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ABSTRACT OF THE DISSERTATION

Kernel Learning and Applications in Wireless Localization

by Qiaojun Wang

Dissertation Director: Ivan Marsic

Recent advances in mobile and pervasive computing have enabled accurate location

tracking of users wearing wireless devices indoors, where GPS isn’t available. Many

indoor WiFi location estimation techniques use received radio signal strength (RSS)

values from various access points to track users. In recent years, machine learning

techniques have been applied to this application and demonstrated the effectiveness

for tracking mobile devices. However, many existing systems suffer from the following

problems: (1) lack of labeled data, and (2) non-stationary data distribution. In this

thesis, we will describe our kernel learning-based method for solving the these chal-

lenges. First, since it can be expensive to collect and label RSS training data in large

and complex buildings, we propose a semi-supervised learning approach to learn label-

aware base kernels, which are shown to be better aligned to the target comparing to

traditional base kernels spanned by the eigenvectors of the kernel matrix (or the graph

Laplacian); second, since the data distribution changes constantly as devices change

and over different time periods, we propose a transfer learning approach in Reproduc-

ing Kernel Hilbert Space(RKHS) to adapt the data distribution changes. Experimental

results on real-world benchmark data demonstrate the encouraging performance of our

proposed schemes.
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Chapter 1

Introduction

1.1 Indoor Localization

1.1.1 Background

Recent advances in pervasive computing and mobile technology have enabled accurate

location and activity tracking of users wearing wireless devices indoors, where GPS isn’t

available. A practical way to do this is by leveraging the WiFi signals that a mobile

client receives from various access points. Many indoor location estimation techniques

use received radio signal strength (RSS) values and radio signal propagation models to

track users.

As an example, Figure 1.1[57] shows an indoor 802.11 wireless environment of size

about 60m by 50m. Five Access Points (AP1,...,AP5) are set up in the environment.

A user with an IBM T42 laptop that is equipped with an Intel Pro/2200BG internal

wireless card walks through the environment from the location A to F at time tA,...,tF

. Then, six signal vectors are collected, each of which is 5-dimensional, as shown in

Figure 1.1. Note that the blank cells denote the missing values, which we can fill in

a small default value, e.g., 100dBm. The corresponding labels of the signal vectors

xtA,...,xtF are the 2D coordinates of the locations A,...,F in the building

We can abstract and classify different localization systems by what is carried in

the object. Typical models are receiver-oriented model, transmitter-oriented model,

transceiver-oriented model and non-intrusive model.[56]

The receiver-oriented model is shown in Figure 1.2 (a), in which the object carries

a receiver and receives the messages from different transmitters in the external infras-

tructure. The object can estimate its distances to these transmitters by measuring the
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(a) An indoor wireless environment exam-

ple.

(b) An example of signal vectors (unit:dBm)

Figure 1.1: An Example WiFi Localization Environment[57]

RSS values on received messages. Based on at least three different distance estima-

tions, the object computes its own location. The receiver-oriented model is a natural

extension of the GPS mechanism without using timing in-formation. It is mainly used

in 802.11-based localization systems, in which the object is usually a person carrying

a notebook computer or Personal Digital Assistant (PDA) with 802.11 card and the

transmitters are the access points

The transmitter-oriented model, as shown in Figure 1.2 (b), exchanges the roles of

transmitters and receivers in the receiver-oriented model. After receiving the messages

from the transmitter carried by the object, the receivers in the external infrastructure

estimate the distances to the object. By collecting these distance estimations, the ex-

ternal infrastructure computes the location of the object without involving the object in

computation. A common scenario for this model is the localization systems that employ

Active Radio Frequency Identification (RFID) technique. In RFID-based localization

systems, the object carries an active RFID tag periodically broadcasting messages, and

the RFID readers are deployed as the receivers. Compared with notebook computer

and PDA, a RFID tag has very weak computing capability so that the localization

computation must be handled by the external infrastructure

In the transceiver-oriented model shown in Figure 1.2 (c), an object acts both

as a transmitter and as a receiver. As the combination of the receiver-oriented and

transmitter-oriented model, the object not only estimates distance based on received
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messages, but also transmits messages so that other radios can estimate their distances

to the object. The common scenario for this model is sensor networks that are com-

monly dense-deployed without enough infrastructure support. On one side, an object

is hard to locate itself within its own neighborhood due to lacking of infra-structure

support. On the other side, the object can find many neighbor objects that have their

own distance estimation information. It can collaborate with its neighboring objects

to solve the localization problem. Furthermore, its neighboring objects may seek the

help from their own neighboring transceivers too. In other words, the collaboration

could involve of the objects that are multi-hop away. The model reflects the key idea

of sensor networks - the collaboration between networked sensor nodes.

In many scenarios such as security surveillance, it is inconvenient or even impossible

to require an object to carry a radio. This model, called non-intrusive model, is shown

Figure 1.2 (d). Visual tracking falls into this category. For example, multiple cameras

may be deployed to cover an interesting area. These camera have to work collaboratively

to track an object since each camera may just sense some part of the area.

(a) receiver-oriented model (b) transmitter-oriented model

(c) transceiver-oriented model (d) non-intrusive model

Figure 1.2: General Architecture of Tracking Systems [56]

Tracking wireless devices is a difficult task since radio signals usually attenuate in

a highly nonlinear and uncertain way in a complex environment where client devices



4

may be moving.

A large class of location estimation systems is based on Learning-based Models,

which employ machine learning techniques. Path loss, shadowing and multi-path are

caused by a complicated underlying process in a complex environment. When all these

factors are mixed together, they show a high-level of nonlinear and noisy patterns.

These patterns can be captured when sufficient empirical data are manually collected

at different locations or automatically by additional hardware. These methods need

less information about physical layout and network configuration. The input is usually

implicitly encoded into radio maps at different locations. In such cases, the locations of

access points are not needed. Typical pattern descriptions include histogram, mixture

of gaussian, kernel matrix, Akima Spline, or simply the mean value of signal strength

at different locations. With these algorithms the labels of access points need not be

known. Instead, they usually rely on models that are trained with RSS data collected

on a mobile device and are labeled with physical locations [53][44][4]. The training data

are usually collected offline.

However, on one hand, it is expensive to collect and label RSS training data in

a large building because it requires a human to walk with a mobile device, collecting

RSS values and recording ground locations. Moreover, RSS data is noisy owing to

the indoor environment multipath and shadow fading effects.Therefore, sufficient data

shall be collected to power algorithms for approximating the signal to location mapping

functions using K-Nearest-Neighbors [4], kernels [4], Bayesian filters [44] and Gaussian

processes [58]. A viable approach to compensate for the lack of labeled RSS training

data is to design a semi-supervised learning method, where both labeled and unlabeled

data are used to boost the learning performance.

On the other hand, RSS data distribution may not always be static over time or

across devices[27][93]. First, the data distribution may be a function of time, leaving it

difficult to apply a trained model to a new scenario at a different time period. Secondly,

the data distribution may be a function of client device, making the model trained

for one type of device (say Apple) to be invalid when applied to another device (say

Samsung). An example is shown in Figure 1.3[57]. As can be seen, the contours of the
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RSS values received from the same access point(AP) at different time periods are very

different. Hence, a transfer learning method, which aims to solve the problem when

the training data from a source domain and the test data from a target domain follow

different distributions or are represented in different feature spaces, is necessary.

(a) WiFi RSS received in T1 from two APs

(unit:dBm).

(b) WiFi RSS received in T2 from two APs

(unit:dBm).

Figure 1.3: Contours of RSS values over a 2-dimensional environment collected from the

same AP but in different time periods. Different colors denote different signal strength

values (unit:dBm). Note that the original signal strength values are non-positive (the

larger the stronger). Here, we shift them to positive values for visualization.[57]

State of the Art Technologies in Indoor WiFi Localization

The massive deployment of WLANs offers a promising solution for indoor localiza-

tion. Most of the existing WiFi localization solutions rely on received signal strength

(RSS) measurements, and can be divided into two main categories. One family of

the localization algorithms based on signal propagation model convert measured sig-

nal strength into distance information [50][65]. Propagation model based approaches

are widely used for location estimation due to their simplicity and efficiency. These

methods usually assume that access points are labeled, e.g., their locations are known.

They estimate the distance of the mobile devices relative to some fixed access points

based on signal strengths through models that predicts the signal propagation patterns

[65]. Researchers have also used Bayesian models to encode the signal propagation
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pattern [50] and infer the locations using Monte Carlo methods [82]. A drawback of

propagation-model-based methods is that these models may become inaccurate in a

complex domain.

On the other hand are those algorithms based on fingerprints[92, 71, 62, 47, 85].

These algorithms mainly consists of two parts, including offline establishment of loca-

tion fingerprint database and online positioning. At the stage of database establish-

ment, some appointed locations in the building are sampled. A collection of WiFi RSS

measurements will be recorded and considered as position fingerprint. At the stage of

online positioning, fingerprint information is collected around the position to be local-

ized. Compared with fingerprints in offline database by matching strategy, the position

whose fingerprint can attain the best match is chosen as the final estimated position.

Although the WiFi fingerprint-based localization technology needs to make fingerprint

database at the early stage, it can effectively avoid the influence of building structure.

Furthermore, fingerprint-based methods do not require that WiFi access points are

known beforehand.

Fingerprinting-based positioning algorithms using pattern recognition techniques

are deterministic and probabilistic, K-nearest-neighbor (KNN), artificial neural net-

works, Bayesian inference, support vector machine (SVM), or their combinations.

Different approaches using WiFi access points are studied from time to time. [60]

developed a functional application for a smartphone indoor/outdoor localization system

publicly available for download with a name called ”Locate Me.” It was developed for

mobile devices running Android OS and takes advantage of the GPS and WiFi modules

to acquire the location of a person. With this system, anybody can find their friends

wherever they are. The application sends the current location of the device to the

server where it is stored. From that moment on, all friends can access this position and

see it on the map. Google Maps Android API is used to represent the users’ location,

and it has two views available: road view and satellite view. This location system is

based on 4 different methods of localization, three for indoor environments and one for

outdoors. The fingerprint localization method is used for indoor location.

Indoor localization using WiFi based fingerprinting and trilateration techniques for
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location based service is presented by [12]. The paper combined two different WiFi ap-

proaches to locate a user in an indoor environment. The first method involves the use of

fingerprint matching to compare signal strength data received from nearby access points

(AP) by the user, to the reference data stored in the WiFi signal strength database.

The second approach uses distance-based trilateration approach using three known AP

coordinates detected in the user’s device to derive the position. The combination of the

two steps enhances the accuracy of the user position in an indoor environment allowing

location based services to be deployed more effectively in the indoor environment. An

improvement is necessary for finding the correct match for the fingerprinting method

with help of incorporating certain database correlation algorithms such as K-nearest-

neighbor or probabilistic like a hidden Markov model.

In [2], the authors design a multifloor indoor positioning system based on Bayesian

graphical models. In this paper, the author first studied the RSS properties that will

affect the overall accuracy of our model like a normal distribution of RSS, using RSS

in infer location, and multifloor effect. Markov chain Monte Carlo (MCMC) sampling

techniques are used. At the last stage, the author tested their model with four sets of

MCMC sampling techniques and compared their results with two well-known location

determination systems (RADAR and the Horus). The achieved accuracy is within 3m

in a multi-floor environment with a small amount of training points.

By using WiFi, it is possible to define the position of people or assets with good

accuracy. In [37], the authors proposed a novel positioning algorithm named predicted

K-nearest-neighbor (PKNN) which estimates the current position of amobile user not

only by using K found neighbors but also by utilizing its previous positions and speed.

In the first stage of the experiment, weighted K-nearest neighbors (WKNN) are used

for the position of the tag which is to be estimated. In the second stage, prediction is

done for the next probable displacement, based on previous user positions and speeds

of Wi-Fi tags. The performance of PKNN for indoor positioning has been evaluated by

the experimental test bed. By comparison with KNN, PKNN performs well by 33% or

at mean 1.3 meter improvement in error.
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A novel, information-theoretic approach is presented in [25] for building a WLAN-

based indoor positioning system based on the location fingerprinting system. The

proposed technique is based on principal component analysis (PCA) which transforms

received signal strength (RSS) into principal components (PCs) such that the infor-

mation of all access points (APs) is more efficiently utilized. Instead of selecting APs

for the positioning which was done by previous researchers, the proposed technique

changes the elements with a subset of PCs improvement of accuracy and reduces the

online computation. The comparison has been done with AP selection and the Horus

system. The proposed approach delivers a significantly improved accuracy. The results

show that the mean error is reduced by 33.75 percent and the complexity is decreased

by 40 percent.

[22] has been presented, using Dominant AP’s RSSI Localization (DARL) algorithm-

s. Using dual log model because of attenuation factor, the parameters are classified into

two parts. Firstly, DARL algorithm uses the strongest RSSI from an AP. Secondly, AP

trace-back algorithm was suggested as the method for updating the information of un-

known AP on the radio map. Optimal filtering system to the proposed algorithm is

needed for getting more increased accuracy.

Fingerprinting accuracy performance depends on the number of base stations and

the density of calibration points where the fingerprints are taken. Recorded RSSI varies

in time, even if there are no changes to the environment. In order to eliminate the

deviation of attenuation in the signal, the RSS values are to be averaged over a certain

time interval up to several minutes at each fingerprint location. [63] draw on active

user participation relying on the contribution of end users by marking their location

on a floor plan while recording the fingerprints. The author concludes from long-term

measurements over a period of two months that static radio maps cannot be used for

room identification even in modest dynamic environments and therefore recommends

dynamically adapting algorithms.

[1] proposed an indoor positioning algorithm called WiFi-based indoor (WBI) po-

sitioning algorithm. WBI is based on WiFi received signal strength (RSS) technology

in conjunction with trilateration techniques.The WBI algorithm estimates the location
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using RSS values previously collected from within the area of interest using LSE algo-

rithm, determines whether it falls within the Min- Max bounding box, corrects for non

line-of-sight propagation effects on positioning errors using Kalman filtering, and finally

updates the location estimation using least square estimation (LSE). The paper ana-

lyzed the complexity of the proposed algorithm and compares its performance against

existing algorithms. Furthermore, the proposed WBI algorithm achieves an average

accuracy of 2.6m.

The authors of [3] proposed a GPS-Like zero configuration indoor positioning system

based on received signal strength (RSS) of the popular WiFi network. The proposed

system does not require a time-consuming offline radio survey prior knowledge about

the area or new hardware unlike current RSS-based indoor systems. Similar to GPS, the

proposed system consists of three sections: network segment (WiFi), control segment,

and user segment. Between network segment and control segment, RSS observations are

exchanged periodically. The control segment uses a novel hybrid propagation modeling

(PM) technique using logarithmic decay model augmented by a nonlinear Gaussian

process regression (GPR) that models RSS residuals that cannot be modeled by the

traditional logarithmic decay models indoors. The proposed system provides 2-3m

accuracy in indoor environments.

[95] proposed a wireless indoor localization approach called Locating in fingerprint

space (LiFS). In fingerprinting method, radio base requires a process of site survey,

in which radio signatures of an interested area are marked with their real recorded

locations. Site survey involves intensive costs on manpower and time and is vulnerable

to environmental dynamics. The author investigates the sensors integrated in modern

mobile phones and user motions to construct the radio map of a floor plan, which is

previously obtained only by site survey. On this basis, they design LiFS, an indoor

localization system based on off-the-shelf WiFi infrastructure and mobile phones. An

experiment was performed in an office building, and the results show that LiFS achieves

low human cost, rapid system deployment.

