
COMPARISON OF TWO MODELS IN
DIFFERENTIALLY PRIVATE DISTRIBUTED

LEARNING

BY LIYANG XIE

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Anand D. Sarwate

and approved by

New Brunswick, New Jersey

January, 2016



ABSTRACT OF THE THESIS

Comparison of two models in differentially private

distributed learning

by Liyang Xie

Thesis Director: Professor Anand D. Sarwate

Designing medical systems that can automatically diagnose patient’s conditions from

test data can greatly improve healthcare systems. With the help of machine learning

tools and differential privacy consideration, this system can be made more efficient

and powerful. Empirical risk minimization is a common and useful technique with

which we can obtain a good approximation of globally optimal classifier and thus give

good statistical classification result. Firstly we introduce three models for medical data

learning and two methods for distributed model. Then we compare a novel distributed

classification method which we called the ”feature method” with traditional averaging

method on different real world data sets to gain an insight into their performance and

properties. Next we give analysis on the performance of the feature method under non-

private and differentially private conditions and conduct some experiments to draw

several important conclusions from them. Finally we conclude that the distributed

learning system we recommend achieve the best result among the three models.
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Chapter 1

Introduction

1.1 Our work and contribution

The contributions of this thesis are mainly in five parts:

Firstly, we introduced several existing differentially private empirical risk minimization

algorithms. We implemented them and gave a short analysis on the basic properties of

these algorithms.

Secondly, we introduced three models (local model, global model and distributed model)

that we use in our experiments. Then we introduced two methods: a traditional ag-

gregation method called average method and a novel method called “feature method”

were introduced and we analyzed their privacy guarantee under the sense of differen-

tial privacy. We gave a theoretical analysis of the feature method in three cases: all

non-private, public-private and fully-private. We showed that how privacy parameter ε,

number of points at local sites and other parameters affect the system’s performance.

Thirdly, we tested some interesting trade-off phenomena that widely exist in the dis-

tributed model for differential private empirical risk minimization (ERM) using the

average method and the feature method and gave some explanations for them. These

trade-offs are important because we can set related parameters according to them and

improve system performance. Moreover, these trade-offs gave us an insight into the re-

lations between the parameters and the system. We gave explanations for these results.

Then we compared the average method and the feature method in distributed-setting

under all non-private, public-private and fully-private conditions using MNIST1 and

1http://yann.lecun.com/exdb/mnist/

1



2

Covertype2 data sets. We reached several conclusions in each case about how the pa-

rameters of system (ε, number of points at the sites, etc.) and noise affect the final

performance of these two methods.

Fourthly, we compared the performance among local model, global model and distributed

model using the feature method and the average method. We tried to give intuitions

about the benefits of distributed model over other two models by experiments.

Finally we gave final conclusion of our work and future works.

1.2 Application of statistical classification

1.2.1 Statistical classification

Our problem falls into the field of statistical classification. The classification problem

in machine learning has been widely studied and applied in research and industry [1–4].

The goal of classification algorithm is to take an input vector x ∈ Rd for some integer

d and assign it to one of K discrete classes Ck where k = 1, . . . ,K. The classes here

are taken to be disjoint, so that each input is assigned to one and only one class. The

input space is thereby divided into decision regions whose boundaries are called “decision

boundaries” or “decision surfaces” [5]. In our research, we focus on binary classification

– a formal model can be found in Shalev-Shwartz and Ben-David’s paper [6].

1.2.2 Medical application

Nowadays diagnosis of diseases benefits more and more from data sharing techniques.

Moreover, data from neuroimaging and genetics is very helpful in improving scientific

reproducibility and in accelerating research progress [7].

But the problem of privacy and risk of re-identification arise when medical information

is shared. Also it involves some ethical and legal aspects, in additional to technical or

administrative issues. Data may not be shared for the following reasons: it may be

easy to re-identify by linking it to public information, it may be some of the particular

characteristics of the patient that make the re-identification easier or the data itself is

not shareable due to laws or administrative regulations [8].

In order to solve these problems, we can use data use agreements (DUAs). However, it

may be easy to handle the agreements but it is difficult and labor costly to fully carry

out the agreements [8].

2http://archive.ics.uci.edu/ml/datasets/Covertype
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Moreover, DUAs are impractical in some respects. For example, it often takes long time

to negotiate an agreement. It is likely that the data that the researcher has found is not

suitable for their research since the researcher does not know anything about the data

before it becomes available. In addition, the disadvantages of DUAs are intensified in

the case of the distributed systems that we will introduce. Researchers may be required

to handle several DUAs simultaneously, which is however quite painful.

Another way is to share the data derivatives. For example, we can compute a function on

the data set and distribute the function output. In the differentially private algorithms

that we will introduce in Chapter 3, we use randomized algorithms which introduce

noise to protect privacy at the expense of a loss in accuracy. The algorithm outputs the

classifier (data derivatives) of the data points in training set.



Chapter 2

Background and privacy model

2.1 ε-differential privacy model

In this section the concept of differential privacy is introduced. Differential privacy

provides a way to quantify privacy risk (using the difference between two probabilities)

so that there is a trade-off between privacy and accuracy, which is different from the

definition of privacy in common sense.

From now on we use ‖ · ‖ as l2 norm unless otherwise noted.

2.1.1 Motivation

The work in this thesis is motivated by applications of distributed information processing

to medical research. For example, consider the problem of learning from neuroimaging

data held at multiple sites. If the input of our system is MRI images, each image

can be viewed as a high dimensional vector. Here d is the total number of voxels in

one image. In this case, the input database is modeled as a collection of N patients’

records D = (x1, x2, . . . , xN ), where xj is the jth person’s image vector. If these images

are labeled by expert or other methods, the input also contains corresponding labels

L = (l1, l2, . . . , lN ), forming a training set. The training set is used to fit a model that

can be used to predict a “response value” from the “predictors”. The goal of machine

learning is to use the training set to build a classifier to predict the label l of a future

data point (image) x.

These labeled or unlabeled images are private data associated to patients and therefore

are not directly shareable. One way to solve this problem is to use “ad hoc” solutions

such as anonymization of patients’ information. But this approach was proved to be

4
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inadequate to protect against re-identification due to the presence of public side infor-

mation; see Ganta et al. [9]. A famous case is the re-identification of certain users from

an anonymized dataset published by Netflix, which is a provider of Internet streaming

media [10]. The other way to solve this problem is to carry out some operations on the

data before sharing them so that anyone who tries to use or share the output will not

be able to identify individuals. These operations have the property that preserves the

privacy of data, which means only the data derivatives are shared and thus the patients’

information will not be disclosed to an adversary. Here we use the concept of differential

privacy [11]. Differential privacy basically guarantees that an analyst observing the out-

put does not learn too much about any individual’s membership in the database. The

analyst therefore makes few inferences about any individual after his seeing the output

of algorithm. It is also natural to realize this goal by requiring that the adversary’s

prior and posterior views about an individual (i.e. before and after having access to the

database) shouldn’t be “too different” or that access to the database shouldn’t change

the adversary’s views about any individual “too much” [12, 13]. If nothing is learned

about an individual, then the individual cannot be harmed by the analysis [14]. Algo-

rithms that guarantee differential privacy are randomized by adding noise before, during

or after computing functions of data [14, 15]. An algorithm is differentially private if

someone observing the output does not learn too much about any individual’s member-

ship in the database. To protect privacy, the true answer is perturbed by the addition of

random noise generated according to a carefully chosen distribution, and this response

(e.g. the true answer plus noise) are returned to the user.

Differentially private learning has been widely studied, with examples including Chaud-

huri et al. [16], Jain and Thakurta [17] for kernel learning, Thakurta and Smith [18] for

feature selection, Xiao et al. [19] for wavelet transform, Friedman and Schuster [20] for

data mining, Li et al. [21] for optimizing linear counting queries, and boosting methods in

Dwork’s paper [22]. Also, there are a lot of interesting papers that one can refer to which

considering the properties of differential privacy and explain it in various ways [23–33].

A summary of the application of differential privacy in health data is given in Dankar

and El Emam’s paper [34].

2.1.2 A simple example

Imagine an adversary observes some results from a computation performed on a data

set D but does not have access to D itself. The adversary may think two possible

cases: either D or D
′

was used to get this result. Suppose the result happens w.p.

of 99.99% if we use D (i.e. P (result|D) = 99.99%) but only 0.01% if we use D
′

(i.e.

P (result|D′) = 0.01%). Then one would be very confident that data set D rather than
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D
′

is used. Thus, if the adversary has complete knowledge of common part of D and

D
′
, he is able to infer more information about the remaining parts from the output of

the algorithm. Differential privacy seeks to prevent such re-inferences.

2.1.3 Mathematical explanation

We denote an algorithm with privacy property by Ap(·). This algorithm is randomized

so that re-identification of the data on the user side is very difficult. From the definition

in Dwork’s paper [11], algorithm Ap(·) is ε-differentially private if for any subset of

outputs S:

e−ε · P (Ap(D
′) ∈ S) ≤ P (Ap(D) ∈ S) ≤ eε · P (Ap(D

′) ∈ S)

for any databases D and D′ differing in a single point. Here the Ap(D) and Ap(D
′) are

the outputs of the algorithm on input database D and D′, respectively, and P (·) is the

randomness over noise in the algorithm.

Pathak et al. [35] points out that there are two proposed definitions for adjacent data

sets with the stronger one based on deletion: D′ contains one entry less than D, and

with the weaker one based on substitution: one entry of D′ differs in value from D. And

here we use the weaker one for our research.

As said in Dwork et al. [15], this definition, if written in this way: | log(
P (Ap(D)∈S)
P (Ap(D′)∈S )| ≤ ε,

is much more stringent than statistical closeness. One can have a pair of distributions

whose statistical difference is arbitrarily small, yet the ratio is infinite (by having a point

where one distribution assigns probability zero and the other, non-zero).

This inequality with ε parameter shows that when one data point changes, the output

will not change too much since it is bounded by the original probability (i.e. the output

distribution is closed). More specifically, a user who sees the output and also knows the

common part of these two databases is still uncertain about the remaining person’s data.

Since this holds for any two databases which differ in one data point, each individual in

the database is given a guarantee of this protection [8]. The goal of differential privacy is

that we can let others learn useful things from a group without learning to much about

any individual in the group.

The goal of analyzing statistical databases is to learn something useful. For example,

suppose we learn that smoking can cause cancer. So a man who smokes will have higher

insurance premiums because he is also a smoker. This is true even if he is not in the

database. That is, you can be affected even if you are not in the database. Here our
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objective is to learn something from the database. Differential privacy limits the privacy

risk by showing that you will be affected by the learning but will not be further affected

by joining in the database. So this is why we say the output is essentially “equally

likely”. Lee and Clifton [36] discuss the choice of ε in detail.

Dwork et al. [15] and Wasserman and Zhou [37] give a stronger version of ε-differential

privacy which indicates an algorithm A(B) taking values in a set τ provides ε-differential

privacy if sup
S

sup
D,D′

µ(S|B=D)
µ(S|B=D′) ≤ e

εp where the first supremum is over all measurable1 S ⊆ τ

and the second one is over all data sets D and D′ differing in a single entry. Dwork’s

definition [15] can be derived from this since we let µ(S|B = D) = P (A(D) ∈ S)/P (B =

D) (similar for D′) and substitute P (A(D) ∈ S) into Dwork’s definition so that we can

get the right inequality. Then we interchange D and D′ so that the left inequality holds,

too.

Also in another way, we can write the expression of definition of differential privacy in

this form:

sup
S

sup
D,D′

µ(f = f1|B = D)

µ(f = f2|B = D′)
≤ eεp . (2.1)

2.2 Empirical risk minimization

Returning to our motivation from neuroimaging, one approach is to use machine learning

to detect illness. That is, we use previously classified images to build a classifier f

that can be seen as a criterion to test further images. Classified images are those

that have been diagnosed by an expert. These labeled images are called training set

D = {(xi, yi) ∈ X × Y : i = 1, 2, . . . , n} of n data-label pairs. Here xi is the vector of

image corresponding to ith patient and yi is label to show whether he is ill (yi = 1) or he

is healthy (yi = −1). We use D to find a function f(x), we can use this f to find yi by

computing f(xi) where i = n+1, . . . . So the goal of our system is: to build an accurate,

stable classifier using a differentially private algorithm. Such an algorithm could replace

or assist a human expert (e.g. a doctor).

2.2.1 Loss function

To achieve this goal, we need to measure how good a classifier is. We firstly solve

the problem of building a non-private classifier. To do this we measure the gap between

1If X is a set and F is the sigma-algebra of X. A is a subset of X, then A is called measurable if A is
a member of F. We use “measurable” here because this is a technical consideration for most algorithms
but more mathematically precise.
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f(xi) and yi in the training set by using a so called “loss function” which was introduced

by Wald et al. [38]. A loss function is large when the difference between the prediction

f(xi) and actual label is large and vice versa. So it can be seen that a loss function acts

as penalty. Some typical loss functions are shown in Figure 2.1.

Figure 2.1: Some typical loss functions

The simplest loss function is the “0/1” loss function. It equals 1 when f(xi) 6= yi

and 0 otherwise. The “0/1” loss function is not widely used in practice because it is

not convex and differentiable. Convex surrogates of the “0/1” loss function are highly

preferred because of the computational and theoretical virtues that convexity brings in.

This is of more importance if we consider smooth surrogates as witnessed by the fact

that the smoothness is further beneficial both computationally – by attaining an optimal

convergence rate for optimization, and in a statistical sense – by providing an improved

optimistic rate for generalization bound [39]. Some interesting discussions about loss

function can be found in Rosasco et al. [40] and Lin [41].

A popular loss function is the hinge loss L = (1− yifTxi)+. As long as yif
Txi ≥ 1 the

point x is correctly classified by the classifier f with large confidence and the hinge loss

is equal to 0 (now yi and fTxi have same sign). When yif
Txi ≤ 1, x is either correctly

classified with small confidence 0 ≤ yif
Txi ≤ 1, or misclassified yif

Txi ≤ 0 (now yi

and fTxi have different signs). In these cases the hinge loss is positive, and increases as

1− yifTxi.

2.2.2 Definition of ERM

In supervised learning problems, we have a space of objects X and corresponding label

space Y . Our goal is to learn a hypothesis function f : X → Y which outputs an object
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y ∈ Y given x ∈ X. This function can be generalized to future cases (X,Y ) ∼ PX,Y .

Consequently, the output of f depends on the training data Dtrain and is a random

variable. We assume that there is a joint probability distribution P (x, y) over X and

Y and that the training set consists of m instances (x1, y1), . . . , (xm, ym) drawn i.i.d.

from P (x, y). We constructed this model because it allows us to model uncertainty in

predictions. The label y is not a deterministic function of x but a random variable with

conditional distribution P (y|x) for a fixed x. Based on this, the total “penalty” we pay

for incorrect classification is

R(f) = E[l(f(x), y)] =

∫
l(f(x), y)dP (X,Y ),

ˆ

which is also called expected loss. However, we do not know the prior distribution

P (X,Y ). So we need an approximation to replace R(f). Here we introduce the em-

pirical risk Remp = 1
n

∑n
i=1 l(f(xi), yi). So the whole problem is to choose a function

f(·) that minimizes Remp. This is called empirical risk minimization and was introduced

in Vladimir Vapnik ’s paper [42] and analyzed in his book [43]. Also, ERM has been

widely studied in the literature [44–51].

Also, ERM can be used to compute M-estimators [52], a concept in robust statistics

which is obtained as the minima of sums of functions of the data. If we add a regular-

ization term R(·) on Remp to prevent overfitting, we get regularized ERM.

Why does regularization prevent overfitting? Theorem 13.2 to Corollary 13.7 in Shalev-

Shawartz’s book [6] gives an answer to the convex ERM problem with Tikhonov regu-

larization. It shows that intuitively, the regularization term reflects the complexity of

hypothesis. The regularization term is seen as stabilizer of learning algorithm and it ex-

plains the phenomenon that changing a data point in the training set does not affect the

performance of output classifier too much. This indicates how to control the trade-off

between empirical risk and the difference between the true and empirical risk. Lagrange

duality indicates that when we want to find linear classifier f that minimizes ERM with

bounded norm ‖f‖ ≤ C for some constant C, we can find f by minimizing the regu-

larized ERM for a suitable choice of Lagrange coefficient λ. We can see from the next

section that we can control the trade-off between estimation error and approximation

error by choosing λ instead of C.

2.2.3 Why does ERM make sense?

We need to evaluate the performance of function f(·) by using non-negative real-valued

loss function: L(y, y), which measures how different the prediction ŷ (= fTx in linear

case) is from the true outcome y.
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The Bayes risk is the smallest risk achievable by f : R∗ := inf
all possible f

R(f).

Since PX,Y is never known to us, we can estimate R(f) by empirical risk. Our goal here

is to find f∗n that minimizes the empirical risk Rn(f) over some class of functions F .

Before we use ERM as our methods to build classifier (function), we should know why

it is a good approximation to the minimum of expected loss.

Basically, there are three parts that make the minimum of empirical risk deviate from

the true minimum of expected loss. The first part is approximation error, which

is denoted by inf
f∈F

R(f) − R∗ (in some materials, inf
f∈F

R(f)). Approximation error can

be seen as a measurement of the richness of class F and relies only on the class of

functions. The second part is estimation error, denoted by R(fn) − inf
f∈F

R(f). Here

fn is a classifier that minimizes empirical risk. Estimation error depends on data and

can be reduced by increasing the training size. The third part is Rn(fn) − R(fn),

which measures the effect of empirical approximation. It relies on data, too. When

the family of functions, optimization accuracy and number of training sample increase,

Table 1 in Bousquet and Bottou [53] show how it affects these three errors. This kind

of decomposition is introduced in Bousquet and Bottou [53] and analysis in Shalev-

Shwartz and Srebro [54]. Also, there is a trade-off between the estimation error and the

approximation error by choosing a different class F .

