish return system and into the discharge canal.  

Impingeable size losses are biota that are large enough to be impinged on the Ristroph 

screens if they were present at the Dillution Water Intake Structure (DWIS). Entrainment 

losses are the biota that pass through the CWIS and DWIS structures and pass through 

the plant and dilution pumps, respectively.  The data used to estimate these values were 

collected as part of periodic relicensing of the facility, and were most recently collected 

during 2005-2007 and include in the “Characterization of the aquatic resources and 

impingement and entrainment at Oyster Creek Nuclear Generating Station” September 

2008 (Amergen 2008). 

 

Impingement/Impingeable size losses 

During 2006-2007 the estimated annual biomass of the young of year (YOY) and 

older ages of selected fish and crustaceans impinged on the traveling screens at the CWIS 

was calculated (Appendix A: Detailed Characterization of the aquatic resources and 

impingement and entrainment at Oyster Creek Nuclear Generating Station, Tables A-7 

and A-8).  The biomass of each species was then multiplied by the empirically 

determined impingement mortality rate (Appendix H, Tables H-2 and H-4) to derive a 

CWIS impingement mortality (kg/yr).  The estimated annual biomass of impingeable 

sized fish and shellfish that were entrained through the DWIS was calculated (Tables A-

15 and A-18) and multiplied by the empirically determined mortality rates (Tables H-5 

and H-6) to derive a DWIS impingeable size mortality (kg/yr).  It should be pointed out 

that the mortality rates were instantaneous, that is injured individuals were considered 

“live” at the time of counting, and thus the mortality rates are likely low. 

 

Entrainment losses 

 Entrainment losses occur when biota are able to avoid or slip through the 

traveling screens at the CWIS and are carried through the cooling water system or are 
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taken up by the DWIS.  The number of individual fish in each species entrained into 

either the CWIS (Table A-10) or DWIS (A-20) are broken into 5 size categories; eggs, 

yolk sac larvae, post-yolk sac larvae, YOY, and YOY+.  Blue crabs were divided into 

adult, juvenile, and megalops (tables A-12 and A-22).  For this model the entrainment 

analysis was limited to post-yolk sac larvae, YOY, and YOY+ fish and megalops stage of 

blue crab.  Biomass for each species/size class was calculated by taking the median or 

mode length from the CWIS entrainment sampling length frequency histograms 

(Appendix C: Impingement and entrainment studies at Oyster Creek Generating Station 

2005-2007) and searching the literature for the corresponding weight.  This weight was 

multiplied by the annual estimated number of individuals to derive an estimate of annual 

biomass.  The biomass estimate was then multiplied by the appropriate empirically 

determined mortality rate to derive an estimate of entrainment losses for both the CWIS 

and DWIS.  The latent mortality was calculated as the number of live, healthy 

entrainable-size specimens collected from the discharges who survived for 24 hours 

(Appendix F, Sections 2 and 3).  The mortality was applied equally across all size classes.  

Given that this methodology does not take into account individuals that do not survive 

passage through the system it likely underestimates mortality.  The specific values 

selected for the length, weight, and mortality rate for each species are detailed below.       

 

Adult and juvenile blue crabs were not included in the entrainment analysis as there are a 

number of discrepancies in the crab data.  The CWIS impingement sampling collected 

crabs in the 8-166mm size range; these specimens should not be able to pass through the 

Ristroph screen, thus nearly eliminating any entrainment at the CWIS.  Further, any crabs 

of this size should be considered part of the “entrainment of impingeable sizes” DWIS 

calculations, and to include them in DWIS entrainment would be double counting.         

 

Atlantic croaker  –   

Post-yolk sac – Lengths ranged from 4-16mm, with a rather uniform 

distribution between 7-15mm.  The ASMFC (2005) stock assessment for 

larval croaker suggests a mode of 11mm and a weight range of 0.02 – 

0.04g.  An average weight of 0.03g was used in the analysis. 

 

 YOY – The lengths of YOY croaker ranged from 15-72mm, with the 

distribution skewed heavily to the left.  The modal length was 21mm.  An 

average weight of 0.06 grams at 21mm was calculated using the length-

weight regression from FishBase. 

 

 Mortality – A mortality rate was not determined for croaker.  The 

empirically determined weakfish mortality rate (CWIS 0.8, DWIS 0.75) 

was used as they are both Sciaenids and share similar characteristics at the 

larval stage. 

 

Atlantic Menhaden  – 

 Post-yolk sac – Lengths were bimodally distributed from 6 – 33 mm, with 

the larger mode at 24 mm. Hettler (1976) found an average weight of 

0.195 grams at 28mm. 
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 YOY – Lengths were evenly distributed between 27-42mm , with a mean 

length of 34.  Hettler (1976) found an average weight of 0.494 grams at 

34mm. 

 

Mortality – A 24 hour mortality rate of 1 was used for the CWIS and 0.72 

for the DWIS. 

 

 

Atlantic silverside  –   

Post-yolk sac – Lengths were unimodally distributed from 4 – 8 mm, with 

the mode at 5mm. 

 

 YOY – Lengths were evenly distributed between 71-85mm.  The 

silverside should be fully recruited to the Ristroph screen at 72mm, so 

71mm was selected. An average weight of 0.2.25 grams at 71mm was 

calculated using the length-weight regression from FishBase. 

 

 YOY+ - Lengths were evenly distributed between 74-102mm, with a 

mean at 87mm. An average weight of 4.71 grams at 87mm was calculated 

using the length-weight regression from FishBase. 

 

Mortality – A mortality rate was not determined for silverside.  The 

empirically determined bay anchovy mortality rate (CWIS 0.97, DWIS 

0.94) was used as they have similar body shapes and tolerances at the 

larval stage. 

 

Bay anchovy –   

Post-yolk sac – Lengths were unimodally distributed from 3 – 37 mm, 

with the mode at 8mm.  Using the length-weight relationship in Table 5 of 

Leak and Houde (1987), an 8mm individual is approximately 11 days old, 

and would have a dry weight of 0.000114g.  If larvae are assumed to be 

95% water, this would lead to a wet weight of 0.0023 

 

 YOY – Lengths were unimodally distributed between 26-69mm , with a 

modal length of 34.  An average weight of 0.32 grams at 34mm was 

calculated using the length-weight regression from FishBase. 

 

Mortality - A 24 hour mortality rate of 0.97 was used for the CWIS and 

0.94 for the DWIS. 

 

Summer flounder –  

Post-yolk sac – Lengths were unimodally distributed from 10 – 17 mm, 

with the mode at 14mm. An average weight of 0.04 grams at 14mm was 

calculated using the length-weight regression from FishBase. 
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 YOY – Lengths were unimodally distributed between 12-17mm , with a 

modal length of 14.  Given the overlap in lengths with post-yolk sac, it 

appears the demarcation between classes is based on eye migration. An 

average weight of 0.04 grams at 14mm was calculated using the length-

weight regression from FishBase. 

 

Mortality – A mortality rate was not determined for summer flounder.  

The empirically determined winter flounder mortality rate (CWIS 0.88, 

DWIS 0.90) was used as they have similar body shapes and tolerances at 

the larval stage. 

 

Weakfish –  

Post-yolk sac – Lengths were unimodally distributed from 2 – 14 mm, 

with the mode at 5mm. Using the empirically measured mean dry weight 

of 0.000171g for 5mm larvae from Duffy and Epifanio (1994) leads to a 

wet weight of 0.0034 grams assuming 95% water. 

 

 YOY – Lengths were evenly distributed between 11-123mm, with a mean 

length of 36. An average weight of 0.41 grams at 36mm was calculated 

using the length-weight regression from FishBase. 

 

YOY+ - The only size captured in sampling was 172mm. An average 

weight of 0.44 grams at 172mm was calculated using the length-weight 

regression from FishBase. 

 

Mortality - A 24 hour mortality rate of 0.80 was used for the CWIS and 

0.75 for the DWIS. 

 

Winter flounder – 

Post-yolk sac – Lengths ranged from 2-11mm, with a relatively uniform 

distribution between 3-6mm.  The average length was 5mm.  Based on 

mean larval lengths in Buckley et al. (1991), a 6mm winter flounder is 

approximately 4 weeks old.  Laurence (1975) determined the mean dry 

weight of a 4 week old winter flounder kept at a similar temperature to be 

0.000206g.  This leads to a wet weight of 0.00412 grams assuming 95% 

water. 

 

YOY – Lengths ranged between 6-7mm, with 6mm fish dominating the 

catch.  Given the overlap in lengths with post-yolk sac, it appears the 

demarcation between classes is based on metamorphosis. Laurence (1975) 

determined the mean dry weight of a metamorphosed winter flounder to 

be 0.001243g.  This leads to a wet weight of 0.02486 grams assuming 

95% water. 