In [81], the authors identified the problem of fingerprint ambiguity and explore

the potential to resolve it by leveraging user motion. they proposed a motion-assisted
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indoor localization scheme implemented on off-the-shelf mobile phones. It combines user

motion patterns with RSS fingerprints to address fingerprint ambiguity. They adopted

a crowdsourcing approach to construct a motion database and design a probabilistic

algorithm to evaluate location candidates. A prototype is deployed in an office hall

covering over 650m2. The localization algorithm limits the mean localization error to

less than 1m.

[31] presents a seven-step process involved in building a practical Wi-Fi-based indoor

navigation system, which was implemented at the COEX complex in Seoul, Korea, in

2010. More than 200,000 users downloaded the system in its first year of use. Along

with Wi-Fi signal-collection sup-port tools, the authors developed a signal and two

location filters, and integrated them with the COEX indoor navigation system to make

the system more reliable and stable. All of this comprised a seven-step process:(a)Access

Point analysis, (b)Design goals Set up, (c)Indoor Map Drawing, (d)Wi-Fi radio Map

Construction, (e)System Build-up, (f)System Testing, (g)Service Launching and user

Feedback.

Inspired by high densities of smartphones in public spaces, [48] proposed a peer

assisted localization approach. The method obtains accurate acoustic ranging estimates

among peer phones, then maps their locations jointly against WiFi signature map

subjecting to ranging constraints. The authors devised techniques for fast acoustic

ranging among multiple phones and built a prototype. It reduced the maximum and

80-percentile errors to as small as 2m and 1m, in time no longer than the original WiFi

scanning, with negligible impact on battery lifetime.

[72] explored the WiFi infrastructure to define landmarks (WiFi-Marks) to fuse

crowdsourced user trajectories obtained from inertial sensors on users’ mobile phones.

WiFi-Marks are special pathway locations at which the trend of the received WiFi

signal strength changes from increasing to decreasing when moving along the pathway.

By embedding these WiFi-Marks in a 2D plane and connecting them with calibrated

user trajectories, the method is able to infer pathway maps with high accuracy. The

maximum discrepancy between the inferred pathway map and the real one is within

3m and 2.8m for the anchor nodes and path segments, respectively.
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[90] designed a self-updating method for the radio map of wireless indoor local-

ization by leveraging mobile devices, which requires no additional hardware or extra

user intervention. The authors proposed a trajectory matching algorithm for accurate

localization. Their approach globally optimizes the residual errors of an entire trajecto-

ry. The authors investigated the static behaviors of mobile devices and exploited their

potentials for radio map updating. They prototyped in real environments. When the

localization service has run for a long term, AcMu gains accuracy improvement of more

than 2 times, compared to using the static original one.

More indoor localization techniques can be found in the recent survey [94]. Recent-

ly, WiFi RSS measurements are used together with data from smartphone gyroscope

and accelerometer, magnetic field measurements from smartphone magnetometer, and

a floor plan of the building for hybrid indoor localization in 2015 Microsoft Indoor Lo-

calization Competition 1. Two winner teams from SPIRIT Navigation and Fraunhofer

Portugal Research Center achieved localization error distance around 2 meters.

Several WiFi localization solutions are currently commercialized. Examples of these

solutions are Skyhook2 and Navizon3. These two solutions are based on collecting

information on WiFi access points and cellular Base Stations locations all over the

world and maintaining them in databases. A client location is computed by collecting a

raw data and sending it to a location server which returns a location estimate. Google

and Apple are both maintaining such databases for providing location-based services

on their platforms.

Indoor WiFi Localization Use Case Scenarios

Due to the revolution of localization technologies, location based services have recently

attracted significant attention in the spatial aspect of one’s life. A large catalog of use

cases are proposed based on WiFi localization. We briefly summarize the most popular

ones in this section.

1http://research.microsoft.com/en-us/events/indoorloccompetition2015/

2http://www.skyhookwireless.com/

3http://www.navizon.com/
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• Tracking: It can be used for people tracking: children, patients with dementia,

prisoners with arrest ankle bracelets, employers to track their workers, as well for

animal tracking.

• Navigation: It allows locating the exact geographical position of a mobile device

and get direction and/or navigate user to required location.

• Marketing: (a) Location Triggered Advertisement It uses user location to pro-

vide messaging or application alerts based on user preferences and opt-ins. Once

opted-in, messages are delivered whenever a consumer enters inside the targeting

area. (b) Location Based Social Media It can provide for business opportunity to

create an interactive experience in-store?n experience that will convert browsers

to buyers and from one-time customers to loyal ones. (c) Local Search Advertis-

ing It is advertising for listings of local points of interest (e.g. merchant retailers,

restaurants) depending on the location of a mobile device. (d) Proximity Mar-

keting It refers to localized wireless distribution of advertising content associated

with a particular place.

• Emergency: One of the fundamental application is utilizing the ability to locate an

individual calling to emergency response agency who is either unaware of his/her

exact location or is not able to reveal it because of an emergency situation. Based

on this spatial information emergency response agency (e.g. ambulance, police,

firefighters) can provide help in a quick and efficient way.

• Information Services: It refers mostly to the digital distribution of information

based on device location, time specificity and user behavior.

• Sports: It allows user to automatically collect his/her workout data, such as

location, distance, speed, duration, or burned calories and store them on the

server.

• Billing: Location based billing refers to ability to dynamically charge users of a

particular service depending on their location when using or accessing the service.
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• Geotagging: Geotagging is defined as adding geospatial metadata to digital media

such as photographs, videos, messages, blogs, web pages and GeoRSS.

1.1.2 Semi-supervised Learning

Semi-supervised learning (SSL) is a useful learning paradigm that makes use of unla-

beled samples to boost the learning performance with only limited supervision. SSL is

halfway between supervised and unsupervised learning. In addition to unlabeled data,

the algorithm is provided with some supervision information ?but not necessarily for

all examples. Often, this information standard setting will be the targets associated

with some of the examples. In this case, the data set X can be divided into two parts:

the points Xl := (x1, ..., xl), for which labels Yl := (y1, ..., yl) are provided, and the

points Xu := (xl+1, ..., xl+u), the labels of which are not known. In principle classi-

fiers can have a more accurate prediction by taking into account the unlabeled points.

However, there is an important prerequisite: that the distribution of examples, which

the unlabeled data will help elucidate, be relevant for the classification problem. The

knowledge on p(x) that one gains through the unlabeled data has to carry information

that is useful in the inference of p(y|x). If this is not the case, semi-supervised learning

will not yield an improvement over supervised learning. It might even happen that

using the unlabeled data degrades the prediction accuracy by misguiding the inference.

One common assumption for SSL is so called semi-supervised smoothness assump-

tion. The assumption is that the label function is smoother in high-density regions

than in low-density regions.This assumption implies that if two points are linked by a

path of high density (e.g., if they belong to the same cluster), then their outputs are

likely to be close. If, on the other hand, they are separated by a low-density region,

then their outputs need not be close.

A special case of the above semi-supervised smoothness assumption is cluster as-

sumption. It states that if points are in the same cluster, they are likely to be of the

same class. This assumption may be considered reasonable on the basis of the sheer

existence of classes: if there is a densely populated continuum of objects, it may seem

unlikely that they were ever distinguished into different classes. Cluster assumption
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does not imply that each class forms a single, compact cluster: it only means that,

usually, we do not observe objects of two distinct classes in the same cluster. Cluster

assumption can be formulated in an equivalent way, called low density separation. The

decision boundary should lie in a low-density region.

A different but related assumption is the manifold assumption: The (high-dimensional)

data lie (roughly) on a low-dimensional manifold. It is helpful to tackle the so-called

curse of dimensionality problem. If the data happen to lie on a low-dimensional man-

ifold, then the learning algorithm can essentially operate in a space of corresponding

dimension, thus avoiding the curse of dimensionality. If we view the manifold as an

approximation of the high-density regions, then it becomes clear that in this case, the

semi-supervised smoothness assumption reduces to the standard smoothness assump-

tion of supervised learning, applied on the manifold.

Among various directions that have been pursued by researchers, for example, graph

based algorithms [9][39], low-density separation [14], transductive SVM [15][51][36], S-

DP programming [46], ensemble method [45], high order [98], semi-supervised kernel

design turns to be a promising one because it allows the abundant theories and algo-

rithms in kernel methods to be adopted directly in solving SSL problems. In particular,

a large family of algorithms for semi-supervised kernel relies on spectral transformation,

where the eigenvectors of the kernel matrix (or the graph Laplacian) are used together

with the rectified eigenvalues to build the new kernel.

Lots of empirical successes have been observed with the family of semi-supervised

kernels based on spectral transforms. However, there are still some concerns with

them. First, building a kernel solely based on rectifying the kernel eigen-spectrum

may be restrictive in terms of acquiring desired kernel. Note that eigenvectors of the

empirical kernel matrix (or graph Laplacian) are computed in an unsupervised manner,

entirely irrespective of the class labels. They can be inaccurate due to various practical

factors such as noise, kernel types or parameters, or class separability. Therefore, these

eigenvectors may not reveal useful structures for classification, and the base kernels

they span can have low alignment with the target, while the alignment of the mixed

kernel depends crucially on the alignment of the individual base kernels. Second, the
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optimization procedure involved can be quite expensive. For example, computing the

eigenvalue decomposition of the Laplacian already takes O(n3) time and O(n2) memory.

The time complexity of QCQP (O(n4)) [100] and SDP (O(n4.5)) [42] is also quite

demanding.

To solve these problems, we propose a new way for designing base kernels used in

semi-supervised kernel learning. Besides using the eigenvectors from the original kernel

matrix or graph Laplacian, we also compute a new set of more “accurate” eigenvectors

that are expected to be better aligned to the target. Our key observation is that

the kernel eigenvectors and class labels have some intrinsic connections. In particular,

the ideal kernel eigenvectors are deemed equivalent as the class labels. Inspired by

this, we compute a set of desired kernel eigenvectors by extrapolating the ideal kernel

eigenfunction. Such extrapolation builds upon important proximity structures encoded

in the input patterns. More importantly, it directly incorporates class labels in the

computation. Therefore, the label-aware eigenvectors are empirically more aligned to

the target compared with the unsupervised kernel eigenvectors. This directly leads to a

set of base kernels with higher quality, and the overall alignment of the mixed kernel will

also be improved with better generalization performance. In addition, we use low-rank

approximation to compute useful eigenvectors from the original kernel matrix, therefore

our approach is computationally very efficient and only requires linear time and space

complexities.

It is worthwhile to note that the main contribution is to explore new ways of con-

structing base kernels, instead of how to combine the base kernels, in semi-supervised

kernel learning. The latter has been studied extensively in the literature as has been

discussed, and therefore will not be the focus of this work. Of course, in order to eval-

uate the usefulness of the newly proposed base kernels against traditional base kernels,

we will still resort to existing methods of kernel combination so as to finally obtain a

mixed kernel and its testing accuracy.
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1.1.3 Transfer Learning

In standard supervised learning scenario, it is commonly assumed that the training and

the test data are drawn from the same underlying distribution, such that a classifier

learned on the former generalizes well to the latter. However, in many practical situa-

tions this assumption is violated. For example, the collection of the training and test

data can happen under quite different situations in many applications, including bioin-

formatics, sensor network, and spam filtering; on the other hand, in some cases people

might want to apply the knowledge learned from one domain to a different but related

domain, if the training procedure is expensive or labels in the new domain are not easy

to obtain. In these cases, traditional learning framework is no longer suited, and how to

handle the discrepancy of the data distribution in different domains becomes a crucial

problem.

Research on transfer learning has attracted more and more attention since 1990s.

Transfer learning aims to extract the knowledge from one or more source tasks and

applies the knowledge to a target task. In transfer learning, A domain D consists of

two components: a feature space X and a marginal probability distribution P (X), where

X = {x1, ..., xn} ∈ X . For example, if our learning task is document classification, and

each term is taken as a binary feature, then X is the space of all term vectors, xi is the ith

term vector corresponding to some documents, and X is a particular learning sample.

In general, if two domains are different, then they may have different feature spaces or

different marginal probability distributions. Given a specific domain, D = {X , P (X)},

a task T consists of two components: a label space Y and an objective predictive

function f(·) (denoted by T = {Y, f(·)}, which is not observed but can be learned from

the training data, which consist of pairs xi, yi, where xi ∈ X and yi ∈ Y . The function

f(·) can be used to predict the corresponding label, f(x), of a new instance x. From a

probabilistic viewpoint, f(x) can be written as P (y|x). In our document classification

example, Y is the set of all labels, which is True, False for a binary classification task,

and yi is ”True” or ”False”.
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Given specific domains DS and DT , when the learning tasks TS and TT are differ-

ent, then either (1) the label spaces between the domains are different, i.e. YS ̸= YT ,

or (2) the conditional probability distributions between the domains are different; i.e.

P (YS |XS) ̸= P (YT |XT ), where YSi ∈ YS and YTi ∈ YT . In our document classification

example, case (1) corresponds to the situation where source domain has binary docu-

ment classes, whereas the target domain has ten classes to classify the documents to.

Case (2) corresponds to the situation where the documents classes are defined subjec-

tively, as such tagging. Different users may define different different tags for a same

document, resulting in P (Y |X) changes across different users.

In addition, when there exists some relationship, explicit or implicit, between the

two domains or tasks, we say that the source and target domains or tasks are related.

For example, the task classifying documents into the categories book, desktop may be

related the task classifying documents into the categoriesbook, laptop. This because

from a semantic point of view, the terms ”laptop” and ”desktop” are close to each

other. As a result, the learning tasks may be related to each other. Note that it is

hard to define the term ”relationship” mathematically. Thus, in most transfer learning

methods assume that the source and target domains or tasks are related

In this work, we consider the situation when the training data and test data are from

different distributions, i.e. Ptr(x) ̸= Pte(x), but are supposed to share some identical

or similar conditional distribution Ptr(y|x) = Pte(y|x). There have been a number of

attempts to solve this problem. Early works include [83, 11], which treated different

domains as tasks and applied the multi-task learning. Daumé III and Marcu [35] in-

vestigated how to train a general model with data from both a source domain and a

target domain for domain adaptation in natural language processing tasks. Recently,

several research work [74, 96, 34, 80] has converged along the direction of estimating

a point-wise re-weighting on the training data to minimize the generalization error in

testing. For example, Huang et al. [34] applied the kernel mean matching (KMM) to

account for the distribution difference, such that the means of the training and test

points in a reproducing kernel Hilbert space (RKHS) are close. Sugiyama et al. [80, 79]



18

proposed a framework to estimates the importance ratio which is simultaneously e-

quipped with model selection. Their idea is to find an importance estimate ŵ(x) such

that the Kullback-Leibler divergence from the true test input density Pte(x) to its

estimate P̂te(x) = ŵ(x)Ptr(x) is minimized. In [59], instead of learning point-wise re-

weighting coefficients, the authors proposed to learn the so called transfer components

by minimizing the Maximum Mean Discrepancy (MMD) criterion defined in the RKHS,

which measures the distance between distributions of two samples. The transfer com-

ponents are in the form of pre-parameterized empirical kernel maps and can handle

out-of-samples conveniently.

We note that most of the current methods studies how to make training and testing

data have the same distribution in the input space [74, 96, 80, 79]. In contract, few

attempts has been made specifically to cater to kernel methods, where being considered

should be the data distributions in the reproducing kernel Hilbert space (RKHS). In

[34] and [59], although the objective function considered is the difference between the

sample mean in the feature space, it is used as an indicator of the distance between

two distributions in the input space. Therefore, minimizing such objective is ultimately

used to control the difference of distributions in the input space. While in general

one may want to consider data distribution in the input space, the behavior of kernel

methods are determined in a more complex mechanism due to the interplay between the

kernel and the data distribution. In particular, the kernel methods work by applying a

linear algorithm in the kernel-induced feature space, where the algorithm performance

depends directly on the data distribution in this space. Therefore, we believe that

making the training and testing data have similar distributions in the feature space will

be a more direct way in tackling the covariate shift problem for kernel-based learning

algorithms.

