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ABSTRACT OF THE DISSERTATION

Anomaly Detection and Predictive Analytics for Financial Risk Management

By ZHONGMOU LI

Dissertation Director: Dr. Hui Xiong

In the big data era, the digital revolution has driven the entire financial industry

to collect, store and analyze massive volumes of data nowadays than it ever has in

history. With the overwhelming scale of data, new technologies are needed to derive

competitive advantage and unlock the power of the data, including the approaches

people use for financial risk management.

In this dissertation, we study how advanced data mining techniques can play es-

sential roles in financial risk management. Specifically, we provide case studies to

apply data mining techniques in three application scenarios for financial risk man-

agement. The first study exploits a special type of fraudulent trading ring pattern

in the financial market, and defines the so-called blackhole and volcano patterns to

identify the fraud. A blackhole mining framework consisting of two pruning schemes

is developed. The first pruning scheme is to exploit the concept of combination dom-

inance to reduce the exponential growth search space. The second pruning scheme is

an approximate approach, which can strike a balance between the efficiency and the

completeness of blackhole mining.

The second study exploits the problem of contract risk management. In particular,

how IT service providers can leverage the experiences and lessons learnt from historical

contracts to prevent similar issues from reoccurring in the future, in order to mitigate
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the project risks, ensure smooth delivery and continuous profitability. Along this

line, we investigate how to predict potential risks for new contracts based on their

similarities with existing ones, and develop a new approach as an extension of the

Mahalanobis distance metric learning framework to solve the problem.

The third study examines the application of cluster analysis in bankruptcy pattern

learning and financial statement fraud detection. By leveraging the domain knowl-

edge in accounting area, valuable features from financial statement can be extracted.

Clustering technique is then applied to identify the clustering effect of bankrupt com-

panies in different business sectors. Finally, the most indicative financial features for

the bankrupt companies in the business sector can be uncovered from the hidden data

and validated by significant tests.
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CHAPTER 1

INTRODUCTION

Recent years have witnessed a paradigm shift in the financial industry as awareness

of the importance of data is becoming widespread. In the big data era, the digital

revolution has driven the entire financial industry to collect, store and analyze massive

volumes of data nowadays than it ever has in history. With the overwhelming scale

of data, new technologies are needed to derive competitive advantage and unlock the

power of the data, including the approaches people use for financial risk management.

Risk management in general is the process of identification, analysis and mitigation

of uncertainty for business decision making (Saunders, Cornett, & McGraw, 2006),

(Chapman & Ward, 1996), (McNeil, Frey, & Embrechts, 2015). It contains various

domains and application scenarios, e.g., credit risk - the risk of default on a debt;

market risk - the possibility of losses due to the movements in market prices; frauds

deliberately committed by human beings - trading fraud, financial statement fraud,

and insurance fraud; and project management risk - the potential failure factors in

project lifecycles, spread from the design, development, production, and sustainment

of a project. In this dissertation, the main focus is on financial risk management,

which means the violation of good behaviors in regards to financial losses.

Data mining is the process of automatically discovering useful information in large

data repositories (Tan, Steinbach, & Kumar, 2005). Data mining techniques are de-
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ployed to scour large databases in order to find novel and useful patterns that might

otherwise remain unknown. They also provide capabilities to predict the outcomes

of future observations. Data mining techniques have a wide range of applications, in-

cluding but not limited to finance, telecommunications, retail, healthcare, science and

engineering (Koh, Tan, et al., 2011), (Kovalerchuk & Vityaev, 2000), (Kohavi, Ma-

son, Parekh, & Zheng, 2004), (Han, Kamber, & Pei, 2011), (Sasisekharan, Seshadri,

& Weiss, 1996).

In this dissertation, we explore the problem of how advanced data mining tech-

niques can play essential roles in financial risk management in today’s data-intensive

business world. The focus is to develop effective and efficient data analysis techniques

to detect financial anomalies and mitigate potential risks. The key challenge is how to

address the unique characteristics of different data repositories and develop suitable

techniques to meet the specific needs of a particular business application. Specifi-

cally, we aim to provide case studies to apply advanced data mining techniques in the

following three applications, trading fraud detection, contract risk management, and

financial statement fraud detection.

1.1 Trading Fraud Detection

With the development of information technology, it is easy to collect and store massive

amount of data in financial service industry. One example is the High-Frequency

Trading (HFT) in the financial market (Chordia, Goyal, Lehmann, & Saar, 2013),

(Chlistalla, Speyer, Kaiser, & Mayer, 2011), (Gomber, Arndt, Lutat, & Uhle, 2011).

In the recent 15 years, people can use computer algorithms to trade securities on a
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rapid basis. Since the transaction time has been reduced to microseconds, there are

tens of thousands of trades per day for each account on average. Nowadays, HFT

accounts for 90% of trades in the U.S. financial market. The big data accumulated

has greatly changed the paradigm of the financial market, thus it also requires the

change of approaches people use to detect financial trading frauds.

One example of trading frauds was committed by Jerome Kerviel in 2008 (Clark,

October 5, 2010), who was a junior level trader at Bank Societe Generale, with a

loss at e4.9 billion. How could a junior level trader cause such a massive loss?

Investigation afterwards shows that Kerviel began creating fictitious trades starting

late 2006, and he had taken a e50 billion directional position of European stock

index futures at the beginning of 2008. When the bank closed out his positions after

the market experienced a large drop in equity indices, the losses attributed were

estimated at e4.9 billion ($7 billion). So how did a junior level trader managed

to bypass the internal control system to perform trading that were far beyond his

trading authority limit? It is showed that Kerviel created hundreds of thousands of

faked hedge trades, in order to hide his huge directional position. A pattern of his

movement was uncovered later, which consist of closing out trades within the three

day cycle to avoid trigger notice from the bank’s internal control system, and shifting

the older positions to newly initiated trades. This real-world example demonstrates

trading fraud should be identified at its early stage, otherwise it can result in huge

financial losses.

In this dissertation, we study a specific type of trading fraud in the financial

market, namely the trading ring pattern. Nowadays, government agencies, such as
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U.S. Securities and Exchange Commission (SEC), are facing increasing challenges for

trading fraud detection. Due to the tremendous number of trading accounts and

volume of transactions in the financial market, it is very hard for the system to

correlate trading behaviors across multiple accounts. This weakness opens the door

for cross-account collaborative fraud, which is difficult to discover, track and resolve

because the activities of the fraudsters usually appear to be normal. For instance,

consider a group of traders, who want to manipulate the price of a targeted stock for

a specific time period. In general, the manipulation consists of two stages. In the

first stage, these traders purchase a large volume of shares from public. During this

time period, their net volume of shares increase significantly. After the stock price

goes up to a certain degree, these traders start to sell off their shares to the public to

earn profit. In the second stage, a similar pattern with the opposite direction can be

observed. This kind of illegal trading activities is widely known as the trading ring

pattern.

The detection of trading ring pattern is of great value to regulators, since it can

help to reduce their workload by preliminarily filtering out a huge number of normal

patterns automatically, thus let them be more focused on the suspicious patterns

that may commit frauds. In addition, the detected trading ring patterns can provide

a view of the interactions among some accounts in the trading network, which can

help to detect the collaborative fraud activities for suspicious accounts with trading

volumes under the threshold of the system.
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1.2 Contract Risk Management

Major IT service providers typically manage a large portfolio of contracts with a

variety of customers. Due to the complexity of IT systems and the variety of cus-

tomer environment, service contracts that need to be fulfilled by the provider can

vary significantly. Despite such variances, the experiences of service providers have

shown that successful (or unsuccessful) contracts do share common characteristics,

and the root causes of many issues experienced in contract execution can be traced

back to the risks identifiable prior to contract signing. Therefore, to ensure smooth

delivery and continuous profitability, it is critical for service providers to leverage the

experiences and lessons learnt from the historical contracts to prevent similar issues

from reoccurring in the future.

Along this line, in this dissertation, we study the problem of identifying similar

contracts and predicting risks for new contracts to improve service provider’s ability

of risk management. The typical risk management process used by a service provider

is as follows. Once received the request for proposal from a potential customer, ser-

vice provider will conduct pre-bid consulting to draft a solution proposal. Then, as

the solution being proposed to the customer, risk managers of the provider will assess

both the technical and business aspects of the new contract, during which risks may

be identified and the corresponding risk mitigation steps conducted (through e.g.,

modification of solution, negotiation on service level agreements and price). This is

the phase during which risk managers look for similar risks that the provider has

experienced in historical contracts. The risk identification and mitigation steps will
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be iterated as the contract negotiation continues, until the final contract is agreed

upon and signed. After contract signing, the provider will conduct periodic project

management reviews, to identify and address issues in contract delivery. Tradition-

ally, the risk assessment method employed is largely qualitative, making it hard to

leverage the lessons learnt from historical contracts, and come up with adequate risk

mitigation recommendations. We argue that a more quantitative approach to pre-

dict the outcome of a contract, as well as its potential risks, is of great value to the

provider.

In literature, while there are existing works related to using predictive models

for contract risk management, many of them focus on different aspects in the risk

management lifecycle. For example, Mojsilovic et al. (Mojsilović, Ray, Lawrence,

& Takriti, 2007) use predictive models to estimate the likelihood of revenue ero-

sion in large outsourcing engagements, while Goo et al. (Goo, Kishore, Nam, Rao,

& Song, 2007) study factors that influence the duration of IT outsourcing relation-

ships. In addition, there are related studies on risk management in large and complex

projects (Leung, Rao Tummala, & Chuah, 1998), (Deleris, Katircioglu, Kapoor, Lam,

& Bagchi, 2007). Different from these studies, the focus in this dissertation is on the

unique problem of identifying similarity between historical and new contracts, and

using this information to predict risks for the latter.

1.3 Financial Statement Fraud Detection

Financial fraud detection is one of the most important aspects in financial risk man-

agement. In recent years, there is an increasing trend in financial losses due to finan-
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cial fraud and bankruptcy. However, traditional auditing process and risk analysis

could not match the increased demand of automatic and efficient detection of finan-

cial statement fraud. Hence, how to develop an efficient and effective financial fraud

detection framework draws the best interests among investors, public, researchers,

auditors and regulators. In general, the published financial statements are one of

the most pervasive and consistently available predictor of a companys future perfor-

mance, since they provide the basis for understanding and evaluating the financial

status of a company. However, fraudulent financial reporting can destroy the true pic-

ture of a companys financial situation. For example, by manipulating elements such

as liabilities, expenses, or losses in the financial statement, the unhealthy financial

status can be covered. Nowadays, financial statement fraud is one of the most notable

management frauds in the U.S. due to the large financial losses it yields. Therefore,

financial statement fraud detection becomes a crucial and pervasive issue in financial

risk management.

In literature, there have been numerous researches conducted in the area of fi-

nancial statement fraud detection. In accounting area, hundreds of financial indica-

tors which extract significant features from financial statement have been proposed

to build the predication model of high fraud-potential and high bankrupt-potential

firms (Altman, 1968), (Loebbecke, Eining, & Willingham, 1989). These indicators

are proposed based on empirical experience. On the other hand, in data mining

area, several groups of researchers have devoted a significant amount of effort in

using modern methods to study financial statement fraud detection from different

perspectives. Most of these works employed supervised learning techniques to solve
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classification tasks (Kirkos, Spathis, & Manolopoulos, 2007), (Apparao et al., 2009),

including neural network (Green & Choi, 1997), (Fanning & Cogger, 1998), (Lin,

Hwang, & Becker, 2003), (Thiprungsri & Vasarhelyi, 2011), and regression meth-

ods (Bell & Carcello, 2000), (Abbott, Parker, & Peters, 2002), (Spathis, 2002).

While these studies support the significance of classification techniques to analysis

financial statement, there has been little research in literature in the direction of

applying unsupervised learning techniques to analyze the financial statement data.

Moreover, majority of the existing researches only focus on a particular business

sector. For instance, bankruptcy predictions have been conducted in the railroad,

banking, brokerage, education, and insurance industries (Zmijewski, 1984).

In this dissertation, we would like to find the answer to an interesting question:

can we use financial statement information to identify which business sector has the

strongest clustering effect, such that the financial features we extracted from the

past bankrupt (financial unhealthy) companies in the business sector has the most

significant predictive power in the future? The question is not only useful for auditors,

but also important for investors. Investors can prevent potential losses by filtering

out firms with high potential bankruptcy risks based on the learnt characteristics.

Auditors can use the valuable features as an additional decision aid to monitor the

financial situation of the client firm.

1.4 Overview

The rest of the dissertation are organized as follows.

Chapter 2 study two special types of trading ring patterns, namely the blackhole
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and volcano patterns. Given a directed graph, a blackhole pattern is a group which

contains a set of nodes in a way such that the average in-weight of this group is

significantly larger than the average out-weight of the same group. In contrast, a

volcano pattern contains a set of nodes where the average out-weight is significantly

larger than the average in-weight. The problem of finding volcano patterns is a dual

problem of mining blackhole patterns. Therefore, we focus on discovering the black-

hole patterns and develop a blackhole mining framework. Specifically, we design two

pruning schemes for reducing the computational cost by reducing both the number of

candidate patterns and the average computation cost for each candidate pattern. The

first pruning scheme is to exploit the concept of combination dominance to reduce

the exponential growth search space. Based on this pruning approach, we develop

the gBlackhole algorithm. On the other hand, the second pruning scheme follows

an approximate strategy. We improve the computational efficiency by first screening

out nodes with small diff-weights to reduce the size of the graph, and then mining

the top-K blackhole patterns in the subgraph induced by the rest of the nodes. This

approach strikes a balance between the efficiency and the completeness of blackhole

mining.

Chapter 3 investigate how to predict potential risks for new contracts based on

their similarities with existing ones. Existing classification methods kNN can be used

to partially solve our problem. However, a critical challenge of applying this method

is to define the right metric that can be used to gauge similarity (or distance) be-

tween contracts. Along this line, we extend the Mahalanobis distance metric learning

framework, and formulate a constrained optimization problem such that the learnt
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distance for each pair of similar points is close to their actual distance, while each

pair of dissimilar points can be well separated. A key advantage of the proposed

method is the ability to train model with not only continuous distance measures

between contract pairs, but also the binary side information of dissimilar pairs. Fi-

nally, experimental results on real-world service contract data show that our proposed

approach greatly outperforms existing benchmarks, and can provide more accurate

contract risk assessment.

Chapter 4 examines the application of cluster analysis in bankruptcy pattern

learning and financial statement fraud detection. By leveraging the domain knowl-

edge in accounting area, unique features from financial statement can be extracted.

Clustering technique is then applied to identify the clustering effect of bankrupt com-

panies in different business sectors. Finally the most indicative financial features for

the bankrupt companies in the business sector can be uncovered from the hidden data

and validated by significant tests.

Last but not least, Chapter 5 concludes this dissertation and discuss the potential

future work.
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CHAPTER 2

MINING BLACKHOLE AND VOLCANO PATTERNS FOR FINANCIAL FRAUD

DETECTION

Given a directed graph, the problem of blackhole mining is to identify groups of nodes,

called blackhole patterns, in a way such that the average in-weight of this group is

significantly larger than the average out-weight of the same group. The problem of

finding volcano patterns is a dual problem of mining blackhole patterns. Therefore,

we focus on discovering the blackhole patterns. Indeed, in this chapter, we develop

a blackhole mining framework. Specifically, we first design two pruning schemes for

reducing the computational cost by reducing both the number of candidate patterns

and the average computation cost for each candidate pattern. The first pruning

scheme is to exploit the concept of combination dominance to reduce the exponential

growth search space. Based on this pruning approach, we develop the gBlackhole

algorithm. Instead, the second pruning scheme is an approximate approach, named

approxBlackhole, which can strike a balance between the efficiency and the complete-

ness of blackhole mining. Finally, experimental results on real-world data show that

the performance of approxBlackhole can be several orders of magnitude faster than

gBlackhole, and both of them have huge computational advantages over the brute-

force approach. Also, we show that the blackhole mining algorithm can be used to

capture some suspicious financial fraud patterns.
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2.1 Introduction

Government agencies, such as U.S. Securities and Exchange Commission (SEC), are

facing increasing challenges for financial fraud detection. The sophisticated fraud

tactics makes detecting and preventing fraud difficult, especially as the number of

trading accounts and the volume of transactions grow dramatically. Indeed, the

trading networks are vulnerable to these fast-growing accounts and the volume of

transactions. In particular, criminals know fraud detection systems are not good at

correlating user behaviors across multiple trading accounts. This weakness opens

the door for cross-account collaborative fraud, which is difficult to discover, track

and resolve because the activities of the fraudsters usually appear to be normal. For

instance, consider a trading network with a large number of nodes and directed edges,

a trader or a group of traders can perform trading only within several accounts for the

purpose of manipulating the market. This kind of illegal trading activities is widely

known as the trading ring pattern.