 

Mortality - A 24 hour mortality rate of 0.88 was used for the CWIS and 

.90 for the DWIS. 
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Blue Crab –  

 Megalops – There was no information provided in the OCNGS reports on 

the length, weight, or mortality of blue crab megalopae with regard to 

entrainment sampling.  Blue crab instar #1 have an average carapace width 

of 2.5mm, which is sufficiently small enough to pass through the Ristroph 

screen, and have an estimated average of weight of 0.0033 grams 

(Newcombe et al.., 1949).  Mortality was assumed to be similar to that 

found empirically for Mysidopsis bigelowi during the study period of 0.66 

and 0.17 for the CWIS and DWIS respectively. 
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ESM 4: Time Series data for the 1981-2013 Barnegat Bay Ecosim Model 

 

NMFS finfish, fishery-dependent (Forced catches; -6) 

This time series (1981-2013) is a combination of the NMFS commercial landings data 

subset (as described in the landings calculations – ESM 3) and recreational landings from 

the MRFSS (1981-2003) and MRIP (2004-2013) surveys. 

 

For summer flounder the 1983 recreational landing of 932MT was 3 times that of the 

next highest value (1982) and nearly 40 times that of 1984.  It was replaced with the 

average of the 1981-1982 landings. 

 

While there is no large-scale commercial fishery for menhaden in Barnegat Bay, 

“bunker” are a popular bait fish among recreational fisherman and crabbers.  Therefore a 

steady low harvest rate (0.2mt/yr) was assigned. 

 

If no landings were recorded, or recorded as 0kg, it was entered as 0kg.  

 

NJDEP Blue crab gear specific, fishery dependent (Forced effort by gear type, 3) 

Blue crab landing estimates for each fishery in 1981 are described in the landings 

calculations and were set as a relative effort of 1.  The landing values for each fishery 

from 1995-2013 were then scaled compared to the 1981 estimate.  For 1982 to 1994 the 

total commercial landings were calculated based on a linear regression of the known 

Barnegat Bay landings against the NMFS statewide landings for 1980 and 1995-2011.  

The commercial gear specific and recreational landings were then calculated and scaled 

as previously described.     

 

OCNGS, fishery dependent (Forced effort by gear type; 3) 

Because of the nature of OCNGS operations, the cooling and dilution intake structures 

function as an on/off type activity, with the only shutdowns associated with temporary, 

short term maintenance.  As such the plant flow is fairly consistent, and therefore forced 

effort is steady. 

 

RUMFS subset, fishery independent (Relative biomass; 0) 

These values are relative abundance (CPUE) found through otter trawling at 5 locations 

in the southern portion of Barnegat Bay from 1997-2011.  Data is from the Tuckfile 

program at the Rutgers University Marine Field Station (Vasslides et al. 2011). 

 

RUMFS all sites, fishery independent (Relative biomass; 0) 

These values are relative abundance (CPUE) found through bay-wide otter trawling (47 

sites) conducted by RUMFS in 2012 and 2013.  The data is from the NJDEP’s WQDE 

database. 

 

NJ Coast, fishery independent (Relative Biomass; 0) 

Since 1989 the NJDEP has conducted a coastal trawl survey five times a year.  The data 

included here are yearly CPUE averaged across all sampling efforts in Stratum 15 and 18, 

which cover from Belmar to Sea Isle City to a depth of 10m. 
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Hard clam LEH abundance, fishery independent (Relative biomass; 0) 

These values are density (#/ft2) of hard clams in the southern portion (LEH) of the 

estuary based on stock surveys conducted in 1986 (adjusted values in Celestino 2002), 

2001 (Celestino 2002), and 2011 (Celestino 2013). 

  

SAV coverage, fishery independent (Relative biomass; 0) 

SAV coverage for the bay is available for 1980, 1987, 1999, 2003, and 2009 based on 

aerial photograph analysis in Lathrop et al. (2001) and Lathrop and Haag (2011). 

 

Sea nettles, fishery independent (Forced biomass, -1) 

Recent work by Young et al. (in review) using local ecological knowledge suggests that 

sea nettle abundances were at very low levels (unrecorded in contemporary research) 

until the late 1990’s, with a large increase occurring around 2007.  To simulate this 

bloom pattern we are forcing a low biomass until the mid-1990s, and then a progressive 

increase leading to current population estimates in 2007. The population estimate is based 

on spring/summer/fall sampling using plankton and lift nets conducted as part of the 

Barnegat Bay Initiative. 

 

Benthic infauna and epifauna, fishery independent (Relative biomass; 0) 

Benthic infauna and epifauna abundances were taken from Taghon et al. (2013) and are 

from samples collected at 100 locations throughout the Barnegat Bay in July of each 

year.  This index represents the average number of individuals found on or near the 

sediment surface (per 0.04m2) excluding amphipods, blue claw crabs, and hard clams. 

 

Amphipods, fishery independent (Relative biomass; 0) 

Benthic infauna and epifauna abundances were taken from Taghon et al. (2013) and are 

from samples collected at 100 locations throughout the Barnegat Bay in July of each 

year.  This index represents the average number of individuals per 0.04m2 belonging to 

Order Amphipoda.   

 

Copepods, fishery independent (Relative biomass; 0) 

This timeseries is based on samples collected from June to November of 2012 and 2013 

at 3 locations (northern, central, and southern) within Barnegat Bay using paired 200um 

plankton nets.  The data are the average yearly CPUE for the major copepod fauna found 

in Barnegat Bay (n=57). 

 

Microzooplankton, fishery independent (Relative biomass; 0) 

This timeseries is based on samples collected from June to November of 2012 and 2013 

at 3 locations (northern, central, and southern) within Barnegat Bay using paired 200um 

plankton nets.  The data are the average yearly CPUE for foraminifera, the only 

microzooplankton identified. 

 

Phytoplankton, fishery independent (Relative biomass; 0) 
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The relative abundance of phytoplankton from 2008 to 2013 was estimated from 

chlorophyll a readings taken via aircraft remote sensing collected six days a week from 

March through October each year.   
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CHAPTER III: Using ecosystem models to understand the effects of watershed-

based management actions in coastal ecosystems. 
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Abstract: Resource managers are often tasked with identifying and assessing the potential 

impacts of management actions on the biotic communities under their care.  When the 

management activities directly impact a single species of interest managers can turn to a 

variety of models to aid in their understanding of potential changes to that population. 

But as Ecosystem Based Management becomes more widely accepted managers will 

have to understand how proposed actions will impact entire biotic communities, through 

both direct and indirect mechanisms. Thus there is a need for ecosystem models that 

account for both trophic and non-trophic interactions, and that can be relatively easily 

used to assess a variety of management scenarios.  We reviewed the available literature 

regarding incorporation of eutrophication and other non-harvest anthropogenic impacts 

into Ecopath with Ecosim (EwE), one of the more widely used trophic ecosystem 

modeling frameworks.  We found a number of mechanisms of varying complexity have 

been used to include these stressors in models, providing managers with a suite of options 

that can be used to complement their existing management options as they seek to 

understand the impacts of human interactions with the natural environment.       

 

 

Key Words: EwE,  salinity, eutrophication, habitat restoration, ecosystem-based 

management 

 

  

Human activities in the watershed and coastal zone can affect a wide variety of 

living marine resources, so coastal managers need quantitative tools to help understand 



106 

 

 

 

1
0

6
 

and manage the impacts of watershed-based activities on these resources.  When human 

activities only directly influence a single species of interest, such as fishery harvest, a 

wide range of tools are available to quantify the effects of activities on a single resource.  

With the advent of Ecosystem-Based Management (EBM) (Fletcher 2002, NMFS 1999, 

Pitcher et al. 2009) managers need approaches for assessing the impacts of multiple 

human activities on multiple resources.  

 Over the past three decades a number of models have been developed to support 

the move towards ecosystem based fisheries management across the globe (Plagányi 

2007).  They range in scope and complexity from single species assessments extended to 

include a limited number of interactions (e.g. Livingston and Methot 1998) to attempts to 

model the dynamics of complete ecosystems, including biological and physical forces 

(e.g Christensen and Walters 2004, Fulton and Smith 2004).  Each of these model 

categories has its strengths and weaknesses, and model choice is dictated by the types of 

questions being asked and the data available to populate the model (Plagányi 2007).  

Historically, “whole ecosystem” fishery models were used to assess how changes in 

fishing regimes impact the biomass of aquatic communities, not just targeted species, 

through time. Given the fisheries focus, changes in fleet sizes or fishing effort are 

generally specified in these models in a number of ways, allowing for relatively easy 

adjustments in order to investigate a variety of harvest regimes (Christensen and Walter 

2004).   

However, trophic interactions between aquatic organisms do not occur in a 

vacuum; there are physical and environmental aspects of the aquatic environment that 

mediate these exchanges that need to be accounted for if a model is to represent a “whole 
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ecosystem”.  This is particularly relevant to coastal areas, where human impacts on the 

ecosystem other than fishing may be a primary concern.  As an example, an assessment 

of 28 estuaries in the United States identified excessive nutrients, physical habitat 

loss/alteration, and alteration of freshwater flows as key factors in environmental 

degradation (USEPA 2006).  Because estuaries play a vital role in the early life history 

stages of many commercially and recreationally important fishes (Beck et al. 2001) and 

provide a suite of additional ecosystem services (Barbier et al. 2011), understanding how 

these non-trophic anthropogenic stressors can lead to direct and indirect changes in 

aquatic biotic communities is of critical importance to managing these resources.  Thus, 

there is a need for ecosystem models that account for both trophic and non-trophic 

interactions and that can be relatively easily used to assess a variety of management 

scenarios.  