To achieve this goal, we propose to rectify data distribution directly in the Hilbert

space by enforcing the closeness on the kernel matrices from the training and testing

domains. One big technical difficulty here is that kernel matrices are data-dependent,

and how to evaluate similarity between kernel matrices defined from different samples

remains unclear. To bridge this gap, we introduce the concept of surrogate kernels based
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on the Mercer’s theorem, the fundamental theorem underlying the reproducing kernel

Hilbert space (RKHS). It provides convenient interface for different Gram matrices to

communicate and compare with each other. By using the surrogate kernel, we can

apply an explicit (linear) transform on the Gram matrix of the training data, forcing

it to properly “approach” that of the test data, such that the kernel machine learned

on the training data generalize well to test domain. The linear transformation applied

on the kernel matrix enforces a flexible, nonlinear mapping in the input space. Our

approach acts directly on kernel matrix, the basic building block of kernel machines,

and demonstrates satisfactory performance on solving the problem for kernel-based

methods.

1.2 Thesis Outline

Chapter 2 briefly reviews kernel-based learning methods and Support Vector Ma-

chine(SVM) for regression. Kernel methods emerged in the evolution of machine learn-

ing algorithms during mid-1990s, and enabled researchers to analyse nonlinear relations

with the efficiency that had previously been reserved for linear algorithms. Kernel-based

learning first appeared in the form of SVM for classification. Soon, SVM for regression

tasks were developed and obtained excellent performances. Therefor, in our experi-

ments we choose SVM for predicting the location of mobile client in WiFi envrionment.

Chapter 3 presents a semi-supervised learning approach to reduce calibration-effort

for tracking a mobile node. Many previous approaches to the location-estimation prob-

lem assume the availability of sufficient calibrated data. However, to obtain such data

requires great effort. In this chapter, we propose a semi-supervised learning technique

for RSS based tracking. We propose a novel way for designing base kernels used in

semi-supervised learning. We compute a new set of more ”accurate” eigenvectors that

are expected to be better aligned to the target.

Chapter 4 addresses the problem that RSS data distribution may not always be

static over time, across space or across devices. Most of the current transfer learning

methods studies how to make training and testing data have the same distribution in
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the input space. In contrast, we consider data distributions in the reproducing kernel

Hilbert space. By using the surrogate kernel, we apply an explicit (linear) transform

on the Gram matrix of the training data, forcing it to properly ”approach” that of the

test data, such that the kernel machine learned on the training data generalize well to

test domain.

Chapter 5 concludes the thesis.
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Chapter 2

Kernel Methods and Nystrom Methods

In this chapter, we will review kernel methods, and related algorithms for regression

tasks: (1)Kernel Ridge Regression and (2)Support Vector Regression.

2.1 Kernel Methods

Figure 2.1: the feature map ϕ embeds the data into a feature space where a linear

pattern exists.

Over the last decade kernel methods has become popular in machine learning.[67]

A kernel method solution includes two components: (1)a module that performs the
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mapping into the feature space and (2)a learning algorithm to discover linear patterns

in that space, see Figure 2.1. There are two main reasons why this approach should

work. On one hand, identifying linear relations has been the focus of machine learn-

ing research for decades, and the resulting algorithms are well understood and highly

efficient. On the other hand, kernel methods provide a computational shortcut which

makes it possible to represent linear patterns in high dimensional spaces to exploit

representational power. This shortcut is called a kernel function.

Kernel methods typically doesn’t require the coordinates of the embedded points,

but only their pairwise inner products. The pairwise inner products can be computed

efficiently using a kernel function as

k(x, z) = ⟨ϕ(x), ϕ(z)⟩

where ϕ is called feature map. Given a kernel k, and inputs x1,x2, ...xn ⊆ X the n× n

matrix K, where Kij = k(xi,xj), is called Gram matrix of k with respect tox1,x2, ...xn.

Gram matrix is symmetric. It contains all the information needed to compute the

pairwise distances within the data set as shown above. In the Gram matrix there is of

course some information that is lost when compared with the original set of vectors.

For example the matrix loses information about the orientation of the original data set

with respect to the origin, since the matrix of inner products is invariant to rotations

about the origin. More importantly the representation loses information about any

alignment between the points and the axes. This again follows from the fact that the

Gram matrix is rotationally invariant in the sense that any rotation of the coordinate

system will leave the matrix of inner products unchanged. We will see that the only

information received by the algorithm about the training set comes from the Gram

matrix and the associated output values. This observation will characterise all of the

kernel algorithms. In this sense we can view the matrix as an information bottleneck

that must transmit enough information about the data for the algorithm to be able to

perform its task. This view also reinforces the view that the kernel matrix is the central

data type of all kernel-based algorithms. All Gram matrices are positive semi-definite.

We can always manipulate and combine simple kernels to obtain more complex and
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useful ones. Let k1 and k2 be kernels over X ×X,X ⊆ Rn, a ⊆ R+, f() a real-valued

function on X,ϕ : X → RN with k3 a kernel over RN ×RN , and B a symmetric positive

semi-definite n × n matrix, and p(x) is a polynomial with positive coefficients. Then

the following functions are valid kernels:

• k(x, z) = k1(x, z) + k2(x, z)

• k(x, z) = ak1(x, z)

• k(x, z) = k1(x, z)k2(x, z)

• k(x, z) = f(x)f(z)

• k(x, z) = k3(ϕ(x), ϕ(z))

• k(x, z) = x′Bz

• k(x, z) = p(k1(x, z))

• k(x, z) = exp(k1(x, z))

• k(x, z) = exp(−∥x− z∥2/(2σ2))

The last kernel in the list is called Gaussian kernel, they are the most widely used

kernels and have been extensively studied in neighbouring fields.[67] The images of

all points have norm 1 in the resulting feature space as k(x,x) = exp(0) = 1. The

feature space can be chosen so that the images all lie in a single orthant, since all

inner products between mapped points are positive. Note that we are not restricted

to using the Euclidean distance in the input space. If for example k1(x, z) is a kernel

corresponding to a feature mapping ϕ1 into a feature space F1, we can create a Gaussian

kernel in F1 by observing that

∥ϕ1(x)− ϕ1(z)∥2 = k1(x,x)− 2k1(x, z) + k1(z, z),

giving the derived Gaussian kernel as

k(x, z) = exp(−k1(x,x)− 2k1(x, z) + k1(z, z)

2σ2
),
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The parameter σ controls the flexibility of the kernel in a similar way to the degree

in the polynomial kernel. Small values of σ correspond to large values of degree since,

for example, they allow classifiers to fit any labels, hence risking overfitting. In such

cases the kernel matrix becomes close to the identity matrix. On the other hand, large

values of σ gradually reduce the kernel to a constant function, making it impossible to

learn any non-trivial classifier. The feature space has infinite-dimension for every value

of σ but for large values the weight decays very fast on the higher-order features. In

other words although the rank of the kernel matrix will be full, for all practical purposes

the points lie in a low-dimensional subspace of the feature space.

Graph kernels are a family of kernels widely used in semisupervised kernel designs.[67]

Graphs pose a twofold challenge: one may both design a kernel on vertices of them and

also a kernel between them. In the former case, the graph itself becomes the object

defining the metric between the vertices. In the following we discuss kernels on graphs.

Denote by W ⊆ Rn×n the adjacency matrix of a graph with Wij > 0 if an edge be-

tween i, j exists. Moreover, assume for simplicity that the graph is undirected, that is,

W ′ = W . Denote by L = D −W the graph Laplacian and by L̂ = I −D−1/2WD−1/2

the normalized graph Laplacian. Here D is a diagonal matrix with Dii =
∑

j Wij

denoting the degree of vertex i. It has been shown that, the second largest eigenvec-

tor of L approximately decomposes the graph into two parts according to their sign.

The other large eigenvectors partition the graph into correspondingly smaller portion-

s. L arises from the fact that for a function f defined on the vertices of the graph∑
i,j(f(i) − f(j))2 = 2f ′Lf. Finally, it shows that, under mild conditions and up to

rescaling, L is the only quadratic permutation invariant form which can be obtained as

a linear function of W . Hence, it is reasonable to consider kernel matrices K obtained

from L. Smola and Kondor suggest kernels K = r(L), which have desirable smooth-

ness properties. Here r is a monotonically decreasing function. Popular choices include

(1)diffusion kernel r(ξ) = exp(−λξ),where λ > 0 is chosen such as to reflect the amount

of diffusion; (2)regularized graph Laplacian r(ξ) = (ξ+λ)−1, where λ > 0 is the degree

of regularization; (3)p-step random walk r(ξ) = (λ− ξ)p where λ > 0 is the weighting

of steps within a random walk. The function r(ξ) describes the smoothness properties
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on the graph and L plays the role of the Laplace operator.

2.2 Kernel Ridge Regression

Figure 2.2: A one dimensional linear regression problem.

Having reviewed the background of kernel methods, in the following, we will discuss

the technical details of kernel ridge regression. Consider the problem of finding a

homogeneous real valued linear function g(x) = w′x =
∑n

i=1wixi, that best fits a given

training set S = {(x1, y1), ..., (xl, yl)} of points xi from X ⊆ Rn with corresponding

labels yi ⊆ R. Here we use the notation x = (x1, x2, ...xn) for the n-dimensional input

vectors, while w′ denotes the transpose of the vector w ⊆ Rn. This task is known

as linear(ridge) regression [67]. Geometrically it corresponds to fitting a hyperplane

through the given n-dimensional points. Figure 2.2 shows an example for n = 1.

We use ξ = y − g(x) to denote the error of the linear function on the particular

training example. The objective of linear regression is to find a function for which all of

training training errors are small. Given a training data set, it can be written in a matrix
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form as ξ = y−Xw. The sum of the squares of these errors is the most commonly used

measure of discrepancy between the training data and a particular function. Hence, the

loss function can be written as L(w) = (ξ = y−Xw)′(ξ = y−Xw). Linear regression

or ridge regression corresponds to solving the following optimization problem

min
w

Lλ(w) = min
w
λ∥w∥2 + ∥y−Xw∥2,

After taking the derivative of the cost function with respect to the parameters w we

obtain the equations

X ′Xw + λw = (X ′X + λIn)w = X ′y,

where In is the n× n identity matrix. The matrix (X ′X + λIn) is always invertible if

λ > 0, so the solution is given by

w = (X ′X + λIn)
−1X ′y,

Solving this equation for w involves solving a system of linear equations with n un-

knowns and n equations. The complexity of this task is O(n3). The resulting linear

function is given by

g(x) = y′X(X ′X + λIn)
−1x.

The equations above computes the weight vector explicitly and is known as the primal

solution. Notice that w can be expressed as a linear combination of the training points,

w = X ′α. Therefore, we can rewrite the equations above to obtain

w = λ−1X ′(y−Xw) = X ′α.

Hence we have

λα = y−XX ′α⇒ α = (XX ′ + λIl)
−1y

Solving for α involves solving l linear equations, a task of complexity O(l3). The

resulting prediction function is given by

g(x) = ⟨w,x⟩ =
∑
i

αi⟨xi,x⟩ = y′(XX ′ + λIl)
−1k,
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where ki = ⟨xi,x⟩. This is known as the dual solution. The parameter α are know

as the dual variables. Denote G = XX ′, from the dual solution we can see that the

information from the training examples is given by the inner products between pairs of

training points in G. Similarly, the information about a novel example x required by

the predictive function is just the inner products between the training points and x.

The matrix G is referred to as the Gram matrix, which is a l×l matrix. If the dimension

n of the feature space is larger than the number of of training examples l, it becomes

more efficient to solve the dual equation. Evaluation of the predictive function in this

dual setting is, however, always more costly since the primal involves O(n) operations,

while the complexity of the dual is O(nl).

The ridge regression method discussed above addresses the problem of identifying

linear relations between the target function and features. Often, however, the relations

are indeed nonlinear. To address this problem we will map the data into a new feature

space in such a way that the sought relations can be represented in a linear form.

Considering an embedding map ϕ(x), our objective is to look for a linear relation

of the form ξ = y − g(x) = y − ⟨w, ϕ(x)⟩. As shown in the dual solution, all the

information the algorithm need is the inner products between data points. So in the

feature space it can be represented by ⟨ϕ(x), ϕ(z)⟩. The predictive function can be

written as g(x) = y′(G + λIl)
−1k,, where Gij = ⟨ϕ(xi), ϕ(xj)⟩ and ki = ⟨ϕ(xi), ϕ(x)⟩.

A kernel is a function k that for all x, z ⊆ X satisfies

k(x, z) = ⟨ϕ(x), ϕ(z)⟩, (2.1)

where ϕ is a mapping from X to feature space F.One of the most important properties

of Kernel functions is that we can compute the inner product between the embedding

of two points in the features space without explicit evaluating their coordinates.

2.3 Support Vector Machine for Regression

Kernel Ridge Regression suffers from the disadvantage that the solution vector α∗ is

not sparse [67]. Hence, to evaluate the learned function on a novel example we must

evaluate the kernel with each of the training examples. For large training sets this
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will make the response time very slow. In order to encourage sparseness, we need to

define a loss function that involves inequalities in its evaluation. This can be achieved

by ignoring errors that are smaller than a certain threshold ϵ > 0. For this reason

the band around the true output is sometimes referred to as a tube. This type of loss

function is referred to as an ϵ-insensitive loss function. Using ϵ-insensitive loss functions

leads to the Support Vector Regression algorithms.

The Support Vector algorithm is a nonlinear generalization of the Generalized Por-

trait algorithm developed in Russia in the sixties. As such, it is firmly grounded in the

framework of statistical learning theory, or VC theory, which has been developed over

the last three decades by Vapnik and Chervonenkis. In a nutshell, VC theory charac-

terizes properties of learning machines which enable them to generalize well to unseen

data. In its present form, the SVM was largely developed at ATT Bell Laboratories

by Vapnik and co-workers. Due to this industrial context, SV research has up to date

had a sound orientation towards real-world applications. Initial work focused on OCR

(optical character recognition). Within a short period of time, SV classifiers became

competitive with the best available systems for both OCR and object recognition tasks.

A comprehensive tutorial on SV classifiers has been published by Burges in 1998. But

also in regression and time series prediction applications, excellent performances were

soon obtained. A snapshot of the state of the art in SV learning was recently taken at

the annual Neural Information Processing Systems conference in 1999. SV learning has

now evolved into an active area of research. Moreover, it is in the process of entering

the standard methods toolbox of machine learning. Scholkopf and Smola present a

more in-depth overview of SVM regression. Additionally, Cristianini and Shawe-Taylor

provide further details on kernels in the context of classification.

Figure 2.3 shows an example of a one-dimensional regression function with an ϵ

band. the variables ξ measure the cost of the errors on the training points. These are

zero for all points inside the band. The linear ϵ-insensitive loss function is defined by

L = max(0, |y − g(x)| − ϵ), (2.2)

where g is a real-valued function on a domain X, x ∈ X and y ∈ R. Similarly, the
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Figure 2.3: Regression using ϵ-insensitive loss function

quadratic ϵ-insensitive loss function is defined by

L = max(0, (|y − g(x)| − ϵ)2), (2.3)

The quadratic ϵ-insensitive support vector regression are defined as

min
w,b,ξ,ξ̂

∥ w ∥2 +C
∑l

i=1 (ξ
2
i + ξ̂2i ),

subject to (⟨w, ϕ(xi)⟩+ b)− yi ≤ ϵ+ ξi;i=1,2,...,l ,

yi − (⟨w, ϕ(xi)⟩+ b) ≤ ϵ+ ξ̂i;i=1,2,...,l .