In this chapter, we study a special type of trading-ring patterns, called blackhole

patterns. Given a directed graph, a blackhole pattern is a group which contains a set

of nodes in a way such that the average in-weight of this group is significantly larger

than the average out-weight of the same group. In contrast, a volcano pattern contains

a set of nodes where the average out-weight is significantly larger than the average

in-weight. In fact, we originate the blackhole and volcano patterns from real-world

trading networks. For example, consider a group of traders who are manipulating

the market by performing transactions on a specific stock among themselves for a
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specific time period. In the first stage, these traders produce a large volume of

transactions on this stock by purchasing shares from public. During this time period,

the average net volume of shares of the target stock per their trading account will

increase significantly, and a blackhole pattern can be observed. After the stock price

goes up to a certain degree, these traders start selling off their shares to the public to

earn profit. In this stage, these trading accounts form a volcano pattern which have

the average out-weight significantly larger than the average in-weight.

The blackhole and volcano patterns can also be observed in other application sce-

narios. For example, in sina weibo1 , one of the biggest micro-blog online community

in China, a new type of cross-account collaborative fraudulent activity has been ob-

served as follows. To get started, the fraudster needs a very popular account P which

may take months to accumulate millions of followers. Then, he creates a number of

new accounts and wants to increase the popularity of these accounts in a very short

time. Let us take one such account L as an example. First, the fraudster frequently

posts lots of interesting tweets under account L on a specific popular subject. Next,

the account P retweets (shares) all tweets that L posts to make them visible to P ’s

followers. A part of P ’s followers will start to follow L. In addition, most of the fol-

lowers are likely to retweet the tweets L post. Due to the network effect, the number

of L’s followers will further increase. After a short period of time, L accumulates a

considerable number of followers. Then, the process moves to the next stage. Each

account L within the group starts to retweet other accounts’ tweets in order to maxi-

mize the network effect of the whole group in the community. In this way, each L can

1http://weibo.com
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pile a significant number of followers within a very short period of time. To sum up,

the fraudster first uses P to solve the cold-start problem, and then let the accounts

form a group to maximize the network effect. From the view of normal accounts, this

is a fraudulent activity since it impedes the healthy development of the community.

If we consider the community as a directed graph in which all accounts are nodes, and

there is a directed edge from node A to node B if account A follows account B. Then,

during the period of time, we can observe a blackhole pattern within that group of

fraudulent accounts, which can help to prevent such kind of fraudulent activities.

We can show that the problem of detecting blackhole patterns is a dual problem of

finding volcano patterns. Therefore, we focus on the problem of identifying blackhole

patterns. Along this line, we develop a blackhole mining framework in which there are

two pruning schemes to deal with the computational challenges. In the first pruning

scheme, we introduce the additivity property of diff-weight to reduce the computa-

tional cost of computing diff-weight of a set of nodes. Also, we propose the concept

of combination dominance to help reduce the exponentially growing search space sig-

nificantly. Based on these pruning techniques, we develop the gBlackhole algorithm

to find the top-K blackhole patterns. In contrast, the second pruning scheme follows

an approximate strategy, which is exploited for developing the approxBlackhole algo-

rithm. Indeed, the average access time to retrieve information from a node or an edge

increases rapidly with the number of nodes. This becomes the bottleneck of the per-

formances of gBlackhole for large graphs. Therefore, we improve the computational

efficiency by first screening out nodes with small diff-weights to reduce the size of the

graph, and then mining the top-K blackhole patterns in the subgraph induced by the
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rest of the nodes. This approach is correct but not complete, and there is a trade-off

between the efficiency and completeness.

Finally, experiments on real-world data sets are provided to evaluate the compu-

tational performances of the proposed two algorithms: gBlackhole and approxBlack-

hole. The results show that the approxBlackhole algorithm can be several orders

of magnitude faster than the gBlackhole algorithm, and both of them have a huge

computational advantage over the brute-force algorithm in terms of both the number

of combinations searched and the average computational cost for each combination.

The trade-off effect between efficiency and completeness of the approxBlackhole al-

gorithm is also studied. Moreover, the proposed algorithms have been exploited for

identifying some suspicious financial fraud patterns in the simulated E-mini S&P 500

futures contract trading data set from U.S. Commodity Futures Trading Commission.

The result shows the effectiveness of the blackhole patterns.

2.2 Preliminaries

In this section, we introduce the basic concepts and notations that will be used in

this chapter.

Consider a directed graph G = (V,E) (Diestel, 2006), where V is the set of all

nodes and E is the set of all edges. Assume that G has no self-loops. A directed edge

e in G is denoted as e = (x, y), where x and y are nodes of G and an arc is directed

from x to y. Each edge e has a positive weight, denoted as ωe, associated with this

edge.

Definition 1 (connected/weakly connected) In an undirected graph G, two nodes
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u and v are called connected if G contains a path from u to v. An undirected graph is

called connected if every pair of distinct nodes in the graph is connected. A directed

graph is called weakly connected if the undirected graph produced by replacing all of

its directed edges with undirected edges is a connected graph.

Definition 2 (in-weight/out-weight) Given a directed graph G = (V,E), B is

a set of nodes and B ⊆ V . Let C = V \ B. The in-weight of B is defined as:

In(B) =
∑

e=(x,y)∈E ωe, where x ∈ C and y ∈ B. And the definition of the out-weight

of B is in the opposite direction: Out(B) =
∑

e=(x,y)∈E ωe, where x ∈ B and y ∈ C.

In the trading network scenario, if we consider the trading network on a specific

stock during a period of time as a directed graph, such that the trading accounts

are the nodes, the transactions between accounts are the edges, and the transaction

volumes are the weights associated with the edges, then for a certain group of trading

accounts (nodes) B, the in-weight of B is the total volume of shares that group of

traders have purchased from the public during that period of time. Similarly, the

out-weight of B is the total volume of shares that group of traders have sold to the

public during that period of time.

Figure 2.1 shows an example of the in-weight and out-weight of a set of nodes.

The number associated with each edge is the weight of that edge. In this figure, the

in-weight of B is 6 + 5 = 11, while the out-weight is 3 + 3 + 1 + 2 = 9.

Now, let us get back to the intuition of blackhole and volcano patterns we have

discussed in Section 2.1. In the trading network scenario, we would like to find out

the cross-account collaborative fraudulent trading activities. Therefore, there should
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Figure 2.1: Illustration: in-weight and out-weight

be at least two trading accounts and these accounts have some sort of interactions

among them. In graph terms, it means this set of nodes has at least 2 nodes and the

subgraph induced by these nodes is weakly connected.

Also, in Section 2.1, we have described the two stages that a normal trading-ring

pattern usually behaves. In the first stage, the average volume of shares that the

group of trading accounts have purchased from the public is significantly larger than

the average volume of shares that they have sold, and we consider that group of

trading accounts as a blackhole pattern. In graph terms, it means the average of the

difference between the in-weight and out-weight of that set of nodes is significant. In

contrast, another stage for selling off the stock shares can be viewed in a very similar

fashion, and we name the group of trading accounts in this stage as a volcano pattern.

Since we will refer to the difference between the in-weight and out-weight of a set
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of nodes a lot in the rest of the chapter, to make our notations easy and precise, we

introduce the definition of diff-weight.

Definition 3 (diff-weight) Given a directed graph G = (V,E), B is a set of nodes

and B ⊆ V . The diff-weight of B is defined as: Diff(B) = In(B)−Out(B).

Based on the above understandings, we have the definition of blackhole pattern

and volcano pattern in a directed graph as follows.

Definition 4 (blackhole pattern) Given a directed graph G = (V,E), a set of

nodes B ⊆ V form a blackhole pattern, if and only if the following two conditions are

satisfied: 1) |B| ≥ 2, and the subgraph G(B) induced by B is weakly connected, and

2) Diff(B)/|B| > θ, where |B| is the cardinality of B, and θ is a pre-defined positive

threshold and is typically a very large value.

Definition 5 (volcano pattern) Given a directed graph G = (V,E), a set of nodes

V ol ⊆ V form a volcano pattern, if and only if the following two conditions are

satisfied: 1) |V ol| ≥ 2, and the subgraph G(V ol) induced by V ol is weakly connected,

and 2) Diff(V ol)/|V ol| < −θ, where |V ol| is the cardinality of V ol, and θ is a

pre-defined positive threshold and is typically a very large value.

Please note that, we use the average diff-weight instead of the diff-weight of a set

of nodes in defining the blackhole and volcano patterns. The reason is that by only

using the diff-weight, we may not end up with finding out the groups of nodes that we

really want in some cases. Assume that a set of nodes B is a blackhole pattern we have

found by the definition of using diff-weight instead of average diff-weight. By adding
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another node v such that Diff(v) > 0 and v is connected to B, we can find another

blackhole pattern B′ with Diff(B′) > Diff(B). If we keep repeating this process,

we will end up with a B′ which is a group of nodes with large diff-weight and large size.

However, the average diff-weight of B′ may be far less than the average diff-weight of

B. In real world, we are more likely interested in B rather than B′. Let us consider

the trading network scenario again. B′ may represent a group of thousands of trading

accounts whose total net volume of shares accumulate rapidly during a certain period,

while the average net volume per account may be small. These accounts are more

likely to be normal accounts with normal transactions. Meanwhile, B may consist of

a couple of trading accounts whose net volume of shares per account increase fast, but

the total net volume may not as large as the one of B′. In this situation, B is more

likely to perform a trading-ring fraud than B′. In this sense, the average diff-weight

of a set of nodes is more important than the diff-weight itself. Thus, we will use the

average diff-weight of a set of nodes to define blackhole and volcano patterns in this

chapter.

2.3 Problem Formulation

In this section, we formulate the blackhole mining problem. First, we show that the

problem of detecting blackhole patterns is a dual problem of finding volcano patterns.

Theorem 1 The problem of detecting blackhole patterns in a directed graph is a dual

problem of detecting volcano patterns in its inverse graph, and vice versa.

Proof Consider a directed graph G = (V,E). Let G′ = (V,E ′) be the inverse graph of

G, where all the nodes in G′ are the same as in G; while for each edge e = (x, y) ∈ E,
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there is an edge e′ = (y, x) ∈ E ′, and the weight associated with e′ is exactly the

same as the weight associated with e. Therefore, the in-weight of a set of nodes B in

G is the same as the out-weight of B in G′, and vice versa. Thus, for each blackhole

pattern B in G, we have (In(B) − Out(B))/|B| > θ in G. Then in G′, we have

(Out(B)− In(B))/|B| > θ, which is equivalent to Diff(B)/|B| < −θ. Also, in G′,

we still have |B| > 2 and G(B) is weakly connected. Therefore, B forms a volcano

pattern in G′. On the other hand, we can also prove that for each volcano pattern

V ol in G′, it is a blackhole pattern in G. Thus, detecting blackhole patterns in a

directed graph is equivalent to detecting volcano patterns in its inverse graph. In a

similar fashion, we can also prove that detecting volcano patterns in a directed graph

is a dual problem of detecting blackhole patterns in its inverse graph.

According to Theorem 1, we can focus on the problem of detecting blackhole

patterns in a directed graph in the rest of the chapter.

An intuitive way to formulate the problem of detecting blackhole patterns in a

directed graph G = (V,E) is to find out the set of blackhole patterns, denoted as

Blackhole, such that for each element B ∈ Blackhole, it is a set of nodes in G, and

B satisfies the definition of blackhole. On the other hand, there is no other set of

nodes B′ 6∈ Blackhole such that B′ satisfies the definition of blackhole. In sum, we

would like to find out the complete and correct set of all blackhole patterns in G.

However, there are certain issues with the above problem formulation. The main

issue is how should we decide the value of θ. Since the problem has a combinatorial

nature such that we would like to find out the complete and correct set of all blackhole

patterns in a directed graph, if we set θ too small, most likely we would end up with
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a set with O(2n) blackhole patterns in it. On the other hand, if we make θ too

large, most likely we would get nothing in the end. It is hard and tricky for us to

determine the value of θ without trying many times, and obviously it is very inefficient

and inconvenient in practice. Actually, we are much more interested in the “outliers”

rather than the ordinary ones in the real world. In other words, we are more interested

in the blackhole patterns with larger average diff-weights. Therefore, if we just simply

find out blackhole patterns with the top-K largest average diff-weights, we will achieve

our goal and make things much easier and more efficient. As a result, we have the

problem formulation in this chapter as follows.

Top-K Blackhole Pattern Mining. Given a directed graph G = (V,E), the

goal is to find out the set of top-K blackhole patterns, denoted as Blackhole, such

that, 1) |Blackhole| = K, 2) for each element B ∈ Blackhole, B ⊆ V , |B| ≥ 2, and

the subgraphG(B) induced byB is weakly connected, and 3) for any other set of nodes

B′ 6∈ Blackhole, if B′ satisfies condition 2), then for each element B ∈ Blackhole, we

have Diff(B)/|B| ≥ Diff(B′)/|B′|.

2.4 Algorithm Design

In this section, we introduce three algorithms to mine the top-K blackhole patterns

in a directed graph. To simplify the discussion, let n denote the number of nodes, m

denote the number of edges, and α = m/n be the average in-and-out node degree of

the graph.
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2.4.1 A Brute-Force Approach

In this subsection, we present a brute-force approach for detecting blackhole patterns

in a directed graph. Since the goal is to find out the set of top-K blackhole patterns,

the intuition is really simple: we check out all combinations of nodes in V from size

2 to n using the exhaustive search method. For each combination B, if the subgraph

G(B) induced by B is weakly connected, we keep a record of B as well as its average

diff-weight in a list. Finally, we sort the list and output the blackhole patterns with

the top-K largest average diff-weights.

In practice, in order to save space and make the algorithm more efficient, we

maintain a priority queue Blackhole of size K to record the current top-K blackhole

patterns along with their average diff-weights. It is initialized with K empty sets with

key value of −∞ and the elements in it are sorted by the descending order of their

key values. During the whole procedure, Blackhole keeps updated to make sure it

has recorded the current top-K blackhole patterns among combinations which have

already been checked so far. Finally, when the exhaustive search procedure completes,

Blackhole will record the set of blackhole patterns with the top-K largest average

diff-weights as the result.

Figure 2.2 shows the pseudo code of the brute-force approach to detect the top-K

blackhole patterns in a directed graphG, in which Subseti = {B |B ⊆ V, and |B| = i}

is the set of all combinations of nodes in V of size i, and the function Is Connected()

checks whether a directed graph is weakly connected or not.
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ALGORITHM Brute-Force (G = (V,E), K)

Input:

G: the input directed graph

V : the set of all nodes

E: the set of all edges

Output:

Blackhole: priority queue of current top-K blackholes

1. Initialize Blackhole

2. for i← 2 to n do

3. for each combination of nodes B ∈ Subseti do

4. if Is Connected(G(B)) and

5. Diff(B)/|B| > Blackhole.extract min() then

6. Blackhole.delete min()

7. Blackhole.insert(B,Diff(B)/|B|)

8. end if

9. end for

10. end for

11. return Blackhole

Figure 2.2: A brute-force approach
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The computational complexity of the brute-force approach is T = O(M · N),

where N = 2n − n − 1 is the number of combinations of size no less than 2, and M

is the average computational cost for each combination B. We use depth-first search

(DFS) to check whether B is weakly connected or not, and meanwhile we can compute

Diff(B). During the DFS, each node in B is accessed once as well as all its edges.

Therefore, the computational cost of each combination B is M = O((α + 1) · |B|).

Since the average size of B is n/2, then the computational complexity of the brute-

force approach is T = O(M ·N) = O((m+ n) · 2n).

This approach is obviously computationally prohibitive due to its combinatorial

nature. As the number of nodes n increases, the number of combinations increases

exponentially. This makes the brute-force approach unrealistic to use in practice when

n is large. Since T = O(M · N), the computational complexity can be reduced by

decreasing either the number of combinations or the average computational cost for

each combination. Along this line, we introduce two pruning schemes in the following

subsections to help reduce the computational cost.

2.4.2 The Additivity Property of Diff-weight

In brute-force approach, we first compute Diff(B) by calculating In(B) and Out(B)

separately, and then do the subtraction. As mentioned in last subsection, the com-

putational cost of calculating Diff(B) is O((α+ 1) · |B|) = O(m+ n), which is very

time consuming. Consider that we will need to calculate Diff(B) very frequently in

the blackhole mining process, we need a more efficient way for that.

The main challenge is that the set of edges between B and C are changing dy-
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namically for different set of nodes. Is it possible that we can pre-compute a value

for each node in V separately, and for each set of nodes B, we can compute Diff(B)

by adding up the values of each node in B, regardless the set of edges between B and

C? The following theorem solves this problem. We name this theorem as additivity

property of diff-weight.

Theorem 2 (Additivity Property of Diff-weight) The diff-weight of a set of nodes

B equals to the summation of the diff-weight of each node in B, i.e. Diff(B) =

∑

v∈B Diff(v).