Within the suite of ecosystem models developed to address the impacts of fishing 

on the aquatic environment, several are specifically designed or can be extended to 

include non-fishing anthropogenic effects on coastal systems (Plagányi 2007).  

Biogeochemical models (eg. European Regional Seas Ecosystem Model (ERSEM - 

Baretta, Baretta-Bekker, and Ruardij 1996) and Shallow Seas Ecological Model (SSEM - 

Sekine et al. 1991)) typically incorporate physical and chemical information to drive 

phytoplankton and zooplankton dynamics, with less focus on higher trophic levels.  

While some anthropogenic stressors (changes in temperature, salinity, or nutrients) can 

be included in these models, the low resolution (or absence) of higher trophic levels 

limits their usefulness for understanding broader impacts.  In contrast, “whole ecosystem 

models” such as Ecopath with Ecosim (EwE) (Christensen and Walters 2004) and 
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ATLANTIS (Fulton and Smith 2004) include the higher trophic levels that are generally 

of interest to resource managers as well as lower trophic levels and primary production, 

connected via predator-prey interactions.  Because these lower trophic levels are more 

likely to be directly impacted by anthropogenic inputs into the system, accounting for 

impacts at lower levels will likely translate to additional indirect impacts at higher levels.  

Both models have the ability to investigate the effects of anthropogenic stressors on the 

modeled ecosystem, though the means of inclusion vary between the two.   

Ecopath is an ecosystem trophic mass balance analysis which is paired with 

Ecosim, the dynamic modeling aspect, for exploring past and future impacts of fishing 

and environmental disturbances (Christensen and Walters 2004).  Ecospace, the third 

component of the software package, is used to create a spatially explicit representation of 

the constructed model (Walters et al. 2010). This modeling suite has the flexibility to be a 

potentially useful tool for informing coastal resource management (Coll et al. 2015). 

Ecopath parameterizes an initial model using two master equations, one to 

describe the production term for each biological/ecological/trophic group and one for the 

energy balance for each group (Christensen and Walters 2004).  This requires four groups 

of basic input parameters to be entered into the model for each of the species (or groups) 

of interest: diet composition, biomass accumulation, net migration, and catch (for fished 

species). Three of the following four additional input parameters must also be input: 

biomass, production/biomass (Z), consumption/biomass, and ecotrophic efficiency. The 

model uses the input data along with algorithms and a routine for matrix inversion to 

estimate any missing basic parameters so that mass balance is achieved.  
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Once the base model balances (there is sufficient production to meet consumption 

and mortality), it is loaded into the Ecosim package, where the temporal dynamics of the 

model ecosystem can be simulated.  Time series reference data can be loaded for a given 

scenario and each series can be weighted based upon a priori estimates of data quality.  

When run for the timeframe for which external data is available, a statistical measure of 

goodness of fit to these data is generated (weighted sum of squared deviations). The 

model can be further tuned to minimize the sum of squared deviations by adjusting 

settings related to functional response (i.e. predator/prey vulnerability) or through the use 

of forcing or mediation functions, or both.   A forcing function in EwE is defined as a 

multiplier on an Ecopath base trophic interaction rate, where the multiplier value for each 

year is the ratio between the value of the variable for the year in question and the base 

(Ecopath) year.  Forcing functions in EwE are applied to a biomass group(s) directly 

(Christensen et al. 2008), and can influence the effective search rate of predators or alter 

the area within which vulnerable prey and predators are found.  Forcing functions can 

also  alter the rate at which a biomass group moves between vulnerable and invulnerable 

states, which is based on foraging arena theory (Walters et al. 1997).  Forcing functions 

use factors external to the model to drive consumption and production.  In contrast, 

mediation functions use non-trophic factors internal to the model, i.e., one 

biological/ecological trophic group’s biomass alters the consumption rates of other 

trophic groups.  Mediation functions can be applied to influence a predator’s rate of 

effective search/search efficiency, to change the rate at which a prey group becomes 

vulnerable to predation, and to change the extent of refugia available (Christensen et al. 

2008).   
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For systems with adequate data on spatial distributions of species and habitat, the 

Ecospace module of the EwE software can also be applied to ecological issues in the 

coastal zone.  Ecospace uses the time-dynamic algorithms of Ecosim and applies them to 

spatial grid cells representing different fixed habitat types (e.g., oyster beds, bathymetry, 

sediment type) in the system and allows species/trophic groups from the Ecosim model to 

have preferences for different types. This permits alterations to trophic interaction rates 

based on species habitat affinities and the locations of those habitats. Furthermore, the 

addition of a habitat capacity model allows for the incorporation of time-varying habitat 

factors (e.g., temperature, salinity) in the spatial model (Christensen et al. 2014). 

The EwE software is a flexible tool that enables the incorporation of non-trophic 

stressors into ecosystem models. It is a widely used tool - over 400 trophic mass balance 

models have been built for a variety of ecosystems using the EwE package, ranging in 

size from oceanic basins to small estuaries (Colléter et al. 2015).  EwE has a 

comprehensive user-friendly interface, that enables a modeler to balance simplicity and 

complexity, allows for a common framework for making comparisons between systems, 

and has structured parameterization framework (Butterworth and Plagányi 2004). In 

addition, recent advances in model development in Ecospace improves its utility for 

assessing anthropogenic, non-trophic impacts (Christensen et al. 2014). Because of the 

popularity and versatility of the tool, we chose to evaluate the applicability for EwE to be 

applied to coastal resource management issues by reviewing the available literature 

regarding incorporation of coastal zone issues (e.g., eutrophication, habitat alteration, and 

salinity changes) into Ecopath with Ecosim (EwE) models.   
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We searched Thompson Reuters Web of Science for published articles using the 

terms “Ecopath” or “EwE” and “salinity”, “eutrophication”, or “restoration” for articles 

where the software package was used and the methodology for incorporating one or more 

of the non-trophic parameters of interest was included. We limited our review to the 

Ecopath and Ecosim components of the program as those are currently the most 

frequently used by researchers and managers and had the most well developed 

approaches.  The database of publications found on the Ecopath website 

(www.ecopath.org) was also reviewed for pertinent articles that may not be included in 

the Web of Science index.  We identified 12 studies in which methods for incorporating 

the non-trophic effects of interest were explicitly described (Table 1).  In the following 

sections we describe the various methods that have been used for including 

eutrophication, changing salinity, and habitat restoration in the EwE software, discuss the 

benefits and drawbacks of these approaches, and highlight a new application for 

incorporating a broad suite of spatially explicit non-trophic parameters.   

 

Eutrophication 

The impact of excessive nutrient loading in lakes, estuaries, and near-shore 

coastal systems from anthropogenic processes (agricultural runoff, atmospheric 

deposition, non-point source pollution, etc.) is well documented (Bricker et al. 2007, 

Conley et al. 2009). Increase in nutrient enrichment has been shown to be a primary 

factor in enhanced primary production, and thus an increase in the rate of supply in 

organic matter to a system, a process known as eutrophication (Nixon 1995).  

Eutrophication has been shown to cause numerous negative impacts, including hypoxia 

http://www.ecopath.org/
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(Howarth et al. 2011), algal blooms (Kennish et al. 2007), and changes in species 

composition (Purcell, Uye, and Lo 2007). 

Two main methods have been utilized to account for the effects of nutrient 

enrichment in EwE; constructing multiple EwE models each representing a different 

condition and linking EwE to a separate biogeochemical model. Patrício and Marques 

(2006) and Baeta et al. (2011) employed the first option, dividing an estuary in Portugal 

into zones of high, medium, and low eutrophic condition.  The individual models 

constructed for each zone allowed the authors to compare indices of ecosystem condition 

across the eutrophic gradient using the ecological network analysis tools included in the 

software (Christensen et al. 2008).  A similar multi-comparison method was used by Yu-

Chun, Adlerstein, and Rutherford (2014), where an Ecosim model of a Lake Huron was 

fitted to field collected values, after which temporal simulations were performed under 

three different levels of phosphorus loading provided by the authors.  The ratio of the 

mean equilibrium biomass during the simulation to the initial Ecopath biomass was used 

to summarize changes in the food web. The results of the simulations indicated that 

phosphorus loads were positively correlated with the biomass of most of the groups 

within the model, and the changes in biomasses (both positive and negative) were 

consistent with extensive empirical evidence, supporting the utility of this approach. 