We have not constrained the slack variables to be positive since negative values will

never arise at the optimal solution. we have further included an offset parameter b

that is not penalised. The dual problem can be derived using the standard method and

taking into account that ξiξ̂i = 0 and therefore that the same relation αiα̂i = 0 holds
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for the corresponding Lagrange multipliers

max
α,α̂

∑l
i=1 yi(α̂i − αi)− ϵ

∑l
i=1 (α̂i + αi)

−1
2

∑l
i,j=1 (α̂i − αi)(α̂j − αj)(k(xi,xj) +

1
C δij),

subject to
∑l

i=1 (α̂i − αi) = 0,

α̂i ≤ 0, αi ≤ 0;i=1,2,...,l .

Note that by substituting β = α̂−α and using the relation αiα̂i = 0, we can rewrite

the dual problem in the following form:

max
β

∑l
i=1 yiβi − ϵ

∑l
i=1 |βi| −

1
2

∑l
i,j=1 βiβj(k(xi,xj) +

1
C δij),

subject to
∑l

i=1 βi = 0.

Notice that if we set ϵ = 0 we recover the ridge regression, but with an unpenalized

offset that give rise to the constraint
∑l

i=1 βi = 0. The predictive function can be

written as:

f(x) =
l∑

j=1

β∗i k(xi,x) + b∗

b∗ = −ϵ− β∗i
C

+ yi −
l∑

j=1

β∗i k(xi,xj) for i with β
∗
i > 0

If we consider the band of ±ϵ around the function output by the learning algorithm,

the points that are not strictly inside the tube are tube are support vectors. Those

not touching the tube will have the absolute value of the corresponding βi equal to C;

Though the move to the use of the ϵ-insensitive loss was motivated by the desire to

introduce sparsity into the solution, remarkably it can also improve the generalization

error as measured by the expected value of the squared error in practical experiments.

The quadratic ϵ-insensitive loss follows naturally from the loss function used in ridge

regression. There is, however, a linear ϵ-insensitive support vector regression formulated

as following:

min
w,b,ξ,ξ̂

∥ w ∥2 +C
∑l

i=1 (ξi + ξ̂i),

subject to (⟨w, ϕ(xi)⟩+ b)− yi ≤ ϵ+ ξi;i=1,2,...,l ,

yi − (⟨w, ϕ(xi)⟩+ b) ≤ ϵ+ ξ̂i;i=1,2,...,l .
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The corresponding dual problem can be derived using the standard techniques:

max
α,α̂

∑l
i=1 yi(α̂i − αi)− ϵ

∑l
i=1 (α̂i + αi)

−1
2

∑l
i,j=1 (α̂i − αi)(α̂j − αj)k(xi,xj),

subject to
∑l

i=1 (α̂i − αi) = 0,

0 ≤ α̂i, αi ≤ C;i=1,2,...,l .

Similarly, by substituting β = α̂−α and using the relation αiα̂i = 0, we can obtain

the following dual form:

max
β

∑l
i=1 yiβi − ϵ

∑l
i=1 |βi| −

1
2

∑l
i,j=1 βiβjk(xi,xj),

subject to
∑l

i=1 βi = 0,−C ≤ αi ≤ C;i=1,2,...,l .

Accordingly, the predictive function can be written as:

f(x) =

l∑
j=1

β∗i k(xi,x) + b∗

b∗ = −ϵ+ yi −
l∑

j=1

β∗i k(xi,xj) for i with 0 < β∗i < C

2.4 Nystrom Method

In this work, the Nystrom method plays an critical role in learning kernels. Therefore,

we review it in this section. The Nystrom method has been successfully used in speeding

up kernel machines [89] [43] and spectral clustering [28]. In [61], it is further shown

that several forms of multidimensional scaling [18], including the Landmark MDS [20],

FastMap [24] and MetricMap [86], are all variants of the Nystrom method. The Nystrom

method is originated from the numerical treatment of the integral equation [5][23]∫
p(y)k(x, y)ϕ(y)dy = λϕ(x)

Here k(·, ·) is the kernel function which is usually positive semi-definite, p(·) is the un-

derlying probability density function, and λ and ϕ(·) is the eigenvalue and eigenfunction
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of the kernel k, respectively. Based on a set of i.i.d. samples X = {xi}ni=1 that are sup-

posed to be drawn from the probability density p(·), the integral can be approximated

by

λϕ(x) =

∫
p(y)k(x, y)ϕ(y)dy ∼=

1

n

n∑
j=1

k(x, xj)ϕ(xj)

When x goes through all xis in X, we obtain n linear equations:

1

n

n∑
j=1

k(xi, xj)ϕ(xj) = λϕ(xi)

which can be written as the eigenvalue decomposition

Kϕ = nλϕ

where Kn×n = [Kij ] = [k(xi, xj)] is the kernel matrix defined on X, and ϕ = [ϕ(xj)] ∈

Rnis the corresponding eigenvector. After solving the equation, evaluation of the eigen-

function ϕ(·) at any point x can be achieved as

ϕ(x) ≈ 1

λn

n∑
j=1

k(x, xj)ϕ(xj)

The eigenvalue decomposition scales cubically with the sample size and can be expensive

in practice. To reduce the time complexity, one may use only a subset of the available

samples, which leads to a much smaller eigenvalue problem. This is commonly known

as the Nystrom method and is summarized in Algorithm 1.Note that ϕX represents the

n×1 vector formed by evaluating the kernel eigenfunction ϕ(·) on the whole sample set

{xi}ni=1. It can be used to approximate the eigenvector of the complete kernel matrix

after normalization.



33

Algorithm 1 The Nystrom Method

1. Randomly choose a subset Z = {zi}mi=1 from X, and compute the corresponding

kernel submatrix Wm×m = [Wij ]:

Wij = k(zi, zj)

2. Perform the eigenvalue decomposition:

WϕZ = mλZϕZ

and obtain the corresponding eigenvector ϕZ ∈ Rm and eigenvalue mλZ .

3. Compute the interpolation matrix En×m = [Eij ], where

Eij = k(xi, zj)

4. Extend the eigenvector ϕZ ∈ Rm to the whole data set by

ϕX = (mλZ)
−1EϕZ
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Chapter 3

Label-Aware Base Kernels for Indoor WiFi Localization

3.1 Semi-supervised Indoor WiFi Localization

Accurately tracking mobile nodes in wireless sensor networks using radio-signalstrength

(RSS) values is a complex and difficult task. Radio signal usually attenuates in a way

that is highly nonlinear and uncertain in a complex environment, which may be further

corrupted when introducing the mobility of sensor nodes. In the past, many researchers

have developed propagation-based algorithms for localizing mobile nodes in a wireless

sensor network. These methods [50][65] usually consist of two main steps, by first

transforming sensor reading into a distance measure and then recovering the most

probable coordinates of sensor nodes. These approaches usually rely on a sophisticated

signal propagation model and extensive hardware support. Learning-based approaches

[53][44][4] can bypass the ranging process but need relatively more calibration data.

However, few of them consider the mobility of sensor nodes. How to estimate the

location of mobile nodes when the signal environment is noisy, and when we have much

less calibrated (labeled) data and hardware support, is still an open problem.

In this chapter, we address the calibration-effort reduction problem in wifi localiza-

tion based tracking by proposing a semi-supervised learning approach for learning a set

of label aware base kernels. We first collect a small quantity of labelled data at various

locations. Then, we train a SVR using label aware base kernels to solve the regression

problem, in a semi-supervised manner, using a small amount of labelled data and a

large amount of unlabelled data.



35

3.1.1 Semi-supervised Kernel Design

Among various directions that have been pursued by researchers in semi-supervised

learning, semi-supervised kernel design turns to be a promising one because it allows

the abundant theories and algorithms in kernel methods to be adopted directly in

solving SSL problems. In particular, a large family of algorithms for semi-supervised

kernel relies on spectral transformation, where the eigenvectors of the graph Laplacian

are used together with the rectified eigenvalues to build the new kernel.

Given an n × n kernel matrix K, the graph Laplacian is computed as L = D −

K, where D ∈ Rn×n is a (diagonal) degree matrix such that Dii =
∑n

j=1Kij . The

normalized graph Laplacian is defined as L̃ = I − D−1/2KD−1/2, where I is identity

matrix. The (normalized) graph Laplacian matrix is positive semi-definite for any

function f :

fTLf =
1

2

n∑
i,j=1

Kij(f(i)− f(j))2 ≥ 0.

and imposes important smoothness constraints over the graph, which has been widely

used in spectral clustering [52], image segmentation [73], and feature selection [32].

Roughly speaking, f is smooth if f(i) ≈ f(j) for those pairs with large Kij . This

is sometimes informally expressed by saying that f varies slowly over the graph, or

that f follows the data manifold. In particular, its smaller eigenvalues correspond to

smoother eigenvectors over the graph, i.e., the entries of the eigenvector corresponding

to neighboring samples are close to each other. Such smoothness is very useful for

predicting the actual class labels. Based on this property, a general principle is applied

in spectral transformation to build semi-supervised kernel [77],

K̃ =
n∑

i=1

r(λi)ϕiϕ
⊤
i .

Here, λi’s (i = 1, 2, ..., n) are eigenvalues of the (normalized) graph Laplacian L ∈ Rn×n

sorted in an ascending order, ϕi’s are the corresponding eigenvectors, and r(·) is a non-

increasing function which enforces larger penalty for less smooth eigenvectors. The

transform r(·) is often chosen from a parametric family, resulting in some familiar

kernels. For example



36

• regularized Laplacian or Gaussian field kernel: r(λ) = 1
λ+ϵ

• diffusion kernel: r(λ) = exp(− δ2

2 λ)

• one-step random walk or cluster kernel: r(λ) = (α− λ)

• p-step random walk: r(λ) = (α− λ)p

• inverse cosine: r(λ) = cos(λπ4)

• step function: r(λ) = 1 if λ ≤ λcut

Each has its own special interpretation. Of course there are many other natural choices

for r. Although the general principle is appealing, it does not address the question

of which parametric family to use. Moreover, the hyperparameters in a particular

parametric family may not suit the task at hand, resulting in overly constrained kernels.

Another group of approaches focus on searching over a nonparametric family of

spectral transforms by using convex optimization to maximize kernel alignment to the

labeled data. Kernel alignment is a surrogate for classification accuracy, and, impor-

tantly, leads to a convex optimization problem. A connection between high alignment

and good generalization performance has been established in [19]. The empirical kernel

alignment [19] evaluates the degree of agreement between a kernel and the learning tar-

get, via the use of “ideal kernel” K∗(x, z) = y(x)y(z), where y(x) is the target concept

(such as the class label chosen from {±1} or {0, 1} [41]). Given a set of l training exam-

ples, corresponding label vector y ∈ Rl×1, and kernel matrix K ∈ Rl×l, the alignment

is computed as

AK,y =

⟨
K, yy⊤

⟩
l
√

⟨K,K⟩
,

where ⟨K1,K2⟩ =
∑

ij K1(xi,xj)K2(xi,xj) is the inner product between matrices. It

has been shown that the alignment between kernels is sharply concentrated, i.e., a

good alignment on the training set will indicate a good alignment on the test set [19].

On the other hand, AK,y is favorably associated with the generalization performance

of a classifier (such as the Parzen window estimator) [19]. Therefore, maximizing the

alignment of the kernel with the ideal one provides a general and effective way for kernel
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design. In this work, we adopt a different alignment criterion between two kernels K

and K ′ from [17],

ρ(K,K ′) =
⟨Kc,K

′
c⟩F

∥Kc∥F ∥K ′c∥F
,

where Kc is the centralized version of K.

This criterion provides a novel concentration bound, and shows the existence of

good predictors for kernels with high alignment, in both classification and regression

tasks.

The concept of ideal kernel and its implications have led to several successful meth-

ods for kernel learning. The common theme of these methods is to use eigenvectors of

the kernel matrix to span a set of base kernels, and then optimize the weighting in the

combined kernel via maximizing its alignment with the target (or ideal kernel). For

example,

• [19] proposed to compute the weighting of each base kernel proportional to the

inner product of the corresponding eigenvector with the target.

• [76] presented a framework for computing sparse combination of the base kernels.

• [17] showed that the weighting in the maximal alignment kernel can be solved via

quadratic programming.

• In [42], a semi-definite programming formulation was adopted to learn a kernel

matrix K̃ that is maximally aligned with the ideal kernel.

• In [100], an order constraint on the transformed eigenvalue is further considered.

The order constraint reflects important prior belief that smoother eigenvectors

should be given higher priority in building the kernel.

• [16]proposed the algorithm based on the concept of local Rademacher complexity,

which is upper-bounded by tailsum of the eigenvalues of kernels. The authors

proposed a regularization formulation for controlling the tailsum instead of the

traditional way on restricting trace norm of kernels.
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Note that the base kernels are not necessarily orthogonal eigenvectors computed

from one empirical kernel matrix (or its Laplacian matrix). In many cases the base ker-

nels themselves can be different empirical kernel matrices that are either from different

domains/views of the data, or simply computed by varying the kernel parameters, such

as [42, 17, 16]. Most of the algorithms we have reviewed here apply to both cases.

3.1.2 Motivation of Our Approach Comparing to Kernel Based Meth-

ods

The majority of the methods in the literatures for kernel matrix design learning be-

longs to the wide category of kernel methods, since they all focus on how to learn a

good kernel matrix by revising the eigen-spectrum of the kernel matrix. However, note

that one limitation of this family of algorithms is that the base kernels spanned by

kernel eigenvectors can have low quality because they are computed regardless of the

label. Therefore, we may not expect that the kernel eigen-structures faithfully reflects

the target variable. To alleviate this problem, we propose to compute a set of desired

“eigenvectors” via extrapolation of the ideal kernel eigenfunction to build label-aware

base kernels. The biggest difference between our approach and existing SSL (kernel)

methods is that our approach utilizes the given labels to compute a set of more “accu-

rate” eigenvectors to span the base kernels. In other words, our approach not only learns

a better eigen-spectrum but more importantly, a better set of eigenvectors. Therefore,

our approach can also be deemed as a generalization of the existing SSL kernel learning

methods.

3.2 Designing Label-Aware Base Kernels

Kernel target alignment is an important criterion widely used in semi-supervised kernel

design [19]. A higher alignment with the ideal kernel indicates the existence of a good

classifier with a higher probability [19][17]. It can be easily observed that the overall

alignment of the mixed kernel depends directly on the individual base kernel alignment

scores. For example, it has been shown that the optimized alignment between a kernel
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K̃ =
∑k

i=1 βiviv
⊤
i and the ideal kernel yy⊤ is Ã(y) = 1

k

√∑k
i=1⟨vi, y⟩4F , where ⟨vi, y⟩ is

the alignment for the ith eigenvector. However, in practice, the base kernels spanned by

the eigenvectors of the kernel matrix might deviate a lot from the target due to various

practical factors, such as noise, choice of kernel types/parameters, or the difficulty of

the classification problem.

In the following, we consider building more “accurate” eigenvectors to span better

base kernels. Note that one reason of the low quality of the base kernels spanned by

kernel eigenvectors is that they are computed regardless of the label. Therefore, we

may not expect that the kernel eigen-structures faithfully reflects the target variable.

To alleviate this problem, we propose to compute a set of desired “eigenvectors” via

extrapolation of the ideal kernel eigenfunction. We first discuss the connection be-

tween kernel eigenvectors and class labels, and then introduce the concept of kernel

eigenfunction extrapolation to build label-aware kernel eigenvectors.