The next step is to bound P{sup
f∈F
|Rn(f) − R(f)| ≥ ε}. The explanation below follows

from Yoonkyung Lee’s lecture notes [55].

Firstly, we can establish a probabilistic bound of the estimation error of the form:

P (R(f∗n) ≤ inf
f∈F

R(f) + ε) ≥ 1 − δ. Therefore we can determine how much data we

need to guarantee that the risk of the empirically optimal classifier f∗n is within ε-bound

of the minimum risk of classifier f in F with confidence 1− δ without any distributional

assumption on (X ,Y).

Now we examine the tail probability of Rn(f) − R(f). We want to show that given

enough data points (n→∞) P (sup
f∈F
|Rn(f)−R(f)| ≥ ε) = 0. This shows the empirical

risk is a good approximation to real risk at certain level.

The problem is separated into two cases: the function class F contains a finite number

of elements or an infinite number of elements. The analysis of these two cases are shown

in Lee’s lecture notes [55]. The idea is to use VC dimension to construct a bound of

P (sup
f∈F
|Rn(f)−R(f)| ≥ ε).
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2.3 Geometric explanation of binary classification

2.3.1 A simple example

From now on we focus on the linear classifier (∈ Rd for some integer d). A question

arises why the class of linear classifier is appropriate for our classification problem. VC

theory indicates that although the class of linear classifier contains an infinite number

of elements, it has finite VC dimension, which is d+ 1 for a classifier of dimension d. So

according to the fundamental theorem of statistical learning [6] (Theorem 6.7), we know

that the class of linear classifiers is PAC learnable and the ERM rule can apply to it.

One way to solve the high dimensional binary linear classification problem is to use the

support vector machine algorithm. There are many good descriptions of SVM [56–58].

Below we just give a simple example of how to solve binary classification. We consider

the d = 2 case, and fixed classifier f = (2,−1), and several points xi = (xi1, xi2), b = 1.

In Figure 2.3.1 we show these data points and corresponding coordinates. All the points

on the right part are labeled +1 and −1 on the left part. The first question is: how to

measure the extent of separation? That is, we want to define a value to measure our

confidence that some points are well classified. Here we use (fTx+ b)y as measurement.

We can see in the right part the confidence of point (0, 0), (1, 1), (1,−1), (5,−5) are 1,

2, 4, 16 respectively. The points in the left part (−1, 1), (−1, 2), (−5, 5), (−10,−1) have

confidence 2, 3, 14, 20 respectively, which has a positive correlation with the distance

between data point and separation line. So this quantity satisfies our requirement.

f=(2,-1)

f=(1,2)

f*x+b=2x1-x2+1

x1

x2
◦(5,5)

◦(1,1)

◦(0,0)

◦(1,-1)

◦(-1,1)

◦(-1,2)

◦(-5,5)

◦(-10,-1)



12

f*x+b=2x1-x2+1

x1

x2
◦(5,5)

◦(1,1)

◦(0,0)

◦(1,-1)

◦(-1,1)

◦(-1,2)

◦(-5,5)

◦(-10,-1)

conf

conf

Now we want to find a line (in higher dimension, plane or hyperplane) to separate these

points. But there are a lot of lines that separate the data given in Figure 2.3.1. We

also need a quantity to measure whether a line is more qualified than other line as the

separation line. One such measurement is max
f,b

min
i

(fTxi + b)yi. The value of f and b

is uniquely determined by the dataset. Firstly we compute min(conf) among all data

points, then we compute max(min(conf)) among all the f and b (See Figure 2.3.1).

More specifically, let a be an arbitrary point and let a′ be its orthogonal projection on the

separating line in Figure 2.3.1. We can find through analytic geometry that a = a′+mf

where m is some real number and f is the normal vector of the separating line (in our

case, m < 0).

l2l1

x1

x2

◦(1,1)

◦(1,-1)

◦(-1,1)

x*

x**

Labels are all + Labels are all -

Suppose now we have a data set and the points in the data set are linearly separable.

The point on the left part has label +1 and the point on the right has label −1. There
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are two parallel lines which we call l1 and l2 (See Figure 2.3.1). These two lines go

through two data points separately (the green one and the red one) and there is no

data point between them. It is clear that any line between them can separate these

data points (not necessarily parallel w.r.t the two lines). Suppose that without loss of

generality, the expression of l1 is fTx+ b = +1 and l2 is fTx+ b = −1 and data point

x∗ is on l1 and data point x∗∗ is on l2. The joint line from x∗ to x∗∗ is orthogonal to l1

(also l2). From last paragraph we can see that x∗∗ = x∗ + mf . since x∗∗ is on l1, we

have: fTx∗∗+b = +1. Plugging the last equation into it we have fT (x∗+mf)+b = +1.

Thus fTx∗ + b + mfT f = +1 and x∗ is on l2. So m = 2
fT f

. And now we define the

distance between l1 and l2 the “margin” and let’s denote it by r. We have: r = ‖mf‖ =

‖ 2∗f
fT f
‖ = 2√

fT f
. So our purpose is to maximize 2√

fT f
, which is equivalent to minimizing

fT f under the constraint of ((fTx+ b)y ≥ 1 if y = +1 and (fTx+ b)y ≤ −1 if y = −1).

We call the data points on the lines “support vectors” because the lines are determined

by these points (See Figure 2.3.1). The method we use here is called “support vector

machine”. SVM is a supervised learning models with associated learning algorithms that

analyze data and recognize patterns. There are a lot of literatures about the application

of SVM (and also its variants) for classification problems [59–64] as well as applications

in medical research [65–67].

l2l1

x1

x2

◦Point b

◦Point a

Labels are all + Labels are all -

The discussion above is the case when the data points are linearly separable. What

about the case of non-linearly separable? Here we introduce “slack” variables ξi. This

case is called “Soft SVM” [6]. There are two conditions in this case, the first condition

is “misclassification”. In this case ξi ≥ 1, like point a in Figure 2.3.1. The second case

is “margin violation”, which means the data point is not misclassified but is too close

to the support line (l2), like point b in Figure 2.3.1. In this case, 0 ≤ ξi ≤ 1. So

the optimization problem changes to minimizing fT f + C
∑
i
ξi w.r.t f, b, ξi under the

constraint ((fTxi + b)yi ≥ 1− ξi and ξi ≥ 0.
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Taking hinge loss function (l = max(0, 1 − t ∗ y)+) and homogeneous case (b = 0) as

an example here. As long as yfTx ≥ 1, the data point x is correctly classified by the

function (classifier) f with large confidence and the hinge loss is equal to 0. When

yfTx < 1, x is either correctly classified with small confidence (0 ≤ yfTx ≤ 1), or

misclassified (yfTx < 0). In these cases the hinge loss is positive, and increases w.r.t

1 − yfTx. SVM computes a linear classifier with a large margin and small average

hinge loss on the training set. If a point (xi, yi) is correctly classified by f with large

confidence, then (1 − yifTxi))+ = 0. If this is not the case, then (1 − yifTxi))+ > 0

increases with the distance from x to the correct half-space of large confidence.

Finally, SVM requires both large margin (i.e. small ‖f‖) and small misclassification rate

on the testing dataset, so we have to solve the minimization problem:

argmin
f

1

2
‖f‖2 + C

n∑
i=1

l(yi, f
Txi), (2.2)

here C is a parameter to have a trade-off between regularization term and error rate.

This is a convex optimization problem and can be solved by the method of Lagrange

multipliers in Chapter 5 in Boyd’s book [68].

2.4 Logistic regression

Logistic regression is another prediction method used for in binary classification. The

goal of logistic regression is to model the conditional probability P (Y = 1|X = x) as

a function of x. Let p(x) = P (Y = 1|X = x). The idea is that we need to design a

function g that takes the result of linear classification as domain: p(x) = g(fTx+ b)→
g−1(p(x)) = fTx + b. We can see that the domain of g should be unbounded and

the range should belong to (0,1). Instead of choosing g, we try to choose a suitable

g−1. The Logit transformation log p
1−p turns out to be a good choice of g−1. So letting

g−1(p(x)) = log p(x)
1−p(x) , we have the following:

Definition 2.1. (Logistic regression in binary linear classification)

p(x; f, b) =
1

1 + e−(fT x+b)
(2.3)

The logistic function 1
1+e−t is shown in Figure 2.2.

It can be seen from Figure 2.2 that to minimize the misclassification rate, we should

predict Y = 1 when p ≥ 0.5 and Y = 0 when p < 0.5. This means guessing 1 whenever
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Figure 2.2: Logistic function

fTx+b is non-negative and 0 otherwise. So logistic regression produces a linear classifier.

The decision boundary that separates the two predicted classes is the solution of fTx+

b = 0.

But another question is: how can we apply the logistic regression to our binary classifi-

cation problem? Taking the homogeneous case (b=0) as an example, we have

P (y = 1|f, x) =
e(fT x)

1 + e(fT x)
, (2.4)

P (y = 0|f, x) =
1

1 + e(fT x)
.

Rewrite the equation (2.4) in this way:

P (y = 1|f, x) =
e(fT x)

1 + e(fT x)
(2.5)

=
1

1

e(f
T x)

+ 1

=
1

e(−fT x) + 1

=
1

e(−yfT x) + 1

∣∣∣∣∣∣
y=1

and similar for P (y = 0|f, x). So we unified the two forms to one single equation by

integrating the label with the classifier:

P (y = ±1|f, x) =
1

1 + e(−yfT x)
. (2.6)

and this is the form that we use in the following chapters.
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Using the analysis in Section 4.4 in Hastie et al. [69], we want to solve the following

optimization problem in order to find the optimal classifier f

maximize l(f) =
∑
i

logP (yi|f, xi) = −
∑
i

log(1 + e(−yifT xi)). (2.7)

This is an ERM problem with following loss function:

P (z) = log(1 + e−z). (2.8)

And we call this function the “logistic loss”, which is a convex and differentiable ap-

proximation to 0-1 loss.

2.5 Optimization method

Mathematical optimization (mathematical programming) is the procedure that choose

the best solution to math problem under certain constrains. The theory of optimization

is becoming a more and more important mathematical as well as interdisciplinary area,

especially in the interplay between mathematics and many other fields like biology,

computer science, engineering and economics [70].

Mathematical programming contains a lot of aspects such as: convex programming,

integer programming, nonlinear programming and stochastic programming. Antoniou

and Lu’s book [71] provides a lot of practical algorithms to solve these problems. The

problem we deal with here is called “convex optimization”, which is the most important

issue in mathematical optimization due to its wide applications. Convex optimization

deals with the problem of minimizing real, convex functions over convex set. We will

see that the convexity of objective function guarantees that any local minimum must

be a global minimum and thus guarantees the unique solution. For a comprehensive

introduction to convex optimization, please refer to Boyd and Vandenberghe’s book [68].

Usually there is no analytical formula for the solution of convex optimization problems,

but there are very effective methods for solving them like interior-point methods. We

often use software package to get numerical solution. The optimization solver that we

use in Scipy function “minimize” is Nelder–Mead method, which is a nonlinear well-

defined numerical method that does not use derivatives. This method was proposed in

Nelder and Mead [72] and its converge rate is analyzed in Lagarias et al. [73].

We cannot yet claim that solving general convex optimization problems is a mature

technology, like solving least-squares or linear programming problems. Research on

general nonlinear convex optimization is still a very active research area. But it is
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reasonable to expect that solving general convex optimization problems will become a

technology in the near future usable by non-specialists.



Chapter 3

Algorithms

In this chapter we describe three typical differential private ERM algorithms and some

comparisons between them to show how differential privacy affects the performance

of these algorithms. We describe privacy guarantees (these algorithms indeed protect

user’s privacy in a differential private way) and utility guarantees (they are non-trivial

even adding noise and controllable through parameters). Alvim et al. [74] proposed an

information-theoretic framework to reason about both information leakage and utility.

They also proved that ε-differential privacy implies a tight bound on both the information

leakage and utility. Some other ideas of differentially private perturbation methods are

mentioned in Sarwate and Chaudhuri [75].

We also implemented algorithms in papers like Jain and Thakurta [17], Kakade et al. [76]

. We just give references here rather than introducing them all. All python code can be

found in Github link https://github.com/xieliy.

3.1 Output perturbation

Output perturbation is the simplest algorithm we used here, which was introduced in

Chaudhuri et al. [77] and proof details can be found in Chaudhuri et al. [78]. The

algorithm is shown below:

The intuition of Output perturbation 1 is well understood: “private classifier = classifier

+ noise”. An easily understandable example is that imagine you walk on a street and

listen to the people around you talking and laughing. If you hear that they speak in

English, you are much more confident that you are walking in a street in US rather

than in Japan. The reason is that P (people talk in English|in US) = 99.99% and

P (people talk in English|in Japan) = 0.01%. So given the fact that what you heard is

18
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Algorithm 1 Output perturbation [78])

Require: ‖xi‖ ≤ 1, yi ∈ {−1,+1}. Data set D is drawn i.i.d according to P
Inputs: D, εp,Λ.

Steps: 1.Draw a noise vector b w.r.t density 1
αe
−β‖b‖ with parameter β =

nΛεp
2 (see

Section 3.3 for details)
2.Compute fpriv = argminf JR(f,D) + b
Output: fpriv

English (output of algorithm), you can immediately decide the database it correspondent

to (country). If we add noise on the words before they come to your ear, that is, “what

you heard = talk + noise”, you are not that sure which language they use. Now the

situation may become: P (people talk in ???|in US) = P (people talk in ???|in Japan) =

50%, which means you can hardly figure out which country you are in and thus hide the

information of database. Note that this property are also affect little even some of the

people remove from the database (become silent in street).

Theorem 3.1. (Privacy guarantee, Theorem 6 in Chaudhuri et al. [78]) If R(·) is

differentiable, and 1-strongly convex, and l(z) is convex and differentiable, with |l′(z)| ≤ 1

for all z, then Output perturbation 1 is εp-differentially private.

Theorem 3.2. (Utility guarantee, Theorem 15 in Chaudhuri et al. [78]) Let R(f) =
1
2‖f‖

2, and let L(f0) = min
f
L(f) = L∗, and let δ > 0. If l(z) is convex and differentiable

with |l′(z)| ≤ 1 and l′(z) is c-Lipschitz. Then there exists a constant C s.t. if the

number of training samples satisfies n > C max
‖f0‖2 log( 1

δ
)

ε2g
,
‖f0‖ log( d

δ
)d

εgεp
,
‖f0‖2 log( d

δ
)c

1
2 d

ε
3
2
g εp

)
,

then the output of Output perturbation 1 satisfies P (L(fpriv) ≤ L∗ + εg) ≥ 1− 2δ.

3.2 Objective perturbation

Objective perturbation is introduced in Chaudhuri et al. [78]. It has a significant im-

provement in performance compared with Output perturbation 1. The algorithm is

shown below:

Theorem 3.3. (Privacy guarantee, Theorem 9 in Chaudhuri et al. [78]) If R(f) is

doubly differentiable and 1-strongly convex. If l(z) is convex and doubly differentiable

with |l′(z)| ≤ 1 and |l′′(z)| ≤ c for some constant c. Objective perturbation method 2 is

εp-differentially private.

Theorem 3.4. (Utility guarantee, Theorem 18 in Chaudhuri et al. [78]) Let R(f) =
1
2‖f‖

2, and let L(f0) = min
f
L(f) = L∗. If l(z) is convex and doubly differentiable with

|l′(z)| ≤ 1 and |l′′(z)| ≤ c for some constant c, then there exists a constant C s.t. if the
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Algorithm 2 Objective perturbation [78])

Require: ‖xi‖ ≤ 1, yi ∈ {−1,+1}. Data set D is drawn i.i.d according to P
Inputs: D, εp,Λ, c

nΛ)Steps: 1.Set parameters: ε′p = εp − 2 log(1 + c

If ε′p > 0, then ∆ = 0, else ∆ = c

n(e
εp
4 −1)

− Λ and ε′p = εp/2.

2.Draw a vector b with density ν(b) = 1
αe
−β‖b‖ with β = ε′p/2 (see Section 3.3 for

details).
3.Compute fpriv = argminf

(
JR(f,D) + 1

nb
T f + 1

2∆‖f‖2
)
.

Output: fpriv

number of training samples satisfies: n > C max

(
δ

)‖f0‖2 log( 1

ε2g
, ‖f0‖2c
εgεp

,
‖f0‖ log( d

δ
)d

εgεp

)
, then

the output of Objective perturbation 2 satisfies P (L(fpriv) ≤ L∗ + εg) ≥ 1− 2δ.

The proof details can be found in the paper.

3.3 Noise generation

One tricky part of implementing of above algorithms (and possibly will be frequently

encountered later) is the generation of noise from the distribution

ν(b) =
1

α
e−β‖b‖. (3.1)

Let’s firstly look at the properties of this density function. We observe that if b, b′ are

two vectors with ‖b‖ = ‖b′‖, then the densities at b and b′ are the same. Therefore, we

firstly give the direction according to uniform distribution and then sample the norm

‖b‖. These two procedures are independent with each other.