The second approach used to incorporate the effects of eutrophication into trophic 

models involves linking EwE models to separate biogeochemical models (BGMs). This 

can be done through either one-way (information passed up from the biogeochemical to 

the trophic) or two-way (information passed back and forth) linkages (Figure 1). An 

example of a one-way linkage is given by Ma et al. (2010) for the Chesapeake Bay. To 
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understand the impacts of water quality on submerged aquatic vegetation (SAV), and on 

the commercially and recreationally important blue crab stocks, a water quality model 

(Cerco and Noel 2004) was indirectly linked to a fisheries ecosystem model constructed 

in EwE (Christensen et al. 2009).  The water quality model was calibrated using historical 

data, and then rerun under a nutrient reduction management scenario for 1985-1994.  The 

ratio of the two SAV biomass outputs from the water quality model (historic and nutrient 

reduction) was then used to modify the SAV biomass in the EwE model over the same 

time period.  Mediation functions were then developed to relate the indirect effects of 

seagrass on blue crab.  In this model the effective search rate of blue crab young-of-the-

year (YOY) predators and the vulnerability of blue crab YOY to its predators were both 

reduced as SAV biomass increased.  Under the nutrient reduction scenario there was an 

increase in SAV biomass, which could lower predation rates on blue crab YOY (using 

SAV to hide from predators) and lead to an increase in blue crab biomass, depending on 

the strength of the interaction between SAV and adult blue crab predation on YOY.  

In contrast to the approach above, Cerco, Tillman, and Hagy (2010) utilized the 

output values from the same water quality model (Cerco and Noel 2004) as direct inputs 

into an Ecopath-only model to assess potential management actions in response to 

eutrophication effects.  Rather than model the effects of increased nutrients on a system, 

this study looked at the potential ramifications of increasing a planktivorous fish’s 

feeding on phytoplankton, which often bloom under eutrophic conditions. Using carbon 

as a shared “currency” between the models, biological groups present in both models 

were identified, as were Ecopath input parameters that could be defined by water quality 

model variables.  With the relationships between models established, the rate of predation 
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on phytoplankton by fish predators within the BGM was increased by 20%.  The 

resulting primary producer biomasses and production rates were then used as inputs in 

the Ecopath model, and the Ecopath model rebalanced as necessary.  Under this scenario, 

the increase in fish predation on phytoplankton lowered the biomass of all primary 

producers (including SAV), with no changes needed in the biomasses of higher trophic 

levels to rebalance the model.   

Niiranen et al. (2013) also used a one-way linkage between biogeochemical 

models and EwE to describe the effects of eutrophication (and climate change) on a 

Baltic Sea food web.  An ensemble of three BGMs were used to simulate the historic 

changes through time of a number of water chemistry variables, including dissolved 

oxygen, as well as phytoplankton annual production per biomass rates.  These time series 

were then used in the Ecosim module as forcing functions. In this study, the BGM 

derived annual average hypoxic area negatively impacted the predator search rate of 

selected groups and the phytoplankton P/B series derived from the BGM positively 

impacted phytoplankton P/B in EwE. After calibration using historic data, the BGM and 

EwE models were run forward (2010-2098) under three nutrient load scenarios 

(combined with three climate scenarios and two fishing scenarios).  With respect to 

eutrophication, the authors found strong positive indirect responses to increasing nutrient 

loads between and within trophic levels.      

 

Salinity  

 The salinity of estuarine ecosystems can be influenced by alterations in freshwater 

inflow due to anthropogenic activities such as dams and diversions (USEPA 2006), and 
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sea level rise and precipitation changes related to climate change (Prandle and Lane 

2015).  The response of a species to changes in salinity will be driven not only by its own 

salinity optimum and tolerances, but also those of the species with which it shares direct 

and indirect trophic interactions.  Two methods for incorporating the effects of salinity on 

biotic communities were found in the literature. Similar to modeling eutrophication 

effects, one relies on the use of multiple Ecopath models and the other incorporates 

forcing functions into Ecosim simulations.   

Prado et al. (2013) utilized multiple models to develop snapshots of different 

salinity regimes in the Ebro Delta of Spain.  In this study, Ecopath models were 

constructed for two different anthropologically driven salinity regimes (summer lows and 

winter highs) in three adjacent coastal lagoons that varied in their salinity mean and 

ranges.  The ecological network analysis tools included in the Ecopath software were 

then used to compare the trophic structure and ecosystem properties across salinity 

regimes and sites.  In this particular system, salinity was shown to be the driving force 

behind plant standing biomass in each season.  The plant biomass, or lack thereof, then 

affected the consumption of detrital material, the number of energy pathways, and overall 

ecosystem productivity.  Ecosystem productivity has long been noted as playing an 

important role in determining an ecosystem’s complexity and ability to maintain itself 

through time (Margalef 1963).  By comparing the results of the different salinity regimes 

as they related to key ecosystem indices the authors were able to develop general 

recommendations regarding target salinity levels for the sustainable restoration of native 

flora and fauna.     
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 The second methodology used a forcing function within the dynamic modeling 

portion of the software to simulate expected salinity changes over time that were linked 

to user specified salinity tolerances for each species/group (de Mutsert, Cowan, and 

Walters 2012).  This study modeled the effects on estuarine aquatic communities of 

diverting freshwater flows from a main stem river into adjacent estuaries.  Monthly mean 

salinities recorded at three distances from a freshwater source were used to create forcing 

functions that were representative of three different salinity regimes (low, medium, high). 

Each species/group was assigned a salinity tolerance range with an optimum and standard 

deviation based on long-term field measurements.  The response curves were then used to 

modify each species/group’s feeding rate within the model, where the maximum feeding 

rate occurred at the optimum salinity, and feeding rates declined as salinity departed from 

the optimum.  It follows that reduced feeding rates would lead to decreased fitness and 

reduced biomass.  The analysis of the scenarios suggests that as long as a salinity gradient 

is established, the local distribution of species/groups is altered by the change in flow, but 

there is no replacement of species from the estuary as a whole.   

 

Habitat modification 

As the value of ecosystem services provided by coastal wetlands (Rozas, 

Caldwell, and Minello 2005), seagrass beds (Waycott et al. 2009), mangroves, and other 

coastal habitats continue to be realized (Lubchenco and Sutley 2010), resource managers 

are being tasked with documenting the effects of restoring degraded habitats or the 

potential benefits of future restoration projects.   
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The quantification of biomass changes due to habitat restoration is accomplished 

in EwE through comparisons of multiple scenarios and utilizing the customizable forcing 

and mediation functions included in the software package. There have been two main 

approaches to incorporating the effects of habitat restoration into EwE models; one for 

forecasting the potential effects of future restoration (Rogers and Allen 2012, Plummer et 

al. 2013), and one for evaluating changes associated with completed efforts (Frisk et al. 

2011). 

The evaluation of potential restoration activities that involve the removal or 

planting of vegetation are handled in complementary approaches.  For habitat restoration 

projects that involve the removal of an unwanted species, the proposed reductions in 

biomass can be accomplished through the use of a “fishery” (tussock sedge a la Rogers 

and Allen 2012), in which various management options can be modeled as different 

fishing efforts.  Restoration projects that involve an increase in beneficial habitat, such as 

the replanting of a known amount of seagrass beds, can be modeled as a fixed increase in 

the amount of biomass of that particular habitat compared to the baseline model 

(Plummer et al. 2013). In most cases the species being restored (or removed) are not 

directly consumed within the food web, rather they function in an indirect role that 

affects predator/prey relationships.  As discussed in the Eutrophication section, within 

EwE these types of indirect effects are handled through the creation of mediation 

functions.  In the tussock sedge example, the mediation functions were set such that 

increased tussock biomass created refugia for small prey items and reduced their 

predator’s search efficiency.  In the seagrass example, three mediation functions were 

developed for increases in seagrass biomass.  The first increased the rate at which prey 
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items were vulnerable to juvenile salmon due to prey aggregation, the second increased 

the amount of refugia for juvenile salmon from the predators, and the third increased the 

search efficiency of juvenile herring.     

Frisk et al. (2011) used a different approach to determine how much production 

was gained due to salt marsh restoration activities within the Delaware Bay.  During a 

seven-year time period, restoration activities led to a 3% increase in the biomass of salt 

marshes within their study system, the effects of which were captured in their base 

model.  They then compared this base scenario to one where restoration activities were 

presumed not to have occurred (the salt marsh biomass was reduced by 3% from the base 

scenario over the same time period).  Instead of using the mediation functions to simulate 

the indirect effects of salt marsh on trophic interactions, the authors created a forcing 

function that was applied to the two groups in their model that were marsh dependent 

(meiofauna and macrofauna).  Forcing functions are used to directly relate interactions 

between two groups; in this case reductions in salt marsh biomass is assumed to lead to 

direct reductions in marsh macrofaunal or meiofaunal biomass.  The differences in annual 

system biomass between the base and non-restored scenarios can then be compared to see 

how much production would be forgone if restoration had not occurred. 