Proof

Diff(B) = In(B)− Out(B)

=
∑

x∈C,y∈B ωe −
∑

x∈B,y∈C ωe

= (
∑

x∈C,y∈B ωe +
∑

x∈B,y∈B ωe) −(
∑

x∈B,y∈C ωe +
∑

x∈B,y∈B ωe)

=
∑

x∈C
⋃
B,y∈B ωe −

∑

x∈B,y∈C
⋃
B ωe

=
∑

x∈V,y∈B ωe −
∑

x∈B,y∈V ωe

=
∑

v∈B In(v)−
∑

v∈B Out(v)

=
∑

v∈B(In(v)− Out(v))

=
∑

v∈B Diff(v), where e = (x, y) ∈ E

Let us illustrate this property using Figure 2.1 as an example. In this figure, we

have Diff(a) = (4 + 5) − (3 + 2) = 4, Diff(b) = 6 − (4 + 2) = 0, and Diff(c) =

2 − (3 + 1) = −2. Thus, we have
∑

v∈B Diff(v) = 4 + 0 + (−2) = 2, which equals
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to Diff(B) = (6 + 5) − (3 + 3 + 2 + 1) = 2. This simple example illustrates the

additivity property of diff-weight.

Based on this property, we can compute Diff(B) in a different way as the follow-

ing. First, we compute the diff-weight of each node in V , and record the result in a list

L. This is a one-time effort and the computational cost is O(|V |+ |E|) = O(m+ n).

Then, for each combination B, Diff(B) can be calculated by adding up the diff-

weight of each node inB, which can be retrieved from the list L. By using this method,

the computational cost can be reduced to O(|B|). As a result, for the if statement

in the brute-force approach, we check the condition Diff(B) > Blackhole.min()

first, only if it is true, we then check the condition Is Connected(G(B)), since the

computational cost of the former one is smaller.

2.4.3 The Measure of Enumeration

In this subsection, we introduce a measure to fulfill the procedure of enumerating all

combinations of nodes in V from size 2 to n. Basically, it consists of two steps, (1)

sort the nodes in the graph by a certain criteria, and (2) for each i = 2, 3, . . . , n, find

a particular order to list all combinations of nodes with size i.

For step (1), recall that in last subsection, we have calculated the diff-weight of

each node, and know that the value of Diff(B) equals to the summation of the

diff-weight of each node in B. Since our goal is to find out blackhole patterns with

the top-K largest average diff-weight, it implies that nodes with larger diff-weight

have higher probability to appear in the top-K blackhole patterns. Therefore, it is

very natural to sort the nodes in V by their diff-weights in a decreasing order, and
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start the enumeration procedure from combinations consisting of nodes with larger

diff-weights. We denote the nodes after sorting as {v1, v2, . . . , vn}, where v1 has the

largest diff-weight while vn has the smallest.

For step (2), we use the lexicographic order (a.k.a. dictionary order) to list all

combinations of nodes of size i (Knuth, 2011), not only because it has been widely

used, more importantly, enumerating combinations in this order is consistent with

our intuition of starting from nodes with larger diff-weights. Next, we briefly describe

the basic idea of the lexicographic order.

Given a general alphabet set S = {s1, s2, . . . , sn}, the elements in this set are

ordinal, which means each one of them is comparable with other elements by a pre-

defined order. We denote this order as the lexicographic order of this general alphabet

set S. Without the loss of generality, we let s1 ≺ s2 ≺ . . . ≺ sn, where the notion

“≺” here denotes lexicographically less than. In our case, we consider V as the

alphabet set, and define the lexicographic order in V as v1 ≺ v2 ≺ . . . ≺ vn, where

Diff(v1) ≥ Diff(v2) ≥ . . . ≥ Diff(vn).

Since the order of elements in a combination does not matter, without the loss of

generality, we assume that β1 ≺ β2 ≺ . . . ≺ βi for the combination β = (β1, β2, . . . , βi)

of size i. In the rest of the chapter, we assume that the elements in a combination are

lexicographically ordered if not mentioned otherwise. Next, we give the definition of

the lexicographic order of two combinations.

Definition 6 (lexicographic order for combinations) Let β = (β1, β2, . . . , βi)

and γ = (γ1, γ2, . . . , γi) be two combinations of the same size i over S. We say that
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β is lexicographically less than γ, denoted as β ≺ γ, if and only if for j = 1, 2, . . . , i,

there exist some j, such that βj 6= γj, and for the smallest such j, βj ≺ γj.

The lexicographic order generates combinations in a particular order such that

for any two combinations β and γ with the same size, if β ≺ γ, β is generated

earlier than γ. For example, the lexicographic order of the combinations of size 3

over alphabet set {1, 2, 3, 4, 5} is (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5),

(2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5), if we define the lexicographic order for this example

as 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5. By using the lexicographic order, we can therefore enumerate

all combinations of nodes of size i for each i ≥ 2.

In practice, we employ the recursion of depth i to implement the enumeration

process. We use a pointer pt to indicate which node at which level is currently being

visited in the recursion. Level 1 is the first level of the recursion while level i is the

deepest. pt initially points to node v1 at level 1. When pt is pointing to node vj

(k ≤ j ≤ n − i + k) at level k (k = 1, 2, . . . , i − 1), we let vj be the kth element of

combination B and move pt to node vj+1 at level k + 1. When pt jumps out of level

k+1, we erase vj from the kth element of B first, and if j < n− i+ k, we move pt to

node vj+1 at level k and repeat the same process as for node vj at level k, otherwise,

we let pt jump out of level k and return to level k − 1. If pt is pointing to node vj

at level i, the process is similar to the one for previous levels, except we check out

whether the current combination B is a top-K blackhole pattern instead of diving

into the deeper level, since we have already reached the last level of the recursion.

When pt jumps out of level 1 and returns to level 0, the procedure completes and all
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combinations of size i have been enumerated in the lexicographic order. More details

are available in the next subsection.

2.4.4 A Pruning Scheme

In this subsection, we propose a pruning scheme to control the exponential growth of

the number of combinations, which can be helpful to reduce the computational cost.

First, we introduce the concept of combination dominance.

Definition 7 (combination dominance) Let S = {s1, s2, . . . , sn} be a general al-

phabet set. β = (β1, β2, . . . , βi) and γ = (γ1, γ2, . . . , γi) are two combinations of the

same size i over S. We say that β dominates γ, denoted as β ⊢ γ, if and only if

βj � γj for any j = 1, 2, . . . , i, and for at least one j, βj ≺ γj.

Again, we take the alphabet set {1, 2, 3, 4, 5} as an example. Among all combina-

tions of size 3 over this set, (1, 2, 4) ⊢ (1, 2, 5), (1, 3, 4) ⊢ (2, 3, 5), (1, 2, 3) dominates

any other combinations, (3, 4, 5) is dominated by any other combinations, (1, 4, 5)

and (2, 3, 4) cannot dominate each other.

Next, we introduce several lemmas to help prune the exponentially growing search

space.

Lemma 1 If we consider V as the alphabet set, and define the lexicographic order in

V as v1 ≺ v2 ≺ . . . ≺ vn, then for any two combinations of nodes with the same size i

over V , denoted as B and B′, if B ⊢ B′, then we have Diff(B)/|B| > Diff(B′)/|B′|.

Proof Recall that in Section 2.4.3, we have sorted the nodes in V by their diff-weights

in a decreasing order, thus, 1) for any two nodes v and v′ in V , if v ≺ v′, then we have



- 30 -

Diff(v) > Diff(v′). In addition, since B ⊢ B′, if we denote B = (vB1
, vB2

, . . . , vBi
)

and B′ = (vB′

1
, vB′

2
, . . . , vB′

i
), according to Definition 7, we have 2) vBj

� vB′

j
for any

j = 1, 2, . . . , i, and for at least one j, vBj
≺ vB′

j
. Therefore, based on 1) and 2),

we can get Diff(vBj
) ≥ Diff(vB′

j
) for any j = 1, 2, . . . , i, and for at least one j,

Diff(vBj
) > Diff(vB′

j
). According to the additivity property of diff-weight and since

|B| = |B′|, we have Diff(B)/|B| > Diff(B′)/|B′|.

Lemma 2 Let β and γ be two combinations of size i over the same alphabet set S.

If β ⊢ γ, then β ≺ γ.

Proof According to Definition 7, if β ⊢ γ, then βj � γj for any j = 1, 2, . . . , i, and for

at least one j, βj ≺ γj . Therefore, there exists at least one j such that βj 6= γj, and

for the smallest j among them, βj ≺ γj. According to Definition 6, we have β ≺ γ.

Lemma 1 and Lemma 2 can be very useful to prune the exponentially growing

search space. In the brute-force approach, if the average diff-weight of a combination

B is no greater than the current minimum key in the priority queue Blackhole,

we simply skip B and move forward to the next combination. However, according to

Lemma 1, for any combination B′ which is dominated by B, we have Diff(B′)/|B′| <

Diff(B)/|B| ≤ Blachole.extract min(). Thus, there is no chance for such B′ to

appear in Blackhole. In addition, according to Lemma 2, B′ ≻ B, which indicates

that B′ will be checked later than B. Based on the above analysis, we can have the

following theorem as the guideline of the pruning scheme.

Theorem 3 (Pruning Strategy) For a combination B of size i, if we skip B since the

average diff-weight of B is no greater than the current minimum key in the priority
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queue Blackhole, then for any combination B′ which is dominated by B, it can be

simply pruned without checking.

Although we would like to prune all combinations that are dominated by B, we

also need to consider the cost of finding them out. If we have to check whether each

upcoming combination is dominated by B, then this pruning strategy will have no

computational savings. We need to find a simple and systematic way that can help to

prune combinations which are dominated by B as many as possible with little cost,

even though a few of them are missed and have to be checked out later. Along this

line, we have the following pruning rule.

Lemma 3 (Pruning Rule) For a size-i combination B = (vB1
, vB2

, . . . , vBi
), if we

skip B for the reason that Diff(B)/|B| ≤ Blachole.extract min(), then we can let

pointer pt jump out of level i immediately. If there exists a k (1 ≤ k ≤ i − 1) such

that Bk+1 − Bk = Bk+2 − Bk+1 = · · · = Bi − Bi−1 = 1, then pt can directly return to

level k − 1, otherwise, pt returns to level i− 1.

Proof If there exists a k (1 ≤ k ≤ i− 1) such that Bk+1−Bk = Bk+2−Bk+1 = · · · =

Bi−Bi−1 = 1, consider combination B′ = (vB′

1
, vB′

2
, . . . , vB′

i
), where Bj < B′

j ≤ n−i+j

(j = k, k+1, . . . , i) and Bj = B′

j (j = 1, 2, . . . , k−1) if k > 1. It is clear that B ⊢ B′.

Since Diff(B)/|B| ≤ Blachole.extract min(), according to the pruning strategy, we

can prune all such B′s without checking. Note that these B′s are combinations that

directly follow B in the lexicographic order. In the recursion, we can do this pruning

by simply let pt jump out of level i, and return directly to level k− 1. When there is

no such k, the proof is very similar and we skip it here.
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ALGORITHM Find-Combinations (L, n, i, j, k,B,Blackhole)

Input:

L: list of diff-weights of each node; n: number of nodes

i: size of combination; j: starting node index

k: current level number; B: current combination of nodes

Blackhole: priority queue of current top-K blackholes

1. for p← j to n− i+ k do

2. if k < i then

3. B[k] = (p, L[p])

4. Find-Combinations(L, n, i, p + 1, k + 1, B,Blackhole)

5. if B[k + 1].index −B[k].index == 1 then

6. break

7. else

8. B[k] = (p, L[p])

9. if Diff(B)/|B| > Blackhole.extract min() then

10. if Is Connected(G(B)) then

11. Blackhole.delete min()

12. Blackhole.insert(B,Diff(B)/|B|)

13. else

14. break

Figure 2.3: The find-combinations algorithm
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Then, we can incorporate this pruning rule into the enumeration process described

in Section 2.4.3 to help reduce the search space. We name this pruning scheme as

the Find-Combinations algorithm. Basically, this pruning scheme follows a general

sort-and-prune strategy, which is widely used for the algorithm design (Cormen, Leis-

erson, Rivest, & Stein, 2009), such as the development of association rule mining

algorithms (Tan et al., 2005). The pseudo code is given in Figure 2.3. B is an array

of length i which records the current combination of nodes, and is initialized empty.

Each element in it is a structure which consists of the index of a node in L after

sorting (B[k].index), and the diff-weight of the node (B[k].weight). All array indices

in the pseudo code start from 1.

Figure 2.4 gives an example to illustrate how our pruning scheme works. In the

example, we would like to detect the top-2 blackhole patterns in a directed graph.

Figure 2.4(a) shows the input graph and the corresponding list of diff-weights of

each node after sorting. The procedure of checking out all combinations of size 3 by

using our pruning scheme is given in the following subfigures. The priority queue

Blackhole in each subfigure records the current top-2 blackhole patterns as well as

their diff-weights. Since the procedure is very simple and the figures themselves are

quite self-explained, we simply skip the explanation and leave it to the readers. Note

that finally we only need to check 5 combinations out of all C3
6 = 20 combinations of

size 3 by using this pruning scheme.

Finally, we would like to discuss the main reasons why we develop this prun-

ing scheme to solve the top-K blackhole mining problem. First of all, there is

no pre-determined “global” order for the average diff-weights among all combina-
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tions of nodes over V . For example, let V = {v1, v2, v3, v4, v5} where Diff(v1) ≥

Diff(v2) ≥ . . . ≥ Diff(v5). Then for combinations B = (v1, v3, v5) and B′ = (v1, v5),

if Diff(v3) > 0, we have Diff(B)/|B| > Diff(B′)/|B′|, otherwise, Diff(B)/|B| <

Diff(B′)/|B′|. Therefore, for different input graphs, the order of Diff(B)/|B| and

Diff(B′)/|B′| cannot be determined without checking them out. Even for combina-

tions of the same size, there is still no such “global” order. For example, let B′′ =

(v2, v3, v4), for case Diff(v1, . . . , v5) = (10, 6,−4,−5,−7), we have Diff(B)/|B| >

Diff(B′′)/|B′′|. However, if Diff(v1, . . . , v5) = (10, 6, 4,−7,−13), we have the

opposite order. Thus, for different input graphs, the order of Diff(B)/|B| and

Diff(B′′)/|B′′| still cannot be determined until checking them out. Therefore, in

order to keep the process simple, organized and systematic, we use the measure in-

troduced in Section 2.4.3 to enumerate all combinations of nodes in V from size 2 to

n and check out their eligibility for the top-K blackhole patterns in lexicographic or-

der, and meanwhile, we introduce the concept of combination dominance as a “local”

order to help develop the pruning scheme to reduce the search space.

2.4.5 The gBlackhole Approach

While the search space has been reduced by using the pruning scheme introduced

in last subsection, it is still possible to apply other pruning strategies to the mining

process. Note that for a node v ∈ V , v can only form blackhole patterns with

nodes within the same weakly connected component (WCC) in G, since the subgraph

induced should be weakly connected. Therefore, if a directed graph has several WCCs,

a divide-and-conquer strategy can be exploited by first identifying these WCCs, then
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applying the pruning scheme on each of them, and finally merging all the results. This

pruning strategy can divide a large exponentially growing search space into several

smaller ones, and thus can further reduce the computational cost.
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Figure 2.4: An example to illustrate the pruning scheme

Along this line, we combine the pruning scheme based on combination dominance
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with this divide-and-conquer strategy and develop an algorithm, named gBlackhole, to

detect the top-K blackhole patterns in a directed graph. Figure 2.5 shows the pseudo

code of this approach. In this approach, we start with the WCC which contains

the node with the largest diff-weight, and find out the top-K blackhole patterns in

it. Next, we check out all the combinations of nodes in the second largest WCC

by comparing them with the current top-K blackhole patterns. The above process

repeats until we have found all WCCs.

The theoretical computational complexity of the gBlackhole algorithm is hard to

analyze. As discussed in Section 2.4.1, the computational complexity can be expressed

as T = O(M · N), where N is the number of combinations searched, and M is the

average computational cost for each combination. As shown in the experiment section,

the gBlackhole algorithm has a huge computational advantage over the brute-force

approach, since the pruning effect in the gBlackhole algorithm is significant in terms

of the number of pruned combinations.