Firstly we generate a vector U which direction is uniformly distributed, in which U =

Uniform(x). In order to normalize the norm, the result should be like U = x/‖x‖.
Now the problem is to find the distribution of x. Because we want the direction to be

uniformly distributed, the shape of density function should be symmetric when rotating

w.r.t to its axis. This reminds us of the multivariate Gaussian distribution. So we

generate a vector r i.i.d w.r.t N(0, 1). The joint distribution of ri (let’s denote this

by X = (r0, . . . , rn) is a multidimensional normal distribution with X ∼ N(0, In).The

density of X is as follow:

f(x) =
1√
2π
e−
||x||2

2 . (3.2)
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It can be seen that this distribution function makes sure that the density is uniquely

determined by norm and the directions are uniformly distributed. We can normalize the

vector to make the norm 1 after generating the data.

Then the second step is to generate the norm. According to Lemma 17 and the discussion

at the end of Lemma 16 in Chaudhuri et al. [78], the distribution of ‖b‖ is a Gamma

distribution:

Γ

(
d,

1

β

)
(x) =

xd−1e−xβ

(1/β)dΓ(d)
, (3.3)

here d is the shape parameter and 1
β is the scale parameter.

Practically, we can also draw the norm from Erlang distribution instead of Gamma

distribution

Erlang (d, β) (x) =
βdxd−1e−βx

(d− 1)!
, (3.4)

with parameter d and β. Note that the Erlang distribution is the sum of d exponential

distribution random variables.

Let ‖b‖ = b, we have p(b) = bd−1e−bβ

(1/β)dΓ(d)
. d is the dimension of data. The parameter β in

Algorithm 1 and 2 in paper Chaudhuri et al. [78] is a function of other parameters.

In the implementation of algorithm, we generated a vector according to the first step.

Then we generated the norm according to second step. We multiply them to get the

noise vector.

3.4 Experiments and analysis

Before we run the Algorithm 1 and 2 on data set, we use PCA to reduce the dimension of

data and running time of the algorithm while keeping the information of original data.1

For details of PCA, please refer to Appendix A.

We use the Python programming language to implement these two algorithms (and all

the experiments that follows).

Firstly, we compare error rate w.r.t privacy parameter ε. The result is shown in Fig-

ure 3.1:

Analysis: From Figure 3.1 it can be seen that the performance in non-private case is

better than objective perturbation, which is better than output perturbation. The first

1Empirically, running time of algorithm is proportional to the dimension and number of data point.
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Figure 3.1: DP-ERM with logistic loss, e(ε,m = 8678,Λ = 0.01) vs ε, ε is from 0.025
to 0.375 with step 0.025, run the whole system 20 times for fixed ε and plot with error

bar.

inequality is easy to see because adding noise makes the output classifier deviate from

the optimal classifier computed from non-private case. This optimum is unique for any

data set due to the fact that the problem is strongly convex (see Definition B.2). The

second inequality comes from the comparison between Theorem 3.2 and Theorem 3.4.

Dividing the third term

‖f0‖2 log(dδ )c
1
2d

ε
3
2
g εp

of n in Theorem 3.2 by the second term (‖f0‖2c
εgεp

) in Theorem 3.4 we get the result

log(dδ )d

ε
1
2
g c

1
2

.

Here the parameters δ ∈ (0, 1) and εg < 1 are based on the assumption in Chaudhuri

et al. [78]. Parameter c < 1 because we have the assumption that |l′(z)| ≤ 1 (see

Definition B.4). So the value of expression
log( d

δ
)d

ε
1
2
g c

1
2

is much greater than 1. On the

assumption that dominating term in the sample requirement for objective perturbation

has a better dependence on ‖f0‖ and 1
εg

, we have the conclusion that output perturbation

needs more data points to achieve same performance as objective perturbation. Since

using manpower to gather and correctly label data points can be very expensive [79],

reduction in the size of training set is a great improvement in medical systems and other

commercial applications. Intuitively we can say that Algorithm 2 performs better than
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Algorithm 1 because Algorithm 1 adds noise directly to the result, whereas Algorithm 2

optimizes after adding noise.

The Figure 3.1 also shows the most significant characteristic of a differentially private

system: error rate and noise variance decrease with the increasing of the privacy param-

eter ε. This is clear because we generate the norm of noise vector according to Γ(d, 1
β )

and β is always proportional to ε. So large ε means higher probability (the shape of

distribution is more concentrated around its mean: 0), the noise is small and thus the

classifier is less affected, resulting in lower error rate. From the definition of differential

privacy, larger ε means the restriction on the database imposed by neighbor database

is small. When ε is very large, the restriction on the database imposed by neighbor

database is out of the range 0 ≤ P (A(D)) ≤ 1 which is trivial. Note that as long as

there is noise, it will not be possible that the performance of private learning can be the

same as the non-private case.

We also implemented the algorithm with the Huber loss function, an approximation to

SVM. Huber loss is defined as follows:

Huber(z) =


0 if z > 1 + h
1

4h(1 + h− z)2 if |1− z| ≤ h
1− z if z < 1− h.

(3.5)

Here h is the “Huber constant”, which controls the shape of function. Observe that

the Huber loss is convex and differentiable, and piecewise doubly-differentiable but not

globally doubly differentiable. A class of Huber loss functions with different Huber

constant is shown in Figure 3.3. One experience indicates that if other factors remain

unchanged, the smoother the loss function is, the lower the error rate will be. This

is only an empirical claim, we can see that for two convex functions f1(x), f2(x) with

β-smooth constant β1 and β2, respectively (See Definition B.5). If β1 > β2 then with

same change in their domain ∆x, ∆(∇f1(x)) > ∆(∇f2(x)), which means if image the

shape of f1(x), f2(x) as like a bowl, f1(x) has a sharper change. If f1(x), f2(x) represent

our two objective functions with h1 < h2, we can see that with sharper shape (gradient

changes more rapidly), the minimization procedure has more difficulty in finding the

minimizer with same searching steps (accuracy). So this is the reason why the claim

only holds most of the time.

This experiment’s parameter settings are the same as those for Figure 3.1. The result

is shown in Figure 3.2.

Then we compare error rate w.r.t number of points in training set. The result is shown

in Figure 3.4:
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Figure 3.2: DP-ERM with Huber loss, e(ε,m = 8678,Λ = 0.01, h = 0.5) vs ε, ε is
from 0.025 to 0.375 with step 0.025, run the whole system 20 times for fixed ε and plot

with error bar.

Figure 3.3: Huber loss

Analysis: From Figure 3.4 it can be seen that the performance is generally improved

when we have more data samples. This is true because we have a minor generalized

error R(f) and w.h.p. we should also have a low error rate on testing set.

Finally we conducted an experiment on how regularization term λ affects the perfor-

mance. In Section 2.2.3 we have argued that there is a trade-off between estimation

error and approximation error. If we enrich the function class F (like increasing the
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Figure 3.4: DP-ERM, logistic loss, e(m, ε = 0.1,Λ = 0.01, h = 0.5) vs m, m is from
1735 to 8677 with step 1735, run the whole system 20 times for fixed m and plot with

error bar.

radius of Euclidean ball from which our classifier comes), the approximation error de-

creases (hence estimation error increases) since we have more functions to choose from.

Note that in regularized empirical risk minimization, approximation error depends on

the regularization term λ since we cannot control the size and shape of constraint di-

rectly. This parameter plays a role similar to that of the complexity of the hypothesis

class: decreasing λ can reduce the approximation error.

Figure 3.5: DP-ERM, logistic regression, e(Λ,m = 8678, ε = 0.1) vs Λ using ’37’ in
MNIST dataset, Λ is from 100 to 10−13 with ratio 0.1, run the whole system 20 times

for fixed Λ and plot with error bar.
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Analysis: from Figure 3.5 it can be seen that when the regularization parameter λ

increases, the error rate comes down and becomes steady after 0.007. So that is the

reason why we make λ be 0.01 (corresponding to the lowest error rate) in experiments

using MNIST data set. This gives us the hint that we need to choose a good λ value

before we use regularized ERM to conduct any experiment.

3.5 Generalized objective perturbation

Kifer et al. [80] also discussed a privacy preserving objective perturbation. This method

guarantees (ε, δ)-differential privacy (Gaussian noise) and can be used for function with

weaker properties than Algorithm 1 and Algorithm 2.

Algorithm 3 Generalized objective perturbation [80]

Require: Problem domain F ⊆ Rd is closed and convex. r: convex. l(·, ·): convex
with continuous Hessian matrix whose eigenvalue is less than λ and ‖∇l(f, (x, y))‖ ≤ ζ
for all f and (x, y) belong to domain. ‖xi‖ ≤ 1, yi ∈ {−1,+1}, data D are drawn i.i.d
according to some unknown probability distribution P .
Inputs: D,∆ ≥ 2λ

ε , ε, δ.
Steps:
If require ε-differential privacy then:

draw noise vector b ∈ Rd w.r.t density ν(b; ε, ζ) = 1
αe
−ε ‖b‖

2ζ .
else if require (ε, δ)-differential privacy then:

draw noise vector b ∈ Rd w.r.t density ν(b; ε, δ, ζ) = N
(

0,
ζ2(8log 2

δ
+4ε)

ε2
Id×d

)
.

end if
Output: fpriv = argminf L̂(f,D) + 1

nr + ∆
2n‖f‖

2
2 + 1

nb
T f where L̂(f,D) =

1
n

∑n
i=1 l(f(xi), yi).

Theorem 3.5. (Privacy guarantee, Theorem 2 in Kifer et al. [80]) The first case of Al-

gorithm 3 is (ε, 0)-differentially private and the second case is (ε, δ)-differentially private

if they meet the requirements.

Theorem 3.6. (Utility guarantee, Theorem 4 in Kifer et al. [80]) Under the requirements

of Algorithm 3, we have for the first case of algorithm, setting ∆ = Θ
(
ζd log d

ε‖f̂‖

)
, we have

E
[
Ĵ(fpriv;D)− Ĵ(f̂ ;D)

]
= O ζ‖f̂‖d log d

εn

)
. (3.6)

For the second case, setting ∆ = Θ

√
ζ2d log( 1

δ
)

ε‖f̂‖

)
,

E
[
Ĵ(fpriv;D)− Ĵ(f̂ ;D)

]
= O

ζ‖ δ )f̂‖
√
ζ2d log(1

εn

 , (3.7)
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nr and f̂ = argmin Ĵ .where Ĵ = L̂(f,D) + 1

We compare error rate w.r.t privacy parameter ε. The result is shown in Figure 3.6:

Figure 3.6: Private Convex ERM, e(ε,m = 8678,Λ = 0.01) vs ε using ’37’ in MNIST
dataset, ε is from 0.025 to 0.375 with step 0.025, run the whole system 20 times for

fixed ε and plot with error bar.

Analysis: In our implementation we need to first compute upper bound of norm of

gradient ζ and upper bound on the eigenvalues of Hessian λ. We have

‖∇l(f, (x, y))‖ = |l′(f, (x, y))|‖xy‖

≤ |l′(f, (x, y))|

≤ 1

since we use Huber loss function. So we set ζ = 1. For Hessian, the (i, j) off-diagonal

entry is l′′(f, (x, y))xixjy
2, whose norm |l′′(f, (x, y))xixjy

2| ≤ 1
2h . Diagonal entry is

l′′(f, (x, y))x2
i y

2 + l′(f, (x, y))y. Thus is absolute value is bounded by 1
2h + 1. So using

the fact that λ ≤
√
tr(HTH) =

√∑
i,j |Hi,j |2, we have

λ ≤
√

(d2 − d)(
1

2h
)2 + d(

1

2h
+ 1)2 (3.8)

and we set λ =
√

d2

4h2 + d(1 + 1
h). The result demonstrates Theorem 3.6. Seeing from

right part of these two equalities in Theorem 3.6, case 1 is:

ζ‖f̂‖d log d
εn

ζ‖f̂‖
√
ζ2d log( 1

δ
)

εn

=

√
d

log 1
δ

log d,
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which is an amount that is usually greater than 1 considering the practical case. So the

performance of generalized case is better than normal case. The same as case 2.

Now we have introduced three typical differentially private ERM algorithms. We can see

that all of them are designed to use only one data set, which is a disadvantage when we

need more data to get better result. So we start considering how to construct a learning

system that can merge the results from multiple data site. We can either combine

the data from different sets in some way or combine the data derivatives (for example,

classifier). Figure 3.7 shows us a general distributed learning system. A distributed

learning system can be seen as a “two level” learning system. The second level of

learning try to find the optimal global result by combining all the information from

local sites and ancillary information. In Chapter 4 we will see two kinds of combination

method that can take advantages of the information from local data sets.

Figure 3.7: Two level learning system



Chapter 4

Distributed learning in ERM

4.1 Introduction

In this chapter we turn to the distributed setting, in which our goal is to learn from

multiple databases. Our motivating application here is to learn from medical data,

which is often distributed among different hospitals and research institutes around the

world. Researchers want to take advantage of these data to enable better predictions.

For example, they may want to have better performance in classifying healthy and sick

patients. Due to privacy concerns and legal restrictions, we are not allowed to store and

analyze the data on a single machine. Collaborative algorithms have been developed in

order to satisfy this growing appetite for distributed processing, and parallel machine

learning has been well studied (see Bekkerman et al. [81]). Several technologies such

as Map-Reduce [82], Hadoop [83] and Spark [84] have become popular standards for

big data analysis. Here, we show that aggregating private computation across many

sites may lead to more accuracy than learning from a single local site under the same

conditions (privacy level, regularization term, etc), even though each local computation

is made less accurate to protect privacy. Although guaranteeing no privacy at local sites

is incorrect in practice, it provides a baseline against which we can measure. It can

be seen that the non-private case is an extreme case of private case (as the noise goes

to 0). We refer to the individual medical centers as “local site(s)” and the

center attempting to learn or combine the classifiers from local sites as the

“aggregation site”. The distributed setting we use here was also studied in Sarwate et

al. [8] and Potluru et al. [85]. Similar distributed optimization models, not incorporating

privacy, have been studied by several authors such as Shamir et al. [86], including Zhang

and Xiao [87] based on an inexact Newton method, Zhang et al. [88] for parametric

smooth convex optimization problems, McDonald et al. [89] based on the conditional

29
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maximum entropy model, Zinkevich et al. [90] and Han et al. [91] for gradient descent,

Duchi et al. [92] and Zhang et al. [93] in a information theoretic framework and Huang et

al. [94] and Ji et al. [95] incorporated differential privacy concern in distributed logistic

regression (see also paper Zhang et al. [96], Zhang et al. [97], Rosenblatt and Nadler [98],

Tsianos et al. [99] and Seeger et al. [100]).

In this chapter we firstly introduce three models: local model, global model and dis-

tributed model. Then we give an introduction to two aggregation methods: a tradi-

tional model named “average method” and a new approach that we called the “feature

method”, which was described in Sarwate et al. [8]. Next we show the privacy guarantees

of these two methods in distributed model. Finally, we conduct mathematical analysis

of the feature method.

4.2 Three models

Here we introduce three models: local model, global model and distributed model,

which are used in the following sections and chapters and are also widely encountered

in distributed learning problems.

The Local Model, shown in Figure 4.1, represents the case that we use the data only

in our hand and do not borrow any data or data derivatives from other sites. The

advantages are: the local model is economical and there is no need to deal with out-

side information. But the disadvantage of it is also clear: a good performance can be

guaranteed only if the data set is large enough.

The Global Model, shown in Figure 4.2, is the case that there is no privacy issue.

Researchers can feel free to merge all the data they can get and treat them as a whole.

The global model is an ideal case since algorithms can access to all data directly. This

is sometimes called a “pooled analysis.” However, the global model is not practical due

to privacy considerations.

The Distributed Model, shown in Figure 4.3, represents the most common situation

we are confronted with. The aggregation site wants to take the advantages of data

from other sites. Each local site computes its own classifier (possibly using different

algorithms) and the aggregation site combines them by using some methods. One way

for aggregation is to simply average the local classifiers, in this case, we ignore the

aggregation site or treat it as a local site. Another way to aggregate classifiers is to use

local classifiers to transform the aggregation set into a new set. Then we use this new

set to compute a classifier so as to classify the testing set. These two ways are called
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Figure 4.1: Local model

Figure 4.2: Global model

the “average method” and “feature method” respectively. We will see how they work in

the following sections.

4.3 Average method and feature method

In the last section, we mentioned two aggregation methods that we are going to apply in

distributed model. These methods are described in Algorithm 4 and 5. Their concepts

are very similar to boosting, which takes the advantages of weaker classifiers [101, 102].
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Figure 4.3: Distributed model

The average method 4 is commonly used in distributed learning. It can be seen as the

best unbiased estimator of f∗ since local classifiers f1, · · · , fN are i.i.d if all variables are

the same from site to site (since data points are i.i.d) and E[f̄ ] = 1
N

∑N
i=1 E[fi] = E[fi]

(a close analogy of this is the scalar random variable). Intuitively, the average method

treats the importance of each local site equally.

The feature method 5 describes a new way to deal with distributed learning. It uses a

“two-level” structure (local sites-aggregation site) to learn the overall output classifier.

Instead of treating the local classifiers equally (average method), the feature method

decides the importance of each classifier according to the data points at aggregate site.

We will see this mechanism in the following sections and in Chapter 5. It reflects

the character of distribution of data points at each local site (they are from the same

unknown distribution P, though), so that is the reason why we call this method the

“feature method”.