 

Discussion  

 When considering how best to incorporate non-trophic impacts into whole 

ecosystem models, the choice of a particular methodology will often depend on the data 

available and the desired output.  The comparison of multiple static Ecopath models is 

warranted if time series data is not available or if models of different ecosystem states are 
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temporally or spatially distinct.  The Ecosystem Network Analysis plug-in (ENA) tools 

can then be used to compare indices between states.  When time series data is available to 

either fit or force the model, utilizing the dynamic Ecosim module is the best course.  

Multiple scenarios that start from the same base model can be evaluated, and recent 

improvements to the EwE software allow users to run the ENA tools by time step for 

Ecosim runs. By incorporating direct effects external to the model (forcing functions) and 

indirect effects internal to the model (mediation functions) through Ecosim, the EwE 

package is able to explore a broad suite of anthropogenic impacts to coastal ecosystems, 

extending the utility of this software for researchers and resource managers.  The 

potential effects of climate change, habitat modifications, watershed development, and 

other coastal stressors on aquatic ecosystems can be investigated, with the goal of 

offering strategic advice for management.     

 The method(s) selected to include biogeochemical concerns into trophic models 

also requires careful consideration. The studies discussed in the previous sections 

consisted of one-way, off-line linkages. Under this relatively straightforward coupling 

scheme, however, there are temporal and spatial mismatches between the models that 

must be accounted for (Libralato and Solidaro 2009).  BGMs typically have time-steps 

that operate on the order of hours or days with spatially detailed 3-D resolution, whereas 

EwE models represent a single 2-D area and have monthly time-steps.  Thus BGM 

outputs must be spatially and temporally aggregated before they can be utilized as an 

EwE input, a task which has been successfully accomplished in all of the examples 

described above.  An alternative modular approach has been suggested by Libralato and 

Solidaro (2009), where a trophic model and a BGM of the same system are run 
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separately, with the outputs of the BGM model used to constrain the trajectory of the 

trophic model.  While this approach moves the trophic model closer to a true “end-to-

end” model, it requires the re-parameterization of the trophic model to include 

components of the BGM domain (nutrient pools and fluxes) and can cause some tools in 

the EwE software to provide inaccurate estimates, especially those based on trophic level 

calculations (Libralato and Solidaro 2009).  A move towards a more fully integrated 

approach, where the models exchange information directly in real time, is currently 

underway and has shown a number of promising results (Coll et al. 2015). 

 While we have highlighted two methods for assessing the impacts of salinity on 

food webs using the EwE software, it is likely that the use of the forcing function linked 

to salinity (or temperature, O2, pH, etc.) tolerances will gain favor as the routine for 

entering the optima and tolerance ranges is now a standard part of the software package. 

This methodology allows for the evaluation of both the direct effects of salinity changes 

on fitness as well as indirect effects through trophic interactions.  Given concerns over 

warming waters associated with climate change and already observed shifts in oceanic 

species distributions (Nye et al. 2009, Pinsky et al. 2013) these features are likely to 

become an important part of a resource manager’s toolkit.  

 One of the features shared across the methodologies for incorporating non-trophic 

parameters is the use of forcing and/or mediation functions and response curves to relate 

the parameter of interest to some aspect of foraging capacity. These functions can be 

empirically defined, such as the relationship between optimum salinity and feeding rate 

(de Mutsert, Cowan, and Walters 2012), or they can be hypothetical, like the effects of 

eelgrass on predator-prey relationship (Plummer et al. 2013).  Mediation functions by 
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their very nature are difficult to quantify through field or laboratory experiments and 

often have to be estimated (Harvey 2014).  The shape and initial state of the function play 

a role in how the model responds, with a series of simulations suggesting that in the 

absence of knowledge to the contrary a hyperbolic curve may be the most conservative 

approach (Harvey 2014).  

  A recent development in the Ecospace module of the EwE software package is the 

development of a habitat foraging capacity model, which provides users the ability to 

spatially drive the foraging capacity of species using a variety of physical, environmental, 

and oceanographic factors (Christensen et al. 2014).  By utilizing geographic information 

systems (GIS) technology, the output from water quality models, biogeochemical models, 

or other spatial or temporal varying data can be converted into a spatial-temporal format 

that can be brought into Ecospace (Figure 2, Steenbeek et al. 2013).  An environmental 

preference function related to each factor can be developed for each species/group in the 

trophic model, which are then used to define the amount of preferred habitat (Christensen 

et al. 2014).  The amount of preferred habitat available is then used to drive foraging 

interactions, with the amount of available habitat, and thus foraging interactions, 

potentially varying at each time step.  While some degree of data aggregation may still be 

necessary, the ability to vary non-trophic factors on a biologically relevant spatial and 

temporal scale commensurate with trophic interactions increases the usefulness of these 

models for managers.  An application of this new habitat foraging capacity model was 

part of an assessment of potential environmental impacts associated with the proposed 

expansion of the Port of Metro Vancouver (Port of Metro Vancouver 2015).  Of course 

increasing the spatial resolution of the trophic model and incorporating environmental 
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factors requires the user to assume knowledge of how different habitats structure 

predator-prey interactions.  

 

Conclusion 

 As management of natural resources evolves from single species to whole 

ecosystem considerations the models being used must have the ability to incorporate 

biological, physical, and environmental factors.  Eutrophication, changes in salinity, and 

habitat alterations have been incorporated into a popular trophic model (EwE) through 

the comparison of multiple Ecopath models, by one-way indirect linkages between 

biogeochemical models and Ecosim accompanied by forcing and mediation functions, via 

new routines built into the EwE software, and through a recently developed spatial-

temporal framework and habitat capacity model.  The variety of approaches discussed 

here provides managers with a suite of options that can be used to complement their 

existing models as they seek to understand the impacts of human interactions with the 

natural environment.  
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Table 1: Published models that include methods for incorporating non-trophic effects into 

Ecopath with Ecosim and Ecospace models. 
 

Citation Parameter of 

interest 

Location Method 

Patrício and 

Marques 2006 

Eutrophication Mondego estuary, 

Portugal 

Multiple model 

states 

Libralato and 

Solidoro 2009 

Eutrophication Venice Lagoon, 

Italy 

Modular modelling 

Ma et al. 2010 Eutrophication Chesapeake Bay, 

USA 

Linked models 

Cerco, Tillman, and 

Hagy 2010 

Eutrophication Chesapeake Bay, 

USA 

Linked models 

Baeta et al. 2011 Eutrophication Mondego estuary, 

Portugal 

Multiple model 

states 

Niiranen et al. 2013 Eutrophication Baltic Sea Linked models, 

forcing functions 

Yu-Chun, 

Adlerstein, and 

Rutherford 2014 

Eutrophication Saginaw Bay, 

USA 

Multiple scenarios 

de Mutsert, Cowan, 

and Walters 2012 

Salinity Louisiana estuary, 

USA 

Forcing functions 

Prado et al. 2013 Salinity Ebro Delta, Spain Multiple model 

states 

Frisk et al. 2011 Habitat restoration Delaware Bay, 

USA 

Multiple scenarios, 

forcing functions 

Rogers and Allen 

2012 

Habitat restoration Florida Lake, USA Multiple scenarios, 

mediation functions 

Plummer et al. 

2013 

Habitat restoration Puget Sound, USA Multiple scenarios, 

mediation functions 
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Figure 1- Conceptual schematic of one and two-way linkages between Ecopath with 

Ecosim (EwE) and biogeochemical models. 
 

 
 

  



130 

 

 

 

1
3

0
 

Figure 2 - Conceptual overview of the spatial–temporal data framework, which provides 

external GIS data to Ecospace model initialization and at runtime, and provides Ecospace 

results in spatial data formats when the model executes. Courtesy of Jeroen Steenbeek. 
 

 
 

  



131 

 

 

 

1
3

1
 

CHAPTER IV: Quantitative vs. semi-quantitative ecosystem models comparing 

alternative representations of an estuarine ecosystem 

 

James M. Vasslides1,2,*and Olaf P. Jensen3 

 

* corresponding author 

1Barnegat Bay Partnership 

PO Box 2001 

Toms River, NJ 08754-2001 

jvasslides@ocean.edu 

p:732-917-8107 

 

2Graduate Program in Ecology and Evolution 

Department of Marine and Coastal Science 

Rutgers University 

71 Dudley Rd. 

New Brunswick, NJ 08901 

 

3Department of Marine and Coastal Science 

Rutgers University 

71 Dudley Rd. 

New Brunswick, NJ 08901 

 

mailto:jvasslides@ocean.edu


132 

 

 

 

1
3

2
 

Abstract: As the management of marine and coastal resources continues to move towards 

an ecosystem-based management approach, there is a need for tools that can match the 

scope and complexity of the systems in question. Herein we review the strengths and 

weaknesses of two types of models that can be used to understand ecosystem level 

changes: Ecopath with Ecosim, a whole-ecosystem trophic-based quantitative model, and 

a semi-quantitative Fuzzy Cognitive Mapping conceptual model developed through 

interviews with  local stakeholders.  We also compared the modeled results of reducing 

nutrient loads to a temperate estuary to understand how the different approaches can be 

best utilized to meet the needs of resource managers.  Both models responded to the 

nutrient load reduction in a similar fashion despite differences in data sources, 

approaches, and methodology.  To gain the largest benefit from the strengths of both 

models we recommend using them in combination, using the Fuzzy Cognitive Mapping 

model to scope out critical components and interactions to be included in the Ecopath 

with Ecosim model.  That model can then be parameterized and “what-if” scenarios run 

to ascertain the patterns and magnitudes of changes that can be expected.  