2.4.6 The approxBlackhole Approach

The gBlackhole approach is shown to be an efficient approach that can reduce the

computational complexity dramatically. However, as the number of nodes and edges

of the graph increases, the average access time to retrieve information from a node

or an edge increases rapidly, especially when the graph is too large to fit into the

memory. Thus, the dramatic increase of M , which is the average computational cost

for each combination, becomes the bottleneck of the performance of the gBlackhole

algorithm for large graphs.
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ALGORITHM gBlackhole (G = (V,E), K)

Input:

G: the input directed graph

V : the set of all nodes

E: the set of all edges

Output:

Blackhole: priority queue of current top-K blackholes

1. Initialize Blackhole

2. for each node v ∈ V do

3. Diff(v)← In(v)−Out(v)

4. end for

5. Sort all nodes descendingly by their diff-weights in L

6. for each weakly connected component WCC in G do

7. for i← 2 to nWCC do

8. Initialize B

9. Find-Combinations(L, n, i, 1, 1, B,Blackhole)

10. end for

11. end for

12. return Blackhole

Figure 2.5: The gBlackhole approach
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The intuition of reducing the average access time to a large graph is to reduce the

size of that graph. Since we are only interested in blackhole patterns with the top-K

largest average diff-weights, it is not necessary for us to search through the entire

graph. Most of the top-K blackhole patterns only consist of nodes with very large

diff-weights. Therefore, the chance for nodes with small diff-weights to appear in the

top-K blackhole patterns is very tiny so that we can filter them out safely in an early

stage. In this way, we can reduce the size of the graph and significantly improve the

computational efficiency.

We develop a new efficient algorithm according to the analysis above. We only

reserve nodes with top p% largest diff-weights, and filter out the rest of them, where

p is a user specified parameter. Then, we discover the top-K blackhole patterns

in the subgraph induced by these nodes. Please note that, the diff-weights of the

nodes in the subgraph are the same as their corresponding diff-weights in the original

graph. We use the graph structure of the subgraph and node weights from the orig-

inal graph. Clearly, this approach is correct but not complete. There is a trade-off

between the efficiency and completeness. We name this approximation approach as

the approxBlackhole algorithm.

Experimental results in the next section will show that the approxBlackhole algo-

rithm can further reduce the computational complexity over the gBlackhole algorithm,

in terms of both the number of combinations searched and the average computational

cost for each combination. The trade-off effect between efficiency and completeness

will also be discussed.
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2.5 Experimental Results

In this section, we provide an empirical study to evaluate the performances of brute-

force, gBlackhole and approxBlackhole algorithms. Here, we set K = 100 in all the

experiments.

2.5.1 The Experimental Setup

Experimental Data. The experiments were conducted on four real-world data sets:

Wiki, Citation, Slashdot, and Trading. Table 2.1 shows some basic characteristics

of these data sets.

Table 2.1: Data characteristics

Data set # nodes # egdes avgDegree(α) # WCC

Wiki 7,115 103,689 14.57 24

Citation 34,546 421,578 12.20 61

Slashdot 77,360 905,468 11.70 1

Trading 100 264,600 2646 1

Wiki Data Set. There are 7,115 nodes and 103,689 edges in the Wiki data

set (Leskovec, Huttenlocher, & Kleinberg, 2010a) (Leskovec, Huttenlocher, & Klein-

berg, 2010b). The network contains all administrator elections and vote history data

from the inception of Wikipedia till January 2008. Nodes in the network represent

Wikipedia users and a directed edge from node i to node j represents that user i

voted on user j. Since there are no weights associated with the edges in the original

data set, we assign the weight of each edge to be 1.



- 40 -

Citation Data Set. There are 34,546 nodes and 421,578 edges in the Citation

data set (Leskovec, Kleinberg, & Faloutsos, 2005) (Gehrke, Ginsparg, & Kleinberg,

2003). Arxiv HEP-PH (high energy physics phenomenology ) citation graph is from

the e-print arXiv and covers all the citations within a dataset of 34,546 papers with

421,578 edges. If a paper i cites paper j, the graph contains a directed edge from

i to j. If a paper cites, or is cited by, a paper outside the dataset, the graph does

not contain any information about this. The Citation data set covers papers in the

period from January 1993 to April 2003. For this data set, we also assign the weight

of each edge to be 1.

Slashdot Data Set. There are 77,360 nodes and 905,468 edges in the Slashdot

data set (Leskovec, Lang, Dasgupta, & Mahoney, 2008). Slashdot is a technology-

related news website known for its specific user community. The website features

user-submitted and editor-evaluated current primarily technology oriented news. In

2002 Slashdot introduced the Slashdot Zoo feature which allows users to tag each

other as friends or foes. The network contains friend/foe links between the users of

Slashdot. The network was obtained in November 2008. Also, we assign the weight

of each edge to be 1.

Trading Data Set. This data set was generated by U.S. Commodity Futures

Trading Commission (CFTC), which simulates the transaction-level data for regular

transactions in the E-mini S&P 500 futures contract market (Adamic, Brunetti, Har-

ris, & Kirilenko, 2010). The E-mini S&P 500 futures contract is a highly liquid, fully

electronic, cash-settled contract traded on the CME GLOBEX trading platform. It

is designed to track the price movements of the S&P 500 Index - the most widely
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followed benchmark of stock market performances.

This data set is simulated based on the data characteristics of the real-world trans-

action data. There are 5,163,274 transactions among 100 simulated trading accounts

for 20 consecutive trading days. Each transaction has the following data fields: date

and time, unique transaction ID, executing trading account, opposite trading account,

buy or sell flag (for the executing trading account), price, and quantity. We construct

a trading network based on transactions in one particular trading day, which has

264,600 transactions. Each trading account represents a node in the network, and a

directed edge from node i to node j represents that there is a transaction between

account i and j, such that i is in a short position and j is in a long position. The

weight associated with each edge is the trading volume of that transaction.

Experimental Platform. All the experiments were performed on a Dell Opti-

plex 960 Desktop with Intel Core 2 Quad Processor Q9550 (2.83 GHz) and 4 GB of

memory running the Windows XP Professional Service Pack 3 OS.

Experimental Tool. We used LEDA (Library of Efficient Data types and Al-

gorithms) (Mehlhorn & Naher, 1999), which is one of the best resources available to

support combinatorial computing, as our experimental tool. LEDA offers a complete

collection of well-implemented C++ data structures and types, especially for graphs.

It supports all the basic graph operations in an efficient way. The data structure that

is used to represent a directed graph in LEDA is the adjacency list.
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2.5.2 The Pruning Effect on the Number of Combinations

In this subsection, we provide a comparison of the number of combinations, which

have been searched, using different algorithms on different data sets. The results

are shown in Table 2.2. approx-10% denotes the approxBlackhole algorithm with

parameter p = 10%.

Table 2.2: The number of combinations searched

Algorithm Wiki Citation Slashdot

brute-force 6.74E+2141 2.41E+10399 4.79E+23287

gBlackhole 25,579 128,513 155,251

approx-20% 11,228 79,431 25,372

approx-10% 9,231 68,147 18,192

approx-5% 8,112 62,791 12,747

approx-2% 7,356 57,600 8,134

In Table 2.2, we can see that the pruning effect of both gBlackhole and approx-

Blackhole algorithms are very significant. The search space can be reduced thousands

of orders of magnitude by applying the gBlackhole algorithm to all three data sets.

In addition, by using the approxBlackhole algorithm, the search space can be further

pruned out by 50%− 95%. The experimental results validate our theoretical analysis

in previous sections. We will give more detailed comparisons between the gBlackhole

and approxBlackhole algorithms in the following subsections.
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2.5.3 The Pruning Effect on the Average Combination Size

In this subsection, we provide a comparison of the average combination size using

different algorithms on different data sets. As shown in Figure 2.6, the average

combination size in brute-force algorithm is the largest, while the average size in

approxBlackhole algorithm is the smallest, and the average size decreases as p gets

smaller. This result is consistent with the intuition, since the number of nodes in the

induced subgraph is getting smaller as p decreases. The results show that the effect

of reducing the average combination size is significant.
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Figure 2.6: The pruning effect of the average combination size

2.5.4 The Performances of the gBlackhole Algorithm

In this subsection, we provide experiments to study how the running time of the

gBlackhole algorithm changes with different input graph sizes. Here, we perform
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sampling on a large graph to derive a series of graphs with different sizes. In this

way, this group of graphs will have the same graph properties, which makes the

comparison less biased.

Regarding the sampling method, we refer to Leskovec and Faloutsos’s work in

2006 (Leskovec & Faloutsos, 2006). We chose the Random Walk (RW) sampling

method, since it performs the best among all the sampling methods to meet the

scale-down criteria, which measure how good the sampled graph inherits the graph

properties from the original graph. Next, we sampled a series of graphs from the

Slashdot data set with different number (percentage) of nodes, and applied the

gBlackhole algorithm on each of them. We repeated the procedure for 10 times, and

average the corresponding results as the performance of the gBlackhole algorithm on

input graphs with different sizes.
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Figure 2.7: The running time of gBlackhole on data sets with different sizes
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The experimental results are shown in Figure 2.7. In general, the running time

of the gBlackhole algorithm decreases in an approximately exponential way as the

size of the graph shrinks. This result proves our theoretical analysis in Section 2.4,

because the size of the input graph decreases, both the number of combinations (N)

and the average combination size (M) decrease. Especially, the value of N follows an

approximately exponential decrease, which results in the exponential decrease of the

running time of the gBlackhole algorithm.

2.5.5 gBlackhole vs. approxBlackhole

In this subsection, we compare the performances of gBlackhole and approxBlackhole

algorithms on different data sets.

As shown in Figure 2.8, the running time of the approxBlackhole algorithm is

much smaller than the gBlackhole algorithm over all three data sets, which can save

at least 90% of the running time, regardless what the value of p is. The results are

consistent with the theoretical analysis in previous sections.

Meanwhile, as shown in Table 2.3, the completeness rates of detecting the top-

K blackhole patterns in different data sets by using the approxBlackhole algorithm

are excellent. The completeness rate is calculate as C/K, where C is the number

of common blackhole patterns detected by both gBlackhole and approxBlackhole

algorithms. For Wiki and Slashdot data sets, the completeness rates are all 100%

for different p. For the Citation data set, the results are also very good. Even for the

case of p = 0.5%, although the completeness rate is only 69%, the approxBlackhole

algorithm finds out all the top 40 blackhole patterns, which are much more important



- 46 -

gBlackhole approx−20% approx−10% approx−5% approx−2% approx−1% approx−0.5%
10

1

10
2

10
3

10
4

10
5

10
6

Algorithm

R
un

ni
ng

 T
im

e 
(s

ec
)

 

 

wiki
citation
slashdot

Figure 2.8: A comparison of gBlackhole and approxBlackhole algorithms

than the missing 31 blackhole patterns.

The performance of the approxBlackhole algorithm depends on the properties of

the input graph. Consider Figure 2.8 again, we can observe that the running time of

the approxBlackhole algorithm on the Citation data set increases significantly when

p becomes very small. This is very different from what we have observed in the other

two data sets. Also, the running time of the approxBlackhole algorithm on Citation

is much longer than on Slashdot when p is very small, although the size of Slashdot

is much larger. Note that Citation is a citation network, while Slashdot is a social

network, they have different graph properties. Figure 2.9 shows how the average node

degree of the two networks evolves as p decreases, which we think may be one of the

reasons to explain the observations above. In the figure, comparing with Slashdot,

we can see that the average node degree of Citation decreases continuously and
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Table 2.3: The completeness rate of the approxBlackhole algorithm

Algorithm Wiki Citation Slashdot

approx-20% 100% 100% 100%

approx-10% 100% 100% 100%

approx-5% 100% 100% 100%

approx-2% 100% 100% 100%

approx-1% 100% 81% 100%

approx-0.5% 100% 69% 100%

becomes very small (less than 4) as p decreases, which makes the subgraph induced

from Citation less and less connected comparing to the original graph. Though the

number of nodes decreases as p decreases, there are considerable combinations, which

used to be weakly connected and could be inserted into the Blackhole priority queue

after they had been checked out, are no longer weakly connected in the subgraph any

more when p gets small. Therefore, these combinations are not qualified to become a

blackhole pattern and have to be skipped after checking. The number of combinations

that have to be checked will increase, which makes the running time becomes longer

when p is very small. It may also be the reason why the completeness rate decreases

when p gets small.

2.5.6 Blackhole Patterns in Trading Network

In this subsection, we show the results of applying the blackhole mining framework

on the Trading data set. The running time of the gBlackhole algorithm on this data
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Figure 2.9: The average node degree (α) on different data sets with different p

set is about 1s.

Here, we have detected a group of blackhole patterns in this Trading data set.

Due to the page limitation, we only show one suspicious blackhole pattern (in our

opinion). In Figure 2.10, we can see that this is a blackhole pattern consists of four

trading accounts, which forms a very typical trading-ring pattern. During this trading

day, account A first places a big amount of sell orders in the market. A small part of

them are matched with some buy orders in the market; however, the volume of sell

orders highly overwhelms the volume of buy orders during that period, which makes

the sell orders still remain a lot. This large volume of sell orders placed in the market

makes other people feel that there is an anticipation in the market that the S&P 500

index will fall down in the near future. Therefore, these public accounts start to short

the S&P 500 index at a lower price than A. Meanwhile, A’s collaborators B, C, and
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D, place buy orders to match with the sell orders from the public accounts, which

get them a large amount of long positions at a low price. A revokes its remaining

sell orders in the market, and starts to long the S&P 500 index to offset its early

short position, and finally gets a long position. By doing this way, these accounts

can accumulate a large amount of long positions at a low price. This is just a simple

description about their collaborative strategy. In practice, it would be much more

complicated. This detected blackhole pattern can be seen as an alarm for CFTC to

oversee the accounts’ owners future movements in both the futures contract market

and the underlying stock market.
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Figure 2.10: A suspicious blackhole pattern in the Trading data set

Clearly, there can be other explanations regarding this blackhole pattern, and

our concerns can be a false alarm. However, the purpose of this blackhole mining

framework is to reduce the workload of people by preliminarily filtering out a huge

number of normal patterns automatically, thus people can be more focused on the
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suspicious patterns that may commit frauds. Also, blackhole patterns can provide

us a view of the interactions among some nodes in the network, which can help to

detect the collaborative fraud activities. For example, the trading system will trigger

an alarm when the trading volume on a specific account exceeds a certain threshold.

However, it cannot identify the interactions among these accounts. Our blackhole

patterns will not only be able to identify the interactions, but may also able to find out

accounts which is under the threshold that collaborate with the suspicious accounts.

However, the use of blackhole patterns is still preliminary and more comprehensive

studies are expected in the future.

2.6 Related Work

This chapter is an extension of our preliminary work (Li, Xiong, Liu, & Zhou, 2010).

In (Li et al., 2010), we proposed a simplified version of blackhole patterns, where

the blackhole patterns have the assumption that there is no traffic flow out of the

blackhole. Also, there is no weight associated with the edge. In the preliminary work,

we provided a heuristic approach to solve the problem. The preliminary solution was

based on a set of pattern-size-independent pruning rules and a divide-and-conquer

strategy, named as the iBlackhole-DC algorithm, which was designed by exploiting

the pruning rules drived from the simplified definition of blackhole patterns.

In general, other related works can be grouped into three categories. The first cat-

egory includes the work on frequent subgraph mining, which studies how to efficiently

find frequent subgraphs in the graph data. For instance, Jiang et al. (Jiang, Xiong,

Wang, & Tan, 2009) proposed a measure for mining globally distributed frequent
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subgraphs in a single labeled graph. Meanwhile, there are many works in mining

frequent subgraphs in multiple labeled graphs, such as (Yan & Han, 2002), (Cook &

Holder, 1994), (Huan, Wang, & Prins, 2003), (J. Wang, Hsu, Lee, & Sheng, 2006),

(C. Wang, Wang, Pei, Zhu, & Shi, 2004), and (Kuramochi & Karypis, 2005). The

problems of detecting blackhole and volcano patterns are different from the above

works, since their definitions are different. Also, blackhole and volcano patterns may

not be frequent subgraphs and vice versa.

The second category includes the works for detecting community structures in

large networks. Communities in a network are groups of nodes in which connections

are dense, but between which connections are sparse (Newman, 2004). There are a lot

of works on how to detect communities in a network. For instance, Newman and Gir-

van proposed a betweenness-based method in (Newman & Girvan, 2004) and (Girvan

& Newman, 2002), Hopcroft (Hopcroft, Khan, Kulis, & Selman, 2003) proposed a sta-

ble method, and Ghosh (Ghosh & Lerman, 2008) proposed a global influence based

method to detect community structures. In addition, there are some other meth-

ods from a probabilistic view (Pathak, DeLong, Banerjee, & Erickson, 2008) (Zhou,

Manavoglu, Li, Giles, & Zha, 2006) (Steyvers, Smyth, Rosen-Zvi, & Griffiths, 2004),

rather than based on the links in the network. All the methods of detecting commu-

nity structures are based on certain definitions and criteria. However, the definitions

of blackhole and volcano patterns are different from the above definitions of commu-

nities. While the blackhole and volcano patterns are more focusing on small groups

which satisfy some specific requirements, the community structures in a network are

more vague and flexible. In terms of the scope in the network, blackhole and volcano
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patterns are more localized, while community structures are more globalized.