3.2.1 Kernel Eigenvectors and Class Labels

Proposition 1 Given l labeled examples ordered from c classes, with ideal kernel in

the form of

K∗ =


11′l1 0 . . . 0

0 11′l2 · · · 0

..

. . . .
. . .

..

.

0 . . . 0 11′lc

 . (3.1)

where li is size of the ith class. Let Y ∈ Rl×c be the class label, i.e., Yij = 1 if xi is in

class j; and Yij = 0 otherwise. Then the ith non-zero eigenvector of K∗ is 1√
li
Yi, where

Yi is the ith column of Y .

Proposition 1 Let the eigenvalue decomposition of K∗ be K∗v∗ = λ∗v∗. Since K∗ on-

ly has c different rows (orthogonal to each other), it has rank c with n− c zero eigenval-

ues. Note that the ith entry of v∗ equals 1
λ∗K∗(i, :)v∗, and K∗ has a block-wise constant

structure. Therefore v∗ is piecewise constant. Write v∗ as [v1, ..., v1︸ ︷︷ ︸
l1

v2, ..., v2︸ ︷︷ ︸
l2

, ..., vc, ..., vc︸ ︷︷ ︸
lc

]′.

Then the eigensystem can be written as an equation group mkvk = λ∗vk for k =
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1, 2, ..., c. Each equation in it leads to two conditions: λ∗ = lk, or vk = 0. Howev-

er, it’s impossible to set λ∗ = lk for k = 1, 2, ..., C, since the size of different classes can

be different. The only feasible way is to set λ∗ equal to one of the mlk’s, i.e., λ
∗ = lk0,

and at the same time set vk = 0 for all the k ̸= k0. There are c different ways to

choose k0, i.e., k0 = 1, 2, ..., c. For each choice of k0, the eigenvalue is λ∗ = lk0; as to

the eigenvector, all its entries corresponding to class k (k ̸= k0) will be zero, and the

entries corresponding to class k0 will be 1√
lk0

(since they are equal and should normalize

to 1). This completes the proof.

Proposition 1 shows that non-zero eigenvectors of the ideal kernel correspond exactly

to the classes labels (up to a scaling). For example, [73] shows that the eigenvectors

corresponding to the second smallest eigenvalue of the normalized graph Laplacian

provides a relaxed solution for a two-class clustering problem1.

Therefore, eigenvectors and class labels have intrinsic connections. The main dif-

ference is that eigenvectors of the kernel matrix can be noisy and may fail to reveal

underlying cluster structures due to their unsupervised nature; in comparison, class

label represents prior knowledge and is always a clean, piecewise constant vector. The

connection indicates that if we can expand “ideal” kernel eigenvectors from labeled

samples to the whole data set and obtain a set of high-quality eigenvectors that align

better to class labels, then the resultant base kernels will also have a higher target

alignment. To achieve this goal, we need notions of eigenfunction and its extrapolation

via the Nystrom extension.

3.2.2 Eigenfunction Expansion

Let A be a linear operator on a function space. The eigenfunction f of A is any non-zero

function that returns itself from the operator, i.e., Af = λf , where λ is the eigenvalue.

In this work, we are interested in the case where A is a symmetric, positive semi-

definite kernel K(x, z). The corresponding eigenfunction ϕ(·), given the underlying

1Positive entries in this eigenvector will be deemed as positive class and negative entries will be
indicative of the negative class.
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sample distribution p(x), is defined as [88]∫
K(x, z)ϕ(x)p(x)dx = λϕ(z). (3.2)

The standard numerical method to approximate the eigenfunctions and eigenvalues in

Eq.(3.2) is to replace the integral with the empirical average [28, 88]∫
K(x, z)p(x)ϕ(x)dx ≈ 1

q

q∑
i=1

K(xi, z)ϕ(xi), (3.3)

where xi, i=1,2,...,q is drawn from the distribution f(·). By choosing z as z = xi, i=1,2,...,q,

Eq.(3.3) extends to a matrix eigenvalue decomposition Kv = λv, where K is the kernel

matrix defined as Kij = K(xi,xj) for 1 ≤ i, j ≤ q, and v is the discrete counterpart of

ϕ in that ϕ(xi) ≈ v(i). Then the eigenfunction can be extended by

ϕ(z) ≈ 1

qλ

q∑
i=1

K(z,xi)v(i). (3.4)

This is known as the Nystrom extension [89], which means that the eigenvectors of the

empirical kernel matrix evaluated on a finite sample set can be used as approximators

to the whole eigenfunction of the linear operator. Interestingly, Eq.(3.4) is proportional

to the projection of a test point computed in kernel PCA [10]. The approximation

can be justified by examining the convergence of eigenvalues and eigenvectors as the

number of examples increases [68, 10].

3.2.3 Extrapolating Ideal Kernel Eigenfunctions

Motivated by the eigenfunction extension, we propose to extrapolate the ideal kernel

eigenvectors as follows. Suppose we are given the labeled set Xl = {xi}li=1 with labels

Y ∈ Rl×c, where c is the number of classes, and the unlabeled set Xu = {xi}ni=l+1.

Then, in order to expand the ideal kernel eigenfunction from Xl to the whole data

set Xl ∪ Xu, we can choose {xi}qi=1 in (3.4) as Xl, choose z in (3.4) as Xl ∪ Xu, and

choose v(i) as the labels of Xl. Suppose the estimated kernel eigenvectors are denoted

as uk ∈ Rn×1 for k = 1, 2, ..., c, corresponding to the c classes, then we have

uk(i) =
1

lλk

∑
xj∈Xl

K(xi,xj)Yjk. (3.5)
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Here, λk is the eigenvalue corresponding to the kth class, which according to Propo-

sition 1 is proportional to the size of the kth class. To guarantee that the estimated

labels/eigenvector entries are in a reasonable range, one can also normalize the weight-

ing coefficients K(xi,xj) by
∑

j K(xi,xj).

The advantage of extrapolating the ideal kernel eigenfunction is that the resultant

eigenvector incorporates label information directly. Therefore, empirically they typ-

ically have higher alignment with the target compared with the eigenvectors of the

kernel matrix, the computation of the latter being totally irrespective of available class

labels. With such label-aware eigenvectors, we will then have better base kernels for

semi-supervised learning.

3.2.4 Combining Base Kernels

Having obtained a set of extrapolated ideal kernel eigenvectors, we can use them to span

base kernels for semi-supervised kernel design. In case the number of labeled sample is

very limited, using label-aware eigenvectors alone may not be sufficient. Therefore, it’s

safer to incorporate the kernel eigenvectors as well. Suppose we have obtained a set

of c extrapolated eigenvectors u1,u2,..,uc, as well as a set of k eigenvectors v1, v2, ...,

vk, from the kernel matrix (or graph Laplacian). Then we want to learn the following

kernel

K̃ =
c∑

i=1

αiuiu
⊤
i +

k∑
j=1

βjvjv
⊤
j . (3.6)

The mixing coefficients can be determined by maximizing the alignment to the target.

In other words, it will be automatically determined which parts take higher weights. If

the problem is easy and kernel eigenvectors already are accurate enough, then they will

play a major role in shaping the new kernel; on the other hand, if the kernel eigenvectors

turn out to be noisy and poorly aligned to the target, then the label-aware eigenvectors

will probably assume higher weights. In the literature, there are various ways to com-

pute the weights such as uniform weighting, independent alignment-based weighting,

or the quadratic programming approach. In this work, we adopt a well-known method
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alignf [17] and a very recent method local rademacher complexity [16] that deter-

mines the mixture weights jointly by seeking to maximize the alignment between the

convex combination kernel and the target kernel,

With the learned kernel K̃, one can use K̃ as the similarity matrix and plug it in

SVM for training and testing.

The whole algorithm is summarized in Algorithm 2.

Algorithm 2 Input: labeled samples Xl = {xi}li=1, unlabeled sample set Xu =

{xi}ni=l+1; Gaussian Kernel k(·, ·), label Y = [y1,y2, ...,yc] ∈ Rl×c.

1. Compute the kernel matrix defined among Xl ∪Xu and Xl, as Knl ∈ Rn×l;

compute the degree matrix Dn = diag(Knl · 1l×1);

2. Perform eigenfunction extrapolation as [u1, u2, ..., uc] = D−1n KnlY ;

3. Use the Nystrom method [28] to compute eigenvectors corresponding to dominant

k eigenvalues of kernel matrix or diminishing k eigenvalues of the (normalized) graph

Laplacian, as [v1, v2, ..., vk];

4. Compute the weights of the base eigenvectors [u1, u2, ..., uc, v1, v2, ..., vk];

5. Compute the new kernel K̃ =
∑c

i=1 αiuiu
⊤
i +

∑k
j=1 βjvjv

⊤
j ;

6. Apply kernel K̃ in SVM for training and testing.

3.2.5 Multiple Kernel Setting

In previous section, we only consider the use of a single (empirical) kernel matrix K

to construct base kernels in semi-supervised kernel learning. Recently, researchers have

emphasized the need to consider multiple kernels that may correspond to heterogenous

data sources (or views) and can improve the model flexibility. In case no physically

meaningful multiple domains exist, one can always artificially create them. For ex-

ample, by changing the kernel width parameter, multiple RBF kernel matrices can

be constructed [17, 16, 42]. Then these different empirical kernel matrices can all be

used to construct base kernels (or themselves can be directly used as base kernels) for

ultimate kernel learning.

In this section, we incorporate this idea in our method. Suppose we have a number
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of p different kernel matrices (or graph Laplacians), corresponding to p different sources.

Then, we will compute both the unsupervised kernel eigenvectors (ui’s, i = 1, 2, ..., c)

as well as the label-aware kernel eigenvectors (vj ’s, j = 1, 2, ..., k) for each kernel. Ulti-

mately, all these eigenvectors are fed together into a multiple kernel learning procedure.

More specifically, we can write the final kernel as,

K̃ =

p∑
t=1

(

c∑
i=1

αtiutiu
⊤
ti +

k∑
j=1

βtjvtjv
⊤
tj) (3.7)

Next, altogether p(k+c) base kernels can be fed into a kernel learning procedure such as

alignf procedure [17] or local rademacher complexity [16] to determine the mixing

weights.

3.2.6 Complexity

In Algorithm 1, step 1 and 2 takes O(nc) time and space, where n is the sample size and

c the number of classes; step 3 takes O(np2) time and O(np) space; step 4 takes O(lc)

time and space; in applying the learned kernel K̃ in SVM, we only need the l× l block

of K̃ corresponding to labeled samples, and the u× l block corresponding to the block

between unlabeled and labeled samples. Therefore, the space needed is O(nl). Step 5

takes O(cl) time. In step 6, the training takes empirically O(l2.3) time using the libsvm

package, and testing takes O(pn + ln), and the time complexity is O(nl + np2 + l2.3).

In practice, we have l, p ≪ n. Therefore, overall our algorithm has a linear time and

space complexities.

3.3 Experiments

3.3.1 Regression

In this section, we report empirical results of our algorithm in a regression task using

synthetic data generated by y = sinc(x). We generate 1000 points using the sinc

function, and randomly choose 10% as labeled data, and 90% as unlabeled data. We

compare our result with (1) cluster kernel [13] (2) diffusion kernel [38]; (3) maximal
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alignment kernel [19]; and(4) Gaussian Fields based method-winner method in the

contest [99] and standard support vector regression (SVR) [78]. We use the Gaussian

kernel in the experiments. For the kernel width, we first compute b0 as the inverse of the

average squared pairwise distances, and then choose b among b0 · { 1
50 ,

1
25 ,

1
10 ,

1
5 , 1, 5, 10}

that gives the best performance. We set ϵ = 0.01 in the support vector regression

setting. The regularization parameter C is chosen as {0.1, 1, 10, 100, 1000, 10000}. In

Figure 3.1, we plot the regression results. Here, red points are the true values, and blue

points are estimated ones. As can be seen, our approach provides better regression

results compared with Gaussian Fields based method. We use the square root of the

mean squared error to measure the regression quality The error of standard SVR is

0.0854; that of Gaussian Fields based method is 0.0123; while ours is only around

0.0052.
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(f) Maximal Alignment Kernel.

Figure 3.1: Regression results by different methods. For each test point, red color

represents the true value and blue color represents the estimation.
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3.3.2 Indoor WiFi Localization
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Figure 3.2: Localization results by different methods. For each test point, a line is

connected between the true and the estimated location/coordinates.

In this section, we report empirical results of our algorithm in indoor location es-

timation using received signal strength (RSS) that a client device received from Wi-Fi

access points [91]. The data are published in ICDM2007 semi-supervised learning con-

test. We compare our result with the following state of the art semi-supervised kernel

design methods: (1) cluster kernel [13] (2) diffusion kernel [38]; (3) maximal alignment

kernel [19]; and(4) Gaussian Fields based method-winner method in the contest [99].

In particular, we adopt the support vector regression (SVR) [78] that works on the

learned kernels on semi-supervised kernel design algorithms. We normalize the labels

yi’s such that they scale in the range [0, 1]. We use the Gaussian kernel in the exper-

iments. In semi-supervised learning parameter selection is an open problem. In this

work, the parameters are chosen as follows. For the kernel width, we first compute

b0 as the inverse of the average squared pairwise distances, and then choose b among

b0 · { 1
50 ,

1
25 ,

1
10 ,

1
5 , 1, 5, 10} that gives the best performance. For all methods, we set
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ϵ = 0.05 in the support vector regression setting. The regularization parameter C is

chosen as {0.1, 1, 10, 100, 1000, 10000}. Cluster kernel method uses 10%n diminishing

eigenvectors from the normalized graph Laplacian; other methods use the top 10%

eigenvectors of the kernel matrix.

In Figure 3.2, we plot the regression results on the 2-D plane. Here, red cir-

cles are the true coordinates, and blue dots are estimated ones. A line is connected

between every pair of true and estimated points. As can be seen, our approach pro-

vides better localization results compared with other baseline methods. We use the

square root of the mean squared error to measure the regression quality. The error of

standard SVR is 2.5 × 10−3(Figure 3.2(a)); that of Gaussian Fields based method is

1.61 × 10−3(Figure 3.2(b)); while ours is only 1.19 × 10−3(Figure 3.2(c)). Tradition-

al semi-supervised kernel design methods performs only slightly better than standard

SVR, as can been see that cluster kernel method is 2.11 × 10−3(Figure 3.2(d)); diffu-

sion kernel method is 1.97 × 10−3(Figure 3.2(e)); and maximal aligned kernel method

is 1.92 × 10−3(Figure 3.2(f));. Our regression error is reduced by about 25% com-

pared with Gaussian Fields based method, more than 30% with other state of the art

semisupervised kernel design methods, and more than 50% compared with the standard

supervised SVR. The results are listed in Table 3.1

Table 3.1: comparison of the wifi localization error rate using different semi-supervised

kernel methods.

SVR Cluster Kernel Diffusion Kernel Maximal Aligned Kernel Gaussian Fields Method Ours

2.5×10−3±0.0002 2.11 ×10−3±0.0009 1.97 ×10−3±0.0003 1.92 ×10−3±0.0002 1.61 ×10−3±0.0005 1.19× 10−3±0.0008

In Figure 3.3(a), we gradually increase the number of unlabeled samples from 200

to 2, 000, and examine the time consumption. As can be seen, our approach is orders of

magnitudes’ faster compared with Gaussian Fields based method.In Figure 3.3(b), we

plot the regression error of the two methods with regard to the Gaussian kernel width.

As can be seen, our approach is less sensitive to the choice of the kernel parameters.