 

 

Keywords:  ecosystem based management, fuzzy cognitive mapping, Ecopath with 

Ecosim, Barnegat Bay 
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Introduction 

 As human pressure on the planet’s ecosystems continues to increase, the 

management paradigms that previously served as a framework for ensuring sustainability 

have not been able to prevent widespread degradation and losses in ecosystem services 

(MA 2005).  The failure of these management structures, which typically addressed 

environmental impacts using a single sector-based approach (Pew Oceans Commission 

2003), has led to the development of a new management regime: ecosystem-based 

management (EBM) (Ecosystem Principals Advisory Panel 1998, U.S. Commission on 

Ocean Policy 2004).  EBM is an integrated approach that considers the interaction 

between ecosystem components and the cumulative impacts of a full range of 

management activities (Rosenberg and McLeod 2005).  This broad definition of EBM 

describes a gradient of interconnectivity from a focus on multi-species interactions across 

a range of trophic levels (including some abiotic factors) to a comprehensive view that 

includes a range of human impacts (Hilborn 2011).  

 In the context of the management of marine and coastal resources, a number of 

quantitative modeling approaches, varying in their complexity and data requirements 

(Plagányi 2007), have been developed to evaluate EBM strategies. A suite of models 

known as Minimum Realistic Models (MRM - Punt and Butterworth 1995) extend single-

species assessment to include those species most likely to have important interactions 

with the species of interest (e.g. Extended Single-species Assessment Models (ESAM - 

Livingston and Methot 1998) and Multi-species Virtual Population Analysis (MSVPA - 

Pope 1991),), while others attempt to capture all trophic levels in the ecosystem as well 

as important physical forces (e.g. Ecopath with Ecosim - Christensen and Walters 2004, 
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ATLANTIS - Fulton and Smith 2004).  By incorporating a wide range of important biotic 

and abiotic variables, multi-trophic level quantitative models are able to replicate historic 

changes in natural resources of interest.  A “fitted” model can then be used to provide 

formal management advice (Fulton et al. 2007), investigate the broad-scale effects of 

different management strategies (Christensen 2013), understand how ecosystem 

evolution interacts with adaptive management strategies (Coll et al. 2015), and identify 

research needs by highlighting data gaps or areas of high uncertainty (Christensen and 

Walters 2004). While they are powerful tools, quantitative ecosystem models have high 

data requirements, which  can be an impediment to their use in systems without robust 

sampling programs (Fulton et al. 2003). Furthermore, the models incorporate non-trophic 

interactions through relationships that may be difficult to quantify at appropriate scales, 

making the outcomes of the model sensitive to the modeler’s assumptions (Chapter 3, 

Harvey 2014). The formal structure of model development and underlying complex 

theories can also discourage the participation of non-modelers, limiting the inclusion of 

local ecological knowledge and early buy-in by stakeholders, which are crucial to 

acceptance of management recommendations coming from the model (Raymond et al. 

2010). 

The shift towards EBM has also given rise to a number of qualitative and semi-

quantitative models that are designed to incorporate complexity and institutional 

cooperation into decision-making (Levin et al. 2009).  An example useful to the realm of 

ecosystem-based management is Fuzzy Cognitive Mapping (FCM, Axelrod 1976), a 

framework that has been used to identify critical links between components of  aquatic 

ecosystems using a visual stakeholder-driven approach (Özesmi and Özesmi 2003, Hobbs 
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et al 2002, Gray et al 2012, Meliadou et al. 2012, Kontogianni et al. 2012a).  FCMs are 

conceptual models that describe how a system operates based on key system components 

and their causal relationships as understood by an observer (Kosko 1991).  The 

components can be tangible aspects of the environment (e.g. a biotic feature such as fish 

or an abiotic factor such as salinity) or an abstract concept such as aesthetic value. This 

dynamic model is a useful tool for understanding how the identified key structures and 

drivers may respond to an ever-changing environment. Because an FCM is based upon an 

individual’s conceptual understanding of a system, its parameterization is not dependent 

upon the availability of biotic and abiotic data (Özesmi and Özesmi 2004).  The semi-

quantitative nature of the model is adept at handling traditional and local ecological 

knowledge, which allows for the inclusion of non-technically trained stakeholders in the 

process (Gray et al. 2014), broadening its appeal for use in management applications 

(NRC 2008).    

Despite their flexibility, there are several  drawbacks to using an FCM to 

understand changes in an ecosystem.  Foremost among these is that the dynamic nature of 

the models is both implicit and vague.  For example, the time between a change in one 

model component and a response in another is not defined.  Thus, a model time step must 

be defined a priori and be implicitly considered during model construction (Carvalho 

2013).  Additionally, changes to the system are unit-less and relative, i.e. parameter A 

increases a great deal compared to parameter B, but the real-world expression of that 

change is not quantifiable (Özesmi and Özesmi 2004). Lastly, FCMs do not incorporate 

non-monotonic relationships well (Vasslides and Jensen 2015), and these are often 

present in ecological systems.           
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Both quantitative and semi-quantitative models can be used in developing 

ecosystem-based management approaches to natural resources as they are capable of 

“what-if” scenario development and predictions.  However, these modeling approaches 

have not heretofore been explicitly compared in the same system. In this study, we 

compared the results of a nutrient reduction scenario run in each model applied to the 

same estuarine system, Barnegat Bay, New Jersey, to understand how the different 

approaches can be best utilized to meet the needs of EBM.  Will the results of the FCM, 

which is based on stakeholder’s perceptions and intuitions, be comparable to the model 

driven by scientific data collection and analysis?  If differences between the models 

appear, are they in components where we have a great deal of confidence in the 

quantitative model, and thus , by implication, stakeholder perceptions do not match what 

is occurring in the ecosystem? Alternatively, might the relatively rigid structure of the 

quantitative model fail to capture important dynamics of the system?  More practically, if  

there are no substantial differences between the models, are FCMs sufficient for at least 

the initial stages of EBM? 

 

Methodology 

Study area 

Barnegat Bay is a temperate lagoonal estuary located in central New Jersey, USA 

(Figure 1).  The estuary stretches nearly 70 km north to south and ranges from 2-6 km in 

width with a total surface area of 279 km2 including the tidal portions of its tributaries 

(Kennish 2001).  The surrounding 1,730 km2 watershed is home to an estimated 580,000 

year round residents (US Census Bureau 2012) with a summer population that swells to 
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over 1 million with the influx of tourists.  Land use is a mix of urban and suburban uses 

in the northeast and along the barrier islands, grading to more sparsely populated forested 

areas to the south and west (Kennish 2001).  Portions of the E.B. Forsythe National 

Wildlife Refuge and the Pinelands National Reserve are located along the eastern and 

western sides of the watershed, respectively.  The blue crab fishery is the main 

commercial fishery within the bay, though there are still remnants of a historic hard clam 

fishery that was highly productive in the past (Bricelj et al. 2012).  Commercial fishing, 

once an important source of income for local baymen, is now a minor component of the 

regional economy (Kennish 2001).  Barnegat Bay is a popular destination for recreational 

fishing, crabbing, boating, and sailing. The bay suffers from symptoms of eutrophication, 

mainly due to nutrient enrichment through non-point source pollution (Bricker et al. 

2007).  

 

Ecopath with Ecosim Model 

 We constructed a trophic ecosystem model of Barnegat Bay utilizing the Ecopath 

with Ecosim (EwE) software package.  Ecopath creates a mass-balanced model of the 

components and interactions within an ecosystem at a single point in time by trophically 

linking biomass pools (Christensen and Walters 2004). Biomass pools can be individual 

species, ontogenetic stages of a species, or a group of species representing a particular 

guild.  Input parameters required for each biomass pool include diet composition, 

biomass accumulation, net migration, catch, and three of the following four parameters: 

biomass (B), production/biomass (P/B), consumption/biomass (Q/B), and Ecotrophic 

Efficiency (EE) which is the fraction of the production consumed or harvested within the 
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system. These parameters are then utilized in two master equations.  The first equation 

describes the production term for each group: 

 

Production = catch + predation + net migration + biomass accumulation + other 

mortality 

 

The second equation balances the energy flows of a biomass pool: 

 

Consumption = production + respiration + unassimilated food 

 

The balanced Ecopath parameters are then used to initialize the time-dynamic 

module called Ecosim.  The mass-balanced linear equations are re-expressed as coupled 

differential equations and are used by the Ecosim module to simulate changes to the 

biomass pools over time (Christensen and Walters, 2004).  Fishing effort or fishing 

mortality time series data are used to drive the model and the resulting changes in 

biomass are compared to reference time-series data.  Parameters primarily associated 

with predator-prey interactions are adjusted iteratively to fit the model to the data with a 

goodness of fit measure (sum of squares differences) used to compare the model runs.    