Finally, there is a third category of research works related to this study, which

is called anomaly or outlier detection (Hawkins, 1980) (Johnson & Wichern, 1998)

(Barnett & Lewis, 1994). Anomaly or outlier detection aims to find out objects dif-

ferent from most other objects in the data. Many efforts have been made to deal

with this problem and lots of approaches derived from statistics (Barnett & Lewis,

1994), machine learning (Breunig, Kriegel, Ng, & Sander, 2000) (Papadimitriou,

Kitagawa, Gibbons, & Faloutsos, 2003), and data mining (Chaudhary, Szalay, &

Moore, 2002) (Lazarevic & Kumar, 2005) have been developed. Most of these meth-

ods focus on traditional data types, such as vectors. Moreover, there are emerging

studies on detecting outliers in graphs. Noble and Cook (Noble & Cook, 2003) studied

anomalous subgraphs in general graphs using Minimum Description Length (MDL).

Autopart (Chakrabarti, 2004) applied MDL to find out anomalous edges. Sun et

al. (Sun, Qu, Chakrabarti, & Faloutsos, 2005) detected anomalous nodes in bipartite

graphs using random walk. OutRank also employed random walk and connectivity of

nodes to detect outliers (Moonesinghe & Tan, 2008). OddBall (Akoglu, McGlohon,

& Faloutsos, 2010) focused on detecting anomalous nodes in weighted graphs. For all

the approaches mentioned above, they mainly tackle either nodes or edges in undi-

rected graphs. In contrast, our work focuses on detecting a well-defined anomalous

structures in a directed graph.
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2.7 Summary

In this chapter, we formulated the problem of mining blackhole and volcano pat-

terns in a directed graph. These two patterns could be observed in many application

scenarios, such as the trading-ring for stock market manipulation. Indeed, it was

essentially a combinatorial problem for mining blackhole or volcano patterns. To

reduce the complexity of the problem, we first showed that the problem of finding

blackhole patterns was a dual problem of finding volcano patterns. Thus, we could

be only focused on mining blackhole patterns. To that end, we proposed two pruning

approaches to reduce the computational cost by decreasing both the number of com-

binations and the average computational cost for each combination. In the first prun-

ing approach, we introduced the concept of combination dominance to help develop

a pruning technique to reduce the exponentially growing search space. Based on this

pruning technique, we developed the gBlackhole algorithm for finding top-K black-

hole patterns. The second pruning approach, named the approxBlackhole algorithm,

was an approximate algorithm to further decrease the computational complexity over

the gBlackhole algorithm. This approxBlackhole algorithm first filtered out nodes

with small diff-weights to reduce the size of the graph, and then found the top-K

blackhole patterns in the subgraph induced by the rest of the nodes. There was a

trade-off between the efficiency and completeness of the approxBlackhole algorithm.

Finally, experimental results on real-world data sets showed that the approx-

Blackhole algorithm could be several orders of magnitude faster than the gBlackhole

algorithm, and both of them had a huge computational advantage over the brute-force
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approach. Finally, we showed the effectiveness of this blackhole mining framework by

identifying some suspicious financial fraud patterns in the simulated E-mini S&P 500

futures contract trading data from U.S. Commodity Futures Trading Commission.
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CHAPTER 3

ASSESSING SIMILARITY BETWEEN SERVICE CONTRACTS FOR RISK

PREDICTION

Major IT service providers typically manage a large portfolio of contracts with a

variety of customers. To ensure smooth delivery and continuous profitability, it is

critical for the service providers to leverage the experiences and lessons learnt from

the historical contracts and prevent similar issues from reoccurring in the future. In

this context, we investigate how to predict potential risks for new contracts based on

their similarities with existing ones. A critical challenge along this line is to effectively

measure the similarity between the contracts. To this end, extending from the Ma-

halanobis distance metric learning framework, we develop a new approach to gauge

contract similarity using expert assessment data collected prior to contract signing

(so called “contract fingerprints”). A key advantage of the proposed method is the

ability to train model with not only continuous distance measures between contract

pairs, but also the binary side information of dissimilar pairs. Finally, experimental

results on real-world service contract data show that our proposed approach greatly

outperforms existing benchmarks, and can provide more accurate contract risk as-

sessment.
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3.1 Introduction

The advance of IT services enables enterprises to offload the management of IT sys-

tems and processes to specialized service providers, so that they can focus on their

core business. Due to the complexity of IT systems and the variety of customer

environment, service contracts that need to be fulfilled by the provider can vary sig-

nificantly. Despite such variances, the experiences of service providers have shown

that successful (or unsuccessful) contracts do share common characteristics, and the

root causes of many issues experienced in contract execution can be traced back to the

risks identifiable prior to contract signing. To ensure smooth delivery and continuous

profitability, it is critical for service providers to leverage the experiences and lessons

learnt from the historical contracts to prevent similar issues from reoccurring in the

future.

To this end, we study the problem of identifying similar contracts and predicting

risks for new contracts to improve service provider’s ability of risk management. Fig-

ure 3.1 shows a typical risk management process used by a service provider. Once

received the request for proposal from a potential customer, service provider will

conduct pre-bid consulting to draft a solution proposal. Then, as the solution being

proposed to the customer, risk managers of the provider will assess both the techni-

cal and business aspects of the new contract, during which risks may be identified

and the corresponding risk mitigation steps conducted (through e.g., modification of

solution, negotiation on service level agreements and price). This is the phase during

which risk managers look for the déjà vu moments that can help identify similar risks
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that the provider has experienced in historical contracts. The risk identification and

mitigation steps will be iterated as the contract negotiation continues, until the final

contract is agreed upon and signed. After contract signing, the provider will con-

duct periodic project management reviews, to identify and address issues in contract

delivery. Traditionally, the risk assessment method employed is largely qualitative,

making it hard to leverage the lessons learnt from historical contracts, and come up

with adequate risk mitigation recommendations. We argue that a more quantitative

approach to predict the outcome of a contract, as well as its potential risks, is of great

value to the provider.

Pre-bid
Consilting

Business
Assessment

Technical
Assessment

Risk & Impact
Prediction

Contract
Signing

Project
Management

Review

Risk Mitigation Based on
Model Recommendations

Figure 3.1: A typical contract risk management process

The input data that can be used for prediction are expert assessments on the

contract prior to contract signing. In our case, these are structured questionnaire

data which cover various aspects of technical and business details of the contracts.

Answers to all m questions are scalar. Thus, each contract can be represented by

a vector of m attributes. The actual similarity (or distance) between contracts can

be evaluated in two ways. For contracts that were in trouble (i.e., under-performing
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against the original financial target), root causes were typically conducted as part

of the project management review. We measure the similarity between a pair of

such contracts by the extent to which their identified root causes overlap. Between

contracts that are healthy, we do not measure their similarities. Between a healthy

contract and a troubled contract, we deem them dissimilar. In this context, our goal

is to leverage the above training data to predict for a new contract, given only its

pre-contract assessment data, the potential outcome (i.e., healthy vs. troubled), and

the likely root causes (hence the corresponding risks) it is exposed to if troubled.

Existing classification methods, such as k-nearest neighbor (kNN), can be used to

partially solve our problem. However, the common challenge of applying such meth-

ods is to define the right metric that can be used to gauge similarity (or distance)

between contracts. Our problem shares some common characteristics with some of

the known distance metric learning problems: given a set of points and their pairwise

similarity or dissimilarity constraints as the input, it aims to learn a Mahalanobis

distance metric. However, existing methods only deal with binary distance measures

(i.e., pairs of points that are either similar or dissimilar), while we need to deal with

the unique training data that include both continuous measurements associated with

each pair of similar contracts (e.g., both financially in trouble), and data regarding

dissimilar pairs (e.g., a healthy contract vs. a troubled one). In this chapter, we

formulate a constrained optimization problem, with the objective of learning a Ma-

halanobis distance metric, such that the learnt distance for each pair of similar points

is close to their actual distance, while each pair of dissimilar points can be well sepa-

rated. In addition, the distance metric needs to be positive semi-definite in order to
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ensure it satisfies non-negativity and triangle inequality.

To solve the problem, we first show that this optimization problem is convex, which

ensures any local minimum solution is the global minimum. Then, we introduce the

algorithm of Gradient Descent alternating Iterative Projection (GDIP) to solve the

problem in an indirect but efficient way, since the widely used Newton’s method

becomes computationally prohibitive due to the quadratically increased parameters

of the learnt metric. The proposed algorithm consists of two steps. In the first step,

we use the gradient descent method to optimize the objective function. In the second

step, we use iterative projections to satisfy the constraints. Finally, with extensive

experiments on real-world contract data, we show that the prediction performance

of using distance metric identified by our method outperforms the performances of

using existing ones by a significant margin.

3.2 Background

In this section, we introduce the data set that is used for contract risk prediction

in this chapter and the measurement that is employed to define similarity between

contracts.

3.2.1 Contract Fingerprint and Performance Data

We collected the expert assessment data from the risk management process as de-

picted in Figure 3.1. During the contract engagement process, three separate expert

assessments are conducted, T , P, and C, with T focusing on evaluating the technical

risks involved in the solution design, P and C focusing on evaluating the business risks

related to business proposals and contracts. All three assessments are conducted in
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the form of questionnaire: T has 226 questions, P has 82 questions, and C has 26

questions. Together, these 334 questions compose the features, or finger prints, of a

service contract. The values of all these features are integers between 0 and 10 after

normalization, and each contract can be represented by a vector of 334 attributes.

All historical contracts are labeled into two classes, healthy contracts that have

met their financial targets and troubled contracts that have missed their financial

targets. For each troubled contract, the project management team conducts root

cause analysis after the financial outcome is reported. And as a result, a troubled

contract will be assigned with several root causes selected from a predefined set. These

root causes are developed by experts through years of experience to cover most of the

common problems encountered during contract execution. If a contract is healthy,

then no root cause analysis is conducted. Table 3.1 gives an illustrative example of

the data set we just described. The data set can be viewed as a matrix. Each row

represents a feature in contract fingerprint data and each column represents a service

contract. The features T .i, P.i, and C.i correspond to the questions from assessments

T , P, and C, respectively. Note that if a feature has the value of “N/A”, it means

the answer to the corresponding question is missing or not available. The label of a

contract, 1 or −1, indicates whether a contract is troubled or healthy. The value in

each root cause row (RC.i) indicates whether the root cause is applicable (i.e., with

value “1”) to a troubled contract or not (i.e., with value “0”).
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Table 3.1: Data set sample for illustration purpose

ID 1 2 3 4 5

T .1 2 3 2 1 3

T .2 1 N/A N/A N/A N/A

P.1 N/A N/A 2 N/A 2

P.2 2 3 4 N/A 1

C.1 1 6 1 N/A 4

C.2 3 N/A 7 N/A N/A

Label 1 1 1 1 -1

RC.1 0 1 0 0 N/A

RC.2 1 0 0 1 N/A

3.2.2 Contract Distance Measurement

We denote H as the set of healthy contracts, and T as the set of troubled contracts.

Based on the label information, we obtain the sets of pairwise equivalence constraints

(S) and inequivalence constraints (D). We also define the following distance measures

for each pair of contracts in S.

Specifically, for each pair of service contracts xi and xj:

(1) If xi ∈ T and xj ∈ T , assign (xi,xj) into S. In addition, apply the Jaccard

dissimilarity index (Tan et al., 2005), which is a widely used metric measuring distance

between sets, to define the distance between xi and xj as shown in Eq. (3.1). Here,

RC(xi) and RC(xj) are the sets of root causes of contract xi and xj , respectively. In

other words, the more root causes two contracts share in common, the closer is the
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distance between them.

dij = dJ(xi,xj) = 1−
|RC(xi) ∩RC(xj)|

|RC(xi) ∪RC(xj)|
(3.1)

(2) If xi ∈ H and xj ∈ T , or vice versa, assign (xi,xj) into D. We label any

troubled contract and any healthy contract as dissimilar in order to separate the two

classes from each other.

(3) If xi ∈ H and xj ∈ H , no constraints are applied, as there is no root cause or

other side information available to determine the distance between them.

3.3 Contract Risk Prediction

Given the data set described in last section, we would like to predict (1) whether a

new contract is more likely to be a healthy or troubled one; and if a troubled one,

(2) what are the most likely root causes for the trouble. We adopt the well-known

k-nearest neighbor (kNN) approach for both predictions. Namely, for a new contract

x and a given distance metric, we identify its k-nearest neighbors, kNN(x). Then we

predict the label of x by the “voting” of its kNNs as shown in Eq. (3.2):

l(x) = sgn(
k

∑

i=1

wi · l(kNN(x)i)) (3.2)

where l(x) is the label of x (i.e., 1 for troubled contract and −1 for healthy contract),

sgn is the sign function, kNN(x)i is x’s ith nearest neighbor, and wi = 1/log2(1 + i)

is the voting weight of the ith nearest neighbor. Note that kNN(x) are sorted in the

ascending order of their distance to x, i.e., kNN(x)1 is x’s most nearest neighbor,

while kNN(x)k has the furthest distance to x among its kNNs.
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If a contract x is predicted as troubled, we further predict its potential root causes.

Let R be the set of all predefined root causes. For each root cause rc ∈ R, we define

the vote of rc as follows:

v(rc) =
k

∑

i=1

wi · 1{rc ∈ RC(kNN(x)i)} (3.3)

where RC(x) is the set of root causes of x, kNN(x)i is x’s ith nearest neighbor,

wi = 1/log2(1 + i) is the voting weight of the ith nearest neighbor, and 1{·} is the

indicator function such that 1{True} = 1 and 1{False} = 0. We then select the root

causes with top-t highest votes as the predicted root causes of x.

3.4 Problem Formulation

Given the prediction approach described in last section, the key problem is to define

an appropriate distance metric to measure the similarity between contracts. Sup-

pose there are a set of contracts X = {x1,x2, . . . ,xn}, where each xi ∈ R
m is a

vector of m numerical features. For training data, we are given the sets of pairwise

equivalence and inequivalence constraints: S = {(xi,xj) |xi and xj are similar} and

D = {(xi,xj) |xi and xj are dissimilar}. We are also given a continuous distance

measurement dij ∈ (0, 1) between each pair of points (xi,xj) ∈ S. The distance met-

ric we seek to define is basically a Mahalanobis distance: dA(xi,xj) = ||xi − xj||A =

((xi − xj)
TA(xi − xj))

1/2 = 〈A, (xi − xj)(xi − xj)
T 〉

1/2
F , where A is a m × m real

symmetric matrix, and 〈·, ·〉F is the Frobenius inner product of two matrices with the

same size, such that 〈A,B〉F =
∑

i

∑

j AijBij . A specifies a family of Mahalanobis

distance metrics over R
m, and learning such a distance metric is equivalent to first

introducing a linear transformation that rescales each point xi to A1/2xi and then
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applying the standard Euclidean metric to the rescaled data. Specifically, setting

A = I gives the Euclidean distance. Note that our problem setting is different from

the traditional distance metric learning (Xing, Ng, Jordan, & Russell, 2002), which

only considers the binary input (i.e., similar or dissimilar pairs).

Our objective is to find out a full ranked Mahalanobis distance metric A, such

that the learnt distance matches with the given distance as much as possible, while

satisfying the additional constraints of similar and dissimilar pairs. Furthermore, in

order to ensure A is a distance metric which satisfies non-negativity and triangle

inequality, we require A to be positive semi-definite, i.e., A � 0.

We formulate our distance metric learning problem as the following constrained

optimization problem:

min
A

SSE(A) =
1

2

∑

(xi,xj)∈S

(||xi − xj||
2
A − d2ij)

2
(3.4)

s.t. ||xi − xj ||
2
A ≥ 1, ∀(xi,xj) ∈ D (3.5)

A � 0 (3.6)

We choose the objective function that minimizes the sum of squared errors between

the learnt Mahalanobis distance and the actual distance for each pair of contracts in

S. Note that we use the term (||xi−xj ||
2
A−d

2
ij)

2 rather than its widely used form (Xing

et al., 2002) of (||xi − xj||A − dij)
2 in Eq. (3.4) in order to simplify the form of its

first-order derivative, which will be further discussed in the next section. However,

this change still keeps the same monotonicity as its original term. In order to separate

pairs of dissimilar contracts, we simply let the distance for each pair of contracts in
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D be greater than 1, which is the largest possible distance between a pair of similar

contracts.

3.5 Algorithm Design

The optimization problem formulated in last section has an objective function that is

linear in parameter A. In addition, constraints (3.5) and (3.6) can be easily verified as

convex. Thus, the problem is a convex optimization problem, which implies that any

local minimum solution is the global minimum. Therefore, we can derive an efficient

local-minima-free algorithm to solve the problem.