Algorithm 4 Average method in distributed model

Inputs: Data sets Di and corresponding algorithms Algi, i = 1, · · · , N .
Steps: 1. Compute classifiers of local sites: fi = Algi(Di), i = 1, · · · , N
2. Average these classifiers: f̄ = 1

N

∑N
i=1 fi

Output: Combined classifier f̄ .

Note that in Algorithm 4 and Algorithm 5, the algorithms (Algi) that used at local

sites or aggregation site can be non-private ERM, output perturbation and objective

perturbation we mentioned in Chapter 3 or any other classification algorithms, as long

as they all compute linear classifiers with same dimension inRd. Because the aggregation
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Algorithm 5 Feature method in distributed model

Inputs: Data sets Di and corresponding algorithms Algi, i = 1, · · · , N , aggregation
site D0 and corresponding ERM objective function JR(ω, ·).
Steps: 1. Compute classifier of each local site: fi = Algi(Di)
2. Stack these classifiers into a matrix Mf whose ith row is the classifier fTi
3. Transform each data point at the aggregation site D0 to form a new aggregation
site D

′
0, where each point x

′
i at D

′
0 is: x

′
i = Mfxi.

= argminω JR(ω,D
′
0)4. Compute classifier using the new aggregation site: ω∑

Output: Classifier f∑ = MT
f ω

∑.

site does not need to access to the original data, the local sites may also use different

methods to train their classifiers.

4.4 Privacy guarantees for the two methods

In this section, we discuss privacy guarantees in distributed learning. We focus our

attention on different ways of adding noise – the average method and feature method –

and how they protects privacy.

4.4.1 Average method

There are two ways of adding noise in the average method. The first one adds noise at

local sites only and then perform the averaged classifier on the testing set directly. The

other one trains classifiers non-privately at local sites and then adds noise to the output

classifier before evaluation on testing set. These systems are shown in Figure 4.4 and

Figure 4.5.

Our conclusion here is that these two scenarios preserve differential privacy w.r.t each

local site. Nissim et al. [103] mentioned sample and aggregate framework and the average

method and the feature method can be seen as the implementation of this framework

with aggregation function equal to averaging function and ERM procedure, respectively.

For the first case, we use post-processing property of differential privacy.

Proposition 4.1. (Proposition 2.1 in Dwork and Roth [14]) Let M: N |X| → R be a

randomized algorithm that guarantees (ε, δ)-differential privacy. Let f : R → R
′

be an

arbitrary randomized mapping. Then f ◦M : N |X| → R
′

is (ε, δ)-differentially private.

Notice that |X| here can be seen as the number of images that possibly appear. Take

the MNIST data set as an example, a data point in this data set is represented by a
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Figure 4.4: Average method, scenario 1

Figure 4.5: Average method, scenario 2

28 × 28 = 784 pixels image where the depth of each pixel is 256 (unsigned type). This

means |X| = 256784. So N |X| represents the data set as a histogram. For any data

set x ∈ N |X|, xi represents the number of points equal to a specific image i, where

i = 1, · · · , 256784.

Using the notation in the average method 4, Algi(Di) represents the procedure that

applies differentially private algorithm i at local site i (M in Proposition 4.1), and f is a

deterministic mapping Algi(Di)→ 1
N (
∑

j 6=i fj)+Algi(Di)), using Proposition 4.1 it can

be seen that the result preserves differential privacy. Then if we choose a deterministic

mapping w.r.t every local site, the result will preserve privacy w.r.t each of them.
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For the second case, if we use output perturbation method 1 after averaging the classi-

fiers, then the analysis here is the same as Theorem 6 in Chaudhuri et al. [78]. One thing

needing our attention is that our output is f̄ = 1
N

∑N
i=1 fi + b, where fi = Algi(Di), is

the non-private classifier i computed from local site i. Using the analysis from Theorem

6 in Chaudhuri et al. [78] we have

‖b‖ − ‖b′‖ ≤ ‖b− b′‖ =
1

N
‖f̄ ′ − f̄‖ =

1

N
‖f ′i − fi‖ ≤

2

NniΛ
. (4.1)

Here f
′
i is the non-private output of local site i which changes one data point and ni

is the number of data points at local site i. In order to protect this site’s privacy we

should have

P (f |Di)

P (f |D′i)
=

v(b)

v(b′)
= e−

NniΛεp
2

(‖b‖−‖b′‖) ≤ eεp . (4.2)

So we should generate noise with parameter β =
NniΛεp

2 instead of β =
niΛεp

2 , which

means we need less noise to protect privacy here. Thus in this case, for noise with same

magnitude, average method in distributed setting provides more privacy for each local

site than the local model.

In a scenario where we average classifiers learned non-privately at each site (the all

non-private case), if we change any data point at any site, the output is almost surely

different. Therefore the adversary will know which data set we have used based on the

results. Using the Definition 2 in Chaudhuri et al. [78] we have P (f |D)

P (f |D′ ) = 1
0 =∞ ≥ eεp

for any fixed εp.

4.4.2 Feature method

The feature method is mentioned in Sarwate et al. [8] and compared empirically with

the local model both in public-private and fully-private scenarios. The feature method

can be seen as a form of ensemble weighting [104] based on treating classifiers learned

from local data as new features.

Similarly, there are two ways of preserving privacy on the feature method. The first one

is to use objective perturbation 2 at local sites and non-private ERM at the aggregation

site. The second one is to train classifiers non-privately at all local sites and using

objective perturbation at the aggregation site. The fully-private scenario can be seen

as the combination of these two cases. These systems are shown in Figure 4.6 and

Figure 4.7.
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Figure 4.6: Feature method, scenario 1

Figure 4.7: Feature method, scenario 2

Our conclusions here are that the first scenario protects differential privacy w.r.t each

local site only and the second scenario protects differential privacy at the aggregation

site and local sites. The first conclusion is easy to see and the analysis of the second

conclusion uses the differential privacy of objective perturbation and post-processing

property of differential privacy.

The second scenario not only protects the privacy of aggregation site but also protects

local sites. To see how it provides privacy for local sites, we need to look at the feature

method 5 first. Changing one data point at local site i means changing the ith row of

transformation matrix Mf , which is equivalent to changing ith coordinate of every data
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point at the aggregation site. This indicates that in order to protect the privacy, a lot

of noise is needed.

4.5 Utility analysis for the feature method

The non-private average method has been analyzed in previous work by Shamir et al. [86]

and Zhang et al. [88]. They show that under a reasonable set of conditions, the average

method (distributed model) performs better than the local model that only learns from

one site’s data.

While the method works well in practice Sarwate et al. [8], very little is known about

its theoretical properties. We would like to better understand the feature method.

We first give an analysis of the mechanism of the feature method without privacy con-

sideration. This all non-private case can be seen as a baseline to which we can add

the differential privacy property.

First, let us consider the regularized ERM objective function at each local site:

JR(f,Dlocal) =
1

m

m∑
i=1

l(fTxi, yi) + ΛR(f), (4.3)

and at aggregation site:

JR(ω,D0) =
1

m0

m0∑
i=1

l(ωT (xtrans,i), yi) + ΛR(ω). (4.4)

Also, we define Dlocal,i as the ith local site and the unique optimal output classifier of

it as:

fi = argmin
f∈Rd

JR(f,Dlocal,i), (4.5)

and unique optimal output classifier at aggregation site as:

ωmin = argmin
ω∈RN

JR(ω,D0), (4.6)

From now on we use Dlocal for data set at any local site and D0 for data set at the

aggregation site unless otherwise noted. Note that the parameters and functions in

expression (4.3) and (4.4) can be different from site to site. Here we choose ω as variable

to represent the “weights” that the aggregation site gives to the different local sites. The

parameter m0 is the number of data points at the aggregation site and ω is the parameter
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we want to learn1. The transformed data point is xtrans,i = Atransxi where Atrans is the

stack of classifiers of local sites (the matrix Mf in the feature method 5):

Atrans =


· · · fT1 · · ·
· · · fT2 · · ·

...

· · · fTN · · ·

 .

Here we impose some assumptions on the parameters and functions. These conditions

are standard in classical statistical analysis.

Definition 4.2. Let span{fi} be the subspace that is spanned by the output classifiers

of local sites.

Definition 4.2 provides the fundamental setting of our learning problem. It shows that

the domain of learning procedure in the aggregation site lies in a subspace2.

Notice that the data training procedure at the aggregation site can be seen as training a

linear combination of classifiers computed from local sites. The output is the combina-

tion of this local classifiers. To see why, rewrite the objective function in the aggregation

site as

JR(ω,D0) =
1

m0

m0∑
i=1

l(ωTAtrans︸ ︷︷ ︸xi, yi) + ΛR(ω). (4.7)

We can see now that ωTAtrans is just a linear combination of fi using ωi and our

output is ωmin. Thus to classify a new point x ∈ Rd, the system predicts the label by

using ŷ = sign(ωTminAtransx), which shows that the overall output classifier is a linear

combination of classifiers from local sites. The feature method lets the data determine

the importance of each classifier rather than weights them equally as the average method.

Since the output classifier is a linear combination of local classifiers, we should pay

attention to the question as to whether the given global optimal classifier f∗ belongs to

the span of {fi}. This question is generally hard to answer since we can assume little

about the data distribution P and f∗. If f∗ /∈ span{fi}, then no matter what we do

(tune parameter, add data points or improve the algorithm) at the aggregation site, our

result can not reach f∗. This situation is essentially not learnable (see the definition of

agnostic learnability in Shalev-Shwartz and Ben-David [6](Definition 3.3)). Regardless

of the relationship between N and d, f∗ can either belong or not belong to span{fi}.
1We use ω ∈ RN to distinguish from f ∈ Rd.
2Subspace of Rd is always convex.
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But there is still an ideal case when we have N ≥ d local sites and d of them are

linearly independent (thus form a basis of Rd), now span{fi} = Rd and we guarantee

that f∗ ∈ span{fi}. But we can only guarantee this if N � d.

Instead of learning the given global optimal classifier f∗, we switch our goal to find

another classifier f∗span that achieves the best generalization error within the subspace

that is spanned by the local classifiers {fi}. That is, we have the following assumption:

Definition 4.3. (Best classifier) Let

f∗span = argmin
f∈span{fi}

E(x,y)∼P [l(fTx, y)] (4.8)

be the best classifier (fixed but unknown) that we can achieve in span{fi}.

Note that when l(·, ·) is λ1 s.c. or strictly convex, function L(f) = E(x,y)∼P [l(f(x), y)]

is λ1 s.c. or strictly convex. So finding f∗span is a convex optimization problem and thus

guarantee the uniqueness of it. For the case when l(·, ·) is only convex, we fix one of its

optimal solution among the optimal set as a reference. Like f∗, we assume that f∗span

exists is finite. f∗span is fixed if {fi} is fixed, otherwise we treat it as a random vector

whose randomness comes from local data. When the error between f∗span and f∗ is not

reducible because f∗ /∈ span{fi}, it becomes a fourth type of error in addition to the

three errors we discussed in Section 2.2.3. From linear algebra we know that there exists

either unique or infinite ω∗ s.t. ATtransω
∗ = f∗span

3. In the case of infinity, ω∗ forms an

affine space in RN . This affine space is the solution set of ATtransω
∗ = 0̄ plus a displace

of each point in it by a particular solution of ATtransω
∗ = f∗span. So from now on we use

ω∗ to denote a reference point in this affine space.

We make Assumption 4.3.1 about the convexity of objective function. Convexity is a

common and important condition in machine learning which makes learning problem

feasible and bounded.

Assumption 4.3.1. (Convexity) l(·, ·) is a λ1 s.c. (convex or strictly convex, see Ap-

pendix B.1) loss function w.r.t ω, where ω ∈ RN (or w.r.t f , where f ∈ Rd) and R(·)
is a λ2 s.c. regularization term. Here λ1 and λ2 are the strong convexity parameters

(always positive).

Note that for convex or strictly convex loss function, we simply replace the result in

Lemma 4.11 and then set all λ1 = 0. We only analyze the s.c. case here.

Assumption 4.3.2. (Bounded gradient of loss function) There exists a constant C1 s.t.

E
[
‖∇l(·, ·)‖2

]
≤ C2

1 .

3These corresponding to the two cases that {fi} is linearly independent or linearly dependent
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Assumption 4.3.2 point out a property of loss function: it has bounded gradient. Most

of the common loss function we encounter satisfy this property. The reason that we use

C2
1 here is to avoid a square root, which we will see in sequel.

Assumption 4.3.3. Assume that the regularization term R(·) is µ1-smooth (see Defi-

nition B.5) at all local sites.

From Assumption 4.3.3 we can bound E span)‖2
[
‖∇R(f∗

]
. Using the µ1-smooth property

of R(·) at local sites we have (for s.c. l(·, ·)):

‖∇R(f∗span)−∇R(f∗)‖ ≤ µ1‖f∗span − f∗‖

‖∇R(f∗span)‖2 ≤ ‖∇R(f∗)‖2 + µ2
1‖f∗span − f∗‖2 + 2µ1‖∇R(f∗)‖‖f∗span − f∗‖

E
[
‖∇R(f∗span)‖2

]
≤ ‖∇R(f∗)‖2 +

2µ2
1

λ1
(L(0̄)− L(f∗))

+ 2µ1‖∇R(f∗)‖
√

2

λ1
(L(0̄)− L(f∗))

= C2.(take expectation in both sides and using Lemma 4.11)

(4.9)

Assumption 4.3.4. There exist constant C3 s.t. E
[
‖∇R(ω∗)‖2

]
≤ C3.

Note that we set N = 10 in our experiments, which is much smaller than data di-

mension4, so usually local classifiers are linearly independent with each other and this

is indeed true in our experiments. So we may assume that the rows of Atrans are

linearly independent and hence ω∗ is unique for fixed f∗span. The intuition of this As-

sumption is similar to inequality (4.9). When we have finite data and regularization

term, if we want to learn a good classifier, that is, E [∇JR(ω∗, D0)] ≈ 0̄. We need
1
m0

∑m0
i=1 E[∇l(ω∗T (xtrans,i), yi)] + ΛE[∇R(ω∗)] ≈ 0̄ according to equation 4.7. So a

small ‖∇R(ω∗)‖ will make things better.

Assumption 4.3.5. Let A∗ be the matrix that each column is the transpose of best

classifier f∗span,

(A∗)T =


· · · f∗span

T · · ·
· · · f∗span

T · · ·
...

· · · f∗span
T · · ·


we can immediately bound E

[
|||A∗|||2op

]
. Using inequality 4.19 we have: E

[
|||A∗|||2op

]
≤

NE
[
‖f∗span‖2

]
. Then ‖f∗span‖2 = ‖f∗span−f∗+f∗‖2 ≤ (‖f∗span−f∗‖+‖f∗‖)2. Now using

4Indeed, the number of data sets that we can borrow from others is usually small in real world. So
we almost always have N < d.
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the result in Lemma 4.11 and the fact that (‖x‖+ ‖y‖)2 ≤ 2‖x‖2 + 2‖y‖2 for any vector

x and y ∈ Rd, we have (for s.c. l(·, ·)):

E
[
|||A∗|||2op

]
≤ 4N

λ1
(L(0̄)− L(f∗)) + 2N‖f∗‖2 (4.10)

The final goal of this chapter is to bound the MSE between the global optimal classifier

f∗ and fωmin , where fωmin is the output combined classifier using ωmin. We give an

outline of our proof and then work through it step by step.

The proof outline:

• Firstly, we use the following decomposition to bound MSE between fωmin and the best

classifier f∗span:

E
[
‖fωmin − f∗span‖2

]
≤ E

[
|||ATtrans|||2op

]
E
[
‖ωmin − ω∗‖2

]
+ Cov

[
|||ATtrans|||2op, ‖ωmin − ω∗‖2

]
,

then we deal with E
[
|||ATtrans|||2op

]
, E
[
‖ωmin − ω∗‖2

]
and the covariance parts separately.

• Secondly, we bound E
[
‖ωmin − ω∗‖2

]
. Here we reduce the problem of bounding

E
[
‖ωmin − ω∗‖2

]
to the problem of bounding E

[
‖∇JR(ω∗, D0)‖2

]
.

• Thirdly, E
[
‖∇JR(ω∗, D0)‖2

]
can be bounded by two parts:

E
[
‖∇JR(ω∗, D0)‖2

]
≤ 2E

[
‖∇J(ω∗, D0)‖2

]
+ 2Λ2E

[
‖∇R(ω∗)‖2

]
(4.11)

and focus on bounding E
[
‖∇J(ω∗, D0)‖2

]
, which is the un-regularized empirical risk.

• Fourthly, we deal with E
[
|||ATtrans|||2op

]
part. Similarly, we have the decomposition:

E
[
|||ATtrans|||2op

]
≤ 2E

[
|||A∗|||2op

]
+ 2E

[
|||ATtrans −A∗|||2op

]
, (4.12)

then we focus on bounding E
[
|||ATtrans −A∗|||2op

]
, which is solved by analyzing E[‖fi −

f∗span‖2].

• Fifthly, we show that the covariance part Cov(X,Y ) can be bounded by E(X)E(Y )

and thus can be solved by using the results in previous steps.

• Finally, we bound E
[
‖f∗span − f∗‖2

]
and give our final conclusion about feature method

by merging the results in steps 2 to 5 and substitute them into the decomposition in

step 1.
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Furthermore, we give other two bounds under the conditions of public-private case and

fully-private case.

Now, we start working step by step.