The Barnegat Bay Ecopath Model (Chapter 2) contains 27 distinct biomass 

groups including 12 fish species, 5 benthic invertebrate groups, 2 gelatinous zooplankton 

species, 3 planktonic groups, 2 benthic vegetation groups, 2 shorebird groups, and a 

detrital pool (Figure 2).  The model was constructed for 1981, the earliest year for which 

reliable harvest information for many of the fish groups was available from the National 
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Oceanic and Atmospheric Administration’s Marine Recreational Fishing Survey and 

Marine Recreational Information Program (NOAA 2015a) and Fisheries Statistics 

Divisions (NOAA 2015b). Data used to parameterize the model were a combination of 

Barnegat Bay-specific data (fish diets, selected species biomasses and vital rates, 

harvest), data from similar systems (vital rates, invertebrate diets), and derived  values 

from solving the mass balance equations (biomasses). We utilized the PREBAL routine 

(Link 2010) to identify issues in model structure and data quality associated with the 

initial input parameter values prior to balancing the model.  A “pedigree” was assigned to 

each input parameter for each biomass group based on the source of the data (and thus the 

degree of uncertainty associated with it). During the model balancing routine, we 

changed the values for those parameters with the lowest pedigree (highest degree of 

uncertainty) first. 

Once the Ecopath model was balanced recreational and commercial fisheries 

time-series catch data were used to drive the model, and fishery-independent data, 

primarily research surveys, were used to assess the model fit (Chapter 2). The parameters 

influencing predator-prey interactions in the model (Walters et al. 2007) were adjusted 

for only those groups with time series data of at least 3 years in length.  In practice, 

adjustments to these parameters improves the model fit to data and helps explain some of 

the variability in the data. 

 

Fuzzy Cognitive Model 

We developed a community-based conceptual model of the Barnegat Bay 

utilizing information gathered during interviews of 42 local stakeholders, including 
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scientists, managers, environmental NGOs, and local residents (Vasslides and Jensen 

2016).  To construct an FCM the individual participants were asked to identify the 

components of the Barnegat Bay social-ecological system (i.e. biotic features, abiotic 

features, or abstract concepts) that they believed were important to the function of the 

ecosystem and link these components with weighted, directional arrows (Papageorgiou 

and Kontogianni 2012).  The weighting represents the amount of influence (positive or 

negative) that one component has on another, and can range from -1 to +1 (Gray et al. 

2014).  The individual maps were translated into square adjacency matrices, and the 

number of components were reduced by subjectively combining less frequently 

mentioned components into larger categories based on shared characteristics (Harary et 

al. 1965).  The final step was to combine the individual matrices into a community 

conceptual model through matrix addition. The community conceptual model contained 

84 components connected through 1071 linkages (Figure 3).    

 

Scenario modeling 

 For systems experiencing the negative effects of eutrophication, one of the main 

restoration efforts is typically the reduction of nutrient loads reaching the ecosystem.  We 

compared the potential effects of this strategy on the biotic community of Barnegat Bay 

as represented in the EwE and FCM models.  We constructed two scenarios for both the 

EwE and FCM models; a no-change scenario where the nutrient level remains at the 2013 

value through the duration of the simulation, and a 40% reduction in nutrients from the 

2013 value beginning in 2014.      
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To develop the scenarios in EwE we began with the fitted Ecosim model and 

extended it beyond the current timeframe to make predictions about the future state of the 

ecosystem under both the no change and reduced nutrient loading strategies.  Changes in 

nutrient loading can be incorporated in Ecosim through a nutrient loading forcing 

function (Christensen et al 2008). Like other forcing functions in Ecosim, this function 

specifies the change in the relative concentration of nutrients through time, and the shape 

of the function is specified by the user. The total nutrients are partitioned between 

primary producer biomass (in the case of this model: phytoplankton, benthic algae, and 

submerged aquatic vegetation (SAV)) and the pool of free nutrients in the environment. 

The primary production rates for each group are linked to the free nutrient concentrations 

via Michaelis-Menten uptake relationships, where the P/B value for a group increases 

with the increases in the available nutrient concentration up to a maximum P/B value for 

that group (P/Bmax). The P/Bmax value sets the sensitivity of the primary producer group to 

nutrient levels, with a higher P/Bmax value causing greater sensitivity to changes in 

nutrient concentration. The base proportion of free nutrients (Nf) can be used to increase 

the strength of nutrient limitation, with lower values causing greater competition among 

the primary producer groups.   

P/Bmax values for each of the primary producer groups were estimated from 

available Ecopath-Ecosim models of other coastal systems. Specifically, P/Bmax values 

were estimated as the ratio of the highest P/B value for that group observed in any 

Ecopath-Ecosim model to the actual P/B value used in this model. P/Bmax values were 

1.5625, 1.76, and 2.0 for phytoplankton, SAV, and benthic algae, respectively. The base 
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proportion of free nutrients (Nf) was kept at its default value of 1.0, which assumes that 

all nutrients not bound in biomass are freely available for uptake by primary producers.   

We created a nutrient forcing function using total nitrogen loads for Barnegat Bay 

for 1989-2011 (Baker et al. 2014), with total nitrogen loads from 1981-1988 set at the 

1989 value and 2012-2013 set at the 2011 value for lack of other data (Figure 4a). For the 

baseline scenario the 2013 nutrient values were maintained through the remained of the 

simulation. Under the nutrient reduction scenario the 40% decrease in nutrient loading 

occurred linearly from 2014 to 2018, and the target nutrient loading level obtained in 

2018 was maintained for the remainder of the simulation.   

In addition to the nutrient forcing function we developed a forcing function for 

SAV based on the relationship between seagrass above-ground biomass and loading of 

total nitrogen found in Kennish et al. (2014).  When applied throughout the simulation 

period, seagrass biomass fluctuated inversely to total nitrogen load, with the 2013 

biomass greater than the initial (1981) biomass, a result we know to be inaccurate 

(Kennish et al. 2014).  In order to maintain the known decrease in SAV biomass during 

the 1981-2013 timeframe, yet capture the anticipated increase in SAV associated with a 

reduction in nutrients, we combined the new SAV forcing function with the SAV forcing 

function from the fitted model run.  The forcing function developed for the fitted model 

was used prior to 2014 and the empirical relationship was applied from 2014 forward 

(Figure 4b).   

Both the baseline and nutrient reduction simulations were extended past 2018 by 

the number of iterations it took for the FCM model to reach a stable state. The percent 
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change in the final biomass of each group between the nutrient reduction scenario and the 

baseline scenario was calculated to ascertain the effects of reducing the nutrient load.   

To determine the effects of nutrient reductions within the FCM model, we first 

calculated the values of each component of the community map under the no change 

scenario.  To generate these values, the adjacency matrix of the community map was 

multiplied by an initial steady state vector (a value of 1 for each element of the vector).  

The resulting vector was then subject to transformation using a logistic expression (1/(1 + 

e−1×x)) to bound the results in the interval [0,1].  This new vector was then multiplied by 

the original adjacency matrix and again subject to the logistic function, repeating these 

steps until the values reach a steady state, where there is no change between the two most 

recent vectors (Kosko 1987).  We simulated a reduction in nutrients through the same 

process, but this time the value of the “nutrients” component in the vector was 

maintained at 0.6 in each time step.  The percent change between the values of the final 

vector in the nutrient reduction scenario compared to the final baseline vector describes 

the relative change to the conceptual system given the framework provided by the 

community map.  

For the purposes of inter-model comparisons we focused on the responses of 

those biotic components (FCM) or biomass groups (EwE) that are shared between the 

models.  Because of the nature of the FCM process some components (i.e. fish) are fairly 

generic and contain multiple EwE biomass groups while other components are species 

specific and match directly between models. All EwE biomass groups are represented in 

the FCM with the exception of benthic algae and detritus, and all of the biotic FCM 
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components are in the EwE model, although a generic shellfish group is used in the FCM 

model and  includes non-harvested species (ribbed and blue mussels) (Table 1).      

 

Results  

 While there were differences in the responses of some individual groups to a 

reduction in nutrient load between the EwE and FCM models of the Barnegat Bay 

ecosystem, key components of each model generally respond in similar fashion.  In the 

EwE model, submerged aquatic vegetation (SAV) had the largest positive response in 

biomass (2600%) to a reduction in nutrient loading, while non-piscivorous seabirds 

(191%), blue crab (90%), and amphipods (53%) all increased in biomass as well (Figure 

5).  All other groups had modest declines in biomass (<20%) with the exception of 

Atlantic croaker (90%) and Atlantic menhaden (57%), which both had slightly larger 

reductions.  

In the FCM model, seagrass had the largest positive response (0.25%) to the 

nutrient reduction scenario, followed by shellfish (0.06%), blue crab (0.03%), and fish 

(0.01%) (Figure 6).  Phytoplankton (0.17%), gelatinous zooplankton (0.04%), and 

benthic infauna (0.02%) all had negative responses to nutrient reductions in the FCM 

model.    