Let zij = xi − xj. Then SSE(A) = 1
2

∑

(xi,xj)∈S
(zTijAzij − d2ij)

2. In order to find

out the local minimum, we set SSE’s first order derivative to be 0:

d

dA
SSE =

∑

(xi,xj)∈S

(zTijAzij − d2ij) ·
d(zTijAzij − d2ij)

dA

=
∑

(xi,xj)∈S

(zTijAzij − d2ij)zijz
T
ij = 0

The generally used Newton’s method can become computationally prohibited

when the size of A is large, due to its quadratically increased parameters. It re-

quires O(n6) time to invert the Hessian over n2 parameters (Xing et al., 2002). In

addition, constraints (3.5) and (3.6) make it even harder to enforce. To handle the

computational challenge, we introduce Gradient Descent alternating Iterative Projec-

tion (GDIP), an indirect but efficient approach to solve this optimization problem.

Figure 3.2 shows the pseudo code of the algorithm. Here, || · ||F is the Frobenius norm

of a matrix, i.e., ||A||F = 〈A,A〉
1/2
F .

The algorithm consists of two iterative steps. In the first step, we use the gradient
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1. Iterate

2. A := A− γ∇SSE(A)

3. Iterate

4. A := argminA′{||A′ −A||F : A′ � 0}

5. foreach (xi,xj) ∈ D

6. A := argminA′{||A′ −A||F : ||xi − xj||
2
A′ ≥ 1}

7. end for

8. until A converges

9. until convergence

Figure 3.2: Gradient descent alternating iterative projection algorithm

descent method to optimize the objective function SSE (line 2 in Figure 3.2). In the

second step, we apply the method of iterative projections to ensure constraints (3.5)

and (3.6) hold (line 3-8 in Figure 3.2). Both steps can be done inexpensively as we

discuss next.

3.5.1 Gradient Descent

The gradient descent method is a first-order optimization algorithm. Starting from a

random point, it takes steps proportional to the negative of the gradient of the func-

tion (i.e., first order derivative) at the current point, and iteratively approaches a local
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minimum (Boyd & Vandenberghe, 2004). Assume that a multivariable function F (x)

is defined and is differentiable in a neighborhood of a point a, F (x) decreases fastest

if one goes from a in the direction of the negative gradient of F at a, i.e., −∇F (a). In

other words, let b = a−γ∇F (a), where γ is the step size and usually a small enough

number, then F (a) ≥ F (b). Starting from a random guess x0 for a local minimum of

F , one can calculate the sequence {x0,x1,x2, . . .} where xt+1 = xt − γ∇F (xt), t ≥ 0.

Obviously, F (x0) ≥ F (x1) ≥ F (x2) ≥ · · · . With certain assumptions on the function

F (e.g., F is a convex function) and particular choices of γ (e.g., chosen via a line

search method that satisfies the Wolfe conditions), it is guaranteed that the sequence

will converge to a local minimum (Boyd & Vandenberghe, 2004). In practice, the

sequence is considered as converged (i.e., the stopping criterion) when ||∇F (x)|| ≤ η,

where η is a small and positive number.

In our case, we set A0 = I, and iteratively let At+1 = At−γt∇SSE(At). Note that

γ can be changed at every iteration t, which will be discussed in the next subsection.

When ||∇SSE(At)|| ≤ 1, we consider At as converged and the iteration procedure

stops. Since the local minimum is also the global minimum, the gradient descent

method can lead to the minimum value of the objective function.

3.5.2 Backtracking Line Search

The gradient descent method helps to determine a descent direction −∇F (x), along

which the objective function F (x) will be reduced at point x. We also need to

determine how far x should move along the descent direction (i.e., γ), which can be

solved using the widely used line search method.
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In our approach, we adopt a simple yet effective method called backtracking line

search (Boyd & Vandenberghe, 2004). This method requires defining parameters

0 < α < 1 and 0 < β < 1. It starts with unit step size and then reduces it by factor

β until the stopping condition F (x+ γ∆x) ≤ F (x) +αγ∇F (x)T∆x (i.e., the Armijo

rule) is met. Figure 3.3 shows the customized backtracking line search method to

determine the step size γt for the tth iteration of the gradient descent.

1. γt := 1

2. while SSE(At − γt∇SSE(At)) >

SSE(At)− αγt∇SSE(At)
T∇SSE(At)

3. γt := βγt

4. end while

Figure 3.3: Backtracking line search algorithm

3.5.3 Iterative Projection

The first step of the tth iteration (i.e., gradient descent) gives us the current optimal

matrix At. For the second step, we identify the best possible substituting matrix A′

t of

At, such that it is the closest to At in the Frobenius norm, among all the matrices that

satisfy constraints (3.5) and (3.6). This can be achieved by repeatedly projecting At

onto the spaces of C1 = {A
′

t : A
′

t � 0} and C2 = {A
′

t : ||xi−xj||
2
A′

t
≥ 1, ∀(xi,xj) ∈ D}
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until At converges.

The first projection step onto C1 can be done by eigen-decomposition (line 4 in

Figure 3.2). We first factorize At into its canonical form: At = QΛQT , where Q is an

orthogonal matrix (the columns of which are eigenvectors of At), and Λ is a real and

diagonal matrix (having the corresponding eigenvalues of At on the diagonal). We

replace Λ’s negative diagonal values with 0 and denote it as Λ̃, i.e., Λ̃ = max(Λ, 0),

and let A′

t = QΛ̃QT . In this way, we get a matrixA′

t which is positive semi-definite and

has the minimum Frobenius distance to At. By replacing At with A′

t (i.e., At := A′

t),

we have the projection of At onto C1.

Constraint (3.5) consists of a sequence of single linear constraints; therefore, pro-

jecting At onto C2 can be done by a series of single projections, where each single

projection is associated with one linear constraint (line 5-7 in Figure 3.2). For each

(xi,xj) ∈ D, we project At onto the space {A
′

t : ||xi−xj ||
2
A′

t
≥ 1} (line 6 in Figure 3.2).

This projection can be utilized by formulating into another optimization problem as

shown in Eq. (3.7), which finds out a substitution matrix A′

t that is the closest to At in

Frobenius form and satisfies the constraint of ||xi−xj ||
2
A′

t
≥ 1. In Eq. (3.7), we denote

the column vectors after the vectorization of matrix A′

t, At and zijz
T
ij (zij = xi − xj)

as a′

t, at and b, respectively. Note that ||xi − xj||
2
A′

t
= 〈A′

t, zijz
T
ij〉F = a′

t
Tb, and the

column vector after the vectorization of matrix









1 2 3

4 5 6









is (1 4 2 5 3 6)T .

min
a
′

t

err(a′

t) =
1

2
||a′

t − at||
2

s.t. a′

t
T
b ≥ 1

(3.7)
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Let λ ≥ 0 be the Lagrange multiplier associated with the constraint, we have the

Lagrangian of the objective function as follows:

L(a′

t, λ) =
1

2
||a′

t − at||
2 − λ(a′

t
T
b− 1) (3.8)

Apply the Karush-Kuhn-Tucker (KKT) conditions (Kuhn & Tucker, 1951)(Karush,

1939) to Eq. (3.8), we have the following equations:

∂L

∂a′

t

= a′

t − at − λb = 0 (3.9)

a′

t
T
b− 1 ≥ 0 (3.10)

λ ≥ 0 (3.11)

λ(a′

t
T
b− 1) = 0 (3.12)

We start solving from Eq. (3.12). If λ = 0, from Eq. (3.9) we have a′

t = at. In

this case, constraint (3.10) becomes aT
t b ≥ 1.

If λ 6= 0, then a′

t
Tb− 1 = 0. Multiply Eq. (3.9) by bT from the left-hand side, we

will get

bTa′

t − bTat − λbTb = 0 (3.13)

Since a′

t
Tb is a real number, we have bTa′

t = a′

t
Tb = 1. Substituting the correspond-

ing part in Eq. (3.13), we get

λ =
1− bTat

bTb
=
−aT

t b+ 1

||b||2
(3.14)

Combining Eq. (3.9) and (3.14), the close form of a′

t can be written as

a′

t = at + λb = at +
−aT

t b+ 1

||b||2
· b (3.15)
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In this case, constraint (3.11) becomes aT
t b ≤ 1.

Finally, by combining the above two cases and converting the column vector a′

t

back to matrix A′

t, we can have the expression of A′

t when projecting At onto the space

{A′

t : ||xi − xj||
2
A′

t
≥ 1, where (xi,xj) ∈ D} as shown in Eq. (3.16). The projection

of At onto C2 can be achieved by performing a series of single projections and letting

A′

t be the new value of At at the end of each projection.

At := A′

t =



















At, if 〈At, zijz
T
ij〉F ≥ 1

At +
1− 〈At, zijz

T
ij〉F

||zijz
T
ij||

2
F

· zijz
T
ij , otherwise

(3.16)

Combining the two projection methods discussed above, our method ensures the

convergence of A within constraints (3.5) and (3.6).

3.6 Experimental Results

In this section, we provide the experimental results on real-world service contract data

obtained from a major IT service provider. We evaluate the overall performance of

our proposed method. In particular, we compare our distance metric learning method

with the existing methods.

3.6.1 Data Cleaning and Preprocessing

The experiments are conducted on a data set of 470 services contracts. As introduced

in Section 3.2, each contract has 334 features, the healthy/troubled label, and the

identified root causes, if it is a troubled one. However, this data set contains a large

portion of missing feature values - 278 out of 334 features have missing values great

than 50%, and 321 out of 470 contracts have missing feature values greater than 50%.
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We eliminate the data objects or features with missing values more than 50% from the

raw data, since measuring distance between contracts with that amount of missing

data could lead to inaccurate and misleading results. Finally, the trimmed data set

has 149 contracts, among which 43 are troubled contracts and 106 are healthy ones,

with each contract having 56 features. There is still a small portion of missing feature

values (about 2%) in the data set after cleaning. We estimate the value of missing

entries as the mode of the corresponding features.

3.6.2 Baseline Algorithm for Comparison

We use Xing’s method (Xing et al., 2002) as the baseline algorithm, since it not

only is the most representative approach in distance metric learning, but also has

a problem setting similar to ours. Xing formulated the problem of learning a fully

ranked Mahalanobis distance metric as a constrained convex optimization problem,

based on the pairwise equivalence constraints and inequivalence constraints. The

specification of the problem formulation is shown in Eq. (3.17), where xi and xj are

m-dimensional points, S is the set of pairwise equivalence constraints, D is the set of

pairwise inequivalence constraints, and A is the Mahalanobis distance metric.

min
A

SSE(A) =
∑

(xi,xj)∈S

||xi − xj||
2
A

s.t.
∑

(xi,xj)∈D

||xi − xj||A ≥ 1

A � 0

(3.17)

We obtain the sets of pairwise equivalence or inequivalence constraints used in the

baseline method from the side information of the data. Specifically, for each pair of
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service contracts xi and xj:

(1) If xi ∈ T and xj ∈ T , compute their Jaccard distance dij from Eq. (3.1). If

dij ≤ θ, assign (xi,xj) into S, otherwise, assign (xi,xj) into D. θ ∈ [0, 1] is a user

specified threshold parameter, and when the pairwise Jaccard distance of two points

is below the threshold, we consider them as a similar pair, otherwise, a dissimilar

pair.

(2) If xi ∈ H and xj ∈ T , or vice versa, assign (xi,xj) into D. In other words,

troubled contract and healthy contract must be separated away from each other.

(3) If xi ∈ H and xj ∈ H , simply ignore this case.

3.6.3 Performance of Contract Classification

We first evaluate the performance of classifying a new contract as healthy or troubled,

when different distance metrics are used. We use leave-one-out cross-validation (Tan

et al., 2005), which involves using only one data point from the data set as the

validation (testing) data, and the remaining data points as the training data. This

procedure is repeated n times such that each data point in the data set is used exactly

once as the validation data, where n is the size of the data set.

In each iteration of the cross-validation, one data point x is chosen as the validation

data. The other n− 1 data points are used as the training data to learn a full ranked

Mahalanobis distance metric A via our GDIP algorithm or the baseline method. We

can then find out x’s k-nearest neighbors (kNN) under distance metric A, and predict

the label of x by the voting of its kNN as shown in Eq. (3.2).

Combining the predicted labels of all n data points with their actual labels, we can



- 74 -

Table 3.2: Confusion matrix of the best classification result

Predicted Class

+ −

Actual Class
+ 43 (TP) 0 (FN )

− 22 (FP) 84 (TN )

get the confusion matrix that summarizes the number of instances predicted correctly

or incorrectly by a classification model (e.g., Table 3.2). For binary classification, the

rare class is often denoted as the positive class, while the majority class is denoted as

the negative class, based on which we can have the definition of False/True Positives

(FP/TP) and False/True Negatives (FN/TN ). In our case, the positive class is the

set of troubled contracts while the negative class is the set of healthy contracts, since

the former is much more important than the latter. Then we employ three widely

used measures (Tan et al., 2005) - precision (p), recall (r), and F-measure (F ) - that

value the success of detecting the positive class more significantly than detecting the

negative class, to analyze the prediction result. The definitions of these measures are

as follows:

p =
TP

TP + FP
, r =

TP

TP + FN
, F =

2rp

r + p

For the baseline Xing’s method, we apply different values of threshold parameter

(θ) and get the corresponding confusion matrices and F-measures. As an additional

baseline, we also calculate the F-measure of simply using the Euclidean distance

metric. By varying the value of k, we compare the results of all these baseline methods

with our method in Figure 3.4. Note that in the figure, Xing-0.8 represents Xing’s
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method with θ = 0.8.

As shown in Figure 3.4, classification result based on distance metric learnt from

our GDIP algorithm generally outperforms the results of the other methods, and

our method has the better performance when k ≤ 5, and the best performance at

k = 3. The corresponding confusion matrix of k = 3 is shown in Table 3.2. The

recall rate is 100%, which none of the other methods can achieve. This means that

using our method, all troubled contracts can be predicted correctly, and there is no

troubled contract misclassified as healthy. In the meantime, precision rate is 66%,

which means one third of the contracts that the classifier predicts as troubled are

actually healthy. Overall, this is the result we desire in practice, since the potential

loss of misclassifying a troubled contract is much bigger than misclassifying a healthy

contract.
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Figure 3.4: Classification performances using different distance metrics
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3.6.4 Performance of Root Cause Prediction

Next, we evaluate the performance of predicting the root causes of a troubled con-

tract, when different distance metrics are used. We again use the leave-one-out cross-

validation method in this evaluation. In each iteration, one troubled contract x is

chosen for validation, and the rest n − 1 contracts are used as the training data to

learn a distance metric A. Under metric A, we can obtain x’s k-nearest neighbors,

and calculate the vote of each root cause as shown in Eq. (3.3). The predicted root

causes of x are the ones with top-t highest votes. We denote x’s predicted root

causes as RCp(x). By comparing with x’s actual root causes RC(x), we can calculate

the precision (p), recall (r), and F-measure (F ) when predicting x’s root causes as

follows:

p =
|RC(x) ∩ RCp(x)|

|RCp(x)|
, r =

|RC(x) ∩RCp(x)|

|RC(x)|
, F =

2rp

r + p

At the end of the cross-validation process, we calculate the averaged precision,

recall, and F-measure of predicting root causes of all troubled contracts. We then

compare the performance of our method with the baseline algorithms. For Xing’s

method, we apply different values of threshold parameter (θ) and get the correspond-

ing measures. We also use the Euclidean distance metric as an additional baseline

method. By varying the values of k and t, we compare the results of all these baseline

methods with our method in Figure 3.5. The figure shows a set of representative

results with k = 3 and k = 10, and Xing’s method with θ = 0.8. The observations

with other parameter settings are similar.
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(a) GDIP, k = 3
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(b) GDIP, k = 10
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(c) Xing-0.8, k = 3
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(d) Xing-0.8, k = 10

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

A
ve

ra
ge

 R
at

io

 

 

Precision
Recall
F−measure

(e) Eucl, k = 3
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(f) Eucl, k = 10

Figure 3.5: Root cause prediction performances of troubled contracts using different

distance metrics

Figure 3.5 clearly shows that using distance metric learnt from our GDIP algo-

rithm results in better prediction on root causes. The best performance in terms of
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the F-measure are generally achieved at k = 3, which is consistent with the contract

classification results. In addition, we can also observe the trade-off between precision

and recall in the figure. As t increases, precision gradually decreases whereas recall

asymptotically approaches its maximum possible value. The maximum value of the

average recall is less than 1, since there exist several root causes in the data set that

were only observed in few contracts. Thus, the maximum recall value of such con-

tracts cannot be equal to 1, resulting in the maximum value of the average recall less

than 1. In practice, the practitioner may prefer the model with higher recall to the

one with the best F-measure, since the potential loss of missing a true root cause is

much bigger than the cost of examining several falsely predicted root causes.