In the first step, we bound the MSE E
[
‖fωmin − f∗span‖2

]
by two parts:

E
[
‖fωmin − f∗span‖2

]
≤ E

[
|||ATtrans|||2op‖ωmin − ω∗‖2

]
(4.13)

= E
[
|||ATtrans|||2op

]
E
[
‖ωmin − ω∗‖2

]
+ Cov

[
|||ATtrans|||2op , ‖ωmin − ω∗‖2

]
.

Here, the first inequality comes from the well known relation ‖Av‖ ≤ |||A|||op‖v‖ for

matrix A and vector v. The second equality is the application of E[X ·Y ] = E[X] ·E[Y ]+

Cov[X,Y ] for two possibly dependent random variables X and Y. We decompose in this

way because it also reflects the principle behind feature method, where E
[
|||ATtrans|||2op

]
is the term related to training at all N local sites and E

[
‖ωmin − ω∗‖2

]
part comes from

the training procedure at the aggregation site using the classifiers computed from local

sites.

The next step is to bound E
[
‖ωmin − ω∗‖2

]
term.

Lemma 4.4. (Bound on E
[
‖ωmin − ω∗‖2

]
) Under the Assumption 4.3.1 (s.c. case), we

have:

E
[
‖ωmin − ω∗‖2

]
≤ 4

(λ1 + Λλ2)2
E
[
‖∇JR(ω∗, D0)‖2

]
.

Proof. It can be easily seen that JR(ω,D0) is (λ1 + Λλ2) s.c. on RN . Using Defini-

tion B.3, for any ω ∈ RN , we have

JR(ω,D0) ≥ JR(ω∗, D0) + 〈∇JR(ω∗, D0), ω − ω∗〉+
λ1 + Λλ2

2
‖ω − ω∗‖2.

Rewrite it:

‖ω − ω∗‖2 ≤ 2

λ1 + Λλ2
[JR(ω,D0)− JR(ω∗, D0) + 〈∇JR(ω∗, D0), ω∗ − ω〉]

≤ 2

λ1 + Λλ2
[JR(ω,D0)− JR(ω∗, D0) + ‖∇JR(ω∗, D0)‖‖ω∗ − ω‖] .

Now divide both sides by ‖ω − ω∗‖:

‖ω − ω∗‖ ≤ 2(JR(ω,D0)− JR(ω∗, D0))

(λ1 + Λλ2)‖ω − ω∗‖
+

2‖∇JR(ω∗, D0)‖
λ1 + Λλ2

.
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Since the strong convexity holds globally, we can set ω = ωmin. Therefore,

‖ωmin − ω∗‖ ≤
2(JR(ωmin, D0)− JR(ω∗, D0))

(λ1 + Λλ2)‖ωmin − ω∗‖
+

2‖∇JR(ω∗, D0)‖
λ1 + Λλ2

.

Using the definition of ωmin 4.6 we have JR(ωmin, D0) < JR(ω∗, D0). So ignoring the first

part of last inequality, squaring both side and take expectation w.r.t data distribution,

we get

E
[
‖ωmin − ω∗‖2

]
≤ 4

(λ1 + Λλ2)2
E
[
‖∇JR(ω∗, D0)‖2

]
. (4.14)

The intuition of the result is clear: when the minimum of JR(ω,D0) (i.e., ωmin) is quite

near to ω∗, that is, the left part of last inequality is small, the derivative of JR(ω,D0)

at ω∗ should be a small quantity, too.

Now our next step is to bound E
[
‖∇JR(ω∗, D0)‖2

]
where the expectation is w.r.t ran-

domness of data at local sites and the aggregation site.

Using the inequality (4.11), we need to bound E
[
‖∇J(ω∗, D0)‖2

]
.

We need a technical lemma:

Lemma 4.5. For x, y ≥ 0, n ≥ 1, (x+ y)n ≤ 2n−1(xn + yn).

Proof. Applying Jensen’s inequality to the convex function xn for n > 1 and x ≥ 0, we

have (
x+ y

2

)n
≤ xn + yn

2
.

Now let X = ‖∇J(ω∗, D0)‖ ≥ 0 and k > 1 be some integer, then

E
[
Xk
]

= E
[
|X|k

]
= E

[
|X − E [X] + E [X]|k

]
≤ E

[
2k−1

(
|X − E [X]|k + |E [X]|k

)]
(by Lemma 4.5)

= 2k−1E
[
|X − E [X]|k

]
+ 2k−1E [X]k .

(4.15)
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Lemma 4.6. (Bound on E [‖∇J(ω∗, D0)‖]) Under the Assumption 4.3.2, we have

E [‖∇J(ω∗, D0)‖] ≤ C1. (4.16)

Proof. We know that Var[X] = E[X2] − E[X]2 ≥ 0, then E[X] ≤ E[X2]
1
2 , let Zi =

∇l(ω∗Txtrans,i, yi), we have:

Z̄ =
1

m0

m0∑
i=1

Zi = ∇J(ω∗, D0)

‖Z̄‖ ≤ 1

m0

m0∑
i=1

‖Zi‖ (triangle inequality)

E
[
‖Z̄‖

]
≤ 1

m0

m0∑
i=1

E
[
‖Zi‖2

] 1
2

≤ C1.

The third inequality is based on the Assumption 4.3.2. So we have E [‖∇J(ω∗, D0)‖] ≤
C1.

Now we need to do some further analysis of E
[
‖∇J(ω∗, D0)‖2

]
. The following Lemma 4.7

is used to bound E
[
‖∇J(ω∗, D0)‖2

]
in other way:

Lemma 4.7. (Theorem 2.1 in De Acosta [105]) Let k ≥ 2 and Xi be a sequence of

independent random vectors in a separable Banach space with norm ‖ ·‖ and E[‖Xi‖k] <
∞. There exists a finite constant C4 s.t.

E

∣∣∣∣∣∣∣‖
n∑
i=1

Xi‖ − E[‖
n∑
i=1

Xi‖]

∣∣∣∣∣∣∣
k
 ≤ C4

[
(
n∑
i=1

E[‖Xi‖2])
k
2 +

n∑
i=1

E[‖Xi‖k]

]
.
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Note that in previous result (4.15): E[Xk] ≤ 2k−1E
[
|X − E[X]|k

]
+ 2k−1E[X]k. Let

k = 2 and substitute X = ‖∇J(ω∗, D0)‖:

E
[
‖∇J(ω∗, D0)‖2

]
≤ 2E

[
|‖∇J(ω∗, D0)‖ − E[‖∇J(ω∗, D0)‖]|2

]
+ 2E [‖∇J(ω∗, D0)‖]2

= 2E

∣∣∣∣∣∣∣‖
m0∑
i=1

1

m0
∇l(ω∗Txtrans,i, yi)‖ − E[‖

m0∑
i=1

1

m0
∇l(ω∗Txtrans,i, yi)‖]

∣∣∣∣∣∣∣
2
+ 2C2

1

≤ 2C4

[
(

m0∑
i=1

E[‖ 1

m0
∇l(ω∗Txtrans,i, yi)‖2])

2
2 +

m0∑
i=1

E[‖ 1

m0
∇l(ω∗Txtrans,i, yi)‖2]

]
+ 2C2

1

≤ 4C4

m0∑
i=1

E[‖ 1

m0
∇l(ω∗Txtrans,i, yi)‖2] + 2C2

1

≤ 4C4C
2
1m0

m2
0

+ 2C2
1 ,

where in the last inequality, we use the Assumption 4.3.2 and Lemma 4.6, so we have

E
[
‖∇J(ω∗, D0)‖2

]
≤ 4C4C

2
1

m0
+ 2C2

1 . (4.17)

The intuition behind this result is that when number of data points at the aggregation

site becomes large (m0 → ∞), we can guarantee that on average, the global minimizer

becomes better at the aggregation site. This means we indeed can learn a good classifier

by adding more data points.

Now go back to the decomposition 4.11, we are ready for the following lemma:

Lemma 4.8. Under the Lemma 4.4, conclusion (4.17) and Assumption 4.3.4, we have

E
[
‖ωmin − ω∗‖2

]
≤ 4

(λ1 + Λλ2)2

(
8C4C

2
1

m0
+ 4C2

1 + 2Λ2C3

)
,

Proof. Plugging conclusion (4.17) and Assumption 4.3.4 into inequality 4.11, then using

Lemma 4.4 we will get the result.

It is quite interesting to notice that in the above result, even if the number of data points

m0 at the aggregation site tends to infinity, we cannot guarantee that we can learn an

optimal weighted parameter ω∗ due to the term 2Λ2C3 + 4C2
1 . This is due to three

reasons: the first reason is that we need an non-zero value of Λ2 to prevent over-fitting

at the cost of accuracy. The second reason is the constant C3 = E
[
‖∇R(ω∗)‖2

]
. This

value is determined by ∇R(·), which is the restriction in the learning procedure at the

aggregation site, and ω∗, which is determined by the classifiers from local sites. So this
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term can be seen as a connection between two level of learning procedures. Since there is

no information communication between this two level, we can not reduce C3. The third

one is C1, which can be significantly reduced with the help of large m0. So there are

three ways we can do to get a better result: the first is to enrich the parameter family

by relaxing the regularization (Λ→ 0)5, the second one to enlarge data set (m0 →∞),

the third way is to exchange information between two learning level. With these three

tricks we hope that the algorithm can output something close to the optimal weighted

parameter ω∗.

Now the fourth step is to bound E
[
|||ATtrans|||2op

]
term.

Using the decomposition ATtrans = A∗ +ATtrans −A∗, the triangle inequality of operator

norm, we have

E
[
|||ATtrans|||2op

]
≤ 2E

[
|||A∗|||2op

]
+ 2E

[
|||ATtrans −A∗|||2op

]
. (4.18)

Clearly our randomness here only comes from the data point at the local sites. So our

work now consists at bounding E[|||ATtrans −A∗|||2op].

Note that from the definition of operator norm on matrix, |||M |||op = sup
v
{‖Mv‖ : v ∈ V

with ‖v‖ ≤ 1}, we have

E
[
|||ATtrans −A∗|||2op

]
= E

[
|||(ATtrans −A∗)T |||2op

]
= E

[
(sup
v
{‖(ATtrans −A∗)T v‖ : ‖v‖ ≤ 1})2

]

= E

(sup
v
{

√√√√√ N∑
i=1

((ATtrans −A∗)Trow,iv)2 : ‖v‖ ≤ 1})2


≤ E

(sup
v
{

√√√√√ N∑
i=1

(‖(ATtrans −A∗)Trow,i‖‖v‖)2 : ‖v‖ ≤ 1})2


≤ E

(sup
v
{

√√√√√ N∑
i=1

(‖(ATtrans −A∗)Trow,i‖)2})2


= E

[
N∑
i=1

(‖ATtrans −A∗)Trow,i‖)2

]
= NE

[
‖(ATtrans −A∗)Trow,i‖2

]
= NE

[
‖fi − f∗span‖2

]
,

5Usually we have Λ = O( 1
n

), where n is the number of data points in training set.
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where the first inequality we use the Cauchy–Schwarz inequality, the second inequality

we use the fact that ‖v‖ ≤ 1. W.l.o.g, we assume fi is i.i.d and hence the fourth equality

is hold.

So our problem now is to bound E
[
‖fi − f∗span‖2

]
. Notice that this expression is similar

to E[‖ωmin−ω∗‖2] with only difference being that we need to consider everything in Rd

rather than in RN . We have the following lemma:

Lemma 4.9. (Bound on E
[
‖fi − f∗span‖2

]
) Under Assumptions 4.3.2, Assumptions 4.3.3

and Lemma 4.7, we have

E
[
‖fi − f∗span‖2

]
≤ 4

(λ1 + Λλ2)2

(
8C4C

2
1

mi
+ 2Λ2C2 + 4C2

1

)
, (4.19)

where mi is the number of data point at local site i.

Now go back to the decomposition (4.12), we have:

Lemma 4.10. (Bound on E
[
|||ATtrans|||2op

inequality 4.19 and Lemma 4.9 with the same notations in Lemma 4.9, we have

]
) Using decomposition (4.12), inequality (4.10),

E
[
|||ATtrans|||2op

]
≤ 8N

(λ1 + Λλ2)2

(
8C4C

2
1

m
+ 2Λ2C2 + 4C2

1

)
+

8N

λ1
(L(0̄)− L(f∗)) + 4N‖f∗‖2,

Proof. Plugging Lemma 4.9 into inequality 4.19, substitute the result and inequal-

ity (4.10) into decomposition (4.12).

If the number of data point at each local site are not same, we need to sum up over all

the mi instead of using N ×m. W.l.o.g, we assume that all local sites have the same

number of data point ms.

The intuition of Lemma 4.9 is clear, too. If data sets at all local sites are large enough

(m → ∞) while keeping a large domain (Λ → 0), we are sure that our classifiers from

local sites will be close to f∗span. From Lemma 4.10, this means E
[
|||ATtrans|||2op

]
→

|||A∗|||2op. Also, a stronger version of this is fi → f∗span for i = 1, · · · , N which is

illustrated in Lemma 4.9.
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The second-last step is to deal with the covariance term: Cov
[
|||ATtrans|||2op, ‖ωmin − ω∗‖2

]
.

We use the relation between two random variables X and Y

Cov(X,Y ) ≤
√

Var(X)Var(Y )

=
√

(E(X2)− E(X)2)(E(Y 2)− E(Y )2)

≤
√

E(X)2E(Y )2

= E(X)E(Y ). (4.20)

So we have

Cov(|||ATtrans|||2op, ‖ωmin − ω∗‖2) ≤ E(|||ATtrans|||2op)E(‖ωmin − ω∗‖2) (4.21)

In our final step, we bound the MSE between f∗span and f∗ and give the main theorem

for the feature method. We have:

Lemma 4.11. (Bound on E
[
‖f∗span − f∗‖2

]
)

E
[
‖f∗span − f∗‖2

]
≤


2
λ1

(L(0̄)− L(f∗)) if l(·, ·) is strongly convex
1
σ (L(0̄)− L(f∗)) if l(·, ·) is strictly convex

1
σD1

(L(0̄)− L(f∗)) if l(·, ·) is convex.

(4.22)

Proof. Using the definition of strongly convex B.3, let f(·) be the expected loss L(f) =

E(x,y)∼P [l(f(x), y)], λ = λ1, y = f∗span, x = f∗ and use the fact that origin point 0̄ and

f∗span ∈ span{fi} and ∇L(f∗) = 0̄ we have:

L(f∗span) ≥ L(f∗) +
〈
∇L(f∗), f∗span − f∗

〉
+
λ1

2
‖f∗span − f∗‖2

⇒ L(0̄) ≥ L(f∗span) ≥ L(f∗) +
λ1

2
‖f∗span − f∗‖2

⇒ E
[
‖f∗span − f∗‖2

]
≤ 2

λ1
(L(0̄)− L(f∗)).

Although we never know the value of L(0̄) and L(f∗), but they are fixed and finite.

For the case of strictly convex, using the definition of strictly convex B.1, we have for

∀x 6= y ∈ domL(·) and a positive function σ(x, y) :

L(y) > L(x) + 〈∇L(x), y − x〉

⇒ L(y) = L(x) + 〈∇L(x), y − x〉+ σ(x, y)‖y − x‖2.

Now let x = f∗ and σ = min
y 6=f∗
y 6=∞

σ(f∗, y) > 0. We can see that σ is uniquely determined by

L(·) (hence fixed for fixed l(·, ·) and P) and irrelevant to y. So L(y) ≥ L(f∗)+σ‖y−f∗‖2
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holds for any finite y 6= f∗ ∈ domL(·) and using the same method in s.c. case, we

get the result. Note that y 6= ∞ means no component of y is ∞ or −∞ since we

usually assume that data points are bounded and hence the output classifiers, so is

f∗span. The actual bound should be better since we can set y to be some point as long

as σ(f∗, y) ≤ σ(f∗, f∗span).

For the case of convex, we have for ∀x, y ∈ domL(·), L(y) ≥ L(x) + 〈∇L(x), y − x〉.
we decompose the domain of L(·) into two disjoint sets D1 and D2 s.t. for ∀y ∈ D1,

L(y) > L(f∗) and for ∀y ∈ D2, L(y) = L(f∗). Note that D1 and D2 are fixed for fixed

L(·). For the first case (f∗span ∈ D1), using the same idea in strictly convex and set

σD1 = min
y∈D1,y 6=f∗

y 6=∞

σ(f∗, y), we get the result. For the second case (f∗span ∈ D2), D2 is the

optimal set of minL(·) and we simply set f∗ = f∗span.

Although Lemma 4.11 provide a nontrivial bound on ‖f∗span − f∗‖, we believe that this

is not the best bound. One reason is that the value of σ (σD1) might be very small.

Intuitively when N is small (N ≤ d) and increase, the dimension of span{fi} increase

w.h.p and hence f∗span become close to f∗. Also notice that larger N means more data,

which will improve performance. This is the reason that when testing the effect of N on

the system in Chapter 5, the error rate decrease when N enlarge. So we have to consider

the effect of increasing N and dimension of span{fi} together to see how it affect the

final result.

Theorem 4.12. (Feature method)

Under the conditions of Lemma 4.8, 4.10,4.11 and inequality 4.21, we have:

E
[
‖fωmin − f∗‖2

]
≤ 2(

(
8N

(λ1 + Λλ2)2

(
8C4C

2
1

m
+ 2Λ2C2 + 4C2

1

)
+

8N

λ1
(L(0̄)− L(f∗)) + 4N‖f∗‖2

)
× 8

(λ1 + Λλ2)2

(
8C4C

2
1

m0
+ 4C2

1 + 2Λ2C3

)
+

2

λ1
(L(0̄)− L(f∗))). (4.23)

Proof.