This makes it a practical in real-world applications. From this example, we can see

that semi-supervised kernel design can give competitive performance compared with
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stat-of-the-art SSL algorithms that focus on estimating the labels (but not learning a

kernel). This validates the importance of a good kernel in semi-supervised learning

tasks. Of course, there are many SSL algorithms whose focus is not on learning kernel.

We choose the Gaussian Fields based method as an example for comparison because it

has shown to provide stat-of-the-art results in this localization task [91].
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Figure 3.3: Properties of the Gaussian Fields based method and our approach.

3.3.3 Classification

In this section, we compare the following semi-supervised kernel design methods: (1)

cluster kernel [13], where r(·) is chosen as linear function r(λ) = λ; (2) diffusion kernel

r(λ) = exp(−λ/δ) [38]; (3) maximal alignment kernel [19] using the top 0.1n eigenvec-

tors from the kernel matrix; (4) our approach; (5) non-parametric graph kernel [100]

using the first p = 0.1n eigenvectors from the normalized Laplacian L̃. Evaluation is

based on the alignment on the unlabeled data, and classification error of SVM using

the learned kernel. Here, for a fair comparison, our method only uses one empirical

kernel matrix instead of multiple empirical kernel matrix altogether.

We used the Gaussian kernelK(x1,x2) = exp(−∥x1−x2∥2 ·b) in all our experiments.

In semi-supervised learning parameter selection is an open problem. In this work,

the parameters are chosen as follows. For the kernel width, we first compute b0 as

the inverse of the average squared pairwise distances, and then choose b among b0 ·

{ 1
50 ,

1
25 ,

1
10 ,

1
5 , 1, 5, 10} that gives the best performance. The parameter δ and ϵ are
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(a) Text (2 classes).
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(b) USPS (2 classes).
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(c) Coil (6 classes).
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(d) BCI (2 classes).

Figure 3.4: The individual target alignment score of label-aware base eigenvectors and

the traditional kernel eigenvectors on the unlabeled data. For simplicity of visual-

ization, here the reported score is the average alignment between one eigenvector and

all the c target variables/classes.
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Table 3.2: Classification performance using different semi-supervised kernel design

schemes. For each cell, the top row is the mean/std of the kernel alignment score

(in [0, 1]) on the test set, and in bracket is the averaged time consumption (in seconds);

the bottom row is the mean/std of classification error (%).

Data Spectral Ours Cluster kernel Diffusion kernel Max-alignment

size/dim Graph kernel linear kernel

Digit1 0.29±0.07 (84.9) 0.82±0.02 (1.2) 0.13±0.005 (2.4) 0.10±0.001 (13.0) 0.14±0.001 (12.6)

1500×241 4.31±1.93 4.89± 0.85 5.37±1.23 6.13±1.63 3.82±1.23

USPS 0.23±0.08 (74.9) 0.66±0.04 (1.2) 0.43±0.001 (2.5) 0.06±0.001 (16.0) 0.06±0.01 (12.7)

1500×241 7.47± 4.41 6.64±1.27 6.56±1.02 7.27±0.59 9.81±0.49

COIL2 0.11±0.005 (73.4) 0.55±0.07 (1.2) 0.10±0.001 (2.4) 0.05±0.003 (8.4) 0.07±0.00 (5.3)

1500×241 18.49±2.47 13.44±2.41 18.51±4.66 19.08±2.05 19.32±1.89

BCI 0.07±0.003 (9.9) 0.14±0.04 (0.4) 0.04±0.001 (0.2) 0.07±0.003 (0.4) 0.07±0.002 (0.5)

400× 241 32.95±3.38 32.99±3.10 42.02±2.89 33.58±2.83 34.85±2.75

COIL 0.01±0.001 (199.5) 0.11±0.05 (0.4) 0.08±0.002 (2.58) 0.06±0.001 (8.3) 0.07±0.001 (5.5)

1500×241 21.90±3.24 9.14±0.96 10.89±1.12 11.67±1.43 11.75±1.49

g241n 0.40±0.003 (108.2) 0.33±0.03 (1.4) 0.03±0.007 (2.5) 0.04±0.00 (20.3) 0.04±0.00 (6.7)

1500×241 13.64±1.28 24.11±1.73 26.59±3.96 19.68±1.52 18.61±1.75

Text 0.13±0.01 (181.0) 0.30±0.02 (20.1) 0.03±0.001 (68.1) 0.03±0.00 (208.0) 0.03±0.004 (130.7)

1500×11960 25.55±1.65 23.42±1.46 32.90±6.64 24.89±1.81 26.78±4.88

usps38 0.48±0.004 (77.3) 0.84±0.02 (1.2) 0.12±0.001 (1.6) 0.11±0.001 (6.8) 0.11±0.001 (4.5)

1200×256 4.82±1.33 2.82±0.83 5.10±0.89 6.06±1.01 6.06±0.85

usps49 0.40±0.13 (82.1) 0.86±0.01 (1.2) 0.09±0.001 (1.9) 0.08±0.001 (9.3) 0.07±0.001 (8.9)

1296×256 2.83±0.92 1.98±0.52 6.29±2.11 8.26±0.83 10.67±1.24

usps56 0.48±0.06 (80.0) 0.86±0.01 (1.2) 0.12±0.001 (1.7) 0.09±0.003 (18.2) 0.11±0.001 (5.0)

1220×256 2.87±0.92 2.44±0.59 3.89±1.57 3.85±0.97 5.79±1.06

usps27 0.58±0.004 (101.8) 0.91±0.06 (1.2) 0.37±0.001 (2.3) 0.10±0.001 (11.8) 0.13±0.001 (6.9)

1376×256 1.79±0.42 1.21±0.25 1.80±0.25 2.28±0.56 4.80±1.29

odd/even 0.21±0.008 (419.0) 0.65±0.03 (1.6) 0.12±0.001 (8.8) 0.03±0.004 (38.5) 0.08±0.00 (22.3)

2007×256 10.14±2.11 9.58±1.56 14.59±1.49 14.08±2.04 15.64±2.91
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chosen from {10−5, 10−3, 10−1, 1}. Each algorithm is repeated 30 times with 50 labeled

samples randomly chosen for each class. Cluster kernel method and non-parametric

graph kernel method use 10%n diminishing eigenvectors from the normalized graph

Laplacian; other methods use the top 10% eigenvectors of the kernel matrix. Results

are reported in Table 3.2. As can be seen, our algorithm gives competitive performance

and at the same time very efficient.

3.3.4 Evaluation of Superiority of Label-aware Base Kernels

In previous sections, we have demonstrated that the proposed method outperforms

existing methods in semi-supervised kernel learning tasks including classification and

regression. To further verify that this superiority is attributed to the newly proposed

label-aware base kernels, in this section, we examine in more detail the usefulness of

the proposed label-aware base kernels in two different ways. First, we examine the

individual alignment score of the base kernels as an index of their quality. Second, we

apply state-of-the-art kernel combination schemes [17, 16] on two sets of base kernels,

one is the traditional (unsupervised) base kernels, and the other includes the label-

aware base kernel, and compare their learning performance. We call this side-by-side

comparison. This comparison clearly shows that by adding the newly proposed base

kernels, the learning performance of the mixed kernel improves.

Alignment Score Comparison

In Figure 3.4, we examine alignment score of the label-aware eigenvectors (blue circles)

and those from the normalized Graph Laplacian2. Here, the reported score is the

average alignment between one eigenvector and all the c target variables. As can be

seen, the label-aware eigenvectors almost always have higher or at least very similar

alignment scores compared with the eigenvectors of the graph Laplacian.

2Empirically, eigenvectors from the normalized graph Laplacian have higher target alignment than
those from the kernel matrix.
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Table 3.3: Side-by-side comparison of the learning performance using single empirical

kernel matrix.

Data alignf alignf local rademacher local rademacher

size/dim (baseline) (ours) complexity(baseline) complexity(ours)

Digit1 0.27±0.02 (0.8) 0.82±0.02 (1.2) 0.49±0.02(16.9) 0.82±0.02(17.1)

1500×241 10.73±0.54 4.89±0.85 6.45±0.63 5.18±0.56

USPS 0.02±0.01 (0.5) 0.66±0.04 (1.2) 0.03±0.01 (6.5) 0.72±0.01(5.7)

1500×241 14.15±1.92 6.64±1.27 10.09±1.49 8.18±1.26

COIL2 0.15±0.07 (0.6) 0.55±0.07 (1.2) 0.18±0.01(13.2) 0.51±0.03 (11.3)

1500×241 19.92±2.14 13.44±2.41 18.54±3.43 14.22±2.12

BCI 0.01±0.04 (0.6) 0.14±0.04 (0.4) 0.06±0.01(17.2) 0.18±0.04(14.3)

400×241 51.36±3.50 32.99±3.10 39.36±3.35 33.09±2.59

COIL 0.09±0.01 (0.3) 0.11±0.05 (0.4) 0.08±0.01 (20.3) 0.12±0.05 (20.4)

1500×241 15.92±2.31 9.14±0.96 19.94±4.32 10.65±4.33

g241n 0.31±0.01 (0.6) 0.33±0.03 (1.4) 0.20±0.02(14.5) 0.33±0.01(17.8)

1500×241 29.03±0.67 24.11±1.73 26.35±1.16 23.90±1.16

Text 0.13±0.02 (18.8) 0.30±0.02 (20.1) 0.14±0.03(25.6) 0.34±0.02(22.1)

1500×11960 30.18±2.28 23.42±1.46 27.34±2.87 23.09±2.21

usps38 0.53±0.01 (0.9) 0.84±0.02 (1.2) 0.56±0.02(25.6) 0.85±0.03(23.6)

1200×256 6.25±0.80 2.82±0.83 4.63±0.41 2.54±0.32

usps49 0.52±0.02 (0.7) 0.86±0.01 (1.2) 0.37±0.01(25.0) 0.87±0.02(20.9)

1296×256 5.70±0.77 1.98±0.52 4.63±0.24 2.09±0.39

usps56 0.52±0.02(0.7) 0.86±0.01 (1.2) 0.55±0.03(39.4) 0.86±0.05(22.5)

1220×256 4.09±0.72 2.44±0.59 5.54±0.52 2.36±0.53

usps27 0.56±0.01 (0.8) 0.91±0.06 (1.2) 0.78±0.02(5.1) 0.88±0.01(19.1)

1376×256 1.98±0.16 1.21±0.25 2.09±0.31 1.18±0.27

odd/even 0.22±0.01 (0.8) 0.65±0.03 (1.6) 0.31±0.02(27.0) 0.70±0.02(14.1)

2007×256 13.91±1.52 9.58±1.56 10.27±0.64 8.82±0.84
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Table 3.4: Side-by-side comparison of the learning performance using multiple empirical

kernel matrix.

Data alignf alignf local rademacher local rademacher

size/dim (baseline) (ours) complexity(baseline) complexity(ours)

Digit1 0.82±0.02 (1.2) 0.86±0.02(2.8) 0.82±0.02(17.1) 0.79±0.01(30.8)

1500×241 4.89±0.85 4.70±0.92 5.18±0.56 4.54±0.61

USPS 0.66±0.04 (1.2) 0.72±0.04(2.7) 0.72±0.01(5.7) 0.73±0.01(15.1)

1500×241 6.64±1.27 6.09±1.02 8.18±1.26 7.04±1.04

COIL2 0.55±0.07 (1.2) 0.58±0.02 (3.2) 0.51±0.03 (11.3) 0.53±0.04 (34.1)

1500×241 13.44±2.41 13.14±2.66 14.22±2.12 14.02±2.66

BCI 0.14±0.04 (0.4) 0.22±0.04(1.4) 0.18±0.04(14.3) 0.22±0.04(25.7)

400×241 32.99±3.10 30.27±2.02 33.09±2.59 30.45±1.88

COIL 0.11±0.05 (0.4) 0.13±0.01 (2.1) 0.12±0.05 (20.4) 0.15±0.03 (42.3)

1500×241 9.14±0.96 9.04±0.98 10.65±4.33 10.61±4.81

g241n 0.33±0.03 (1.4) 0.37±0.03(5.6) 0.33±0.01(17.8) 0.34±0.01(24.5)

1500×241 24.11±1.73 22.36±1.93 23.90±1.16 23.09±1.01

Text 0.30±0.02 (20.1) 0.33±0.02(23.8) 0.34±0.02(22.1) 0.34±0.01(46.3)

1500×11960 23.42±1.46 23.36±0.96 23.09±2.21 23.00±1.13

usps38 0.84±0.02 (1.2) 0.81±0.02(2.7) 0.85±0.03(23.6) 0.84±0.02(54.7)

1200×256 2.82±0.83 2.63±0.33 2.54±0.32 2.27±0.45

usps49 0.86±0.01 (1.2) 0.86±0.01(2.9) 0.87±0.02(20.9) 0.87±0.01(23.7)

1296×256 1.98±0.52 1.81±0.22 2.09±0.39 1.90±0.45

usps56 0.86±0.01 (1.2) 0.87±0.01(1.6) 0.86±0.05(22.5) 0.85±0.01(44.7)

1220×256 2.44±0.59 2.35±0.59 2.36±0.53 2.27±0.32

usps27 0.91±0.06 (1.2) 0.90±0.01(1.9) 0.88±0.01(19.1) 0.90±0.01(35.6)

1376×256 1.21±0.25 0.72±0.21 1.18±0.27 1.00±0.19

odd/even 0.65±0.03 (1.6) 0.67±0.02(3.1) 0.60±0.02(14.1) 0.67±0.02(21.9)

2007×256 9.58±1.56 8.90±1.43 10.36±0.84 9.36±0.84
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Side-by-Side Learning Performance Comparison

In this section, we perform a side-by-side comparison among two sets of base kernels to

examine their performance in kernel learning. The first set only contains unsupervised

kernel eigenvectors; the second set further adds label-aware base kernels. For both

settings, we use Gaussian kernels K(x1,x2) = exp(−∥x1 − x2∥2 · b) as base kernels.

For each base kernel, we extract p eigenvectors from its graph Laplacian, where p is

chosen among 0.01n, 0.05n, 0.1n, 0.15n, 0.2n. Here, algnf [17]and local rademacher [16]

are chosen as the baseline kernel combination schemes.

The kernel parameter and regularization parameter C in SVM are the same as Sec-

tion 3.3.3. In the local rademacher complexity method, parameters θ and C are chosen

among {0.1n, 0.5n, 0.8n, 0.9n, n} and {0.1, 1, 10, 100, 1000, 10000}. We examine the use

of a single empirical kernel matrix (see Table 3.3), as well as a set of multiple empirical

kernel matrices whose kernel width parameters vary in b0 · { 1
50

1
25 ,

1
10 ,

1
5 , 1, 5, 10} (see

Table 3.4). As can be seen, by incorporating the label-aware base kernels, the learning

performances are improved in most of the data sets in both kernel combination schemes.

We also note that the improvement is less significant in case multiple empirical kernel

matrices are used. We speculate that when more empirical kernel matrices are used

(with varying kernel parameter), they may have higher chances to align to the target.

However, in some data sets, such as usps38,usps49 and etc, although multiple empiri-

cal kernel matrices are used which lead to more base kernels, their performances still

can be significantly improved after adding the label aware base kernels. We speculate

that these data sets are very difficult, and even under a wider choice of the kernel pa-

rameters, the resultant unsupervised empirical kernel matrices are still poor candidate

for base kernels, and have to rely on using the label information to further improve

their quality. This clearly demonstrate the usefulness of the proposed label-aware base

kernels in difficult learning tasks.
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Chapter 4

Surrogate Kernels for Indoor WiFi Localization

4.1 Transfer Learning In Indoor WiFi Localization

Most machine-learning based Indoor WiFi Localization methods rely on collecting a lot

of labeled data to train an accurate localization model offline for use online, and assum-

ing that the distributions of RSS data over different time periods are static. However,

it is expensive to calibrate a localization model in a large environment. Moreover, the

RSS values are noisy and can vary with time [53][44]. As a result, even in the same

environment, the RSS data collected in one time period may differ from those collected

in another. How can we build machine learning models that are robust to the change of

domains or environment? How to fully exploit the training labels obtained in older do-

mains so as to save the human labors in the localization tasks in the new environment?