3.7 Related Work

While there are existing works related to using predictive models for contract risk

management, many of them focus on different aspects in the risk management life-

cycle. For example, Mojsilovic et al. (Mojsilović et al., 2007) use predictive models

to estimate the likelihood of revenue erosion in large outsourcing engagements, while

Goo et al. (Goo et al., 2007) study factors that influence the duration of IT out-

sourcing relationships. In addition, there are related studies on risk management in

large and complex projects (Leung et al., 1998), (Deleris et al., 2007). Different

from these studies, our work focuses on the unique problem of identifying similarity

between historical and new contracts, and using this information to predict risks for

the latter.

The problem studied in this chapter is also related to distance metric learning,
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which aim to learn a distance metric for the input data space from a given collection

of similar and dissimilar pairs of points (Yang & Jin, 2006), using either supervised or

unsupervised learning methods. Supervised distance metric learning typically deals

with data with equivalence constraints, i.e., pairs of data points in the same class,

or inequivalence constraints, i.e., pairs of data points that belong to different classes.

For instance, Xing et al. (Xing et al., 2002) formulated the problem as a constrained

convex programming problem, and learnt a global distance metric that minimized the

distance between the pairs of data points in the equivalence constraints, while sepa-

rated all pairs of data points in the inequivalence constraints far apart at the same

time. Later, many additional methods or extensions were proposed with varying op-

timization frameworks or for different target use cases (Bar-Hillel, Hertz, Shental,

& Weinshall, 2003), (Kwok & Tsang, 2003), (Yang, Jin, & Sukthankar, 2007). In

addition, there are some other researches focusing on local adaptive distance metric

learning, whose goal is to find feature weights that are adapted to individual test

examples (Domeniconi, Gunopulos, et al., 2002), (Peng, Heisterkamp, & Dai, 2002),

(Zhang, Tang, & Kwok, 2005). Meanwhile, unsupervised distance metric learning

does not deal with input data annotated with labels. Its goal is to learn an underly-

ing low-dimensional manifold where geometric relationships (e.g., distance) between

most of the observed data (with no label information) can be preserved. Thus, unsu-

pervised distance metric learning is also known as the dimension reduction. Existing

approaches include the linear dimension reduction algorithms, such as Principle Com-

ponent Analysis (PCA) (Jolliffe, 2005) and Multidimensional Scaling (MDS) (Cox &

Cox, 2000), and the nonlinear approaches, e.g., ISOMAP (Tenenbaum, De Silva, &
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Langford, 2000) and Local Linear Embedding (LLE) (Saul & Roweis, 2003). Our

work leverages the label information annotated with the data, thus falls into the cat-

egory of supervised distance metric learning. It deals with the unique data set and

application as an extension to the existing methods.

3.8 Summary

In this chapter, we investigated the problem of evaluating potential risks for new

service contracts by measuring the similarity of contracts. It was motivated by the

understanding that experiences and lessons learnt from historical contracts were of

great value to IT service providers for risk management. A key challenge was how

to define the right metric to measure contract similarity when there were continuous

distance measurements between contract pairs. We formulated the problem as an

extension of the existing Mahalanobis distance metric learning problem, which could

only deal with binary distance measurements. We proposed the Gradient Descent

alternating Iterative Projection method (GDIP) to solve the problem efficiently. Fi-

nally, experiments on real-world contract fingerprint data showed that distance metric

identified through the GDIP approach could lead to better performances than existing

ones in terms of both contract classification and root cause prediction.
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CHAPTER 4

IDENTIFY INDICATIVE FINANCIAL MEASURES USING FINANCIAL

STATEMENT OF BANKRUPT COMPANIES

Traditional auditing process and risk analysis could not match the increased demand

of automatic and efficient detection of financial statement fraud. Data mining tech-

niques are used to help address this challenge. In this chapter, clustering technique

is applied to identify the clustering effect of bankrupt companies in different busi-

ness sectors by using the financial statement information. The financial measures

that have the most significant indicative power for future bankruptcy have also been

uncovered.

4.1 Introduction

Financial fraud detection is one of the most important aspects in financial risk man-

agement. In recent years, there is an increasing trend in financial losses due to finan-

cial fraud and bankruptcy. A number of high-profile companies, such as Enron, World

Corm, Xerox and Lucent, were charged with fraud by the US Security and Exchange

Commission (SEC) in the past decade. Hence, how to develop an efficient and ef-

fective financial fraud detection framework draws the best interests among investors,

public, researchers, auditors and regulators.

In general, the published financial statements are one of the most pervasive and
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consistently available predictor of a companys future performance. The financial

statements consist of balance sheet, income statement, and cash flow statement. Each

statement provides the basis for understanding and evaluating the financial status of

a company. However, fraudulent financial reporting can destroy the true picture

of a companys financial situation. For example, by manipulating elements such as

liabilities, expenses, or losses in the financial statement, the unhealthy financial status

can be covered. Nowadays, financial statement fraud is one of the most notable

management frauds in the U.S. due to the large financial losses it yields. Therefore,

financial statement fraud detection becomes a crucial and pervasive issue in financial

risk management.

In literature, there have been numerous researches conducted in the area of fi-

nancial statement fraud detection. In accounting area, hundreds of financial indica-

tors which extract significant features from financial statement have been proposed

to build the predication model of high fraud-potential and high bankrupt-potential

firms (Altman, 1968), (Loebbecke et al., 1989). These indicators are proposed based

on empirical experience. On the other hand, in knowledge discovery area, several re-

searchers have attempted to adapt data mining techniques to refine financial features

from large financial statement datasets. Most of these works employed supervised

learning techniques to solve classification tasks (Kirkos et al., 2007), (Apparao et

al., 2009). While these studies support the significance of classification techniques to

analysis financial statement, there has been little research in literature in the direc-

tion of applying unsupervised learning techniques to analyze the financial statement

data. Moreover, majority of the existing researches only focus on a particular busi-
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ness sector. For instance, bankruptcy predictions have been conducted in the railroad,

banking, brokerage, education, and insurance industries (Zmijewski, 1984).

In this chapter, we would like to find the answer to an interesting question: can we

use financial statement information to identify which business sector has the strongest

clustering effect, such that the financial features we extracted from the past bankrupt

(financial unhealthy) companies in the business sector has the most significant pre-

dictive power in the future? The question is not only useful for auditors, but also

important for investors. Investors can prevent potential losses by filtering out firms

with high potential bankruptcy risks based on the learnt characteristics. Auditors

can use the valuable features as an additional decision aid to monitor the financial

situation of the client firm.

We utilize the advantages in both the accounting and data mining areas to solve

the problem. First of all, financial statement data has its unique data characteristics.

We leverage the domain knowledge in accounting area to help us select valuable

financial features. Then we employ clustering techniques, an unsupervised learning

data mining technique of grouping similar data objects while distinguishing dissimilar

ones (Tan et al., 2005), to identify business sector in which bankrupt companies

has strong clustering effects. Finally the most indicative financial features for the

bankrupt companies in the business sector can be uncovered from the hidden data.

Experimental results show that among 6 business sectors (Mining, Manufacturing,

Transportation and Utilities, Wholesale, Retail Trade, and Services), retail trade

industry has the strongest clustering effect. This result is validated by significant

tests. 10 most indicative financial features have also been extracted for the bankrupt
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companies in retail business.

4.2 Related Work

Related work can be grouped into two categories. In accounting literature, financial

indicators which extract significant features from financial statement are a tradi-

tional way to build the predication model of high fraud-potential and high bankrupt-

potential firms. In 1968, Altman published one of the most prominent early models

of bankruptcy prediction - Altman Z-score Financial Analysis Tool, which is still

widely applied today (Altman, 1968). Altman Z-score method predicts the potential

bankruptcy of a company by the combination of five financial statement ratios. Other

well-known financial indicators, such as LOGDEBT, DEBTEQ, SALGRTH, RECA,

RECSAL, INVTA, and GPTA (Fanning & Cogger, 1998), (Feroz, Kwon, Pastena, &

Park, 2000), (Loebbecke et al., 1989), (Persons, 2011), (Stice, Albrecht, & Brown,

1991), (Stice, 1991), have also been proposed. These indicators are usually based on

empirical experience.

In data mining literature, several groups of researchers have devoted a significant

amount of effort in using modern methods to study financial statement fraud de-

tection from different perspectives. In general, previous researches focused on using

classification algorithm, such as neural network, regression and decision tree. Green

and Choi (Green & Choi, 1997) presented a neural network fraud classification model

by using five ratios and three accounts as input. The results showed that neural net-

work had significant capabilities when used as a fraud detection tool. Fanning and

Cogger (Fanning & Cogger, 1998) applied neural network to predict management
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fraud. Using public available predictors from fraudulent financial statements, they

developed a model of eight variables with a high probability of detection. There are

also some other works along this line using neural network for financial statement

fraud detection (Lin et al., 2003), (Thiprungsri & Vasarhelyi, 2011). Another group

of researches applied regression methods to study financial statement fraud detec-

tion. For example, Bell and Carcello (Bell & Carcello, 2000) developed a logistic

regression model that estimated the likelihood of fraudulent financial reporting for

an audit client, conditioned on the presence or absence of several fraud-risk factors.

Abbott et al. (Abbott et al., 2002) employed statistical regression analysis to examine

if the existence of an independent audit committee mitigated the likelihood of fraud.

Spathis (Spathis, 2002) also constructed a model to detect falsified financial state-

ments using logistic regression. The result suggested that it was promising to detect

falsified financial statement through the analysis of published financial statements.

Based on earlier works, some comprehensive studies have been proposed in this

area. For example, Kirkos et al. (Kirkos et al., 2007) conducted a comprehensive

study for fraudulent financial statement (FFS) detection. The dataset included a

sample of 38 FFS and 38 non-FFS in Greece, and ten financial variables as potential

predictors of FFS. Three data mining models - neural network, decision tree and

Bayesian belief network - had been employed. The study investigated the usefulness

of these models in the identification of FFS. In addition, Yue et al. (Yue, Wu, Wang,

Li, & Chu, 2007) summarized the previous literatures about financial statement fraud

detection. The authors reviewed the literature of data mining based financial fraud

detection researches and generalized the previous works based on learning tasks and
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learning algorithms. While the above studies support the significance of supervised

learning techniques to analyze financial statement fraud, there has been little research

in literature in the direction of applying unsupervised learning techniques, such as

clustering analysis, to financial statement fraud analysis.

4.3 Data Collection and Preprocessing

We collect a list of 801 companies as the target firms of this study in the time period

of 1981-2011 that were either charged bankruptcy or suspended from stock market

according to the UCLA bankruptcy research database1 . The 801 companies are

grouped into 8 business sectors as follows: A) Agricultural Production Crops, B)

Mining, C) Construction, D) Manufacturing, E) Transportation, Communication,

Electric, and Gas, F) Wholesale, G) Retail Trade, and I) Services. We exclude the

companies in the financial industry from the list since the structure of their financial

statements differs from companies in other industries.

Then, we retrieve the raw financial statement data of the listed companies from

COMPUSTAT database of Wharton Research Data Service (WRDS)2 , which is the

data source for a large portion of bankruptcy studies in literature. For each company,

we extract its financial statements of three consecutive years backwards since the

year they were charged for bankruptcy or the year they were announced as trading

suspension. As a result, we collect a raw dataset which consists of 2403 instances

(the financial statement for one company of one year is treated as an instance) and

125 features for each instance. Among the 125 features, 14 fields are identifiers and

1http://lopucki.law.ucla.edu/index.htm
2https://wrds-web.wharton.upenn.edu/wrds
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company information, while the rest 111 fields are account information extracted from

the basic formal financial statements.

4.4 Data Cleaning and Transformation

Most of the features extracted from the basic formal financial statements can not be

directly used for research purposes, since they provide very little information. In ac-

counting literature, a large number of financial ratios and indicators which are derived

from the raw data have been proposed to gain a deeper insight of a companys financial

healthy status. For example, Altmans Z-score, an indicator which is extensively used

in the areas of bankruptcy prediction and financial distress analysis, is calculated

based on 8 account variables (Altman, 1968). We go through a literature survey in

the areas of fraudulent financial statement and financial risk analysis (Altman, 1968),

(Fanning & Cogger, 1998), (Feroz et al., 2000), (Loebbecke et al., 1989), (Persons,

2011), (Stice et al., 1991), (Stice, 1991), and select 30 financial indicators that are

proved to be significantly indicative as the features of our dataset. Table 4.1 lists the

name of the selected 30 features. The detailed calculation formulas and descriptions

of these indicators are listed in Appendix A.

On the other hand, we remove the instances for companies with inconsistent ac-

count information in different years to preserve data consistency. In addition, we also

remove instances from business sectors with insufficient number of companies in order

to make sure the remaining sectors are statically comparable to each other. These

sectors are the agricultural sector and the construction sector, since they only have 3

and 16 companies respectively.
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Table 4.1: Financial indicators derived from raw data

1. Z-SCORE 2. LOGDEBT 3. DEBTEQ 4. TDTA 5. SALGRTH

6. RECSAL 7. RECA 8. INVSAL 9. INVTA 10. COSAL

11. GPTA 12. NPTA 13. RETA 14. ROS 15. ROE

16. ROA 17. NPSAL 18. LTA 19. WCAP 20. NFATA

21. SALTA 22. CACL 23. NIFA 24. CASHTA 25. QACL

26. EBIT 27. LTDTA 28. ACID-TEST 29. SOLVENCY 30. MKVALT

Table 4.2 lists a general summary of the dataset after data cleaning and transfor-

mation. Our dataset includes a total of 1611 instances from 537 companies spread in

6 business sectors. The numbers of instances of each business sector are also included.

Table 4.2: Data summary

Business Sector # Company # Instance

B: Mining 25 75

D: Manufacturing 218 654

E: Transportation, Communications, Electric, Gas 102 306

F: Wholesale 26 78

G: Retail Trade 84 252

I: Services 82 246

Grand Total 537 1611
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4.5 Data Mining Approach – K-means Clustering

We employ k-means clustering technique to analyze the clustering effect in bankrupt

companies of different business sectors. K-means clustering algorithm is a simple,

efficient, and well known data mining method for cluster analysis which can be used

for a wide variety of data types. It aims to partition n objects into k clusters (usually

user specified) in which each object belongs to the cluster with the nearest mean (Tan

et al., 2005). First of all, each object is represented by a vector of numerical features

in an m-dimensional space. The algorithm randomly chooses k objects out of the n

objects as the starting initial centroids of the k clusters. Each object is then assigned

to the cluster whose centroid it is closest to based on a predefined distance measure,

which varies from the characteristics of the data and the objective of the learning

task. After all objects are re-assigned, the centroid of each cluster is re-computed.

The process of assigning objects and re-computing centroids is repeated until no object

changes its cluster label. The algorithm is proved to converge after a finite number

of iterations. The pseudo code of the k-means algorithm is described in Figure 4.1.

4.6 Experimental Evaluation

In this section, we conduct experiments to identify the business sector with the

strongest clustering effect and the financial indicators with the most significant in-

dicative power to best describe the financial characteristics of the bankrupt companies

in the sector.
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1. Select k objects as the initial centroids

2. repeat

3. Form k clusters by assigning each object to its closest centroid

4. Re-compute the centroid of each cluster

5. until centroids do not change

Figure 4.1: K-means clustering algorithm

4.6.1 Experiment Setup

We employ the k-means algorithm implemented in CLUTO (Karypis, 2007), a soft-

ware package for clustering low and high dimensional datasets and analyzing the

characteristics of various clusters, to analyze our dataset. CLUTO is well-suited for

clustering datasets arising in many diverse application areas including information

retrieval, customer purchasing transactions, web, GIS, science, and biology.

Regarding the user specified parameters in k-means algorithm, we set the number

of clusters k to be 6, since there are 6 natural clusters in the dataset which come

from 6 business sectors (mining, manufacturing, transportation, wholesale, retail, and

services). Consider the dimensionality of the data (30 dimensions), we choose cosine

distance rather than the traditional Euclidean distance as the similarity measure,

since it is difficult for the Euclidean distance measure to separate objects in a high
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dimensional space where data becomes increasingly sparse.

4.6.2 Experimental Results

K-means algorithm has the uniform effect, which tends to produce clusters with

relatively uniform sizes (Xiong, Wu, & Chen, 2009). Since the size of the 6 business

sectors varies in a large range, we randomly sample instances from business sectors

with equal size to make them comparable with each other. Mining industry is the

smallest business sector with 25 companies among all sectors, therefore, we set the

sample size for each industry to be 25 (i.e. 75 instances). The derived sample data

contains 151 companies and 453 instances (26 companies for wholesale industry).

K-means algorithm is then applied on the sample data to get the clustering result.