 

Discussion  

Despite the differences in data sources, approaches, and methodology, the two 

models have similar responses to a nutrient reduction scenario for many of the shared 

components. In both models seagrass/SAV had an overwhelmingly positive response to 
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the nutrient reduction scenario, which is a well-documented effect in other eutrophic 

estuaries (Moore et al 1996, Moore and Wetzel 2000, McGlathery et al 2007).  In the 

FCM model, stakeholders indicated that seagrass is negatively affected by increases in 

phytoplankton, which is driven by increased nutrients (Figure 2).  However, the 

stakeholders also created a direct negative link between nutrients and seagrass, 

suggesting an alternative, undefined pathway.  This construction is mirrored in the SAV 

forcing function applied in the EwE model (Figure 4a), where the known cumulative 

effects of nutrient enrichment on seagrasses (shading due to phytoplankton and 

macroalgal blooms and increased epiphyte loading) is undifferentiated.  That the models 

both predicted similar results through different mechanisms validates the inclusion of the 

forcing factor in the EwE model as well as its general shape. 

The differences between the models’ results appear to be mainly driven by how 

they handle non-trophic interactions rather than by any direct differences in how they  

characterize the same trophic interactions.  For example, the FCM model includes a 

positive interaction between seagrass and the fish, blue crab, and hard clam components 

from a beneficial habitat standpoint (Heck et al. 2003, Jackson et al. 2001, Tanner 2005).  

In this EwE model, interactions between biomass groups and SAV are limited to 

consumption of seagrass directly or through the detrital pathway. As seagrass increases in 

both models, fish, blue crabs, and hard clams in the FCM model respond positively due to 

their associations with seagrass beds, while in the EwE model hard clam biomass 

declines, as does the biomass for most fish species, despite the known nursery benefits of 

seagrass habitat.  Blue crab biomass in the EwE model does increase, though this is 

driven solely by trophic interactions.  While adding a mediation function that reduces a 
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blue crab predators’ hunting effectiveness with an increase in seagrass biomass could be 

used to model this non-trophic effect of SAV on blue crab  (Ma et al 2010), the 

development and use of mediation functions in EwE requires careful consideration as 

they are often difficult to define (Harvey 2014).  

The differences in the form of the models’ inputs and outputs present some 

challenges in comparing the results.  The biomass groups in our EwE model are more 

taxa specific as compared to the general categories in the FCM model.  Because the FCM 

model was designed to understand the Barnegat Bay social-ecological system as a whole, 

the stakeholders identified 346 unique variables that were subsequently aggregated into 

84 categories for further analysis (Vasslides and Jensen 2015).  A number of specific fish 

taxa were mentioned, though not all of those present in the EwE model.  Because all of 

the fish biomass groups responded to the nutrient reduction scenario in a similar manner 

(decrease in biomass) the comparison to the broader FCM category was still valid.  

Alternative methods of generating FCMs, such as providing a set list of components to 

stakeholders (Radomski and Goeman 1996) or having stakeholders develop their 

component list in a group setting (Hobbs et al 2002), may allow for more taxa specific 

comparisons.   

The unit of measure is also different between the FCM and EwE models which 

presents a challenge to direct comparisons between the model results. The EwE model 

measures biomass for each group in t/km2, while the FCM model utilizes a unitless 

expression of component size.  In both models it is possible to calculate the percent 

change in the value of the group/component under the nutrient scenario to a baseline (no 

change) scenario.  This allows for the comparison of the patterns in the relative and 
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directional response between models but not in the absolute value of the response.  For 

informing EBM actions at a broad scale (e.g. understanding which species are the 

“winners and losers” in a given scenario) the patterns and relative magnitude of changes 

may often be sufficient.       

  

Conclusion 

The similarity in results between the FCM model, which is based on stakeholder’s 

perceptions, and those of the EwE model, driven by scientific data collection, in this 

study suggests that they can both be useful in advancing ecosystem-based management 

practices. For ecosystems in which limited research-derived data or funding is available, 

a stakeholder-based FCM modeling approach can be used to understand the patterns and 

relative magnitude of changes that can be expected given proposed management actions.  

A more powerful approach would be to use the two model types in tandem.  A FCM 

model could first be developed, scoping out critical components and interactions to be 

included in an EwE model. The FCM model could also be used to identify non-trophic 

interactions of importance that would require the development of mediation functions.  

Once an EwE model is developed, the results of scenario runs in the two models can be 

compared, as done here.  Examining differences in model outcomes can illuminate future 

research needs  as well as education and outreach priorities.  
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Table 1: Relationship between biomass groups and components in the EwE 

and FCM models. 
Biomass group (EwE) Component (FCM) 

Piscivorous seabirds Birds 

Non-piscivorous seabirds Birds 

Weakfish Fish 

Striped bass Fish 

Summer flounder Fish 

Bluefish Fish 

Winter flounder Fish 

Atlantic silversides Fish 

Atlantic croaker Fish 

Spot Fish 

Atlantic menhaden Fish 

River herring Fish 

Mummichog Fish 

Bay anchovy Fish 

Benthic infauna/epifauna Benthic infauna 

Amphipods Benthic infauna 

Blue crab Blue crab 

Hard clams Hard clams 

Oyster Oyster 

- Shellfish (other than hard clams and oysters) 

Copepods Zooplankton 

Microzooplankton Zooplankton 

Sea nettles Gelatinous zooplankton 

Ctenophores Gelatinous zooplankton 

Benthic algae - 

Phytoplankton Phytoplankton 

SAV Seagrass 

Detritus - 
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Figure 1: Map of the Barnegat Bay estuary and watershed. 
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Figure 2: Barnegat Bay Ecosystem Model for 1981 as developed in Ecopath with Ecosim (EwE).  Numbered horizontal lines indicate 

trophic level and the size of the circle indicates relative biomass. 
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Figure 3: A subset of the Fuzzy Cognitive Map community model for the Barnegat Bay that includes the corresponding components of 

the Barnegat Bay Ecosystem Model.  Node size is related to centrality score (importance), solid lines are positive interactions, and 

dotted lines are negative interactions. 
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Figure 4: The forcing functions developed for the EwE nutrient reduction scenario; a) a 

40% reduction in nitrogen loading after 2013, and b) seagrass biomass. 
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Figure 5: Percent change in biomass for each group in the Barnegat Bay EwE model 

compared to the baseline scenario for a 40% reduction in nutrient load.  
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Figure 6: Response of the Barnegat Bay FCM community model to a reduction in 

nutrient load as compared to the baseline scenario.  
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CONCLUSION 

As human populations in coastal zones throughout the world continue to grow and 

place increase pressure on these ecosystems, resource managers will have to develop 

novel paradigms and tools to support a variety of uses.  These new approaches will have 

to integrate human and natural systems if we are to understand how humans and the 

environment interact, and how human decisions are made within the context of those 

interactions. The work presented in this dissertation focuses on how two different, but 

potentially compatible, modelling techniques can be used to support an ecosystem-based 

approach to managing estuarine resources. 

Semi-quantitative Fuzzy Cognitive Mapping conceptual models can provide 

valuable insight into how ecosystem functioning is perceived by stakeholders involved in 

the management process.  Despite the differences in the way they have accumulated their 

knowledge of the estuarine ecosystem, different stakeholder groups (scientists, managers, 

NGOs, locals) shared an understanding of the important components of this social-

ecological system.  However, the connections between these key components and the rest 

of the system varied depending upon the particular interests of the group.  From an 

ecosystem-based management perspective, understanding where the interests of 

stakeholder groups align provides a starting point for building consensus, which is critical 

in obtaining buy-in for management actions.  Conversely, seeing where the models 

diverge provides insight into the mindset of stakeholder groups and offers a focal area for 

future research or education efforts.  

By evaluating a management scenario utilizing a quantitative, trophic-based 

“whole ecosystem” model we have shown that indirect effects can have a large, and 
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potentially unanticipated, impact on the outcome of management activities. The results of 

the modeled scenario provided further evidence of the importance of indirect effects 

mediated through trophic interactions; effects which would not be seen in the single-

species models traditionally used in resource management.  In fact, for some groups in 

our model the cumulative impacts of the indirect trophic effects was larger, and in the 

opposite direction, of the direct impacts of the management activity.  Thus management 

actions need to take a holistic, ecosystem-wide view of their impacts or they may not 

meet their stated goals, and in fact may prove to be counterproductive. 

Semi-quantitative models can provide similar responses in magnitude and 

direction to those of quantitative models when evaluating potential management actions, 

and therefore can be useful in situations where research-derived data is limited.  In data-

poor situations local ecological knowledge, collected in a stakeholder-based conceptual 

modelling framework, can be used to understand the patterns and relative magnitude of 

changes to an ecosystem that can be expected given proposed management actions.  The 

two modelling techniques can also be used in a collaborative approach, where the 

strengths of each model is maximized.  

 

      