Transfer learning provides an effective tool for solving these problems.

Transfer learning aims to extract the knowledge from one or more source domains

and applies the knowledge to a different, but related target domain. It has drawn con-

siderable attention in the areas of machine learning, and there has been a large amount

of methods proposed in the literatures. Among the various formulations, covariate shift

is probably the most popular one and has been studied extensively. In statistics, a

covariate is a variable which is possibly predictive of the outcome under study. It is

also termed as explanatory variable, independent variable, or predictor in some scenar-

ios. Covariate shift refers to the situation that the marginal distribution PS(x) of the

source domain S differs from PT (x), the marginal distribution of the target domain T

for evaluation, while the conditional distribution PS(y|x) = PT (y|x) is shared between

the two domains.

Early works in solving the covariate shift problem include [83, 11], which treated
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different domains as tasks and applied the multi-task learning. Daumé III and Marcu

[35] investigated how to train a general model with data from both a source domain and

a target domain for domain adaptation in natural language processing tasks. Recently,

several research work [74, 96, 34, 80] has converged along the direction of estimating

a point-wise re-weighting on the training data to minimize the generalization error in

testing. For example, Huang et al. [34] applied the kernel mean matching (KMM) to

account for the distribution difference, such that the means of the training and test

points in a reproducing kernel Hilbert space (RKHS) are close. Sugiyama et al. [80, 79]

proposed a framework to estimates the importance ratio which is simultaneously e-

quipped with model selection. Their idea is to find an importance estimate ŵ(x) such

that the Kullback-Leibler divergence from the true test input density Pte(x) to its

estimate P̂te(x) = ŵ(x)Ptr(x) is minimized. In [59], instead of learning point-wise re-

weighting coefficients, the authors proposed to learn the so called transfer components

by minimizing the Maximum Mean Discrepancy (MMD) criterion defined in the RKHS,

which measures the distance between distributions of two samples. The transfer com-

ponents are in the form of pre-parameterized empirical kernel maps and can handle

out-of-samples conveniently.

4.1.1 Domain Adaptation

In the computer vision community, similar problems also have drawn considerable in-

terest from researchers, which is called domain adaptation. In the following we make

a review of these methods and categorize them into several classes. Note that some

of the related methods may not be directly applicable to the wifi-localization problem,

due to the need of labeled training samples in the target domain.

• Metric learning based approaches. [64] proposed a modified metric learning ap-

proach that learns a symmetric transformation matrix to account for the mismatch

between two domains. The transformation matrix is required to be symmetric

may be overly restrictive for some applications, which requires the dimensionality

of the two domains are equal. It was later extended to an asymmetric version of
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with a different regularizer [40] . These approaches require a few labels from the

target domain and are proposed specifically for classification problem. However,

in the wifi localization problem, the labels are the location coordinates in the floor

plan which leads to a more challenging, regression problem. In addition, we do

not have any label in the testing domain; but only labels in the training domain;

• Low-rank methods. The low-rank structure has been shown to be effective to map

the data to some low-dimensional spaces which minimize the statistical difference

between two domains. In [6] , the authors learned a subspace projection such that

the projected data are similarly distributed across the domains. They minimize

the MMD between the two domains using Gaussian RBF and polynomial kernels.

An intra-class scatter term is included to take care of the discriminative informa-

tion. Similarly, this method is not suited for regression problem. Instead of the

MMD criterion,[7] proposed to compute the data distribution via kernel density

estimation, then learn a subspace projection via minimizing the Hillenger Dis-

tance on the statistical manifold. They showed better experimental results than

using the counterpart MMD. However, the resulting problem is nonconvex and

inefficient to solve for large-scale data. [26] found a mapping matrix between two

domains by aligning their respective subspaces obtained via PCA. Although the

objective function considered in this method is the difference between the sample

mean in the feature space, it is used as an indicator of the distance between two

distributions in the input space.

• Sparse coding methods. Sparse coding is another popular type of feature learning

approaches in domain adaptation, one would like to learn the representations of

both domains such that the domain discrepancy is minimized under the new rep-

resentation. [49] introduced the MMD regularizers to learn new representations

in the Graph Regularized Sparse Coding framework. A regularizer similar to the

objective function of SVM, is introduced in [70], therefore labels from both do-

mains are required for these methods. [87] presented a semi-coupled dictionary

learning (SCDL) model, it assumes the sparse coefficients from one domain to
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be identical to those observed at the other domain via a linear projection. [33]

extended it to a coupled dictionary learning approach such that these two coupled

dictionaries are aligned simultaneously. One big disadvantage of these methods

is that the optimization problem involved has to be solved alternatively.

• Phantom domain methods. Another line of approaches model the domain shift

from the source domain to the target domain by some intermediate phantom do-

mains. The source and the target domains represent by two subspaces, respective-

ly. One can then find a number of intermediate subspaces interpolating between

those two [30]. Since the new representations have a very high dimensionality, a

dimension reduction step is required before actually training the classifiers. [29]

and [97] both developed efficient kernel methods to harvest an infinite number of

intermediate phantom domains. An extension was proposed in [75], the authors

model each class of the source domain by a subspace, which is then associated

with a subspace from the target domain. The Karcher mean of source domain

subspaces and that of target domain ones are used to compute a geodesic direc-

tion. The domain shift is then modeled by the parallel transportations from all

the source subspaces to their corresponding target subspaces. Instead of finding

intermediate subspaces on the Grassmannian manifold, [54] proposed iteratively

synthesizing intermediate subspaces in a manner which gradually reduces the re-

construction residue of the target data. However, it is still an open problem of

choosing the best sampling strategy for intermediate domains. Choosing the num-

ber of subspaces to sample and the dimensionality of the subspaces, and handling

the high dimensionality of the new representations are also challenging.

• Deep learning methods. Most recently, deep learning has been applied in the do-

main adaptation problems and has achieved impressive performance in computer

vision [21, 55]. So far these approaches mainly rely on a sufficiently large and

labeled dataset from the source domain. However, it remains questionable how

the ”deep” methods could be utilized when there are limited training data from

the source domain.



59

4.1.2 Motivation of Our Approach

The existing methods study how to make training and testing data have the same

distribution in the input space. In contract, few attempts has been made specifically to

cater to kernel methods, where being considered should be the data distributions in the

reproducing kernel Hilbert space (RKHS). While in general one may want to consider

data distribution in the input space, the behavior of kernel methods are determined

in a more complex mechanism due to the interplay between the kernel and the data

distribution. In particular, the kernel methods work by applying a linear algorithm

in the kernel-induced feature space, where the algorithm performance depends directly

on the data distribution in this space. Therefore, we believe that making the training

and testing data have similar distributions in the feature space will be a more direct

way in tackling the covariate shift problem for kernel-based learning algorithms. In this

chapter, we address the cross domain indoor WiFi localization problem by proposing a

transfer learning approach for learning a surrogate kernel between the source domain

and the target domain. By using the surrogate kernel, we can apply an explicit (linear)

transform on the Gram matrix of the training data, forcing it to properly align that of

the test data, such that the kernel machine learned on the training data generalize well

to test domain.

Superiority of our method comparing to existing domain adaptation

methods.

• our method does not require labels in the target domain; in comparison, metric

learning based methods require labels in both source and target domain;

• our method aligns source and target domain in the kernel space, which is a non-

linear mapping; in comparison, low rank based methods align the two domains in

input space and are usually linear, which can be less flexible;

• out method has a global optimal solution; in comparison, existing sparse coding

based method are usually non-convex and can only obtain a local optimal solution;
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• our method doesn’t need to handle high dimensional space as introduced by phan-

tom domains method;

• our method doesn’t rely on large data set for training; in comparison, deep learn-

ing methods have to require a huge number of labelled samples which are typically

non-trivial to obtain in WiFi-localization applications.

4.2 Designing Surrogate Kernels

The kernel matrix describes important pairwise similarity among input patterns, and

is the basic building block of the kernel machine. Given a kernel matrix K defined on a

set of input samples X , it implicitly induces a non-linear, possibly infinite dimensional

mapping X → φ(X ), where the inner product ⟨φ(x), φ(y)⟩ can be conveniently esti-

mated as K(x,y) for x,y ∈ X . In other words, the kernel matrix K can be deemed

as the inner product ⟨φ(X ), φ(X )⟩. Therefore, if two kernel matrices K1 and K2 from

different domains are close to each other (the definition of closeness will be made clear

in later section), then their corresponding feature map φ(X1) and φ(X2) will also be

close, and as a result the distributions of the data in the kernel-induced feature space

will be close, too (the former is a necessary condition for the latter). In other words,

matching the data distribution in the feature space can be equivalently and convenient-

ly cast as manipulating the kernel matrix, which avoids the difficulty of handling the

possibly infinite-dimensional feature vectors φ(x)’s.

Inspired by this simple observation, we propose to transform the kernel matrix in

the source domain such that it is more similar to that in the target domain. By doing

this, the feature map (RKHS) embodied via the kernel matrices will be similar for the

two domains, allowing models trained in one domain to generalize well to the other.

However, the kernel matrix is data dependent. Given kernel matrices defined on two

different data sets, it is difficult to evaluate the closeness between them since they are

of different sizes and their row/column correspondence is undefined, not to mention

rectifying one to align to the other.

To solve this problem, in this work we propose the concept of surrogate kernel. More
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specifically, suppose we have a kernel matrix KX defined on a data set X . On the other

hand, we are given a new data set Z. Here, we want to generate a surrogate kernel of

KX by somehow “projecting” it from X to Z, denoted by KZ←X . The surrogate kernel

KX←Z should inherit key structures of KX but, instead of being defined on X , KX←Z

is defined on the new set Z. Therefore, KX←Z can be used in replacement of KX when

we want to compare KX with any kernel matrice defined on Z. In order to define the

structure of the kernel matrix and how to faithfully preserve it across domains, we will

resort to the following theorem.

Theorem 1 (Mercer) Let K(x,y) be a continuous symmetric non-negative function

which is positive definite and square integrable w.r.t. the distribution p(·), then

K(x,y) =
∞∑
i=1

λiϕi(x)ϕi(y). (4.1)

Here the non-negative eigenvalues λi’s and the orthonormal eigenfunctions ϕi’s are the

solutions of the following integral equation∫
K(x,y)p(y)ϕi(y)dy = λiϕi(y). (4.2)

The Mercer’s theorem [66] is the fundamental theorem underlying the reproducing k-

ernel Hilbert space. It states that any psd kernel can be reconstructed by the kernel

eigenfunctions (4.1). In particular, given data set X with distribution p(·) and cor-

responding kernel matrix KX , if we can compute the kernel eigenspectrum λi’s and

continuous eigenfunctions ϕi(·)’s (4.2), we will then be able to freely evaluate the ker-

nel (4.1) on arbitrary pair of point. In particular, if the evaluation is performed on a

new data set Z, a regenerated kernel matrix on Z will then be obtained. This regener-

ated kernel matrix builds entirely on the eigensystem conveyed via the original kernel

matrix KX , therefore we believe it preserves key structure of KX and can be used as

its surrogate on the new domain Z.

Next comes the problem of estimating the eigen-spectrum and continuous eigen-

functions of X , which are solutions of the integral equation (4.2). Thanks to [88, 69],

they can be approximated asymptotically by a finite-sample eigenvalue-decomposition
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on the empirical kernel matrix KX . In the following we derive a concrete approxima-

tion. Suppose that we have a set of samples X = {xi}ni=1 drawn from p(·). Then we

can approximate the integral in (4.2) by the empirical average:

1

n

n∑
j=1

k(x,xj)ϕi(xj) ≃ λiϕi(x). (4.3)

Choosing x in (4.3) from X leads to a standard eigenvalue decomposition KXΦX =

ΦXΛX , where KX (i, j) = k(xi,xj), ΦX ∈ Rn×n has orthonormal columns and ΛX ∈

Rn×n is a diagonal matrix. The eigenfunctions ϕi(·)’s and eigenvalues λi’s in (4.2)

can be approximated respectively by columns of Φ and diagonal entries of Λ, up to a

scaling constant. According to (4.3), the eigenfunction ϕi(x) at any point x can be

extrapolated by ϕi(x) =
1

λin

∑n
j=1 k(x,xj)ϕi(xj). Therefore, if we want to evaluate the

eigenfunctions ϕi(·)’s (i = 1, ..., n) on the set Z, we can write them in matrix form as

ΦZ = KZXΦXΛ
−1
X , (4.4)

where KZX is the cross similarity between Z and X , evaluated using kernel k.

We provide an illustrative example in Figure 4.1. Here, X (+) is drawn from a

Gaussian distribution, and we computed a kernel matrixKX using RBF kernel. We plot

its 2nd largest eigenvector (also marked with +). We also computed the (continuous)

eigenfunction corresponding to this eigenvector, ϕ2(u) (solid curve). Next, we draw

data Z (◦) from a uniform distribution, and we evaluate the eigenvector ϕ2(u) on Z

(also marked with ◦). As can be seen, both eigenvectors (defined on X and Z) lie on

the eigenfunction curve. However, X and Z play quite different roles: X is the source

of information, based on which the kernel eigenfunction is estimated; in comparison,

Z is only a set of points that passively receives information from X the source domain

on which the eigenfunction is evaluated. In other words, Z only passively receives the

eigen-information created by X .

Based on this observation, we can make Question 1 more explicit as: how to recon-

struct KZ←X on Z such that it maximally reflects the information of KX in terms of

eigenvalues and eigenfunctions?

Answer 1 A natural solution is to reconstruct a surrogate kernel KZ←X using all the
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Figure 4.1: Extrapolating the kernel eigenfunction ϕ2(u) from in-sample set X to out-

of-sample set Z.

eigenvalues of X , but its re-extrapolated eigenvectors on Z, i.e.,

KZ←X = ΦZΛXΦ
′
Z =

(
KZXΦXΛ

−1
X

)
ΛX

(
KZXΦXΛ

−1
X

)′
= KZXK

−1
X KXZ . (4.5)

Interestingly, equation (4.5) coincides with the matrix completion version of the Nys-

trom method [89]. We call KZ←X the surrogate kernel of KX on data Z.

We note that in [84], a kernel extrapolation method is proposed to extend a given

kernel matrix to unseen data. However, the kernel extrapolation is used to prevent ex-

pensive kernel construction (say, via SDP programming) on large data, and the feature

map x → Rn needs to be given; while the surrogate kernel is used as a bridge to solve

the distribution difference problem, and the non-linear feature mapping is handled im-

plicitly. On the other hand, the kernel extrapolation is based on matrix approximation

under semi-definite constraint, which minimizes the difference of the Von-Neumann

Schatten p-norms; while the surrogate kernel uses empirical estimation of the kernel

eigenfunctions, and is designed explicitly to preserve the eigen-structure of the given

kernel matrix.

4.2.1 Kernel Matrix Alignment Via Surrogate Kernels

The notion of surrogate kernel allows us to “project” a given kernel matrix defined

on some sample set onto an arbitrary new set of samples while preserving the eigen-

structures. This then serves as a bridge that allows us to freely compare (henceforth

transform among) different kernel matrices, which otherwise would be difficult. In the
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following, we propose a parametric transform to rectify the kernel matrix from one

domain such that it becomes more aligned to the kernel matrix in another domain, by

using surrogate kernel.

suppose X1 and X2 come from the training and test data, respectively, with cor-

responding kernel matrices K1 ∈ Rn1×n1 and K2 ∈ Rn2×n2 defined by some kernel k.