Table 4.3 shows the clustering result on a sample data. We can observe the

distribution of instances from different business sectors in each cluster. For example,

cluster 0 has 178 instances in total and 50 (28% in percentage) of them are from

sector B. And we assign each cluster a label as the name of the business sector from

which objects have the largest proportion. In other words, each instance in that

cluster is considered as from the industry with majority objects. For example, sector

E (transportation) has the highest percentage in cluster 0 (29%), therefore, cluster

0 is labeled as the transportation industry and the instances from other business

sectors in this cluster are all considered as originally sampled from sector E. Clearly,

the quality of cluster 0 is not good. In this sample data, cluster 2 has the greatest

clustering quality, since 75% instances in the cluster are from the retail trade industry.

The quality of the clustering result is usually measured by intra-cluster compact-
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Table 4.3: Clustering result of a sample data

Business Sector Clu.0 Clu.1 Clu.2 Clu.3 Clu.4 Clu.5 Total

B: Mining 50(28%) 5(6%) — 3(23%) 2(2%) 15(43%) 75

D: Manufacturing 14(8%) 22(25%) 2(3%) 7(54%) 28(34%) 2(6%) 75

E: Transportation 51(29%) 4(5%) — — 8(10%) 12(34%) 75

F: Wholesale 12(7%) 37(43%) 13(22%) 1(8%) 15(18%) — 78

G: Retail Trade 10(6%) 8(9%) 43(75%) — 13(16%) 1(3%) 75

I: Services 41(23%) 11(13%) — 2(15%) 16(20%) 5(14%) 75

Grand Total 178 87 58 13 82 35 453

ness (i.e. cohesion) and inter-cluster separation (Liu et al., 2013). Cohesion measures

how closely related the objects in a cluster are, while separation measures how dis-

tinct or well-separated a cluster is from other clusters. In general, cohesion plays a

more important role than separation of clustering validation measures. There have

been numerous cohesion measures proposed in literature (Liu et al., 2013), and purity

and entropy are two of the most widely used cohesion measures among them.

Purity is a simple indicator which measures the purity of a cluster as the ratio of

the number of objects from the majority class to the total number of objects in the

entire cluster. For example, the purity of cluster 2 is 0.75. A higher value of purity

indicates a better clustering result.

Entropy is another cohesion measure that indicates the purity of a clustering

result. The entropy of a cluster is calculated as

E = −
∑

i

pi · log(pi)
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where pi is ratio of number of instances from the ith sector to the total number of

instances in the cluster. For example, the entropy of cluster 2 is −(0.03 ∗ log(0.03) +

0.22 ∗ log(0.22)+ 0.75 ∗ log(0.75)) = 0.28. A lower value of entropy indicates a better

clustering result.

The slight difference between our cohesion measures and the ones in literature is

that we calculate the purity and entropy of each cluster rather than the overall purity

and entropy of all 6 clusters, since the intention of this study focuses on comparing

the clustering effect of different clusters.

In order to make the experiment results statically significant, we derive 30 samples

from the original dataset, and then calculate the sample mean and standard deviation

of purity and entropy for each business sector. The results are listed in Table 4.4.

The sample standard deviations are listed in parentheses.

Table 4.4: Sample mean and standard deviation of purity and en-

tropy for each business sector

Sector B Sector D Sector E Sector F Sector G Sector I

Purity 0.48(0.11) 0.38(0.05) 0.32(0.03) 0.51(0.12) 0.60(0.10) 0.41(0.11)

Entropy 0.55(0.11) 0.70(0.02) 0.65(0.09) 0.60(0.09) 0.46(0.11) 0.53(0.10)

4.6.3 Result Analysis

Based on the results in Table 4.4, we can observe that sector G (retail trade) has the

best clustering effects among all 6 business sectors, since it has the highest purity

and lowest entropy. We conduct a two-sample z-test to examine whether the sample



- 94 -

means of the purity and entropy of sector G are statistically significant better than

those of other business sectors. Therefore, we have the following hypotheses on purity:

Null Hypothesis (H0): µ(Purity(G)) = µ(Purity(∗))

Alternative Hypothesis (H1): µ(Purity(G)) > µ(Purity(∗))

where * stands for sector B, D, E, F and I. The hypotheses on entropy are similar as

the ones on purity.

The p-values of the hypothesis tests are shown in Table 4.5. All the p-values are

less than 0.01, and most of them are below 0.001. Therefore, it is safe to reject the

null hypothesis. In other words, sector G has the best clustering effects among all

6 business sectors, which indicates that bankrupt companies in retail trade industry

are similar to each other and share common financial characteristics.

We may explain the strong clustering effect in retail industry from two aspects.

First of all, companies in retail industry are not as various as companies in other

business sectors, thus there are common characteristics identifiable through a review

of their financial statements, cash flow statements, and ratios (McGurr & DeVaney,

1998). Secondly, the retail industry is greatly affected by economic recessions and

growth cycles. The reasons for bankruptcy can be very similar for companies in retail

business, therefore yields a strong clustering effect.

4.6.4 The Most Significant Financial Indicators

From the above analysis, we conclude that the retail trade industry has the strongest

clustering effect. The next thing we would like to study is the financial indicators that

have the most significant indicative power to best describe the financial characteristics
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Table 4.5: p-values of hypothesis tests on sample means for purity and entropy

Sector B Sector D Sector E Sector F Sector I

Hypothesis Test on Purity *** *** *** *** ***

Hypothesis Test on Entropy *** *** *** *** **

**: p-value < 0.01; ***: p-value < 0.001

of the companies in retail business sector. We can achieve the goal by leveraging the

figure of contributed features produced by CLUTO.

We employ k-means algorithm to group all 537 companies (1611 instances) into

6 clusters, and observe that most of retail trade companies are clustered into cluster

2. The corresponding figure of contributed features is shown as Figure 4.2. In this

figure, contributions for each feature to each cluster are displayed by different level

of shades (no shade means no contribution). Feature with a deeper level of shade

indicates a larger contribution when measuring the intra-cluster similarity, while a

lighter level of shade indicates a larger contribution when distinguishing one cluster

from others; in other words, features with the deepest and the lightest levels of shade

have the highest indicative power.

According to Figure 4.2 and the associated statistics, the five most descriptive

features for cluster 2 are NPSAL, LOGDEBT, RETA, DEBTEQ, and Z-score. They

explain the similarities among the bankrupt companies in the retail industry. On the

other hand, the five most discriminating features for cluster 2 are INVTA, NFATA,

SALTA, LTDTA, and INVSAL. They explain the dissimilarities of the retail cluster

to other clusters. These 10 features have the most significant indicative power to



- 96 -

Figure 4.2: Contributed features of each cluster

best describe the financial characteristics of the bankrupt companies in retail business

sector. Generally, they represent 4 aspects of the financial activities of a firm (Persons,

2011).

(1) Profitability (RETA, NPSAL, SALTA): Lower profit may cause the firm in

bad financial situation. So the values of these features are expected to be negative.

Bankrupt companies are usually less profitable.

(2) Financial Leverage (DEBTEQ, LOGDEBT, LTDTA): Higher leverage is typi-
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cally associated with higher potential for violations of loan agreements and less ability

to obtain additional capital through borrowing. Bankrupt companies usually have

high financial leverages.

(3) Asset Liquidity (NFATA, INVTA, INVSAL): Lower liquidity may provide

an incentive for the bankruptcy when the firm is in unhealthy financial situation.

Bankrupt companies usually have low liquidity.

(4) Overall Financial Position (Z-score): Z-score measures the bankruptcy proba-

bility of a firm. A smaller Z-score is more likely to engage in bankrupt crisis.

4.7 Summary

Todays auditing and risk management are becoming increasing important for com-

panys development and governments regulation since it copes with growing number

of fraud and bankruptcy cases. Data mining techniques, with advanced clustering

and predictive capabilities, could facilitate auditors and managers in accomplishing

the task of management fraud detection and early-warning decision making. The

aim of this study is to utilize clustering techniques to extract useful knowledge from

bankrupt companies using published financial statement data.

Although our study is still in the early stage, we have extracted some valuable

information for future researches. From the experimental results, we have learned

retail trade industry has the strongest clustering effect among all 6 business sectors.

We have also identified 10 of the most indicative financial features for the bankrupt

companies in retail business.



- 98 -

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

In this dissertation, we explored the problem of how advanced data mining techniques

can play essential roles in financial risk management in today’s data-intensive business

world. The focus was to develop effective and efficient data analysis techniques to

detect financial anomalies and mitigate potential risks, by addressing the unique

characteristics of particular business applications. Specifically, three case studies were

provided to apply advanced data mining techniques in the following applications.

First of all, we explored the problem of detecting a specific type of trading fraud in

the financial market, namely the trading ring pattern. We formulated the problem of

mining blackhole and volcano patterns in a directed graph. To reduce the complexity

of the problem, we first showed that the problem of finding blackhole patterns was a

dual problem of finding volcano patterns. Thus, we could be only focused on mining

blackhole patterns. To that end, we proposed two pruning approaches to reduce the

computational cost by decreasing both the number of combinations and the average

computational cost for each combination. In the first pruning approach, we intro-

duced the concept of combination dominance to help develop a pruning technique to

reduce the exponentially growing search space. Based on this pruning technique, we
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developed the gBlackhole algorithm for finding top-K blackhole patterns. The sec-

ond pruning approach, named the approxBlackhole algorithm, was an approximate

algorithm to further decrease the computational complexity over the gBlackhole algo-

rithm. This approxBlackhole algorithm first filtered out nodes with small diff-weights

to reduce the size of the graph, and then found the top-K blackhole patterns in the

subgraph induced by the rest of the nodes. There was a trade-off between the effi-

ciency and completeness of the approxBlackhole algorithm.

Secondly, we investigated the problem of evaluating potential risks for new service

contracts by measuring the similarity of contracts. It was motivated by the under-

standing that experiences and lessons learnt from historical contracts were of great

value to IT service providers for risk management. A key challenge was how to define

the right metric to measure contract similarity when there were continuous distance

measurements between contract pairs. We formulated the problem as an extension

of the existing Mahalanobis distance metric learning problem, which could only deal

with binary distance measurements. We proposed the Gradient Descent alternating

Iterative Projection method (GDIP) to solve the problem efficiently.

Last but not least, we examined the application of applying clustering techniques

to extract useful knowledge from bankrupt companies using published financial state-

ment data. We utilized the advantages in both the accounting and data mining areas

to solve the problem. First of all, we leveraged the domain knowledge in accounting

area to select valuable features from financial statement. Then we employed cluster-

ing techniques to identify business sector in which bankrupt companies has strong

clustering effects. We learnt retail trade industry had the strongest clustering effect
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among all 6 business sectors, and also identified 10 of the most indicative financial

features for the bankrupt companies in retail business.

5.2 Future Research Direction

In the future, I would like to explore along the following research directions.

Detection of Evolving Blackhole and Volcano Patterns. By incorporating

the ideas and techniques from the areas of frequent subgraph mining and community

evolution detection, it would be possible to extend the blackhole and volcano patterns

to a dynamically evolving fashion. We can study the lifetime cycle of these patterns

and utilize to discover new underlying knowledge. For the trading ring pattern ex-

ample, if some of the evolving blackhole and volcano patterns could be identified at

their early stages, mitigation steps could be conducted accordingly. It would also

be helpful to detect new collaborative fraudsters when a new blackhole pattern is

emerging.

Bankruptcy Prediction using Financial Statement. For the next stage,

we plan to focus on the retail trade industry and have a deeper insight into it. We

plan to build more concrete bankruptcy prediction model to study the bankrupt

companies in the retail trade industry based on the selected 10 features. We can also

uncover some hidden some patterns from the bankrupt companies. Another direction

of future our research is to improve the performance of the current framework by

introducing additional methods. For example, we could take the rare class problem

into consideration during the model building procedure. We can also explore some

other external information from stock data and companys governance and board
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information, and build network connections among companies. Network analysis

methods can then be applied in this setting.

Identification of Mini Flash Crash in High-Frequency Trading World.

The U.S. financial markets experienced a flash crash on the day of May 6, 2010 - a

sudden price drop of more than 5 percent within 3 minutes and recovered and regained

most of the losses shortly after. The brief period of extreme intra-day volatility raises

a number of questions about the structure and stability of today’s financial markets,

as well as the increasing role played by high-frequency trading (HFT). Along this

line, we would like to investigate the inherent properties of the mini flash crash - a

short-term crash with similar patterns to the Flash Crash, and its relationship with

HFT. We plan to reveal the characteristics of the mini flash crash using technical

analysis, which seeks to identify price patterns and market trends in financial markets

by looking at the historical trading data. We need to address the following three

challenges. 1) develop quantitative measures to define a mini flash crash; 2) generate

technical indicators reflecting the properties of mini flash crash and combine different

indictors; 3) handle the computational challenge of the overwhelming real-time data

volume.
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APPENDIX A

FINANCIAL STATEMENT INDICATORS DETAILS

Table A.1: Detailed formulas and descriptions of selected

indicators

Indicator Formula Description

Z-SCORE

T1 =
Working Capital

Total Assets

T2 =
Retained Earnings

Total Assets

T3 =
Earnings Before Interest and Taxes

Total Assets

T4 =
Market V alue of Equity

Total Liabilities

T5 =
Sales

Total Assets

Z = 1.2 ∗ T1 + 1.4 ∗ T2 + 3.3 ∗ T3+

0.6 ∗ T4 + 0.99 ∗ T5

Insolvency Predictor

- A predictor which

predicts a company’s

probability of failure

using 8 variables

from a company’s

financial statements

LOGDEBT log(Total Debt)
Logarithm of Total

Debt

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

DEBTEQ
Liabilities

Shareholders′ Equity

A measure of a

company’s financial

leverage calculated

by dividing its total

liabilities by

stockholders’ equity.

It indicates what

proportion of equity

and debt the

company is using to

finance its assets

TDTA
Total Debt

Total Assets

A metric used to

measure a

company’s financial

risk by determining

how much of the

company’s assets

have been financed

by debt

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

SALGRTH Sales Growth

The ratio of sales

growth. Measures

the continuing

growth of a company

RECSAL
Accounts Receivable

Sales

A ratio helps to

identify recent

increases in accounts

receivable. When

computes this ratio

each month and then

look at the changes

that occur as the

months pass, the

accounts receivable

to sales ratio can

signal potential

problems in the cash

flow

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

RECA
Accounts Receivable

Total Assets

The portion of

accounts receivable

made of total assets

INVSAL Inventory

Sales
Ratios to predict

inventory related

cash flow problemsINVTA Inventory

Total Assets

COSAL Sales−Gross Margin Ratios to decide

whether gross margin

is manipulatedGPTA Gross Profit

Total Assets

NPTA
Net Profit

Total Assets

An indicator of how

effectively a

company is using its

assets to generate

profit

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

RETA
Retained Earnings

Total Assets

A ratio indicates the

extent to which

assets have been

paid for by company

profits. A ratio near

100% indicates that

growth has been

financed through

profits, not increased

debt, vice versa

ROS Net Income before Taxes

Sales

Variables indicate

the effectiveness of

company in

generating profit

ROE Net Income before Taxes

Shareholders′ Equity

ROA Net Income before Taxes

Total Assets

NPSAL Net Profit

Sales

LTA log(Total Assets)
Logarithm of Total

Assets

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

WCAP Current Assets− Current Liabilities Working Capital

NFATA
Property P lant & Equipment

Total Assets

PP&E is the asset

cannot be easily

liquidated

SALTA
Sales

Total Assets

A ratio indicates

how well using

business assets to

generate revenue. A

higher ratio means a

higher return on

assets, which can

compensate for a low

profit margin

CACL
Current Assets

Current Liabilities

A measure of both a

company’s efficiency

and its short-term

financial health

NIFA
Net Income

F ixed Assets

The return ratio of

the total investment

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

CASHTA
Cash

Total Assets

The liquidity of the

Total Assets

QACL
Quick Assets

Current Liabilities

Quick Assets =

Current Assets -

Inventory

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

EBIT Earnings before Interest and Taxes

A variable which

nulls the effects of

the different capital

structures and tax

rates used by

different companies.

By excluding both

taxes and interest

expenses, the figure

hones in on the

company’s ability to

profit and thus

makes

cross-company

comparisons easier

LTDTA
Long-term Debt

Total Assets

Long-term Debt is

loans and financial

obligations lasting

over one year

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

ACID-

TEST

RATIO

Cash+ Short-term Inverestment +REC

Current Liabilities

REC = Accounts Receivable

A stringent test to

determine whether a

firm has enough

short-term assets to

cover its immediate

liabilities without

selling inventory.

Companies with

ratios less than 1

cannot pay their

current liabilities

and thus should be

viewed with extreme

caution

Continued on next page
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Table A.1 – continued from previous page

Indicator Formula Description

SOLVENCY

RATIO

After-Tax Net Profit+Depreciation

LT Liabilities + ST Liabilities

A ratio used to

measure a companys

ability to meet its

long-term

obligations. The

lower a companys

solvency ratio is, the

greater is the

likelihood that the

company will default

on its debt

obligations

MKVALT Share Price ∗Number of Shares Market Value