E
[
‖fωmin − f∗‖2

]
≤ 2(E

[
‖fωmin − f∗span‖2

]
+ E

[
‖f∗span − f∗‖2

]
)

≤ 2(2E
[
|||ATtrans|||2op

]
E
[
‖ωmin − ω∗‖2

]
+ E

[
‖f∗span − f∗‖2

]
), (4.24)

then we plug the results in Lemma 4.8, 4.10 and 4.11 into the inequality 4.24, we will

get the result.
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Rewrite Theorem 4.12 in another way, we have:

E
[
‖fωmin − f∗‖2

]
= O(

N

mm0
) +O(

N

m
) +O(

N

m0
) +O(N)

+
4

λ1
(L(0̄)− L(f∗)). (4.25)

It can be seen from inequality (4.25) that the convergence rate is reverse proportional

to m and m0. Thus larger size of data set definitely make things better. Since the

bound is a linear increasing function of N , proper size of N tend to have good result.

We will explore these three parameters experimentally in Chapter 5 to demonstrate our

theoretical results. Besides m, m0 and N , we can see that large regularization parameter

Λ always bring us benefit since it enlarge the domain. Large strongly convex parameter

λ make it more easier to find the minimum of function. It is interesting to see that small

gradient of R(·) at f∗ make things better. This is due to reason that if we take gradient

of objective function of ERM and set it 0 at f∗, we will see that smaller ∇R(f∗) meas

better result when fix data and domain.

Note that the result does not converge to 0 due to the constant terms. But it says that

with limited data, the bound indeed shrink w.r.t some parameters. And we hope that

the performance will become better.

Since we have the result to describe the behavior of feature method in non-private case,

there is an interest to further explore the effect of privacy on whole system. We replace

the normal regularized ERM procedure by the objective perturbation algorithm 2 at all

local sites. Now there are two sources of randomness in our system: data and noise.

From now on, we use Edata[·] instead of E[·] to emphasize that the expectation is w.r.t

data. We introduce a lemma which replaces the role of Lemma 4.9 at the local sites.

This corresponds to the “Public-Private” case in Sarwate et al. [8].

First denote Atranspp (for Public-Private case) by the stack of private classifiers compute

from local sites (matrix Mf in the feature method 5). We replace all Atrans by Atranspp

in the following:

Atranspp =


· · · fpriv1 · · ·
· · · fpriv2 · · ·

...

· · · fprivN · · ·

 ,

then we have the following lemma:

Lemma 4.13. (Bound on E
[
|||ATtranspp|||2op

]
using objective perturbation at the local

sites) Let d, ε, δ be the dimension of data, privacy parameter and some constants in
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(0, 1) respectively. Using the notations in Lemma 4.9 and under the conditions of in-

equality (4.12), Assumption 4.3.5, inequality (4.19) and w.p. as least (1− δ)N :

Edata
[
|||ATtranspp|||2op

]
≤ 16Nd2 log2(d/δ)

(λ1 + Λλ2)2m2ε2
+

16N

(λ1 + Λλ2)2

(
8C4C

2
1

m
+ 2Λ2C2 + 4C2

1

)
+

8N

λ1
(L(0̄)− L(f∗)) + 4N‖f∗‖2.

Proof. We bound the error Edata
[
‖fprivi − f∗span‖2

]
by two parts:

Edata
[
‖fprivi − f∗span‖2

]
≤ 2(Edata

[
‖fprivi − fi‖2

]
+ Edata

[
‖fi − f∗span‖2

]
). (4.26)

The intuition of inequality (4.26) is clear: the first part is caused by noise added at local

site i and the second part is normal regularized ERM. Now we bound the first part.

Let b be the noise vector drawn from distribution (3.1) and

fi = argmin
f

JR(f,Dlocal,i),

fprivi = argmin
f

(
JR(f,Dlocal,i) +

1

m
bT f

)
.

Applying lemma 7 in Chaudhuri et al. [78], we have

‖fi − fprivi‖ ≤
1

λ1 + Λλ2

∥∥∥∥∇(
1

m
bT f)

∥∥∥∥,
⇒ Edata

[
‖fi − fprivi‖2

]
≤ ‖b‖2

m2(λ1 + Λλ2)2
. (4.27)

Note that the right part of inequality (4.27) contains no randomness from data.

The second part is from Lemma 4.9.

Since we known that ‖b‖ is drawn from the distribution of Γ(d, 2
ε ). Then using Lemma

17 in Chaudhuri et al. [78], w.p. at least 1− δ, ‖b‖2 ≤ 4d2 log2(d/δ)
ε2

. Now combining these

two parts we get: then w.p. at least 1− δ:

Edata
[
‖fprivi − f∗span‖2

]
≤ 8d2 log2(d/δ)

(λ1 + Λλ2)2m2ε2
+

8

(λ1 + Λλ2)2

(
8C4C

2
1

m
+ 2Λ2C2 + 4C2

1

)
.

(4.28)

Finally, we substitute inequality 4.28 into inequality 4.19 (replace fi by fprivi) and then

use Assumption 4.3.5 and inequality (4.12) we can get the result.

Now we have the following theorem for feature method with privacy at all local sites.
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Theorem 4.14. (Feature method in public-private case)

Under the conditions of inequality 4.24, Lemmas 4.8, 4.11, 4.13, w.p. at least (1− δ)N ,

we have:

Edata
[
‖fωmin − f∗‖2

]
≤ 2((

16Nd2 log2(d/δ)

(λ1 + Λλ2)2m2ε2
+

16N

(λ1 + Λλ2)2

(
8C4C

2
1

m
+ 2Λ2C2 + 4C2

1

)
+

8N

λ1
(L(0̄)− L(f∗)) + 4N‖f∗‖2)

× 8

(λ1 + Λλ2)2

(
8C4C

2
1

m0
+ 2Λ2C3 + 4C2

1

)
+

2

λ1
(L(0̄)− L(f∗)))

= O(
N

m2ε2
) +O(

N

m0m2ε2
) +O(

N

mm0
) +O(

N

m
) +O(

N

m0
) +O(N)

+
4

λ1
(L(0̄)− L(f∗)). (4.29)

Proof. We use the decomposition (4.24) and plug the results in Lemma 4.8, 4.11 and 4.13,

the only difference here is that we replace Atrans by Atranspp.

It can be seen that larger ε makes performance better, which matches our intuition and

the results in single machine in Chapter 3. We will also test this by experiments in

Chapter 5.

Finally, corresponding to the fully-private case mentioned in Sarwate et al. [8], we use

objective perturbation at both the local sites and the aggregation site.

It is easy to get the following Lemma to describe the learning procedure at the aggre-

gation site using objective perturbation:

Lemma 4.15. Let ωpriv = argminω

(
JR(ω,D0) + 1

m0
bTω

)
, where b ∈ RN . Using the

notations in Lemma 4.8, then w.p. at least 1− δ:

Edata
[
‖ωpriv − ω∗‖2

]
≤ 8N2 log2(N/δ)

(λ1 + Λλ2)2m2
0ε

2

+
8

(λ1 + Λλ2)2

(
8C4C

2
1

m0
+ 4C2

1 + 2Λ2C3

)
.

Proof. The proof here is the same as inequality 4.28 except that we consider everything

in RN and ‖b‖ is drawn from the distribution of Γ(N, 2
ε ).

With the help of previous results, we have the following theorem for fully-private case

feature method:

Theorem 4.16. (Feature method in fully-private case)
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Under the conditions of Lemmas 4.11, 4.13, 4.15 and decomposition (4.24), w.p. at least

(1− δ)N+1, we have:

Edata
[
‖fωmin − f∗‖2

]
≤ 2((

16Nd2 log2(d/δ)

(λ1 + Λλ2)2m2ε2
+

16N

(λ1 + Λλ2)2

(
8C4C

2
1

m
+ 4C2

1 + 2Λ2C2

)
+

8N

λ1
(L(0̄)− L(f∗)) + 4N‖f∗‖2)

× (
16N2 log2(N/δ)

(λ1 + Λλ2)2m2
0ε

2
+

16

(λ1 + Λλ2)2

(
8C4C

2
1

m0
+ 4C2

1 + 2Λ2C3

)
)

+
2

λ1
(L(0̄)− L(f∗)))

= O(
N3 log2(N/δ)

m2m2
0ε

2ε20
) +O(

N3 log2(N/δ)

mm2
0ε

2
0

) +O(
N3 log2(N/δ)

m2
0ε

2
0

)

+O(
N

m2ε2
) +O(

N

m0m2ε2
) +O(

N

mm0
) +O(

N

m
) +O(

N

m0
) +O(N)

+
4

λ1
(L(0̄)− L(f∗)). (4.30)

where we use ε0 as the privacy parameter at the aggregation site.

Proof. Replacing Atrans by Atranspp and ωmin by ωpriv, we substitute Lemmas 4.11, 4.13

and 4.15, into decomposition (4.24) and get the result.

It is worth noting that we assume that the variables like parameters ε, m and Λ and

functions R(·) are the same at all sites. The main results in this chapter can be easily

generalized when these variables are different from site to site due to their own choice.

Note that l(·, ·) should be the same at all sites since we want to approach the same

f∗. Also, if we replace the loss function and regularization term in Theorem 4.12, 4.14

and 4.16 with specific choice such as logistic regression loss and huber loss, we will get

more useful bounds. For convenience, these variables we test in Chapter 5 are the same

at all sites unless otherwise specified.

Also, it is necessary to explain why we use the MSE of output classifier and f∗ as

the measurement of the performance of whole system’s output classifier. Chaudhuri

et al. [78] use L(f) to measure the performance of output classifier f , where L is the

expected loss (see Page x). This is reasonable since data point do not come from testing

set but from its distribution and any output classifier is evaluated under this real-world

case. The disadvantage of this is that we can never use L(f) as y-axis in plotting

since we don’t know data distribution P, which make the theoretical results not that

intuitive. Kifer et al. [80] use JR(f,D) as the measurement. JR(f,D) can be used as

y-axis in plotting but it costs a lot to calculate it. Using MSE can be both intuitive

and easy-to-calculate. According to our definition of misclassification error rate 5.1,
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1
k

∑
k I0(fxjyj < 0) ≈ − 1

k

∑
k fxjyj ≈ −Edata [fxy] can be used as a measurement

of generalized error rate. In other words, Edata [f∗xy − fxy] is also a good choice,

where (x,y) is a data-label pair draw from P. Apparently we have Edata [f∗xy − fxy] ≤
Edata [‖f − f∗‖‖xy‖] ≤ aEdata [‖f − f∗‖] for constant a if data is bounded. If we plot

fxy as y-axis then we have Edata [fxy] ≤ a
√

Edata [‖f − f∗‖2] + b. We can see that the

value of 1
k

∑
k I0(fxjyj < 0) is “consistent” with the value of Edata

[
‖f − f∗‖2

]
. So the

plotting reflects the error rate directly and fxy is very easy to calculate.

Now we have three Theorems 4.12 4.14 4.16 to describe the behavior of the feature

method under different privacy conditions. In Chapter 5 we will conduct series of ex-

periments to test the parameters in them.



Chapter 5

Comparison of two methods

In this chapter, we conduct some experiments to validate of our theoretical analysis

in chapter 4 and the advantages of the distributed learning model w.r.t the local and

global models. We illustrate different trade-offs to provide some intuitions about when

distributed learning is feasible.

We provide a series of experiments under several privacy conditions to illustrate the

average method and the feature method. These experiments correspond to the three

theorems in chapter 4. We will analyze them and draw some important conclusions

about the performance of feature method compare with the average method.

In the last section we will conduct experiments to show that by using differentially private

classifiers learned from multiple local sites, an aggregation site can learn a classifier that

significantly outperforms classifiers learned from a single local site. This illustrates

the benefit of differential privacy: it enables sharing data derivatives, and incentivizes

sharing access to data that can improve overall accuracy.

In this chapter we mainly use six parameters. We test the effect of parameter ε (privacy

parameter), m (number of data points in one local site), m0 (number of data points in

the aggregation site) and N (number of local sites) while fixing other parameters. Also

h denotes Huber constant and Λ denotes regularization parameter.

We use misclassification error rate to measure performance in our experiments. For any

linear classifier f and a data point (xj , yj), we denote misclassification error (empirical

error) by ej and define it as:

ej =

{
1 if yjf

Txj < 0

0 if yjf
Txj ≥ 0.

55



56

Then we define the error rate as:

error rate =
1

k

∑
k

ej . (5.1)

if we have totally k data points in testing set.

From now on, we denote e(ε,N,m,m0, h,Λ) to be the error rate and the parameters

that are associated with it. Also, we use subscripts eAvg,None , eAvg,Loc , eAvg,Agg , eAvg,Full

as error rate of the average method without privacy, with privacy only at the local

sites, with privacy only at the aggregation site and with privacy at both local and

aggregation sites. With same meaning, eFeat,None , eFeat,Loc , eFeat,Agg , eFeat,Full are the

corresponding subscripts for the feature method. In the following description, we will

use the combination of these notations to denote the meaning.

5.1 Trade-offs in distributed system

There are several interesting trade-offs in distributed learning. Through these trade-offs

we can see how the performance of distributed learning changes w.r.t some important

factors.

5.1.1 Privacy vs. accuracy in one local site

How does the error e vary with as the privacy level ε changes in a single

local site? Fix the number of sites N , number of training points m per local site,

number of points m0 at the aggregation site, and parameters h and Λ from the ERM

algorithm. We set the first local site in our system as an “auxiliary site.” The auxiliary

site has a privacy parameter ε′ and the remaining N − 1 sites have privacy parameter

ε. The system is shown in Figure 5.1. We consider two scenarios: one where the N − 1

sites do non-private training (ε = ∞) and the other one where they do differentially

private training (ε = 2). This two experiments represent practical situations because

in reality each local institute that provides data can decide its own level of privacy

independently. Also, the first case can be seen as a base experiment in which no privacy

is provided at local sites other than the test site. Our goal is to understand how the

auxiliary site’s different privacy requirement ε′ affects the performance of the average

and feature method. We compare the average method with feature method under non-

private training by plotting eAvg,None and eFeat,None in Figure 5.2 as a function of ε′.

Similarly, we show eAvg,Loc and eFeat,Loc in Figure 5.3. The results shown in these two

figures indicate that even changing the privacy level ε0 at a single site (auxiliary site
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here) can have a significant effect on the final performance. The reasons are two-fold:

firstly the noise we add on local sites (other than the test site) is low. Secondly, both

the average and the feature methods combine the classifiers from local sites so that even

a small change will significantly affect the result. This indicates that when the overall

performance is poor, we should discard some classifiers or reduce their weight artificially.

From these two figures we can see that the feature method works better than the average

method. This is because the feature method weighs each classifier from the local sites

using extra data by non-private ERM, rather than setting the importance of each local

classifier equally. However, it can be seen that this benefit only holds under certain

conditions, rather than being universally true. Another interesting phenomena that can

be seen when comparing these two figures is that the feature method is stabler when no

noise is added at local site other than the test site. This is because we add extra noise

on the second case, which make the error rate higher. Also, when all the classifiers from

local sites other than the test set are good (non-private), a change in performance of the

test site affects the overall result little. So the first case is stabler.

Figure 5.1: Privacy vs. accuracy in one local site

5.1.2 Number of data points in one local site vs. accuracy

How does the error e vary with as the number of data points m changes in

one local site? Fix the number of sites N , privacy parameter ε per local site, number of

points m0 at the aggregation site, and parameters h and Λ from the ERM algorithm. We

set the number of data points in auxiliary site as m′ and the remaining N − 1 sites have

m data points in each site. The system is shown in Figure 5.1. We also consider the cases

where either all N local sites do non-private training or differentially private training.
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Figure 5.2: Private in auxiliary site, e(ε′, ε = ∞, N = 10,m = 789,m0 = 789, h =
0.5,Λ = 0.01) vs ε′ using ’37’ in MNIST dataset, ε′ is from 0.025 to 0.5 with step 0.025,

run the whole system 10 times for fixed ε′ and plot with error bar.

Figure 5.3: Private in all sites, e(ε′, ε = 2, N = 10,m = 789,m0 = 789, h = 0.5,Λ =
0.01) vs ε′ using ’37’ in MNIST dataset, ε′ is from 0.025 to 0.5 with step 0.025, run the

whole system 10 times for fixed ε′ and plot with error bar.
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Figure 5.4: All non-private, e(ε =∞, N = 10,m = 413,m0 = 413, h = 0.5,Λ = 0.01)
vs m′ using ’37’ in MNIST dataset, m′ is from 413 to 4546 with step 413, run the whole

system 10 times for fixed m′ and plot with error bar.

This two experiments represent the situations in reality where each local institute that

provides data independently. Our goal is to understand how the auxiliary site’s different

amount of data points m′ affects the performance of the average and feature method. We

compare the average and feature method under non-private training by plotting eAvg,None

and eFeat,None in Figure 5.4 as a function of m′. Similarly, we show eAvg,Loc and eFeat,Loc

in Figure 5.5. From the results in Figure 5.4 and Figure 5.5, we conclude that when we

increase the data from one local site (or any local site), we enjoy a better performance.