Here we apply a symmetric transformation matrix T ∈ Rn1×n1 on both sides of the

kernel matrix K1, as

K̃1 = T ′K1T, (4.6)

with the hope that the transformed kernel matrix is more similar to that in the target

domain. Here, the transform (4.6) implicitly enforces a nonlinear transform µ on X1,

i.e., X̃1 = µ(X1), such that by using the kernel trick,

⟨Ψ(X̃1),Ψ(X̃1)⟩ = ⟨Ψ(X1)T,Ψ(X1)T ⟩, (4.7)

where Ψ(Z) = [ψ(z1), ..., ψ(zn)] for input data Z = {z1, ..., zn}. From (4.7), we can

see that the transform µ underlying (4.6) is actually a linear transformation Ψ(X̃1) =

Ψ(X1)T in the feature space.

Our task is to make the transformed kernel matrix K̃1 (4.6) approach K2, the

kernel matrix defined on X2. Since K̃1 and K2 are of different sizes and can not

be compared directly, we will first compute the surrogate kernel of K2 on X1, i.e.,

K1←2 = K12K
−1
2 K21. Then, we try to minimize the Frobenius norm of the difference

between K̃1 and K1←2 as follows

min
T∈Rn1×n1

∥∥T ′K1T −K1←2
∥∥2
F
+ γ∥T∥2F . (4.8)

Here the second term controls the complexity of the transformation T , and γ controls

the balance between enforcing an exact fit and the model complexity. In the empirical

evaltions we will further study the algorithm performance w.r.t. the choice of this

parameter. By finding the vanishing derivative of (4.8) w.r.t. T , we have

T = K
− 1

2
1 (K1←2 − 1

2
γK−11 )

1
2 . (4.9)

Note that A
1
2 for a symmetric and positive semi-definite matrix A can be computed

as A
1
2 = PD

1
2P ′, where P ’s columns are eigenvectors of A, and D is diagonal with
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eigenvalues. Similarly, A−
1
2 = PD−

1
2P ′. Once the transformation T is obtained, X̃1

will be also be determined. By virtue of the kernel trick again, we will be able to utilize

X̃1 (implicitly) in any kernel-based learning algorithm, as long as we can compute the

similarity between X̃1 and X2. This will be discussed in the next subsection.

4.2.2 Cross Domain Similarity

In order to use transformed training data X̃1 in kernel-based learning algorithms, we

will need to compute the composite kernel matrix defined on a X̃1 ∪ X2:

G =

 ⟨Ψ(X̃1),Ψ(X̃1)⟩ ⟨Ψ(X̃1),Ψ(X2)⟩

⟨Ψ(X2),Ψ(X̃1)⟩ ⟨Ψ(X2),Ψ(X2)⟩


By design, we have ⟨Ψ(X̃1),Ψ(X̃1)⟩ = T ′KT , and ⟨Ψ(X2),Ψ(X2)⟩ = K2. In the remain-

ing, we need to compute K̃12, the inner product between transformed training data

Ψ(X̃1) and the original test data Ψ(X2), both of which lie in an infinite-dimensional fea-

ture space. By using (4.7), we have Ψ(X̃1) = Ψ(X1)T. So ⟨Ψ(X̃1),Ψ(X2)⟩ = T ′Ψ(X1)
′Ψ(X2) =

T ′K12. Therefore, we have the following composite kernel which can be used in any

kernel based learning algorithms,

G =

 T ′K1T T ′K12

K21T K2

 . (4.10)

It’s easy to verify that the composite kernel is always psd. The complexity of our

approach is O(|X1 ∪ X2|3), which can be further reduced by low rank approximation

techniques.

4.2.3 Predictions

After computing the transformed Gram matrix, we can apply it to various kernel meth-

ods. We choose as example the kernel ridge regression and support vector machine

classification for prediction. For kernel ridge regression, we predict labels for the test

data X2 as y2 = K̃21(K̃1 + ηI)−1y1. For SVM classification, after using the (K̃1,y1) to

train a standard SVM classifier with Lagrangian multipliers α and the bias term b, we

predict labels for the test data by y2 = K̃21(α⊙ y1) + b.
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4.3 Experiments

In this section, we examine the performance of our approach through five real world-

data sets, including two WiFi-localization data sets (for regression task) and three text

classification data sets (for classification task). In all our experiments, we randomly

choose 60% samples from one domain1 for training and also 60% samples from another

domain for testing. We repeat the experiments for 10 times and report the average

results and their standard deviations.

4.3.1 WiFi Time Data

In WiFi-localization, given a set of WiFi signals (samples) X={xi∈Rd} and correspond-

ing locations/labels Y={yi∈R}2, we try to learn a mapping function from the signal

space to the location space. However, in practice the WiFi signal data X1 collected

some time before may be out-of-date and will follow a different distribution with the

up-to-date WiFi signal data X2. Figure 4.2 demonstrates the WiFi signal over different

time periods, showing the need for distribution matching.

Our experimental setting is as follows. Given WiFi data from two different time

periods in the same hallway. In the first time period the data are labeled training

data (X1,Y1), and the second time period are test data X2. Our goal is to predict

the labels for X2. We compare our approach with 3 others methods: (1) Kernel Ridge

Regression (KRR). (2) Transductive Laplacian Regularized Least Square (LapRLS) [8].

(3)Penalized LMS Regression by Kernel Mean Matching (KMMR) [34]. (4)KLIEP[80]

(5)TCA[59] (6)GFK[29] (7)SSA[26]

Following the customs in wireless sensor network community, we transform the

regression errors to localization accuracy as follows. For each signal to be localized, the

accuracy is 100% if the predicted position is within a threshold from the true position,

and 0% otherwise. We set this threshold as 3 meters, and report the average accuracy

among all the signals. We conduct experiments using 3 time periods, denoted by t1,

1e.g. one time period in Section 4.3.1, one wireless device in 4.3.2, or one text data category in 4.3.4.

2For simplicity, here we consider localization in some hallway, whose location coordinate is 1-D.
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Figure 4.2: WiFi signal variations over time at a fixed location.

t2 and t3. Results (the mean and standard deviation of the accuracy) are reported in

Table 4.2. We also conduct paired t-test on the difference between the accuracies of

our approach and the other 3 methods. For all three transfer-learning tasks in different

time periods, our approach is statistically better than others with the confidence level

of at least 99.99%.

4.3.2 WiFi Device Data

The experiments on WiFi Device Data aim to conduct localization on different devices.

Note that different wireless devices usually have different signal sensing capacities, and

consequently the signals from different devices will vary from each other. Figure 4.3
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Table 4.1: WiFi Time data

|DScr| |Dtar| feature#

t1-vs-t2 792 792 67

t1-vs-t3 792 792 67

t2-vs-t3 792 792 67

Table 4.2: Localization using WiFi Time data (regression).

t1-vs-t2 t1-vs-t3 t2-vs-t3

KRR 80.84±1.14 76.44±2.66 67.12±1.28

LapRLS 82.35±1.08 94.96±1.04 85.34±1.88

KMMR 81.84±1.25 76.42±2.64 69.24±1.67

KLIEP 82.67±1.32 75.54±1.15 70.21±1.05

TCA 86.85±1.61 80.48±2.73 72.02±1.32

GFK 89.33±1.27 90.82±1.98 87.54±1.45

SSA 87.33±1.29 84.82±1.34 77.54±1.39

Ours 90.36±1.22 94.97±1.29 85.83±1.31

illustrates this by showing the signals collected from two different devices at the same

location. This again necessitates the use of data distribution matching over different

devices.

In our experiments, we collect WiFi data by two different devices for 3 hallways

indexed from 1 to 3. The first device creates labeled training data (X1,Y1), and the

second device creates test data X2. For each hallway, we perform distribution matching

between the two devices, and the goal is to predict the locations for X2. We use similar

settings as in Section 4.3.1. The threshold error-distance is set as 6 meters. Results are

reported in Table 4.4. Again, our approach demonstrates better performance in terms

of the localization accuracy, with the confidence level that is at least 99.99%.

4.3.3 Comparison with Domain Adaptation Methods

In this section, we compare our method with two popular methods in domain adapta-

tion, namely the Geodesic Flow Kernel (GFK)[29], and Subspace Alignment (SSA)[26].



69

−50 −45 −40 −35
0

5

10

15

20

25

Signal strength (dBm)
F

re
qu

en
cy

(a) WiFi signal at device 1

−50 −45 −40 −35
0

5

10

15

20

25

Signal strength (dBm)

F
re

qu
en

cy

(b) WiFi signal at device 2

Figure 4.3: WiFi signal variations over devices at a fixed location.

The GFK models the domain shift from the source domain to the target domain by

some intermediate phantom domains. The source and the target domains are represent-

ed by two subspaces, respectively. The authors developed an efficient kernel method

to harvest an infinite number of intermediate phantom domains. The SSA method

is a popular low rank method for domain adaptation, which finds a mapping matrix

between two domains by aligning their respective subspaces obtained via PCA. The

methods are reported in Table 4.2 and Table 4.4.

As can been seen, for the time-shift experiment, the two domain adaptation methods

can outperform KRR, and other transfer learning methods such as KMM, KLIEP,

and TCA, which demonstrates the effectiveness of the domain adaptation methods in

WiFi localization task. However, our methods still outperforms the domain adaptation



70

Table 4.3: WiFi Device data

|DScr| |Dtar| feature#

Hallway1 750 750 46

Hallway2 917 917 46

Hallway3 792 792 46

Table 4.4: Localization using WiFi Device data (regression).

Hallway1 Hallway2 Hallway3

KRR 60.02±2.60 49.38±2.30 48.42±1.32

LapRLS 53.68±0.45 56.18±0.59 51.53±1.04

KMMR 55.97±0.80 42.25±1.16 47.36±0.19

KLIEP 48.57±6.77 41.71±4.09 44.84±3.44

TCA 65.93±0.86 62.44±1.25 59.18±0.56

GFK 69.23±2.17 64.42±4.68 62.24±3.24

SSA 67.33±1.82 63.82±1.31 57.54±1.27

Ours 76.36±2.44 64.69±0.77 65.73±1.57

methods. In the experiment with WiFi time data, our method achieves highest accuracy

in 2 out of 3 tasks. Similarly, in the device-shift experiment, it can be seen that the

domain adaptation methods achieves higher accuracy comparing to other state of the

art transfer learning methods, but again our method performs the best among all 3

tasks.

4.3.4 Text Data

In this experiment, we use the processed Reuters-21578 corpus3, a public benchmark

data on transfer learning with covariate shift assumption. The original Reuters-21578

data set contains 5 top categories. Among these categories, orgs, people and places

are the largest ones. So they are used to construct the data set by using the corpus hier-

archy. Specifically, there are three data sets people-vs-places, orgs-vs-places and

3http://apex.sjtu.edu.cn/apex wiki/dwyak
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orgs-vs-people. In each data set, each category (e.g. orgs) has two sub-categories,

one for training and the other for testing. We denote the training data as (X1,Y1), and

the testing data as X2. The feature values for data X are measured in terms frequency

(TF). Since the documents in two sub-categories can have quite different terms, the

partitioned training and testing data will have different distributions and therefore a

distribution matching solution is preferred. In the experiments we compare our ap-

proach with 3 approaches: (1) Standard Support Vector Machine (SVM). In SVM, we

use (X1,Y1) for training, and directly apply the learned model for testing on X2. (2)

Transductive SVM (TSVM). We use the SVM-Light package4. The X2 is chosen as un-

labeled data and combined with (X1,Y1) for transductive learning. (3) Penalized SVM

by Kernel Mean Matching (KMMC) [34]. In KMMC, the data reweighting coefficients

are applied to the SVM as shown in Eq.6 of [34].

The classification accuracies are reported in Table 4.5. Statistically, the difference

between our approach and others are significant for the people-vs-places (at least

95.0% confidence level) and orgs-vs-people (at least 99.0% confidence level). For

orgs-places, our approach is still statistically better than the standard SVM and the

KMMC, but remains similar with the transductive SVM. This can be explained by the

large amount of non-overlapping features between the orgs and the places. Note that

transductive SVM will utilize the test data in the training phase, while we only use the

transformed training data X̃1 for training. As can be expected, by using a transductive

setting we can further improve our performance. Preliminary results have verified this

but are not reported due to space limit.

4.3.5 Impact of the Model Parameters

We study the impact of the model parameter γ in Eq. (4.8) over the 3 datasets, as shown

in Figure 4.4. For the regression tasks on “WiFi Time” and “WiFi Device”, our method

favors relatively small γ: when γ ≤ 0.1, the performance is very stable and satisfactory.

Note that large values of γ may lead to degraded performance, because when γ is too

4http://svmlight.joachims.org/
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Table 4.5: Classification on Reuters-21578 corpus.

Data Accuracy (%)

index |DScr| |Dtar| feature# SVM TSVM KMMC ours

people-vs-places 1079 1080 8800 53.02±2.64 54.27±2.45 53.23±2.62 55.65±2.53

orgs-vs-places 1016 1046 8568 66.83±1.38 64.95±1.82 68.42±1.38 68.58±1.23

orgs-vs-people 1239 1210 9729 63.61±1.84 63.93±2.60 61.14±2.14 69.53±2.07

large, the regularization term in Equation (4.8) may take over the minimization and

reduce the contribution of the first term that plays the primary role of distribution

matching. For the classification task on “Text”, the model performance is shown to

be insensitive to γ’s change in Figure 4.4(c). Other parameters are common in general

kernel methods, so we simply fix them using empirical choices: for the kernel width

parameter in the Gaussian kernel, we simply choose it as the average of pairwise squared

distances; the regularization parameter C is SVM is fixed at 0.5; the parameter η is

chosen as 0.01 in the kernel ridge regression.
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Figure 4.4: Impact of model parameter γ over datasets.
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Chapter 5

Conclusion

In this thesis, we discussed novel machine learning methods in wireless localization.

First we presented a new algorithm for semi-supervised kernel design. Unlike tradition-

al methods that use kernel eigenvectors to span the base kernel and focus on tuning

their weights, this work aims at designing high-quality base kernels. In particular,

we compute the label-aware eigenvectors via extending the ideal kernel eigenfunction.

While eigenvectors from the empirical kernel matrix are computed irrespective of class

labels and may be poorly aligned to the target due to various practical factors, com-

puting them based on extrapolating the ideal kernel eigenfunction is more reliable and

empirically lead to base kernels of higher quality. The experimental results on real

world data sets demonstrated the superiority of our algorithm. An important direction

for our future research is to theoretically study the alignment of the label-aware base

kernels. In addition, we would explore different ways for propagating the ideal kernel

and combining multiple kernels from multiple sources.

Secondly, we presented a distribution matching scheme in the kernel-induced feature

space to solve the problem of cross domain indoor localization, with specific emphasis

and consideration on kernel based learning methods. We introduced a useful concept

called surrogate kernel based on the fundamental theorem underlying the RKHS, such

that different kernel matrices can be compared and manipulated directly to realize the

feature space distribution matching. Our method demonstrated satisfactory perfor-

mance on real world data sets. With the surrogate kernels bridging the gap between

different Gram matrices, in the future we will examine different transforms including

both parametric and non-parametric ones. We will also study the choice the reflectance
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data on which the surrogate kernel matrix is evaluated, and apply the potentially abun-

dant and diverse learning approaches related to kernel methods in our scheme.
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