We can see that the performance in Figure 5.4 is much better than that in Figure 5.5 due

to the effect of noise on local sites. Also it is interesting to see that in both experiments

the feature method is stabler than average method. This is because the feature method

uses data in aggregation site to adjust the weight of classifier of each local site when the

classifier changes. This makes the system “react” to the changes of parameters. But

the average method can not achieve this goal. Note that the performance of the feature

method becomes better than the average method in Figure 5.5. This phenomenen can

also be explained by the mechanism of the feature method. This experiment stimulates

the situation in reality that different sites have different numbers of data points. But we

cannot get as much data as we need and balancing the number of points in each site and

the number of sites, is important, too. As a base experiment, these two results (together

with last two experiments) show that the distributed system behaves the same as a single

site (comparing with experiments in Chapter 3), as long as we test one parameter at one

time. The phenomenon is also demonstrated in many other studies [54, 76, 106, 107]

with different convergence rates.
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Figure 5.5: Private in all sites, e(ε = 2, N = 10,m = 413,m0 = 413, h = 0.5,Λ =
0.01) vs m′ using ’37’ in MNIST dataset, m′ is from 413 to 4546 with step 413, run the

whole system 10 times for fixed m′ and plot with error bar.

5.2 Feature method vs average method: experiments

In this section, we will compare the average method with the feature method by exper-

iments on real data. In each experiment, we first provide the situation the experiment

describe. Then we set the goal and information of experiment. We give analysis of each

figure and show how they demonstrate the previous theoretical results (Theorem 4.12

4.14 and 4.16 in Chapter 4) and our intuitions. Then we compare the two methods.

Also, we compare the results with results in previous subsections and do some analysis

on interesting phenomena and differences among data sets. Finally, we give conclusions

of this experiment.

5.2.1 Experiment I: non-private case

How average method and feature method perform when there is no privacy

concern? Fix the number of sites N , number of training points m per local site,

number of points m0 at the aggregation site, and parameters h and Λ from the ERM

algorithm. Our goal is to show the performance of the average method and the feature

method under non-private case. We compare them by plotting histogram in Figure 5.6

to Figure 5.9. The regularization constant here is chosen by a 5-fold cross validation. It

can be seen from these two histograms that when all the parameters are fixed, feature

method performs better than the average method, especially when using Covertype
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data set. Also, they have similar distribution. It is not surprising that this happens

because given the same local classifiers, feature method has the ability to choose the

weight of each local classifier adaptively according to the aggregation site and output a

combination of them. This is generally better than treat each local classifier the same.

But this also requires a good aggregation site. So it is possible that the results of two

methods are close to each other. Therefore, we conclude that under the condition of

non-differentially private distributed system1, when parameters are all the same, we

prefer feature method to perform distributed learning.

How does the error e vary with as the number of data points m changes

at each local site?The goal of this experiment is to understand how the number of

training points m of each data provider affects the performance of the average and

feature method. We plot eAvg,None and eFeat,None in Figure 5.10 and 5.11 as a function of

m. Theorem 1 in Zhang et al. [88] and Theorem 4.12 indicate that increasing2 data at

local site(s) will decrease the MSE between the output classifier and f∗ in both methods.

We therefore conclude that MSE is decreasing when we add data on local sites.

How does the error rate e vary with as the number of data points m0 changes

at the aggregation site? Our goal is to understand how the number of data points

in the aggregation site m0 affects the performance of the average and feature method.

We compare the average and feature method under non-private training by plotting

eAvg,None and eFeat,None in Figure 5.12 and Figure 5.13 as a function of m0. The results

demonstrate the analysis in Theorem 4.12 that when number of data points increase at

the aggregation site, MSE gets smaller (hence error rate goes down). The results show

that the feature method performs much better than the average method when we have

a large aggregation data set (This phenomena is especially clear when using Covertype

data set). This phenomena shows the advantage of feature method: it uses extra data

to improve the result. So we have the conclusion that the MSE decreases when we add

data on the aggregation site and we should consider using the feature method when

there is a large aggregation data set.

How does the error e vary with as the number of local sites N changes?Our

goal is to understand how the number of data providers N affects the performance of

the average and feature method. We compare the average and feature method under

non-private training by plotting eAvg,None and eFeat,None in Figure 5.14 and Figure 5.15

as a function of N . Theorem 1 in Zhang et al. [88] indicates that the average method

performs better when number of local sites increase, which is shown in these two figures.

Theorem 4.12 shows that the feature method gets worse when number of local sites

1This condition holds for all experiments in this section
2When tuning one parameter, we always assume that other parameters are fixed unless otherwise

specified, similarly hereinafter.
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Figure 5.6: e(ε = ∞, N = 10,m =
789, h = 0.5,Λ = 0.01), run the whole
system 360 times and plot the his-

togram.

0.025 0.030 0.035 0.040 0.045 0.050
Misclassification error rate

0

10

20

30

40

50

60

70

80

90

Fr
e
q
u
e
n
cy

Feature method using MNIST data set

Figure 5.7: e(ε = ∞, N = 10,m =
789,m0 = 789, h = 0.5,Λ = 0.01), run
the whole system 360 times and plot

the histogram.

increase, which directly contradicts our intuition that whenever the total number of

training data points increases, we get a better result. But it can be seen from these two

figures that the error rate of the feature method decreases before increasing, which can

not be explained by Theorem 4.12. An explanation of this phenomenon is that when

the number of local sites is small, increasing the number of local sites is equivalent to

adding the dimension of span{fi} (see Definition 4.2), which means that the ‖f∗span−f∗‖
decrease w.h.p. Since we have the decomposition E[‖foutput − f∗span‖2] ≤ 2(E[‖foutput −
f∗span‖2]+E[‖f∗span−f∗‖2]), we may guess that overall performance will get better. When

the number of local sites increases, f∗ ∈ span{fi} almost certainly. (hence f∗ = f∗span)

and adding more classifiers (local sites) will be useless and thus becomes a burden to

system. At this time, the model fits Theorem 4.12 and error rate goes up. Also, notice

that the fluctuations in the figures indicate that even if the dimension of span{fi} is

high, f∗ ∈ span{fi} does not necessarily hold because of the randomness that comes

from data redistribution. This tells us that we must choose suitable N so that in real

world cases the error rate is small enough and in other experiments N won’t become

a factor that separate the average method and the feature method. We conclude here

that when we increase the number of local sites, the MSE decreases when we use the

average method but displace a local minimum when we use the feature method.

5.2.2 Experiment II: private at local sites

Our next series of experiments focuses on the affect of privacy effect at local sites. Here

we use the objective perturbation (Algorithm 2) at all local sites.

How does the privacy parameter ε at local sites affect the performance?

Our goal is to understand how ε affects the performance of the average and feature

method by tuning ε at each local site simultaneously. We compare the average method
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Figure 5.8: e(ε = ∞, N = 10,m =
2411, h = 0.5,Λ = 0.00001), run the
whole system 200 times and plot the

histogram.
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Figure 5.9: e(ε = ∞, N = 10,m =
2411,m0 = 2411, h = 0.5,Λ =
0.00001), run the whole system 200

times and plot the histogram.
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Figure 5.10: e(m, ε = ∞, N =
10,m0 = 789, h = 0.5,Λ = 0.01) vs m,
m is from 39 to 789 with step 39, run
the whole system 10 times for fixed m

and plot with error bar.
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Figure 5.11: e(m, ε = ∞, N =
10,m0 = 2411, h = 0.5,Λ = 10−5) vs
m, m is from 1085 to 2410 with step
120, run the whole system 10 times for

fixed m and plot with error bar.
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Figure 5.12: e(m0, ε = ∞, N =
10,m = 789, h = 0.5,Λ = 0.01) vs m0,
m0 is from 79 to 789 with step 79, run
the whole system 10 times for fixed m0

and plot with error bar.
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Figure 5.13: e(m0, ε = ∞, N =
10,m = 31509, h = 0.5,Λ = 10−6) vs
m0, m0 is from 3151 to 31509 with step
3151, run the whole system 10 times for

fixed m0 and plot with error bar.
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Figure 5.14: e(N, ε = ∞,m =
170,m0 = 170, h = 0.5,Λ = 0.01) vs
N , N is from 2 to 50 with step 1, run
the whole system 100 times for fixed N

and plot with error bar.
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Figure 5.15: e(N, ε = ∞,m =
6796,m0 = 6796, h = 0.5,Λ = 10−6) vs
N , N is from 2 to 50 with step 1, run
the whole system 50 times for fixed N

and plot with error bar.

with feature method by plotting eAvg,Loc and eFeat,Loc in Figure 5.16 and5.17. These two

figures fit our intuition and results in Chapter 3, where we use single data set and found

that the performance became better and variance became smaller when we increased ε.

Also, it shows an important character of the feature method under differential privacy:

the feature method is less affected by noise than the average method. In these two

experiments the randomness comes from noise instead of data redistribution3. Now we

give an explanation of this phenomenon. From Theorem 4.14 we can see that the term

O( N
m2ε2

) + O( N
m0m2ε2

) that contains ε, which related with privacy, are relative small

comparing with other terms due to the m and m0 terms in dominator. So changing ε

at local sites has little effect on the performance. But the average method uses each

classifier from local sites more directly than the feature method, without the help of

the aggregation site. The overall result is directly related with performance of each

classifier. From Theorem 3.4 and Figure 3.1, increasing ε will raise performance. Thus,

the average method gets better when we decrease the privacy risk at each local site. So

our conclusion for this experiment is that for both method, increasing ε makes the final

performance better and the feature method performs better than the average method

and less affected by noise than the average method.

The next three experiments are the same as last three experiments in last section but

now we limit privacy concern at local sites.

Our goal of this experiment is to understand how the number of data points in each

local site m affects the performance of the average and feature method. We compare

the average method with feature method by plotting eAvg,Loc and eFeat,Loc in Figure 5.18

and 5.19 as a function of m. The results demonstrate the theoretical prediction in

Theorem 4.14 that increasing the number of data points at local sites will decrease the

3Note that in theoretical analysis in Chapter 4, the randomness comes from both noise and data
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Figure 5.16: e(ε,N = 10,m =
789,m0 = 789, h = 0.5,Λ = 0.01) vs ε,
ε is from 0.025 to 0.25 with step 0.025,
run the whole system 10 times for fixed

ε and plot with error bar.
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Figure 5.17: e(ε,N = 10,m =
42762,m0 = 42762, h = 0.5,Λ =
0.0000001) vs ε, ε is from 0.025 to 0.25
with step 0.025, run the whole system
10 times for fixed ε and plot with error

bar.

error rate. From these two figures we can see that feature method is more stable than

the average method. Notice that they perform worse than the previous two results in

Figure 5.10 and Figure 5.11 due to noise added at local sites (noise terms).

We want to understand how the number of data points at the aggregation site m0 affects

the performance of the average and feature method. We compare the average method

with feature method under public-private training by plotting eAvg,Loc and eFeat,Loc in

Figure 5.20 and 5.21 as a function of m0. Our results and conclusions here are the same

as the experiments corresponding to Figure 5.12 and Figure 5.13 except for the effect of

the noise, which make performance worse. Notice that adding noise or not and changing

data points at the aggregation (or local) site(s) work independently of each other, so

the figures keep the general trend as previous ones. So the conclusion here is that under

public-private case, system’s performance get better when size of data at the aggregation

site enlarge.

We want to understand how the number of local sites N affects the performance of the

average and feature method. We compare the average method with feature method

under public-private training by plotting eAvg,Loc and eFeat,Loc in Figure 5.22 and 5.3 as

a function of N . These two figures show that the error of the average method decreases

little and it performs worse than the previous results in Figure 5.14 and Figure 5.15.

This is due to the effect of noise. Also, the average method performs worse than the

feature method. This is because the average method is more sensitive to the noise than

the feature method. The feature method performs better when N increases.
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Figure 5.18: e(m, ε = 0.1, N =
10,m0 = 789, h = 0.5,Λ = 0.01) vs m,
m is from 39 to 789 with step 39, run
the whole system 10 times for fixed m

and plot with error bar.
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Figure 5.19: e(m, ε = 0.1, N =
10,m0 = 31509, h = 0.5,Λ =
0.0000001) vs m, m is from 3151 to
31509 with step 1576, run the whole
system 10 times for fixed m and plot

with error bar.
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Figure 5.20: e(m0, ε = 0.1, N =
10,m = 789, h = 0.5,Λ = 0.01) vs m0,
m0 is from 79 to 789 with step 79, run
the whole system 10 times for fixed m0

and plot with error bar.
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Figure 5.21: e(m0, ε = 0.1, N =
10,m = 31509, h = 0.5,Λ =
0.0000001) vs m0, m0 is from 3151 to
31509 with step 3151, run the whole
system 10 times for fixed m0 and plot

with error bar.
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Figure 5.22: e(N, ε = 0.1,m =
170,m0 = 170, h = 0.5,Λ = 0.01) vs
N , N is from 2 to 50, run the whole
system 50 times for fixed N and plot

with error bar.
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Figure 5.23: e(N, ε = 0.1,m =
9223,m0 = 9223, h = 0.5,Λ =
0.0000001) vs N , N is from 2 to 50, run
the whole system 50 times for fixed N

and plot with error bar.



67

5.2.3 Experiment III: all-private case

Now we redo the four experiments in section 5.2.2 but this time we add a fully-private

feature method and compare with the public-private case.

Our goal here is to understand how the local sites and the aggregation site privacy re-

quirement ε affects the performance of the average and feature method. We compare the

average method with feature method under fully-private training by plotting eAvg,Loc ,

eFeat,Loc and eFeat,Full in Figure 5.24 and Figure 5.25 as a function of ε. Not surpris-

ingly, all the results get better when ε increases, which is similar to previous results

(Figure 5.16, 5.17). We can see that the fully-private feature method (green line) per-

forms worse than the public-private feature method (red line). This demonstrates the

difference of Theorem 4.14 and Theorem 4.16. Also, the fully-private feature method is

better than the average method. This shows that the effect of extra aggregation site is

much larger than the noise at it. So we may conclude here that feature method with

non-private aggregation site is the best choice in real world distributed learning system.

In this experiment we want to understand how the number of data points at each local

site m affects the performance of the average and feature method. We compare the

average method with feature method under fully-private training by plotting eAvg,Loc ,

eFeat,Loc and eFeat,Full in Figure 5.26 and Figure 5.27 as a function of m. It can be see

that the average method performs better as the number of data points increases and the

feature method seems unaffected by this. This phenomenon can be explained with the

help of Theorem 4.14 and Theorem 4.16. We may guess, although we can not prove it

directly since we know nothing about f∗, that the terms contain m change little due to

their small value. Also notice that the feature method with privacy at the aggregation

site performs worse than the feature method without privacy: this has already been

explained in the last paragraph. So our conclusion here is also the same as the last

paragraph.

Our goal is of this experiment to understand how the number of points m0 affects the

performance of the average and feature method. We compare the average method with

feature method under fully-private training by plotting eAvg,Loc , eFeat,Loc and eFeat,Full

in Figure 5.28 and Figure 5.29 as a function of m0. These two figures demonstrate

the theoretical results in Theorem 4.14 and Theorem 4.16 that adding data points at

the aggregation site makes the performance better. This is especially significant for the

fully-private feature method. The fully-private feature method performs the worst in

this experiment due to the reason that it both have noise added at local sites and at

the aggregation site. Both the average method and the public-private feature method

fluctuate significantly due to the noise.
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Figure 5.24: e(ε,N = 10,m =
789,m0 = 789, h = 0.5,Λ = 0.01) vs ε,
ε is from 0.025 to 0.75 with step 0.025,
run the whole system 10 times for fixed

ε and plot with error bar.
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Figure 5.25: e(ε,N = 10,m =
31509,m0 = 31509, h = 0.5,Λ =
0.0000001) vs ε, ε is from 0.025 to 0.5
with step 0.025, run the whole system
10 times for fixed ε and plot with error

bar.
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Figure 5.26: e(m, ε = 0.1, N =
10,m0 = 789, h = 0.5,Λ = 0.01) vs m,
m is from 39 to 789 with step 39, run
the whole system 10 times for fixed m

and plot with error bar.
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Figure 5.27: e(m, ε = 0.1, N =
10,m0 = 31509, h = 0.5,Λ =
0.0000001) vs m, m is from 3151 to
31509 with step 1576, run the whole
system 10 times for fixed m and plot

with error bar.

Finally we want to understand how the number of local site N affects the performance of

the average and feature method. We compare the average method with feature method

under fully-private training by plotting eAvg,Loc , eFeat,Loc and eFeat,Full in Figure 5.30 N .

From this figure we can see that the error rate of two methods become better when N

increase, which match our theoretical results in Chapter 4.

5.3 Three models

In this section we focus our attention on the comparisons among local model, global

model and distributed model that we mentioned in section 4.2.
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Figure 5.28: e(m0, ε = 0.1, N =
10,m = 789, h = 0.5,Λ = 0.01) vs m0,
m0 is from 79 to 789 with step 79, run
the whole system 50 times for fixed m0

and plot with error bar.

Figure 5.29: Private in both,
e(m0, ε = 0.1, N = 10,m = 31509, h =
0.5,Λ = 0.0000001) vs m0 using cover
type 1 and 2 in Covertype data set, m0

is from 3151 to 31509 with step 3151,
run the whole system 10 times for fixed

m0 and plot with error bar.
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Figure 5.30: e(N, ε = 0.1,m0 = 170,m = 170, h = 0.5,Λ = 0.01) vs N , N is from 2
to 50, run the whole system 50 times for fixed N and plot with error bar.

How the three models perform when changing ε ? In this series of experiments,

we are ready to demonstrate our claim that distributed model indeed provides us with

more benefit than local model and global model. Our experiments are to compare these

three models in two cases: all non-private case and fully-private case (see Chapter 4).

Here we use “l1” to “l10” to represent 10 local sites (local model) and “G” for global

model, “F” for the feature method and “A” for the average method (distributed model).

The result of all non-private case is given in Figures 5.41. The results of fully-private

case are shown from Figure 5.31 to Figure 5.40.

Despite of the decreasing error rate of all models due to increasing in ε, there are some

other interesting phenomena that we can find from these figures. We can see that global

model and distributed performs better than local model in general. This is due to the

lack of data in local model. Next, as ε increasing, the local model changes the fastest, its

error rate changes 36% and the global model changes the slowest, about 2%. This is due
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Figure 5.31: Comparison among
models (private), ε = 0.1
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Figure 5.32: Comparison among
models (private), ε = 0.2
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Figure 5.33: Comparison among
models (private), ε = 0.3
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Figure 5.34: Comparison among
models (private), ε = 0.4

to the reason that the norm of noise vector draw from gamma distribution and its shape

parameter θ ∝ 1
ndataε

. Hence for a smaller mount of data ndata, same change in ε makes

larger change in shape parameter and hence makes the shape of gamma distribution

change faster4. It can be seen that the distributed model has higher error rate than

global model at start. As ε increases, the distributed model (both the average method

and the feature method) performs closer to global model and finally better than it. This

tells us that when system needs a low level of privacy (small ε), distributed model is

definitely our best choice.

4For a random variable X draw from gamma distribution f(x;α, β), E(X) = αβ ,V(X) = αβ2
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Figure 5.35: Comparison among
models (private), ε = 0.5
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Figure 5.36: Comparison among
models (private), ε = 0.6
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Figure 5.37: Comparison among
models (private), ε = 0.7
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Figure 5.38: Comparison among
models (private), ε = 0.8
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Figure 5.39: Comparison among
models (private), ε = 0.9
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Figure 5.40: Comparison among
models (private), ε = 1.0
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Figure 5.41: Comparison among models (non-private)



Chapter 6

Conclusion and Future work

6.1 Conclusion

Previously in Chapter 4 and 5 we discussed the average method and the feature method.

We summarize our research results in Table 6.1 to give a brief review.

Table 6.1: Feature method vs average
HH

HHH
HHH

PC

P
ε m m0 N

All non-private A > F A(↓) ≈ F (↓) A > F (↓) A(↓) ≈ F (↓) then

A(↓) < F (“s”))

Public-private A(↓) > F (“s”) A(↓) > F (“s”) A > F (↓) A(↓) > F (↓)
Fully-private A(↓) > F (“s”) A(↓) > F (“s”) A > F (↓) A > F

Where PC is for privacy conditions and P is for parameters, “A” is for the average

method and “F” is for the feature method. Error rate has been compared here and we

also use arrows and “s” (stable) to indicate the general trends of curves.

Under all non-private case, the feature method has small advantages over the average

method. Experiments suggest that when we add more data at aggregation site, the

feature method outperforms the average method. We have to be careful when using

the feature method when N is large since the performance gets worse. In public-private

case, the feature method is more stable and can take advantage of extra data points

at the aggregation site to reduce the effect of noise. In fully private case, we find that

the curves are the same as in the public-private case. The most relevant scenario for

applications is where the privacy constraint is at the local sites. In this case the feature

method is superior: it achieves a favorable trade-off between accuracy and privacy risk.

So we are very confident to say here that the feature method is better than the traditional

average method.
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6.2 Future work

In the last section of this thesis, we provide some guidelines for future work based on our

investigations. Previously we discussed differentially private ERM and feature aggrega-

tion methods for binary classification problems. From the theoretical and experimental

results in Chapter 3 to 5 we can see that they perform pretty well and easy to implement.

But we also noticed that there are some disadvantages of these two algorithms. In this

section we provide possible solutions to these problems.

6.2.1 Improved differential private ERM algorithm using random ma-

trix

Chaudhuri et al. [78] design two delicate differential private ERM algorithms and give

original ideas on how to bound probability quotient. Kifer et al. [80] improve this result

by introducing extra regularization term, assumptions and different noise distribution.

The algorithms in Chapter 3 give us the hint that one way to look at differential private

ERM algorithm is to use a noise matrix, which is shown below:

J(f,D) =
1

n

n∑
i=1

l(fTxi, yi) + ΛfTMf, (6.1)

where M is a d× d real, p.d. and symmetric random matrix.

We call this method the “matrix perturbation”. Here we construct a noise matrix so

that it both have function of privacy and regularization. It is easy to see that the

diagonal terms of matrix M have the effect of regularization. The difference comparing

with algorithms in Chaudhuri et al. [78] and Kifer et al. [80] is that the regularization

parameter is random (due to noise) and different in different coordinate. We should pay

attention to the noise distribution that the matrix draw from since intuitively, a random

matrix introduce more noise than a random vector. For reference of random matrix,

Terence Tao’s book “Topics in random matrix theory” [108] is worth reading. Also, we

can gain some insight into it from Pathak et al. [35], where we have to pay attention to

how to draw the noise distribution and the norm of matrix.

A possible way of considering matrix perturbation is simply draw the diagonal of M i.i.d

according to some distribution on R+1 and set all off-diagonal components to 0, where

we need to make sure that all diagonal components are positive so that matrix is p.d..

In this case we have a regularization term with random weight:
∑
i

diagi(M)f2
i , which

have the effect of both regularization and privacy preservation. So we use one term to

meet two requirements, which may make things better. One thing need our attention is

1distribution like exponential distribution whose domain is non-negative
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that we must find a bijection between the output vector (classifier) f and noise vector

(the diagonal of noise matrix here) so that we can transform P (f |D)
P (f |D′) and bound it.

6.2.2 Improved feature method

The feature method is a different approach to distributed learning that uses data at the

aggregation site to let the data “speak” by learning weights for the local classifiers. We

believe there are several interesting future directions.

The first improvement of feature method is to make the best classifier f∗span equal to

the global optimal classifier f∗, in other words, f∗ ∈ span{fi}. One way to do this is

to borrow data from N local sites where N � d, and pick d best independent local

classifiers before conducting the learning procedure in the aggregation site. Although

this method guarantee f∗span = f∗ and leave the ’useful’ classifiers, we need further

rigorous proof to show that this ’pick out’ procedure indeed bring us more benefit.

The second improvement may be adding more levels of learning. More specifically, we

can use the feature method in the following way:

Figure 6.1: Multilevel feature method, red rectangular for the local site and blue one
for the aggregation site

As we can see from Chapter 4, more levels of learning means faster rate since the number

of data points in each learning level acts in a multiplicative way. Take the content in

yellow square in Figure 6.1 as an example. In each triangle, we use the original feature

method 5 and output the combined classifier f∑2. We gathered these outputs, combine

with aggregation site in next learning level (the second learning level in Figure 6.1) and

2Note that here we output f∑ ∈ Rd rather than the weighted parameter ωmin ∈ RN
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use the feature method to output combined classifier f∑. Then we do the same thing for

all triangles and in all levels. In what situation should we use this multilevel method?

The answer is that when the public-accessible data in aggregation site is gathered in

real-time and is very big. Another situation is when the communication links between

levels are bad and the data can’t stand too much loss in transmission. Using a multilevel

learning framework, all the computations are finished locally (strong local computation

ability) at aggregation site so that we can only transmit one classifier (each triangle)

instead of whole data set in the aggregation site. This framework may be applied in

research in meteorology, oceanography and geology.

The third improvement is to explore the number of local sites N . As we see in The-

orem 4.12, large N makes things worse, which is counter to the results in the average

method [88]. This can also be seen from experiments in Chapter 5. Intuitively, the

feature method prefers fewer good local classifiers over a large number of bad ones. We

haven’t figured out ways to move N from numerator to denominator in the bound (or

at least remove it from numerator). But what we can do is to control the number of

sites we borrow data from and do sufficient investigation and research on each data set

they provide.

The fourth improvement is to find a better way to deal with the covariance in Sec-

tion 4.21. This covariance part can be reduced since we didn’t give a further analysis of

two learning levels and bound it just by basic property of random variable.

The feature method can also be improved with the help of other machine learning meth-

ods. Ensemble learning methods such as bootstrap aggregating and boosting improve

the overall result by weighting. A comprehensive introduction to boosting is given

by Schapire and Freund’s book [102]. The feature method may also be analyzed in a

stochastic gradient descent way, which can be find in Shamir et al. [86].

There are many other ways to improve the feature method, including some technical

tricks. We can communicate between levels of learning to help reducing the constants.

We can choose suitable regularization term and loss function to get tighter bound. Notice

that in Lemma 4.11 we use the fact that ‖ · ‖ ≤ C → E [‖ · ‖]] ≤ C, where the bound

can be improve by some methods. We can add more assumptions about the property

of functions. Also, it is useful to find the exact relation between distribution of P
and distribution of f∗span. The only randomness of f∗span comes from span{fi} (see

Definition 4.3), whose randomness comes from fi, which are independently distributed.

The most challenging part here is to find the distribution of argmin(·). You may get

some inspirations from Habibi and Reza [109]. Then we are able to know the distribution

of fi and hence E span

[
f∗

popular topic in statistic and machine learning.

]
. Further more, the estimation of the data distribution P is a

Finally, if we want to look at the distributed learning procedure in a higher way, a

deeper knowledge and understanding of optimization theory, probability theory, modern
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analysis and high-dimensional geometry is necessary. Although linear classifier learned

from one local site represent the character of data in that site, we can get more features

and inner structures of a data set by analyze it geometrically. Also, PCA can be applied

to reveal the information that a data set contains. Papers related to distributed PCA

can be found in Liang et al. [110] and Qu et al. [111].



Appendix A

PCA and data preprocessing

PCA is a kind of dimension reduction strategy. It uses orthogonal transformation to

convert a set of points(vectors) which are possibly linearly correlated with each other

to a set of points which are linearly uncorrelated. The dimension of transformed data

points are less than or equal to original ones. Intuitively, PCA keep the useful informa-

tion of data and remove the redundancy. Also, PCA can be used for interpretation of

data, finding meaningful structure of data and for illustration purposes [6]. Some good

introductions of PCA are in Shlens and Jonathon [112], Smith and Lindsay I [113] and

Wold et al. [114]

After we load the data set, the first important step is to prepossess it. This step aims

at reducing the running time.

Take the MNIST handwrite digit data as an example. We re-range the data set into a

782× 11552 matrix. Here 782 is the dimension of original data (also we called measure-

ment type) and 11552 is the number of data points we have. Our goal is to reduce the

matrix to d × 11552, here d is the dimension that contains 90% of the information of

date’s shape.

Original datamatrix =


x1×1 x1×2 · · · x1×11552

x2×1 x2×2 · · · x2×11552

...
...

...

x784×1 x784×2 · · · x784×11552


→

Datamatrix after PCA =


y1×1 y1×2 · · · y1×11552

y2×1 y2×2

..

· · · y2×11552

. ...
...

yd×1 yd×2 · · · yd×11552


Basically we imagine the data are represented as a huge cloud in 3D space (even the

number of dimensions can be more than 3), what PCA does is to change the point of

77
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view to find the most significant gradients (shape or characters) of this ’data cloud’ and

extract them.

At first step, we compute the m-dimensional mean vector where m equals 784 here.

mean vector =

 ..

m1×1

m2×1

.

m784×1


where mk×1 = 1

11552

∑11552
i=1 xk×i

This step is to find the center of cloud.

At second step, subtract every column of the original data matrix by using mean vector.

At this step we move the coordinate to the center of the data cloud.

centered datamatrix =


x1×1 x1×2 · · · x1×11552

x2×1 x2×2 · · · x2×11552

...
...

...

x784×1 x784×2 · · · x784×11552

−meanmatrix

here the mean matrix is a matrix that has the same shape with original data matrix and

every column is a mean vector.

At third step, compute the covariance matrix using centered data matrix. The covari-

ance measures the degree of the linear relationship between two arbitrary points. A

large positive value indicates positively correlated data. Likewise, a large negative value

denotes negatively correlated data. The absolute magnitude of the covariance measures

the degree of redundancy. So the covariance matrix represents the point-wise relation

between data points. Let covm be the covariance matrix, covcm be the centered data

matrix be the we have: covm = 1
11552 covcm cov

T
cm. The ijth i, j = 1, · · · , 784element of

covm is the dot product between the vector of the ith measurement type and the vector

of the jth measurement type.

At fourth step, we compute eigenvectors and corresponding eigenvalues. At the last step,

covariance matrix captures the covariance between all possible pairs of measurements.

The covariance values reflect the noise and redundancy in our measurements. In the

diagonal terms, large values correspond to interesting structure. In the off-diagonal

terms large magnitudes correspond to high redundancy. The eigenvectors here are the

directions that shows the characters (shape) of data. We denote these eigenvector-

eigenvalue pairs as (veci − vali)
At fifth step, we sort and choos k eigenvectors with the largest eigenvalues. Since we

already got the eigenvalues, we discard least 10

At last step, we map the data onto the new subspace.



79

Data matrix after PCA = transpose of transform matrix * original data matrix =
y1×1 y1×2 · · · y1×11552

y2×1 y2×2

..

· · · y2×11552

. ...
...

yd×1 yd×2 · · · yd×11552


The mathematical proof of PCA can be found in Chapter 23 in Shalev-Shwartz, Shai

and Ben-David, Shai [6].



Appendix B

Definitions

We introduce some useful definitions and examples in this chapter.

Definition B.1. (Convex and strictly function) let F be a nonempty convex set in a

real vector space and let H(f) : F → R be a function. H(f) is convex if ∀f1, f2 ∈ F
and ∀t ∈ [0, 1], we have H(tf1 + (1 − t)f2) ≤ tH(f1) + (1 − t)H(f2). If for all f1 6= f2

and ∀t ∈ (0, 1) we have H(tf1 + (1 − t)f2) < tH(f1) + (1 − t)H(f2), then we say the

function is strictly convex. Another expression are f(y) ≥ (>)f(x) + 〈∇f(x), y − x〉 for

all x, y ∈ domain of f(·) (x 6= y ∈ domain of f(·)) .

Strictly convex function is useful because it can have unique global minimum. Suppose

there are two distinct local minimum points in the domain of H(f). We denote them

as f1 and f2. Assuming that H(f1) ≤ H(f2). Now using the definition of the strictly

convex function we have for ∀t ∈ (0, 1), H(tf1 + (1 − t)f2) < tH(f1) + (1 − t)H(f2) ≤
tH(f2) + (1 − t)H(f2) = H(f2). If we take t sufficiently small so that tf1 + (1 − t)f2

is near to f2. So there exists a neighborhood of f2 such that for any points x in this

neighborhood, H(x) < H(f2), and hence that H does not have a local minimum at

f2, a contradiction. We conclude that a strictly convex function has at most one local

minimum. Using similar idea we can conclude that if H(f) does have a local minimum

at f2 then it is also a global minimum at f2.

Note that convex function can have no minimum. For example function f(x) = e−x.

Examples 1. Logistic regression function f(x) = log(1 + ex) is often used in ERM.

Using second derivative test we have f(x)′′ = 1
(1+e−x)(1+ex)

≥ 0 and thus it is a convex

function.

Also, other loss functions like Huber loss and SVM loss are convex.

Definition B.2. (Strongly convex function 1) A continuous function f is strongly convex

over a convex set S w.r.t a norm ‖·‖ and with parameter λ if for all x, y ∈ S and t ∈ (0, 1),

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1
2λt(1− t)‖x− y‖

2
2.

80



81

Definition B.3. (Strongly convex function 2) Another useful definition of strongly con-

vex function is: A differentiable function f is strongly convex over a convex set S w.r.t

a norm ‖ · ‖ and with parameter λ if for all x, y ∈ S, f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
λ
2‖y − x‖

2. Or in other way, 〈∇f(x)−∇f(y)), (x− y)〉 ≥ λ‖y − x‖2.

Note that strongly convex function ⊂ strictly convex function ⊂ convex function.

Examples 2. Some times we use negative entropy
∑

i xi log xi as regularization term.

Lemma 8 in Shalev-Shwartz and Singer [115] mentioned that negative entropy is 1-

strongly convex w.r.t L1 norm.

Interestingly, in 1-dimensional case, x2 is strongly convex but x4 is not.

Definition B.4. (Lipschitz continuity) Given an open set S ⊆ Rd. A function f : Rd →
Rk is Λ-Lipschitz continuous on the open subset S if there exists a constant Λ ∈ R+

0

(called the Lipschitz constant of f on S) such that ‖f(x)− f(y)‖ ≤ Λ‖x− y‖, ∀x, y ∈ S.

Examples 3. Absolute value function |x| is 1-Lipschitz continuity over R. For ∀x, y,

we have:

|x| − |y| = |x− y + y| − |y|

≤ |x− y|+ |y| − |y|

= 1× |x− y|.

Definition B.5. (β-smooth) A differentiable function f : Rd → R is β-smooth if its

gradient is β-Lipschitz continuity. That is, for all x, y ∈ domain of f , we have ‖∇f(y)−
∇f(x)‖ ≤ β‖y − x‖. Another expression is: f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β

2 ‖y − x‖
2

Examples 4. The well known regularizer 1
2‖x‖

2 is both 1-smooth and 1-strongly convex.

f(w) = log(1 + e−y<w,x>) is ‖x‖
2

4 -smooth for x ∈ Rd and y = ±1

Definition B.6. (Laplace distribution and its property) A random variable has a Laplace

distribution if its probability density function is f(x|µ, b) = 1
2be
− |x−µ|

b , Here, µ is the

location parameter and b ≥ 0, which is the scale parameter. In our application we often

set µ = 0
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